1 /*
2 * Copyright 2014 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 */
23
24 #include <linux/ratelimit.h>
25 #include <linux/printk.h>
26 #include <linux/slab.h>
27 #include <linux/list.h>
28 #include <linux/types.h>
29 #include <linux/bitops.h>
30 #include <linux/sched.h>
31 #include "kfd_priv.h"
32 #include "kfd_device_queue_manager.h"
33 #include "kfd_mqd_manager.h"
34 #include "cik_regs.h"
35 #include "kfd_kernel_queue.h"
36
37 /* Size of the per-pipe EOP queue */
38 #define CIK_HPD_EOP_BYTES_LOG2 11
39 #define CIK_HPD_EOP_BYTES (1U << CIK_HPD_EOP_BYTES_LOG2)
40
41 static int set_pasid_vmid_mapping(struct device_queue_manager *dqm,
42 unsigned int pasid, unsigned int vmid);
43
44 static int create_compute_queue_nocpsch(struct device_queue_manager *dqm,
45 struct queue *q,
46 struct qcm_process_device *qpd);
47
48 static int execute_queues_cpsch(struct device_queue_manager *dqm,
49 enum kfd_unmap_queues_filter filter,
50 uint32_t filter_param);
51 static int unmap_queues_cpsch(struct device_queue_manager *dqm,
52 enum kfd_unmap_queues_filter filter,
53 uint32_t filter_param);
54
55 static int map_queues_cpsch(struct device_queue_manager *dqm);
56
57 static int create_sdma_queue_nocpsch(struct device_queue_manager *dqm,
58 struct queue *q,
59 struct qcm_process_device *qpd);
60
61 static void deallocate_sdma_queue(struct device_queue_manager *dqm,
62 unsigned int sdma_queue_id);
63
64 static void kfd_process_hw_exception(struct work_struct *work);
65
66 static inline
get_mqd_type_from_queue_type(enum kfd_queue_type type)67 enum KFD_MQD_TYPE get_mqd_type_from_queue_type(enum kfd_queue_type type)
68 {
69 if (type == KFD_QUEUE_TYPE_SDMA)
70 return KFD_MQD_TYPE_SDMA;
71 return KFD_MQD_TYPE_CP;
72 }
73
is_pipe_enabled(struct device_queue_manager * dqm,int mec,int pipe)74 static bool is_pipe_enabled(struct device_queue_manager *dqm, int mec, int pipe)
75 {
76 int i;
77 int pipe_offset = mec * dqm->dev->shared_resources.num_pipe_per_mec
78 + pipe * dqm->dev->shared_resources.num_queue_per_pipe;
79
80 /* queue is available for KFD usage if bit is 1 */
81 for (i = 0; i < dqm->dev->shared_resources.num_queue_per_pipe; ++i)
82 if (test_bit(pipe_offset + i,
83 dqm->dev->shared_resources.queue_bitmap))
84 return true;
85 return false;
86 }
87
get_queues_num(struct device_queue_manager * dqm)88 unsigned int get_queues_num(struct device_queue_manager *dqm)
89 {
90 return bitmap_weight(dqm->dev->shared_resources.queue_bitmap,
91 KGD_MAX_QUEUES);
92 }
93
get_queues_per_pipe(struct device_queue_manager * dqm)94 unsigned int get_queues_per_pipe(struct device_queue_manager *dqm)
95 {
96 return dqm->dev->shared_resources.num_queue_per_pipe;
97 }
98
get_pipes_per_mec(struct device_queue_manager * dqm)99 unsigned int get_pipes_per_mec(struct device_queue_manager *dqm)
100 {
101 return dqm->dev->shared_resources.num_pipe_per_mec;
102 }
103
get_num_sdma_engines(struct device_queue_manager * dqm)104 static unsigned int get_num_sdma_engines(struct device_queue_manager *dqm)
105 {
106 return dqm->dev->device_info->num_sdma_engines;
107 }
108
get_num_sdma_queues(struct device_queue_manager * dqm)109 unsigned int get_num_sdma_queues(struct device_queue_manager *dqm)
110 {
111 return dqm->dev->device_info->num_sdma_engines
112 * KFD_SDMA_QUEUES_PER_ENGINE;
113 }
114
program_sh_mem_settings(struct device_queue_manager * dqm,struct qcm_process_device * qpd)115 void program_sh_mem_settings(struct device_queue_manager *dqm,
116 struct qcm_process_device *qpd)
117 {
118 return dqm->dev->kfd2kgd->program_sh_mem_settings(
119 dqm->dev->kgd, qpd->vmid,
120 qpd->sh_mem_config,
121 qpd->sh_mem_ape1_base,
122 qpd->sh_mem_ape1_limit,
123 qpd->sh_mem_bases);
124 }
125
allocate_doorbell(struct qcm_process_device * qpd,struct queue * q)126 static int allocate_doorbell(struct qcm_process_device *qpd, struct queue *q)
127 {
128 struct kfd_dev *dev = qpd->dqm->dev;
129
130 if (!KFD_IS_SOC15(dev->device_info->asic_family)) {
131 /* On pre-SOC15 chips we need to use the queue ID to
132 * preserve the user mode ABI.
133 */
134 q->doorbell_id = q->properties.queue_id;
135 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
136 /* For SDMA queues on SOC15, use static doorbell
137 * assignments based on the engine and queue.
138 */
139 q->doorbell_id = dev->shared_resources.sdma_doorbell
140 [q->properties.sdma_engine_id]
141 [q->properties.sdma_queue_id];
142 } else {
143 /* For CP queues on SOC15 reserve a free doorbell ID */
144 unsigned int found;
145
146 found = find_first_zero_bit(qpd->doorbell_bitmap,
147 KFD_MAX_NUM_OF_QUEUES_PER_PROCESS);
148 if (found >= KFD_MAX_NUM_OF_QUEUES_PER_PROCESS) {
149 pr_debug("No doorbells available");
150 return -EBUSY;
151 }
152 set_bit(found, qpd->doorbell_bitmap);
153 q->doorbell_id = found;
154 }
155
156 q->properties.doorbell_off =
157 kfd_doorbell_id_to_offset(dev, q->process,
158 q->doorbell_id);
159
160 return 0;
161 }
162
deallocate_doorbell(struct qcm_process_device * qpd,struct queue * q)163 static void deallocate_doorbell(struct qcm_process_device *qpd,
164 struct queue *q)
165 {
166 unsigned int old;
167 struct kfd_dev *dev = qpd->dqm->dev;
168
169 if (!KFD_IS_SOC15(dev->device_info->asic_family) ||
170 q->properties.type == KFD_QUEUE_TYPE_SDMA)
171 return;
172
173 old = test_and_clear_bit(q->doorbell_id, qpd->doorbell_bitmap);
174 WARN_ON(!old);
175 }
176
allocate_vmid(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)177 static int allocate_vmid(struct device_queue_manager *dqm,
178 struct qcm_process_device *qpd,
179 struct queue *q)
180 {
181 int bit, allocated_vmid;
182
183 if (dqm->vmid_bitmap == 0)
184 return -ENOMEM;
185
186 bit = ffs(dqm->vmid_bitmap) - 1;
187 dqm->vmid_bitmap &= ~(1 << bit);
188
189 allocated_vmid = bit + dqm->dev->vm_info.first_vmid_kfd;
190 pr_debug("vmid allocation %d\n", allocated_vmid);
191 qpd->vmid = allocated_vmid;
192 q->properties.vmid = allocated_vmid;
193
194 set_pasid_vmid_mapping(dqm, q->process->pasid, q->properties.vmid);
195 program_sh_mem_settings(dqm, qpd);
196
197 /* qpd->page_table_base is set earlier when register_process()
198 * is called, i.e. when the first queue is created.
199 */
200 dqm->dev->kfd2kgd->set_vm_context_page_table_base(dqm->dev->kgd,
201 qpd->vmid,
202 qpd->page_table_base);
203 /* invalidate the VM context after pasid and vmid mapping is set up */
204 kfd_flush_tlb(qpd_to_pdd(qpd));
205
206 return 0;
207 }
208
flush_texture_cache_nocpsch(struct kfd_dev * kdev,struct qcm_process_device * qpd)209 static int flush_texture_cache_nocpsch(struct kfd_dev *kdev,
210 struct qcm_process_device *qpd)
211 {
212 const struct packet_manager_funcs *pmf = qpd->dqm->packets.pmf;
213 int ret;
214
215 if (!qpd->ib_kaddr)
216 return -ENOMEM;
217
218 ret = pmf->release_mem(qpd->ib_base, (uint32_t *)qpd->ib_kaddr);
219 if (ret)
220 return ret;
221
222 return kdev->kfd2kgd->submit_ib(kdev->kgd, KGD_ENGINE_MEC1, qpd->vmid,
223 qpd->ib_base, (uint32_t *)qpd->ib_kaddr,
224 pmf->release_mem_size / sizeof(uint32_t));
225 }
226
deallocate_vmid(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)227 static void deallocate_vmid(struct device_queue_manager *dqm,
228 struct qcm_process_device *qpd,
229 struct queue *q)
230 {
231 int bit = qpd->vmid - dqm->dev->vm_info.first_vmid_kfd;
232
233 /* On GFX v7, CP doesn't flush TC at dequeue */
234 if (q->device->device_info->asic_family == CHIP_HAWAII)
235 if (flush_texture_cache_nocpsch(q->device, qpd))
236 pr_err("Failed to flush TC\n");
237
238 kfd_flush_tlb(qpd_to_pdd(qpd));
239
240 /* Release the vmid mapping */
241 set_pasid_vmid_mapping(dqm, 0, qpd->vmid);
242
243 dqm->vmid_bitmap |= (1 << bit);
244 qpd->vmid = 0;
245 q->properties.vmid = 0;
246 }
247
create_queue_nocpsch(struct device_queue_manager * dqm,struct queue * q,struct qcm_process_device * qpd)248 static int create_queue_nocpsch(struct device_queue_manager *dqm,
249 struct queue *q,
250 struct qcm_process_device *qpd)
251 {
252 int retval;
253
254 print_queue(q);
255
256 dqm_lock(dqm);
257
258 if (dqm->total_queue_count >= max_num_of_queues_per_device) {
259 pr_warn("Can't create new usermode queue because %d queues were already created\n",
260 dqm->total_queue_count);
261 retval = -EPERM;
262 goto out_unlock;
263 }
264
265 if (list_empty(&qpd->queues_list)) {
266 retval = allocate_vmid(dqm, qpd, q);
267 if (retval)
268 goto out_unlock;
269 }
270 q->properties.vmid = qpd->vmid;
271 /*
272 * Eviction state logic: we only mark active queues as evicted
273 * to avoid the overhead of restoring inactive queues later
274 */
275 if (qpd->evicted)
276 q->properties.is_evicted = (q->properties.queue_size > 0 &&
277 q->properties.queue_percent > 0 &&
278 q->properties.queue_address != 0);
279
280 q->properties.tba_addr = qpd->tba_addr;
281 q->properties.tma_addr = qpd->tma_addr;
282
283 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
284 retval = create_compute_queue_nocpsch(dqm, q, qpd);
285 else if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
286 retval = create_sdma_queue_nocpsch(dqm, q, qpd);
287 else
288 retval = -EINVAL;
289
290 if (retval) {
291 if (list_empty(&qpd->queues_list))
292 deallocate_vmid(dqm, qpd, q);
293 goto out_unlock;
294 }
295
296 list_add(&q->list, &qpd->queues_list);
297 qpd->queue_count++;
298 if (q->properties.is_active)
299 dqm->queue_count++;
300
301 if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
302 dqm->sdma_queue_count++;
303
304 /*
305 * Unconditionally increment this counter, regardless of the queue's
306 * type or whether the queue is active.
307 */
308 dqm->total_queue_count++;
309 pr_debug("Total of %d queues are accountable so far\n",
310 dqm->total_queue_count);
311
312 out_unlock:
313 dqm_unlock(dqm);
314 return retval;
315 }
316
allocate_hqd(struct device_queue_manager * dqm,struct queue * q)317 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q)
318 {
319 bool set;
320 int pipe, bit, i;
321
322 set = false;
323
324 for (pipe = dqm->next_pipe_to_allocate, i = 0;
325 i < get_pipes_per_mec(dqm);
326 pipe = ((pipe + 1) % get_pipes_per_mec(dqm)), ++i) {
327
328 if (!is_pipe_enabled(dqm, 0, pipe))
329 continue;
330
331 if (dqm->allocated_queues[pipe] != 0) {
332 bit = ffs(dqm->allocated_queues[pipe]) - 1;
333 dqm->allocated_queues[pipe] &= ~(1 << bit);
334 q->pipe = pipe;
335 q->queue = bit;
336 set = true;
337 break;
338 }
339 }
340
341 if (!set)
342 return -EBUSY;
343
344 pr_debug("hqd slot - pipe %d, queue %d\n", q->pipe, q->queue);
345 /* horizontal hqd allocation */
346 dqm->next_pipe_to_allocate = (pipe + 1) % get_pipes_per_mec(dqm);
347
348 return 0;
349 }
350
deallocate_hqd(struct device_queue_manager * dqm,struct queue * q)351 static inline void deallocate_hqd(struct device_queue_manager *dqm,
352 struct queue *q)
353 {
354 dqm->allocated_queues[q->pipe] |= (1 << q->queue);
355 }
356
create_compute_queue_nocpsch(struct device_queue_manager * dqm,struct queue * q,struct qcm_process_device * qpd)357 static int create_compute_queue_nocpsch(struct device_queue_manager *dqm,
358 struct queue *q,
359 struct qcm_process_device *qpd)
360 {
361 struct mqd_manager *mqd_mgr;
362 int retval;
363
364 mqd_mgr = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_COMPUTE);
365 if (!mqd_mgr)
366 return -ENOMEM;
367
368 retval = allocate_hqd(dqm, q);
369 if (retval)
370 return retval;
371
372 retval = allocate_doorbell(qpd, q);
373 if (retval)
374 goto out_deallocate_hqd;
375
376 retval = mqd_mgr->init_mqd(mqd_mgr, &q->mqd, &q->mqd_mem_obj,
377 &q->gart_mqd_addr, &q->properties);
378 if (retval)
379 goto out_deallocate_doorbell;
380
381 pr_debug("Loading mqd to hqd on pipe %d, queue %d\n",
382 q->pipe, q->queue);
383
384 dqm->dev->kfd2kgd->set_scratch_backing_va(
385 dqm->dev->kgd, qpd->sh_hidden_private_base, qpd->vmid);
386
387 if (!q->properties.is_active)
388 return 0;
389
390 if (WARN(q->process->mm != current->mm,
391 "should only run in user thread"))
392 retval = -EFAULT;
393 else
394 retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe, q->queue,
395 &q->properties, current->mm);
396 if (retval)
397 goto out_uninit_mqd;
398
399 return 0;
400
401 out_uninit_mqd:
402 mqd_mgr->uninit_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
403 out_deallocate_doorbell:
404 deallocate_doorbell(qpd, q);
405 out_deallocate_hqd:
406 deallocate_hqd(dqm, q);
407
408 return retval;
409 }
410
411 /* Access to DQM has to be locked before calling destroy_queue_nocpsch_locked
412 * to avoid asynchronized access
413 */
destroy_queue_nocpsch_locked(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)414 static int destroy_queue_nocpsch_locked(struct device_queue_manager *dqm,
415 struct qcm_process_device *qpd,
416 struct queue *q)
417 {
418 int retval;
419 struct mqd_manager *mqd_mgr;
420
421 mqd_mgr = dqm->ops.get_mqd_manager(dqm,
422 get_mqd_type_from_queue_type(q->properties.type));
423 if (!mqd_mgr)
424 return -ENOMEM;
425
426 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) {
427 deallocate_hqd(dqm, q);
428 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
429 dqm->sdma_queue_count--;
430 deallocate_sdma_queue(dqm, q->sdma_id);
431 } else {
432 pr_debug("q->properties.type %d is invalid\n",
433 q->properties.type);
434 return -EINVAL;
435 }
436 dqm->total_queue_count--;
437
438 deallocate_doorbell(qpd, q);
439
440 retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
441 KFD_PREEMPT_TYPE_WAVEFRONT_RESET,
442 KFD_UNMAP_LATENCY_MS,
443 q->pipe, q->queue);
444 if (retval == -ETIME)
445 qpd->reset_wavefronts = true;
446
447 mqd_mgr->uninit_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
448
449 list_del(&q->list);
450 if (list_empty(&qpd->queues_list)) {
451 if (qpd->reset_wavefronts) {
452 pr_warn("Resetting wave fronts (nocpsch) on dev %p\n",
453 dqm->dev);
454 /* dbgdev_wave_reset_wavefronts has to be called before
455 * deallocate_vmid(), i.e. when vmid is still in use.
456 */
457 dbgdev_wave_reset_wavefronts(dqm->dev,
458 qpd->pqm->process);
459 qpd->reset_wavefronts = false;
460 }
461
462 deallocate_vmid(dqm, qpd, q);
463 }
464 qpd->queue_count--;
465 if (q->properties.is_active)
466 dqm->queue_count--;
467
468 return retval;
469 }
470
destroy_queue_nocpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)471 static int destroy_queue_nocpsch(struct device_queue_manager *dqm,
472 struct qcm_process_device *qpd,
473 struct queue *q)
474 {
475 int retval;
476
477 dqm_lock(dqm);
478 retval = destroy_queue_nocpsch_locked(dqm, qpd, q);
479 dqm_unlock(dqm);
480
481 return retval;
482 }
483
update_queue(struct device_queue_manager * dqm,struct queue * q)484 static int update_queue(struct device_queue_manager *dqm, struct queue *q)
485 {
486 int retval;
487 struct mqd_manager *mqd_mgr;
488 struct kfd_process_device *pdd;
489 bool prev_active = false;
490
491 dqm_lock(dqm);
492 pdd = kfd_get_process_device_data(q->device, q->process);
493 if (!pdd) {
494 retval = -ENODEV;
495 goto out_unlock;
496 }
497 mqd_mgr = dqm->ops.get_mqd_manager(dqm,
498 get_mqd_type_from_queue_type(q->properties.type));
499 if (!mqd_mgr) {
500 retval = -ENOMEM;
501 goto out_unlock;
502 }
503 /*
504 * Eviction state logic: we only mark active queues as evicted
505 * to avoid the overhead of restoring inactive queues later
506 */
507 if (pdd->qpd.evicted)
508 q->properties.is_evicted = (q->properties.queue_size > 0 &&
509 q->properties.queue_percent > 0 &&
510 q->properties.queue_address != 0);
511
512 /* Save previous activity state for counters */
513 prev_active = q->properties.is_active;
514
515 /* Make sure the queue is unmapped before updating the MQD */
516 if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) {
517 retval = unmap_queues_cpsch(dqm,
518 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
519 if (retval) {
520 pr_err("unmap queue failed\n");
521 goto out_unlock;
522 }
523 } else if (prev_active &&
524 (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
525 q->properties.type == KFD_QUEUE_TYPE_SDMA)) {
526 retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
527 KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN,
528 KFD_UNMAP_LATENCY_MS, q->pipe, q->queue);
529 if (retval) {
530 pr_err("destroy mqd failed\n");
531 goto out_unlock;
532 }
533 }
534
535 retval = mqd_mgr->update_mqd(mqd_mgr, q->mqd, &q->properties);
536
537 /*
538 * check active state vs. the previous state and modify
539 * counter accordingly. map_queues_cpsch uses the
540 * dqm->queue_count to determine whether a new runlist must be
541 * uploaded.
542 */
543 if (q->properties.is_active && !prev_active)
544 dqm->queue_count++;
545 else if (!q->properties.is_active && prev_active)
546 dqm->queue_count--;
547
548 if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS)
549 retval = map_queues_cpsch(dqm);
550 else if (q->properties.is_active &&
551 (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
552 q->properties.type == KFD_QUEUE_TYPE_SDMA)) {
553 if (WARN(q->process->mm != current->mm,
554 "should only run in user thread"))
555 retval = -EFAULT;
556 else
557 retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd,
558 q->pipe, q->queue,
559 &q->properties, current->mm);
560 }
561
562 out_unlock:
563 dqm_unlock(dqm);
564 return retval;
565 }
566
get_mqd_manager(struct device_queue_manager * dqm,enum KFD_MQD_TYPE type)567 static struct mqd_manager *get_mqd_manager(
568 struct device_queue_manager *dqm, enum KFD_MQD_TYPE type)
569 {
570 struct mqd_manager *mqd_mgr;
571
572 if (WARN_ON(type >= KFD_MQD_TYPE_MAX))
573 return NULL;
574
575 pr_debug("mqd type %d\n", type);
576
577 mqd_mgr = dqm->mqd_mgrs[type];
578 if (!mqd_mgr) {
579 mqd_mgr = mqd_manager_init(type, dqm->dev);
580 if (!mqd_mgr)
581 pr_err("mqd manager is NULL");
582 dqm->mqd_mgrs[type] = mqd_mgr;
583 }
584
585 return mqd_mgr;
586 }
587
evict_process_queues_nocpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)588 static int evict_process_queues_nocpsch(struct device_queue_manager *dqm,
589 struct qcm_process_device *qpd)
590 {
591 struct queue *q;
592 struct mqd_manager *mqd_mgr;
593 struct kfd_process_device *pdd;
594 int retval = 0;
595
596 dqm_lock(dqm);
597 if (qpd->evicted++ > 0) /* already evicted, do nothing */
598 goto out;
599
600 pdd = qpd_to_pdd(qpd);
601 pr_info_ratelimited("Evicting PASID %u queues\n",
602 pdd->process->pasid);
603
604 /* unactivate all active queues on the qpd */
605 list_for_each_entry(q, &qpd->queues_list, list) {
606 if (!q->properties.is_active)
607 continue;
608 mqd_mgr = dqm->ops.get_mqd_manager(dqm,
609 get_mqd_type_from_queue_type(q->properties.type));
610 if (!mqd_mgr) { /* should not be here */
611 pr_err("Cannot evict queue, mqd mgr is NULL\n");
612 retval = -ENOMEM;
613 goto out;
614 }
615 q->properties.is_evicted = true;
616 q->properties.is_active = false;
617 retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
618 KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN,
619 KFD_UNMAP_LATENCY_MS, q->pipe, q->queue);
620 if (retval)
621 goto out;
622 dqm->queue_count--;
623 }
624
625 out:
626 dqm_unlock(dqm);
627 return retval;
628 }
629
evict_process_queues_cpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)630 static int evict_process_queues_cpsch(struct device_queue_manager *dqm,
631 struct qcm_process_device *qpd)
632 {
633 struct queue *q;
634 struct kfd_process_device *pdd;
635 int retval = 0;
636
637 dqm_lock(dqm);
638 if (qpd->evicted++ > 0) /* already evicted, do nothing */
639 goto out;
640
641 pdd = qpd_to_pdd(qpd);
642 pr_info_ratelimited("Evicting PASID %u queues\n",
643 pdd->process->pasid);
644
645 /* unactivate all active queues on the qpd */
646 list_for_each_entry(q, &qpd->queues_list, list) {
647 if (!q->properties.is_active)
648 continue;
649 q->properties.is_evicted = true;
650 q->properties.is_active = false;
651 dqm->queue_count--;
652 }
653 retval = execute_queues_cpsch(dqm,
654 qpd->is_debug ?
655 KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES :
656 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
657
658 out:
659 dqm_unlock(dqm);
660 return retval;
661 }
662
restore_process_queues_nocpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)663 static int restore_process_queues_nocpsch(struct device_queue_manager *dqm,
664 struct qcm_process_device *qpd)
665 {
666 struct mm_struct *mm = NULL;
667 struct queue *q;
668 struct mqd_manager *mqd_mgr;
669 struct kfd_process_device *pdd;
670 uint32_t pd_base;
671 int retval = 0;
672
673 pdd = qpd_to_pdd(qpd);
674 /* Retrieve PD base */
675 pd_base = dqm->dev->kfd2kgd->get_process_page_dir(pdd->vm);
676
677 dqm_lock(dqm);
678 if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */
679 goto out;
680 if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */
681 qpd->evicted--;
682 goto out;
683 }
684
685 pr_info_ratelimited("Restoring PASID %u queues\n",
686 pdd->process->pasid);
687
688 /* Update PD Base in QPD */
689 qpd->page_table_base = pd_base;
690 pr_debug("Updated PD address to 0x%08x\n", pd_base);
691
692 if (!list_empty(&qpd->queues_list)) {
693 dqm->dev->kfd2kgd->set_vm_context_page_table_base(
694 dqm->dev->kgd,
695 qpd->vmid,
696 qpd->page_table_base);
697 kfd_flush_tlb(pdd);
698 }
699
700 /* Take a safe reference to the mm_struct, which may otherwise
701 * disappear even while the kfd_process is still referenced.
702 */
703 mm = get_task_mm(pdd->process->lead_thread);
704 if (!mm) {
705 retval = -EFAULT;
706 goto out;
707 }
708
709 /* activate all active queues on the qpd */
710 list_for_each_entry(q, &qpd->queues_list, list) {
711 if (!q->properties.is_evicted)
712 continue;
713 mqd_mgr = dqm->ops.get_mqd_manager(dqm,
714 get_mqd_type_from_queue_type(q->properties.type));
715 if (!mqd_mgr) { /* should not be here */
716 pr_err("Cannot restore queue, mqd mgr is NULL\n");
717 retval = -ENOMEM;
718 goto out;
719 }
720 q->properties.is_evicted = false;
721 q->properties.is_active = true;
722 retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe,
723 q->queue, &q->properties, mm);
724 if (retval)
725 goto out;
726 dqm->queue_count++;
727 }
728 qpd->evicted = 0;
729 out:
730 if (mm)
731 mmput(mm);
732 dqm_unlock(dqm);
733 return retval;
734 }
735
restore_process_queues_cpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)736 static int restore_process_queues_cpsch(struct device_queue_manager *dqm,
737 struct qcm_process_device *qpd)
738 {
739 struct queue *q;
740 struct kfd_process_device *pdd;
741 uint32_t pd_base;
742 int retval = 0;
743
744 pdd = qpd_to_pdd(qpd);
745 /* Retrieve PD base */
746 pd_base = dqm->dev->kfd2kgd->get_process_page_dir(pdd->vm);
747
748 dqm_lock(dqm);
749 if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */
750 goto out;
751 if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */
752 qpd->evicted--;
753 goto out;
754 }
755
756 pr_info_ratelimited("Restoring PASID %u queues\n",
757 pdd->process->pasid);
758
759 /* Update PD Base in QPD */
760 qpd->page_table_base = pd_base;
761 pr_debug("Updated PD address to 0x%08x\n", pd_base);
762
763 /* activate all active queues on the qpd */
764 list_for_each_entry(q, &qpd->queues_list, list) {
765 if (!q->properties.is_evicted)
766 continue;
767 q->properties.is_evicted = false;
768 q->properties.is_active = true;
769 dqm->queue_count++;
770 }
771 retval = execute_queues_cpsch(dqm,
772 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
773 if (!retval)
774 qpd->evicted = 0;
775 out:
776 dqm_unlock(dqm);
777 return retval;
778 }
779
register_process(struct device_queue_manager * dqm,struct qcm_process_device * qpd)780 static int register_process(struct device_queue_manager *dqm,
781 struct qcm_process_device *qpd)
782 {
783 struct device_process_node *n;
784 struct kfd_process_device *pdd;
785 uint32_t pd_base;
786 int retval;
787
788 n = kzalloc(sizeof(*n), GFP_KERNEL);
789 if (!n)
790 return -ENOMEM;
791
792 n->qpd = qpd;
793
794 pdd = qpd_to_pdd(qpd);
795 /* Retrieve PD base */
796 pd_base = dqm->dev->kfd2kgd->get_process_page_dir(pdd->vm);
797
798 dqm_lock(dqm);
799 list_add(&n->list, &dqm->queues);
800
801 /* Update PD Base in QPD */
802 qpd->page_table_base = pd_base;
803
804 retval = dqm->asic_ops.update_qpd(dqm, qpd);
805
806 if (dqm->processes_count++ == 0)
807 dqm->dev->kfd2kgd->set_compute_idle(dqm->dev->kgd, false);
808
809 dqm_unlock(dqm);
810
811 return retval;
812 }
813
unregister_process(struct device_queue_manager * dqm,struct qcm_process_device * qpd)814 static int unregister_process(struct device_queue_manager *dqm,
815 struct qcm_process_device *qpd)
816 {
817 int retval;
818 struct device_process_node *cur, *next;
819
820 pr_debug("qpd->queues_list is %s\n",
821 list_empty(&qpd->queues_list) ? "empty" : "not empty");
822
823 retval = 0;
824 dqm_lock(dqm);
825
826 list_for_each_entry_safe(cur, next, &dqm->queues, list) {
827 if (qpd == cur->qpd) {
828 list_del(&cur->list);
829 kfree(cur);
830 if (--dqm->processes_count == 0)
831 dqm->dev->kfd2kgd->set_compute_idle(
832 dqm->dev->kgd, true);
833 goto out;
834 }
835 }
836 /* qpd not found in dqm list */
837 retval = 1;
838 out:
839 dqm_unlock(dqm);
840 return retval;
841 }
842
843 static int
set_pasid_vmid_mapping(struct device_queue_manager * dqm,unsigned int pasid,unsigned int vmid)844 set_pasid_vmid_mapping(struct device_queue_manager *dqm, unsigned int pasid,
845 unsigned int vmid)
846 {
847 uint32_t pasid_mapping;
848
849 pasid_mapping = (pasid == 0) ? 0 :
850 (uint32_t)pasid |
851 ATC_VMID_PASID_MAPPING_VALID;
852
853 return dqm->dev->kfd2kgd->set_pasid_vmid_mapping(
854 dqm->dev->kgd, pasid_mapping,
855 vmid);
856 }
857
init_interrupts(struct device_queue_manager * dqm)858 static void init_interrupts(struct device_queue_manager *dqm)
859 {
860 unsigned int i;
861
862 for (i = 0 ; i < get_pipes_per_mec(dqm) ; i++)
863 if (is_pipe_enabled(dqm, 0, i))
864 dqm->dev->kfd2kgd->init_interrupts(dqm->dev->kgd, i);
865 }
866
initialize_nocpsch(struct device_queue_manager * dqm)867 static int initialize_nocpsch(struct device_queue_manager *dqm)
868 {
869 int pipe, queue;
870
871 pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm));
872
873 dqm->allocated_queues = kcalloc(get_pipes_per_mec(dqm),
874 sizeof(unsigned int), GFP_KERNEL);
875 if (!dqm->allocated_queues)
876 return -ENOMEM;
877
878 mutex_init(&dqm->lock_hidden);
879 INIT_LIST_HEAD(&dqm->queues);
880 dqm->queue_count = dqm->next_pipe_to_allocate = 0;
881 dqm->sdma_queue_count = 0;
882
883 for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) {
884 int pipe_offset = pipe * get_queues_per_pipe(dqm);
885
886 for (queue = 0; queue < get_queues_per_pipe(dqm); queue++)
887 if (test_bit(pipe_offset + queue,
888 dqm->dev->shared_resources.queue_bitmap))
889 dqm->allocated_queues[pipe] |= 1 << queue;
890 }
891
892 dqm->vmid_bitmap = (1 << dqm->dev->vm_info.vmid_num_kfd) - 1;
893 dqm->sdma_bitmap = (1 << get_num_sdma_queues(dqm)) - 1;
894
895 return 0;
896 }
897
uninitialize(struct device_queue_manager * dqm)898 static void uninitialize(struct device_queue_manager *dqm)
899 {
900 int i;
901
902 WARN_ON(dqm->queue_count > 0 || dqm->processes_count > 0);
903
904 kfree(dqm->allocated_queues);
905 for (i = 0 ; i < KFD_MQD_TYPE_MAX ; i++)
906 kfree(dqm->mqd_mgrs[i]);
907 mutex_destroy(&dqm->lock_hidden);
908 kfd_gtt_sa_free(dqm->dev, dqm->pipeline_mem);
909 }
910
start_nocpsch(struct device_queue_manager * dqm)911 static int start_nocpsch(struct device_queue_manager *dqm)
912 {
913 init_interrupts(dqm);
914 return pm_init(&dqm->packets, dqm);
915 }
916
stop_nocpsch(struct device_queue_manager * dqm)917 static int stop_nocpsch(struct device_queue_manager *dqm)
918 {
919 pm_uninit(&dqm->packets);
920 return 0;
921 }
922
allocate_sdma_queue(struct device_queue_manager * dqm,unsigned int * sdma_queue_id)923 static int allocate_sdma_queue(struct device_queue_manager *dqm,
924 unsigned int *sdma_queue_id)
925 {
926 int bit;
927
928 if (dqm->sdma_bitmap == 0)
929 return -ENOMEM;
930
931 bit = ffs(dqm->sdma_bitmap) - 1;
932 dqm->sdma_bitmap &= ~(1 << bit);
933 *sdma_queue_id = bit;
934
935 return 0;
936 }
937
deallocate_sdma_queue(struct device_queue_manager * dqm,unsigned int sdma_queue_id)938 static void deallocate_sdma_queue(struct device_queue_manager *dqm,
939 unsigned int sdma_queue_id)
940 {
941 if (sdma_queue_id >= get_num_sdma_queues(dqm))
942 return;
943 dqm->sdma_bitmap |= (1 << sdma_queue_id);
944 }
945
create_sdma_queue_nocpsch(struct device_queue_manager * dqm,struct queue * q,struct qcm_process_device * qpd)946 static int create_sdma_queue_nocpsch(struct device_queue_manager *dqm,
947 struct queue *q,
948 struct qcm_process_device *qpd)
949 {
950 struct mqd_manager *mqd_mgr;
951 int retval;
952
953 mqd_mgr = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_SDMA);
954 if (!mqd_mgr)
955 return -ENOMEM;
956
957 retval = allocate_sdma_queue(dqm, &q->sdma_id);
958 if (retval)
959 return retval;
960
961 q->properties.sdma_queue_id = q->sdma_id / get_num_sdma_engines(dqm);
962 q->properties.sdma_engine_id = q->sdma_id % get_num_sdma_engines(dqm);
963
964 retval = allocate_doorbell(qpd, q);
965 if (retval)
966 goto out_deallocate_sdma_queue;
967
968 pr_debug("SDMA id is: %d\n", q->sdma_id);
969 pr_debug("SDMA queue id: %d\n", q->properties.sdma_queue_id);
970 pr_debug("SDMA engine id: %d\n", q->properties.sdma_engine_id);
971
972 dqm->asic_ops.init_sdma_vm(dqm, q, qpd);
973 retval = mqd_mgr->init_mqd(mqd_mgr, &q->mqd, &q->mqd_mem_obj,
974 &q->gart_mqd_addr, &q->properties);
975 if (retval)
976 goto out_deallocate_doorbell;
977
978 retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, 0, 0, &q->properties,
979 NULL);
980 if (retval)
981 goto out_uninit_mqd;
982
983 return 0;
984
985 out_uninit_mqd:
986 mqd_mgr->uninit_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
987 out_deallocate_doorbell:
988 deallocate_doorbell(qpd, q);
989 out_deallocate_sdma_queue:
990 deallocate_sdma_queue(dqm, q->sdma_id);
991
992 return retval;
993 }
994
995 /*
996 * Device Queue Manager implementation for cp scheduler
997 */
998
set_sched_resources(struct device_queue_manager * dqm)999 static int set_sched_resources(struct device_queue_manager *dqm)
1000 {
1001 int i, mec;
1002 struct scheduling_resources res;
1003
1004 res.vmid_mask = dqm->dev->shared_resources.compute_vmid_bitmap;
1005
1006 res.queue_mask = 0;
1007 for (i = 0; i < KGD_MAX_QUEUES; ++i) {
1008 mec = (i / dqm->dev->shared_resources.num_queue_per_pipe)
1009 / dqm->dev->shared_resources.num_pipe_per_mec;
1010
1011 if (!test_bit(i, dqm->dev->shared_resources.queue_bitmap))
1012 continue;
1013
1014 /* only acquire queues from the first MEC */
1015 if (mec > 0)
1016 continue;
1017
1018 /* This situation may be hit in the future if a new HW
1019 * generation exposes more than 64 queues. If so, the
1020 * definition of res.queue_mask needs updating
1021 */
1022 if (WARN_ON(i >= (sizeof(res.queue_mask)*8))) {
1023 pr_err("Invalid queue enabled by amdgpu: %d\n", i);
1024 break;
1025 }
1026
1027 res.queue_mask |= (1ull << i);
1028 }
1029 res.gws_mask = res.oac_mask = res.gds_heap_base =
1030 res.gds_heap_size = 0;
1031
1032 pr_debug("Scheduling resources:\n"
1033 "vmid mask: 0x%8X\n"
1034 "queue mask: 0x%8llX\n",
1035 res.vmid_mask, res.queue_mask);
1036
1037 return pm_send_set_resources(&dqm->packets, &res);
1038 }
1039
initialize_cpsch(struct device_queue_manager * dqm)1040 static int initialize_cpsch(struct device_queue_manager *dqm)
1041 {
1042 pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm));
1043
1044 mutex_init(&dqm->lock_hidden);
1045 INIT_LIST_HEAD(&dqm->queues);
1046 dqm->queue_count = dqm->processes_count = 0;
1047 dqm->sdma_queue_count = 0;
1048 dqm->active_runlist = false;
1049 dqm->sdma_bitmap = (1 << get_num_sdma_queues(dqm)) - 1;
1050
1051 INIT_WORK(&dqm->hw_exception_work, kfd_process_hw_exception);
1052
1053 return 0;
1054 }
1055
start_cpsch(struct device_queue_manager * dqm)1056 static int start_cpsch(struct device_queue_manager *dqm)
1057 {
1058 int retval;
1059
1060 retval = 0;
1061
1062 retval = pm_init(&dqm->packets, dqm);
1063 if (retval)
1064 goto fail_packet_manager_init;
1065
1066 retval = set_sched_resources(dqm);
1067 if (retval)
1068 goto fail_set_sched_resources;
1069
1070 pr_debug("Allocating fence memory\n");
1071
1072 /* allocate fence memory on the gart */
1073 retval = kfd_gtt_sa_allocate(dqm->dev, sizeof(*dqm->fence_addr),
1074 &dqm->fence_mem);
1075
1076 if (retval)
1077 goto fail_allocate_vidmem;
1078
1079 dqm->fence_addr = dqm->fence_mem->cpu_ptr;
1080 dqm->fence_gpu_addr = dqm->fence_mem->gpu_addr;
1081
1082 init_interrupts(dqm);
1083
1084 dqm_lock(dqm);
1085 /* clear hang status when driver try to start the hw scheduler */
1086 dqm->is_hws_hang = false;
1087 execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
1088 dqm_unlock(dqm);
1089
1090 return 0;
1091 fail_allocate_vidmem:
1092 fail_set_sched_resources:
1093 pm_uninit(&dqm->packets);
1094 fail_packet_manager_init:
1095 return retval;
1096 }
1097
stop_cpsch(struct device_queue_manager * dqm)1098 static int stop_cpsch(struct device_queue_manager *dqm)
1099 {
1100 dqm_lock(dqm);
1101 unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0);
1102 dqm_unlock(dqm);
1103
1104 kfd_gtt_sa_free(dqm->dev, dqm->fence_mem);
1105 pm_uninit(&dqm->packets);
1106
1107 return 0;
1108 }
1109
create_kernel_queue_cpsch(struct device_queue_manager * dqm,struct kernel_queue * kq,struct qcm_process_device * qpd)1110 static int create_kernel_queue_cpsch(struct device_queue_manager *dqm,
1111 struct kernel_queue *kq,
1112 struct qcm_process_device *qpd)
1113 {
1114 dqm_lock(dqm);
1115 if (dqm->total_queue_count >= max_num_of_queues_per_device) {
1116 pr_warn("Can't create new kernel queue because %d queues were already created\n",
1117 dqm->total_queue_count);
1118 dqm_unlock(dqm);
1119 return -EPERM;
1120 }
1121
1122 /*
1123 * Unconditionally increment this counter, regardless of the queue's
1124 * type or whether the queue is active.
1125 */
1126 dqm->total_queue_count++;
1127 pr_debug("Total of %d queues are accountable so far\n",
1128 dqm->total_queue_count);
1129
1130 list_add(&kq->list, &qpd->priv_queue_list);
1131 dqm->queue_count++;
1132 qpd->is_debug = true;
1133 execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
1134 dqm_unlock(dqm);
1135
1136 return 0;
1137 }
1138
destroy_kernel_queue_cpsch(struct device_queue_manager * dqm,struct kernel_queue * kq,struct qcm_process_device * qpd)1139 static void destroy_kernel_queue_cpsch(struct device_queue_manager *dqm,
1140 struct kernel_queue *kq,
1141 struct qcm_process_device *qpd)
1142 {
1143 dqm_lock(dqm);
1144 list_del(&kq->list);
1145 dqm->queue_count--;
1146 qpd->is_debug = false;
1147 execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0);
1148 /*
1149 * Unconditionally decrement this counter, regardless of the queue's
1150 * type.
1151 */
1152 dqm->total_queue_count--;
1153 pr_debug("Total of %d queues are accountable so far\n",
1154 dqm->total_queue_count);
1155 dqm_unlock(dqm);
1156 }
1157
create_queue_cpsch(struct device_queue_manager * dqm,struct queue * q,struct qcm_process_device * qpd)1158 static int create_queue_cpsch(struct device_queue_manager *dqm, struct queue *q,
1159 struct qcm_process_device *qpd)
1160 {
1161 int retval;
1162 struct mqd_manager *mqd_mgr;
1163
1164 retval = 0;
1165
1166 dqm_lock(dqm);
1167
1168 if (dqm->total_queue_count >= max_num_of_queues_per_device) {
1169 pr_warn("Can't create new usermode queue because %d queues were already created\n",
1170 dqm->total_queue_count);
1171 retval = -EPERM;
1172 goto out_unlock;
1173 }
1174
1175 if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
1176 retval = allocate_sdma_queue(dqm, &q->sdma_id);
1177 if (retval)
1178 goto out_unlock;
1179 q->properties.sdma_queue_id =
1180 q->sdma_id / get_num_sdma_engines(dqm);
1181 q->properties.sdma_engine_id =
1182 q->sdma_id % get_num_sdma_engines(dqm);
1183 }
1184
1185 retval = allocate_doorbell(qpd, q);
1186 if (retval)
1187 goto out_deallocate_sdma_queue;
1188
1189 mqd_mgr = dqm->ops.get_mqd_manager(dqm,
1190 get_mqd_type_from_queue_type(q->properties.type));
1191
1192 if (!mqd_mgr) {
1193 retval = -ENOMEM;
1194 goto out_deallocate_doorbell;
1195 }
1196 /*
1197 * Eviction state logic: we only mark active queues as evicted
1198 * to avoid the overhead of restoring inactive queues later
1199 */
1200 if (qpd->evicted)
1201 q->properties.is_evicted = (q->properties.queue_size > 0 &&
1202 q->properties.queue_percent > 0 &&
1203 q->properties.queue_address != 0);
1204
1205 dqm->asic_ops.init_sdma_vm(dqm, q, qpd);
1206
1207 q->properties.tba_addr = qpd->tba_addr;
1208 q->properties.tma_addr = qpd->tma_addr;
1209 retval = mqd_mgr->init_mqd(mqd_mgr, &q->mqd, &q->mqd_mem_obj,
1210 &q->gart_mqd_addr, &q->properties);
1211 if (retval)
1212 goto out_deallocate_doorbell;
1213
1214 list_add(&q->list, &qpd->queues_list);
1215 qpd->queue_count++;
1216 if (q->properties.is_active) {
1217 dqm->queue_count++;
1218 retval = execute_queues_cpsch(dqm,
1219 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
1220 }
1221
1222 if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
1223 dqm->sdma_queue_count++;
1224 /*
1225 * Unconditionally increment this counter, regardless of the queue's
1226 * type or whether the queue is active.
1227 */
1228 dqm->total_queue_count++;
1229
1230 pr_debug("Total of %d queues are accountable so far\n",
1231 dqm->total_queue_count);
1232
1233 dqm_unlock(dqm);
1234 return retval;
1235
1236 out_deallocate_doorbell:
1237 deallocate_doorbell(qpd, q);
1238 out_deallocate_sdma_queue:
1239 if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
1240 deallocate_sdma_queue(dqm, q->sdma_id);
1241 out_unlock:
1242 dqm_unlock(dqm);
1243
1244 return retval;
1245 }
1246
amdkfd_fence_wait_timeout(unsigned int * fence_addr,unsigned int fence_value,unsigned int timeout_ms)1247 int amdkfd_fence_wait_timeout(unsigned int *fence_addr,
1248 unsigned int fence_value,
1249 unsigned int timeout_ms)
1250 {
1251 unsigned long end_jiffies = msecs_to_jiffies(timeout_ms) + jiffies;
1252
1253 while (*fence_addr != fence_value) {
1254 if (time_after(jiffies, end_jiffies)) {
1255 pr_err("qcm fence wait loop timeout expired\n");
1256 /* In HWS case, this is used to halt the driver thread
1257 * in order not to mess up CP states before doing
1258 * scandumps for FW debugging.
1259 */
1260 while (halt_if_hws_hang)
1261 schedule();
1262
1263 return -ETIME;
1264 }
1265 schedule();
1266 }
1267
1268 return 0;
1269 }
1270
unmap_sdma_queues(struct device_queue_manager * dqm,unsigned int sdma_engine)1271 static int unmap_sdma_queues(struct device_queue_manager *dqm,
1272 unsigned int sdma_engine)
1273 {
1274 return pm_send_unmap_queue(&dqm->packets, KFD_QUEUE_TYPE_SDMA,
1275 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, false,
1276 sdma_engine);
1277 }
1278
1279 /* dqm->lock mutex has to be locked before calling this function */
map_queues_cpsch(struct device_queue_manager * dqm)1280 static int map_queues_cpsch(struct device_queue_manager *dqm)
1281 {
1282 int retval;
1283
1284 if (dqm->queue_count <= 0 || dqm->processes_count <= 0)
1285 return 0;
1286
1287 if (dqm->active_runlist)
1288 return 0;
1289
1290 retval = pm_send_runlist(&dqm->packets, &dqm->queues);
1291 if (retval) {
1292 pr_err("failed to execute runlist\n");
1293 return retval;
1294 }
1295 dqm->active_runlist = true;
1296
1297 return retval;
1298 }
1299
1300 /* dqm->lock mutex has to be locked before calling this function */
unmap_queues_cpsch(struct device_queue_manager * dqm,enum kfd_unmap_queues_filter filter,uint32_t filter_param)1301 static int unmap_queues_cpsch(struct device_queue_manager *dqm,
1302 enum kfd_unmap_queues_filter filter,
1303 uint32_t filter_param)
1304 {
1305 int retval = 0;
1306
1307 if (dqm->is_hws_hang)
1308 return -EIO;
1309 if (!dqm->active_runlist)
1310 return retval;
1311
1312 pr_debug("Before destroying queues, sdma queue count is : %u\n",
1313 dqm->sdma_queue_count);
1314
1315 if (dqm->sdma_queue_count > 0) {
1316 unmap_sdma_queues(dqm, 0);
1317 unmap_sdma_queues(dqm, 1);
1318 }
1319
1320 retval = pm_send_unmap_queue(&dqm->packets, KFD_QUEUE_TYPE_COMPUTE,
1321 filter, filter_param, false, 0);
1322 if (retval)
1323 return retval;
1324
1325 *dqm->fence_addr = KFD_FENCE_INIT;
1326 pm_send_query_status(&dqm->packets, dqm->fence_gpu_addr,
1327 KFD_FENCE_COMPLETED);
1328 /* should be timed out */
1329 retval = amdkfd_fence_wait_timeout(dqm->fence_addr, KFD_FENCE_COMPLETED,
1330 QUEUE_PREEMPT_DEFAULT_TIMEOUT_MS);
1331 if (retval)
1332 return retval;
1333
1334 pm_release_ib(&dqm->packets);
1335 dqm->active_runlist = false;
1336
1337 return retval;
1338 }
1339
1340 /* dqm->lock mutex has to be locked before calling this function */
execute_queues_cpsch(struct device_queue_manager * dqm,enum kfd_unmap_queues_filter filter,uint32_t filter_param)1341 static int execute_queues_cpsch(struct device_queue_manager *dqm,
1342 enum kfd_unmap_queues_filter filter,
1343 uint32_t filter_param)
1344 {
1345 int retval;
1346
1347 if (dqm->is_hws_hang)
1348 return -EIO;
1349 retval = unmap_queues_cpsch(dqm, filter, filter_param);
1350 if (retval) {
1351 pr_err("The cp might be in an unrecoverable state due to an unsuccessful queues preemption\n");
1352 dqm->is_hws_hang = true;
1353 schedule_work(&dqm->hw_exception_work);
1354 return retval;
1355 }
1356
1357 return map_queues_cpsch(dqm);
1358 }
1359
destroy_queue_cpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)1360 static int destroy_queue_cpsch(struct device_queue_manager *dqm,
1361 struct qcm_process_device *qpd,
1362 struct queue *q)
1363 {
1364 int retval;
1365 struct mqd_manager *mqd_mgr;
1366 bool preempt_all_queues;
1367
1368 preempt_all_queues = false;
1369
1370 retval = 0;
1371
1372 /* remove queue from list to prevent rescheduling after preemption */
1373 dqm_lock(dqm);
1374
1375 if (qpd->is_debug) {
1376 /*
1377 * error, currently we do not allow to destroy a queue
1378 * of a currently debugged process
1379 */
1380 retval = -EBUSY;
1381 goto failed_try_destroy_debugged_queue;
1382
1383 }
1384
1385 mqd_mgr = dqm->ops.get_mqd_manager(dqm,
1386 get_mqd_type_from_queue_type(q->properties.type));
1387 if (!mqd_mgr) {
1388 retval = -ENOMEM;
1389 goto failed;
1390 }
1391
1392 deallocate_doorbell(qpd, q);
1393
1394 if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
1395 dqm->sdma_queue_count--;
1396 deallocate_sdma_queue(dqm, q->sdma_id);
1397 }
1398
1399 list_del(&q->list);
1400 qpd->queue_count--;
1401 if (q->properties.is_active) {
1402 dqm->queue_count--;
1403 retval = execute_queues_cpsch(dqm,
1404 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
1405 if (retval == -ETIME)
1406 qpd->reset_wavefronts = true;
1407 }
1408
1409 mqd_mgr->uninit_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
1410
1411 /*
1412 * Unconditionally decrement this counter, regardless of the queue's
1413 * type
1414 */
1415 dqm->total_queue_count--;
1416 pr_debug("Total of %d queues are accountable so far\n",
1417 dqm->total_queue_count);
1418
1419 dqm_unlock(dqm);
1420
1421 return retval;
1422
1423 failed:
1424 failed_try_destroy_debugged_queue:
1425
1426 dqm_unlock(dqm);
1427 return retval;
1428 }
1429
1430 /*
1431 * Low bits must be 0000/FFFF as required by HW, high bits must be 0 to
1432 * stay in user mode.
1433 */
1434 #define APE1_FIXED_BITS_MASK 0xFFFF80000000FFFFULL
1435 /* APE1 limit is inclusive and 64K aligned. */
1436 #define APE1_LIMIT_ALIGNMENT 0xFFFF
1437
set_cache_memory_policy(struct device_queue_manager * dqm,struct qcm_process_device * qpd,enum cache_policy default_policy,enum cache_policy alternate_policy,void __user * alternate_aperture_base,uint64_t alternate_aperture_size)1438 static bool set_cache_memory_policy(struct device_queue_manager *dqm,
1439 struct qcm_process_device *qpd,
1440 enum cache_policy default_policy,
1441 enum cache_policy alternate_policy,
1442 void __user *alternate_aperture_base,
1443 uint64_t alternate_aperture_size)
1444 {
1445 bool retval = true;
1446
1447 if (!dqm->asic_ops.set_cache_memory_policy)
1448 return retval;
1449
1450 dqm_lock(dqm);
1451
1452 if (alternate_aperture_size == 0) {
1453 /* base > limit disables APE1 */
1454 qpd->sh_mem_ape1_base = 1;
1455 qpd->sh_mem_ape1_limit = 0;
1456 } else {
1457 /*
1458 * In FSA64, APE1_Base[63:0] = { 16{SH_MEM_APE1_BASE[31]},
1459 * SH_MEM_APE1_BASE[31:0], 0x0000 }
1460 * APE1_Limit[63:0] = { 16{SH_MEM_APE1_LIMIT[31]},
1461 * SH_MEM_APE1_LIMIT[31:0], 0xFFFF }
1462 * Verify that the base and size parameters can be
1463 * represented in this format and convert them.
1464 * Additionally restrict APE1 to user-mode addresses.
1465 */
1466
1467 uint64_t base = (uintptr_t)alternate_aperture_base;
1468 uint64_t limit = base + alternate_aperture_size - 1;
1469
1470 if (limit <= base || (base & APE1_FIXED_BITS_MASK) != 0 ||
1471 (limit & APE1_FIXED_BITS_MASK) != APE1_LIMIT_ALIGNMENT) {
1472 retval = false;
1473 goto out;
1474 }
1475
1476 qpd->sh_mem_ape1_base = base >> 16;
1477 qpd->sh_mem_ape1_limit = limit >> 16;
1478 }
1479
1480 retval = dqm->asic_ops.set_cache_memory_policy(
1481 dqm,
1482 qpd,
1483 default_policy,
1484 alternate_policy,
1485 alternate_aperture_base,
1486 alternate_aperture_size);
1487
1488 if ((dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) && (qpd->vmid != 0))
1489 program_sh_mem_settings(dqm, qpd);
1490
1491 pr_debug("sh_mem_config: 0x%x, ape1_base: 0x%x, ape1_limit: 0x%x\n",
1492 qpd->sh_mem_config, qpd->sh_mem_ape1_base,
1493 qpd->sh_mem_ape1_limit);
1494
1495 out:
1496 dqm_unlock(dqm);
1497 return retval;
1498 }
1499
set_trap_handler(struct device_queue_manager * dqm,struct qcm_process_device * qpd,uint64_t tba_addr,uint64_t tma_addr)1500 static int set_trap_handler(struct device_queue_manager *dqm,
1501 struct qcm_process_device *qpd,
1502 uint64_t tba_addr,
1503 uint64_t tma_addr)
1504 {
1505 uint64_t *tma;
1506
1507 if (dqm->dev->cwsr_enabled) {
1508 /* Jump from CWSR trap handler to user trap */
1509 tma = (uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1510 tma[0] = tba_addr;
1511 tma[1] = tma_addr;
1512 } else {
1513 qpd->tba_addr = tba_addr;
1514 qpd->tma_addr = tma_addr;
1515 }
1516
1517 return 0;
1518 }
1519
process_termination_nocpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)1520 static int process_termination_nocpsch(struct device_queue_manager *dqm,
1521 struct qcm_process_device *qpd)
1522 {
1523 struct queue *q, *next;
1524 struct device_process_node *cur, *next_dpn;
1525 int retval = 0;
1526
1527 dqm_lock(dqm);
1528
1529 /* Clear all user mode queues */
1530 list_for_each_entry_safe(q, next, &qpd->queues_list, list) {
1531 int ret;
1532
1533 ret = destroy_queue_nocpsch_locked(dqm, qpd, q);
1534 if (ret)
1535 retval = ret;
1536 }
1537
1538 /* Unregister process */
1539 list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) {
1540 if (qpd == cur->qpd) {
1541 list_del(&cur->list);
1542 kfree(cur);
1543 dqm->processes_count--;
1544 break;
1545 }
1546 }
1547
1548 dqm_unlock(dqm);
1549 return retval;
1550 }
1551
1552
process_termination_cpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)1553 static int process_termination_cpsch(struct device_queue_manager *dqm,
1554 struct qcm_process_device *qpd)
1555 {
1556 int retval;
1557 struct queue *q, *next;
1558 struct kernel_queue *kq, *kq_next;
1559 struct mqd_manager *mqd_mgr;
1560 struct device_process_node *cur, *next_dpn;
1561 enum kfd_unmap_queues_filter filter =
1562 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES;
1563
1564 retval = 0;
1565
1566 dqm_lock(dqm);
1567
1568 /* Clean all kernel queues */
1569 list_for_each_entry_safe(kq, kq_next, &qpd->priv_queue_list, list) {
1570 list_del(&kq->list);
1571 dqm->queue_count--;
1572 qpd->is_debug = false;
1573 dqm->total_queue_count--;
1574 filter = KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES;
1575 }
1576
1577 /* Clear all user mode queues */
1578 list_for_each_entry(q, &qpd->queues_list, list) {
1579 if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
1580 dqm->sdma_queue_count--;
1581 deallocate_sdma_queue(dqm, q->sdma_id);
1582 }
1583
1584 if (q->properties.is_active)
1585 dqm->queue_count--;
1586
1587 dqm->total_queue_count--;
1588 }
1589
1590 /* Unregister process */
1591 list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) {
1592 if (qpd == cur->qpd) {
1593 list_del(&cur->list);
1594 kfree(cur);
1595 dqm->processes_count--;
1596 break;
1597 }
1598 }
1599
1600 retval = execute_queues_cpsch(dqm, filter, 0);
1601 if ((!dqm->is_hws_hang) && (retval || qpd->reset_wavefronts)) {
1602 pr_warn("Resetting wave fronts (cpsch) on dev %p\n", dqm->dev);
1603 dbgdev_wave_reset_wavefronts(dqm->dev, qpd->pqm->process);
1604 qpd->reset_wavefronts = false;
1605 }
1606
1607 /* lastly, free mqd resources */
1608 list_for_each_entry_safe(q, next, &qpd->queues_list, list) {
1609 mqd_mgr = dqm->ops.get_mqd_manager(dqm,
1610 get_mqd_type_from_queue_type(q->properties.type));
1611 if (!mqd_mgr) {
1612 retval = -ENOMEM;
1613 goto out;
1614 }
1615 list_del(&q->list);
1616 qpd->queue_count--;
1617 mqd_mgr->uninit_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
1618 }
1619
1620 out:
1621 dqm_unlock(dqm);
1622 return retval;
1623 }
1624
device_queue_manager_init(struct kfd_dev * dev)1625 struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev)
1626 {
1627 struct device_queue_manager *dqm;
1628
1629 pr_debug("Loading device queue manager\n");
1630
1631 dqm = kzalloc(sizeof(*dqm), GFP_KERNEL);
1632 if (!dqm)
1633 return NULL;
1634
1635 switch (dev->device_info->asic_family) {
1636 /* HWS is not available on Hawaii. */
1637 case CHIP_HAWAII:
1638 /* HWS depends on CWSR for timely dequeue. CWSR is not
1639 * available on Tonga.
1640 *
1641 * FIXME: This argument also applies to Kaveri.
1642 */
1643 case CHIP_TONGA:
1644 dqm->sched_policy = KFD_SCHED_POLICY_NO_HWS;
1645 break;
1646 default:
1647 dqm->sched_policy = sched_policy;
1648 break;
1649 }
1650
1651 dqm->dev = dev;
1652 switch (dqm->sched_policy) {
1653 case KFD_SCHED_POLICY_HWS:
1654 case KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION:
1655 /* initialize dqm for cp scheduling */
1656 dqm->ops.create_queue = create_queue_cpsch;
1657 dqm->ops.initialize = initialize_cpsch;
1658 dqm->ops.start = start_cpsch;
1659 dqm->ops.stop = stop_cpsch;
1660 dqm->ops.destroy_queue = destroy_queue_cpsch;
1661 dqm->ops.update_queue = update_queue;
1662 dqm->ops.get_mqd_manager = get_mqd_manager;
1663 dqm->ops.register_process = register_process;
1664 dqm->ops.unregister_process = unregister_process;
1665 dqm->ops.uninitialize = uninitialize;
1666 dqm->ops.create_kernel_queue = create_kernel_queue_cpsch;
1667 dqm->ops.destroy_kernel_queue = destroy_kernel_queue_cpsch;
1668 dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
1669 dqm->ops.set_trap_handler = set_trap_handler;
1670 dqm->ops.process_termination = process_termination_cpsch;
1671 dqm->ops.evict_process_queues = evict_process_queues_cpsch;
1672 dqm->ops.restore_process_queues = restore_process_queues_cpsch;
1673 break;
1674 case KFD_SCHED_POLICY_NO_HWS:
1675 /* initialize dqm for no cp scheduling */
1676 dqm->ops.start = start_nocpsch;
1677 dqm->ops.stop = stop_nocpsch;
1678 dqm->ops.create_queue = create_queue_nocpsch;
1679 dqm->ops.destroy_queue = destroy_queue_nocpsch;
1680 dqm->ops.update_queue = update_queue;
1681 dqm->ops.get_mqd_manager = get_mqd_manager;
1682 dqm->ops.register_process = register_process;
1683 dqm->ops.unregister_process = unregister_process;
1684 dqm->ops.initialize = initialize_nocpsch;
1685 dqm->ops.uninitialize = uninitialize;
1686 dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
1687 dqm->ops.set_trap_handler = set_trap_handler;
1688 dqm->ops.process_termination = process_termination_nocpsch;
1689 dqm->ops.evict_process_queues = evict_process_queues_nocpsch;
1690 dqm->ops.restore_process_queues =
1691 restore_process_queues_nocpsch;
1692 break;
1693 default:
1694 pr_err("Invalid scheduling policy %d\n", dqm->sched_policy);
1695 goto out_free;
1696 }
1697
1698 switch (dev->device_info->asic_family) {
1699 case CHIP_CARRIZO:
1700 device_queue_manager_init_vi(&dqm->asic_ops);
1701 break;
1702
1703 case CHIP_KAVERI:
1704 device_queue_manager_init_cik(&dqm->asic_ops);
1705 break;
1706
1707 case CHIP_HAWAII:
1708 device_queue_manager_init_cik_hawaii(&dqm->asic_ops);
1709 break;
1710
1711 case CHIP_TONGA:
1712 case CHIP_FIJI:
1713 case CHIP_POLARIS10:
1714 case CHIP_POLARIS11:
1715 device_queue_manager_init_vi_tonga(&dqm->asic_ops);
1716 break;
1717
1718 case CHIP_VEGA10:
1719 case CHIP_RAVEN:
1720 device_queue_manager_init_v9(&dqm->asic_ops);
1721 break;
1722 default:
1723 WARN(1, "Unexpected ASIC family %u",
1724 dev->device_info->asic_family);
1725 goto out_free;
1726 }
1727
1728 if (!dqm->ops.initialize(dqm))
1729 return dqm;
1730
1731 out_free:
1732 kfree(dqm);
1733 return NULL;
1734 }
1735
device_queue_manager_uninit(struct device_queue_manager * dqm)1736 void device_queue_manager_uninit(struct device_queue_manager *dqm)
1737 {
1738 dqm->ops.uninitialize(dqm);
1739 kfree(dqm);
1740 }
1741
kfd_process_vm_fault(struct device_queue_manager * dqm,unsigned int pasid)1742 int kfd_process_vm_fault(struct device_queue_manager *dqm,
1743 unsigned int pasid)
1744 {
1745 struct kfd_process_device *pdd;
1746 struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
1747 int ret = 0;
1748
1749 if (!p)
1750 return -EINVAL;
1751 pdd = kfd_get_process_device_data(dqm->dev, p);
1752 if (pdd)
1753 ret = dqm->ops.evict_process_queues(dqm, &pdd->qpd);
1754 kfd_unref_process(p);
1755
1756 return ret;
1757 }
1758
kfd_process_hw_exception(struct work_struct * work)1759 static void kfd_process_hw_exception(struct work_struct *work)
1760 {
1761 struct device_queue_manager *dqm = container_of(work,
1762 struct device_queue_manager, hw_exception_work);
1763 dqm->dev->kfd2kgd->gpu_recover(dqm->dev->kgd);
1764 }
1765
1766 #if defined(CONFIG_DEBUG_FS)
1767
seq_reg_dump(struct seq_file * m,uint32_t (* dump)[2],uint32_t n_regs)1768 static void seq_reg_dump(struct seq_file *m,
1769 uint32_t (*dump)[2], uint32_t n_regs)
1770 {
1771 uint32_t i, count;
1772
1773 for (i = 0, count = 0; i < n_regs; i++) {
1774 if (count == 0 ||
1775 dump[i-1][0] + sizeof(uint32_t) != dump[i][0]) {
1776 seq_printf(m, "%s %08x: %08x",
1777 i ? "\n" : "",
1778 dump[i][0], dump[i][1]);
1779 count = 7;
1780 } else {
1781 seq_printf(m, " %08x", dump[i][1]);
1782 count--;
1783 }
1784 }
1785
1786 seq_puts(m, "\n");
1787 }
1788
dqm_debugfs_hqds(struct seq_file * m,void * data)1789 int dqm_debugfs_hqds(struct seq_file *m, void *data)
1790 {
1791 struct device_queue_manager *dqm = data;
1792 uint32_t (*dump)[2], n_regs;
1793 int pipe, queue;
1794 int r = 0;
1795
1796 r = dqm->dev->kfd2kgd->hqd_dump(dqm->dev->kgd,
1797 KFD_CIK_HIQ_PIPE, KFD_CIK_HIQ_QUEUE, &dump, &n_regs);
1798 if (!r) {
1799 seq_printf(m, " HIQ on MEC %d Pipe %d Queue %d\n",
1800 KFD_CIK_HIQ_PIPE/get_pipes_per_mec(dqm)+1,
1801 KFD_CIK_HIQ_PIPE%get_pipes_per_mec(dqm),
1802 KFD_CIK_HIQ_QUEUE);
1803 seq_reg_dump(m, dump, n_regs);
1804
1805 kfree(dump);
1806 }
1807
1808 for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) {
1809 int pipe_offset = pipe * get_queues_per_pipe(dqm);
1810
1811 for (queue = 0; queue < get_queues_per_pipe(dqm); queue++) {
1812 if (!test_bit(pipe_offset + queue,
1813 dqm->dev->shared_resources.queue_bitmap))
1814 continue;
1815
1816 r = dqm->dev->kfd2kgd->hqd_dump(
1817 dqm->dev->kgd, pipe, queue, &dump, &n_regs);
1818 if (r)
1819 break;
1820
1821 seq_printf(m, " CP Pipe %d, Queue %d\n",
1822 pipe, queue);
1823 seq_reg_dump(m, dump, n_regs);
1824
1825 kfree(dump);
1826 }
1827 }
1828
1829 for (pipe = 0; pipe < get_num_sdma_engines(dqm); pipe++) {
1830 for (queue = 0; queue < KFD_SDMA_QUEUES_PER_ENGINE; queue++) {
1831 r = dqm->dev->kfd2kgd->hqd_sdma_dump(
1832 dqm->dev->kgd, pipe, queue, &dump, &n_regs);
1833 if (r)
1834 break;
1835
1836 seq_printf(m, " SDMA Engine %d, RLC %d\n",
1837 pipe, queue);
1838 seq_reg_dump(m, dump, n_regs);
1839
1840 kfree(dump);
1841 }
1842 }
1843
1844 return r;
1845 }
1846
dqm_debugfs_execute_queues(struct device_queue_manager * dqm)1847 int dqm_debugfs_execute_queues(struct device_queue_manager *dqm)
1848 {
1849 int r = 0;
1850
1851 dqm_lock(dqm);
1852 dqm->active_runlist = true;
1853 r = execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0);
1854 dqm_unlock(dqm);
1855
1856 return r;
1857 }
1858
1859 #endif
1860