1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 
24 #include <linux/ratelimit.h>
25 #include <linux/printk.h>
26 #include <linux/slab.h>
27 #include <linux/list.h>
28 #include <linux/types.h>
29 #include <linux/bitops.h>
30 #include <linux/sched.h>
31 #include "kfd_priv.h"
32 #include "kfd_device_queue_manager.h"
33 #include "kfd_mqd_manager.h"
34 #include "cik_regs.h"
35 #include "kfd_kernel_queue.h"
36 
37 /* Size of the per-pipe EOP queue */
38 #define CIK_HPD_EOP_BYTES_LOG2 11
39 #define CIK_HPD_EOP_BYTES (1U << CIK_HPD_EOP_BYTES_LOG2)
40 
41 static int set_pasid_vmid_mapping(struct device_queue_manager *dqm,
42 					unsigned int pasid, unsigned int vmid);
43 
44 static int create_compute_queue_nocpsch(struct device_queue_manager *dqm,
45 					struct queue *q,
46 					struct qcm_process_device *qpd);
47 
48 static int execute_queues_cpsch(struct device_queue_manager *dqm,
49 				enum kfd_unmap_queues_filter filter,
50 				uint32_t filter_param);
51 static int unmap_queues_cpsch(struct device_queue_manager *dqm,
52 				enum kfd_unmap_queues_filter filter,
53 				uint32_t filter_param);
54 
55 static int map_queues_cpsch(struct device_queue_manager *dqm);
56 
57 static int create_sdma_queue_nocpsch(struct device_queue_manager *dqm,
58 					struct queue *q,
59 					struct qcm_process_device *qpd);
60 
61 static void deallocate_sdma_queue(struct device_queue_manager *dqm,
62 				unsigned int sdma_queue_id);
63 
64 static void kfd_process_hw_exception(struct work_struct *work);
65 
66 static inline
get_mqd_type_from_queue_type(enum kfd_queue_type type)67 enum KFD_MQD_TYPE get_mqd_type_from_queue_type(enum kfd_queue_type type)
68 {
69 	if (type == KFD_QUEUE_TYPE_SDMA)
70 		return KFD_MQD_TYPE_SDMA;
71 	return KFD_MQD_TYPE_CP;
72 }
73 
is_pipe_enabled(struct device_queue_manager * dqm,int mec,int pipe)74 static bool is_pipe_enabled(struct device_queue_manager *dqm, int mec, int pipe)
75 {
76 	int i;
77 	int pipe_offset = mec * dqm->dev->shared_resources.num_pipe_per_mec
78 		+ pipe * dqm->dev->shared_resources.num_queue_per_pipe;
79 
80 	/* queue is available for KFD usage if bit is 1 */
81 	for (i = 0; i <  dqm->dev->shared_resources.num_queue_per_pipe; ++i)
82 		if (test_bit(pipe_offset + i,
83 			      dqm->dev->shared_resources.queue_bitmap))
84 			return true;
85 	return false;
86 }
87 
get_queues_num(struct device_queue_manager * dqm)88 unsigned int get_queues_num(struct device_queue_manager *dqm)
89 {
90 	return bitmap_weight(dqm->dev->shared_resources.queue_bitmap,
91 				KGD_MAX_QUEUES);
92 }
93 
get_queues_per_pipe(struct device_queue_manager * dqm)94 unsigned int get_queues_per_pipe(struct device_queue_manager *dqm)
95 {
96 	return dqm->dev->shared_resources.num_queue_per_pipe;
97 }
98 
get_pipes_per_mec(struct device_queue_manager * dqm)99 unsigned int get_pipes_per_mec(struct device_queue_manager *dqm)
100 {
101 	return dqm->dev->shared_resources.num_pipe_per_mec;
102 }
103 
get_num_sdma_engines(struct device_queue_manager * dqm)104 static unsigned int get_num_sdma_engines(struct device_queue_manager *dqm)
105 {
106 	return dqm->dev->device_info->num_sdma_engines;
107 }
108 
get_num_sdma_queues(struct device_queue_manager * dqm)109 unsigned int get_num_sdma_queues(struct device_queue_manager *dqm)
110 {
111 	return dqm->dev->device_info->num_sdma_engines
112 			* KFD_SDMA_QUEUES_PER_ENGINE;
113 }
114 
program_sh_mem_settings(struct device_queue_manager * dqm,struct qcm_process_device * qpd)115 void program_sh_mem_settings(struct device_queue_manager *dqm,
116 					struct qcm_process_device *qpd)
117 {
118 	return dqm->dev->kfd2kgd->program_sh_mem_settings(
119 						dqm->dev->kgd, qpd->vmid,
120 						qpd->sh_mem_config,
121 						qpd->sh_mem_ape1_base,
122 						qpd->sh_mem_ape1_limit,
123 						qpd->sh_mem_bases);
124 }
125 
allocate_doorbell(struct qcm_process_device * qpd,struct queue * q)126 static int allocate_doorbell(struct qcm_process_device *qpd, struct queue *q)
127 {
128 	struct kfd_dev *dev = qpd->dqm->dev;
129 
130 	if (!KFD_IS_SOC15(dev->device_info->asic_family)) {
131 		/* On pre-SOC15 chips we need to use the queue ID to
132 		 * preserve the user mode ABI.
133 		 */
134 		q->doorbell_id = q->properties.queue_id;
135 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
136 		/* For SDMA queues on SOC15, use static doorbell
137 		 * assignments based on the engine and queue.
138 		 */
139 		q->doorbell_id = dev->shared_resources.sdma_doorbell
140 			[q->properties.sdma_engine_id]
141 			[q->properties.sdma_queue_id];
142 	} else {
143 		/* For CP queues on SOC15 reserve a free doorbell ID */
144 		unsigned int found;
145 
146 		found = find_first_zero_bit(qpd->doorbell_bitmap,
147 					    KFD_MAX_NUM_OF_QUEUES_PER_PROCESS);
148 		if (found >= KFD_MAX_NUM_OF_QUEUES_PER_PROCESS) {
149 			pr_debug("No doorbells available");
150 			return -EBUSY;
151 		}
152 		set_bit(found, qpd->doorbell_bitmap);
153 		q->doorbell_id = found;
154 	}
155 
156 	q->properties.doorbell_off =
157 		kfd_doorbell_id_to_offset(dev, q->process,
158 					  q->doorbell_id);
159 
160 	return 0;
161 }
162 
deallocate_doorbell(struct qcm_process_device * qpd,struct queue * q)163 static void deallocate_doorbell(struct qcm_process_device *qpd,
164 				struct queue *q)
165 {
166 	unsigned int old;
167 	struct kfd_dev *dev = qpd->dqm->dev;
168 
169 	if (!KFD_IS_SOC15(dev->device_info->asic_family) ||
170 	    q->properties.type == KFD_QUEUE_TYPE_SDMA)
171 		return;
172 
173 	old = test_and_clear_bit(q->doorbell_id, qpd->doorbell_bitmap);
174 	WARN_ON(!old);
175 }
176 
allocate_vmid(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)177 static int allocate_vmid(struct device_queue_manager *dqm,
178 			struct qcm_process_device *qpd,
179 			struct queue *q)
180 {
181 	int bit, allocated_vmid;
182 
183 	if (dqm->vmid_bitmap == 0)
184 		return -ENOMEM;
185 
186 	bit = ffs(dqm->vmid_bitmap) - 1;
187 	dqm->vmid_bitmap &= ~(1 << bit);
188 
189 	allocated_vmid = bit + dqm->dev->vm_info.first_vmid_kfd;
190 	pr_debug("vmid allocation %d\n", allocated_vmid);
191 	qpd->vmid = allocated_vmid;
192 	q->properties.vmid = allocated_vmid;
193 
194 	set_pasid_vmid_mapping(dqm, q->process->pasid, q->properties.vmid);
195 	program_sh_mem_settings(dqm, qpd);
196 
197 	/* qpd->page_table_base is set earlier when register_process()
198 	 * is called, i.e. when the first queue is created.
199 	 */
200 	dqm->dev->kfd2kgd->set_vm_context_page_table_base(dqm->dev->kgd,
201 			qpd->vmid,
202 			qpd->page_table_base);
203 	/* invalidate the VM context after pasid and vmid mapping is set up */
204 	kfd_flush_tlb(qpd_to_pdd(qpd));
205 
206 	return 0;
207 }
208 
flush_texture_cache_nocpsch(struct kfd_dev * kdev,struct qcm_process_device * qpd)209 static int flush_texture_cache_nocpsch(struct kfd_dev *kdev,
210 				struct qcm_process_device *qpd)
211 {
212 	const struct packet_manager_funcs *pmf = qpd->dqm->packets.pmf;
213 	int ret;
214 
215 	if (!qpd->ib_kaddr)
216 		return -ENOMEM;
217 
218 	ret = pmf->release_mem(qpd->ib_base, (uint32_t *)qpd->ib_kaddr);
219 	if (ret)
220 		return ret;
221 
222 	return kdev->kfd2kgd->submit_ib(kdev->kgd, KGD_ENGINE_MEC1, qpd->vmid,
223 				qpd->ib_base, (uint32_t *)qpd->ib_kaddr,
224 				pmf->release_mem_size / sizeof(uint32_t));
225 }
226 
deallocate_vmid(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)227 static void deallocate_vmid(struct device_queue_manager *dqm,
228 				struct qcm_process_device *qpd,
229 				struct queue *q)
230 {
231 	int bit = qpd->vmid - dqm->dev->vm_info.first_vmid_kfd;
232 
233 	/* On GFX v7, CP doesn't flush TC at dequeue */
234 	if (q->device->device_info->asic_family == CHIP_HAWAII)
235 		if (flush_texture_cache_nocpsch(q->device, qpd))
236 			pr_err("Failed to flush TC\n");
237 
238 	kfd_flush_tlb(qpd_to_pdd(qpd));
239 
240 	/* Release the vmid mapping */
241 	set_pasid_vmid_mapping(dqm, 0, qpd->vmid);
242 
243 	dqm->vmid_bitmap |= (1 << bit);
244 	qpd->vmid = 0;
245 	q->properties.vmid = 0;
246 }
247 
create_queue_nocpsch(struct device_queue_manager * dqm,struct queue * q,struct qcm_process_device * qpd)248 static int create_queue_nocpsch(struct device_queue_manager *dqm,
249 				struct queue *q,
250 				struct qcm_process_device *qpd)
251 {
252 	int retval;
253 
254 	print_queue(q);
255 
256 	dqm_lock(dqm);
257 
258 	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
259 		pr_warn("Can't create new usermode queue because %d queues were already created\n",
260 				dqm->total_queue_count);
261 		retval = -EPERM;
262 		goto out_unlock;
263 	}
264 
265 	if (list_empty(&qpd->queues_list)) {
266 		retval = allocate_vmid(dqm, qpd, q);
267 		if (retval)
268 			goto out_unlock;
269 	}
270 	q->properties.vmid = qpd->vmid;
271 	/*
272 	 * Eviction state logic: we only mark active queues as evicted
273 	 * to avoid the overhead of restoring inactive queues later
274 	 */
275 	if (qpd->evicted)
276 		q->properties.is_evicted = (q->properties.queue_size > 0 &&
277 					    q->properties.queue_percent > 0 &&
278 					    q->properties.queue_address != 0);
279 
280 	q->properties.tba_addr = qpd->tba_addr;
281 	q->properties.tma_addr = qpd->tma_addr;
282 
283 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
284 		retval = create_compute_queue_nocpsch(dqm, q, qpd);
285 	else if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
286 		retval = create_sdma_queue_nocpsch(dqm, q, qpd);
287 	else
288 		retval = -EINVAL;
289 
290 	if (retval) {
291 		if (list_empty(&qpd->queues_list))
292 			deallocate_vmid(dqm, qpd, q);
293 		goto out_unlock;
294 	}
295 
296 	list_add(&q->list, &qpd->queues_list);
297 	qpd->queue_count++;
298 	if (q->properties.is_active)
299 		dqm->queue_count++;
300 
301 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
302 		dqm->sdma_queue_count++;
303 
304 	/*
305 	 * Unconditionally increment this counter, regardless of the queue's
306 	 * type or whether the queue is active.
307 	 */
308 	dqm->total_queue_count++;
309 	pr_debug("Total of %d queues are accountable so far\n",
310 			dqm->total_queue_count);
311 
312 out_unlock:
313 	dqm_unlock(dqm);
314 	return retval;
315 }
316 
allocate_hqd(struct device_queue_manager * dqm,struct queue * q)317 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q)
318 {
319 	bool set;
320 	int pipe, bit, i;
321 
322 	set = false;
323 
324 	for (pipe = dqm->next_pipe_to_allocate, i = 0;
325 			i < get_pipes_per_mec(dqm);
326 			pipe = ((pipe + 1) % get_pipes_per_mec(dqm)), ++i) {
327 
328 		if (!is_pipe_enabled(dqm, 0, pipe))
329 			continue;
330 
331 		if (dqm->allocated_queues[pipe] != 0) {
332 			bit = ffs(dqm->allocated_queues[pipe]) - 1;
333 			dqm->allocated_queues[pipe] &= ~(1 << bit);
334 			q->pipe = pipe;
335 			q->queue = bit;
336 			set = true;
337 			break;
338 		}
339 	}
340 
341 	if (!set)
342 		return -EBUSY;
343 
344 	pr_debug("hqd slot - pipe %d, queue %d\n", q->pipe, q->queue);
345 	/* horizontal hqd allocation */
346 	dqm->next_pipe_to_allocate = (pipe + 1) % get_pipes_per_mec(dqm);
347 
348 	return 0;
349 }
350 
deallocate_hqd(struct device_queue_manager * dqm,struct queue * q)351 static inline void deallocate_hqd(struct device_queue_manager *dqm,
352 				struct queue *q)
353 {
354 	dqm->allocated_queues[q->pipe] |= (1 << q->queue);
355 }
356 
create_compute_queue_nocpsch(struct device_queue_manager * dqm,struct queue * q,struct qcm_process_device * qpd)357 static int create_compute_queue_nocpsch(struct device_queue_manager *dqm,
358 					struct queue *q,
359 					struct qcm_process_device *qpd)
360 {
361 	struct mqd_manager *mqd_mgr;
362 	int retval;
363 
364 	mqd_mgr = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_COMPUTE);
365 	if (!mqd_mgr)
366 		return -ENOMEM;
367 
368 	retval = allocate_hqd(dqm, q);
369 	if (retval)
370 		return retval;
371 
372 	retval = allocate_doorbell(qpd, q);
373 	if (retval)
374 		goto out_deallocate_hqd;
375 
376 	retval = mqd_mgr->init_mqd(mqd_mgr, &q->mqd, &q->mqd_mem_obj,
377 				&q->gart_mqd_addr, &q->properties);
378 	if (retval)
379 		goto out_deallocate_doorbell;
380 
381 	pr_debug("Loading mqd to hqd on pipe %d, queue %d\n",
382 			q->pipe, q->queue);
383 
384 	dqm->dev->kfd2kgd->set_scratch_backing_va(
385 			dqm->dev->kgd, qpd->sh_hidden_private_base, qpd->vmid);
386 
387 	if (!q->properties.is_active)
388 		return 0;
389 
390 	if (WARN(q->process->mm != current->mm,
391 		 "should only run in user thread"))
392 		retval = -EFAULT;
393 	else
394 		retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe, q->queue,
395 					   &q->properties, current->mm);
396 	if (retval)
397 		goto out_uninit_mqd;
398 
399 	return 0;
400 
401 out_uninit_mqd:
402 	mqd_mgr->uninit_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
403 out_deallocate_doorbell:
404 	deallocate_doorbell(qpd, q);
405 out_deallocate_hqd:
406 	deallocate_hqd(dqm, q);
407 
408 	return retval;
409 }
410 
411 /* Access to DQM has to be locked before calling destroy_queue_nocpsch_locked
412  * to avoid asynchronized access
413  */
destroy_queue_nocpsch_locked(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)414 static int destroy_queue_nocpsch_locked(struct device_queue_manager *dqm,
415 				struct qcm_process_device *qpd,
416 				struct queue *q)
417 {
418 	int retval;
419 	struct mqd_manager *mqd_mgr;
420 
421 	mqd_mgr = dqm->ops.get_mqd_manager(dqm,
422 		get_mqd_type_from_queue_type(q->properties.type));
423 	if (!mqd_mgr)
424 		return -ENOMEM;
425 
426 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) {
427 		deallocate_hqd(dqm, q);
428 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
429 		dqm->sdma_queue_count--;
430 		deallocate_sdma_queue(dqm, q->sdma_id);
431 	} else {
432 		pr_debug("q->properties.type %d is invalid\n",
433 				q->properties.type);
434 		return -EINVAL;
435 	}
436 	dqm->total_queue_count--;
437 
438 	deallocate_doorbell(qpd, q);
439 
440 	retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
441 				KFD_PREEMPT_TYPE_WAVEFRONT_RESET,
442 				KFD_UNMAP_LATENCY_MS,
443 				q->pipe, q->queue);
444 	if (retval == -ETIME)
445 		qpd->reset_wavefronts = true;
446 
447 	mqd_mgr->uninit_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
448 
449 	list_del(&q->list);
450 	if (list_empty(&qpd->queues_list)) {
451 		if (qpd->reset_wavefronts) {
452 			pr_warn("Resetting wave fronts (nocpsch) on dev %p\n",
453 					dqm->dev);
454 			/* dbgdev_wave_reset_wavefronts has to be called before
455 			 * deallocate_vmid(), i.e. when vmid is still in use.
456 			 */
457 			dbgdev_wave_reset_wavefronts(dqm->dev,
458 					qpd->pqm->process);
459 			qpd->reset_wavefronts = false;
460 		}
461 
462 		deallocate_vmid(dqm, qpd, q);
463 	}
464 	qpd->queue_count--;
465 	if (q->properties.is_active)
466 		dqm->queue_count--;
467 
468 	return retval;
469 }
470 
destroy_queue_nocpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)471 static int destroy_queue_nocpsch(struct device_queue_manager *dqm,
472 				struct qcm_process_device *qpd,
473 				struct queue *q)
474 {
475 	int retval;
476 
477 	dqm_lock(dqm);
478 	retval = destroy_queue_nocpsch_locked(dqm, qpd, q);
479 	dqm_unlock(dqm);
480 
481 	return retval;
482 }
483 
update_queue(struct device_queue_manager * dqm,struct queue * q)484 static int update_queue(struct device_queue_manager *dqm, struct queue *q)
485 {
486 	int retval;
487 	struct mqd_manager *mqd_mgr;
488 	struct kfd_process_device *pdd;
489 	bool prev_active = false;
490 
491 	dqm_lock(dqm);
492 	pdd = kfd_get_process_device_data(q->device, q->process);
493 	if (!pdd) {
494 		retval = -ENODEV;
495 		goto out_unlock;
496 	}
497 	mqd_mgr = dqm->ops.get_mqd_manager(dqm,
498 			get_mqd_type_from_queue_type(q->properties.type));
499 	if (!mqd_mgr) {
500 		retval = -ENOMEM;
501 		goto out_unlock;
502 	}
503 	/*
504 	 * Eviction state logic: we only mark active queues as evicted
505 	 * to avoid the overhead of restoring inactive queues later
506 	 */
507 	if (pdd->qpd.evicted)
508 		q->properties.is_evicted = (q->properties.queue_size > 0 &&
509 					    q->properties.queue_percent > 0 &&
510 					    q->properties.queue_address != 0);
511 
512 	/* Save previous activity state for counters */
513 	prev_active = q->properties.is_active;
514 
515 	/* Make sure the queue is unmapped before updating the MQD */
516 	if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) {
517 		retval = unmap_queues_cpsch(dqm,
518 				KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
519 		if (retval) {
520 			pr_err("unmap queue failed\n");
521 			goto out_unlock;
522 		}
523 	} else if (prev_active &&
524 		   (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
525 		    q->properties.type == KFD_QUEUE_TYPE_SDMA)) {
526 		retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
527 				KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN,
528 				KFD_UNMAP_LATENCY_MS, q->pipe, q->queue);
529 		if (retval) {
530 			pr_err("destroy mqd failed\n");
531 			goto out_unlock;
532 		}
533 	}
534 
535 	retval = mqd_mgr->update_mqd(mqd_mgr, q->mqd, &q->properties);
536 
537 	/*
538 	 * check active state vs. the previous state and modify
539 	 * counter accordingly. map_queues_cpsch uses the
540 	 * dqm->queue_count to determine whether a new runlist must be
541 	 * uploaded.
542 	 */
543 	if (q->properties.is_active && !prev_active)
544 		dqm->queue_count++;
545 	else if (!q->properties.is_active && prev_active)
546 		dqm->queue_count--;
547 
548 	if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS)
549 		retval = map_queues_cpsch(dqm);
550 	else if (q->properties.is_active &&
551 		 (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
552 		  q->properties.type == KFD_QUEUE_TYPE_SDMA)) {
553 		if (WARN(q->process->mm != current->mm,
554 			 "should only run in user thread"))
555 			retval = -EFAULT;
556 		else
557 			retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd,
558 						   q->pipe, q->queue,
559 						   &q->properties, current->mm);
560 	}
561 
562 out_unlock:
563 	dqm_unlock(dqm);
564 	return retval;
565 }
566 
get_mqd_manager(struct device_queue_manager * dqm,enum KFD_MQD_TYPE type)567 static struct mqd_manager *get_mqd_manager(
568 		struct device_queue_manager *dqm, enum KFD_MQD_TYPE type)
569 {
570 	struct mqd_manager *mqd_mgr;
571 
572 	if (WARN_ON(type >= KFD_MQD_TYPE_MAX))
573 		return NULL;
574 
575 	pr_debug("mqd type %d\n", type);
576 
577 	mqd_mgr = dqm->mqd_mgrs[type];
578 	if (!mqd_mgr) {
579 		mqd_mgr = mqd_manager_init(type, dqm->dev);
580 		if (!mqd_mgr)
581 			pr_err("mqd manager is NULL");
582 		dqm->mqd_mgrs[type] = mqd_mgr;
583 	}
584 
585 	return mqd_mgr;
586 }
587 
evict_process_queues_nocpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)588 static int evict_process_queues_nocpsch(struct device_queue_manager *dqm,
589 					struct qcm_process_device *qpd)
590 {
591 	struct queue *q;
592 	struct mqd_manager *mqd_mgr;
593 	struct kfd_process_device *pdd;
594 	int retval = 0;
595 
596 	dqm_lock(dqm);
597 	if (qpd->evicted++ > 0) /* already evicted, do nothing */
598 		goto out;
599 
600 	pdd = qpd_to_pdd(qpd);
601 	pr_info_ratelimited("Evicting PASID %u queues\n",
602 			    pdd->process->pasid);
603 
604 	/* unactivate all active queues on the qpd */
605 	list_for_each_entry(q, &qpd->queues_list, list) {
606 		if (!q->properties.is_active)
607 			continue;
608 		mqd_mgr = dqm->ops.get_mqd_manager(dqm,
609 			get_mqd_type_from_queue_type(q->properties.type));
610 		if (!mqd_mgr) { /* should not be here */
611 			pr_err("Cannot evict queue, mqd mgr is NULL\n");
612 			retval = -ENOMEM;
613 			goto out;
614 		}
615 		q->properties.is_evicted = true;
616 		q->properties.is_active = false;
617 		retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
618 				KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN,
619 				KFD_UNMAP_LATENCY_MS, q->pipe, q->queue);
620 		if (retval)
621 			goto out;
622 		dqm->queue_count--;
623 	}
624 
625 out:
626 	dqm_unlock(dqm);
627 	return retval;
628 }
629 
evict_process_queues_cpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)630 static int evict_process_queues_cpsch(struct device_queue_manager *dqm,
631 				      struct qcm_process_device *qpd)
632 {
633 	struct queue *q;
634 	struct kfd_process_device *pdd;
635 	int retval = 0;
636 
637 	dqm_lock(dqm);
638 	if (qpd->evicted++ > 0) /* already evicted, do nothing */
639 		goto out;
640 
641 	pdd = qpd_to_pdd(qpd);
642 	pr_info_ratelimited("Evicting PASID %u queues\n",
643 			    pdd->process->pasid);
644 
645 	/* unactivate all active queues on the qpd */
646 	list_for_each_entry(q, &qpd->queues_list, list) {
647 		if (!q->properties.is_active)
648 			continue;
649 		q->properties.is_evicted = true;
650 		q->properties.is_active = false;
651 		dqm->queue_count--;
652 	}
653 	retval = execute_queues_cpsch(dqm,
654 				qpd->is_debug ?
655 				KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES :
656 				KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
657 
658 out:
659 	dqm_unlock(dqm);
660 	return retval;
661 }
662 
restore_process_queues_nocpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)663 static int restore_process_queues_nocpsch(struct device_queue_manager *dqm,
664 					  struct qcm_process_device *qpd)
665 {
666 	struct mm_struct *mm = NULL;
667 	struct queue *q;
668 	struct mqd_manager *mqd_mgr;
669 	struct kfd_process_device *pdd;
670 	uint32_t pd_base;
671 	int retval = 0;
672 
673 	pdd = qpd_to_pdd(qpd);
674 	/* Retrieve PD base */
675 	pd_base = dqm->dev->kfd2kgd->get_process_page_dir(pdd->vm);
676 
677 	dqm_lock(dqm);
678 	if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */
679 		goto out;
680 	if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */
681 		qpd->evicted--;
682 		goto out;
683 	}
684 
685 	pr_info_ratelimited("Restoring PASID %u queues\n",
686 			    pdd->process->pasid);
687 
688 	/* Update PD Base in QPD */
689 	qpd->page_table_base = pd_base;
690 	pr_debug("Updated PD address to 0x%08x\n", pd_base);
691 
692 	if (!list_empty(&qpd->queues_list)) {
693 		dqm->dev->kfd2kgd->set_vm_context_page_table_base(
694 				dqm->dev->kgd,
695 				qpd->vmid,
696 				qpd->page_table_base);
697 		kfd_flush_tlb(pdd);
698 	}
699 
700 	/* Take a safe reference to the mm_struct, which may otherwise
701 	 * disappear even while the kfd_process is still referenced.
702 	 */
703 	mm = get_task_mm(pdd->process->lead_thread);
704 	if (!mm) {
705 		retval = -EFAULT;
706 		goto out;
707 	}
708 
709 	/* activate all active queues on the qpd */
710 	list_for_each_entry(q, &qpd->queues_list, list) {
711 		if (!q->properties.is_evicted)
712 			continue;
713 		mqd_mgr = dqm->ops.get_mqd_manager(dqm,
714 			get_mqd_type_from_queue_type(q->properties.type));
715 		if (!mqd_mgr) { /* should not be here */
716 			pr_err("Cannot restore queue, mqd mgr is NULL\n");
717 			retval = -ENOMEM;
718 			goto out;
719 		}
720 		q->properties.is_evicted = false;
721 		q->properties.is_active = true;
722 		retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe,
723 				       q->queue, &q->properties, mm);
724 		if (retval)
725 			goto out;
726 		dqm->queue_count++;
727 	}
728 	qpd->evicted = 0;
729 out:
730 	if (mm)
731 		mmput(mm);
732 	dqm_unlock(dqm);
733 	return retval;
734 }
735 
restore_process_queues_cpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)736 static int restore_process_queues_cpsch(struct device_queue_manager *dqm,
737 					struct qcm_process_device *qpd)
738 {
739 	struct queue *q;
740 	struct kfd_process_device *pdd;
741 	uint32_t pd_base;
742 	int retval = 0;
743 
744 	pdd = qpd_to_pdd(qpd);
745 	/* Retrieve PD base */
746 	pd_base = dqm->dev->kfd2kgd->get_process_page_dir(pdd->vm);
747 
748 	dqm_lock(dqm);
749 	if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */
750 		goto out;
751 	if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */
752 		qpd->evicted--;
753 		goto out;
754 	}
755 
756 	pr_info_ratelimited("Restoring PASID %u queues\n",
757 			    pdd->process->pasid);
758 
759 	/* Update PD Base in QPD */
760 	qpd->page_table_base = pd_base;
761 	pr_debug("Updated PD address to 0x%08x\n", pd_base);
762 
763 	/* activate all active queues on the qpd */
764 	list_for_each_entry(q, &qpd->queues_list, list) {
765 		if (!q->properties.is_evicted)
766 			continue;
767 		q->properties.is_evicted = false;
768 		q->properties.is_active = true;
769 		dqm->queue_count++;
770 	}
771 	retval = execute_queues_cpsch(dqm,
772 				KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
773 	if (!retval)
774 		qpd->evicted = 0;
775 out:
776 	dqm_unlock(dqm);
777 	return retval;
778 }
779 
register_process(struct device_queue_manager * dqm,struct qcm_process_device * qpd)780 static int register_process(struct device_queue_manager *dqm,
781 					struct qcm_process_device *qpd)
782 {
783 	struct device_process_node *n;
784 	struct kfd_process_device *pdd;
785 	uint32_t pd_base;
786 	int retval;
787 
788 	n = kzalloc(sizeof(*n), GFP_KERNEL);
789 	if (!n)
790 		return -ENOMEM;
791 
792 	n->qpd = qpd;
793 
794 	pdd = qpd_to_pdd(qpd);
795 	/* Retrieve PD base */
796 	pd_base = dqm->dev->kfd2kgd->get_process_page_dir(pdd->vm);
797 
798 	dqm_lock(dqm);
799 	list_add(&n->list, &dqm->queues);
800 
801 	/* Update PD Base in QPD */
802 	qpd->page_table_base = pd_base;
803 
804 	retval = dqm->asic_ops.update_qpd(dqm, qpd);
805 
806 	if (dqm->processes_count++ == 0)
807 		dqm->dev->kfd2kgd->set_compute_idle(dqm->dev->kgd, false);
808 
809 	dqm_unlock(dqm);
810 
811 	return retval;
812 }
813 
unregister_process(struct device_queue_manager * dqm,struct qcm_process_device * qpd)814 static int unregister_process(struct device_queue_manager *dqm,
815 					struct qcm_process_device *qpd)
816 {
817 	int retval;
818 	struct device_process_node *cur, *next;
819 
820 	pr_debug("qpd->queues_list is %s\n",
821 			list_empty(&qpd->queues_list) ? "empty" : "not empty");
822 
823 	retval = 0;
824 	dqm_lock(dqm);
825 
826 	list_for_each_entry_safe(cur, next, &dqm->queues, list) {
827 		if (qpd == cur->qpd) {
828 			list_del(&cur->list);
829 			kfree(cur);
830 			if (--dqm->processes_count == 0)
831 				dqm->dev->kfd2kgd->set_compute_idle(
832 					dqm->dev->kgd, true);
833 			goto out;
834 		}
835 	}
836 	/* qpd not found in dqm list */
837 	retval = 1;
838 out:
839 	dqm_unlock(dqm);
840 	return retval;
841 }
842 
843 static int
set_pasid_vmid_mapping(struct device_queue_manager * dqm,unsigned int pasid,unsigned int vmid)844 set_pasid_vmid_mapping(struct device_queue_manager *dqm, unsigned int pasid,
845 			unsigned int vmid)
846 {
847 	uint32_t pasid_mapping;
848 
849 	pasid_mapping = (pasid == 0) ? 0 :
850 		(uint32_t)pasid |
851 		ATC_VMID_PASID_MAPPING_VALID;
852 
853 	return dqm->dev->kfd2kgd->set_pasid_vmid_mapping(
854 						dqm->dev->kgd, pasid_mapping,
855 						vmid);
856 }
857 
init_interrupts(struct device_queue_manager * dqm)858 static void init_interrupts(struct device_queue_manager *dqm)
859 {
860 	unsigned int i;
861 
862 	for (i = 0 ; i < get_pipes_per_mec(dqm) ; i++)
863 		if (is_pipe_enabled(dqm, 0, i))
864 			dqm->dev->kfd2kgd->init_interrupts(dqm->dev->kgd, i);
865 }
866 
initialize_nocpsch(struct device_queue_manager * dqm)867 static int initialize_nocpsch(struct device_queue_manager *dqm)
868 {
869 	int pipe, queue;
870 
871 	pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm));
872 
873 	dqm->allocated_queues = kcalloc(get_pipes_per_mec(dqm),
874 					sizeof(unsigned int), GFP_KERNEL);
875 	if (!dqm->allocated_queues)
876 		return -ENOMEM;
877 
878 	mutex_init(&dqm->lock_hidden);
879 	INIT_LIST_HEAD(&dqm->queues);
880 	dqm->queue_count = dqm->next_pipe_to_allocate = 0;
881 	dqm->sdma_queue_count = 0;
882 
883 	for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) {
884 		int pipe_offset = pipe * get_queues_per_pipe(dqm);
885 
886 		for (queue = 0; queue < get_queues_per_pipe(dqm); queue++)
887 			if (test_bit(pipe_offset + queue,
888 				     dqm->dev->shared_resources.queue_bitmap))
889 				dqm->allocated_queues[pipe] |= 1 << queue;
890 	}
891 
892 	dqm->vmid_bitmap = (1 << dqm->dev->vm_info.vmid_num_kfd) - 1;
893 	dqm->sdma_bitmap = (1 << get_num_sdma_queues(dqm)) - 1;
894 
895 	return 0;
896 }
897 
uninitialize(struct device_queue_manager * dqm)898 static void uninitialize(struct device_queue_manager *dqm)
899 {
900 	int i;
901 
902 	WARN_ON(dqm->queue_count > 0 || dqm->processes_count > 0);
903 
904 	kfree(dqm->allocated_queues);
905 	for (i = 0 ; i < KFD_MQD_TYPE_MAX ; i++)
906 		kfree(dqm->mqd_mgrs[i]);
907 	mutex_destroy(&dqm->lock_hidden);
908 	kfd_gtt_sa_free(dqm->dev, dqm->pipeline_mem);
909 }
910 
start_nocpsch(struct device_queue_manager * dqm)911 static int start_nocpsch(struct device_queue_manager *dqm)
912 {
913 	init_interrupts(dqm);
914 	return pm_init(&dqm->packets, dqm);
915 }
916 
stop_nocpsch(struct device_queue_manager * dqm)917 static int stop_nocpsch(struct device_queue_manager *dqm)
918 {
919 	pm_uninit(&dqm->packets);
920 	return 0;
921 }
922 
allocate_sdma_queue(struct device_queue_manager * dqm,unsigned int * sdma_queue_id)923 static int allocate_sdma_queue(struct device_queue_manager *dqm,
924 				unsigned int *sdma_queue_id)
925 {
926 	int bit;
927 
928 	if (dqm->sdma_bitmap == 0)
929 		return -ENOMEM;
930 
931 	bit = ffs(dqm->sdma_bitmap) - 1;
932 	dqm->sdma_bitmap &= ~(1 << bit);
933 	*sdma_queue_id = bit;
934 
935 	return 0;
936 }
937 
deallocate_sdma_queue(struct device_queue_manager * dqm,unsigned int sdma_queue_id)938 static void deallocate_sdma_queue(struct device_queue_manager *dqm,
939 				unsigned int sdma_queue_id)
940 {
941 	if (sdma_queue_id >= get_num_sdma_queues(dqm))
942 		return;
943 	dqm->sdma_bitmap |= (1 << sdma_queue_id);
944 }
945 
create_sdma_queue_nocpsch(struct device_queue_manager * dqm,struct queue * q,struct qcm_process_device * qpd)946 static int create_sdma_queue_nocpsch(struct device_queue_manager *dqm,
947 					struct queue *q,
948 					struct qcm_process_device *qpd)
949 {
950 	struct mqd_manager *mqd_mgr;
951 	int retval;
952 
953 	mqd_mgr = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_SDMA);
954 	if (!mqd_mgr)
955 		return -ENOMEM;
956 
957 	retval = allocate_sdma_queue(dqm, &q->sdma_id);
958 	if (retval)
959 		return retval;
960 
961 	q->properties.sdma_queue_id = q->sdma_id / get_num_sdma_engines(dqm);
962 	q->properties.sdma_engine_id = q->sdma_id % get_num_sdma_engines(dqm);
963 
964 	retval = allocate_doorbell(qpd, q);
965 	if (retval)
966 		goto out_deallocate_sdma_queue;
967 
968 	pr_debug("SDMA id is:    %d\n", q->sdma_id);
969 	pr_debug("SDMA queue id: %d\n", q->properties.sdma_queue_id);
970 	pr_debug("SDMA engine id: %d\n", q->properties.sdma_engine_id);
971 
972 	dqm->asic_ops.init_sdma_vm(dqm, q, qpd);
973 	retval = mqd_mgr->init_mqd(mqd_mgr, &q->mqd, &q->mqd_mem_obj,
974 				&q->gart_mqd_addr, &q->properties);
975 	if (retval)
976 		goto out_deallocate_doorbell;
977 
978 	retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, 0, 0, &q->properties,
979 				NULL);
980 	if (retval)
981 		goto out_uninit_mqd;
982 
983 	return 0;
984 
985 out_uninit_mqd:
986 	mqd_mgr->uninit_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
987 out_deallocate_doorbell:
988 	deallocate_doorbell(qpd, q);
989 out_deallocate_sdma_queue:
990 	deallocate_sdma_queue(dqm, q->sdma_id);
991 
992 	return retval;
993 }
994 
995 /*
996  * Device Queue Manager implementation for cp scheduler
997  */
998 
set_sched_resources(struct device_queue_manager * dqm)999 static int set_sched_resources(struct device_queue_manager *dqm)
1000 {
1001 	int i, mec;
1002 	struct scheduling_resources res;
1003 
1004 	res.vmid_mask = dqm->dev->shared_resources.compute_vmid_bitmap;
1005 
1006 	res.queue_mask = 0;
1007 	for (i = 0; i < KGD_MAX_QUEUES; ++i) {
1008 		mec = (i / dqm->dev->shared_resources.num_queue_per_pipe)
1009 			/ dqm->dev->shared_resources.num_pipe_per_mec;
1010 
1011 		if (!test_bit(i, dqm->dev->shared_resources.queue_bitmap))
1012 			continue;
1013 
1014 		/* only acquire queues from the first MEC */
1015 		if (mec > 0)
1016 			continue;
1017 
1018 		/* This situation may be hit in the future if a new HW
1019 		 * generation exposes more than 64 queues. If so, the
1020 		 * definition of res.queue_mask needs updating
1021 		 */
1022 		if (WARN_ON(i >= (sizeof(res.queue_mask)*8))) {
1023 			pr_err("Invalid queue enabled by amdgpu: %d\n", i);
1024 			break;
1025 		}
1026 
1027 		res.queue_mask |= (1ull << i);
1028 	}
1029 	res.gws_mask = res.oac_mask = res.gds_heap_base =
1030 						res.gds_heap_size = 0;
1031 
1032 	pr_debug("Scheduling resources:\n"
1033 			"vmid mask: 0x%8X\n"
1034 			"queue mask: 0x%8llX\n",
1035 			res.vmid_mask, res.queue_mask);
1036 
1037 	return pm_send_set_resources(&dqm->packets, &res);
1038 }
1039 
initialize_cpsch(struct device_queue_manager * dqm)1040 static int initialize_cpsch(struct device_queue_manager *dqm)
1041 {
1042 	pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm));
1043 
1044 	mutex_init(&dqm->lock_hidden);
1045 	INIT_LIST_HEAD(&dqm->queues);
1046 	dqm->queue_count = dqm->processes_count = 0;
1047 	dqm->sdma_queue_count = 0;
1048 	dqm->active_runlist = false;
1049 	dqm->sdma_bitmap = (1 << get_num_sdma_queues(dqm)) - 1;
1050 
1051 	INIT_WORK(&dqm->hw_exception_work, kfd_process_hw_exception);
1052 
1053 	return 0;
1054 }
1055 
start_cpsch(struct device_queue_manager * dqm)1056 static int start_cpsch(struct device_queue_manager *dqm)
1057 {
1058 	int retval;
1059 
1060 	retval = 0;
1061 
1062 	retval = pm_init(&dqm->packets, dqm);
1063 	if (retval)
1064 		goto fail_packet_manager_init;
1065 
1066 	retval = set_sched_resources(dqm);
1067 	if (retval)
1068 		goto fail_set_sched_resources;
1069 
1070 	pr_debug("Allocating fence memory\n");
1071 
1072 	/* allocate fence memory on the gart */
1073 	retval = kfd_gtt_sa_allocate(dqm->dev, sizeof(*dqm->fence_addr),
1074 					&dqm->fence_mem);
1075 
1076 	if (retval)
1077 		goto fail_allocate_vidmem;
1078 
1079 	dqm->fence_addr = dqm->fence_mem->cpu_ptr;
1080 	dqm->fence_gpu_addr = dqm->fence_mem->gpu_addr;
1081 
1082 	init_interrupts(dqm);
1083 
1084 	dqm_lock(dqm);
1085 	/* clear hang status when driver try to start the hw scheduler */
1086 	dqm->is_hws_hang = false;
1087 	execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
1088 	dqm_unlock(dqm);
1089 
1090 	return 0;
1091 fail_allocate_vidmem:
1092 fail_set_sched_resources:
1093 	pm_uninit(&dqm->packets);
1094 fail_packet_manager_init:
1095 	return retval;
1096 }
1097 
stop_cpsch(struct device_queue_manager * dqm)1098 static int stop_cpsch(struct device_queue_manager *dqm)
1099 {
1100 	dqm_lock(dqm);
1101 	unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0);
1102 	dqm_unlock(dqm);
1103 
1104 	kfd_gtt_sa_free(dqm->dev, dqm->fence_mem);
1105 	pm_uninit(&dqm->packets);
1106 
1107 	return 0;
1108 }
1109 
create_kernel_queue_cpsch(struct device_queue_manager * dqm,struct kernel_queue * kq,struct qcm_process_device * qpd)1110 static int create_kernel_queue_cpsch(struct device_queue_manager *dqm,
1111 					struct kernel_queue *kq,
1112 					struct qcm_process_device *qpd)
1113 {
1114 	dqm_lock(dqm);
1115 	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
1116 		pr_warn("Can't create new kernel queue because %d queues were already created\n",
1117 				dqm->total_queue_count);
1118 		dqm_unlock(dqm);
1119 		return -EPERM;
1120 	}
1121 
1122 	/*
1123 	 * Unconditionally increment this counter, regardless of the queue's
1124 	 * type or whether the queue is active.
1125 	 */
1126 	dqm->total_queue_count++;
1127 	pr_debug("Total of %d queues are accountable so far\n",
1128 			dqm->total_queue_count);
1129 
1130 	list_add(&kq->list, &qpd->priv_queue_list);
1131 	dqm->queue_count++;
1132 	qpd->is_debug = true;
1133 	execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
1134 	dqm_unlock(dqm);
1135 
1136 	return 0;
1137 }
1138 
destroy_kernel_queue_cpsch(struct device_queue_manager * dqm,struct kernel_queue * kq,struct qcm_process_device * qpd)1139 static void destroy_kernel_queue_cpsch(struct device_queue_manager *dqm,
1140 					struct kernel_queue *kq,
1141 					struct qcm_process_device *qpd)
1142 {
1143 	dqm_lock(dqm);
1144 	list_del(&kq->list);
1145 	dqm->queue_count--;
1146 	qpd->is_debug = false;
1147 	execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0);
1148 	/*
1149 	 * Unconditionally decrement this counter, regardless of the queue's
1150 	 * type.
1151 	 */
1152 	dqm->total_queue_count--;
1153 	pr_debug("Total of %d queues are accountable so far\n",
1154 			dqm->total_queue_count);
1155 	dqm_unlock(dqm);
1156 }
1157 
create_queue_cpsch(struct device_queue_manager * dqm,struct queue * q,struct qcm_process_device * qpd)1158 static int create_queue_cpsch(struct device_queue_manager *dqm, struct queue *q,
1159 			struct qcm_process_device *qpd)
1160 {
1161 	int retval;
1162 	struct mqd_manager *mqd_mgr;
1163 
1164 	retval = 0;
1165 
1166 	dqm_lock(dqm);
1167 
1168 	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
1169 		pr_warn("Can't create new usermode queue because %d queues were already created\n",
1170 				dqm->total_queue_count);
1171 		retval = -EPERM;
1172 		goto out_unlock;
1173 	}
1174 
1175 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
1176 		retval = allocate_sdma_queue(dqm, &q->sdma_id);
1177 		if (retval)
1178 			goto out_unlock;
1179 		q->properties.sdma_queue_id =
1180 			q->sdma_id / get_num_sdma_engines(dqm);
1181 		q->properties.sdma_engine_id =
1182 			q->sdma_id % get_num_sdma_engines(dqm);
1183 	}
1184 
1185 	retval = allocate_doorbell(qpd, q);
1186 	if (retval)
1187 		goto out_deallocate_sdma_queue;
1188 
1189 	mqd_mgr = dqm->ops.get_mqd_manager(dqm,
1190 			get_mqd_type_from_queue_type(q->properties.type));
1191 
1192 	if (!mqd_mgr) {
1193 		retval = -ENOMEM;
1194 		goto out_deallocate_doorbell;
1195 	}
1196 	/*
1197 	 * Eviction state logic: we only mark active queues as evicted
1198 	 * to avoid the overhead of restoring inactive queues later
1199 	 */
1200 	if (qpd->evicted)
1201 		q->properties.is_evicted = (q->properties.queue_size > 0 &&
1202 					    q->properties.queue_percent > 0 &&
1203 					    q->properties.queue_address != 0);
1204 
1205 	dqm->asic_ops.init_sdma_vm(dqm, q, qpd);
1206 
1207 	q->properties.tba_addr = qpd->tba_addr;
1208 	q->properties.tma_addr = qpd->tma_addr;
1209 	retval = mqd_mgr->init_mqd(mqd_mgr, &q->mqd, &q->mqd_mem_obj,
1210 				&q->gart_mqd_addr, &q->properties);
1211 	if (retval)
1212 		goto out_deallocate_doorbell;
1213 
1214 	list_add(&q->list, &qpd->queues_list);
1215 	qpd->queue_count++;
1216 	if (q->properties.is_active) {
1217 		dqm->queue_count++;
1218 		retval = execute_queues_cpsch(dqm,
1219 				KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
1220 	}
1221 
1222 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
1223 		dqm->sdma_queue_count++;
1224 	/*
1225 	 * Unconditionally increment this counter, regardless of the queue's
1226 	 * type or whether the queue is active.
1227 	 */
1228 	dqm->total_queue_count++;
1229 
1230 	pr_debug("Total of %d queues are accountable so far\n",
1231 			dqm->total_queue_count);
1232 
1233 	dqm_unlock(dqm);
1234 	return retval;
1235 
1236 out_deallocate_doorbell:
1237 	deallocate_doorbell(qpd, q);
1238 out_deallocate_sdma_queue:
1239 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
1240 		deallocate_sdma_queue(dqm, q->sdma_id);
1241 out_unlock:
1242 	dqm_unlock(dqm);
1243 
1244 	return retval;
1245 }
1246 
amdkfd_fence_wait_timeout(unsigned int * fence_addr,unsigned int fence_value,unsigned int timeout_ms)1247 int amdkfd_fence_wait_timeout(unsigned int *fence_addr,
1248 				unsigned int fence_value,
1249 				unsigned int timeout_ms)
1250 {
1251 	unsigned long end_jiffies = msecs_to_jiffies(timeout_ms) + jiffies;
1252 
1253 	while (*fence_addr != fence_value) {
1254 		if (time_after(jiffies, end_jiffies)) {
1255 			pr_err("qcm fence wait loop timeout expired\n");
1256 			/* In HWS case, this is used to halt the driver thread
1257 			 * in order not to mess up CP states before doing
1258 			 * scandumps for FW debugging.
1259 			 */
1260 			while (halt_if_hws_hang)
1261 				schedule();
1262 
1263 			return -ETIME;
1264 		}
1265 		schedule();
1266 	}
1267 
1268 	return 0;
1269 }
1270 
unmap_sdma_queues(struct device_queue_manager * dqm,unsigned int sdma_engine)1271 static int unmap_sdma_queues(struct device_queue_manager *dqm,
1272 				unsigned int sdma_engine)
1273 {
1274 	return pm_send_unmap_queue(&dqm->packets, KFD_QUEUE_TYPE_SDMA,
1275 			KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, false,
1276 			sdma_engine);
1277 }
1278 
1279 /* dqm->lock mutex has to be locked before calling this function */
map_queues_cpsch(struct device_queue_manager * dqm)1280 static int map_queues_cpsch(struct device_queue_manager *dqm)
1281 {
1282 	int retval;
1283 
1284 	if (dqm->queue_count <= 0 || dqm->processes_count <= 0)
1285 		return 0;
1286 
1287 	if (dqm->active_runlist)
1288 		return 0;
1289 
1290 	retval = pm_send_runlist(&dqm->packets, &dqm->queues);
1291 	if (retval) {
1292 		pr_err("failed to execute runlist\n");
1293 		return retval;
1294 	}
1295 	dqm->active_runlist = true;
1296 
1297 	return retval;
1298 }
1299 
1300 /* dqm->lock mutex has to be locked before calling this function */
unmap_queues_cpsch(struct device_queue_manager * dqm,enum kfd_unmap_queues_filter filter,uint32_t filter_param)1301 static int unmap_queues_cpsch(struct device_queue_manager *dqm,
1302 				enum kfd_unmap_queues_filter filter,
1303 				uint32_t filter_param)
1304 {
1305 	int retval = 0;
1306 
1307 	if (dqm->is_hws_hang)
1308 		return -EIO;
1309 	if (!dqm->active_runlist)
1310 		return retval;
1311 
1312 	pr_debug("Before destroying queues, sdma queue count is : %u\n",
1313 		dqm->sdma_queue_count);
1314 
1315 	if (dqm->sdma_queue_count > 0) {
1316 		unmap_sdma_queues(dqm, 0);
1317 		unmap_sdma_queues(dqm, 1);
1318 	}
1319 
1320 	retval = pm_send_unmap_queue(&dqm->packets, KFD_QUEUE_TYPE_COMPUTE,
1321 			filter, filter_param, false, 0);
1322 	if (retval)
1323 		return retval;
1324 
1325 	*dqm->fence_addr = KFD_FENCE_INIT;
1326 	pm_send_query_status(&dqm->packets, dqm->fence_gpu_addr,
1327 				KFD_FENCE_COMPLETED);
1328 	/* should be timed out */
1329 	retval = amdkfd_fence_wait_timeout(dqm->fence_addr, KFD_FENCE_COMPLETED,
1330 				QUEUE_PREEMPT_DEFAULT_TIMEOUT_MS);
1331 	if (retval)
1332 		return retval;
1333 
1334 	pm_release_ib(&dqm->packets);
1335 	dqm->active_runlist = false;
1336 
1337 	return retval;
1338 }
1339 
1340 /* dqm->lock mutex has to be locked before calling this function */
execute_queues_cpsch(struct device_queue_manager * dqm,enum kfd_unmap_queues_filter filter,uint32_t filter_param)1341 static int execute_queues_cpsch(struct device_queue_manager *dqm,
1342 				enum kfd_unmap_queues_filter filter,
1343 				uint32_t filter_param)
1344 {
1345 	int retval;
1346 
1347 	if (dqm->is_hws_hang)
1348 		return -EIO;
1349 	retval = unmap_queues_cpsch(dqm, filter, filter_param);
1350 	if (retval) {
1351 		pr_err("The cp might be in an unrecoverable state due to an unsuccessful queues preemption\n");
1352 		dqm->is_hws_hang = true;
1353 		schedule_work(&dqm->hw_exception_work);
1354 		return retval;
1355 	}
1356 
1357 	return map_queues_cpsch(dqm);
1358 }
1359 
destroy_queue_cpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)1360 static int destroy_queue_cpsch(struct device_queue_manager *dqm,
1361 				struct qcm_process_device *qpd,
1362 				struct queue *q)
1363 {
1364 	int retval;
1365 	struct mqd_manager *mqd_mgr;
1366 	bool preempt_all_queues;
1367 
1368 	preempt_all_queues = false;
1369 
1370 	retval = 0;
1371 
1372 	/* remove queue from list to prevent rescheduling after preemption */
1373 	dqm_lock(dqm);
1374 
1375 	if (qpd->is_debug) {
1376 		/*
1377 		 * error, currently we do not allow to destroy a queue
1378 		 * of a currently debugged process
1379 		 */
1380 		retval = -EBUSY;
1381 		goto failed_try_destroy_debugged_queue;
1382 
1383 	}
1384 
1385 	mqd_mgr = dqm->ops.get_mqd_manager(dqm,
1386 			get_mqd_type_from_queue_type(q->properties.type));
1387 	if (!mqd_mgr) {
1388 		retval = -ENOMEM;
1389 		goto failed;
1390 	}
1391 
1392 	deallocate_doorbell(qpd, q);
1393 
1394 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
1395 		dqm->sdma_queue_count--;
1396 		deallocate_sdma_queue(dqm, q->sdma_id);
1397 	}
1398 
1399 	list_del(&q->list);
1400 	qpd->queue_count--;
1401 	if (q->properties.is_active) {
1402 		dqm->queue_count--;
1403 		retval = execute_queues_cpsch(dqm,
1404 				KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
1405 		if (retval == -ETIME)
1406 			qpd->reset_wavefronts = true;
1407 	}
1408 
1409 	mqd_mgr->uninit_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
1410 
1411 	/*
1412 	 * Unconditionally decrement this counter, regardless of the queue's
1413 	 * type
1414 	 */
1415 	dqm->total_queue_count--;
1416 	pr_debug("Total of %d queues are accountable so far\n",
1417 			dqm->total_queue_count);
1418 
1419 	dqm_unlock(dqm);
1420 
1421 	return retval;
1422 
1423 failed:
1424 failed_try_destroy_debugged_queue:
1425 
1426 	dqm_unlock(dqm);
1427 	return retval;
1428 }
1429 
1430 /*
1431  * Low bits must be 0000/FFFF as required by HW, high bits must be 0 to
1432  * stay in user mode.
1433  */
1434 #define APE1_FIXED_BITS_MASK 0xFFFF80000000FFFFULL
1435 /* APE1 limit is inclusive and 64K aligned. */
1436 #define APE1_LIMIT_ALIGNMENT 0xFFFF
1437 
set_cache_memory_policy(struct device_queue_manager * dqm,struct qcm_process_device * qpd,enum cache_policy default_policy,enum cache_policy alternate_policy,void __user * alternate_aperture_base,uint64_t alternate_aperture_size)1438 static bool set_cache_memory_policy(struct device_queue_manager *dqm,
1439 				   struct qcm_process_device *qpd,
1440 				   enum cache_policy default_policy,
1441 				   enum cache_policy alternate_policy,
1442 				   void __user *alternate_aperture_base,
1443 				   uint64_t alternate_aperture_size)
1444 {
1445 	bool retval = true;
1446 
1447 	if (!dqm->asic_ops.set_cache_memory_policy)
1448 		return retval;
1449 
1450 	dqm_lock(dqm);
1451 
1452 	if (alternate_aperture_size == 0) {
1453 		/* base > limit disables APE1 */
1454 		qpd->sh_mem_ape1_base = 1;
1455 		qpd->sh_mem_ape1_limit = 0;
1456 	} else {
1457 		/*
1458 		 * In FSA64, APE1_Base[63:0] = { 16{SH_MEM_APE1_BASE[31]},
1459 		 *			SH_MEM_APE1_BASE[31:0], 0x0000 }
1460 		 * APE1_Limit[63:0] = { 16{SH_MEM_APE1_LIMIT[31]},
1461 		 *			SH_MEM_APE1_LIMIT[31:0], 0xFFFF }
1462 		 * Verify that the base and size parameters can be
1463 		 * represented in this format and convert them.
1464 		 * Additionally restrict APE1 to user-mode addresses.
1465 		 */
1466 
1467 		uint64_t base = (uintptr_t)alternate_aperture_base;
1468 		uint64_t limit = base + alternate_aperture_size - 1;
1469 
1470 		if (limit <= base || (base & APE1_FIXED_BITS_MASK) != 0 ||
1471 		   (limit & APE1_FIXED_BITS_MASK) != APE1_LIMIT_ALIGNMENT) {
1472 			retval = false;
1473 			goto out;
1474 		}
1475 
1476 		qpd->sh_mem_ape1_base = base >> 16;
1477 		qpd->sh_mem_ape1_limit = limit >> 16;
1478 	}
1479 
1480 	retval = dqm->asic_ops.set_cache_memory_policy(
1481 			dqm,
1482 			qpd,
1483 			default_policy,
1484 			alternate_policy,
1485 			alternate_aperture_base,
1486 			alternate_aperture_size);
1487 
1488 	if ((dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) && (qpd->vmid != 0))
1489 		program_sh_mem_settings(dqm, qpd);
1490 
1491 	pr_debug("sh_mem_config: 0x%x, ape1_base: 0x%x, ape1_limit: 0x%x\n",
1492 		qpd->sh_mem_config, qpd->sh_mem_ape1_base,
1493 		qpd->sh_mem_ape1_limit);
1494 
1495 out:
1496 	dqm_unlock(dqm);
1497 	return retval;
1498 }
1499 
set_trap_handler(struct device_queue_manager * dqm,struct qcm_process_device * qpd,uint64_t tba_addr,uint64_t tma_addr)1500 static int set_trap_handler(struct device_queue_manager *dqm,
1501 				struct qcm_process_device *qpd,
1502 				uint64_t tba_addr,
1503 				uint64_t tma_addr)
1504 {
1505 	uint64_t *tma;
1506 
1507 	if (dqm->dev->cwsr_enabled) {
1508 		/* Jump from CWSR trap handler to user trap */
1509 		tma = (uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1510 		tma[0] = tba_addr;
1511 		tma[1] = tma_addr;
1512 	} else {
1513 		qpd->tba_addr = tba_addr;
1514 		qpd->tma_addr = tma_addr;
1515 	}
1516 
1517 	return 0;
1518 }
1519 
process_termination_nocpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)1520 static int process_termination_nocpsch(struct device_queue_manager *dqm,
1521 		struct qcm_process_device *qpd)
1522 {
1523 	struct queue *q, *next;
1524 	struct device_process_node *cur, *next_dpn;
1525 	int retval = 0;
1526 
1527 	dqm_lock(dqm);
1528 
1529 	/* Clear all user mode queues */
1530 	list_for_each_entry_safe(q, next, &qpd->queues_list, list) {
1531 		int ret;
1532 
1533 		ret = destroy_queue_nocpsch_locked(dqm, qpd, q);
1534 		if (ret)
1535 			retval = ret;
1536 	}
1537 
1538 	/* Unregister process */
1539 	list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) {
1540 		if (qpd == cur->qpd) {
1541 			list_del(&cur->list);
1542 			kfree(cur);
1543 			dqm->processes_count--;
1544 			break;
1545 		}
1546 	}
1547 
1548 	dqm_unlock(dqm);
1549 	return retval;
1550 }
1551 
1552 
process_termination_cpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)1553 static int process_termination_cpsch(struct device_queue_manager *dqm,
1554 		struct qcm_process_device *qpd)
1555 {
1556 	int retval;
1557 	struct queue *q, *next;
1558 	struct kernel_queue *kq, *kq_next;
1559 	struct mqd_manager *mqd_mgr;
1560 	struct device_process_node *cur, *next_dpn;
1561 	enum kfd_unmap_queues_filter filter =
1562 		KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES;
1563 
1564 	retval = 0;
1565 
1566 	dqm_lock(dqm);
1567 
1568 	/* Clean all kernel queues */
1569 	list_for_each_entry_safe(kq, kq_next, &qpd->priv_queue_list, list) {
1570 		list_del(&kq->list);
1571 		dqm->queue_count--;
1572 		qpd->is_debug = false;
1573 		dqm->total_queue_count--;
1574 		filter = KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES;
1575 	}
1576 
1577 	/* Clear all user mode queues */
1578 	list_for_each_entry(q, &qpd->queues_list, list) {
1579 		if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
1580 			dqm->sdma_queue_count--;
1581 			deallocate_sdma_queue(dqm, q->sdma_id);
1582 		}
1583 
1584 		if (q->properties.is_active)
1585 			dqm->queue_count--;
1586 
1587 		dqm->total_queue_count--;
1588 	}
1589 
1590 	/* Unregister process */
1591 	list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) {
1592 		if (qpd == cur->qpd) {
1593 			list_del(&cur->list);
1594 			kfree(cur);
1595 			dqm->processes_count--;
1596 			break;
1597 		}
1598 	}
1599 
1600 	retval = execute_queues_cpsch(dqm, filter, 0);
1601 	if ((!dqm->is_hws_hang) && (retval || qpd->reset_wavefronts)) {
1602 		pr_warn("Resetting wave fronts (cpsch) on dev %p\n", dqm->dev);
1603 		dbgdev_wave_reset_wavefronts(dqm->dev, qpd->pqm->process);
1604 		qpd->reset_wavefronts = false;
1605 	}
1606 
1607 	/* lastly, free mqd resources */
1608 	list_for_each_entry_safe(q, next, &qpd->queues_list, list) {
1609 		mqd_mgr = dqm->ops.get_mqd_manager(dqm,
1610 			get_mqd_type_from_queue_type(q->properties.type));
1611 		if (!mqd_mgr) {
1612 			retval = -ENOMEM;
1613 			goto out;
1614 		}
1615 		list_del(&q->list);
1616 		qpd->queue_count--;
1617 		mqd_mgr->uninit_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
1618 	}
1619 
1620 out:
1621 	dqm_unlock(dqm);
1622 	return retval;
1623 }
1624 
device_queue_manager_init(struct kfd_dev * dev)1625 struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev)
1626 {
1627 	struct device_queue_manager *dqm;
1628 
1629 	pr_debug("Loading device queue manager\n");
1630 
1631 	dqm = kzalloc(sizeof(*dqm), GFP_KERNEL);
1632 	if (!dqm)
1633 		return NULL;
1634 
1635 	switch (dev->device_info->asic_family) {
1636 	/* HWS is not available on Hawaii. */
1637 	case CHIP_HAWAII:
1638 	/* HWS depends on CWSR for timely dequeue. CWSR is not
1639 	 * available on Tonga.
1640 	 *
1641 	 * FIXME: This argument also applies to Kaveri.
1642 	 */
1643 	case CHIP_TONGA:
1644 		dqm->sched_policy = KFD_SCHED_POLICY_NO_HWS;
1645 		break;
1646 	default:
1647 		dqm->sched_policy = sched_policy;
1648 		break;
1649 	}
1650 
1651 	dqm->dev = dev;
1652 	switch (dqm->sched_policy) {
1653 	case KFD_SCHED_POLICY_HWS:
1654 	case KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION:
1655 		/* initialize dqm for cp scheduling */
1656 		dqm->ops.create_queue = create_queue_cpsch;
1657 		dqm->ops.initialize = initialize_cpsch;
1658 		dqm->ops.start = start_cpsch;
1659 		dqm->ops.stop = stop_cpsch;
1660 		dqm->ops.destroy_queue = destroy_queue_cpsch;
1661 		dqm->ops.update_queue = update_queue;
1662 		dqm->ops.get_mqd_manager = get_mqd_manager;
1663 		dqm->ops.register_process = register_process;
1664 		dqm->ops.unregister_process = unregister_process;
1665 		dqm->ops.uninitialize = uninitialize;
1666 		dqm->ops.create_kernel_queue = create_kernel_queue_cpsch;
1667 		dqm->ops.destroy_kernel_queue = destroy_kernel_queue_cpsch;
1668 		dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
1669 		dqm->ops.set_trap_handler = set_trap_handler;
1670 		dqm->ops.process_termination = process_termination_cpsch;
1671 		dqm->ops.evict_process_queues = evict_process_queues_cpsch;
1672 		dqm->ops.restore_process_queues = restore_process_queues_cpsch;
1673 		break;
1674 	case KFD_SCHED_POLICY_NO_HWS:
1675 		/* initialize dqm for no cp scheduling */
1676 		dqm->ops.start = start_nocpsch;
1677 		dqm->ops.stop = stop_nocpsch;
1678 		dqm->ops.create_queue = create_queue_nocpsch;
1679 		dqm->ops.destroy_queue = destroy_queue_nocpsch;
1680 		dqm->ops.update_queue = update_queue;
1681 		dqm->ops.get_mqd_manager = get_mqd_manager;
1682 		dqm->ops.register_process = register_process;
1683 		dqm->ops.unregister_process = unregister_process;
1684 		dqm->ops.initialize = initialize_nocpsch;
1685 		dqm->ops.uninitialize = uninitialize;
1686 		dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
1687 		dqm->ops.set_trap_handler = set_trap_handler;
1688 		dqm->ops.process_termination = process_termination_nocpsch;
1689 		dqm->ops.evict_process_queues = evict_process_queues_nocpsch;
1690 		dqm->ops.restore_process_queues =
1691 			restore_process_queues_nocpsch;
1692 		break;
1693 	default:
1694 		pr_err("Invalid scheduling policy %d\n", dqm->sched_policy);
1695 		goto out_free;
1696 	}
1697 
1698 	switch (dev->device_info->asic_family) {
1699 	case CHIP_CARRIZO:
1700 		device_queue_manager_init_vi(&dqm->asic_ops);
1701 		break;
1702 
1703 	case CHIP_KAVERI:
1704 		device_queue_manager_init_cik(&dqm->asic_ops);
1705 		break;
1706 
1707 	case CHIP_HAWAII:
1708 		device_queue_manager_init_cik_hawaii(&dqm->asic_ops);
1709 		break;
1710 
1711 	case CHIP_TONGA:
1712 	case CHIP_FIJI:
1713 	case CHIP_POLARIS10:
1714 	case CHIP_POLARIS11:
1715 		device_queue_manager_init_vi_tonga(&dqm->asic_ops);
1716 		break;
1717 
1718 	case CHIP_VEGA10:
1719 	case CHIP_RAVEN:
1720 		device_queue_manager_init_v9(&dqm->asic_ops);
1721 		break;
1722 	default:
1723 		WARN(1, "Unexpected ASIC family %u",
1724 		     dev->device_info->asic_family);
1725 		goto out_free;
1726 	}
1727 
1728 	if (!dqm->ops.initialize(dqm))
1729 		return dqm;
1730 
1731 out_free:
1732 	kfree(dqm);
1733 	return NULL;
1734 }
1735 
device_queue_manager_uninit(struct device_queue_manager * dqm)1736 void device_queue_manager_uninit(struct device_queue_manager *dqm)
1737 {
1738 	dqm->ops.uninitialize(dqm);
1739 	kfree(dqm);
1740 }
1741 
kfd_process_vm_fault(struct device_queue_manager * dqm,unsigned int pasid)1742 int kfd_process_vm_fault(struct device_queue_manager *dqm,
1743 			 unsigned int pasid)
1744 {
1745 	struct kfd_process_device *pdd;
1746 	struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
1747 	int ret = 0;
1748 
1749 	if (!p)
1750 		return -EINVAL;
1751 	pdd = kfd_get_process_device_data(dqm->dev, p);
1752 	if (pdd)
1753 		ret = dqm->ops.evict_process_queues(dqm, &pdd->qpd);
1754 	kfd_unref_process(p);
1755 
1756 	return ret;
1757 }
1758 
kfd_process_hw_exception(struct work_struct * work)1759 static void kfd_process_hw_exception(struct work_struct *work)
1760 {
1761 	struct device_queue_manager *dqm = container_of(work,
1762 			struct device_queue_manager, hw_exception_work);
1763 	dqm->dev->kfd2kgd->gpu_recover(dqm->dev->kgd);
1764 }
1765 
1766 #if defined(CONFIG_DEBUG_FS)
1767 
seq_reg_dump(struct seq_file * m,uint32_t (* dump)[2],uint32_t n_regs)1768 static void seq_reg_dump(struct seq_file *m,
1769 			 uint32_t (*dump)[2], uint32_t n_regs)
1770 {
1771 	uint32_t i, count;
1772 
1773 	for (i = 0, count = 0; i < n_regs; i++) {
1774 		if (count == 0 ||
1775 		    dump[i-1][0] + sizeof(uint32_t) != dump[i][0]) {
1776 			seq_printf(m, "%s    %08x: %08x",
1777 				   i ? "\n" : "",
1778 				   dump[i][0], dump[i][1]);
1779 			count = 7;
1780 		} else {
1781 			seq_printf(m, " %08x", dump[i][1]);
1782 			count--;
1783 		}
1784 	}
1785 
1786 	seq_puts(m, "\n");
1787 }
1788 
dqm_debugfs_hqds(struct seq_file * m,void * data)1789 int dqm_debugfs_hqds(struct seq_file *m, void *data)
1790 {
1791 	struct device_queue_manager *dqm = data;
1792 	uint32_t (*dump)[2], n_regs;
1793 	int pipe, queue;
1794 	int r = 0;
1795 
1796 	r = dqm->dev->kfd2kgd->hqd_dump(dqm->dev->kgd,
1797 		KFD_CIK_HIQ_PIPE, KFD_CIK_HIQ_QUEUE, &dump, &n_regs);
1798 	if (!r) {
1799 		seq_printf(m, "  HIQ on MEC %d Pipe %d Queue %d\n",
1800 				KFD_CIK_HIQ_PIPE/get_pipes_per_mec(dqm)+1,
1801 				KFD_CIK_HIQ_PIPE%get_pipes_per_mec(dqm),
1802 				KFD_CIK_HIQ_QUEUE);
1803 		seq_reg_dump(m, dump, n_regs);
1804 
1805 		kfree(dump);
1806 	}
1807 
1808 	for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) {
1809 		int pipe_offset = pipe * get_queues_per_pipe(dqm);
1810 
1811 		for (queue = 0; queue < get_queues_per_pipe(dqm); queue++) {
1812 			if (!test_bit(pipe_offset + queue,
1813 				      dqm->dev->shared_resources.queue_bitmap))
1814 				continue;
1815 
1816 			r = dqm->dev->kfd2kgd->hqd_dump(
1817 				dqm->dev->kgd, pipe, queue, &dump, &n_regs);
1818 			if (r)
1819 				break;
1820 
1821 			seq_printf(m, "  CP Pipe %d, Queue %d\n",
1822 				  pipe, queue);
1823 			seq_reg_dump(m, dump, n_regs);
1824 
1825 			kfree(dump);
1826 		}
1827 	}
1828 
1829 	for (pipe = 0; pipe < get_num_sdma_engines(dqm); pipe++) {
1830 		for (queue = 0; queue < KFD_SDMA_QUEUES_PER_ENGINE; queue++) {
1831 			r = dqm->dev->kfd2kgd->hqd_sdma_dump(
1832 				dqm->dev->kgd, pipe, queue, &dump, &n_regs);
1833 			if (r)
1834 				break;
1835 
1836 			seq_printf(m, "  SDMA Engine %d, RLC %d\n",
1837 				  pipe, queue);
1838 			seq_reg_dump(m, dump, n_regs);
1839 
1840 			kfree(dump);
1841 		}
1842 	}
1843 
1844 	return r;
1845 }
1846 
dqm_debugfs_execute_queues(struct device_queue_manager * dqm)1847 int dqm_debugfs_execute_queues(struct device_queue_manager *dqm)
1848 {
1849 	int r = 0;
1850 
1851 	dqm_lock(dqm);
1852 	dqm->active_runlist = true;
1853 	r = execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0);
1854 	dqm_unlock(dqm);
1855 
1856 	return r;
1857 }
1858 
1859 #endif
1860