1 /* Copyright (c) 2015-2018, The Linux Foundation. All rights reserved.
2 *
3 * This program is free software; you can redistribute it and/or modify
4 * it under the terms of the GNU General Public License version 2 and
5 * only version 2 as published by the Free Software Foundation.
6 *
7 * This program is distributed in the hope that it will be useful,
8 * but WITHOUT ANY WARRANTY; without even the implied warranty of
9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
10 * GNU General Public License for more details.
11 */
12
13 #include "dpu_hwio.h"
14 #include "dpu_hw_catalog.h"
15 #include "dpu_hw_top.h"
16 #include "dpu_dbg.h"
17 #include "dpu_kms.h"
18
19 #define SSPP_SPARE 0x28
20 #define UBWC_STATIC 0x144
21
22 #define FLD_SPLIT_DISPLAY_CMD BIT(1)
23 #define FLD_SMART_PANEL_FREE_RUN BIT(2)
24 #define FLD_INTF_1_SW_TRG_MUX BIT(4)
25 #define FLD_INTF_2_SW_TRG_MUX BIT(8)
26 #define FLD_TE_LINE_INTER_WATERLEVEL_MASK 0xFFFF
27
28 #define DANGER_STATUS 0x360
29 #define SAFE_STATUS 0x364
30
31 #define TE_LINE_INTERVAL 0x3F4
32
33 #define TRAFFIC_SHAPER_EN BIT(31)
34 #define TRAFFIC_SHAPER_RD_CLIENT(num) (0x030 + (num * 4))
35 #define TRAFFIC_SHAPER_WR_CLIENT(num) (0x060 + (num * 4))
36 #define TRAFFIC_SHAPER_FIXPOINT_FACTOR 4
37
38 #define MDP_WD_TIMER_0_CTL 0x380
39 #define MDP_WD_TIMER_0_CTL2 0x384
40 #define MDP_WD_TIMER_0_LOAD_VALUE 0x388
41 #define MDP_WD_TIMER_1_CTL 0x390
42 #define MDP_WD_TIMER_1_CTL2 0x394
43 #define MDP_WD_TIMER_1_LOAD_VALUE 0x398
44 #define MDP_WD_TIMER_2_CTL 0x420
45 #define MDP_WD_TIMER_2_CTL2 0x424
46 #define MDP_WD_TIMER_2_LOAD_VALUE 0x428
47 #define MDP_WD_TIMER_3_CTL 0x430
48 #define MDP_WD_TIMER_3_CTL2 0x434
49 #define MDP_WD_TIMER_3_LOAD_VALUE 0x438
50 #define MDP_WD_TIMER_4_CTL 0x440
51 #define MDP_WD_TIMER_4_CTL2 0x444
52 #define MDP_WD_TIMER_4_LOAD_VALUE 0x448
53
54 #define MDP_TICK_COUNT 16
55 #define XO_CLK_RATE 19200
56 #define MS_TICKS_IN_SEC 1000
57
58 #define CALCULATE_WD_LOAD_VALUE(fps) \
59 ((uint32_t)((MS_TICKS_IN_SEC * XO_CLK_RATE)/(MDP_TICK_COUNT * fps)))
60
61 #define DCE_SEL 0x450
62
dpu_hw_setup_split_pipe(struct dpu_hw_mdp * mdp,struct split_pipe_cfg * cfg)63 static void dpu_hw_setup_split_pipe(struct dpu_hw_mdp *mdp,
64 struct split_pipe_cfg *cfg)
65 {
66 struct dpu_hw_blk_reg_map *c;
67 u32 upper_pipe = 0;
68 u32 lower_pipe = 0;
69
70 if (!mdp || !cfg)
71 return;
72
73 c = &mdp->hw;
74
75 if (cfg->en) {
76 if (cfg->mode == INTF_MODE_CMD) {
77 lower_pipe = FLD_SPLIT_DISPLAY_CMD;
78 /* interface controlling sw trigger */
79 if (cfg->intf == INTF_2)
80 lower_pipe |= FLD_INTF_1_SW_TRG_MUX;
81 else
82 lower_pipe |= FLD_INTF_2_SW_TRG_MUX;
83 upper_pipe = lower_pipe;
84 } else {
85 if (cfg->intf == INTF_2) {
86 lower_pipe = FLD_INTF_1_SW_TRG_MUX;
87 upper_pipe = FLD_INTF_2_SW_TRG_MUX;
88 } else {
89 lower_pipe = FLD_INTF_2_SW_TRG_MUX;
90 upper_pipe = FLD_INTF_1_SW_TRG_MUX;
91 }
92 }
93 }
94
95 DPU_REG_WRITE(c, SSPP_SPARE, cfg->split_flush_en ? 0x1 : 0x0);
96 DPU_REG_WRITE(c, SPLIT_DISPLAY_LOWER_PIPE_CTRL, lower_pipe);
97 DPU_REG_WRITE(c, SPLIT_DISPLAY_UPPER_PIPE_CTRL, upper_pipe);
98 DPU_REG_WRITE(c, SPLIT_DISPLAY_EN, cfg->en & 0x1);
99 }
100
dpu_hw_setup_cdm_output(struct dpu_hw_mdp * mdp,struct cdm_output_cfg * cfg)101 static void dpu_hw_setup_cdm_output(struct dpu_hw_mdp *mdp,
102 struct cdm_output_cfg *cfg)
103 {
104 struct dpu_hw_blk_reg_map *c;
105 u32 out_ctl = 0;
106
107 if (!mdp || !cfg)
108 return;
109
110 c = &mdp->hw;
111
112 if (cfg->intf_en)
113 out_ctl |= BIT(19);
114
115 DPU_REG_WRITE(c, MDP_OUT_CTL_0, out_ctl);
116 }
117
dpu_hw_setup_clk_force_ctrl(struct dpu_hw_mdp * mdp,enum dpu_clk_ctrl_type clk_ctrl,bool enable)118 static bool dpu_hw_setup_clk_force_ctrl(struct dpu_hw_mdp *mdp,
119 enum dpu_clk_ctrl_type clk_ctrl, bool enable)
120 {
121 struct dpu_hw_blk_reg_map *c;
122 u32 reg_off, bit_off;
123 u32 reg_val, new_val;
124 bool clk_forced_on;
125
126 if (!mdp)
127 return false;
128
129 c = &mdp->hw;
130
131 if (clk_ctrl <= DPU_CLK_CTRL_NONE || clk_ctrl >= DPU_CLK_CTRL_MAX)
132 return false;
133
134 reg_off = mdp->caps->clk_ctrls[clk_ctrl].reg_off;
135 bit_off = mdp->caps->clk_ctrls[clk_ctrl].bit_off;
136
137 reg_val = DPU_REG_READ(c, reg_off);
138
139 if (enable)
140 new_val = reg_val | BIT(bit_off);
141 else
142 new_val = reg_val & ~BIT(bit_off);
143
144 DPU_REG_WRITE(c, reg_off, new_val);
145
146 clk_forced_on = !(reg_val & BIT(bit_off));
147
148 return clk_forced_on;
149 }
150
151
dpu_hw_get_danger_status(struct dpu_hw_mdp * mdp,struct dpu_danger_safe_status * status)152 static void dpu_hw_get_danger_status(struct dpu_hw_mdp *mdp,
153 struct dpu_danger_safe_status *status)
154 {
155 struct dpu_hw_blk_reg_map *c;
156 u32 value;
157
158 if (!mdp || !status)
159 return;
160
161 c = &mdp->hw;
162
163 value = DPU_REG_READ(c, DANGER_STATUS);
164 status->mdp = (value >> 0) & 0x3;
165 status->sspp[SSPP_VIG0] = (value >> 4) & 0x3;
166 status->sspp[SSPP_VIG1] = (value >> 6) & 0x3;
167 status->sspp[SSPP_VIG2] = (value >> 8) & 0x3;
168 status->sspp[SSPP_VIG3] = (value >> 10) & 0x3;
169 status->sspp[SSPP_RGB0] = (value >> 12) & 0x3;
170 status->sspp[SSPP_RGB1] = (value >> 14) & 0x3;
171 status->sspp[SSPP_RGB2] = (value >> 16) & 0x3;
172 status->sspp[SSPP_RGB3] = (value >> 18) & 0x3;
173 status->sspp[SSPP_DMA0] = (value >> 20) & 0x3;
174 status->sspp[SSPP_DMA1] = (value >> 22) & 0x3;
175 status->sspp[SSPP_DMA2] = (value >> 28) & 0x3;
176 status->sspp[SSPP_DMA3] = (value >> 30) & 0x3;
177 status->sspp[SSPP_CURSOR0] = (value >> 24) & 0x3;
178 status->sspp[SSPP_CURSOR1] = (value >> 26) & 0x3;
179 }
180
dpu_hw_setup_vsync_source(struct dpu_hw_mdp * mdp,struct dpu_vsync_source_cfg * cfg)181 static void dpu_hw_setup_vsync_source(struct dpu_hw_mdp *mdp,
182 struct dpu_vsync_source_cfg *cfg)
183 {
184 struct dpu_hw_blk_reg_map *c;
185 u32 reg, wd_load_value, wd_ctl, wd_ctl2, i;
186 static const u32 pp_offset[PINGPONG_MAX] = {0xC, 0x8, 0x4, 0x13, 0x18};
187
188 if (!mdp || !cfg || (cfg->pp_count > ARRAY_SIZE(cfg->ppnumber)))
189 return;
190
191 c = &mdp->hw;
192 reg = DPU_REG_READ(c, MDP_VSYNC_SEL);
193 for (i = 0; i < cfg->pp_count; i++) {
194 int pp_idx = cfg->ppnumber[i] - PINGPONG_0;
195
196 if (pp_idx >= ARRAY_SIZE(pp_offset))
197 continue;
198
199 reg &= ~(0xf << pp_offset[pp_idx]);
200 reg |= (cfg->vsync_source & 0xf) << pp_offset[pp_idx];
201 }
202 DPU_REG_WRITE(c, MDP_VSYNC_SEL, reg);
203
204 if (cfg->vsync_source >= DPU_VSYNC_SOURCE_WD_TIMER_4 &&
205 cfg->vsync_source <= DPU_VSYNC_SOURCE_WD_TIMER_0) {
206 switch (cfg->vsync_source) {
207 case DPU_VSYNC_SOURCE_WD_TIMER_4:
208 wd_load_value = MDP_WD_TIMER_4_LOAD_VALUE;
209 wd_ctl = MDP_WD_TIMER_4_CTL;
210 wd_ctl2 = MDP_WD_TIMER_4_CTL2;
211 break;
212 case DPU_VSYNC_SOURCE_WD_TIMER_3:
213 wd_load_value = MDP_WD_TIMER_3_LOAD_VALUE;
214 wd_ctl = MDP_WD_TIMER_3_CTL;
215 wd_ctl2 = MDP_WD_TIMER_3_CTL2;
216 break;
217 case DPU_VSYNC_SOURCE_WD_TIMER_2:
218 wd_load_value = MDP_WD_TIMER_2_LOAD_VALUE;
219 wd_ctl = MDP_WD_TIMER_2_CTL;
220 wd_ctl2 = MDP_WD_TIMER_2_CTL2;
221 break;
222 case DPU_VSYNC_SOURCE_WD_TIMER_1:
223 wd_load_value = MDP_WD_TIMER_1_LOAD_VALUE;
224 wd_ctl = MDP_WD_TIMER_1_CTL;
225 wd_ctl2 = MDP_WD_TIMER_1_CTL2;
226 break;
227 case DPU_VSYNC_SOURCE_WD_TIMER_0:
228 default:
229 wd_load_value = MDP_WD_TIMER_0_LOAD_VALUE;
230 wd_ctl = MDP_WD_TIMER_0_CTL;
231 wd_ctl2 = MDP_WD_TIMER_0_CTL2;
232 break;
233 }
234
235 DPU_REG_WRITE(c, wd_load_value,
236 CALCULATE_WD_LOAD_VALUE(cfg->frame_rate));
237
238 DPU_REG_WRITE(c, wd_ctl, BIT(0)); /* clear timer */
239 reg = DPU_REG_READ(c, wd_ctl2);
240 reg |= BIT(8); /* enable heartbeat timer */
241 reg |= BIT(0); /* enable WD timer */
242 DPU_REG_WRITE(c, wd_ctl2, reg);
243
244 /* make sure that timers are enabled/disabled for vsync state */
245 wmb();
246 }
247 }
248
dpu_hw_get_safe_status(struct dpu_hw_mdp * mdp,struct dpu_danger_safe_status * status)249 static void dpu_hw_get_safe_status(struct dpu_hw_mdp *mdp,
250 struct dpu_danger_safe_status *status)
251 {
252 struct dpu_hw_blk_reg_map *c;
253 u32 value;
254
255 if (!mdp || !status)
256 return;
257
258 c = &mdp->hw;
259
260 value = DPU_REG_READ(c, SAFE_STATUS);
261 status->mdp = (value >> 0) & 0x1;
262 status->sspp[SSPP_VIG0] = (value >> 4) & 0x1;
263 status->sspp[SSPP_VIG1] = (value >> 6) & 0x1;
264 status->sspp[SSPP_VIG2] = (value >> 8) & 0x1;
265 status->sspp[SSPP_VIG3] = (value >> 10) & 0x1;
266 status->sspp[SSPP_RGB0] = (value >> 12) & 0x1;
267 status->sspp[SSPP_RGB1] = (value >> 14) & 0x1;
268 status->sspp[SSPP_RGB2] = (value >> 16) & 0x1;
269 status->sspp[SSPP_RGB3] = (value >> 18) & 0x1;
270 status->sspp[SSPP_DMA0] = (value >> 20) & 0x1;
271 status->sspp[SSPP_DMA1] = (value >> 22) & 0x1;
272 status->sspp[SSPP_DMA2] = (value >> 28) & 0x1;
273 status->sspp[SSPP_DMA3] = (value >> 30) & 0x1;
274 status->sspp[SSPP_CURSOR0] = (value >> 24) & 0x1;
275 status->sspp[SSPP_CURSOR1] = (value >> 26) & 0x1;
276 }
277
dpu_hw_reset_ubwc(struct dpu_hw_mdp * mdp,struct dpu_mdss_cfg * m)278 static void dpu_hw_reset_ubwc(struct dpu_hw_mdp *mdp, struct dpu_mdss_cfg *m)
279 {
280 struct dpu_hw_blk_reg_map c;
281
282 if (!mdp || !m)
283 return;
284
285 if (!IS_UBWC_20_SUPPORTED(m->caps->ubwc_version))
286 return;
287
288 /* force blk offset to zero to access beginning of register region */
289 c = mdp->hw;
290 c.blk_off = 0x0;
291 DPU_REG_WRITE(&c, UBWC_STATIC, m->mdp[0].ubwc_static);
292 }
293
dpu_hw_intf_audio_select(struct dpu_hw_mdp * mdp)294 static void dpu_hw_intf_audio_select(struct dpu_hw_mdp *mdp)
295 {
296 struct dpu_hw_blk_reg_map *c;
297
298 if (!mdp)
299 return;
300
301 c = &mdp->hw;
302
303 DPU_REG_WRITE(c, HDMI_DP_CORE_SELECT, 0x1);
304 }
305
_setup_mdp_ops(struct dpu_hw_mdp_ops * ops,unsigned long cap)306 static void _setup_mdp_ops(struct dpu_hw_mdp_ops *ops,
307 unsigned long cap)
308 {
309 ops->setup_split_pipe = dpu_hw_setup_split_pipe;
310 ops->setup_cdm_output = dpu_hw_setup_cdm_output;
311 ops->setup_clk_force_ctrl = dpu_hw_setup_clk_force_ctrl;
312 ops->get_danger_status = dpu_hw_get_danger_status;
313 ops->setup_vsync_source = dpu_hw_setup_vsync_source;
314 ops->get_safe_status = dpu_hw_get_safe_status;
315 ops->reset_ubwc = dpu_hw_reset_ubwc;
316 ops->intf_audio_select = dpu_hw_intf_audio_select;
317 }
318
_top_offset(enum dpu_mdp mdp,const struct dpu_mdss_cfg * m,void __iomem * addr,struct dpu_hw_blk_reg_map * b)319 static const struct dpu_mdp_cfg *_top_offset(enum dpu_mdp mdp,
320 const struct dpu_mdss_cfg *m,
321 void __iomem *addr,
322 struct dpu_hw_blk_reg_map *b)
323 {
324 int i;
325
326 if (!m || !addr || !b)
327 return ERR_PTR(-EINVAL);
328
329 for (i = 0; i < m->mdp_count; i++) {
330 if (mdp == m->mdp[i].id) {
331 b->base_off = addr;
332 b->blk_off = m->mdp[i].base;
333 b->length = m->mdp[i].len;
334 b->hwversion = m->hwversion;
335 b->log_mask = DPU_DBG_MASK_TOP;
336 return &m->mdp[i];
337 }
338 }
339
340 return ERR_PTR(-EINVAL);
341 }
342
343 static struct dpu_hw_blk_ops dpu_hw_ops = {
344 .start = NULL,
345 .stop = NULL,
346 };
347
dpu_hw_mdptop_init(enum dpu_mdp idx,void __iomem * addr,const struct dpu_mdss_cfg * m)348 struct dpu_hw_mdp *dpu_hw_mdptop_init(enum dpu_mdp idx,
349 void __iomem *addr,
350 const struct dpu_mdss_cfg *m)
351 {
352 struct dpu_hw_mdp *mdp;
353 const struct dpu_mdp_cfg *cfg;
354 int rc;
355
356 if (!addr || !m)
357 return ERR_PTR(-EINVAL);
358
359 mdp = kzalloc(sizeof(*mdp), GFP_KERNEL);
360 if (!mdp)
361 return ERR_PTR(-ENOMEM);
362
363 cfg = _top_offset(idx, m, addr, &mdp->hw);
364 if (IS_ERR_OR_NULL(cfg)) {
365 kfree(mdp);
366 return ERR_PTR(-EINVAL);
367 }
368
369 /*
370 * Assign ops
371 */
372 mdp->idx = idx;
373 mdp->caps = cfg;
374 _setup_mdp_ops(&mdp->ops, mdp->caps->features);
375
376 rc = dpu_hw_blk_init(&mdp->base, DPU_HW_BLK_TOP, idx, &dpu_hw_ops);
377 if (rc) {
378 DPU_ERROR("failed to init hw blk %d\n", rc);
379 goto blk_init_error;
380 }
381
382 dpu_dbg_set_dpu_top_offset(mdp->hw.blk_off);
383
384 return mdp;
385
386 blk_init_error:
387 kzfree(mdp);
388
389 return ERR_PTR(rc);
390 }
391
dpu_hw_mdp_destroy(struct dpu_hw_mdp * mdp)392 void dpu_hw_mdp_destroy(struct dpu_hw_mdp *mdp)
393 {
394 if (mdp)
395 dpu_hw_blk_destroy(&mdp->base);
396 kfree(mdp);
397 }
398
399