1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2013 Red Hat
4 * Copyright (c) 2014-2018, 2020-2021 The Linux Foundation. All rights reserved.
5 * Copyright (c) 2022 Qualcomm Innovation Center, Inc. All rights reserved.
6 *
7 * Author: Rob Clark <robdclark@gmail.com>
8 */
9
10 #define pr_fmt(fmt) "[drm:%s:%d] " fmt, __func__, __LINE__
11 #include <linux/debugfs.h>
12 #include <linux/kthread.h>
13 #include <linux/seq_file.h>
14
15 #include <drm/drm_atomic.h>
16 #include <drm/drm_crtc.h>
17 #include <drm/drm_file.h>
18 #include <drm/drm_probe_helper.h>
19
20 #include "msm_drv.h"
21 #include "dpu_kms.h"
22 #include "dpu_hwio.h"
23 #include "dpu_hw_catalog.h"
24 #include "dpu_hw_intf.h"
25 #include "dpu_hw_ctl.h"
26 #include "dpu_hw_dspp.h"
27 #include "dpu_hw_dsc.h"
28 #include "dpu_hw_merge3d.h"
29 #include "dpu_formats.h"
30 #include "dpu_encoder_phys.h"
31 #include "dpu_crtc.h"
32 #include "dpu_trace.h"
33 #include "dpu_core_irq.h"
34 #include "disp/msm_disp_snapshot.h"
35
36 #define DPU_DEBUG_ENC(e, fmt, ...) DRM_DEBUG_ATOMIC("enc%d " fmt,\
37 (e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
38
39 #define DPU_ERROR_ENC(e, fmt, ...) DPU_ERROR("enc%d " fmt,\
40 (e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
41
42 /*
43 * Two to anticipate panels that can do cmd/vid dynamic switching
44 * plan is to create all possible physical encoder types, and switch between
45 * them at runtime
46 */
47 #define NUM_PHYS_ENCODER_TYPES 2
48
49 #define MAX_PHYS_ENCODERS_PER_VIRTUAL \
50 (MAX_H_TILES_PER_DISPLAY * NUM_PHYS_ENCODER_TYPES)
51
52 #define MAX_CHANNELS_PER_ENC 2
53
54 #define IDLE_SHORT_TIMEOUT 1
55
56 #define MAX_HDISPLAY_SPLIT 1080
57
58 /* timeout in frames waiting for frame done */
59 #define DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES 5
60
61 /**
62 * enum dpu_enc_rc_events - events for resource control state machine
63 * @DPU_ENC_RC_EVENT_KICKOFF:
64 * This event happens at NORMAL priority.
65 * Event that signals the start of the transfer. When this event is
66 * received, enable MDP/DSI core clocks. Regardless of the previous
67 * state, the resource should be in ON state at the end of this event.
68 * @DPU_ENC_RC_EVENT_FRAME_DONE:
69 * This event happens at INTERRUPT level.
70 * Event signals the end of the data transfer after the PP FRAME_DONE
71 * event. At the end of this event, a delayed work is scheduled to go to
72 * IDLE_PC state after IDLE_TIMEOUT time.
73 * @DPU_ENC_RC_EVENT_PRE_STOP:
74 * This event happens at NORMAL priority.
75 * This event, when received during the ON state, leave the RC STATE
76 * in the PRE_OFF state. It should be followed by the STOP event as
77 * part of encoder disable.
78 * If received during IDLE or OFF states, it will do nothing.
79 * @DPU_ENC_RC_EVENT_STOP:
80 * This event happens at NORMAL priority.
81 * When this event is received, disable all the MDP/DSI core clocks, and
82 * disable IRQs. It should be called from the PRE_OFF or IDLE states.
83 * IDLE is expected when IDLE_PC has run, and PRE_OFF did nothing.
84 * PRE_OFF is expected when PRE_STOP was executed during the ON state.
85 * Resource state should be in OFF at the end of the event.
86 * @DPU_ENC_RC_EVENT_ENTER_IDLE:
87 * This event happens at NORMAL priority from a work item.
88 * Event signals that there were no frame updates for IDLE_TIMEOUT time.
89 * This would disable MDP/DSI core clocks and change the resource state
90 * to IDLE.
91 */
92 enum dpu_enc_rc_events {
93 DPU_ENC_RC_EVENT_KICKOFF = 1,
94 DPU_ENC_RC_EVENT_FRAME_DONE,
95 DPU_ENC_RC_EVENT_PRE_STOP,
96 DPU_ENC_RC_EVENT_STOP,
97 DPU_ENC_RC_EVENT_ENTER_IDLE
98 };
99
100 /*
101 * enum dpu_enc_rc_states - states that the resource control maintains
102 * @DPU_ENC_RC_STATE_OFF: Resource is in OFF state
103 * @DPU_ENC_RC_STATE_PRE_OFF: Resource is transitioning to OFF state
104 * @DPU_ENC_RC_STATE_ON: Resource is in ON state
105 * @DPU_ENC_RC_STATE_MODESET: Resource is in modeset state
106 * @DPU_ENC_RC_STATE_IDLE: Resource is in IDLE state
107 */
108 enum dpu_enc_rc_states {
109 DPU_ENC_RC_STATE_OFF,
110 DPU_ENC_RC_STATE_PRE_OFF,
111 DPU_ENC_RC_STATE_ON,
112 DPU_ENC_RC_STATE_IDLE
113 };
114
115 /**
116 * struct dpu_encoder_virt - virtual encoder. Container of one or more physical
117 * encoders. Virtual encoder manages one "logical" display. Physical
118 * encoders manage one intf block, tied to a specific panel/sub-panel.
119 * Virtual encoder defers as much as possible to the physical encoders.
120 * Virtual encoder registers itself with the DRM Framework as the encoder.
121 * @base: drm_encoder base class for registration with DRM
122 * @enc_spinlock: Virtual-Encoder-Wide Spin Lock for IRQ purposes
123 * @enabled: True if the encoder is active, protected by enc_lock
124 * @num_phys_encs: Actual number of physical encoders contained.
125 * @phys_encs: Container of physical encoders managed.
126 * @cur_master: Pointer to the current master in this mode. Optimization
127 * Only valid after enable. Cleared as disable.
128 * @cur_slave: As above but for the slave encoder.
129 * @hw_pp: Handle to the pingpong blocks used for the display. No.
130 * pingpong blocks can be different than num_phys_encs.
131 * @hw_dsc: Handle to the DSC blocks used for the display.
132 * @dsc_mask: Bitmask of used DSC blocks.
133 * @intfs_swapped: Whether or not the phys_enc interfaces have been swapped
134 * for partial update right-only cases, such as pingpong
135 * split where virtual pingpong does not generate IRQs
136 * @crtc: Pointer to the currently assigned crtc. Normally you
137 * would use crtc->state->encoder_mask to determine the
138 * link between encoder/crtc. However in this case we need
139 * to track crtc in the disable() hook which is called
140 * _after_ encoder_mask is cleared.
141 * @connector: If a mode is set, cached pointer to the active connector
142 * @crtc_kickoff_cb: Callback into CRTC that will flush & start
143 * all CTL paths
144 * @crtc_kickoff_cb_data: Opaque user data given to crtc_kickoff_cb
145 * @debugfs_root: Debug file system root file node
146 * @enc_lock: Lock around physical encoder
147 * create/destroy/enable/disable
148 * @frame_busy_mask: Bitmask tracking which phys_enc we are still
149 * busy processing current command.
150 * Bit0 = phys_encs[0] etc.
151 * @crtc_frame_event_cb: callback handler for frame event
152 * @crtc_frame_event_cb_data: callback handler private data
153 * @frame_done_timeout_ms: frame done timeout in ms
154 * @frame_done_timer: watchdog timer for frame done event
155 * @disp_info: local copy of msm_display_info struct
156 * @idle_pc_supported: indicate if idle power collaps is supported
157 * @rc_lock: resource control mutex lock to protect
158 * virt encoder over various state changes
159 * @rc_state: resource controller state
160 * @delayed_off_work: delayed worker to schedule disabling of
161 * clks and resources after IDLE_TIMEOUT time.
162 * @topology: topology of the display
163 * @idle_timeout: idle timeout duration in milliseconds
164 * @wide_bus_en: wide bus is enabled on this interface
165 * @dsc: drm_dsc_config pointer, for DSC-enabled encoders
166 */
167 struct dpu_encoder_virt {
168 struct drm_encoder base;
169 spinlock_t enc_spinlock;
170
171 bool enabled;
172
173 unsigned int num_phys_encs;
174 struct dpu_encoder_phys *phys_encs[MAX_PHYS_ENCODERS_PER_VIRTUAL];
175 struct dpu_encoder_phys *cur_master;
176 struct dpu_encoder_phys *cur_slave;
177 struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
178 struct dpu_hw_dsc *hw_dsc[MAX_CHANNELS_PER_ENC];
179
180 unsigned int dsc_mask;
181
182 bool intfs_swapped;
183
184 struct drm_crtc *crtc;
185 struct drm_connector *connector;
186
187 struct dentry *debugfs_root;
188 struct mutex enc_lock;
189 DECLARE_BITMAP(frame_busy_mask, MAX_PHYS_ENCODERS_PER_VIRTUAL);
190 void (*crtc_frame_event_cb)(void *, u32 event);
191 void *crtc_frame_event_cb_data;
192
193 atomic_t frame_done_timeout_ms;
194 struct timer_list frame_done_timer;
195
196 struct msm_display_info disp_info;
197
198 bool idle_pc_supported;
199 struct mutex rc_lock;
200 enum dpu_enc_rc_states rc_state;
201 struct delayed_work delayed_off_work;
202 struct msm_display_topology topology;
203
204 u32 idle_timeout;
205
206 bool wide_bus_en;
207
208 /* DSC configuration */
209 struct drm_dsc_config *dsc;
210 };
211
212 #define to_dpu_encoder_virt(x) container_of(x, struct dpu_encoder_virt, base)
213
214 static u32 dither_matrix[DITHER_MATRIX_SZ] = {
215 15, 7, 13, 5, 3, 11, 1, 9, 12, 4, 14, 6, 0, 8, 2, 10
216 };
217
218
dpu_encoder_is_widebus_enabled(const struct drm_encoder * drm_enc)219 bool dpu_encoder_is_widebus_enabled(const struct drm_encoder *drm_enc)
220 {
221 const struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
222
223 return dpu_enc->wide_bus_en;
224 }
225
dpu_encoder_get_crc_values_cnt(const struct drm_encoder * drm_enc)226 int dpu_encoder_get_crc_values_cnt(const struct drm_encoder *drm_enc)
227 {
228 struct dpu_encoder_virt *dpu_enc;
229 int i, num_intf = 0;
230
231 dpu_enc = to_dpu_encoder_virt(drm_enc);
232
233 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
234 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
235
236 if (phys->hw_intf && phys->hw_intf->ops.setup_misr
237 && phys->hw_intf->ops.collect_misr)
238 num_intf++;
239 }
240
241 return num_intf;
242 }
243
dpu_encoder_setup_misr(const struct drm_encoder * drm_enc)244 void dpu_encoder_setup_misr(const struct drm_encoder *drm_enc)
245 {
246 struct dpu_encoder_virt *dpu_enc;
247
248 int i;
249
250 dpu_enc = to_dpu_encoder_virt(drm_enc);
251
252 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
253 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
254
255 if (!phys->hw_intf || !phys->hw_intf->ops.setup_misr)
256 continue;
257
258 phys->hw_intf->ops.setup_misr(phys->hw_intf, true, 1);
259 }
260 }
261
dpu_encoder_get_crc(const struct drm_encoder * drm_enc,u32 * crcs,int pos)262 int dpu_encoder_get_crc(const struct drm_encoder *drm_enc, u32 *crcs, int pos)
263 {
264 struct dpu_encoder_virt *dpu_enc;
265
266 int i, rc = 0, entries_added = 0;
267
268 if (!drm_enc->crtc) {
269 DRM_ERROR("no crtc found for encoder %d\n", drm_enc->index);
270 return -EINVAL;
271 }
272
273 dpu_enc = to_dpu_encoder_virt(drm_enc);
274
275 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
276 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
277
278 if (!phys->hw_intf || !phys->hw_intf->ops.collect_misr)
279 continue;
280
281 rc = phys->hw_intf->ops.collect_misr(phys->hw_intf, &crcs[pos + entries_added]);
282 if (rc)
283 return rc;
284 entries_added++;
285 }
286
287 return entries_added;
288 }
289
_dpu_encoder_setup_dither(struct dpu_hw_pingpong * hw_pp,unsigned bpc)290 static void _dpu_encoder_setup_dither(struct dpu_hw_pingpong *hw_pp, unsigned bpc)
291 {
292 struct dpu_hw_dither_cfg dither_cfg = { 0 };
293
294 if (!hw_pp->ops.setup_dither)
295 return;
296
297 switch (bpc) {
298 case 6:
299 dither_cfg.c0_bitdepth = 6;
300 dither_cfg.c1_bitdepth = 6;
301 dither_cfg.c2_bitdepth = 6;
302 dither_cfg.c3_bitdepth = 6;
303 dither_cfg.temporal_en = 0;
304 break;
305 default:
306 hw_pp->ops.setup_dither(hw_pp, NULL);
307 return;
308 }
309
310 memcpy(&dither_cfg.matrix, dither_matrix,
311 sizeof(u32) * DITHER_MATRIX_SZ);
312
313 hw_pp->ops.setup_dither(hw_pp, &dither_cfg);
314 }
315
dpu_encoder_helper_get_intf_type(enum dpu_intf_mode intf_mode)316 static char *dpu_encoder_helper_get_intf_type(enum dpu_intf_mode intf_mode)
317 {
318 switch (intf_mode) {
319 case INTF_MODE_VIDEO:
320 return "INTF_MODE_VIDEO";
321 case INTF_MODE_CMD:
322 return "INTF_MODE_CMD";
323 case INTF_MODE_WB_BLOCK:
324 return "INTF_MODE_WB_BLOCK";
325 case INTF_MODE_WB_LINE:
326 return "INTF_MODE_WB_LINE";
327 default:
328 return "INTF_MODE_UNKNOWN";
329 }
330 }
331
dpu_encoder_helper_report_irq_timeout(struct dpu_encoder_phys * phys_enc,enum dpu_intr_idx intr_idx)332 void dpu_encoder_helper_report_irq_timeout(struct dpu_encoder_phys *phys_enc,
333 enum dpu_intr_idx intr_idx)
334 {
335 DRM_ERROR("irq timeout id=%u, intf_mode=%s intf=%d wb=%d, pp=%d, intr=%d\n",
336 DRMID(phys_enc->parent),
337 dpu_encoder_helper_get_intf_type(phys_enc->intf_mode),
338 phys_enc->hw_intf ? phys_enc->hw_intf->idx - INTF_0 : -1,
339 phys_enc->hw_wb ? phys_enc->hw_wb->idx - WB_0 : -1,
340 phys_enc->hw_pp->idx - PINGPONG_0, intr_idx);
341
342 dpu_encoder_frame_done_callback(phys_enc->parent, phys_enc,
343 DPU_ENCODER_FRAME_EVENT_ERROR);
344 }
345
346 static int dpu_encoder_helper_wait_event_timeout(int32_t drm_id,
347 u32 irq_idx, struct dpu_encoder_wait_info *info);
348
dpu_encoder_helper_wait_for_irq(struct dpu_encoder_phys * phys_enc,int irq,void (* func)(void * arg,int irq_idx),struct dpu_encoder_wait_info * wait_info)349 int dpu_encoder_helper_wait_for_irq(struct dpu_encoder_phys *phys_enc,
350 int irq,
351 void (*func)(void *arg, int irq_idx),
352 struct dpu_encoder_wait_info *wait_info)
353 {
354 u32 irq_status;
355 int ret;
356
357 if (!wait_info) {
358 DPU_ERROR("invalid params\n");
359 return -EINVAL;
360 }
361 /* note: do master / slave checking outside */
362
363 /* return EWOULDBLOCK since we know the wait isn't necessary */
364 if (phys_enc->enable_state == DPU_ENC_DISABLED) {
365 DRM_ERROR("encoder is disabled id=%u, callback=%ps, irq=%d\n",
366 DRMID(phys_enc->parent), func,
367 irq);
368 return -EWOULDBLOCK;
369 }
370
371 if (irq < 0) {
372 DRM_DEBUG_KMS("skip irq wait id=%u, callback=%ps\n",
373 DRMID(phys_enc->parent), func);
374 return 0;
375 }
376
377 DRM_DEBUG_KMS("id=%u, callback=%ps, irq=%d, pp=%d, pending_cnt=%d\n",
378 DRMID(phys_enc->parent), func,
379 irq, phys_enc->hw_pp->idx - PINGPONG_0,
380 atomic_read(wait_info->atomic_cnt));
381
382 ret = dpu_encoder_helper_wait_event_timeout(
383 DRMID(phys_enc->parent),
384 irq,
385 wait_info);
386
387 if (ret <= 0) {
388 irq_status = dpu_core_irq_read(phys_enc->dpu_kms, irq);
389 if (irq_status) {
390 unsigned long flags;
391
392 DRM_DEBUG_KMS("irq not triggered id=%u, callback=%ps, irq=%d, pp=%d, atomic_cnt=%d\n",
393 DRMID(phys_enc->parent), func,
394 irq,
395 phys_enc->hw_pp->idx - PINGPONG_0,
396 atomic_read(wait_info->atomic_cnt));
397 local_irq_save(flags);
398 func(phys_enc, irq);
399 local_irq_restore(flags);
400 ret = 0;
401 } else {
402 ret = -ETIMEDOUT;
403 DRM_DEBUG_KMS("irq timeout id=%u, callback=%ps, irq=%d, pp=%d, atomic_cnt=%d\n",
404 DRMID(phys_enc->parent), func,
405 irq,
406 phys_enc->hw_pp->idx - PINGPONG_0,
407 atomic_read(wait_info->atomic_cnt));
408 }
409 } else {
410 ret = 0;
411 trace_dpu_enc_irq_wait_success(DRMID(phys_enc->parent),
412 func, irq,
413 phys_enc->hw_pp->idx - PINGPONG_0,
414 atomic_read(wait_info->atomic_cnt));
415 }
416
417 return ret;
418 }
419
dpu_encoder_get_vsync_count(struct drm_encoder * drm_enc)420 int dpu_encoder_get_vsync_count(struct drm_encoder *drm_enc)
421 {
422 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
423 struct dpu_encoder_phys *phys = dpu_enc ? dpu_enc->cur_master : NULL;
424 return phys ? atomic_read(&phys->vsync_cnt) : 0;
425 }
426
dpu_encoder_get_linecount(struct drm_encoder * drm_enc)427 int dpu_encoder_get_linecount(struct drm_encoder *drm_enc)
428 {
429 struct dpu_encoder_virt *dpu_enc;
430 struct dpu_encoder_phys *phys;
431 int linecount = 0;
432
433 dpu_enc = to_dpu_encoder_virt(drm_enc);
434 phys = dpu_enc ? dpu_enc->cur_master : NULL;
435
436 if (phys && phys->ops.get_line_count)
437 linecount = phys->ops.get_line_count(phys);
438
439 return linecount;
440 }
441
dpu_encoder_destroy(struct drm_encoder * drm_enc)442 static void dpu_encoder_destroy(struct drm_encoder *drm_enc)
443 {
444 struct dpu_encoder_virt *dpu_enc = NULL;
445 int i = 0;
446
447 if (!drm_enc) {
448 DPU_ERROR("invalid encoder\n");
449 return;
450 }
451
452 dpu_enc = to_dpu_encoder_virt(drm_enc);
453 DPU_DEBUG_ENC(dpu_enc, "\n");
454
455 mutex_lock(&dpu_enc->enc_lock);
456
457 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
458 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
459
460 if (phys->ops.destroy) {
461 phys->ops.destroy(phys);
462 --dpu_enc->num_phys_encs;
463 dpu_enc->phys_encs[i] = NULL;
464 }
465 }
466
467 if (dpu_enc->num_phys_encs)
468 DPU_ERROR_ENC(dpu_enc, "expected 0 num_phys_encs not %d\n",
469 dpu_enc->num_phys_encs);
470 dpu_enc->num_phys_encs = 0;
471 mutex_unlock(&dpu_enc->enc_lock);
472
473 drm_encoder_cleanup(drm_enc);
474 mutex_destroy(&dpu_enc->enc_lock);
475 }
476
dpu_encoder_helper_split_config(struct dpu_encoder_phys * phys_enc,enum dpu_intf interface)477 void dpu_encoder_helper_split_config(
478 struct dpu_encoder_phys *phys_enc,
479 enum dpu_intf interface)
480 {
481 struct dpu_encoder_virt *dpu_enc;
482 struct split_pipe_cfg cfg = { 0 };
483 struct dpu_hw_mdp *hw_mdptop;
484 struct msm_display_info *disp_info;
485
486 if (!phys_enc->hw_mdptop || !phys_enc->parent) {
487 DPU_ERROR("invalid arg(s), encoder %d\n", phys_enc != NULL);
488 return;
489 }
490
491 dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
492 hw_mdptop = phys_enc->hw_mdptop;
493 disp_info = &dpu_enc->disp_info;
494
495 if (disp_info->intf_type != INTF_DSI)
496 return;
497
498 /**
499 * disable split modes since encoder will be operating in as the only
500 * encoder, either for the entire use case in the case of, for example,
501 * single DSI, or for this frame in the case of left/right only partial
502 * update.
503 */
504 if (phys_enc->split_role == ENC_ROLE_SOLO) {
505 if (hw_mdptop->ops.setup_split_pipe)
506 hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
507 return;
508 }
509
510 cfg.en = true;
511 cfg.mode = phys_enc->intf_mode;
512 cfg.intf = interface;
513
514 if (cfg.en && phys_enc->ops.needs_single_flush &&
515 phys_enc->ops.needs_single_flush(phys_enc))
516 cfg.split_flush_en = true;
517
518 if (phys_enc->split_role == ENC_ROLE_MASTER) {
519 DPU_DEBUG_ENC(dpu_enc, "enable %d\n", cfg.en);
520
521 if (hw_mdptop->ops.setup_split_pipe)
522 hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
523 }
524 }
525
dpu_encoder_use_dsc_merge(struct drm_encoder * drm_enc)526 bool dpu_encoder_use_dsc_merge(struct drm_encoder *drm_enc)
527 {
528 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
529 int i, intf_count = 0, num_dsc = 0;
530
531 for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++)
532 if (dpu_enc->phys_encs[i])
533 intf_count++;
534
535 /* See dpu_encoder_get_topology, we only support 2:2:1 topology */
536 if (dpu_enc->dsc)
537 num_dsc = 2;
538
539 return (num_dsc > 0) && (num_dsc > intf_count);
540 }
541
dpu_encoder_get_dsc_config(struct drm_encoder * drm_enc)542 static struct drm_dsc_config *dpu_encoder_get_dsc_config(struct drm_encoder *drm_enc)
543 {
544 struct msm_drm_private *priv = drm_enc->dev->dev_private;
545 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
546 int index = dpu_enc->disp_info.h_tile_instance[0];
547
548 if (dpu_enc->disp_info.intf_type == INTF_DSI)
549 return msm_dsi_get_dsc_config(priv->dsi[index]);
550
551 return NULL;
552 }
553
dpu_encoder_get_topology(struct dpu_encoder_virt * dpu_enc,struct dpu_kms * dpu_kms,struct drm_display_mode * mode,struct drm_crtc_state * crtc_state,struct drm_dsc_config * dsc)554 static struct msm_display_topology dpu_encoder_get_topology(
555 struct dpu_encoder_virt *dpu_enc,
556 struct dpu_kms *dpu_kms,
557 struct drm_display_mode *mode,
558 struct drm_crtc_state *crtc_state,
559 struct drm_dsc_config *dsc)
560 {
561 struct msm_display_topology topology = {0};
562 int i, intf_count = 0;
563
564 for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++)
565 if (dpu_enc->phys_encs[i])
566 intf_count++;
567
568 /* Datapath topology selection
569 *
570 * Dual display
571 * 2 LM, 2 INTF ( Split display using 2 interfaces)
572 *
573 * Single display
574 * 1 LM, 1 INTF
575 * 2 LM, 1 INTF (stream merge to support high resolution interfaces)
576 *
577 * Add dspps to the reservation requirements if ctm is requested
578 */
579 if (intf_count == 2)
580 topology.num_lm = 2;
581 else if (!dpu_kms->catalog->caps->has_3d_merge)
582 topology.num_lm = 1;
583 else
584 topology.num_lm = (mode->hdisplay > MAX_HDISPLAY_SPLIT) ? 2 : 1;
585
586 if (crtc_state->ctm)
587 topology.num_dspp = topology.num_lm;
588
589 topology.num_intf = intf_count;
590
591 if (dsc) {
592 /*
593 * In case of Display Stream Compression (DSC), we would use
594 * 2 DSC encoders, 2 layer mixers and 1 interface
595 * this is power optimal and can drive up to (including) 4k
596 * screens
597 */
598 topology.num_dsc = 2;
599 topology.num_lm = 2;
600 topology.num_intf = 1;
601 }
602
603 return topology;
604 }
605
dpu_encoder_virt_atomic_check(struct drm_encoder * drm_enc,struct drm_crtc_state * crtc_state,struct drm_connector_state * conn_state)606 static int dpu_encoder_virt_atomic_check(
607 struct drm_encoder *drm_enc,
608 struct drm_crtc_state *crtc_state,
609 struct drm_connector_state *conn_state)
610 {
611 struct dpu_encoder_virt *dpu_enc;
612 struct msm_drm_private *priv;
613 struct dpu_kms *dpu_kms;
614 struct drm_display_mode *adj_mode;
615 struct msm_display_topology topology;
616 struct dpu_global_state *global_state;
617 struct drm_dsc_config *dsc;
618 int i = 0;
619 int ret = 0;
620
621 if (!drm_enc || !crtc_state || !conn_state) {
622 DPU_ERROR("invalid arg(s), drm_enc %d, crtc/conn state %d/%d\n",
623 drm_enc != NULL, crtc_state != NULL, conn_state != NULL);
624 return -EINVAL;
625 }
626
627 dpu_enc = to_dpu_encoder_virt(drm_enc);
628 DPU_DEBUG_ENC(dpu_enc, "\n");
629
630 priv = drm_enc->dev->dev_private;
631 dpu_kms = to_dpu_kms(priv->kms);
632 adj_mode = &crtc_state->adjusted_mode;
633 global_state = dpu_kms_get_global_state(crtc_state->state);
634 if (IS_ERR(global_state))
635 return PTR_ERR(global_state);
636
637 trace_dpu_enc_atomic_check(DRMID(drm_enc));
638
639 /* perform atomic check on the first physical encoder (master) */
640 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
641 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
642
643 if (phys->ops.atomic_check)
644 ret = phys->ops.atomic_check(phys, crtc_state,
645 conn_state);
646 if (ret) {
647 DPU_ERROR_ENC(dpu_enc,
648 "mode unsupported, phys idx %d\n", i);
649 return ret;
650 }
651 }
652
653 dsc = dpu_encoder_get_dsc_config(drm_enc);
654
655 topology = dpu_encoder_get_topology(dpu_enc, dpu_kms, adj_mode, crtc_state, dsc);
656
657 /*
658 * Release and Allocate resources on every modeset
659 * Dont allocate when active is false.
660 */
661 if (drm_atomic_crtc_needs_modeset(crtc_state)) {
662 dpu_rm_release(global_state, drm_enc);
663
664 if (!crtc_state->active_changed || crtc_state->enable)
665 ret = dpu_rm_reserve(&dpu_kms->rm, global_state,
666 drm_enc, crtc_state, topology);
667 }
668
669 trace_dpu_enc_atomic_check_flags(DRMID(drm_enc), adj_mode->flags);
670
671 return ret;
672 }
673
_dpu_encoder_update_vsync_source(struct dpu_encoder_virt * dpu_enc,struct msm_display_info * disp_info)674 static void _dpu_encoder_update_vsync_source(struct dpu_encoder_virt *dpu_enc,
675 struct msm_display_info *disp_info)
676 {
677 struct dpu_vsync_source_cfg vsync_cfg = { 0 };
678 struct msm_drm_private *priv;
679 struct dpu_kms *dpu_kms;
680 struct dpu_hw_mdp *hw_mdptop;
681 struct drm_encoder *drm_enc;
682 struct dpu_encoder_phys *phys_enc;
683 int i;
684
685 if (!dpu_enc || !disp_info) {
686 DPU_ERROR("invalid param dpu_enc:%d or disp_info:%d\n",
687 dpu_enc != NULL, disp_info != NULL);
688 return;
689 } else if (dpu_enc->num_phys_encs > ARRAY_SIZE(dpu_enc->hw_pp)) {
690 DPU_ERROR("invalid num phys enc %d/%d\n",
691 dpu_enc->num_phys_encs,
692 (int) ARRAY_SIZE(dpu_enc->hw_pp));
693 return;
694 }
695
696 drm_enc = &dpu_enc->base;
697 /* this pointers are checked in virt_enable_helper */
698 priv = drm_enc->dev->dev_private;
699
700 dpu_kms = to_dpu_kms(priv->kms);
701 hw_mdptop = dpu_kms->hw_mdp;
702 if (!hw_mdptop) {
703 DPU_ERROR("invalid mdptop\n");
704 return;
705 }
706
707 if (hw_mdptop->ops.setup_vsync_source &&
708 disp_info->is_cmd_mode) {
709 for (i = 0; i < dpu_enc->num_phys_encs; i++)
710 vsync_cfg.ppnumber[i] = dpu_enc->hw_pp[i]->idx;
711
712 vsync_cfg.pp_count = dpu_enc->num_phys_encs;
713 vsync_cfg.frame_rate = drm_mode_vrefresh(&dpu_enc->base.crtc->state->adjusted_mode);
714
715 if (disp_info->is_te_using_watchdog_timer)
716 vsync_cfg.vsync_source = DPU_VSYNC_SOURCE_WD_TIMER_0;
717 else
718 vsync_cfg.vsync_source = DPU_VSYNC0_SOURCE_GPIO;
719
720 hw_mdptop->ops.setup_vsync_source(hw_mdptop, &vsync_cfg);
721
722 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
723 phys_enc = dpu_enc->phys_encs[i];
724
725 if (phys_enc->has_intf_te && phys_enc->hw_intf->ops.vsync_sel)
726 phys_enc->hw_intf->ops.vsync_sel(phys_enc->hw_intf,
727 vsync_cfg.vsync_source);
728 }
729 }
730 }
731
_dpu_encoder_irq_control(struct drm_encoder * drm_enc,bool enable)732 static void _dpu_encoder_irq_control(struct drm_encoder *drm_enc, bool enable)
733 {
734 struct dpu_encoder_virt *dpu_enc;
735 int i;
736
737 if (!drm_enc) {
738 DPU_ERROR("invalid encoder\n");
739 return;
740 }
741
742 dpu_enc = to_dpu_encoder_virt(drm_enc);
743
744 DPU_DEBUG_ENC(dpu_enc, "enable:%d\n", enable);
745 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
746 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
747
748 if (phys->ops.irq_control)
749 phys->ops.irq_control(phys, enable);
750 }
751
752 }
753
_dpu_encoder_resource_control_helper(struct drm_encoder * drm_enc,bool enable)754 static void _dpu_encoder_resource_control_helper(struct drm_encoder *drm_enc,
755 bool enable)
756 {
757 struct msm_drm_private *priv;
758 struct dpu_kms *dpu_kms;
759 struct dpu_encoder_virt *dpu_enc;
760
761 dpu_enc = to_dpu_encoder_virt(drm_enc);
762 priv = drm_enc->dev->dev_private;
763 dpu_kms = to_dpu_kms(priv->kms);
764
765 trace_dpu_enc_rc_helper(DRMID(drm_enc), enable);
766
767 if (!dpu_enc->cur_master) {
768 DPU_ERROR("encoder master not set\n");
769 return;
770 }
771
772 if (enable) {
773 /* enable DPU core clks */
774 pm_runtime_get_sync(&dpu_kms->pdev->dev);
775
776 /* enable all the irq */
777 _dpu_encoder_irq_control(drm_enc, true);
778
779 } else {
780 /* disable all the irq */
781 _dpu_encoder_irq_control(drm_enc, false);
782
783 /* disable DPU core clks */
784 pm_runtime_put_sync(&dpu_kms->pdev->dev);
785 }
786
787 }
788
dpu_encoder_resource_control(struct drm_encoder * drm_enc,u32 sw_event)789 static int dpu_encoder_resource_control(struct drm_encoder *drm_enc,
790 u32 sw_event)
791 {
792 struct dpu_encoder_virt *dpu_enc;
793 struct msm_drm_private *priv;
794 bool is_vid_mode = false;
795
796 if (!drm_enc || !drm_enc->dev || !drm_enc->crtc) {
797 DPU_ERROR("invalid parameters\n");
798 return -EINVAL;
799 }
800 dpu_enc = to_dpu_encoder_virt(drm_enc);
801 priv = drm_enc->dev->dev_private;
802 is_vid_mode = !dpu_enc->disp_info.is_cmd_mode;
803
804 /*
805 * when idle_pc is not supported, process only KICKOFF, STOP and MODESET
806 * events and return early for other events (ie wb display).
807 */
808 if (!dpu_enc->idle_pc_supported &&
809 (sw_event != DPU_ENC_RC_EVENT_KICKOFF &&
810 sw_event != DPU_ENC_RC_EVENT_STOP &&
811 sw_event != DPU_ENC_RC_EVENT_PRE_STOP))
812 return 0;
813
814 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, dpu_enc->idle_pc_supported,
815 dpu_enc->rc_state, "begin");
816
817 switch (sw_event) {
818 case DPU_ENC_RC_EVENT_KICKOFF:
819 /* cancel delayed off work, if any */
820 if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
821 DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
822 sw_event);
823
824 mutex_lock(&dpu_enc->rc_lock);
825
826 /* return if the resource control is already in ON state */
827 if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
828 DRM_DEBUG_ATOMIC("id;%u, sw_event:%d, rc in ON state\n",
829 DRMID(drm_enc), sw_event);
830 mutex_unlock(&dpu_enc->rc_lock);
831 return 0;
832 } else if (dpu_enc->rc_state != DPU_ENC_RC_STATE_OFF &&
833 dpu_enc->rc_state != DPU_ENC_RC_STATE_IDLE) {
834 DRM_DEBUG_ATOMIC("id;%u, sw_event:%d, rc in state %d\n",
835 DRMID(drm_enc), sw_event,
836 dpu_enc->rc_state);
837 mutex_unlock(&dpu_enc->rc_lock);
838 return -EINVAL;
839 }
840
841 if (is_vid_mode && dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE)
842 _dpu_encoder_irq_control(drm_enc, true);
843 else
844 _dpu_encoder_resource_control_helper(drm_enc, true);
845
846 dpu_enc->rc_state = DPU_ENC_RC_STATE_ON;
847
848 trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
849 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
850 "kickoff");
851
852 mutex_unlock(&dpu_enc->rc_lock);
853 break;
854
855 case DPU_ENC_RC_EVENT_FRAME_DONE:
856 /*
857 * mutex lock is not used as this event happens at interrupt
858 * context. And locking is not required as, the other events
859 * like KICKOFF and STOP does a wait-for-idle before executing
860 * the resource_control
861 */
862 if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
863 DRM_DEBUG_KMS("id:%d, sw_event:%d,rc:%d-unexpected\n",
864 DRMID(drm_enc), sw_event,
865 dpu_enc->rc_state);
866 return -EINVAL;
867 }
868
869 /*
870 * schedule off work item only when there are no
871 * frames pending
872 */
873 if (dpu_crtc_frame_pending(drm_enc->crtc) > 1) {
874 DRM_DEBUG_KMS("id:%d skip schedule work\n",
875 DRMID(drm_enc));
876 return 0;
877 }
878
879 queue_delayed_work(priv->wq, &dpu_enc->delayed_off_work,
880 msecs_to_jiffies(dpu_enc->idle_timeout));
881
882 trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
883 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
884 "frame done");
885 break;
886
887 case DPU_ENC_RC_EVENT_PRE_STOP:
888 /* cancel delayed off work, if any */
889 if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
890 DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
891 sw_event);
892
893 mutex_lock(&dpu_enc->rc_lock);
894
895 if (is_vid_mode &&
896 dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
897 _dpu_encoder_irq_control(drm_enc, true);
898 }
899 /* skip if is already OFF or IDLE, resources are off already */
900 else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF ||
901 dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
902 DRM_DEBUG_KMS("id:%u, sw_event:%d, rc in %d state\n",
903 DRMID(drm_enc), sw_event,
904 dpu_enc->rc_state);
905 mutex_unlock(&dpu_enc->rc_lock);
906 return 0;
907 }
908
909 dpu_enc->rc_state = DPU_ENC_RC_STATE_PRE_OFF;
910
911 trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
912 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
913 "pre stop");
914
915 mutex_unlock(&dpu_enc->rc_lock);
916 break;
917
918 case DPU_ENC_RC_EVENT_STOP:
919 mutex_lock(&dpu_enc->rc_lock);
920
921 /* return if the resource control is already in OFF state */
922 if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF) {
923 DRM_DEBUG_KMS("id: %u, sw_event:%d, rc in OFF state\n",
924 DRMID(drm_enc), sw_event);
925 mutex_unlock(&dpu_enc->rc_lock);
926 return 0;
927 } else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
928 DRM_ERROR("id: %u, sw_event:%d, rc in state %d\n",
929 DRMID(drm_enc), sw_event, dpu_enc->rc_state);
930 mutex_unlock(&dpu_enc->rc_lock);
931 return -EINVAL;
932 }
933
934 /**
935 * expect to arrive here only if in either idle state or pre-off
936 * and in IDLE state the resources are already disabled
937 */
938 if (dpu_enc->rc_state == DPU_ENC_RC_STATE_PRE_OFF)
939 _dpu_encoder_resource_control_helper(drm_enc, false);
940
941 dpu_enc->rc_state = DPU_ENC_RC_STATE_OFF;
942
943 trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
944 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
945 "stop");
946
947 mutex_unlock(&dpu_enc->rc_lock);
948 break;
949
950 case DPU_ENC_RC_EVENT_ENTER_IDLE:
951 mutex_lock(&dpu_enc->rc_lock);
952
953 if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
954 DRM_ERROR("id: %u, sw_event:%d, rc:%d !ON state\n",
955 DRMID(drm_enc), sw_event, dpu_enc->rc_state);
956 mutex_unlock(&dpu_enc->rc_lock);
957 return 0;
958 }
959
960 /*
961 * if we are in ON but a frame was just kicked off,
962 * ignore the IDLE event, it's probably a stale timer event
963 */
964 if (dpu_enc->frame_busy_mask[0]) {
965 DRM_ERROR("id:%u, sw_event:%d, rc:%d frame pending\n",
966 DRMID(drm_enc), sw_event, dpu_enc->rc_state);
967 mutex_unlock(&dpu_enc->rc_lock);
968 return 0;
969 }
970
971 if (is_vid_mode)
972 _dpu_encoder_irq_control(drm_enc, false);
973 else
974 _dpu_encoder_resource_control_helper(drm_enc, false);
975
976 dpu_enc->rc_state = DPU_ENC_RC_STATE_IDLE;
977
978 trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
979 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
980 "idle");
981
982 mutex_unlock(&dpu_enc->rc_lock);
983 break;
984
985 default:
986 DRM_ERROR("id:%u, unexpected sw_event: %d\n", DRMID(drm_enc),
987 sw_event);
988 trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
989 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
990 "error");
991 break;
992 }
993
994 trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
995 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
996 "end");
997 return 0;
998 }
999
dpu_encoder_prepare_wb_job(struct drm_encoder * drm_enc,struct drm_writeback_job * job)1000 void dpu_encoder_prepare_wb_job(struct drm_encoder *drm_enc,
1001 struct drm_writeback_job *job)
1002 {
1003 struct dpu_encoder_virt *dpu_enc;
1004 int i;
1005
1006 dpu_enc = to_dpu_encoder_virt(drm_enc);
1007
1008 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1009 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1010
1011 if (phys->ops.prepare_wb_job)
1012 phys->ops.prepare_wb_job(phys, job);
1013
1014 }
1015 }
1016
dpu_encoder_cleanup_wb_job(struct drm_encoder * drm_enc,struct drm_writeback_job * job)1017 void dpu_encoder_cleanup_wb_job(struct drm_encoder *drm_enc,
1018 struct drm_writeback_job *job)
1019 {
1020 struct dpu_encoder_virt *dpu_enc;
1021 int i;
1022
1023 dpu_enc = to_dpu_encoder_virt(drm_enc);
1024
1025 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1026 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1027
1028 if (phys->ops.cleanup_wb_job)
1029 phys->ops.cleanup_wb_job(phys, job);
1030
1031 }
1032 }
1033
dpu_encoder_virt_atomic_mode_set(struct drm_encoder * drm_enc,struct drm_crtc_state * crtc_state,struct drm_connector_state * conn_state)1034 static void dpu_encoder_virt_atomic_mode_set(struct drm_encoder *drm_enc,
1035 struct drm_crtc_state *crtc_state,
1036 struct drm_connector_state *conn_state)
1037 {
1038 struct dpu_encoder_virt *dpu_enc;
1039 struct msm_drm_private *priv;
1040 struct dpu_kms *dpu_kms;
1041 struct dpu_crtc_state *cstate;
1042 struct dpu_global_state *global_state;
1043 struct dpu_hw_blk *hw_pp[MAX_CHANNELS_PER_ENC];
1044 struct dpu_hw_blk *hw_ctl[MAX_CHANNELS_PER_ENC];
1045 struct dpu_hw_blk *hw_lm[MAX_CHANNELS_PER_ENC];
1046 struct dpu_hw_blk *hw_dspp[MAX_CHANNELS_PER_ENC] = { NULL };
1047 struct dpu_hw_blk *hw_dsc[MAX_CHANNELS_PER_ENC];
1048 int num_lm, num_ctl, num_pp, num_dsc;
1049 unsigned int dsc_mask = 0;
1050 int i;
1051
1052 if (!drm_enc) {
1053 DPU_ERROR("invalid encoder\n");
1054 return;
1055 }
1056
1057 dpu_enc = to_dpu_encoder_virt(drm_enc);
1058 DPU_DEBUG_ENC(dpu_enc, "\n");
1059
1060 priv = drm_enc->dev->dev_private;
1061 dpu_kms = to_dpu_kms(priv->kms);
1062
1063 global_state = dpu_kms_get_existing_global_state(dpu_kms);
1064 if (IS_ERR_OR_NULL(global_state)) {
1065 DPU_ERROR("Failed to get global state");
1066 return;
1067 }
1068
1069 trace_dpu_enc_mode_set(DRMID(drm_enc));
1070
1071 /* Query resource that have been reserved in atomic check step. */
1072 num_pp = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1073 drm_enc->base.id, DPU_HW_BLK_PINGPONG, hw_pp,
1074 ARRAY_SIZE(hw_pp));
1075 num_ctl = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1076 drm_enc->base.id, DPU_HW_BLK_CTL, hw_ctl, ARRAY_SIZE(hw_ctl));
1077 num_lm = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1078 drm_enc->base.id, DPU_HW_BLK_LM, hw_lm, ARRAY_SIZE(hw_lm));
1079 dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1080 drm_enc->base.id, DPU_HW_BLK_DSPP, hw_dspp,
1081 ARRAY_SIZE(hw_dspp));
1082
1083 for (i = 0; i < MAX_CHANNELS_PER_ENC; i++)
1084 dpu_enc->hw_pp[i] = i < num_pp ? to_dpu_hw_pingpong(hw_pp[i])
1085 : NULL;
1086
1087 num_dsc = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1088 drm_enc->base.id, DPU_HW_BLK_DSC,
1089 hw_dsc, ARRAY_SIZE(hw_dsc));
1090 for (i = 0; i < num_dsc; i++) {
1091 dpu_enc->hw_dsc[i] = to_dpu_hw_dsc(hw_dsc[i]);
1092 dsc_mask |= BIT(dpu_enc->hw_dsc[i]->idx - DSC_0);
1093 }
1094
1095 dpu_enc->dsc_mask = dsc_mask;
1096
1097 cstate = to_dpu_crtc_state(crtc_state);
1098
1099 for (i = 0; i < num_lm; i++) {
1100 int ctl_idx = (i < num_ctl) ? i : (num_ctl-1);
1101
1102 cstate->mixers[i].hw_lm = to_dpu_hw_mixer(hw_lm[i]);
1103 cstate->mixers[i].lm_ctl = to_dpu_hw_ctl(hw_ctl[ctl_idx]);
1104 cstate->mixers[i].hw_dspp = to_dpu_hw_dspp(hw_dspp[i]);
1105 }
1106
1107 cstate->num_mixers = num_lm;
1108
1109 dpu_enc->connector = conn_state->connector;
1110
1111 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1112 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1113
1114 if (!dpu_enc->hw_pp[i]) {
1115 DPU_ERROR_ENC(dpu_enc,
1116 "no pp block assigned at idx: %d\n", i);
1117 return;
1118 }
1119
1120 if (!hw_ctl[i]) {
1121 DPU_ERROR_ENC(dpu_enc,
1122 "no ctl block assigned at idx: %d\n", i);
1123 return;
1124 }
1125
1126 phys->hw_pp = dpu_enc->hw_pp[i];
1127 phys->hw_ctl = to_dpu_hw_ctl(hw_ctl[i]);
1128
1129 phys->cached_mode = crtc_state->adjusted_mode;
1130 if (phys->ops.atomic_mode_set)
1131 phys->ops.atomic_mode_set(phys, crtc_state, conn_state);
1132 }
1133 }
1134
_dpu_encoder_virt_enable_helper(struct drm_encoder * drm_enc)1135 static void _dpu_encoder_virt_enable_helper(struct drm_encoder *drm_enc)
1136 {
1137 struct dpu_encoder_virt *dpu_enc = NULL;
1138 int i;
1139
1140 if (!drm_enc || !drm_enc->dev) {
1141 DPU_ERROR("invalid parameters\n");
1142 return;
1143 }
1144
1145 dpu_enc = to_dpu_encoder_virt(drm_enc);
1146 if (!dpu_enc || !dpu_enc->cur_master) {
1147 DPU_ERROR("invalid dpu encoder/master\n");
1148 return;
1149 }
1150
1151
1152 if (dpu_enc->disp_info.intf_type == INTF_DP &&
1153 dpu_enc->cur_master->hw_mdptop &&
1154 dpu_enc->cur_master->hw_mdptop->ops.intf_audio_select)
1155 dpu_enc->cur_master->hw_mdptop->ops.intf_audio_select(
1156 dpu_enc->cur_master->hw_mdptop);
1157
1158 _dpu_encoder_update_vsync_source(dpu_enc, &dpu_enc->disp_info);
1159
1160 if (dpu_enc->disp_info.intf_type == INTF_DSI &&
1161 !WARN_ON(dpu_enc->num_phys_encs == 0)) {
1162 unsigned bpc = dpu_enc->connector->display_info.bpc;
1163 for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
1164 if (!dpu_enc->hw_pp[i])
1165 continue;
1166 _dpu_encoder_setup_dither(dpu_enc->hw_pp[i], bpc);
1167 }
1168 }
1169 }
1170
dpu_encoder_virt_runtime_resume(struct drm_encoder * drm_enc)1171 void dpu_encoder_virt_runtime_resume(struct drm_encoder *drm_enc)
1172 {
1173 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1174
1175 mutex_lock(&dpu_enc->enc_lock);
1176
1177 if (!dpu_enc->enabled)
1178 goto out;
1179
1180 if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.restore)
1181 dpu_enc->cur_slave->ops.restore(dpu_enc->cur_slave);
1182 if (dpu_enc->cur_master && dpu_enc->cur_master->ops.restore)
1183 dpu_enc->cur_master->ops.restore(dpu_enc->cur_master);
1184
1185 _dpu_encoder_virt_enable_helper(drm_enc);
1186
1187 out:
1188 mutex_unlock(&dpu_enc->enc_lock);
1189 }
1190
dpu_encoder_virt_atomic_enable(struct drm_encoder * drm_enc,struct drm_atomic_state * state)1191 static void dpu_encoder_virt_atomic_enable(struct drm_encoder *drm_enc,
1192 struct drm_atomic_state *state)
1193 {
1194 struct dpu_encoder_virt *dpu_enc = NULL;
1195 int ret = 0;
1196 struct drm_display_mode *cur_mode = NULL;
1197
1198 dpu_enc = to_dpu_encoder_virt(drm_enc);
1199
1200 dpu_enc->dsc = dpu_encoder_get_dsc_config(drm_enc);
1201
1202 mutex_lock(&dpu_enc->enc_lock);
1203 cur_mode = &dpu_enc->base.crtc->state->adjusted_mode;
1204
1205 trace_dpu_enc_enable(DRMID(drm_enc), cur_mode->hdisplay,
1206 cur_mode->vdisplay);
1207
1208 /* always enable slave encoder before master */
1209 if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.enable)
1210 dpu_enc->cur_slave->ops.enable(dpu_enc->cur_slave);
1211
1212 if (dpu_enc->cur_master && dpu_enc->cur_master->ops.enable)
1213 dpu_enc->cur_master->ops.enable(dpu_enc->cur_master);
1214
1215 ret = dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
1216 if (ret) {
1217 DPU_ERROR_ENC(dpu_enc, "dpu resource control failed: %d\n",
1218 ret);
1219 goto out;
1220 }
1221
1222 _dpu_encoder_virt_enable_helper(drm_enc);
1223
1224 dpu_enc->enabled = true;
1225
1226 out:
1227 mutex_unlock(&dpu_enc->enc_lock);
1228 }
1229
dpu_encoder_virt_atomic_disable(struct drm_encoder * drm_enc,struct drm_atomic_state * state)1230 static void dpu_encoder_virt_atomic_disable(struct drm_encoder *drm_enc,
1231 struct drm_atomic_state *state)
1232 {
1233 struct dpu_encoder_virt *dpu_enc = NULL;
1234 struct drm_crtc *crtc;
1235 struct drm_crtc_state *old_state = NULL;
1236 int i = 0;
1237
1238 dpu_enc = to_dpu_encoder_virt(drm_enc);
1239 DPU_DEBUG_ENC(dpu_enc, "\n");
1240
1241 crtc = drm_atomic_get_old_crtc_for_encoder(state, drm_enc);
1242 if (crtc)
1243 old_state = drm_atomic_get_old_crtc_state(state, crtc);
1244
1245 /*
1246 * The encoder is already disabled if self refresh mode was set earlier,
1247 * in the old_state for the corresponding crtc.
1248 */
1249 if (old_state && old_state->self_refresh_active)
1250 return;
1251
1252 mutex_lock(&dpu_enc->enc_lock);
1253 dpu_enc->enabled = false;
1254
1255 trace_dpu_enc_disable(DRMID(drm_enc));
1256
1257 /* wait for idle */
1258 dpu_encoder_wait_for_event(drm_enc, MSM_ENC_TX_COMPLETE);
1259
1260 dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_PRE_STOP);
1261
1262 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1263 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1264
1265 if (phys->ops.disable)
1266 phys->ops.disable(phys);
1267 }
1268
1269
1270 /* after phys waits for frame-done, should be no more frames pending */
1271 if (atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) {
1272 DPU_ERROR("enc%d timeout pending\n", drm_enc->base.id);
1273 del_timer_sync(&dpu_enc->frame_done_timer);
1274 }
1275
1276 dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_STOP);
1277
1278 dpu_enc->connector = NULL;
1279
1280 DPU_DEBUG_ENC(dpu_enc, "encoder disabled\n");
1281
1282 mutex_unlock(&dpu_enc->enc_lock);
1283 }
1284
dpu_encoder_get_intf(const struct dpu_mdss_cfg * catalog,struct dpu_rm * dpu_rm,enum dpu_intf_type type,u32 controller_id)1285 static struct dpu_hw_intf *dpu_encoder_get_intf(const struct dpu_mdss_cfg *catalog,
1286 struct dpu_rm *dpu_rm,
1287 enum dpu_intf_type type, u32 controller_id)
1288 {
1289 int i = 0;
1290
1291 if (type == INTF_WB)
1292 return NULL;
1293
1294 for (i = 0; i < catalog->intf_count; i++) {
1295 if (catalog->intf[i].type == type
1296 && catalog->intf[i].controller_id == controller_id) {
1297 return dpu_rm_get_intf(dpu_rm, catalog->intf[i].id);
1298 }
1299 }
1300
1301 return NULL;
1302 }
1303
dpu_encoder_vblank_callback(struct drm_encoder * drm_enc,struct dpu_encoder_phys * phy_enc)1304 void dpu_encoder_vblank_callback(struct drm_encoder *drm_enc,
1305 struct dpu_encoder_phys *phy_enc)
1306 {
1307 struct dpu_encoder_virt *dpu_enc = NULL;
1308 unsigned long lock_flags;
1309
1310 if (!drm_enc || !phy_enc)
1311 return;
1312
1313 DPU_ATRACE_BEGIN("encoder_vblank_callback");
1314 dpu_enc = to_dpu_encoder_virt(drm_enc);
1315
1316 atomic_inc(&phy_enc->vsync_cnt);
1317
1318 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1319 if (dpu_enc->crtc)
1320 dpu_crtc_vblank_callback(dpu_enc->crtc);
1321 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1322
1323 DPU_ATRACE_END("encoder_vblank_callback");
1324 }
1325
dpu_encoder_underrun_callback(struct drm_encoder * drm_enc,struct dpu_encoder_phys * phy_enc)1326 void dpu_encoder_underrun_callback(struct drm_encoder *drm_enc,
1327 struct dpu_encoder_phys *phy_enc)
1328 {
1329 if (!phy_enc)
1330 return;
1331
1332 DPU_ATRACE_BEGIN("encoder_underrun_callback");
1333 atomic_inc(&phy_enc->underrun_cnt);
1334
1335 /* trigger dump only on the first underrun */
1336 if (atomic_read(&phy_enc->underrun_cnt) == 1)
1337 msm_disp_snapshot_state(drm_enc->dev);
1338
1339 trace_dpu_enc_underrun_cb(DRMID(drm_enc),
1340 atomic_read(&phy_enc->underrun_cnt));
1341 DPU_ATRACE_END("encoder_underrun_callback");
1342 }
1343
dpu_encoder_assign_crtc(struct drm_encoder * drm_enc,struct drm_crtc * crtc)1344 void dpu_encoder_assign_crtc(struct drm_encoder *drm_enc, struct drm_crtc *crtc)
1345 {
1346 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1347 unsigned long lock_flags;
1348
1349 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1350 /* crtc should always be cleared before re-assigning */
1351 WARN_ON(crtc && dpu_enc->crtc);
1352 dpu_enc->crtc = crtc;
1353 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1354 }
1355
dpu_encoder_toggle_vblank_for_crtc(struct drm_encoder * drm_enc,struct drm_crtc * crtc,bool enable)1356 void dpu_encoder_toggle_vblank_for_crtc(struct drm_encoder *drm_enc,
1357 struct drm_crtc *crtc, bool enable)
1358 {
1359 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1360 unsigned long lock_flags;
1361 int i;
1362
1363 trace_dpu_enc_vblank_cb(DRMID(drm_enc), enable);
1364
1365 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1366 if (dpu_enc->crtc != crtc) {
1367 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1368 return;
1369 }
1370 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1371
1372 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1373 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1374
1375 if (phys->ops.control_vblank_irq)
1376 phys->ops.control_vblank_irq(phys, enable);
1377 }
1378 }
1379
dpu_encoder_register_frame_event_callback(struct drm_encoder * drm_enc,void (* frame_event_cb)(void *,u32 event),void * frame_event_cb_data)1380 void dpu_encoder_register_frame_event_callback(struct drm_encoder *drm_enc,
1381 void (*frame_event_cb)(void *, u32 event),
1382 void *frame_event_cb_data)
1383 {
1384 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1385 unsigned long lock_flags;
1386 bool enable;
1387
1388 enable = frame_event_cb ? true : false;
1389
1390 if (!drm_enc) {
1391 DPU_ERROR("invalid encoder\n");
1392 return;
1393 }
1394 trace_dpu_enc_frame_event_cb(DRMID(drm_enc), enable);
1395
1396 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1397 dpu_enc->crtc_frame_event_cb = frame_event_cb;
1398 dpu_enc->crtc_frame_event_cb_data = frame_event_cb_data;
1399 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1400 }
1401
dpu_encoder_frame_done_callback(struct drm_encoder * drm_enc,struct dpu_encoder_phys * ready_phys,u32 event)1402 void dpu_encoder_frame_done_callback(
1403 struct drm_encoder *drm_enc,
1404 struct dpu_encoder_phys *ready_phys, u32 event)
1405 {
1406 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1407 unsigned int i;
1408
1409 if (event & (DPU_ENCODER_FRAME_EVENT_DONE
1410 | DPU_ENCODER_FRAME_EVENT_ERROR
1411 | DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) {
1412
1413 if (!dpu_enc->frame_busy_mask[0]) {
1414 /**
1415 * suppress frame_done without waiter,
1416 * likely autorefresh
1417 */
1418 trace_dpu_enc_frame_done_cb_not_busy(DRMID(drm_enc), event,
1419 dpu_encoder_helper_get_intf_type(ready_phys->intf_mode),
1420 ready_phys->hw_intf ? ready_phys->hw_intf->idx : -1,
1421 ready_phys->hw_wb ? ready_phys->hw_wb->idx : -1);
1422 return;
1423 }
1424
1425 /* One of the physical encoders has become idle */
1426 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1427 if (dpu_enc->phys_encs[i] == ready_phys) {
1428 trace_dpu_enc_frame_done_cb(DRMID(drm_enc), i,
1429 dpu_enc->frame_busy_mask[0]);
1430 clear_bit(i, dpu_enc->frame_busy_mask);
1431 }
1432 }
1433
1434 if (!dpu_enc->frame_busy_mask[0]) {
1435 atomic_set(&dpu_enc->frame_done_timeout_ms, 0);
1436 del_timer(&dpu_enc->frame_done_timer);
1437
1438 dpu_encoder_resource_control(drm_enc,
1439 DPU_ENC_RC_EVENT_FRAME_DONE);
1440
1441 if (dpu_enc->crtc_frame_event_cb)
1442 dpu_enc->crtc_frame_event_cb(
1443 dpu_enc->crtc_frame_event_cb_data,
1444 event);
1445 }
1446 } else {
1447 if (dpu_enc->crtc_frame_event_cb)
1448 dpu_enc->crtc_frame_event_cb(
1449 dpu_enc->crtc_frame_event_cb_data, event);
1450 }
1451 }
1452
dpu_encoder_off_work(struct work_struct * work)1453 static void dpu_encoder_off_work(struct work_struct *work)
1454 {
1455 struct dpu_encoder_virt *dpu_enc = container_of(work,
1456 struct dpu_encoder_virt, delayed_off_work.work);
1457
1458 dpu_encoder_resource_control(&dpu_enc->base,
1459 DPU_ENC_RC_EVENT_ENTER_IDLE);
1460
1461 dpu_encoder_frame_done_callback(&dpu_enc->base, NULL,
1462 DPU_ENCODER_FRAME_EVENT_IDLE);
1463 }
1464
1465 /**
1466 * _dpu_encoder_trigger_flush - trigger flush for a physical encoder
1467 * @drm_enc: Pointer to drm encoder structure
1468 * @phys: Pointer to physical encoder structure
1469 * @extra_flush_bits: Additional bit mask to include in flush trigger
1470 */
_dpu_encoder_trigger_flush(struct drm_encoder * drm_enc,struct dpu_encoder_phys * phys,uint32_t extra_flush_bits)1471 static void _dpu_encoder_trigger_flush(struct drm_encoder *drm_enc,
1472 struct dpu_encoder_phys *phys, uint32_t extra_flush_bits)
1473 {
1474 struct dpu_hw_ctl *ctl;
1475 int pending_kickoff_cnt;
1476 u32 ret = UINT_MAX;
1477
1478 if (!phys->hw_pp) {
1479 DPU_ERROR("invalid pingpong hw\n");
1480 return;
1481 }
1482
1483 ctl = phys->hw_ctl;
1484 if (!ctl->ops.trigger_flush) {
1485 DPU_ERROR("missing trigger cb\n");
1486 return;
1487 }
1488
1489 pending_kickoff_cnt = dpu_encoder_phys_inc_pending(phys);
1490
1491 if (extra_flush_bits && ctl->ops.update_pending_flush)
1492 ctl->ops.update_pending_flush(ctl, extra_flush_bits);
1493
1494 ctl->ops.trigger_flush(ctl);
1495
1496 if (ctl->ops.get_pending_flush)
1497 ret = ctl->ops.get_pending_flush(ctl);
1498
1499 trace_dpu_enc_trigger_flush(DRMID(drm_enc),
1500 dpu_encoder_helper_get_intf_type(phys->intf_mode),
1501 phys->hw_intf ? phys->hw_intf->idx : -1,
1502 phys->hw_wb ? phys->hw_wb->idx : -1,
1503 pending_kickoff_cnt, ctl->idx,
1504 extra_flush_bits, ret);
1505 }
1506
1507 /**
1508 * _dpu_encoder_trigger_start - trigger start for a physical encoder
1509 * @phys: Pointer to physical encoder structure
1510 */
_dpu_encoder_trigger_start(struct dpu_encoder_phys * phys)1511 static void _dpu_encoder_trigger_start(struct dpu_encoder_phys *phys)
1512 {
1513 if (!phys) {
1514 DPU_ERROR("invalid argument(s)\n");
1515 return;
1516 }
1517
1518 if (!phys->hw_pp) {
1519 DPU_ERROR("invalid pingpong hw\n");
1520 return;
1521 }
1522
1523 if (phys->ops.trigger_start && phys->enable_state != DPU_ENC_DISABLED)
1524 phys->ops.trigger_start(phys);
1525 }
1526
dpu_encoder_helper_trigger_start(struct dpu_encoder_phys * phys_enc)1527 void dpu_encoder_helper_trigger_start(struct dpu_encoder_phys *phys_enc)
1528 {
1529 struct dpu_hw_ctl *ctl;
1530
1531 ctl = phys_enc->hw_ctl;
1532 if (ctl->ops.trigger_start) {
1533 ctl->ops.trigger_start(ctl);
1534 trace_dpu_enc_trigger_start(DRMID(phys_enc->parent), ctl->idx);
1535 }
1536 }
1537
dpu_encoder_helper_wait_event_timeout(int32_t drm_id,u32 irq_idx,struct dpu_encoder_wait_info * info)1538 static int dpu_encoder_helper_wait_event_timeout(
1539 int32_t drm_id,
1540 u32 irq_idx,
1541 struct dpu_encoder_wait_info *info)
1542 {
1543 int rc = 0;
1544 s64 expected_time = ktime_to_ms(ktime_get()) + info->timeout_ms;
1545 s64 jiffies = msecs_to_jiffies(info->timeout_ms);
1546 s64 time;
1547
1548 do {
1549 rc = wait_event_timeout(*(info->wq),
1550 atomic_read(info->atomic_cnt) == 0, jiffies);
1551 time = ktime_to_ms(ktime_get());
1552
1553 trace_dpu_enc_wait_event_timeout(drm_id, irq_idx, rc, time,
1554 expected_time,
1555 atomic_read(info->atomic_cnt));
1556 /* If we timed out, counter is valid and time is less, wait again */
1557 } while (atomic_read(info->atomic_cnt) && (rc == 0) &&
1558 (time < expected_time));
1559
1560 return rc;
1561 }
1562
dpu_encoder_helper_hw_reset(struct dpu_encoder_phys * phys_enc)1563 static void dpu_encoder_helper_hw_reset(struct dpu_encoder_phys *phys_enc)
1564 {
1565 struct dpu_encoder_virt *dpu_enc;
1566 struct dpu_hw_ctl *ctl;
1567 int rc;
1568 struct drm_encoder *drm_enc;
1569
1570 dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
1571 ctl = phys_enc->hw_ctl;
1572 drm_enc = phys_enc->parent;
1573
1574 if (!ctl->ops.reset)
1575 return;
1576
1577 DRM_DEBUG_KMS("id:%u ctl %d reset\n", DRMID(drm_enc),
1578 ctl->idx);
1579
1580 rc = ctl->ops.reset(ctl);
1581 if (rc) {
1582 DPU_ERROR_ENC(dpu_enc, "ctl %d reset failure\n", ctl->idx);
1583 msm_disp_snapshot_state(drm_enc->dev);
1584 }
1585
1586 phys_enc->enable_state = DPU_ENC_ENABLED;
1587 }
1588
1589 /**
1590 * _dpu_encoder_kickoff_phys - handle physical encoder kickoff
1591 * Iterate through the physical encoders and perform consolidated flush
1592 * and/or control start triggering as needed. This is done in the virtual
1593 * encoder rather than the individual physical ones in order to handle
1594 * use cases that require visibility into multiple physical encoders at
1595 * a time.
1596 * @dpu_enc: Pointer to virtual encoder structure
1597 */
_dpu_encoder_kickoff_phys(struct dpu_encoder_virt * dpu_enc)1598 static void _dpu_encoder_kickoff_phys(struct dpu_encoder_virt *dpu_enc)
1599 {
1600 struct dpu_hw_ctl *ctl;
1601 uint32_t i, pending_flush;
1602 unsigned long lock_flags;
1603
1604 pending_flush = 0x0;
1605
1606 /* update pending counts and trigger kickoff ctl flush atomically */
1607 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1608
1609 /* don't perform flush/start operations for slave encoders */
1610 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1611 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1612
1613 if (phys->enable_state == DPU_ENC_DISABLED)
1614 continue;
1615
1616 ctl = phys->hw_ctl;
1617
1618 /*
1619 * This is cleared in frame_done worker, which isn't invoked
1620 * for async commits. So don't set this for async, since it'll
1621 * roll over to the next commit.
1622 */
1623 if (phys->split_role != ENC_ROLE_SLAVE)
1624 set_bit(i, dpu_enc->frame_busy_mask);
1625
1626 if (!phys->ops.needs_single_flush ||
1627 !phys->ops.needs_single_flush(phys))
1628 _dpu_encoder_trigger_flush(&dpu_enc->base, phys, 0x0);
1629 else if (ctl->ops.get_pending_flush)
1630 pending_flush |= ctl->ops.get_pending_flush(ctl);
1631 }
1632
1633 /* for split flush, combine pending flush masks and send to master */
1634 if (pending_flush && dpu_enc->cur_master) {
1635 _dpu_encoder_trigger_flush(
1636 &dpu_enc->base,
1637 dpu_enc->cur_master,
1638 pending_flush);
1639 }
1640
1641 _dpu_encoder_trigger_start(dpu_enc->cur_master);
1642
1643 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1644 }
1645
dpu_encoder_trigger_kickoff_pending(struct drm_encoder * drm_enc)1646 void dpu_encoder_trigger_kickoff_pending(struct drm_encoder *drm_enc)
1647 {
1648 struct dpu_encoder_virt *dpu_enc;
1649 struct dpu_encoder_phys *phys;
1650 unsigned int i;
1651 struct dpu_hw_ctl *ctl;
1652 struct msm_display_info *disp_info;
1653
1654 if (!drm_enc) {
1655 DPU_ERROR("invalid encoder\n");
1656 return;
1657 }
1658 dpu_enc = to_dpu_encoder_virt(drm_enc);
1659 disp_info = &dpu_enc->disp_info;
1660
1661 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1662 phys = dpu_enc->phys_encs[i];
1663
1664 ctl = phys->hw_ctl;
1665 if (ctl->ops.clear_pending_flush)
1666 ctl->ops.clear_pending_flush(ctl);
1667
1668 /* update only for command mode primary ctl */
1669 if ((phys == dpu_enc->cur_master) &&
1670 disp_info->is_cmd_mode
1671 && ctl->ops.trigger_pending)
1672 ctl->ops.trigger_pending(ctl);
1673 }
1674 }
1675
_dpu_encoder_calculate_linetime(struct dpu_encoder_virt * dpu_enc,struct drm_display_mode * mode)1676 static u32 _dpu_encoder_calculate_linetime(struct dpu_encoder_virt *dpu_enc,
1677 struct drm_display_mode *mode)
1678 {
1679 u64 pclk_rate;
1680 u32 pclk_period;
1681 u32 line_time;
1682
1683 /*
1684 * For linetime calculation, only operate on master encoder.
1685 */
1686 if (!dpu_enc->cur_master)
1687 return 0;
1688
1689 if (!dpu_enc->cur_master->ops.get_line_count) {
1690 DPU_ERROR("get_line_count function not defined\n");
1691 return 0;
1692 }
1693
1694 pclk_rate = mode->clock; /* pixel clock in kHz */
1695 if (pclk_rate == 0) {
1696 DPU_ERROR("pclk is 0, cannot calculate line time\n");
1697 return 0;
1698 }
1699
1700 pclk_period = DIV_ROUND_UP_ULL(1000000000ull, pclk_rate);
1701 if (pclk_period == 0) {
1702 DPU_ERROR("pclk period is 0\n");
1703 return 0;
1704 }
1705
1706 /*
1707 * Line time calculation based on Pixel clock and HTOTAL.
1708 * Final unit is in ns.
1709 */
1710 line_time = (pclk_period * mode->htotal) / 1000;
1711 if (line_time == 0) {
1712 DPU_ERROR("line time calculation is 0\n");
1713 return 0;
1714 }
1715
1716 DPU_DEBUG_ENC(dpu_enc,
1717 "clk_rate=%lldkHz, clk_period=%d, linetime=%dns\n",
1718 pclk_rate, pclk_period, line_time);
1719
1720 return line_time;
1721 }
1722
dpu_encoder_vsync_time(struct drm_encoder * drm_enc,ktime_t * wakeup_time)1723 int dpu_encoder_vsync_time(struct drm_encoder *drm_enc, ktime_t *wakeup_time)
1724 {
1725 struct drm_display_mode *mode;
1726 struct dpu_encoder_virt *dpu_enc;
1727 u32 cur_line;
1728 u32 line_time;
1729 u32 vtotal, time_to_vsync;
1730 ktime_t cur_time;
1731
1732 dpu_enc = to_dpu_encoder_virt(drm_enc);
1733
1734 if (!drm_enc->crtc || !drm_enc->crtc->state) {
1735 DPU_ERROR("crtc/crtc state object is NULL\n");
1736 return -EINVAL;
1737 }
1738 mode = &drm_enc->crtc->state->adjusted_mode;
1739
1740 line_time = _dpu_encoder_calculate_linetime(dpu_enc, mode);
1741 if (!line_time)
1742 return -EINVAL;
1743
1744 cur_line = dpu_enc->cur_master->ops.get_line_count(dpu_enc->cur_master);
1745
1746 vtotal = mode->vtotal;
1747 if (cur_line >= vtotal)
1748 time_to_vsync = line_time * vtotal;
1749 else
1750 time_to_vsync = line_time * (vtotal - cur_line);
1751
1752 if (time_to_vsync == 0) {
1753 DPU_ERROR("time to vsync should not be zero, vtotal=%d\n",
1754 vtotal);
1755 return -EINVAL;
1756 }
1757
1758 cur_time = ktime_get();
1759 *wakeup_time = ktime_add_ns(cur_time, time_to_vsync);
1760
1761 DPU_DEBUG_ENC(dpu_enc,
1762 "cur_line=%u vtotal=%u time_to_vsync=%u, cur_time=%lld, wakeup_time=%lld\n",
1763 cur_line, vtotal, time_to_vsync,
1764 ktime_to_ms(cur_time),
1765 ktime_to_ms(*wakeup_time));
1766 return 0;
1767 }
1768
1769 static u32
dpu_encoder_dsc_initial_line_calc(struct drm_dsc_config * dsc,u32 enc_ip_width)1770 dpu_encoder_dsc_initial_line_calc(struct drm_dsc_config *dsc,
1771 u32 enc_ip_width)
1772 {
1773 int ssm_delay, total_pixels, soft_slice_per_enc;
1774
1775 soft_slice_per_enc = enc_ip_width / dsc->slice_width;
1776
1777 /*
1778 * minimum number of initial line pixels is a sum of:
1779 * 1. sub-stream multiplexer delay (83 groups for 8bpc,
1780 * 91 for 10 bpc) * 3
1781 * 2. for two soft slice cases, add extra sub-stream multiplexer * 3
1782 * 3. the initial xmit delay
1783 * 4. total pipeline delay through the "lock step" of encoder (47)
1784 * 5. 6 additional pixels as the output of the rate buffer is
1785 * 48 bits wide
1786 */
1787 ssm_delay = ((dsc->bits_per_component < 10) ? 84 : 92);
1788 total_pixels = ssm_delay * 3 + dsc->initial_xmit_delay + 47;
1789 if (soft_slice_per_enc > 1)
1790 total_pixels += (ssm_delay * 3);
1791 return DIV_ROUND_UP(total_pixels, dsc->slice_width);
1792 }
1793
dpu_encoder_dsc_pipe_cfg(struct dpu_hw_ctl * ctl,struct dpu_hw_dsc * hw_dsc,struct dpu_hw_pingpong * hw_pp,struct drm_dsc_config * dsc,u32 common_mode,u32 initial_lines)1794 static void dpu_encoder_dsc_pipe_cfg(struct dpu_hw_ctl *ctl,
1795 struct dpu_hw_dsc *hw_dsc,
1796 struct dpu_hw_pingpong *hw_pp,
1797 struct drm_dsc_config *dsc,
1798 u32 common_mode,
1799 u32 initial_lines)
1800 {
1801 if (hw_dsc->ops.dsc_config)
1802 hw_dsc->ops.dsc_config(hw_dsc, dsc, common_mode, initial_lines);
1803
1804 if (hw_dsc->ops.dsc_config_thresh)
1805 hw_dsc->ops.dsc_config_thresh(hw_dsc, dsc);
1806
1807 if (hw_pp->ops.setup_dsc)
1808 hw_pp->ops.setup_dsc(hw_pp);
1809
1810 if (hw_dsc->ops.dsc_bind_pingpong_blk)
1811 hw_dsc->ops.dsc_bind_pingpong_blk(hw_dsc, hw_pp->idx);
1812
1813 if (hw_pp->ops.enable_dsc)
1814 hw_pp->ops.enable_dsc(hw_pp);
1815
1816 if (ctl->ops.update_pending_flush_dsc)
1817 ctl->ops.update_pending_flush_dsc(ctl, hw_dsc->idx);
1818 }
1819
dpu_encoder_prep_dsc(struct dpu_encoder_virt * dpu_enc,struct drm_dsc_config * dsc)1820 static void dpu_encoder_prep_dsc(struct dpu_encoder_virt *dpu_enc,
1821 struct drm_dsc_config *dsc)
1822 {
1823 /* coding only for 2LM, 2enc, 1 dsc config */
1824 struct dpu_encoder_phys *enc_master = dpu_enc->cur_master;
1825 struct dpu_hw_ctl *ctl = enc_master->hw_ctl;
1826 struct dpu_hw_dsc *hw_dsc[MAX_CHANNELS_PER_ENC];
1827 struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
1828 int this_frame_slices;
1829 int intf_ip_w, enc_ip_w;
1830 int dsc_common_mode;
1831 int pic_width;
1832 u32 initial_lines;
1833 int i;
1834
1835 for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
1836 hw_pp[i] = dpu_enc->hw_pp[i];
1837 hw_dsc[i] = dpu_enc->hw_dsc[i];
1838
1839 if (!hw_pp[i] || !hw_dsc[i]) {
1840 DPU_ERROR_ENC(dpu_enc, "invalid params for DSC\n");
1841 return;
1842 }
1843 }
1844
1845 dsc_common_mode = 0;
1846 pic_width = dsc->pic_width;
1847
1848 dsc_common_mode = DSC_MODE_MULTIPLEX | DSC_MODE_SPLIT_PANEL;
1849 if (enc_master->intf_mode == INTF_MODE_VIDEO)
1850 dsc_common_mode |= DSC_MODE_VIDEO;
1851
1852 this_frame_slices = pic_width / dsc->slice_width;
1853 intf_ip_w = this_frame_slices * dsc->slice_width;
1854
1855 /*
1856 * dsc merge case: when using 2 encoders for the same stream,
1857 * no. of slices need to be same on both the encoders.
1858 */
1859 enc_ip_w = intf_ip_w / 2;
1860 initial_lines = dpu_encoder_dsc_initial_line_calc(dsc, enc_ip_w);
1861
1862 for (i = 0; i < MAX_CHANNELS_PER_ENC; i++)
1863 dpu_encoder_dsc_pipe_cfg(ctl, hw_dsc[i], hw_pp[i],
1864 dsc, dsc_common_mode, initial_lines);
1865 }
1866
dpu_encoder_prepare_for_kickoff(struct drm_encoder * drm_enc)1867 void dpu_encoder_prepare_for_kickoff(struct drm_encoder *drm_enc)
1868 {
1869 struct dpu_encoder_virt *dpu_enc;
1870 struct dpu_encoder_phys *phys;
1871 bool needs_hw_reset = false;
1872 unsigned int i;
1873
1874 dpu_enc = to_dpu_encoder_virt(drm_enc);
1875
1876 trace_dpu_enc_prepare_kickoff(DRMID(drm_enc));
1877
1878 /* prepare for next kickoff, may include waiting on previous kickoff */
1879 DPU_ATRACE_BEGIN("enc_prepare_for_kickoff");
1880 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1881 phys = dpu_enc->phys_encs[i];
1882 if (phys->ops.prepare_for_kickoff)
1883 phys->ops.prepare_for_kickoff(phys);
1884 if (phys->enable_state == DPU_ENC_ERR_NEEDS_HW_RESET)
1885 needs_hw_reset = true;
1886 }
1887 DPU_ATRACE_END("enc_prepare_for_kickoff");
1888
1889 dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
1890
1891 /* if any phys needs reset, reset all phys, in-order */
1892 if (needs_hw_reset) {
1893 trace_dpu_enc_prepare_kickoff_reset(DRMID(drm_enc));
1894 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1895 dpu_encoder_helper_hw_reset(dpu_enc->phys_encs[i]);
1896 }
1897 }
1898
1899 if (dpu_enc->dsc)
1900 dpu_encoder_prep_dsc(dpu_enc, dpu_enc->dsc);
1901 }
1902
dpu_encoder_is_valid_for_commit(struct drm_encoder * drm_enc)1903 bool dpu_encoder_is_valid_for_commit(struct drm_encoder *drm_enc)
1904 {
1905 struct dpu_encoder_virt *dpu_enc;
1906 unsigned int i;
1907 struct dpu_encoder_phys *phys;
1908
1909 dpu_enc = to_dpu_encoder_virt(drm_enc);
1910
1911 if (drm_enc->encoder_type == DRM_MODE_ENCODER_VIRTUAL) {
1912 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1913 phys = dpu_enc->phys_encs[i];
1914 if (phys->ops.is_valid_for_commit && !phys->ops.is_valid_for_commit(phys)) {
1915 DPU_DEBUG("invalid FB not kicking off\n");
1916 return false;
1917 }
1918 }
1919 }
1920
1921 return true;
1922 }
1923
dpu_encoder_kickoff(struct drm_encoder * drm_enc)1924 void dpu_encoder_kickoff(struct drm_encoder *drm_enc)
1925 {
1926 struct dpu_encoder_virt *dpu_enc;
1927 struct dpu_encoder_phys *phys;
1928 unsigned long timeout_ms;
1929 unsigned int i;
1930
1931 DPU_ATRACE_BEGIN("encoder_kickoff");
1932 dpu_enc = to_dpu_encoder_virt(drm_enc);
1933
1934 trace_dpu_enc_kickoff(DRMID(drm_enc));
1935
1936 timeout_ms = DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES * 1000 /
1937 drm_mode_vrefresh(&drm_enc->crtc->state->adjusted_mode);
1938
1939 atomic_set(&dpu_enc->frame_done_timeout_ms, timeout_ms);
1940 mod_timer(&dpu_enc->frame_done_timer,
1941 jiffies + msecs_to_jiffies(timeout_ms));
1942
1943 /* All phys encs are ready to go, trigger the kickoff */
1944 _dpu_encoder_kickoff_phys(dpu_enc);
1945
1946 /* allow phys encs to handle any post-kickoff business */
1947 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1948 phys = dpu_enc->phys_encs[i];
1949 if (phys->ops.handle_post_kickoff)
1950 phys->ops.handle_post_kickoff(phys);
1951 }
1952
1953 DPU_ATRACE_END("encoder_kickoff");
1954 }
1955
dpu_encoder_helper_reset_mixers(struct dpu_encoder_phys * phys_enc)1956 static void dpu_encoder_helper_reset_mixers(struct dpu_encoder_phys *phys_enc)
1957 {
1958 struct dpu_hw_mixer_cfg mixer;
1959 int i, num_lm;
1960 struct dpu_global_state *global_state;
1961 struct dpu_hw_blk *hw_lm[2];
1962 struct dpu_hw_mixer *hw_mixer[2];
1963 struct dpu_hw_ctl *ctl = phys_enc->hw_ctl;
1964
1965 memset(&mixer, 0, sizeof(mixer));
1966
1967 /* reset all mixers for this encoder */
1968 if (phys_enc->hw_ctl->ops.clear_all_blendstages)
1969 phys_enc->hw_ctl->ops.clear_all_blendstages(phys_enc->hw_ctl);
1970
1971 global_state = dpu_kms_get_existing_global_state(phys_enc->dpu_kms);
1972
1973 num_lm = dpu_rm_get_assigned_resources(&phys_enc->dpu_kms->rm, global_state,
1974 phys_enc->parent->base.id, DPU_HW_BLK_LM, hw_lm, ARRAY_SIZE(hw_lm));
1975
1976 for (i = 0; i < num_lm; i++) {
1977 hw_mixer[i] = to_dpu_hw_mixer(hw_lm[i]);
1978 if (phys_enc->hw_ctl->ops.update_pending_flush_mixer)
1979 phys_enc->hw_ctl->ops.update_pending_flush_mixer(ctl, hw_mixer[i]->idx);
1980
1981 /* clear all blendstages */
1982 if (phys_enc->hw_ctl->ops.setup_blendstage)
1983 phys_enc->hw_ctl->ops.setup_blendstage(ctl, hw_mixer[i]->idx, NULL);
1984 }
1985 }
1986
dpu_encoder_dsc_pipe_clr(struct dpu_hw_ctl * ctl,struct dpu_hw_dsc * hw_dsc,struct dpu_hw_pingpong * hw_pp)1987 static void dpu_encoder_dsc_pipe_clr(struct dpu_hw_ctl *ctl,
1988 struct dpu_hw_dsc *hw_dsc,
1989 struct dpu_hw_pingpong *hw_pp)
1990 {
1991 if (hw_dsc->ops.dsc_disable)
1992 hw_dsc->ops.dsc_disable(hw_dsc);
1993
1994 if (hw_pp->ops.disable_dsc)
1995 hw_pp->ops.disable_dsc(hw_pp);
1996
1997 if (hw_dsc->ops.dsc_bind_pingpong_blk)
1998 hw_dsc->ops.dsc_bind_pingpong_blk(hw_dsc, PINGPONG_NONE);
1999
2000 if (ctl->ops.update_pending_flush_dsc)
2001 ctl->ops.update_pending_flush_dsc(ctl, hw_dsc->idx);
2002 }
2003
dpu_encoder_unprep_dsc(struct dpu_encoder_virt * dpu_enc)2004 static void dpu_encoder_unprep_dsc(struct dpu_encoder_virt *dpu_enc)
2005 {
2006 /* coding only for 2LM, 2enc, 1 dsc config */
2007 struct dpu_encoder_phys *enc_master = dpu_enc->cur_master;
2008 struct dpu_hw_ctl *ctl = enc_master->hw_ctl;
2009 struct dpu_hw_dsc *hw_dsc[MAX_CHANNELS_PER_ENC];
2010 struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
2011 int i;
2012
2013 for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
2014 hw_pp[i] = dpu_enc->hw_pp[i];
2015 hw_dsc[i] = dpu_enc->hw_dsc[i];
2016
2017 if (hw_pp[i] && hw_dsc[i])
2018 dpu_encoder_dsc_pipe_clr(ctl, hw_dsc[i], hw_pp[i]);
2019 }
2020 }
2021
dpu_encoder_helper_phys_cleanup(struct dpu_encoder_phys * phys_enc)2022 void dpu_encoder_helper_phys_cleanup(struct dpu_encoder_phys *phys_enc)
2023 {
2024 struct dpu_hw_ctl *ctl = phys_enc->hw_ctl;
2025 struct dpu_hw_intf_cfg intf_cfg = { 0 };
2026 int i;
2027 struct dpu_encoder_virt *dpu_enc;
2028
2029 dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
2030
2031 phys_enc->hw_ctl->ops.reset(ctl);
2032
2033 dpu_encoder_helper_reset_mixers(phys_enc);
2034
2035 /*
2036 * TODO: move the once-only operation like CTL flush/trigger
2037 * into dpu_encoder_virt_disable() and all operations which need
2038 * to be done per phys encoder into the phys_disable() op.
2039 */
2040 if (phys_enc->hw_wb) {
2041 /* disable the PP block */
2042 if (phys_enc->hw_wb->ops.bind_pingpong_blk)
2043 phys_enc->hw_wb->ops.bind_pingpong_blk(phys_enc->hw_wb, PINGPONG_NONE);
2044
2045 /* mark WB flush as pending */
2046 if (phys_enc->hw_ctl->ops.update_pending_flush_wb)
2047 phys_enc->hw_ctl->ops.update_pending_flush_wb(ctl, phys_enc->hw_wb->idx);
2048 } else {
2049 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2050 if (dpu_enc->phys_encs[i] && phys_enc->hw_intf->ops.bind_pingpong_blk)
2051 phys_enc->hw_intf->ops.bind_pingpong_blk(
2052 dpu_enc->phys_encs[i]->hw_intf,
2053 PINGPONG_NONE);
2054
2055 /* mark INTF flush as pending */
2056 if (phys_enc->hw_ctl->ops.update_pending_flush_intf)
2057 phys_enc->hw_ctl->ops.update_pending_flush_intf(phys_enc->hw_ctl,
2058 dpu_enc->phys_encs[i]->hw_intf->idx);
2059 }
2060 }
2061
2062 /* reset the merge 3D HW block */
2063 if (phys_enc->hw_pp->merge_3d) {
2064 phys_enc->hw_pp->merge_3d->ops.setup_3d_mode(phys_enc->hw_pp->merge_3d,
2065 BLEND_3D_NONE);
2066 if (phys_enc->hw_ctl->ops.update_pending_flush_merge_3d)
2067 phys_enc->hw_ctl->ops.update_pending_flush_merge_3d(ctl,
2068 phys_enc->hw_pp->merge_3d->idx);
2069 }
2070
2071 if (dpu_enc->dsc) {
2072 dpu_encoder_unprep_dsc(dpu_enc);
2073 dpu_enc->dsc = NULL;
2074 }
2075
2076 intf_cfg.stream_sel = 0; /* Don't care value for video mode */
2077 intf_cfg.mode_3d = dpu_encoder_helper_get_3d_blend_mode(phys_enc);
2078 intf_cfg.dsc = dpu_encoder_helper_get_dsc(phys_enc);
2079
2080 if (phys_enc->hw_intf)
2081 intf_cfg.intf = phys_enc->hw_intf->idx;
2082 if (phys_enc->hw_wb)
2083 intf_cfg.wb = phys_enc->hw_wb->idx;
2084
2085 if (phys_enc->hw_pp->merge_3d)
2086 intf_cfg.merge_3d = phys_enc->hw_pp->merge_3d->idx;
2087
2088 if (ctl->ops.reset_intf_cfg)
2089 ctl->ops.reset_intf_cfg(ctl, &intf_cfg);
2090
2091 ctl->ops.trigger_flush(ctl);
2092 ctl->ops.trigger_start(ctl);
2093 ctl->ops.clear_pending_flush(ctl);
2094 }
2095
2096 #ifdef CONFIG_DEBUG_FS
_dpu_encoder_status_show(struct seq_file * s,void * data)2097 static int _dpu_encoder_status_show(struct seq_file *s, void *data)
2098 {
2099 struct dpu_encoder_virt *dpu_enc = s->private;
2100 int i;
2101
2102 mutex_lock(&dpu_enc->enc_lock);
2103 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2104 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2105
2106 seq_printf(s, "intf:%d wb:%d vsync:%8d underrun:%8d ",
2107 phys->hw_intf ? phys->hw_intf->idx - INTF_0 : -1,
2108 phys->hw_wb ? phys->hw_wb->idx - WB_0 : -1,
2109 atomic_read(&phys->vsync_cnt),
2110 atomic_read(&phys->underrun_cnt));
2111
2112 seq_printf(s, "mode: %s\n", dpu_encoder_helper_get_intf_type(phys->intf_mode));
2113 }
2114 mutex_unlock(&dpu_enc->enc_lock);
2115
2116 return 0;
2117 }
2118
2119 DEFINE_SHOW_ATTRIBUTE(_dpu_encoder_status);
2120
_dpu_encoder_init_debugfs(struct drm_encoder * drm_enc)2121 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc)
2122 {
2123 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
2124
2125 char name[12];
2126
2127 if (!drm_enc->dev) {
2128 DPU_ERROR("invalid encoder or kms\n");
2129 return -EINVAL;
2130 }
2131
2132 snprintf(name, sizeof(name), "encoder%u", drm_enc->base.id);
2133
2134 /* create overall sub-directory for the encoder */
2135 dpu_enc->debugfs_root = debugfs_create_dir(name,
2136 drm_enc->dev->primary->debugfs_root);
2137
2138 /* don't error check these */
2139 debugfs_create_file("status", 0600,
2140 dpu_enc->debugfs_root, dpu_enc, &_dpu_encoder_status_fops);
2141
2142 return 0;
2143 }
2144 #else
_dpu_encoder_init_debugfs(struct drm_encoder * drm_enc)2145 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc)
2146 {
2147 return 0;
2148 }
2149 #endif
2150
dpu_encoder_late_register(struct drm_encoder * encoder)2151 static int dpu_encoder_late_register(struct drm_encoder *encoder)
2152 {
2153 return _dpu_encoder_init_debugfs(encoder);
2154 }
2155
dpu_encoder_early_unregister(struct drm_encoder * encoder)2156 static void dpu_encoder_early_unregister(struct drm_encoder *encoder)
2157 {
2158 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(encoder);
2159
2160 debugfs_remove_recursive(dpu_enc->debugfs_root);
2161 }
2162
dpu_encoder_virt_add_phys_encs(struct msm_display_info * disp_info,struct dpu_encoder_virt * dpu_enc,struct dpu_enc_phys_init_params * params)2163 static int dpu_encoder_virt_add_phys_encs(
2164 struct msm_display_info *disp_info,
2165 struct dpu_encoder_virt *dpu_enc,
2166 struct dpu_enc_phys_init_params *params)
2167 {
2168 struct dpu_encoder_phys *enc = NULL;
2169
2170 DPU_DEBUG_ENC(dpu_enc, "\n");
2171
2172 /*
2173 * We may create up to NUM_PHYS_ENCODER_TYPES physical encoder types
2174 * in this function, check up-front.
2175 */
2176 if (dpu_enc->num_phys_encs + NUM_PHYS_ENCODER_TYPES >=
2177 ARRAY_SIZE(dpu_enc->phys_encs)) {
2178 DPU_ERROR_ENC(dpu_enc, "too many physical encoders %d\n",
2179 dpu_enc->num_phys_encs);
2180 return -EINVAL;
2181 }
2182
2183
2184 if (disp_info->intf_type == INTF_WB) {
2185 enc = dpu_encoder_phys_wb_init(params);
2186
2187 if (IS_ERR(enc)) {
2188 DPU_ERROR_ENC(dpu_enc, "failed to init wb enc: %ld\n",
2189 PTR_ERR(enc));
2190 return PTR_ERR(enc);
2191 }
2192
2193 dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2194 ++dpu_enc->num_phys_encs;
2195 } else if (disp_info->is_cmd_mode) {
2196 enc = dpu_encoder_phys_cmd_init(params);
2197
2198 if (IS_ERR(enc)) {
2199 DPU_ERROR_ENC(dpu_enc, "failed to init cmd enc: %ld\n",
2200 PTR_ERR(enc));
2201 return PTR_ERR(enc);
2202 }
2203
2204 dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2205 ++dpu_enc->num_phys_encs;
2206 } else {
2207 enc = dpu_encoder_phys_vid_init(params);
2208
2209 if (IS_ERR(enc)) {
2210 DPU_ERROR_ENC(dpu_enc, "failed to init vid enc: %ld\n",
2211 PTR_ERR(enc));
2212 return PTR_ERR(enc);
2213 }
2214
2215 dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2216 ++dpu_enc->num_phys_encs;
2217 }
2218
2219 if (params->split_role == ENC_ROLE_SLAVE)
2220 dpu_enc->cur_slave = enc;
2221 else
2222 dpu_enc->cur_master = enc;
2223
2224 return 0;
2225 }
2226
dpu_encoder_setup_display(struct dpu_encoder_virt * dpu_enc,struct dpu_kms * dpu_kms,struct msm_display_info * disp_info)2227 static int dpu_encoder_setup_display(struct dpu_encoder_virt *dpu_enc,
2228 struct dpu_kms *dpu_kms,
2229 struct msm_display_info *disp_info)
2230 {
2231 int ret = 0;
2232 int i = 0;
2233 struct dpu_enc_phys_init_params phys_params;
2234
2235 if (!dpu_enc) {
2236 DPU_ERROR("invalid arg(s), enc %d\n", dpu_enc != NULL);
2237 return -EINVAL;
2238 }
2239
2240 dpu_enc->cur_master = NULL;
2241
2242 memset(&phys_params, 0, sizeof(phys_params));
2243 phys_params.dpu_kms = dpu_kms;
2244 phys_params.parent = &dpu_enc->base;
2245 phys_params.enc_spinlock = &dpu_enc->enc_spinlock;
2246
2247 WARN_ON(disp_info->num_of_h_tiles < 1);
2248
2249 DPU_DEBUG("dsi_info->num_of_h_tiles %d\n", disp_info->num_of_h_tiles);
2250
2251 if (disp_info->intf_type != INTF_WB)
2252 dpu_enc->idle_pc_supported =
2253 dpu_kms->catalog->caps->has_idle_pc;
2254
2255 mutex_lock(&dpu_enc->enc_lock);
2256 for (i = 0; i < disp_info->num_of_h_tiles && !ret; i++) {
2257 /*
2258 * Left-most tile is at index 0, content is controller id
2259 * h_tile_instance_ids[2] = {0, 1}; DSI0 = left, DSI1 = right
2260 * h_tile_instance_ids[2] = {1, 0}; DSI1 = left, DSI0 = right
2261 */
2262 u32 controller_id = disp_info->h_tile_instance[i];
2263
2264 if (disp_info->num_of_h_tiles > 1) {
2265 if (i == 0)
2266 phys_params.split_role = ENC_ROLE_MASTER;
2267 else
2268 phys_params.split_role = ENC_ROLE_SLAVE;
2269 } else {
2270 phys_params.split_role = ENC_ROLE_SOLO;
2271 }
2272
2273 DPU_DEBUG("h_tile_instance %d = %d, split_role %d\n",
2274 i, controller_id, phys_params.split_role);
2275
2276 phys_params.hw_intf = dpu_encoder_get_intf(dpu_kms->catalog, &dpu_kms->rm,
2277 disp_info->intf_type,
2278 controller_id);
2279
2280 if (disp_info->intf_type == INTF_WB && controller_id < WB_MAX)
2281 phys_params.hw_wb = dpu_rm_get_wb(&dpu_kms->rm, controller_id);
2282
2283 if (!phys_params.hw_intf && !phys_params.hw_wb) {
2284 DPU_ERROR_ENC(dpu_enc, "no intf or wb block assigned at idx: %d\n", i);
2285 ret = -EINVAL;
2286 break;
2287 }
2288
2289 if (phys_params.hw_intf && phys_params.hw_wb) {
2290 DPU_ERROR_ENC(dpu_enc,
2291 "invalid phys both intf and wb block at idx: %d\n", i);
2292 ret = -EINVAL;
2293 break;
2294 }
2295
2296 ret = dpu_encoder_virt_add_phys_encs(disp_info,
2297 dpu_enc, &phys_params);
2298 if (ret) {
2299 DPU_ERROR_ENC(dpu_enc, "failed to add phys encs\n");
2300 break;
2301 }
2302 }
2303
2304 mutex_unlock(&dpu_enc->enc_lock);
2305
2306 return ret;
2307 }
2308
dpu_encoder_frame_done_timeout(struct timer_list * t)2309 static void dpu_encoder_frame_done_timeout(struct timer_list *t)
2310 {
2311 struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t,
2312 frame_done_timer);
2313 struct drm_encoder *drm_enc = &dpu_enc->base;
2314 u32 event;
2315
2316 if (!drm_enc->dev) {
2317 DPU_ERROR("invalid parameters\n");
2318 return;
2319 }
2320
2321 if (!dpu_enc->frame_busy_mask[0] || !dpu_enc->crtc_frame_event_cb) {
2322 DRM_DEBUG_KMS("id:%u invalid timeout frame_busy_mask=%lu\n",
2323 DRMID(drm_enc), dpu_enc->frame_busy_mask[0]);
2324 return;
2325 } else if (!atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) {
2326 DRM_DEBUG_KMS("id:%u invalid timeout\n", DRMID(drm_enc));
2327 return;
2328 }
2329
2330 DPU_ERROR_ENC(dpu_enc, "frame done timeout\n");
2331
2332 event = DPU_ENCODER_FRAME_EVENT_ERROR;
2333 trace_dpu_enc_frame_done_timeout(DRMID(drm_enc), event);
2334 dpu_enc->crtc_frame_event_cb(dpu_enc->crtc_frame_event_cb_data, event);
2335 }
2336
2337 static const struct drm_encoder_helper_funcs dpu_encoder_helper_funcs = {
2338 .atomic_mode_set = dpu_encoder_virt_atomic_mode_set,
2339 .atomic_disable = dpu_encoder_virt_atomic_disable,
2340 .atomic_enable = dpu_encoder_virt_atomic_enable,
2341 .atomic_check = dpu_encoder_virt_atomic_check,
2342 };
2343
2344 static const struct drm_encoder_funcs dpu_encoder_funcs = {
2345 .destroy = dpu_encoder_destroy,
2346 .late_register = dpu_encoder_late_register,
2347 .early_unregister = dpu_encoder_early_unregister,
2348 };
2349
dpu_encoder_init(struct drm_device * dev,int drm_enc_mode,struct msm_display_info * disp_info)2350 struct drm_encoder *dpu_encoder_init(struct drm_device *dev,
2351 int drm_enc_mode,
2352 struct msm_display_info *disp_info)
2353 {
2354 struct msm_drm_private *priv = dev->dev_private;
2355 struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms);
2356 struct drm_encoder *drm_enc = NULL;
2357 struct dpu_encoder_virt *dpu_enc = NULL;
2358 int ret = 0;
2359
2360 dpu_enc = devm_kzalloc(dev->dev, sizeof(*dpu_enc), GFP_KERNEL);
2361 if (!dpu_enc)
2362 return ERR_PTR(-ENOMEM);
2363
2364 ret = drm_encoder_init(dev, &dpu_enc->base, &dpu_encoder_funcs,
2365 drm_enc_mode, NULL);
2366 if (ret) {
2367 devm_kfree(dev->dev, dpu_enc);
2368 return ERR_PTR(ret);
2369 }
2370
2371 drm_encoder_helper_add(&dpu_enc->base, &dpu_encoder_helper_funcs);
2372
2373 spin_lock_init(&dpu_enc->enc_spinlock);
2374 dpu_enc->enabled = false;
2375 mutex_init(&dpu_enc->enc_lock);
2376 mutex_init(&dpu_enc->rc_lock);
2377
2378 ret = dpu_encoder_setup_display(dpu_enc, dpu_kms, disp_info);
2379 if (ret)
2380 goto fail;
2381
2382 atomic_set(&dpu_enc->frame_done_timeout_ms, 0);
2383 timer_setup(&dpu_enc->frame_done_timer,
2384 dpu_encoder_frame_done_timeout, 0);
2385
2386 if (disp_info->intf_type == INTF_DP)
2387 dpu_enc->wide_bus_en = msm_dp_wide_bus_available(
2388 priv->dp[disp_info->h_tile_instance[0]]);
2389
2390 INIT_DELAYED_WORK(&dpu_enc->delayed_off_work,
2391 dpu_encoder_off_work);
2392 dpu_enc->idle_timeout = IDLE_TIMEOUT;
2393
2394 memcpy(&dpu_enc->disp_info, disp_info, sizeof(*disp_info));
2395
2396 DPU_DEBUG_ENC(dpu_enc, "created\n");
2397
2398 return &dpu_enc->base;
2399
2400 fail:
2401 DPU_ERROR("failed to create encoder\n");
2402 if (drm_enc)
2403 dpu_encoder_destroy(drm_enc);
2404
2405 return ERR_PTR(ret);
2406 }
2407
dpu_encoder_wait_for_event(struct drm_encoder * drm_enc,enum msm_event_wait event)2408 int dpu_encoder_wait_for_event(struct drm_encoder *drm_enc,
2409 enum msm_event_wait event)
2410 {
2411 int (*fn_wait)(struct dpu_encoder_phys *phys_enc) = NULL;
2412 struct dpu_encoder_virt *dpu_enc = NULL;
2413 int i, ret = 0;
2414
2415 if (!drm_enc) {
2416 DPU_ERROR("invalid encoder\n");
2417 return -EINVAL;
2418 }
2419 dpu_enc = to_dpu_encoder_virt(drm_enc);
2420 DPU_DEBUG_ENC(dpu_enc, "\n");
2421
2422 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2423 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2424
2425 switch (event) {
2426 case MSM_ENC_COMMIT_DONE:
2427 fn_wait = phys->ops.wait_for_commit_done;
2428 break;
2429 case MSM_ENC_TX_COMPLETE:
2430 fn_wait = phys->ops.wait_for_tx_complete;
2431 break;
2432 case MSM_ENC_VBLANK:
2433 fn_wait = phys->ops.wait_for_vblank;
2434 break;
2435 default:
2436 DPU_ERROR_ENC(dpu_enc, "unknown wait event %d\n",
2437 event);
2438 return -EINVAL;
2439 }
2440
2441 if (fn_wait) {
2442 DPU_ATRACE_BEGIN("wait_for_completion_event");
2443 ret = fn_wait(phys);
2444 DPU_ATRACE_END("wait_for_completion_event");
2445 if (ret)
2446 return ret;
2447 }
2448 }
2449
2450 return ret;
2451 }
2452
dpu_encoder_get_intf_mode(struct drm_encoder * encoder)2453 enum dpu_intf_mode dpu_encoder_get_intf_mode(struct drm_encoder *encoder)
2454 {
2455 struct dpu_encoder_virt *dpu_enc = NULL;
2456
2457 if (!encoder) {
2458 DPU_ERROR("invalid encoder\n");
2459 return INTF_MODE_NONE;
2460 }
2461 dpu_enc = to_dpu_encoder_virt(encoder);
2462
2463 if (dpu_enc->cur_master)
2464 return dpu_enc->cur_master->intf_mode;
2465
2466 if (dpu_enc->num_phys_encs)
2467 return dpu_enc->phys_encs[0]->intf_mode;
2468
2469 return INTF_MODE_NONE;
2470 }
2471
dpu_encoder_helper_get_dsc(struct dpu_encoder_phys * phys_enc)2472 unsigned int dpu_encoder_helper_get_dsc(struct dpu_encoder_phys *phys_enc)
2473 {
2474 struct drm_encoder *encoder = phys_enc->parent;
2475 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(encoder);
2476
2477 return dpu_enc->dsc_mask;
2478 }
2479
dpu_encoder_phys_init(struct dpu_encoder_phys * phys_enc,struct dpu_enc_phys_init_params * p)2480 void dpu_encoder_phys_init(struct dpu_encoder_phys *phys_enc,
2481 struct dpu_enc_phys_init_params *p)
2482 {
2483 int i;
2484
2485 phys_enc->hw_mdptop = p->dpu_kms->hw_mdp;
2486 phys_enc->hw_intf = p->hw_intf;
2487 phys_enc->hw_wb = p->hw_wb;
2488 phys_enc->parent = p->parent;
2489 phys_enc->dpu_kms = p->dpu_kms;
2490 phys_enc->split_role = p->split_role;
2491 phys_enc->enc_spinlock = p->enc_spinlock;
2492 phys_enc->enable_state = DPU_ENC_DISABLED;
2493
2494 for (i = 0; i < ARRAY_SIZE(phys_enc->irq); i++)
2495 phys_enc->irq[i] = -EINVAL;
2496
2497 atomic_set(&phys_enc->vblank_refcount, 0);
2498 atomic_set(&phys_enc->pending_kickoff_cnt, 0);
2499 atomic_set(&phys_enc->pending_ctlstart_cnt, 0);
2500
2501 atomic_set(&phys_enc->vsync_cnt, 0);
2502 atomic_set(&phys_enc->underrun_cnt, 0);
2503
2504 init_waitqueue_head(&phys_enc->pending_kickoff_wq);
2505 }
2506