1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4 *
5 * Pentium III FXSR, SSE support
6 * Gareth Hughes <gareth@valinux.com>, May 2000
7 */
8
9 /*
10 * Handle hardware traps and faults.
11 */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/context_tracking.h>
16 #include <linux/interrupt.h>
17 #include <linux/kallsyms.h>
18 #include <linux/spinlock.h>
19 #include <linux/kprobes.h>
20 #include <linux/uaccess.h>
21 #include <linux/kdebug.h>
22 #include <linux/kgdb.h>
23 #include <linux/kernel.h>
24 #include <linux/export.h>
25 #include <linux/ptrace.h>
26 #include <linux/uprobes.h>
27 #include <linux/string.h>
28 #include <linux/delay.h>
29 #include <linux/errno.h>
30 #include <linux/kexec.h>
31 #include <linux/sched.h>
32 #include <linux/sched/task_stack.h>
33 #include <linux/timer.h>
34 #include <linux/init.h>
35 #include <linux/bug.h>
36 #include <linux/nmi.h>
37 #include <linux/mm.h>
38 #include <linux/smp.h>
39 #include <linux/io.h>
40
41 #if defined(CONFIG_EDAC)
42 #include <linux/edac.h>
43 #endif
44
45 #include <asm/stacktrace.h>
46 #include <asm/processor.h>
47 #include <asm/debugreg.h>
48 #include <linux/atomic.h>
49 #include <asm/text-patching.h>
50 #include <asm/ftrace.h>
51 #include <asm/traps.h>
52 #include <asm/desc.h>
53 #include <asm/fpu/internal.h>
54 #include <asm/cpu_entry_area.h>
55 #include <asm/mce.h>
56 #include <asm/fixmap.h>
57 #include <asm/mach_traps.h>
58 #include <asm/alternative.h>
59 #include <asm/fpu/xstate.h>
60 #include <asm/trace/mpx.h>
61 #include <asm/mpx.h>
62 #include <asm/vm86.h>
63 #include <asm/umip.h>
64
65 #ifdef CONFIG_X86_64
66 #include <asm/x86_init.h>
67 #include <asm/pgalloc.h>
68 #include <asm/proto.h>
69 #else
70 #include <asm/processor-flags.h>
71 #include <asm/setup.h>
72 #include <asm/proto.h>
73 #endif
74
75 DECLARE_BITMAP(system_vectors, NR_VECTORS);
76
cond_local_irq_enable(struct pt_regs * regs)77 static inline void cond_local_irq_enable(struct pt_regs *regs)
78 {
79 if (regs->flags & X86_EFLAGS_IF)
80 local_irq_enable();
81 }
82
cond_local_irq_disable(struct pt_regs * regs)83 static inline void cond_local_irq_disable(struct pt_regs *regs)
84 {
85 if (regs->flags & X86_EFLAGS_IF)
86 local_irq_disable();
87 }
88
89 /*
90 * In IST context, we explicitly disable preemption. This serves two
91 * purposes: it makes it much less likely that we would accidentally
92 * schedule in IST context and it will force a warning if we somehow
93 * manage to schedule by accident.
94 */
ist_enter(struct pt_regs * regs)95 void ist_enter(struct pt_regs *regs)
96 {
97 if (user_mode(regs)) {
98 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
99 } else {
100 /*
101 * We might have interrupted pretty much anything. In
102 * fact, if we're a machine check, we can even interrupt
103 * NMI processing. We don't want in_nmi() to return true,
104 * but we need to notify RCU.
105 */
106 rcu_nmi_enter();
107 }
108
109 preempt_disable();
110
111 /* This code is a bit fragile. Test it. */
112 RCU_LOCKDEP_WARN(!rcu_is_watching(), "ist_enter didn't work");
113 }
114
ist_exit(struct pt_regs * regs)115 void ist_exit(struct pt_regs *regs)
116 {
117 preempt_enable_no_resched();
118
119 if (!user_mode(regs))
120 rcu_nmi_exit();
121 }
122
123 /**
124 * ist_begin_non_atomic() - begin a non-atomic section in an IST exception
125 * @regs: regs passed to the IST exception handler
126 *
127 * IST exception handlers normally cannot schedule. As a special
128 * exception, if the exception interrupted userspace code (i.e.
129 * user_mode(regs) would return true) and the exception was not
130 * a double fault, it can be safe to schedule. ist_begin_non_atomic()
131 * begins a non-atomic section within an ist_enter()/ist_exit() region.
132 * Callers are responsible for enabling interrupts themselves inside
133 * the non-atomic section, and callers must call ist_end_non_atomic()
134 * before ist_exit().
135 */
ist_begin_non_atomic(struct pt_regs * regs)136 void ist_begin_non_atomic(struct pt_regs *regs)
137 {
138 BUG_ON(!user_mode(regs));
139
140 /*
141 * Sanity check: we need to be on the normal thread stack. This
142 * will catch asm bugs and any attempt to use ist_preempt_enable
143 * from double_fault.
144 */
145 BUG_ON(!on_thread_stack());
146
147 preempt_enable_no_resched();
148 }
149
150 /**
151 * ist_end_non_atomic() - begin a non-atomic section in an IST exception
152 *
153 * Ends a non-atomic section started with ist_begin_non_atomic().
154 */
ist_end_non_atomic(void)155 void ist_end_non_atomic(void)
156 {
157 preempt_disable();
158 }
159
is_valid_bugaddr(unsigned long addr)160 int is_valid_bugaddr(unsigned long addr)
161 {
162 unsigned short ud;
163
164 if (addr < TASK_SIZE_MAX)
165 return 0;
166
167 if (probe_kernel_address((unsigned short *)addr, ud))
168 return 0;
169
170 return ud == INSN_UD0 || ud == INSN_UD2;
171 }
172
fixup_bug(struct pt_regs * regs,int trapnr)173 int fixup_bug(struct pt_regs *regs, int trapnr)
174 {
175 if (trapnr != X86_TRAP_UD)
176 return 0;
177
178 switch (report_bug(regs->ip, regs)) {
179 case BUG_TRAP_TYPE_NONE:
180 case BUG_TRAP_TYPE_BUG:
181 break;
182
183 case BUG_TRAP_TYPE_WARN:
184 regs->ip += LEN_UD2;
185 return 1;
186 }
187
188 return 0;
189 }
190
191 static nokprobe_inline int
do_trap_no_signal(struct task_struct * tsk,int trapnr,char * str,struct pt_regs * regs,long error_code)192 do_trap_no_signal(struct task_struct *tsk, int trapnr, char *str,
193 struct pt_regs *regs, long error_code)
194 {
195 if (v8086_mode(regs)) {
196 /*
197 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
198 * On nmi (interrupt 2), do_trap should not be called.
199 */
200 if (trapnr < X86_TRAP_UD) {
201 if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
202 error_code, trapnr))
203 return 0;
204 }
205 return -1;
206 }
207
208 if (!user_mode(regs)) {
209 if (fixup_exception(regs, trapnr))
210 return 0;
211
212 tsk->thread.error_code = error_code;
213 tsk->thread.trap_nr = trapnr;
214 die(str, regs, error_code);
215 }
216
217 return -1;
218 }
219
fill_trap_info(struct pt_regs * regs,int signr,int trapnr,siginfo_t * info)220 static siginfo_t *fill_trap_info(struct pt_regs *regs, int signr, int trapnr,
221 siginfo_t *info)
222 {
223 unsigned long siaddr;
224 int sicode;
225
226 switch (trapnr) {
227 default:
228 return SEND_SIG_PRIV;
229
230 case X86_TRAP_DE:
231 sicode = FPE_INTDIV;
232 siaddr = uprobe_get_trap_addr(regs);
233 break;
234 case X86_TRAP_UD:
235 sicode = ILL_ILLOPN;
236 siaddr = uprobe_get_trap_addr(regs);
237 break;
238 case X86_TRAP_AC:
239 sicode = BUS_ADRALN;
240 siaddr = 0;
241 break;
242 }
243
244 info->si_signo = signr;
245 info->si_errno = 0;
246 info->si_code = sicode;
247 info->si_addr = (void __user *)siaddr;
248 return info;
249 }
250
251 static void
do_trap(int trapnr,int signr,char * str,struct pt_regs * regs,long error_code,siginfo_t * info)252 do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
253 long error_code, siginfo_t *info)
254 {
255 struct task_struct *tsk = current;
256
257
258 if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
259 return;
260 /*
261 * We want error_code and trap_nr set for userspace faults and
262 * kernelspace faults which result in die(), but not
263 * kernelspace faults which are fixed up. die() gives the
264 * process no chance to handle the signal and notice the
265 * kernel fault information, so that won't result in polluting
266 * the information about previously queued, but not yet
267 * delivered, faults. See also do_general_protection below.
268 */
269 tsk->thread.error_code = error_code;
270 tsk->thread.trap_nr = trapnr;
271
272 if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
273 printk_ratelimit()) {
274 pr_info("%s[%d] trap %s ip:%lx sp:%lx error:%lx",
275 tsk->comm, tsk->pid, str,
276 regs->ip, regs->sp, error_code);
277 print_vma_addr(KERN_CONT " in ", regs->ip);
278 pr_cont("\n");
279 }
280
281 force_sig_info(signr, info ?: SEND_SIG_PRIV, tsk);
282 }
283 NOKPROBE_SYMBOL(do_trap);
284
do_error_trap(struct pt_regs * regs,long error_code,char * str,unsigned long trapnr,int signr)285 static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
286 unsigned long trapnr, int signr)
287 {
288 siginfo_t info;
289
290 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
291
292 /*
293 * WARN*()s end up here; fix them up before we call the
294 * notifier chain.
295 */
296 if (!user_mode(regs) && fixup_bug(regs, trapnr))
297 return;
298
299 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
300 NOTIFY_STOP) {
301 cond_local_irq_enable(regs);
302 clear_siginfo(&info);
303 do_trap(trapnr, signr, str, regs, error_code,
304 fill_trap_info(regs, signr, trapnr, &info));
305 }
306 }
307
308 #define DO_ERROR(trapnr, signr, str, name) \
309 dotraplinkage void do_##name(struct pt_regs *regs, long error_code) \
310 { \
311 do_error_trap(regs, error_code, str, trapnr, signr); \
312 }
313
314 DO_ERROR(X86_TRAP_DE, SIGFPE, "divide error", divide_error)
315 DO_ERROR(X86_TRAP_OF, SIGSEGV, "overflow", overflow)
316 DO_ERROR(X86_TRAP_UD, SIGILL, "invalid opcode", invalid_op)
317 DO_ERROR(X86_TRAP_OLD_MF, SIGFPE, "coprocessor segment overrun",coprocessor_segment_overrun)
318 DO_ERROR(X86_TRAP_TS, SIGSEGV, "invalid TSS", invalid_TSS)
319 DO_ERROR(X86_TRAP_NP, SIGBUS, "segment not present", segment_not_present)
320 DO_ERROR(X86_TRAP_SS, SIGBUS, "stack segment", stack_segment)
321 DO_ERROR(X86_TRAP_AC, SIGBUS, "alignment check", alignment_check)
322
323 #ifdef CONFIG_VMAP_STACK
handle_stack_overflow(const char * message,struct pt_regs * regs,unsigned long fault_address)324 __visible void __noreturn handle_stack_overflow(const char *message,
325 struct pt_regs *regs,
326 unsigned long fault_address)
327 {
328 printk(KERN_EMERG "BUG: stack guard page was hit at %p (stack is %p..%p)\n",
329 (void *)fault_address, current->stack,
330 (char *)current->stack + THREAD_SIZE - 1);
331 die(message, regs, 0);
332
333 /* Be absolutely certain we don't return. */
334 panic(message);
335 }
336 #endif
337
338 #ifdef CONFIG_X86_64
339 /* Runs on IST stack */
do_double_fault(struct pt_regs * regs,long error_code)340 dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code)
341 {
342 static const char str[] = "double fault";
343 struct task_struct *tsk = current;
344 #ifdef CONFIG_VMAP_STACK
345 unsigned long cr2;
346 #endif
347
348 #ifdef CONFIG_X86_ESPFIX64
349 extern unsigned char native_irq_return_iret[];
350
351 /*
352 * If IRET takes a non-IST fault on the espfix64 stack, then we
353 * end up promoting it to a doublefault. In that case, take
354 * advantage of the fact that we're not using the normal (TSS.sp0)
355 * stack right now. We can write a fake #GP(0) frame at TSS.sp0
356 * and then modify our own IRET frame so that, when we return,
357 * we land directly at the #GP(0) vector with the stack already
358 * set up according to its expectations.
359 *
360 * The net result is that our #GP handler will think that we
361 * entered from usermode with the bad user context.
362 *
363 * No need for ist_enter here because we don't use RCU.
364 */
365 if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY &&
366 regs->cs == __KERNEL_CS &&
367 regs->ip == (unsigned long)native_irq_return_iret)
368 {
369 struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
370
371 /*
372 * regs->sp points to the failing IRET frame on the
373 * ESPFIX64 stack. Copy it to the entry stack. This fills
374 * in gpregs->ss through gpregs->ip.
375 *
376 */
377 memmove(&gpregs->ip, (void *)regs->sp, 5*8);
378 gpregs->orig_ax = 0; /* Missing (lost) #GP error code */
379
380 /*
381 * Adjust our frame so that we return straight to the #GP
382 * vector with the expected RSP value. This is safe because
383 * we won't enable interupts or schedule before we invoke
384 * general_protection, so nothing will clobber the stack
385 * frame we just set up.
386 */
387 regs->ip = (unsigned long)general_protection;
388 regs->sp = (unsigned long)&gpregs->orig_ax;
389
390 return;
391 }
392 #endif
393
394 ist_enter(regs);
395 notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
396
397 tsk->thread.error_code = error_code;
398 tsk->thread.trap_nr = X86_TRAP_DF;
399
400 #ifdef CONFIG_VMAP_STACK
401 /*
402 * If we overflow the stack into a guard page, the CPU will fail
403 * to deliver #PF and will send #DF instead. Similarly, if we
404 * take any non-IST exception while too close to the bottom of
405 * the stack, the processor will get a page fault while
406 * delivering the exception and will generate a double fault.
407 *
408 * According to the SDM (footnote in 6.15 under "Interrupt 14 -
409 * Page-Fault Exception (#PF):
410 *
411 * Processors update CR2 whenever a page fault is detected. If a
412 * second page fault occurs while an earlier page fault is being
413 * delivered, the faulting linear address of the second fault will
414 * overwrite the contents of CR2 (replacing the previous
415 * address). These updates to CR2 occur even if the page fault
416 * results in a double fault or occurs during the delivery of a
417 * double fault.
418 *
419 * The logic below has a small possibility of incorrectly diagnosing
420 * some errors as stack overflows. For example, if the IDT or GDT
421 * gets corrupted such that #GP delivery fails due to a bad descriptor
422 * causing #GP and we hit this condition while CR2 coincidentally
423 * points to the stack guard page, we'll think we overflowed the
424 * stack. Given that we're going to panic one way or another
425 * if this happens, this isn't necessarily worth fixing.
426 *
427 * If necessary, we could improve the test by only diagnosing
428 * a stack overflow if the saved RSP points within 47 bytes of
429 * the bottom of the stack: if RSP == tsk_stack + 48 and we
430 * take an exception, the stack is already aligned and there
431 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a
432 * possible error code, so a stack overflow would *not* double
433 * fault. With any less space left, exception delivery could
434 * fail, and, as a practical matter, we've overflowed the
435 * stack even if the actual trigger for the double fault was
436 * something else.
437 */
438 cr2 = read_cr2();
439 if ((unsigned long)task_stack_page(tsk) - 1 - cr2 < PAGE_SIZE)
440 handle_stack_overflow("kernel stack overflow (double-fault)", regs, cr2);
441 #endif
442
443 #ifdef CONFIG_DOUBLEFAULT
444 df_debug(regs, error_code);
445 #endif
446 /*
447 * This is always a kernel trap and never fixable (and thus must
448 * never return).
449 */
450 for (;;)
451 die(str, regs, error_code);
452 }
453 #endif
454
do_bounds(struct pt_regs * regs,long error_code)455 dotraplinkage void do_bounds(struct pt_regs *regs, long error_code)
456 {
457 const struct mpx_bndcsr *bndcsr;
458 siginfo_t *info;
459
460 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
461 if (notify_die(DIE_TRAP, "bounds", regs, error_code,
462 X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
463 return;
464 cond_local_irq_enable(regs);
465
466 if (!user_mode(regs))
467 die("bounds", regs, error_code);
468
469 if (!cpu_feature_enabled(X86_FEATURE_MPX)) {
470 /* The exception is not from Intel MPX */
471 goto exit_trap;
472 }
473
474 /*
475 * We need to look at BNDSTATUS to resolve this exception.
476 * A NULL here might mean that it is in its 'init state',
477 * which is all zeros which indicates MPX was not
478 * responsible for the exception.
479 */
480 bndcsr = get_xsave_field_ptr(XFEATURE_MASK_BNDCSR);
481 if (!bndcsr)
482 goto exit_trap;
483
484 trace_bounds_exception_mpx(bndcsr);
485 /*
486 * The error code field of the BNDSTATUS register communicates status
487 * information of a bound range exception #BR or operation involving
488 * bound directory.
489 */
490 switch (bndcsr->bndstatus & MPX_BNDSTA_ERROR_CODE) {
491 case 2: /* Bound directory has invalid entry. */
492 if (mpx_handle_bd_fault())
493 goto exit_trap;
494 break; /* Success, it was handled */
495 case 1: /* Bound violation. */
496 info = mpx_generate_siginfo(regs);
497 if (IS_ERR(info)) {
498 /*
499 * We failed to decode the MPX instruction. Act as if
500 * the exception was not caused by MPX.
501 */
502 goto exit_trap;
503 }
504 /*
505 * Success, we decoded the instruction and retrieved
506 * an 'info' containing the address being accessed
507 * which caused the exception. This information
508 * allows and application to possibly handle the
509 * #BR exception itself.
510 */
511 do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, info);
512 kfree(info);
513 break;
514 case 0: /* No exception caused by Intel MPX operations. */
515 goto exit_trap;
516 default:
517 die("bounds", regs, error_code);
518 }
519
520 return;
521
522 exit_trap:
523 /*
524 * This path out is for all the cases where we could not
525 * handle the exception in some way (like allocating a
526 * table or telling userspace about it. We will also end
527 * up here if the kernel has MPX turned off at compile
528 * time..
529 */
530 do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, NULL);
531 }
532
533 dotraplinkage void
do_general_protection(struct pt_regs * regs,long error_code)534 do_general_protection(struct pt_regs *regs, long error_code)
535 {
536 struct task_struct *tsk;
537
538 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
539 cond_local_irq_enable(regs);
540
541 if (static_cpu_has(X86_FEATURE_UMIP)) {
542 if (user_mode(regs) && fixup_umip_exception(regs))
543 return;
544 }
545
546 if (v8086_mode(regs)) {
547 local_irq_enable();
548 handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
549 return;
550 }
551
552 tsk = current;
553 if (!user_mode(regs)) {
554 if (fixup_exception(regs, X86_TRAP_GP))
555 return;
556
557 tsk->thread.error_code = error_code;
558 tsk->thread.trap_nr = X86_TRAP_GP;
559 if (notify_die(DIE_GPF, "general protection fault", regs, error_code,
560 X86_TRAP_GP, SIGSEGV) != NOTIFY_STOP)
561 die("general protection fault", regs, error_code);
562 return;
563 }
564
565 tsk->thread.error_code = error_code;
566 tsk->thread.trap_nr = X86_TRAP_GP;
567
568 if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
569 printk_ratelimit()) {
570 pr_info("%s[%d] general protection ip:%lx sp:%lx error:%lx",
571 tsk->comm, task_pid_nr(tsk),
572 regs->ip, regs->sp, error_code);
573 print_vma_addr(KERN_CONT " in ", regs->ip);
574 pr_cont("\n");
575 }
576
577 force_sig_info(SIGSEGV, SEND_SIG_PRIV, tsk);
578 }
579 NOKPROBE_SYMBOL(do_general_protection);
580
do_int3(struct pt_regs * regs,long error_code)581 dotraplinkage void notrace do_int3(struct pt_regs *regs, long error_code)
582 {
583 #ifdef CONFIG_DYNAMIC_FTRACE
584 /*
585 * ftrace must be first, everything else may cause a recursive crash.
586 * See note by declaration of modifying_ftrace_code in ftrace.c
587 */
588 if (unlikely(atomic_read(&modifying_ftrace_code)) &&
589 ftrace_int3_handler(regs))
590 return;
591 #endif
592 if (poke_int3_handler(regs))
593 return;
594
595 /*
596 * Use ist_enter despite the fact that we don't use an IST stack.
597 * We can be called from a kprobe in non-CONTEXT_KERNEL kernel
598 * mode or even during context tracking state changes.
599 *
600 * This means that we can't schedule. That's okay.
601 */
602 ist_enter(regs);
603 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
604 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
605 if (kgdb_ll_trap(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
606 SIGTRAP) == NOTIFY_STOP)
607 goto exit;
608 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
609
610 #ifdef CONFIG_KPROBES
611 if (kprobe_int3_handler(regs))
612 goto exit;
613 #endif
614
615 if (notify_die(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
616 SIGTRAP) == NOTIFY_STOP)
617 goto exit;
618
619 cond_local_irq_enable(regs);
620 do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, error_code, NULL);
621 cond_local_irq_disable(regs);
622
623 exit:
624 ist_exit(regs);
625 }
626 NOKPROBE_SYMBOL(do_int3);
627
628 #ifdef CONFIG_X86_64
629 /*
630 * Help handler running on a per-cpu (IST or entry trampoline) stack
631 * to switch to the normal thread stack if the interrupted code was in
632 * user mode. The actual stack switch is done in entry_64.S
633 */
sync_regs(struct pt_regs * eregs)634 asmlinkage __visible notrace struct pt_regs *sync_regs(struct pt_regs *eregs)
635 {
636 struct pt_regs *regs = (struct pt_regs *)this_cpu_read(cpu_current_top_of_stack) - 1;
637 if (regs != eregs)
638 *regs = *eregs;
639 return regs;
640 }
641 NOKPROBE_SYMBOL(sync_regs);
642
643 struct bad_iret_stack {
644 void *error_entry_ret;
645 struct pt_regs regs;
646 };
647
648 asmlinkage __visible notrace
fixup_bad_iret(struct bad_iret_stack * s)649 struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s)
650 {
651 /*
652 * This is called from entry_64.S early in handling a fault
653 * caused by a bad iret to user mode. To handle the fault
654 * correctly, we want to move our stack frame to where it would
655 * be had we entered directly on the entry stack (rather than
656 * just below the IRET frame) and we want to pretend that the
657 * exception came from the IRET target.
658 */
659 struct bad_iret_stack *new_stack =
660 (struct bad_iret_stack *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
661
662 /* Copy the IRET target to the new stack. */
663 memmove(&new_stack->regs.ip, (void *)s->regs.sp, 5*8);
664
665 /* Copy the remainder of the stack from the current stack. */
666 memmove(new_stack, s, offsetof(struct bad_iret_stack, regs.ip));
667
668 BUG_ON(!user_mode(&new_stack->regs));
669 return new_stack;
670 }
671 NOKPROBE_SYMBOL(fixup_bad_iret);
672 #endif
673
is_sysenter_singlestep(struct pt_regs * regs)674 static bool is_sysenter_singlestep(struct pt_regs *regs)
675 {
676 /*
677 * We don't try for precision here. If we're anywhere in the region of
678 * code that can be single-stepped in the SYSENTER entry path, then
679 * assume that this is a useless single-step trap due to SYSENTER
680 * being invoked with TF set. (We don't know in advance exactly
681 * which instructions will be hit because BTF could plausibly
682 * be set.)
683 */
684 #ifdef CONFIG_X86_32
685 return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) <
686 (unsigned long)__end_SYSENTER_singlestep_region -
687 (unsigned long)__begin_SYSENTER_singlestep_region;
688 #elif defined(CONFIG_IA32_EMULATION)
689 return (regs->ip - (unsigned long)entry_SYSENTER_compat) <
690 (unsigned long)__end_entry_SYSENTER_compat -
691 (unsigned long)entry_SYSENTER_compat;
692 #else
693 return false;
694 #endif
695 }
696
697 /*
698 * Our handling of the processor debug registers is non-trivial.
699 * We do not clear them on entry and exit from the kernel. Therefore
700 * it is possible to get a watchpoint trap here from inside the kernel.
701 * However, the code in ./ptrace.c has ensured that the user can
702 * only set watchpoints on userspace addresses. Therefore the in-kernel
703 * watchpoint trap can only occur in code which is reading/writing
704 * from user space. Such code must not hold kernel locks (since it
705 * can equally take a page fault), therefore it is safe to call
706 * force_sig_info even though that claims and releases locks.
707 *
708 * Code in ./signal.c ensures that the debug control register
709 * is restored before we deliver any signal, and therefore that
710 * user code runs with the correct debug control register even though
711 * we clear it here.
712 *
713 * Being careful here means that we don't have to be as careful in a
714 * lot of more complicated places (task switching can be a bit lazy
715 * about restoring all the debug state, and ptrace doesn't have to
716 * find every occurrence of the TF bit that could be saved away even
717 * by user code)
718 *
719 * May run on IST stack.
720 */
do_debug(struct pt_regs * regs,long error_code)721 dotraplinkage void do_debug(struct pt_regs *regs, long error_code)
722 {
723 struct task_struct *tsk = current;
724 int user_icebp = 0;
725 unsigned long dr6;
726 int si_code;
727
728 ist_enter(regs);
729
730 get_debugreg(dr6, 6);
731 /*
732 * The Intel SDM says:
733 *
734 * Certain debug exceptions may clear bits 0-3. The remaining
735 * contents of the DR6 register are never cleared by the
736 * processor. To avoid confusion in identifying debug
737 * exceptions, debug handlers should clear the register before
738 * returning to the interrupted task.
739 *
740 * Keep it simple: clear DR6 immediately.
741 */
742 set_debugreg(0, 6);
743
744 /* Filter out all the reserved bits which are preset to 1 */
745 dr6 &= ~DR6_RESERVED;
746
747 /*
748 * The SDM says "The processor clears the BTF flag when it
749 * generates a debug exception." Clear TIF_BLOCKSTEP to keep
750 * TIF_BLOCKSTEP in sync with the hardware BTF flag.
751 */
752 clear_tsk_thread_flag(tsk, TIF_BLOCKSTEP);
753
754 if (unlikely(!user_mode(regs) && (dr6 & DR_STEP) &&
755 is_sysenter_singlestep(regs))) {
756 dr6 &= ~DR_STEP;
757 if (!dr6)
758 goto exit;
759 /*
760 * else we might have gotten a single-step trap and hit a
761 * watchpoint at the same time, in which case we should fall
762 * through and handle the watchpoint.
763 */
764 }
765
766 /*
767 * If dr6 has no reason to give us about the origin of this trap,
768 * then it's very likely the result of an icebp/int01 trap.
769 * User wants a sigtrap for that.
770 */
771 if (!dr6 && user_mode(regs))
772 user_icebp = 1;
773
774 /* Store the virtualized DR6 value */
775 tsk->thread.debugreg6 = dr6;
776
777 #ifdef CONFIG_KPROBES
778 if (kprobe_debug_handler(regs))
779 goto exit;
780 #endif
781
782 if (notify_die(DIE_DEBUG, "debug", regs, (long)&dr6, error_code,
783 SIGTRAP) == NOTIFY_STOP)
784 goto exit;
785
786 /*
787 * Let others (NMI) know that the debug stack is in use
788 * as we may switch to the interrupt stack.
789 */
790 debug_stack_usage_inc();
791
792 /* It's safe to allow irq's after DR6 has been saved */
793 cond_local_irq_enable(regs);
794
795 if (v8086_mode(regs)) {
796 handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code,
797 X86_TRAP_DB);
798 cond_local_irq_disable(regs);
799 debug_stack_usage_dec();
800 goto exit;
801 }
802
803 if (WARN_ON_ONCE((dr6 & DR_STEP) && !user_mode(regs))) {
804 /*
805 * Historical junk that used to handle SYSENTER single-stepping.
806 * This should be unreachable now. If we survive for a while
807 * without anyone hitting this warning, we'll turn this into
808 * an oops.
809 */
810 tsk->thread.debugreg6 &= ~DR_STEP;
811 set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
812 regs->flags &= ~X86_EFLAGS_TF;
813 }
814 si_code = get_si_code(tsk->thread.debugreg6);
815 if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp)
816 send_sigtrap(tsk, regs, error_code, si_code);
817 cond_local_irq_disable(regs);
818 debug_stack_usage_dec();
819
820 exit:
821 ist_exit(regs);
822 }
823 NOKPROBE_SYMBOL(do_debug);
824
825 /*
826 * Note that we play around with the 'TS' bit in an attempt to get
827 * the correct behaviour even in the presence of the asynchronous
828 * IRQ13 behaviour
829 */
math_error(struct pt_regs * regs,int error_code,int trapnr)830 static void math_error(struct pt_regs *regs, int error_code, int trapnr)
831 {
832 struct task_struct *task = current;
833 struct fpu *fpu = &task->thread.fpu;
834 siginfo_t info;
835 char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
836 "simd exception";
837
838 cond_local_irq_enable(regs);
839
840 if (!user_mode(regs)) {
841 if (fixup_exception(regs, trapnr))
842 return;
843
844 task->thread.error_code = error_code;
845 task->thread.trap_nr = trapnr;
846
847 if (notify_die(DIE_TRAP, str, regs, error_code,
848 trapnr, SIGFPE) != NOTIFY_STOP)
849 die(str, regs, error_code);
850 return;
851 }
852
853 /*
854 * Save the info for the exception handler and clear the error.
855 */
856 fpu__save(fpu);
857
858 task->thread.trap_nr = trapnr;
859 task->thread.error_code = error_code;
860 clear_siginfo(&info);
861 info.si_signo = SIGFPE;
862 info.si_errno = 0;
863 info.si_addr = (void __user *)uprobe_get_trap_addr(regs);
864
865 info.si_code = fpu__exception_code(fpu, trapnr);
866
867 /* Retry when we get spurious exceptions: */
868 if (!info.si_code)
869 return;
870
871 force_sig_info(SIGFPE, &info, task);
872 }
873
do_coprocessor_error(struct pt_regs * regs,long error_code)874 dotraplinkage void do_coprocessor_error(struct pt_regs *regs, long error_code)
875 {
876 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
877 math_error(regs, error_code, X86_TRAP_MF);
878 }
879
880 dotraplinkage void
do_simd_coprocessor_error(struct pt_regs * regs,long error_code)881 do_simd_coprocessor_error(struct pt_regs *regs, long error_code)
882 {
883 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
884 math_error(regs, error_code, X86_TRAP_XF);
885 }
886
887 dotraplinkage void
do_spurious_interrupt_bug(struct pt_regs * regs,long error_code)888 do_spurious_interrupt_bug(struct pt_regs *regs, long error_code)
889 {
890 cond_local_irq_enable(regs);
891 }
892
893 dotraplinkage void
do_device_not_available(struct pt_regs * regs,long error_code)894 do_device_not_available(struct pt_regs *regs, long error_code)
895 {
896 unsigned long cr0;
897
898 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
899
900 #ifdef CONFIG_MATH_EMULATION
901 if (!boot_cpu_has(X86_FEATURE_FPU) && (read_cr0() & X86_CR0_EM)) {
902 struct math_emu_info info = { };
903
904 cond_local_irq_enable(regs);
905
906 info.regs = regs;
907 math_emulate(&info);
908 return;
909 }
910 #endif
911
912 /* This should not happen. */
913 cr0 = read_cr0();
914 if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) {
915 /* Try to fix it up and carry on. */
916 write_cr0(cr0 & ~X86_CR0_TS);
917 } else {
918 /*
919 * Something terrible happened, and we're better off trying
920 * to kill the task than getting stuck in a never-ending
921 * loop of #NM faults.
922 */
923 die("unexpected #NM exception", regs, error_code);
924 }
925 }
926 NOKPROBE_SYMBOL(do_device_not_available);
927
928 #ifdef CONFIG_X86_32
do_iret_error(struct pt_regs * regs,long error_code)929 dotraplinkage void do_iret_error(struct pt_regs *regs, long error_code)
930 {
931 siginfo_t info;
932
933 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
934 local_irq_enable();
935
936 clear_siginfo(&info);
937 info.si_signo = SIGILL;
938 info.si_errno = 0;
939 info.si_code = ILL_BADSTK;
940 info.si_addr = NULL;
941 if (notify_die(DIE_TRAP, "iret exception", regs, error_code,
942 X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
943 do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, error_code,
944 &info);
945 }
946 }
947 #endif
948
trap_init(void)949 void __init trap_init(void)
950 {
951 /* Init cpu_entry_area before IST entries are set up */
952 setup_cpu_entry_areas();
953
954 idt_setup_traps();
955
956 /*
957 * Set the IDT descriptor to a fixed read-only location, so that the
958 * "sidt" instruction will not leak the location of the kernel, and
959 * to defend the IDT against arbitrary memory write vulnerabilities.
960 * It will be reloaded in cpu_init() */
961 cea_set_pte(CPU_ENTRY_AREA_RO_IDT_VADDR, __pa_symbol(idt_table),
962 PAGE_KERNEL_RO);
963 idt_descr.address = CPU_ENTRY_AREA_RO_IDT;
964
965 /*
966 * Should be a barrier for any external CPU state:
967 */
968 cpu_init();
969
970 idt_setup_ist_traps();
971
972 x86_init.irqs.trap_init();
973
974 idt_setup_debugidt_traps();
975 }
976