1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/ext4/inode.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * from
11 *
12 * linux/fs/minix/inode.c
13 *
14 * Copyright (C) 1991, 1992 Linus Torvalds
15 *
16 * 64-bit file support on 64-bit platforms by Jakub Jelinek
17 * (jj@sunsite.ms.mff.cuni.cz)
18 *
19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20 */
21
22 #include <linux/fs.h>
23 #include <linux/mount.h>
24 #include <linux/time.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/string.h>
30 #include <linux/buffer_head.h>
31 #include <linux/writeback.h>
32 #include <linux/pagevec.h>
33 #include <linux/mpage.h>
34 #include <linux/namei.h>
35 #include <linux/uio.h>
36 #include <linux/bio.h>
37 #include <linux/workqueue.h>
38 #include <linux/kernel.h>
39 #include <linux/printk.h>
40 #include <linux/slab.h>
41 #include <linux/bitops.h>
42 #include <linux/iomap.h>
43 #include <linux/iversion.h>
44
45 #include "ext4_jbd2.h"
46 #include "xattr.h"
47 #include "acl.h"
48 #include "truncate.h"
49
50 #include <trace/events/ext4.h>
51
ext4_inode_csum(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53 struct ext4_inode_info *ei)
54 {
55 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56 __u32 csum;
57 __u16 dummy_csum = 0;
58 int offset = offsetof(struct ext4_inode, i_checksum_lo);
59 unsigned int csum_size = sizeof(dummy_csum);
60
61 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
62 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
63 offset += csum_size;
64 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
65 EXT4_GOOD_OLD_INODE_SIZE - offset);
66
67 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
68 offset = offsetof(struct ext4_inode, i_checksum_hi);
69 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
70 EXT4_GOOD_OLD_INODE_SIZE,
71 offset - EXT4_GOOD_OLD_INODE_SIZE);
72 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
73 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
74 csum_size);
75 offset += csum_size;
76 }
77 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
78 EXT4_INODE_SIZE(inode->i_sb) - offset);
79 }
80
81 return csum;
82 }
83
ext4_inode_csum_verify(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)84 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
85 struct ext4_inode_info *ei)
86 {
87 __u32 provided, calculated;
88
89 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
90 cpu_to_le32(EXT4_OS_LINUX) ||
91 !ext4_has_metadata_csum(inode->i_sb))
92 return 1;
93
94 provided = le16_to_cpu(raw->i_checksum_lo);
95 calculated = ext4_inode_csum(inode, raw, ei);
96 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
97 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
98 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
99 else
100 calculated &= 0xFFFF;
101
102 return provided == calculated;
103 }
104
ext4_inode_csum_set(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)105 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
106 struct ext4_inode_info *ei)
107 {
108 __u32 csum;
109
110 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
111 cpu_to_le32(EXT4_OS_LINUX) ||
112 !ext4_has_metadata_csum(inode->i_sb))
113 return;
114
115 csum = ext4_inode_csum(inode, raw, ei);
116 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
117 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
118 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
119 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
120 }
121
ext4_begin_ordered_truncate(struct inode * inode,loff_t new_size)122 static inline int ext4_begin_ordered_truncate(struct inode *inode,
123 loff_t new_size)
124 {
125 trace_ext4_begin_ordered_truncate(inode, new_size);
126 /*
127 * If jinode is zero, then we never opened the file for
128 * writing, so there's no need to call
129 * jbd2_journal_begin_ordered_truncate() since there's no
130 * outstanding writes we need to flush.
131 */
132 if (!EXT4_I(inode)->jinode)
133 return 0;
134 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
135 EXT4_I(inode)->jinode,
136 new_size);
137 }
138
139 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
140 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
141 int pextents);
142
143 /*
144 * Test whether an inode is a fast symlink.
145 * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
146 */
ext4_inode_is_fast_symlink(struct inode * inode)147 int ext4_inode_is_fast_symlink(struct inode *inode)
148 {
149 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
150 int ea_blocks = EXT4_I(inode)->i_file_acl ?
151 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
152
153 if (ext4_has_inline_data(inode))
154 return 0;
155
156 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
157 }
158 return S_ISLNK(inode->i_mode) && inode->i_size &&
159 (inode->i_size < EXT4_N_BLOCKS * 4);
160 }
161
162 /*
163 * Called at the last iput() if i_nlink is zero.
164 */
ext4_evict_inode(struct inode * inode)165 void ext4_evict_inode(struct inode *inode)
166 {
167 handle_t *handle;
168 int err;
169 /*
170 * Credits for final inode cleanup and freeing:
171 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
172 * (xattr block freeing), bitmap, group descriptor (inode freeing)
173 */
174 int extra_credits = 6;
175 struct ext4_xattr_inode_array *ea_inode_array = NULL;
176 bool freeze_protected = false;
177
178 trace_ext4_evict_inode(inode);
179
180 if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)
181 ext4_evict_ea_inode(inode);
182 if (inode->i_nlink) {
183 /*
184 * When journalling data dirty buffers are tracked only in the
185 * journal. So although mm thinks everything is clean and
186 * ready for reaping the inode might still have some pages to
187 * write in the running transaction or waiting to be
188 * checkpointed. Thus calling jbd2_journal_invalidate_folio()
189 * (via truncate_inode_pages()) to discard these buffers can
190 * cause data loss. Also even if we did not discard these
191 * buffers, we would have no way to find them after the inode
192 * is reaped and thus user could see stale data if he tries to
193 * read them before the transaction is checkpointed. So be
194 * careful and force everything to disk here... We use
195 * ei->i_datasync_tid to store the newest transaction
196 * containing inode's data.
197 *
198 * Note that directories do not have this problem because they
199 * don't use page cache.
200 */
201 if (inode->i_ino != EXT4_JOURNAL_INO &&
202 ext4_should_journal_data(inode) &&
203 S_ISREG(inode->i_mode) && inode->i_data.nrpages) {
204 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
205 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
206
207 jbd2_complete_transaction(journal, commit_tid);
208 filemap_write_and_wait(&inode->i_data);
209 }
210 truncate_inode_pages_final(&inode->i_data);
211
212 goto no_delete;
213 }
214
215 if (is_bad_inode(inode))
216 goto no_delete;
217 dquot_initialize(inode);
218
219 if (ext4_should_order_data(inode))
220 ext4_begin_ordered_truncate(inode, 0);
221 truncate_inode_pages_final(&inode->i_data);
222
223 /*
224 * For inodes with journalled data, transaction commit could have
225 * dirtied the inode. Flush worker is ignoring it because of I_FREEING
226 * flag but we still need to remove the inode from the writeback lists.
227 */
228 if (!list_empty_careful(&inode->i_io_list)) {
229 WARN_ON_ONCE(!ext4_should_journal_data(inode));
230 inode_io_list_del(inode);
231 }
232
233 /*
234 * Protect us against freezing - iput() caller didn't have to have any
235 * protection against it. When we are in a running transaction though,
236 * we are already protected against freezing and we cannot grab further
237 * protection due to lock ordering constraints.
238 */
239 if (!ext4_journal_current_handle()) {
240 sb_start_intwrite(inode->i_sb);
241 freeze_protected = true;
242 }
243
244 if (!IS_NOQUOTA(inode))
245 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
246
247 /*
248 * Block bitmap, group descriptor, and inode are accounted in both
249 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
250 */
251 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
252 ext4_blocks_for_truncate(inode) + extra_credits - 3);
253 if (IS_ERR(handle)) {
254 ext4_std_error(inode->i_sb, PTR_ERR(handle));
255 /*
256 * If we're going to skip the normal cleanup, we still need to
257 * make sure that the in-core orphan linked list is properly
258 * cleaned up.
259 */
260 ext4_orphan_del(NULL, inode);
261 if (freeze_protected)
262 sb_end_intwrite(inode->i_sb);
263 goto no_delete;
264 }
265
266 if (IS_SYNC(inode))
267 ext4_handle_sync(handle);
268
269 /*
270 * Set inode->i_size to 0 before calling ext4_truncate(). We need
271 * special handling of symlinks here because i_size is used to
272 * determine whether ext4_inode_info->i_data contains symlink data or
273 * block mappings. Setting i_size to 0 will remove its fast symlink
274 * status. Erase i_data so that it becomes a valid empty block map.
275 */
276 if (ext4_inode_is_fast_symlink(inode))
277 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
278 inode->i_size = 0;
279 err = ext4_mark_inode_dirty(handle, inode);
280 if (err) {
281 ext4_warning(inode->i_sb,
282 "couldn't mark inode dirty (err %d)", err);
283 goto stop_handle;
284 }
285 if (inode->i_blocks) {
286 err = ext4_truncate(inode);
287 if (err) {
288 ext4_error_err(inode->i_sb, -err,
289 "couldn't truncate inode %lu (err %d)",
290 inode->i_ino, err);
291 goto stop_handle;
292 }
293 }
294
295 /* Remove xattr references. */
296 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
297 extra_credits);
298 if (err) {
299 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
300 stop_handle:
301 ext4_journal_stop(handle);
302 ext4_orphan_del(NULL, inode);
303 if (freeze_protected)
304 sb_end_intwrite(inode->i_sb);
305 ext4_xattr_inode_array_free(ea_inode_array);
306 goto no_delete;
307 }
308
309 /*
310 * Kill off the orphan record which ext4_truncate created.
311 * AKPM: I think this can be inside the above `if'.
312 * Note that ext4_orphan_del() has to be able to cope with the
313 * deletion of a non-existent orphan - this is because we don't
314 * know if ext4_truncate() actually created an orphan record.
315 * (Well, we could do this if we need to, but heck - it works)
316 */
317 ext4_orphan_del(handle, inode);
318 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds();
319
320 /*
321 * One subtle ordering requirement: if anything has gone wrong
322 * (transaction abort, IO errors, whatever), then we can still
323 * do these next steps (the fs will already have been marked as
324 * having errors), but we can't free the inode if the mark_dirty
325 * fails.
326 */
327 if (ext4_mark_inode_dirty(handle, inode))
328 /* If that failed, just do the required in-core inode clear. */
329 ext4_clear_inode(inode);
330 else
331 ext4_free_inode(handle, inode);
332 ext4_journal_stop(handle);
333 if (freeze_protected)
334 sb_end_intwrite(inode->i_sb);
335 ext4_xattr_inode_array_free(ea_inode_array);
336 return;
337 no_delete:
338 if (!list_empty(&EXT4_I(inode)->i_fc_list))
339 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL);
340 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
341 }
342
343 #ifdef CONFIG_QUOTA
ext4_get_reserved_space(struct inode * inode)344 qsize_t *ext4_get_reserved_space(struct inode *inode)
345 {
346 return &EXT4_I(inode)->i_reserved_quota;
347 }
348 #endif
349
350 /*
351 * Called with i_data_sem down, which is important since we can call
352 * ext4_discard_preallocations() from here.
353 */
ext4_da_update_reserve_space(struct inode * inode,int used,int quota_claim)354 void ext4_da_update_reserve_space(struct inode *inode,
355 int used, int quota_claim)
356 {
357 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
358 struct ext4_inode_info *ei = EXT4_I(inode);
359
360 spin_lock(&ei->i_block_reservation_lock);
361 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
362 if (unlikely(used > ei->i_reserved_data_blocks)) {
363 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
364 "with only %d reserved data blocks",
365 __func__, inode->i_ino, used,
366 ei->i_reserved_data_blocks);
367 WARN_ON(1);
368 used = ei->i_reserved_data_blocks;
369 }
370
371 /* Update per-inode reservations */
372 ei->i_reserved_data_blocks -= used;
373 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
374
375 spin_unlock(&ei->i_block_reservation_lock);
376
377 /* Update quota subsystem for data blocks */
378 if (quota_claim)
379 dquot_claim_block(inode, EXT4_C2B(sbi, used));
380 else {
381 /*
382 * We did fallocate with an offset that is already delayed
383 * allocated. So on delayed allocated writeback we should
384 * not re-claim the quota for fallocated blocks.
385 */
386 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
387 }
388
389 /*
390 * If we have done all the pending block allocations and if
391 * there aren't any writers on the inode, we can discard the
392 * inode's preallocations.
393 */
394 if ((ei->i_reserved_data_blocks == 0) &&
395 !inode_is_open_for_write(inode))
396 ext4_discard_preallocations(inode, 0);
397 }
398
__check_block_validity(struct inode * inode,const char * func,unsigned int line,struct ext4_map_blocks * map)399 static int __check_block_validity(struct inode *inode, const char *func,
400 unsigned int line,
401 struct ext4_map_blocks *map)
402 {
403 if (ext4_has_feature_journal(inode->i_sb) &&
404 (inode->i_ino ==
405 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
406 return 0;
407 if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
408 ext4_error_inode(inode, func, line, map->m_pblk,
409 "lblock %lu mapped to illegal pblock %llu "
410 "(length %d)", (unsigned long) map->m_lblk,
411 map->m_pblk, map->m_len);
412 return -EFSCORRUPTED;
413 }
414 return 0;
415 }
416
ext4_issue_zeroout(struct inode * inode,ext4_lblk_t lblk,ext4_fsblk_t pblk,ext4_lblk_t len)417 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
418 ext4_lblk_t len)
419 {
420 int ret;
421
422 if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
423 return fscrypt_zeroout_range(inode, lblk, pblk, len);
424
425 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
426 if (ret > 0)
427 ret = 0;
428
429 return ret;
430 }
431
432 #define check_block_validity(inode, map) \
433 __check_block_validity((inode), __func__, __LINE__, (map))
434
435 #ifdef ES_AGGRESSIVE_TEST
ext4_map_blocks_es_recheck(handle_t * handle,struct inode * inode,struct ext4_map_blocks * es_map,struct ext4_map_blocks * map,int flags)436 static void ext4_map_blocks_es_recheck(handle_t *handle,
437 struct inode *inode,
438 struct ext4_map_blocks *es_map,
439 struct ext4_map_blocks *map,
440 int flags)
441 {
442 int retval;
443
444 map->m_flags = 0;
445 /*
446 * There is a race window that the result is not the same.
447 * e.g. xfstests #223 when dioread_nolock enables. The reason
448 * is that we lookup a block mapping in extent status tree with
449 * out taking i_data_sem. So at the time the unwritten extent
450 * could be converted.
451 */
452 down_read(&EXT4_I(inode)->i_data_sem);
453 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
454 retval = ext4_ext_map_blocks(handle, inode, map, 0);
455 } else {
456 retval = ext4_ind_map_blocks(handle, inode, map, 0);
457 }
458 up_read((&EXT4_I(inode)->i_data_sem));
459
460 /*
461 * We don't check m_len because extent will be collpased in status
462 * tree. So the m_len might not equal.
463 */
464 if (es_map->m_lblk != map->m_lblk ||
465 es_map->m_flags != map->m_flags ||
466 es_map->m_pblk != map->m_pblk) {
467 printk("ES cache assertion failed for inode: %lu "
468 "es_cached ex [%d/%d/%llu/%x] != "
469 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
470 inode->i_ino, es_map->m_lblk, es_map->m_len,
471 es_map->m_pblk, es_map->m_flags, map->m_lblk,
472 map->m_len, map->m_pblk, map->m_flags,
473 retval, flags);
474 }
475 }
476 #endif /* ES_AGGRESSIVE_TEST */
477
478 /*
479 * The ext4_map_blocks() function tries to look up the requested blocks,
480 * and returns if the blocks are already mapped.
481 *
482 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
483 * and store the allocated blocks in the result buffer head and mark it
484 * mapped.
485 *
486 * If file type is extents based, it will call ext4_ext_map_blocks(),
487 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
488 * based files
489 *
490 * On success, it returns the number of blocks being mapped or allocated. if
491 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
492 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
493 *
494 * It returns 0 if plain look up failed (blocks have not been allocated), in
495 * that case, @map is returned as unmapped but we still do fill map->m_len to
496 * indicate the length of a hole starting at map->m_lblk.
497 *
498 * It returns the error in case of allocation failure.
499 */
ext4_map_blocks(handle_t * handle,struct inode * inode,struct ext4_map_blocks * map,int flags)500 int ext4_map_blocks(handle_t *handle, struct inode *inode,
501 struct ext4_map_blocks *map, int flags)
502 {
503 struct extent_status es;
504 int retval;
505 int ret = 0;
506 #ifdef ES_AGGRESSIVE_TEST
507 struct ext4_map_blocks orig_map;
508
509 memcpy(&orig_map, map, sizeof(*map));
510 #endif
511
512 map->m_flags = 0;
513 ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
514 flags, map->m_len, (unsigned long) map->m_lblk);
515
516 /*
517 * ext4_map_blocks returns an int, and m_len is an unsigned int
518 */
519 if (unlikely(map->m_len > INT_MAX))
520 map->m_len = INT_MAX;
521
522 /* We can handle the block number less than EXT_MAX_BLOCKS */
523 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
524 return -EFSCORRUPTED;
525
526 /* Lookup extent status tree firstly */
527 if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
528 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
529 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
530 map->m_pblk = ext4_es_pblock(&es) +
531 map->m_lblk - es.es_lblk;
532 map->m_flags |= ext4_es_is_written(&es) ?
533 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
534 retval = es.es_len - (map->m_lblk - es.es_lblk);
535 if (retval > map->m_len)
536 retval = map->m_len;
537 map->m_len = retval;
538 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
539 map->m_pblk = 0;
540 retval = es.es_len - (map->m_lblk - es.es_lblk);
541 if (retval > map->m_len)
542 retval = map->m_len;
543 map->m_len = retval;
544 retval = 0;
545 } else {
546 BUG();
547 }
548
549 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
550 return retval;
551 #ifdef ES_AGGRESSIVE_TEST
552 ext4_map_blocks_es_recheck(handle, inode, map,
553 &orig_map, flags);
554 #endif
555 goto found;
556 }
557 /*
558 * In the query cache no-wait mode, nothing we can do more if we
559 * cannot find extent in the cache.
560 */
561 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
562 return 0;
563
564 /*
565 * Try to see if we can get the block without requesting a new
566 * file system block.
567 */
568 down_read(&EXT4_I(inode)->i_data_sem);
569 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
570 retval = ext4_ext_map_blocks(handle, inode, map, 0);
571 } else {
572 retval = ext4_ind_map_blocks(handle, inode, map, 0);
573 }
574 if (retval > 0) {
575 unsigned int status;
576
577 if (unlikely(retval != map->m_len)) {
578 ext4_warning(inode->i_sb,
579 "ES len assertion failed for inode "
580 "%lu: retval %d != map->m_len %d",
581 inode->i_ino, retval, map->m_len);
582 WARN_ON(1);
583 }
584
585 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
586 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
587 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
588 !(status & EXTENT_STATUS_WRITTEN) &&
589 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
590 map->m_lblk + map->m_len - 1))
591 status |= EXTENT_STATUS_DELAYED;
592 ret = ext4_es_insert_extent(inode, map->m_lblk,
593 map->m_len, map->m_pblk, status);
594 if (ret < 0)
595 retval = ret;
596 }
597 up_read((&EXT4_I(inode)->i_data_sem));
598
599 found:
600 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
601 ret = check_block_validity(inode, map);
602 if (ret != 0)
603 return ret;
604 }
605
606 /* If it is only a block(s) look up */
607 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
608 return retval;
609
610 /*
611 * Returns if the blocks have already allocated
612 *
613 * Note that if blocks have been preallocated
614 * ext4_ext_get_block() returns the create = 0
615 * with buffer head unmapped.
616 */
617 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
618 /*
619 * If we need to convert extent to unwritten
620 * we continue and do the actual work in
621 * ext4_ext_map_blocks()
622 */
623 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
624 return retval;
625
626 /*
627 * Here we clear m_flags because after allocating an new extent,
628 * it will be set again.
629 */
630 map->m_flags &= ~EXT4_MAP_FLAGS;
631
632 /*
633 * New blocks allocate and/or writing to unwritten extent
634 * will possibly result in updating i_data, so we take
635 * the write lock of i_data_sem, and call get_block()
636 * with create == 1 flag.
637 */
638 down_write(&EXT4_I(inode)->i_data_sem);
639
640 /*
641 * We need to check for EXT4 here because migrate
642 * could have changed the inode type in between
643 */
644 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
645 retval = ext4_ext_map_blocks(handle, inode, map, flags);
646 } else {
647 retval = ext4_ind_map_blocks(handle, inode, map, flags);
648
649 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
650 /*
651 * We allocated new blocks which will result in
652 * i_data's format changing. Force the migrate
653 * to fail by clearing migrate flags
654 */
655 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
656 }
657
658 /*
659 * Update reserved blocks/metadata blocks after successful
660 * block allocation which had been deferred till now. We don't
661 * support fallocate for non extent files. So we can update
662 * reserve space here.
663 */
664 if ((retval > 0) &&
665 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
666 ext4_da_update_reserve_space(inode, retval, 1);
667 }
668
669 if (retval > 0) {
670 unsigned int status;
671
672 if (unlikely(retval != map->m_len)) {
673 ext4_warning(inode->i_sb,
674 "ES len assertion failed for inode "
675 "%lu: retval %d != map->m_len %d",
676 inode->i_ino, retval, map->m_len);
677 WARN_ON(1);
678 }
679
680 /*
681 * We have to zeroout blocks before inserting them into extent
682 * status tree. Otherwise someone could look them up there and
683 * use them before they are really zeroed. We also have to
684 * unmap metadata before zeroing as otherwise writeback can
685 * overwrite zeros with stale data from block device.
686 */
687 if (flags & EXT4_GET_BLOCKS_ZERO &&
688 map->m_flags & EXT4_MAP_MAPPED &&
689 map->m_flags & EXT4_MAP_NEW) {
690 ret = ext4_issue_zeroout(inode, map->m_lblk,
691 map->m_pblk, map->m_len);
692 if (ret) {
693 retval = ret;
694 goto out_sem;
695 }
696 }
697
698 /*
699 * If the extent has been zeroed out, we don't need to update
700 * extent status tree.
701 */
702 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
703 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
704 if (ext4_es_is_written(&es))
705 goto out_sem;
706 }
707 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
708 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
709 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
710 !(status & EXTENT_STATUS_WRITTEN) &&
711 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
712 map->m_lblk + map->m_len - 1))
713 status |= EXTENT_STATUS_DELAYED;
714 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
715 map->m_pblk, status);
716 if (ret < 0) {
717 retval = ret;
718 goto out_sem;
719 }
720 }
721
722 out_sem:
723 up_write((&EXT4_I(inode)->i_data_sem));
724 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
725 ret = check_block_validity(inode, map);
726 if (ret != 0)
727 return ret;
728
729 /*
730 * Inodes with freshly allocated blocks where contents will be
731 * visible after transaction commit must be on transaction's
732 * ordered data list.
733 */
734 if (map->m_flags & EXT4_MAP_NEW &&
735 !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
736 !(flags & EXT4_GET_BLOCKS_ZERO) &&
737 !ext4_is_quota_file(inode) &&
738 ext4_should_order_data(inode)) {
739 loff_t start_byte =
740 (loff_t)map->m_lblk << inode->i_blkbits;
741 loff_t length = (loff_t)map->m_len << inode->i_blkbits;
742
743 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
744 ret = ext4_jbd2_inode_add_wait(handle, inode,
745 start_byte, length);
746 else
747 ret = ext4_jbd2_inode_add_write(handle, inode,
748 start_byte, length);
749 if (ret)
750 return ret;
751 }
752 }
753 if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN ||
754 map->m_flags & EXT4_MAP_MAPPED))
755 ext4_fc_track_range(handle, inode, map->m_lblk,
756 map->m_lblk + map->m_len - 1);
757 if (retval < 0)
758 ext_debug(inode, "failed with err %d\n", retval);
759 return retval;
760 }
761
762 /*
763 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
764 * we have to be careful as someone else may be manipulating b_state as well.
765 */
ext4_update_bh_state(struct buffer_head * bh,unsigned long flags)766 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
767 {
768 unsigned long old_state;
769 unsigned long new_state;
770
771 flags &= EXT4_MAP_FLAGS;
772
773 /* Dummy buffer_head? Set non-atomically. */
774 if (!bh->b_page) {
775 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
776 return;
777 }
778 /*
779 * Someone else may be modifying b_state. Be careful! This is ugly but
780 * once we get rid of using bh as a container for mapping information
781 * to pass to / from get_block functions, this can go away.
782 */
783 do {
784 old_state = READ_ONCE(bh->b_state);
785 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
786 } while (unlikely(
787 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
788 }
789
_ext4_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int flags)790 static int _ext4_get_block(struct inode *inode, sector_t iblock,
791 struct buffer_head *bh, int flags)
792 {
793 struct ext4_map_blocks map;
794 int ret = 0;
795
796 if (ext4_has_inline_data(inode))
797 return -ERANGE;
798
799 map.m_lblk = iblock;
800 map.m_len = bh->b_size >> inode->i_blkbits;
801
802 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
803 flags);
804 if (ret > 0) {
805 map_bh(bh, inode->i_sb, map.m_pblk);
806 ext4_update_bh_state(bh, map.m_flags);
807 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
808 ret = 0;
809 } else if (ret == 0) {
810 /* hole case, need to fill in bh->b_size */
811 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
812 }
813 return ret;
814 }
815
ext4_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)816 int ext4_get_block(struct inode *inode, sector_t iblock,
817 struct buffer_head *bh, int create)
818 {
819 return _ext4_get_block(inode, iblock, bh,
820 create ? EXT4_GET_BLOCKS_CREATE : 0);
821 }
822
823 /*
824 * Get block function used when preparing for buffered write if we require
825 * creating an unwritten extent if blocks haven't been allocated. The extent
826 * will be converted to written after the IO is complete.
827 */
ext4_get_block_unwritten(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)828 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
829 struct buffer_head *bh_result, int create)
830 {
831 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
832 inode->i_ino, create);
833 return _ext4_get_block(inode, iblock, bh_result,
834 EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT);
835 }
836
837 /* Maximum number of blocks we map for direct IO at once. */
838 #define DIO_MAX_BLOCKS 4096
839
840 /*
841 * `handle' can be NULL if create is zero
842 */
ext4_getblk(handle_t * handle,struct inode * inode,ext4_lblk_t block,int map_flags)843 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
844 ext4_lblk_t block, int map_flags)
845 {
846 struct ext4_map_blocks map;
847 struct buffer_head *bh;
848 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
849 bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT;
850 int err;
851
852 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
853 || handle != NULL || create == 0);
854 ASSERT(create == 0 || !nowait);
855
856 map.m_lblk = block;
857 map.m_len = 1;
858 err = ext4_map_blocks(handle, inode, &map, map_flags);
859
860 if (err == 0)
861 return create ? ERR_PTR(-ENOSPC) : NULL;
862 if (err < 0)
863 return ERR_PTR(err);
864
865 if (nowait)
866 return sb_find_get_block(inode->i_sb, map.m_pblk);
867
868 bh = sb_getblk(inode->i_sb, map.m_pblk);
869 if (unlikely(!bh))
870 return ERR_PTR(-ENOMEM);
871 if (map.m_flags & EXT4_MAP_NEW) {
872 ASSERT(create != 0);
873 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
874 || (handle != NULL));
875
876 /*
877 * Now that we do not always journal data, we should
878 * keep in mind whether this should always journal the
879 * new buffer as metadata. For now, regular file
880 * writes use ext4_get_block instead, so it's not a
881 * problem.
882 */
883 lock_buffer(bh);
884 BUFFER_TRACE(bh, "call get_create_access");
885 err = ext4_journal_get_create_access(handle, inode->i_sb, bh,
886 EXT4_JTR_NONE);
887 if (unlikely(err)) {
888 unlock_buffer(bh);
889 goto errout;
890 }
891 if (!buffer_uptodate(bh)) {
892 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
893 set_buffer_uptodate(bh);
894 }
895 unlock_buffer(bh);
896 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
897 err = ext4_handle_dirty_metadata(handle, inode, bh);
898 if (unlikely(err))
899 goto errout;
900 } else
901 BUFFER_TRACE(bh, "not a new buffer");
902 return bh;
903 errout:
904 brelse(bh);
905 return ERR_PTR(err);
906 }
907
ext4_bread(handle_t * handle,struct inode * inode,ext4_lblk_t block,int map_flags)908 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
909 ext4_lblk_t block, int map_flags)
910 {
911 struct buffer_head *bh;
912 int ret;
913
914 bh = ext4_getblk(handle, inode, block, map_flags);
915 if (IS_ERR(bh))
916 return bh;
917 if (!bh || ext4_buffer_uptodate(bh))
918 return bh;
919
920 ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
921 if (ret) {
922 put_bh(bh);
923 return ERR_PTR(ret);
924 }
925 return bh;
926 }
927
928 /* Read a contiguous batch of blocks. */
ext4_bread_batch(struct inode * inode,ext4_lblk_t block,int bh_count,bool wait,struct buffer_head ** bhs)929 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
930 bool wait, struct buffer_head **bhs)
931 {
932 int i, err;
933
934 for (i = 0; i < bh_count; i++) {
935 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
936 if (IS_ERR(bhs[i])) {
937 err = PTR_ERR(bhs[i]);
938 bh_count = i;
939 goto out_brelse;
940 }
941 }
942
943 for (i = 0; i < bh_count; i++)
944 /* Note that NULL bhs[i] is valid because of holes. */
945 if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
946 ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
947
948 if (!wait)
949 return 0;
950
951 for (i = 0; i < bh_count; i++)
952 if (bhs[i])
953 wait_on_buffer(bhs[i]);
954
955 for (i = 0; i < bh_count; i++) {
956 if (bhs[i] && !buffer_uptodate(bhs[i])) {
957 err = -EIO;
958 goto out_brelse;
959 }
960 }
961 return 0;
962
963 out_brelse:
964 for (i = 0; i < bh_count; i++) {
965 brelse(bhs[i]);
966 bhs[i] = NULL;
967 }
968 return err;
969 }
970
ext4_walk_page_buffers(handle_t * handle,struct inode * inode,struct buffer_head * head,unsigned from,unsigned to,int * partial,int (* fn)(handle_t * handle,struct inode * inode,struct buffer_head * bh))971 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode,
972 struct buffer_head *head,
973 unsigned from,
974 unsigned to,
975 int *partial,
976 int (*fn)(handle_t *handle, struct inode *inode,
977 struct buffer_head *bh))
978 {
979 struct buffer_head *bh;
980 unsigned block_start, block_end;
981 unsigned blocksize = head->b_size;
982 int err, ret = 0;
983 struct buffer_head *next;
984
985 for (bh = head, block_start = 0;
986 ret == 0 && (bh != head || !block_start);
987 block_start = block_end, bh = next) {
988 next = bh->b_this_page;
989 block_end = block_start + blocksize;
990 if (block_end <= from || block_start >= to) {
991 if (partial && !buffer_uptodate(bh))
992 *partial = 1;
993 continue;
994 }
995 err = (*fn)(handle, inode, bh);
996 if (!ret)
997 ret = err;
998 }
999 return ret;
1000 }
1001
1002 /*
1003 * To preserve ordering, it is essential that the hole instantiation and
1004 * the data write be encapsulated in a single transaction. We cannot
1005 * close off a transaction and start a new one between the ext4_get_block()
1006 * and the commit_write(). So doing the jbd2_journal_start at the start of
1007 * prepare_write() is the right place.
1008 *
1009 * Also, this function can nest inside ext4_writepage(). In that case, we
1010 * *know* that ext4_writepage() has generated enough buffer credits to do the
1011 * whole page. So we won't block on the journal in that case, which is good,
1012 * because the caller may be PF_MEMALLOC.
1013 *
1014 * By accident, ext4 can be reentered when a transaction is open via
1015 * quota file writes. If we were to commit the transaction while thus
1016 * reentered, there can be a deadlock - we would be holding a quota
1017 * lock, and the commit would never complete if another thread had a
1018 * transaction open and was blocking on the quota lock - a ranking
1019 * violation.
1020 *
1021 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1022 * will _not_ run commit under these circumstances because handle->h_ref
1023 * is elevated. We'll still have enough credits for the tiny quotafile
1024 * write.
1025 */
do_journal_get_write_access(handle_t * handle,struct inode * inode,struct buffer_head * bh)1026 int do_journal_get_write_access(handle_t *handle, struct inode *inode,
1027 struct buffer_head *bh)
1028 {
1029 int dirty = buffer_dirty(bh);
1030 int ret;
1031
1032 if (!buffer_mapped(bh) || buffer_freed(bh))
1033 return 0;
1034 /*
1035 * __block_write_begin() could have dirtied some buffers. Clean
1036 * the dirty bit as jbd2_journal_get_write_access() could complain
1037 * otherwise about fs integrity issues. Setting of the dirty bit
1038 * by __block_write_begin() isn't a real problem here as we clear
1039 * the bit before releasing a page lock and thus writeback cannot
1040 * ever write the buffer.
1041 */
1042 if (dirty)
1043 clear_buffer_dirty(bh);
1044 BUFFER_TRACE(bh, "get write access");
1045 ret = ext4_journal_get_write_access(handle, inode->i_sb, bh,
1046 EXT4_JTR_NONE);
1047 if (!ret && dirty)
1048 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1049 return ret;
1050 }
1051
1052 #ifdef CONFIG_FS_ENCRYPTION
ext4_block_write_begin(struct page * page,loff_t pos,unsigned len,get_block_t * get_block)1053 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1054 get_block_t *get_block)
1055 {
1056 unsigned from = pos & (PAGE_SIZE - 1);
1057 unsigned to = from + len;
1058 struct inode *inode = page->mapping->host;
1059 unsigned block_start, block_end;
1060 sector_t block;
1061 int err = 0;
1062 unsigned blocksize = inode->i_sb->s_blocksize;
1063 unsigned bbits;
1064 struct buffer_head *bh, *head, *wait[2];
1065 int nr_wait = 0;
1066 int i;
1067
1068 BUG_ON(!PageLocked(page));
1069 BUG_ON(from > PAGE_SIZE);
1070 BUG_ON(to > PAGE_SIZE);
1071 BUG_ON(from > to);
1072
1073 if (!page_has_buffers(page))
1074 create_empty_buffers(page, blocksize, 0);
1075 head = page_buffers(page);
1076 bbits = ilog2(blocksize);
1077 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1078
1079 for (bh = head, block_start = 0; bh != head || !block_start;
1080 block++, block_start = block_end, bh = bh->b_this_page) {
1081 block_end = block_start + blocksize;
1082 if (block_end <= from || block_start >= to) {
1083 if (PageUptodate(page)) {
1084 set_buffer_uptodate(bh);
1085 }
1086 continue;
1087 }
1088 if (buffer_new(bh))
1089 clear_buffer_new(bh);
1090 if (!buffer_mapped(bh)) {
1091 WARN_ON(bh->b_size != blocksize);
1092 err = get_block(inode, block, bh, 1);
1093 if (err)
1094 break;
1095 if (buffer_new(bh)) {
1096 if (PageUptodate(page)) {
1097 clear_buffer_new(bh);
1098 set_buffer_uptodate(bh);
1099 mark_buffer_dirty(bh);
1100 continue;
1101 }
1102 if (block_end > to || block_start < from)
1103 zero_user_segments(page, to, block_end,
1104 block_start, from);
1105 continue;
1106 }
1107 }
1108 if (PageUptodate(page)) {
1109 set_buffer_uptodate(bh);
1110 continue;
1111 }
1112 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1113 !buffer_unwritten(bh) &&
1114 (block_start < from || block_end > to)) {
1115 ext4_read_bh_lock(bh, 0, false);
1116 wait[nr_wait++] = bh;
1117 }
1118 }
1119 /*
1120 * If we issued read requests, let them complete.
1121 */
1122 for (i = 0; i < nr_wait; i++) {
1123 wait_on_buffer(wait[i]);
1124 if (!buffer_uptodate(wait[i]))
1125 err = -EIO;
1126 }
1127 if (unlikely(err)) {
1128 page_zero_new_buffers(page, from, to);
1129 } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1130 for (i = 0; i < nr_wait; i++) {
1131 int err2;
1132
1133 err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1134 bh_offset(wait[i]));
1135 if (err2) {
1136 clear_buffer_uptodate(wait[i]);
1137 err = err2;
1138 }
1139 }
1140 }
1141
1142 return err;
1143 }
1144 #endif
1145
ext4_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,struct page ** pagep,void ** fsdata)1146 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1147 loff_t pos, unsigned len,
1148 struct page **pagep, void **fsdata)
1149 {
1150 struct inode *inode = mapping->host;
1151 int ret, needed_blocks;
1152 handle_t *handle;
1153 int retries = 0;
1154 struct page *page;
1155 pgoff_t index;
1156 unsigned from, to;
1157
1158 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1159 return -EIO;
1160
1161 trace_ext4_write_begin(inode, pos, len);
1162 /*
1163 * Reserve one block more for addition to orphan list in case
1164 * we allocate blocks but write fails for some reason
1165 */
1166 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1167 index = pos >> PAGE_SHIFT;
1168 from = pos & (PAGE_SIZE - 1);
1169 to = from + len;
1170
1171 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1172 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1173 pagep);
1174 if (ret < 0)
1175 return ret;
1176 if (ret == 1)
1177 return 0;
1178 }
1179
1180 /*
1181 * grab_cache_page_write_begin() can take a long time if the
1182 * system is thrashing due to memory pressure, or if the page
1183 * is being written back. So grab it first before we start
1184 * the transaction handle. This also allows us to allocate
1185 * the page (if needed) without using GFP_NOFS.
1186 */
1187 retry_grab:
1188 page = grab_cache_page_write_begin(mapping, index);
1189 if (!page)
1190 return -ENOMEM;
1191 /*
1192 * The same as page allocation, we prealloc buffer heads before
1193 * starting the handle.
1194 */
1195 if (!page_has_buffers(page))
1196 create_empty_buffers(page, inode->i_sb->s_blocksize, 0);
1197
1198 unlock_page(page);
1199
1200 retry_journal:
1201 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1202 if (IS_ERR(handle)) {
1203 put_page(page);
1204 return PTR_ERR(handle);
1205 }
1206
1207 lock_page(page);
1208 if (page->mapping != mapping) {
1209 /* The page got truncated from under us */
1210 unlock_page(page);
1211 put_page(page);
1212 ext4_journal_stop(handle);
1213 goto retry_grab;
1214 }
1215 /* In case writeback began while the page was unlocked */
1216 wait_for_stable_page(page);
1217
1218 #ifdef CONFIG_FS_ENCRYPTION
1219 if (ext4_should_dioread_nolock(inode))
1220 ret = ext4_block_write_begin(page, pos, len,
1221 ext4_get_block_unwritten);
1222 else
1223 ret = ext4_block_write_begin(page, pos, len,
1224 ext4_get_block);
1225 #else
1226 if (ext4_should_dioread_nolock(inode))
1227 ret = __block_write_begin(page, pos, len,
1228 ext4_get_block_unwritten);
1229 else
1230 ret = __block_write_begin(page, pos, len, ext4_get_block);
1231 #endif
1232 if (!ret && ext4_should_journal_data(inode)) {
1233 ret = ext4_walk_page_buffers(handle, inode,
1234 page_buffers(page), from, to, NULL,
1235 do_journal_get_write_access);
1236 }
1237
1238 if (ret) {
1239 bool extended = (pos + len > inode->i_size) &&
1240 !ext4_verity_in_progress(inode);
1241
1242 unlock_page(page);
1243 /*
1244 * __block_write_begin may have instantiated a few blocks
1245 * outside i_size. Trim these off again. Don't need
1246 * i_size_read because we hold i_rwsem.
1247 *
1248 * Add inode to orphan list in case we crash before
1249 * truncate finishes
1250 */
1251 if (extended && ext4_can_truncate(inode))
1252 ext4_orphan_add(handle, inode);
1253
1254 ext4_journal_stop(handle);
1255 if (extended) {
1256 ext4_truncate_failed_write(inode);
1257 /*
1258 * If truncate failed early the inode might
1259 * still be on the orphan list; we need to
1260 * make sure the inode is removed from the
1261 * orphan list in that case.
1262 */
1263 if (inode->i_nlink)
1264 ext4_orphan_del(NULL, inode);
1265 }
1266
1267 if (ret == -ENOSPC &&
1268 ext4_should_retry_alloc(inode->i_sb, &retries))
1269 goto retry_journal;
1270 put_page(page);
1271 return ret;
1272 }
1273 *pagep = page;
1274 return ret;
1275 }
1276
1277 /* For write_end() in data=journal mode */
write_end_fn(handle_t * handle,struct inode * inode,struct buffer_head * bh)1278 static int write_end_fn(handle_t *handle, struct inode *inode,
1279 struct buffer_head *bh)
1280 {
1281 int ret;
1282 if (!buffer_mapped(bh) || buffer_freed(bh))
1283 return 0;
1284 set_buffer_uptodate(bh);
1285 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1286 clear_buffer_meta(bh);
1287 clear_buffer_prio(bh);
1288 return ret;
1289 }
1290
1291 /*
1292 * We need to pick up the new inode size which generic_commit_write gave us
1293 * `file' can be NULL - eg, when called from page_symlink().
1294 *
1295 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1296 * buffers are managed internally.
1297 */
ext4_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)1298 static int ext4_write_end(struct file *file,
1299 struct address_space *mapping,
1300 loff_t pos, unsigned len, unsigned copied,
1301 struct page *page, void *fsdata)
1302 {
1303 handle_t *handle = ext4_journal_current_handle();
1304 struct inode *inode = mapping->host;
1305 loff_t old_size = inode->i_size;
1306 int ret = 0, ret2;
1307 int i_size_changed = 0;
1308 bool verity = ext4_verity_in_progress(inode);
1309
1310 trace_ext4_write_end(inode, pos, len, copied);
1311
1312 if (ext4_has_inline_data(inode))
1313 return ext4_write_inline_data_end(inode, pos, len, copied, page);
1314
1315 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1316 /*
1317 * it's important to update i_size while still holding page lock:
1318 * page writeout could otherwise come in and zero beyond i_size.
1319 *
1320 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1321 * blocks are being written past EOF, so skip the i_size update.
1322 */
1323 if (!verity)
1324 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1325 unlock_page(page);
1326 put_page(page);
1327
1328 if (old_size < pos && !verity)
1329 pagecache_isize_extended(inode, old_size, pos);
1330 /*
1331 * Don't mark the inode dirty under page lock. First, it unnecessarily
1332 * makes the holding time of page lock longer. Second, it forces lock
1333 * ordering of page lock and transaction start for journaling
1334 * filesystems.
1335 */
1336 if (i_size_changed)
1337 ret = ext4_mark_inode_dirty(handle, inode);
1338
1339 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1340 /* if we have allocated more blocks and copied
1341 * less. We will have blocks allocated outside
1342 * inode->i_size. So truncate them
1343 */
1344 ext4_orphan_add(handle, inode);
1345
1346 ret2 = ext4_journal_stop(handle);
1347 if (!ret)
1348 ret = ret2;
1349
1350 if (pos + len > inode->i_size && !verity) {
1351 ext4_truncate_failed_write(inode);
1352 /*
1353 * If truncate failed early the inode might still be
1354 * on the orphan list; we need to make sure the inode
1355 * is removed from the orphan list in that case.
1356 */
1357 if (inode->i_nlink)
1358 ext4_orphan_del(NULL, inode);
1359 }
1360
1361 return ret ? ret : copied;
1362 }
1363
1364 /*
1365 * This is a private version of page_zero_new_buffers() which doesn't
1366 * set the buffer to be dirty, since in data=journalled mode we need
1367 * to call ext4_handle_dirty_metadata() instead.
1368 */
ext4_journalled_zero_new_buffers(handle_t * handle,struct inode * inode,struct page * page,unsigned from,unsigned to)1369 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1370 struct inode *inode,
1371 struct page *page,
1372 unsigned from, unsigned to)
1373 {
1374 unsigned int block_start = 0, block_end;
1375 struct buffer_head *head, *bh;
1376
1377 bh = head = page_buffers(page);
1378 do {
1379 block_end = block_start + bh->b_size;
1380 if (buffer_new(bh)) {
1381 if (block_end > from && block_start < to) {
1382 if (!PageUptodate(page)) {
1383 unsigned start, size;
1384
1385 start = max(from, block_start);
1386 size = min(to, block_end) - start;
1387
1388 zero_user(page, start, size);
1389 write_end_fn(handle, inode, bh);
1390 }
1391 clear_buffer_new(bh);
1392 }
1393 }
1394 block_start = block_end;
1395 bh = bh->b_this_page;
1396 } while (bh != head);
1397 }
1398
ext4_journalled_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)1399 static int ext4_journalled_write_end(struct file *file,
1400 struct address_space *mapping,
1401 loff_t pos, unsigned len, unsigned copied,
1402 struct page *page, void *fsdata)
1403 {
1404 handle_t *handle = ext4_journal_current_handle();
1405 struct inode *inode = mapping->host;
1406 loff_t old_size = inode->i_size;
1407 int ret = 0, ret2;
1408 int partial = 0;
1409 unsigned from, to;
1410 int size_changed = 0;
1411 bool verity = ext4_verity_in_progress(inode);
1412
1413 trace_ext4_journalled_write_end(inode, pos, len, copied);
1414 from = pos & (PAGE_SIZE - 1);
1415 to = from + len;
1416
1417 BUG_ON(!ext4_handle_valid(handle));
1418
1419 if (ext4_has_inline_data(inode))
1420 return ext4_write_inline_data_end(inode, pos, len, copied, page);
1421
1422 if (unlikely(copied < len) && !PageUptodate(page)) {
1423 copied = 0;
1424 ext4_journalled_zero_new_buffers(handle, inode, page, from, to);
1425 } else {
1426 if (unlikely(copied < len))
1427 ext4_journalled_zero_new_buffers(handle, inode, page,
1428 from + copied, to);
1429 ret = ext4_walk_page_buffers(handle, inode, page_buffers(page),
1430 from, from + copied, &partial,
1431 write_end_fn);
1432 if (!partial)
1433 SetPageUptodate(page);
1434 }
1435 if (!verity)
1436 size_changed = ext4_update_inode_size(inode, pos + copied);
1437 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1438 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1439 unlock_page(page);
1440 put_page(page);
1441
1442 if (old_size < pos && !verity)
1443 pagecache_isize_extended(inode, old_size, pos);
1444
1445 if (size_changed) {
1446 ret2 = ext4_mark_inode_dirty(handle, inode);
1447 if (!ret)
1448 ret = ret2;
1449 }
1450
1451 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1452 /* if we have allocated more blocks and copied
1453 * less. We will have blocks allocated outside
1454 * inode->i_size. So truncate them
1455 */
1456 ext4_orphan_add(handle, inode);
1457
1458 ret2 = ext4_journal_stop(handle);
1459 if (!ret)
1460 ret = ret2;
1461 if (pos + len > inode->i_size && !verity) {
1462 ext4_truncate_failed_write(inode);
1463 /*
1464 * If truncate failed early the inode might still be
1465 * on the orphan list; we need to make sure the inode
1466 * is removed from the orphan list in that case.
1467 */
1468 if (inode->i_nlink)
1469 ext4_orphan_del(NULL, inode);
1470 }
1471
1472 return ret ? ret : copied;
1473 }
1474
1475 /*
1476 * Reserve space for a single cluster
1477 */
ext4_da_reserve_space(struct inode * inode)1478 static int ext4_da_reserve_space(struct inode *inode)
1479 {
1480 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1481 struct ext4_inode_info *ei = EXT4_I(inode);
1482 int ret;
1483
1484 /*
1485 * We will charge metadata quota at writeout time; this saves
1486 * us from metadata over-estimation, though we may go over by
1487 * a small amount in the end. Here we just reserve for data.
1488 */
1489 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1490 if (ret)
1491 return ret;
1492
1493 spin_lock(&ei->i_block_reservation_lock);
1494 if (ext4_claim_free_clusters(sbi, 1, 0)) {
1495 spin_unlock(&ei->i_block_reservation_lock);
1496 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1497 return -ENOSPC;
1498 }
1499 ei->i_reserved_data_blocks++;
1500 trace_ext4_da_reserve_space(inode);
1501 spin_unlock(&ei->i_block_reservation_lock);
1502
1503 return 0; /* success */
1504 }
1505
ext4_da_release_space(struct inode * inode,int to_free)1506 void ext4_da_release_space(struct inode *inode, int to_free)
1507 {
1508 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1509 struct ext4_inode_info *ei = EXT4_I(inode);
1510
1511 if (!to_free)
1512 return; /* Nothing to release, exit */
1513
1514 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1515
1516 trace_ext4_da_release_space(inode, to_free);
1517 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1518 /*
1519 * if there aren't enough reserved blocks, then the
1520 * counter is messed up somewhere. Since this
1521 * function is called from invalidate page, it's
1522 * harmless to return without any action.
1523 */
1524 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1525 "ino %lu, to_free %d with only %d reserved "
1526 "data blocks", inode->i_ino, to_free,
1527 ei->i_reserved_data_blocks);
1528 WARN_ON(1);
1529 to_free = ei->i_reserved_data_blocks;
1530 }
1531 ei->i_reserved_data_blocks -= to_free;
1532
1533 /* update fs dirty data blocks counter */
1534 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1535
1536 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1537
1538 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1539 }
1540
1541 /*
1542 * Delayed allocation stuff
1543 */
1544
1545 struct mpage_da_data {
1546 struct inode *inode;
1547 struct writeback_control *wbc;
1548
1549 pgoff_t first_page; /* The first page to write */
1550 pgoff_t next_page; /* Current page to examine */
1551 pgoff_t last_page; /* Last page to examine */
1552 /*
1553 * Extent to map - this can be after first_page because that can be
1554 * fully mapped. We somewhat abuse m_flags to store whether the extent
1555 * is delalloc or unwritten.
1556 */
1557 struct ext4_map_blocks map;
1558 struct ext4_io_submit io_submit; /* IO submission data */
1559 unsigned int do_map:1;
1560 unsigned int scanned_until_end:1;
1561 };
1562
mpage_release_unused_pages(struct mpage_da_data * mpd,bool invalidate)1563 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1564 bool invalidate)
1565 {
1566 unsigned nr, i;
1567 pgoff_t index, end;
1568 struct folio_batch fbatch;
1569 struct inode *inode = mpd->inode;
1570 struct address_space *mapping = inode->i_mapping;
1571
1572 /* This is necessary when next_page == 0. */
1573 if (mpd->first_page >= mpd->next_page)
1574 return;
1575
1576 mpd->scanned_until_end = 0;
1577 index = mpd->first_page;
1578 end = mpd->next_page - 1;
1579 if (invalidate) {
1580 ext4_lblk_t start, last;
1581 start = index << (PAGE_SHIFT - inode->i_blkbits);
1582 last = end << (PAGE_SHIFT - inode->i_blkbits);
1583
1584 /*
1585 * avoid racing with extent status tree scans made by
1586 * ext4_insert_delayed_block()
1587 */
1588 down_write(&EXT4_I(inode)->i_data_sem);
1589 ext4_es_remove_extent(inode, start, last - start + 1);
1590 up_write(&EXT4_I(inode)->i_data_sem);
1591 }
1592
1593 folio_batch_init(&fbatch);
1594 while (index <= end) {
1595 nr = filemap_get_folios(mapping, &index, end, &fbatch);
1596 if (nr == 0)
1597 break;
1598 for (i = 0; i < nr; i++) {
1599 struct folio *folio = fbatch.folios[i];
1600
1601 if (folio->index < mpd->first_page)
1602 continue;
1603 if (folio->index + folio_nr_pages(folio) - 1 > end)
1604 continue;
1605 BUG_ON(!folio_test_locked(folio));
1606 BUG_ON(folio_test_writeback(folio));
1607 if (invalidate) {
1608 if (folio_mapped(folio))
1609 folio_clear_dirty_for_io(folio);
1610 block_invalidate_folio(folio, 0,
1611 folio_size(folio));
1612 folio_clear_uptodate(folio);
1613 }
1614 folio_unlock(folio);
1615 }
1616 folio_batch_release(&fbatch);
1617 }
1618 }
1619
ext4_print_free_blocks(struct inode * inode)1620 static void ext4_print_free_blocks(struct inode *inode)
1621 {
1622 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1623 struct super_block *sb = inode->i_sb;
1624 struct ext4_inode_info *ei = EXT4_I(inode);
1625
1626 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1627 EXT4_C2B(EXT4_SB(inode->i_sb),
1628 ext4_count_free_clusters(sb)));
1629 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1630 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1631 (long long) EXT4_C2B(EXT4_SB(sb),
1632 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1633 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1634 (long long) EXT4_C2B(EXT4_SB(sb),
1635 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1636 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1637 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1638 ei->i_reserved_data_blocks);
1639 return;
1640 }
1641
ext4_bh_delay_or_unwritten(handle_t * handle,struct inode * inode,struct buffer_head * bh)1642 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct inode *inode,
1643 struct buffer_head *bh)
1644 {
1645 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1646 }
1647
1648 /*
1649 * ext4_insert_delayed_block - adds a delayed block to the extents status
1650 * tree, incrementing the reserved cluster/block
1651 * count or making a pending reservation
1652 * where needed
1653 *
1654 * @inode - file containing the newly added block
1655 * @lblk - logical block to be added
1656 *
1657 * Returns 0 on success, negative error code on failure.
1658 */
ext4_insert_delayed_block(struct inode * inode,ext4_lblk_t lblk)1659 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1660 {
1661 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1662 int ret;
1663 bool allocated = false;
1664 bool reserved = false;
1665
1666 /*
1667 * If the cluster containing lblk is shared with a delayed,
1668 * written, or unwritten extent in a bigalloc file system, it's
1669 * already been accounted for and does not need to be reserved.
1670 * A pending reservation must be made for the cluster if it's
1671 * shared with a written or unwritten extent and doesn't already
1672 * have one. Written and unwritten extents can be purged from the
1673 * extents status tree if the system is under memory pressure, so
1674 * it's necessary to examine the extent tree if a search of the
1675 * extents status tree doesn't get a match.
1676 */
1677 if (sbi->s_cluster_ratio == 1) {
1678 ret = ext4_da_reserve_space(inode);
1679 if (ret != 0) /* ENOSPC */
1680 goto errout;
1681 reserved = true;
1682 } else { /* bigalloc */
1683 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1684 if (!ext4_es_scan_clu(inode,
1685 &ext4_es_is_mapped, lblk)) {
1686 ret = ext4_clu_mapped(inode,
1687 EXT4_B2C(sbi, lblk));
1688 if (ret < 0)
1689 goto errout;
1690 if (ret == 0) {
1691 ret = ext4_da_reserve_space(inode);
1692 if (ret != 0) /* ENOSPC */
1693 goto errout;
1694 reserved = true;
1695 } else {
1696 allocated = true;
1697 }
1698 } else {
1699 allocated = true;
1700 }
1701 }
1702 }
1703
1704 ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1705 if (ret && reserved)
1706 ext4_da_release_space(inode, 1);
1707
1708 errout:
1709 return ret;
1710 }
1711
1712 /*
1713 * This function is grabs code from the very beginning of
1714 * ext4_map_blocks, but assumes that the caller is from delayed write
1715 * time. This function looks up the requested blocks and sets the
1716 * buffer delay bit under the protection of i_data_sem.
1717 */
ext4_da_map_blocks(struct inode * inode,sector_t iblock,struct ext4_map_blocks * map,struct buffer_head * bh)1718 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1719 struct ext4_map_blocks *map,
1720 struct buffer_head *bh)
1721 {
1722 struct extent_status es;
1723 int retval;
1724 sector_t invalid_block = ~((sector_t) 0xffff);
1725 #ifdef ES_AGGRESSIVE_TEST
1726 struct ext4_map_blocks orig_map;
1727
1728 memcpy(&orig_map, map, sizeof(*map));
1729 #endif
1730
1731 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1732 invalid_block = ~0;
1733
1734 map->m_flags = 0;
1735 ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1736 (unsigned long) map->m_lblk);
1737
1738 /* Lookup extent status tree firstly */
1739 if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1740 if (ext4_es_is_hole(&es)) {
1741 retval = 0;
1742 down_read(&EXT4_I(inode)->i_data_sem);
1743 goto add_delayed;
1744 }
1745
1746 /*
1747 * Delayed extent could be allocated by fallocate.
1748 * So we need to check it.
1749 */
1750 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1751 map_bh(bh, inode->i_sb, invalid_block);
1752 set_buffer_new(bh);
1753 set_buffer_delay(bh);
1754 return 0;
1755 }
1756
1757 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1758 retval = es.es_len - (iblock - es.es_lblk);
1759 if (retval > map->m_len)
1760 retval = map->m_len;
1761 map->m_len = retval;
1762 if (ext4_es_is_written(&es))
1763 map->m_flags |= EXT4_MAP_MAPPED;
1764 else if (ext4_es_is_unwritten(&es))
1765 map->m_flags |= EXT4_MAP_UNWRITTEN;
1766 else
1767 BUG();
1768
1769 #ifdef ES_AGGRESSIVE_TEST
1770 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1771 #endif
1772 return retval;
1773 }
1774
1775 /*
1776 * Try to see if we can get the block without requesting a new
1777 * file system block.
1778 */
1779 down_read(&EXT4_I(inode)->i_data_sem);
1780 if (ext4_has_inline_data(inode))
1781 retval = 0;
1782 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1783 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1784 else
1785 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1786
1787 add_delayed:
1788 if (retval == 0) {
1789 int ret;
1790
1791 /*
1792 * XXX: __block_prepare_write() unmaps passed block,
1793 * is it OK?
1794 */
1795
1796 ret = ext4_insert_delayed_block(inode, map->m_lblk);
1797 if (ret != 0) {
1798 retval = ret;
1799 goto out_unlock;
1800 }
1801
1802 map_bh(bh, inode->i_sb, invalid_block);
1803 set_buffer_new(bh);
1804 set_buffer_delay(bh);
1805 } else if (retval > 0) {
1806 int ret;
1807 unsigned int status;
1808
1809 if (unlikely(retval != map->m_len)) {
1810 ext4_warning(inode->i_sb,
1811 "ES len assertion failed for inode "
1812 "%lu: retval %d != map->m_len %d",
1813 inode->i_ino, retval, map->m_len);
1814 WARN_ON(1);
1815 }
1816
1817 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1818 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1819 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1820 map->m_pblk, status);
1821 if (ret != 0)
1822 retval = ret;
1823 }
1824
1825 out_unlock:
1826 up_read((&EXT4_I(inode)->i_data_sem));
1827
1828 return retval;
1829 }
1830
1831 /*
1832 * This is a special get_block_t callback which is used by
1833 * ext4_da_write_begin(). It will either return mapped block or
1834 * reserve space for a single block.
1835 *
1836 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1837 * We also have b_blocknr = -1 and b_bdev initialized properly
1838 *
1839 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1840 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1841 * initialized properly.
1842 */
ext4_da_get_block_prep(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)1843 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1844 struct buffer_head *bh, int create)
1845 {
1846 struct ext4_map_blocks map;
1847 int ret = 0;
1848
1849 BUG_ON(create == 0);
1850 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1851
1852 map.m_lblk = iblock;
1853 map.m_len = 1;
1854
1855 /*
1856 * first, we need to know whether the block is allocated already
1857 * preallocated blocks are unmapped but should treated
1858 * the same as allocated blocks.
1859 */
1860 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1861 if (ret <= 0)
1862 return ret;
1863
1864 map_bh(bh, inode->i_sb, map.m_pblk);
1865 ext4_update_bh_state(bh, map.m_flags);
1866
1867 if (buffer_unwritten(bh)) {
1868 /* A delayed write to unwritten bh should be marked
1869 * new and mapped. Mapped ensures that we don't do
1870 * get_block multiple times when we write to the same
1871 * offset and new ensures that we do proper zero out
1872 * for partial write.
1873 */
1874 set_buffer_new(bh);
1875 set_buffer_mapped(bh);
1876 }
1877 return 0;
1878 }
1879
__ext4_journalled_writepage(struct page * page,unsigned int len)1880 static int __ext4_journalled_writepage(struct page *page,
1881 unsigned int len)
1882 {
1883 struct address_space *mapping = page->mapping;
1884 struct inode *inode = mapping->host;
1885 handle_t *handle = NULL;
1886 int ret = 0, err = 0;
1887 int inline_data = ext4_has_inline_data(inode);
1888 struct buffer_head *inode_bh = NULL;
1889 loff_t size;
1890
1891 ClearPageChecked(page);
1892
1893 if (inline_data) {
1894 BUG_ON(page->index != 0);
1895 BUG_ON(len > ext4_get_max_inline_size(inode));
1896 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1897 if (inode_bh == NULL)
1898 goto out;
1899 }
1900 /*
1901 * We need to release the page lock before we start the
1902 * journal, so grab a reference so the page won't disappear
1903 * out from under us.
1904 */
1905 get_page(page);
1906 unlock_page(page);
1907
1908 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1909 ext4_writepage_trans_blocks(inode));
1910 if (IS_ERR(handle)) {
1911 ret = PTR_ERR(handle);
1912 put_page(page);
1913 goto out_no_pagelock;
1914 }
1915 BUG_ON(!ext4_handle_valid(handle));
1916
1917 lock_page(page);
1918 put_page(page);
1919 size = i_size_read(inode);
1920 if (page->mapping != mapping || page_offset(page) > size) {
1921 /* The page got truncated from under us */
1922 ext4_journal_stop(handle);
1923 ret = 0;
1924 goto out;
1925 }
1926
1927 if (inline_data) {
1928 ret = ext4_mark_inode_dirty(handle, inode);
1929 } else {
1930 struct buffer_head *page_bufs = page_buffers(page);
1931
1932 if (page->index == size >> PAGE_SHIFT)
1933 len = size & ~PAGE_MASK;
1934 else
1935 len = PAGE_SIZE;
1936
1937 ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1938 NULL, do_journal_get_write_access);
1939
1940 err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1941 NULL, write_end_fn);
1942 }
1943 if (ret == 0)
1944 ret = err;
1945 err = ext4_jbd2_inode_add_write(handle, inode, page_offset(page), len);
1946 if (ret == 0)
1947 ret = err;
1948 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1949 err = ext4_journal_stop(handle);
1950 if (!ret)
1951 ret = err;
1952
1953 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1954 out:
1955 unlock_page(page);
1956 out_no_pagelock:
1957 brelse(inode_bh);
1958 return ret;
1959 }
1960
1961 /*
1962 * Note that we don't need to start a transaction unless we're journaling data
1963 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1964 * need to file the inode to the transaction's list in ordered mode because if
1965 * we are writing back data added by write(), the inode is already there and if
1966 * we are writing back data modified via mmap(), no one guarantees in which
1967 * transaction the data will hit the disk. In case we are journaling data, we
1968 * cannot start transaction directly because transaction start ranks above page
1969 * lock so we have to do some magic.
1970 *
1971 * This function can get called via...
1972 * - ext4_writepages after taking page lock (have journal handle)
1973 * - journal_submit_inode_data_buffers (no journal handle)
1974 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1975 * - grab_page_cache when doing write_begin (have journal handle)
1976 *
1977 * We don't do any block allocation in this function. If we have page with
1978 * multiple blocks we need to write those buffer_heads that are mapped. This
1979 * is important for mmaped based write. So if we do with blocksize 1K
1980 * truncate(f, 1024);
1981 * a = mmap(f, 0, 4096);
1982 * a[0] = 'a';
1983 * truncate(f, 4096);
1984 * we have in the page first buffer_head mapped via page_mkwrite call back
1985 * but other buffer_heads would be unmapped but dirty (dirty done via the
1986 * do_wp_page). So writepage should write the first block. If we modify
1987 * the mmap area beyond 1024 we will again get a page_fault and the
1988 * page_mkwrite callback will do the block allocation and mark the
1989 * buffer_heads mapped.
1990 *
1991 * We redirty the page if we have any buffer_heads that is either delay or
1992 * unwritten in the page.
1993 *
1994 * We can get recursively called as show below.
1995 *
1996 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1997 * ext4_writepage()
1998 *
1999 * But since we don't do any block allocation we should not deadlock.
2000 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2001 */
ext4_writepage(struct page * page,struct writeback_control * wbc)2002 static int ext4_writepage(struct page *page,
2003 struct writeback_control *wbc)
2004 {
2005 struct folio *folio = page_folio(page);
2006 int ret = 0;
2007 loff_t size;
2008 unsigned int len;
2009 struct buffer_head *page_bufs = NULL;
2010 struct inode *inode = page->mapping->host;
2011 struct ext4_io_submit io_submit;
2012 bool keep_towrite = false;
2013
2014 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2015 folio_invalidate(folio, 0, folio_size(folio));
2016 folio_unlock(folio);
2017 return -EIO;
2018 }
2019
2020 trace_ext4_writepage(page);
2021 size = i_size_read(inode);
2022 if (page->index == size >> PAGE_SHIFT &&
2023 !ext4_verity_in_progress(inode))
2024 len = size & ~PAGE_MASK;
2025 else
2026 len = PAGE_SIZE;
2027
2028 /* Should never happen but for bugs in other kernel subsystems */
2029 if (!page_has_buffers(page)) {
2030 ext4_warning_inode(inode,
2031 "page %lu does not have buffers attached", page->index);
2032 ClearPageDirty(page);
2033 unlock_page(page);
2034 return 0;
2035 }
2036
2037 page_bufs = page_buffers(page);
2038 /*
2039 * We cannot do block allocation or other extent handling in this
2040 * function. If there are buffers needing that, we have to redirty
2041 * the page. But we may reach here when we do a journal commit via
2042 * journal_submit_inode_data_buffers() and in that case we must write
2043 * allocated buffers to achieve data=ordered mode guarantees.
2044 *
2045 * Also, if there is only one buffer per page (the fs block
2046 * size == the page size), if one buffer needs block
2047 * allocation or needs to modify the extent tree to clear the
2048 * unwritten flag, we know that the page can't be written at
2049 * all, so we might as well refuse the write immediately.
2050 * Unfortunately if the block size != page size, we can't as
2051 * easily detect this case using ext4_walk_page_buffers(), but
2052 * for the extremely common case, this is an optimization that
2053 * skips a useless round trip through ext4_bio_write_page().
2054 */
2055 if (ext4_walk_page_buffers(NULL, inode, page_bufs, 0, len, NULL,
2056 ext4_bh_delay_or_unwritten)) {
2057 redirty_page_for_writepage(wbc, page);
2058 if ((current->flags & PF_MEMALLOC) ||
2059 (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2060 /*
2061 * For memory cleaning there's no point in writing only
2062 * some buffers. So just bail out. Warn if we came here
2063 * from direct reclaim.
2064 */
2065 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2066 == PF_MEMALLOC);
2067 unlock_page(page);
2068 return 0;
2069 }
2070 keep_towrite = true;
2071 }
2072
2073 if (PageChecked(page) && ext4_should_journal_data(inode))
2074 /*
2075 * It's mmapped pagecache. Add buffers and journal it. There
2076 * doesn't seem much point in redirtying the page here.
2077 */
2078 return __ext4_journalled_writepage(page, len);
2079
2080 ext4_io_submit_init(&io_submit, wbc);
2081 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2082 if (!io_submit.io_end) {
2083 redirty_page_for_writepage(wbc, page);
2084 unlock_page(page);
2085 return -ENOMEM;
2086 }
2087 ret = ext4_bio_write_page(&io_submit, page, len, keep_towrite);
2088 ext4_io_submit(&io_submit);
2089 /* Drop io_end reference we got from init */
2090 ext4_put_io_end_defer(io_submit.io_end);
2091 return ret;
2092 }
2093
mpage_submit_page(struct mpage_da_data * mpd,struct page * page)2094 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2095 {
2096 int len;
2097 loff_t size;
2098 int err;
2099
2100 BUG_ON(page->index != mpd->first_page);
2101 clear_page_dirty_for_io(page);
2102 /*
2103 * We have to be very careful here! Nothing protects writeback path
2104 * against i_size changes and the page can be writeably mapped into
2105 * page tables. So an application can be growing i_size and writing
2106 * data through mmap while writeback runs. clear_page_dirty_for_io()
2107 * write-protects our page in page tables and the page cannot get
2108 * written to again until we release page lock. So only after
2109 * clear_page_dirty_for_io() we are safe to sample i_size for
2110 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2111 * on the barrier provided by TestClearPageDirty in
2112 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2113 * after page tables are updated.
2114 */
2115 size = i_size_read(mpd->inode);
2116 if (page->index == size >> PAGE_SHIFT &&
2117 !ext4_verity_in_progress(mpd->inode))
2118 len = size & ~PAGE_MASK;
2119 else
2120 len = PAGE_SIZE;
2121 err = ext4_bio_write_page(&mpd->io_submit, page, len, false);
2122 if (!err)
2123 mpd->wbc->nr_to_write--;
2124 mpd->first_page++;
2125
2126 return err;
2127 }
2128
2129 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
2130
2131 /*
2132 * mballoc gives us at most this number of blocks...
2133 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2134 * The rest of mballoc seems to handle chunks up to full group size.
2135 */
2136 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2137
2138 /*
2139 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2140 *
2141 * @mpd - extent of blocks
2142 * @lblk - logical number of the block in the file
2143 * @bh - buffer head we want to add to the extent
2144 *
2145 * The function is used to collect contig. blocks in the same state. If the
2146 * buffer doesn't require mapping for writeback and we haven't started the
2147 * extent of buffers to map yet, the function returns 'true' immediately - the
2148 * caller can write the buffer right away. Otherwise the function returns true
2149 * if the block has been added to the extent, false if the block couldn't be
2150 * added.
2151 */
mpage_add_bh_to_extent(struct mpage_da_data * mpd,ext4_lblk_t lblk,struct buffer_head * bh)2152 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2153 struct buffer_head *bh)
2154 {
2155 struct ext4_map_blocks *map = &mpd->map;
2156
2157 /* Buffer that doesn't need mapping for writeback? */
2158 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2159 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2160 /* So far no extent to map => we write the buffer right away */
2161 if (map->m_len == 0)
2162 return true;
2163 return false;
2164 }
2165
2166 /* First block in the extent? */
2167 if (map->m_len == 0) {
2168 /* We cannot map unless handle is started... */
2169 if (!mpd->do_map)
2170 return false;
2171 map->m_lblk = lblk;
2172 map->m_len = 1;
2173 map->m_flags = bh->b_state & BH_FLAGS;
2174 return true;
2175 }
2176
2177 /* Don't go larger than mballoc is willing to allocate */
2178 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2179 return false;
2180
2181 /* Can we merge the block to our big extent? */
2182 if (lblk == map->m_lblk + map->m_len &&
2183 (bh->b_state & BH_FLAGS) == map->m_flags) {
2184 map->m_len++;
2185 return true;
2186 }
2187 return false;
2188 }
2189
2190 /*
2191 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2192 *
2193 * @mpd - extent of blocks for mapping
2194 * @head - the first buffer in the page
2195 * @bh - buffer we should start processing from
2196 * @lblk - logical number of the block in the file corresponding to @bh
2197 *
2198 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2199 * the page for IO if all buffers in this page were mapped and there's no
2200 * accumulated extent of buffers to map or add buffers in the page to the
2201 * extent of buffers to map. The function returns 1 if the caller can continue
2202 * by processing the next page, 0 if it should stop adding buffers to the
2203 * extent to map because we cannot extend it anymore. It can also return value
2204 * < 0 in case of error during IO submission.
2205 */
mpage_process_page_bufs(struct mpage_da_data * mpd,struct buffer_head * head,struct buffer_head * bh,ext4_lblk_t lblk)2206 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2207 struct buffer_head *head,
2208 struct buffer_head *bh,
2209 ext4_lblk_t lblk)
2210 {
2211 struct inode *inode = mpd->inode;
2212 int err;
2213 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2214 >> inode->i_blkbits;
2215
2216 if (ext4_verity_in_progress(inode))
2217 blocks = EXT_MAX_BLOCKS;
2218
2219 do {
2220 BUG_ON(buffer_locked(bh));
2221
2222 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2223 /* Found extent to map? */
2224 if (mpd->map.m_len)
2225 return 0;
2226 /* Buffer needs mapping and handle is not started? */
2227 if (!mpd->do_map)
2228 return 0;
2229 /* Everything mapped so far and we hit EOF */
2230 break;
2231 }
2232 } while (lblk++, (bh = bh->b_this_page) != head);
2233 /* So far everything mapped? Submit the page for IO. */
2234 if (mpd->map.m_len == 0) {
2235 err = mpage_submit_page(mpd, head->b_page);
2236 if (err < 0)
2237 return err;
2238 }
2239 if (lblk >= blocks) {
2240 mpd->scanned_until_end = 1;
2241 return 0;
2242 }
2243 return 1;
2244 }
2245
2246 /*
2247 * mpage_process_page - update page buffers corresponding to changed extent and
2248 * may submit fully mapped page for IO
2249 *
2250 * @mpd - description of extent to map, on return next extent to map
2251 * @m_lblk - logical block mapping.
2252 * @m_pblk - corresponding physical mapping.
2253 * @map_bh - determines on return whether this page requires any further
2254 * mapping or not.
2255 * Scan given page buffers corresponding to changed extent and update buffer
2256 * state according to new extent state.
2257 * We map delalloc buffers to their physical location, clear unwritten bits.
2258 * If the given page is not fully mapped, we update @map to the next extent in
2259 * the given page that needs mapping & return @map_bh as true.
2260 */
mpage_process_page(struct mpage_da_data * mpd,struct page * page,ext4_lblk_t * m_lblk,ext4_fsblk_t * m_pblk,bool * map_bh)2261 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page,
2262 ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2263 bool *map_bh)
2264 {
2265 struct buffer_head *head, *bh;
2266 ext4_io_end_t *io_end = mpd->io_submit.io_end;
2267 ext4_lblk_t lblk = *m_lblk;
2268 ext4_fsblk_t pblock = *m_pblk;
2269 int err = 0;
2270 int blkbits = mpd->inode->i_blkbits;
2271 ssize_t io_end_size = 0;
2272 struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2273
2274 bh = head = page_buffers(page);
2275 do {
2276 if (lblk < mpd->map.m_lblk)
2277 continue;
2278 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2279 /*
2280 * Buffer after end of mapped extent.
2281 * Find next buffer in the page to map.
2282 */
2283 mpd->map.m_len = 0;
2284 mpd->map.m_flags = 0;
2285 io_end_vec->size += io_end_size;
2286
2287 err = mpage_process_page_bufs(mpd, head, bh, lblk);
2288 if (err > 0)
2289 err = 0;
2290 if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2291 io_end_vec = ext4_alloc_io_end_vec(io_end);
2292 if (IS_ERR(io_end_vec)) {
2293 err = PTR_ERR(io_end_vec);
2294 goto out;
2295 }
2296 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2297 }
2298 *map_bh = true;
2299 goto out;
2300 }
2301 if (buffer_delay(bh)) {
2302 clear_buffer_delay(bh);
2303 bh->b_blocknr = pblock++;
2304 }
2305 clear_buffer_unwritten(bh);
2306 io_end_size += (1 << blkbits);
2307 } while (lblk++, (bh = bh->b_this_page) != head);
2308
2309 io_end_vec->size += io_end_size;
2310 *map_bh = false;
2311 out:
2312 *m_lblk = lblk;
2313 *m_pblk = pblock;
2314 return err;
2315 }
2316
2317 /*
2318 * mpage_map_buffers - update buffers corresponding to changed extent and
2319 * submit fully mapped pages for IO
2320 *
2321 * @mpd - description of extent to map, on return next extent to map
2322 *
2323 * Scan buffers corresponding to changed extent (we expect corresponding pages
2324 * to be already locked) and update buffer state according to new extent state.
2325 * We map delalloc buffers to their physical location, clear unwritten bits,
2326 * and mark buffers as uninit when we perform writes to unwritten extents
2327 * and do extent conversion after IO is finished. If the last page is not fully
2328 * mapped, we update @map to the next extent in the last page that needs
2329 * mapping. Otherwise we submit the page for IO.
2330 */
mpage_map_and_submit_buffers(struct mpage_da_data * mpd)2331 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2332 {
2333 struct folio_batch fbatch;
2334 unsigned nr, i;
2335 struct inode *inode = mpd->inode;
2336 int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2337 pgoff_t start, end;
2338 ext4_lblk_t lblk;
2339 ext4_fsblk_t pblock;
2340 int err;
2341 bool map_bh = false;
2342
2343 start = mpd->map.m_lblk >> bpp_bits;
2344 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2345 lblk = start << bpp_bits;
2346 pblock = mpd->map.m_pblk;
2347
2348 folio_batch_init(&fbatch);
2349 while (start <= end) {
2350 nr = filemap_get_folios(inode->i_mapping, &start, end, &fbatch);
2351 if (nr == 0)
2352 break;
2353 for (i = 0; i < nr; i++) {
2354 struct page *page = &fbatch.folios[i]->page;
2355
2356 err = mpage_process_page(mpd, page, &lblk, &pblock,
2357 &map_bh);
2358 /*
2359 * If map_bh is true, means page may require further bh
2360 * mapping, or maybe the page was submitted for IO.
2361 * So we return to call further extent mapping.
2362 */
2363 if (err < 0 || map_bh)
2364 goto out;
2365 /* Page fully mapped - let IO run! */
2366 err = mpage_submit_page(mpd, page);
2367 if (err < 0)
2368 goto out;
2369 }
2370 folio_batch_release(&fbatch);
2371 }
2372 /* Extent fully mapped and matches with page boundary. We are done. */
2373 mpd->map.m_len = 0;
2374 mpd->map.m_flags = 0;
2375 return 0;
2376 out:
2377 folio_batch_release(&fbatch);
2378 return err;
2379 }
2380
mpage_map_one_extent(handle_t * handle,struct mpage_da_data * mpd)2381 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2382 {
2383 struct inode *inode = mpd->inode;
2384 struct ext4_map_blocks *map = &mpd->map;
2385 int get_blocks_flags;
2386 int err, dioread_nolock;
2387
2388 trace_ext4_da_write_pages_extent(inode, map);
2389 /*
2390 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2391 * to convert an unwritten extent to be initialized (in the case
2392 * where we have written into one or more preallocated blocks). It is
2393 * possible that we're going to need more metadata blocks than
2394 * previously reserved. However we must not fail because we're in
2395 * writeback and there is nothing we can do about it so it might result
2396 * in data loss. So use reserved blocks to allocate metadata if
2397 * possible.
2398 *
2399 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2400 * the blocks in question are delalloc blocks. This indicates
2401 * that the blocks and quotas has already been checked when
2402 * the data was copied into the page cache.
2403 */
2404 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2405 EXT4_GET_BLOCKS_METADATA_NOFAIL |
2406 EXT4_GET_BLOCKS_IO_SUBMIT;
2407 dioread_nolock = ext4_should_dioread_nolock(inode);
2408 if (dioread_nolock)
2409 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2410 if (map->m_flags & BIT(BH_Delay))
2411 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2412
2413 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2414 if (err < 0)
2415 return err;
2416 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2417 if (!mpd->io_submit.io_end->handle &&
2418 ext4_handle_valid(handle)) {
2419 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2420 handle->h_rsv_handle = NULL;
2421 }
2422 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2423 }
2424
2425 BUG_ON(map->m_len == 0);
2426 return 0;
2427 }
2428
2429 /*
2430 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2431 * mpd->len and submit pages underlying it for IO
2432 *
2433 * @handle - handle for journal operations
2434 * @mpd - extent to map
2435 * @give_up_on_write - we set this to true iff there is a fatal error and there
2436 * is no hope of writing the data. The caller should discard
2437 * dirty pages to avoid infinite loops.
2438 *
2439 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2440 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2441 * them to initialized or split the described range from larger unwritten
2442 * extent. Note that we need not map all the described range since allocation
2443 * can return less blocks or the range is covered by more unwritten extents. We
2444 * cannot map more because we are limited by reserved transaction credits. On
2445 * the other hand we always make sure that the last touched page is fully
2446 * mapped so that it can be written out (and thus forward progress is
2447 * guaranteed). After mapping we submit all mapped pages for IO.
2448 */
mpage_map_and_submit_extent(handle_t * handle,struct mpage_da_data * mpd,bool * give_up_on_write)2449 static int mpage_map_and_submit_extent(handle_t *handle,
2450 struct mpage_da_data *mpd,
2451 bool *give_up_on_write)
2452 {
2453 struct inode *inode = mpd->inode;
2454 struct ext4_map_blocks *map = &mpd->map;
2455 int err;
2456 loff_t disksize;
2457 int progress = 0;
2458 ext4_io_end_t *io_end = mpd->io_submit.io_end;
2459 struct ext4_io_end_vec *io_end_vec;
2460
2461 io_end_vec = ext4_alloc_io_end_vec(io_end);
2462 if (IS_ERR(io_end_vec))
2463 return PTR_ERR(io_end_vec);
2464 io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2465 do {
2466 err = mpage_map_one_extent(handle, mpd);
2467 if (err < 0) {
2468 struct super_block *sb = inode->i_sb;
2469
2470 if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2471 ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
2472 goto invalidate_dirty_pages;
2473 /*
2474 * Let the uper layers retry transient errors.
2475 * In the case of ENOSPC, if ext4_count_free_blocks()
2476 * is non-zero, a commit should free up blocks.
2477 */
2478 if ((err == -ENOMEM) ||
2479 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2480 if (progress)
2481 goto update_disksize;
2482 return err;
2483 }
2484 ext4_msg(sb, KERN_CRIT,
2485 "Delayed block allocation failed for "
2486 "inode %lu at logical offset %llu with"
2487 " max blocks %u with error %d",
2488 inode->i_ino,
2489 (unsigned long long)map->m_lblk,
2490 (unsigned)map->m_len, -err);
2491 ext4_msg(sb, KERN_CRIT,
2492 "This should not happen!! Data will "
2493 "be lost\n");
2494 if (err == -ENOSPC)
2495 ext4_print_free_blocks(inode);
2496 invalidate_dirty_pages:
2497 *give_up_on_write = true;
2498 return err;
2499 }
2500 progress = 1;
2501 /*
2502 * Update buffer state, submit mapped pages, and get us new
2503 * extent to map
2504 */
2505 err = mpage_map_and_submit_buffers(mpd);
2506 if (err < 0)
2507 goto update_disksize;
2508 } while (map->m_len);
2509
2510 update_disksize:
2511 /*
2512 * Update on-disk size after IO is submitted. Races with
2513 * truncate are avoided by checking i_size under i_data_sem.
2514 */
2515 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2516 if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2517 int err2;
2518 loff_t i_size;
2519
2520 down_write(&EXT4_I(inode)->i_data_sem);
2521 i_size = i_size_read(inode);
2522 if (disksize > i_size)
2523 disksize = i_size;
2524 if (disksize > EXT4_I(inode)->i_disksize)
2525 EXT4_I(inode)->i_disksize = disksize;
2526 up_write(&EXT4_I(inode)->i_data_sem);
2527 err2 = ext4_mark_inode_dirty(handle, inode);
2528 if (err2) {
2529 ext4_error_err(inode->i_sb, -err2,
2530 "Failed to mark inode %lu dirty",
2531 inode->i_ino);
2532 }
2533 if (!err)
2534 err = err2;
2535 }
2536 return err;
2537 }
2538
2539 /*
2540 * Calculate the total number of credits to reserve for one writepages
2541 * iteration. This is called from ext4_writepages(). We map an extent of
2542 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2543 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2544 * bpp - 1 blocks in bpp different extents.
2545 */
ext4_da_writepages_trans_blocks(struct inode * inode)2546 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2547 {
2548 int bpp = ext4_journal_blocks_per_page(inode);
2549
2550 return ext4_meta_trans_blocks(inode,
2551 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2552 }
2553
2554 /*
2555 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2556 * and underlying extent to map
2557 *
2558 * @mpd - where to look for pages
2559 *
2560 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2561 * IO immediately. When we find a page which isn't mapped we start accumulating
2562 * extent of buffers underlying these pages that needs mapping (formed by
2563 * either delayed or unwritten buffers). We also lock the pages containing
2564 * these buffers. The extent found is returned in @mpd structure (starting at
2565 * mpd->lblk with length mpd->len blocks).
2566 *
2567 * Note that this function can attach bios to one io_end structure which are
2568 * neither logically nor physically contiguous. Although it may seem as an
2569 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2570 * case as we need to track IO to all buffers underlying a page in one io_end.
2571 */
mpage_prepare_extent_to_map(struct mpage_da_data * mpd)2572 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2573 {
2574 struct address_space *mapping = mpd->inode->i_mapping;
2575 struct pagevec pvec;
2576 unsigned int nr_pages;
2577 long left = mpd->wbc->nr_to_write;
2578 pgoff_t index = mpd->first_page;
2579 pgoff_t end = mpd->last_page;
2580 xa_mark_t tag;
2581 int i, err = 0;
2582 int blkbits = mpd->inode->i_blkbits;
2583 ext4_lblk_t lblk;
2584 struct buffer_head *head;
2585
2586 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2587 tag = PAGECACHE_TAG_TOWRITE;
2588 else
2589 tag = PAGECACHE_TAG_DIRTY;
2590
2591 pagevec_init(&pvec);
2592 mpd->map.m_len = 0;
2593 mpd->next_page = index;
2594 while (index <= end) {
2595 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2596 tag);
2597 if (nr_pages == 0)
2598 break;
2599
2600 for (i = 0; i < nr_pages; i++) {
2601 struct page *page = pvec.pages[i];
2602
2603 /*
2604 * Accumulated enough dirty pages? This doesn't apply
2605 * to WB_SYNC_ALL mode. For integrity sync we have to
2606 * keep going because someone may be concurrently
2607 * dirtying pages, and we might have synced a lot of
2608 * newly appeared dirty pages, but have not synced all
2609 * of the old dirty pages.
2610 */
2611 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2612 goto out;
2613
2614 /* If we can't merge this page, we are done. */
2615 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2616 goto out;
2617
2618 lock_page(page);
2619 /*
2620 * If the page is no longer dirty, or its mapping no
2621 * longer corresponds to inode we are writing (which
2622 * means it has been truncated or invalidated), or the
2623 * page is already under writeback and we are not doing
2624 * a data integrity writeback, skip the page
2625 */
2626 if (!PageDirty(page) ||
2627 (PageWriteback(page) &&
2628 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2629 unlikely(page->mapping != mapping)) {
2630 unlock_page(page);
2631 continue;
2632 }
2633
2634 wait_on_page_writeback(page);
2635 BUG_ON(PageWriteback(page));
2636
2637 /*
2638 * Should never happen but for buggy code in
2639 * other subsystems that call
2640 * set_page_dirty() without properly warning
2641 * the file system first. See [1] for more
2642 * information.
2643 *
2644 * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz
2645 */
2646 if (!page_has_buffers(page)) {
2647 ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", page->index);
2648 ClearPageDirty(page);
2649 unlock_page(page);
2650 continue;
2651 }
2652
2653 if (mpd->map.m_len == 0)
2654 mpd->first_page = page->index;
2655 mpd->next_page = page->index + 1;
2656 /* Add all dirty buffers to mpd */
2657 lblk = ((ext4_lblk_t)page->index) <<
2658 (PAGE_SHIFT - blkbits);
2659 head = page_buffers(page);
2660 err = mpage_process_page_bufs(mpd, head, head, lblk);
2661 if (err <= 0)
2662 goto out;
2663 err = 0;
2664 left--;
2665 }
2666 pagevec_release(&pvec);
2667 cond_resched();
2668 }
2669 mpd->scanned_until_end = 1;
2670 return 0;
2671 out:
2672 pagevec_release(&pvec);
2673 return err;
2674 }
2675
ext4_writepages(struct address_space * mapping,struct writeback_control * wbc)2676 static int ext4_writepages(struct address_space *mapping,
2677 struct writeback_control *wbc)
2678 {
2679 pgoff_t writeback_index = 0;
2680 long nr_to_write = wbc->nr_to_write;
2681 int range_whole = 0;
2682 int cycled = 1;
2683 handle_t *handle = NULL;
2684 struct mpage_da_data mpd;
2685 struct inode *inode = mapping->host;
2686 int needed_blocks, rsv_blocks = 0, ret = 0;
2687 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2688 struct blk_plug plug;
2689 bool give_up_on_write = false;
2690
2691 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2692 return -EIO;
2693
2694 percpu_down_read(&sbi->s_writepages_rwsem);
2695 trace_ext4_writepages(inode, wbc);
2696
2697 /*
2698 * No pages to write? This is mainly a kludge to avoid starting
2699 * a transaction for special inodes like journal inode on last iput()
2700 * because that could violate lock ordering on umount
2701 */
2702 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2703 goto out_writepages;
2704
2705 if (ext4_should_journal_data(inode)) {
2706 ret = generic_writepages(mapping, wbc);
2707 goto out_writepages;
2708 }
2709
2710 /*
2711 * If the filesystem has aborted, it is read-only, so return
2712 * right away instead of dumping stack traces later on that
2713 * will obscure the real source of the problem. We test
2714 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2715 * the latter could be true if the filesystem is mounted
2716 * read-only, and in that case, ext4_writepages should
2717 * *never* be called, so if that ever happens, we would want
2718 * the stack trace.
2719 */
2720 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2721 ext4_test_mount_flag(inode->i_sb, EXT4_MF_FS_ABORTED))) {
2722 ret = -EROFS;
2723 goto out_writepages;
2724 }
2725
2726 /*
2727 * If we have inline data and arrive here, it means that
2728 * we will soon create the block for the 1st page, so
2729 * we'd better clear the inline data here.
2730 */
2731 if (ext4_has_inline_data(inode)) {
2732 /* Just inode will be modified... */
2733 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2734 if (IS_ERR(handle)) {
2735 ret = PTR_ERR(handle);
2736 goto out_writepages;
2737 }
2738 BUG_ON(ext4_test_inode_state(inode,
2739 EXT4_STATE_MAY_INLINE_DATA));
2740 ext4_destroy_inline_data(handle, inode);
2741 ext4_journal_stop(handle);
2742 }
2743
2744 if (ext4_should_dioread_nolock(inode)) {
2745 /*
2746 * We may need to convert up to one extent per block in
2747 * the page and we may dirty the inode.
2748 */
2749 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2750 PAGE_SIZE >> inode->i_blkbits);
2751 }
2752
2753 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2754 range_whole = 1;
2755
2756 if (wbc->range_cyclic) {
2757 writeback_index = mapping->writeback_index;
2758 if (writeback_index)
2759 cycled = 0;
2760 mpd.first_page = writeback_index;
2761 mpd.last_page = -1;
2762 } else {
2763 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2764 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2765 }
2766
2767 mpd.inode = inode;
2768 mpd.wbc = wbc;
2769 ext4_io_submit_init(&mpd.io_submit, wbc);
2770 retry:
2771 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2772 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2773 blk_start_plug(&plug);
2774
2775 /*
2776 * First writeback pages that don't need mapping - we can avoid
2777 * starting a transaction unnecessarily and also avoid being blocked
2778 * in the block layer on device congestion while having transaction
2779 * started.
2780 */
2781 mpd.do_map = 0;
2782 mpd.scanned_until_end = 0;
2783 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2784 if (!mpd.io_submit.io_end) {
2785 ret = -ENOMEM;
2786 goto unplug;
2787 }
2788 ret = mpage_prepare_extent_to_map(&mpd);
2789 /* Unlock pages we didn't use */
2790 mpage_release_unused_pages(&mpd, false);
2791 /* Submit prepared bio */
2792 ext4_io_submit(&mpd.io_submit);
2793 ext4_put_io_end_defer(mpd.io_submit.io_end);
2794 mpd.io_submit.io_end = NULL;
2795 if (ret < 0)
2796 goto unplug;
2797
2798 while (!mpd.scanned_until_end && wbc->nr_to_write > 0) {
2799 /* For each extent of pages we use new io_end */
2800 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2801 if (!mpd.io_submit.io_end) {
2802 ret = -ENOMEM;
2803 break;
2804 }
2805
2806 /*
2807 * We have two constraints: We find one extent to map and we
2808 * must always write out whole page (makes a difference when
2809 * blocksize < pagesize) so that we don't block on IO when we
2810 * try to write out the rest of the page. Journalled mode is
2811 * not supported by delalloc.
2812 */
2813 BUG_ON(ext4_should_journal_data(inode));
2814 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2815
2816 /* start a new transaction */
2817 handle = ext4_journal_start_with_reserve(inode,
2818 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2819 if (IS_ERR(handle)) {
2820 ret = PTR_ERR(handle);
2821 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2822 "%ld pages, ino %lu; err %d", __func__,
2823 wbc->nr_to_write, inode->i_ino, ret);
2824 /* Release allocated io_end */
2825 ext4_put_io_end(mpd.io_submit.io_end);
2826 mpd.io_submit.io_end = NULL;
2827 break;
2828 }
2829 mpd.do_map = 1;
2830
2831 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2832 ret = mpage_prepare_extent_to_map(&mpd);
2833 if (!ret && mpd.map.m_len)
2834 ret = mpage_map_and_submit_extent(handle, &mpd,
2835 &give_up_on_write);
2836 /*
2837 * Caution: If the handle is synchronous,
2838 * ext4_journal_stop() can wait for transaction commit
2839 * to finish which may depend on writeback of pages to
2840 * complete or on page lock to be released. In that
2841 * case, we have to wait until after we have
2842 * submitted all the IO, released page locks we hold,
2843 * and dropped io_end reference (for extent conversion
2844 * to be able to complete) before stopping the handle.
2845 */
2846 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2847 ext4_journal_stop(handle);
2848 handle = NULL;
2849 mpd.do_map = 0;
2850 }
2851 /* Unlock pages we didn't use */
2852 mpage_release_unused_pages(&mpd, give_up_on_write);
2853 /* Submit prepared bio */
2854 ext4_io_submit(&mpd.io_submit);
2855
2856 /*
2857 * Drop our io_end reference we got from init. We have
2858 * to be careful and use deferred io_end finishing if
2859 * we are still holding the transaction as we can
2860 * release the last reference to io_end which may end
2861 * up doing unwritten extent conversion.
2862 */
2863 if (handle) {
2864 ext4_put_io_end_defer(mpd.io_submit.io_end);
2865 ext4_journal_stop(handle);
2866 } else
2867 ext4_put_io_end(mpd.io_submit.io_end);
2868 mpd.io_submit.io_end = NULL;
2869
2870 if (ret == -ENOSPC && sbi->s_journal) {
2871 /*
2872 * Commit the transaction which would
2873 * free blocks released in the transaction
2874 * and try again
2875 */
2876 jbd2_journal_force_commit_nested(sbi->s_journal);
2877 ret = 0;
2878 continue;
2879 }
2880 /* Fatal error - ENOMEM, EIO... */
2881 if (ret)
2882 break;
2883 }
2884 unplug:
2885 blk_finish_plug(&plug);
2886 if (!ret && !cycled && wbc->nr_to_write > 0) {
2887 cycled = 1;
2888 mpd.last_page = writeback_index - 1;
2889 mpd.first_page = 0;
2890 goto retry;
2891 }
2892
2893 /* Update index */
2894 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2895 /*
2896 * Set the writeback_index so that range_cyclic
2897 * mode will write it back later
2898 */
2899 mapping->writeback_index = mpd.first_page;
2900
2901 out_writepages:
2902 trace_ext4_writepages_result(inode, wbc, ret,
2903 nr_to_write - wbc->nr_to_write);
2904 percpu_up_read(&sbi->s_writepages_rwsem);
2905 return ret;
2906 }
2907
ext4_dax_writepages(struct address_space * mapping,struct writeback_control * wbc)2908 static int ext4_dax_writepages(struct address_space *mapping,
2909 struct writeback_control *wbc)
2910 {
2911 int ret;
2912 long nr_to_write = wbc->nr_to_write;
2913 struct inode *inode = mapping->host;
2914 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2915
2916 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2917 return -EIO;
2918
2919 percpu_down_read(&sbi->s_writepages_rwsem);
2920 trace_ext4_writepages(inode, wbc);
2921
2922 ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
2923 trace_ext4_writepages_result(inode, wbc, ret,
2924 nr_to_write - wbc->nr_to_write);
2925 percpu_up_read(&sbi->s_writepages_rwsem);
2926 return ret;
2927 }
2928
ext4_nonda_switch(struct super_block * sb)2929 static int ext4_nonda_switch(struct super_block *sb)
2930 {
2931 s64 free_clusters, dirty_clusters;
2932 struct ext4_sb_info *sbi = EXT4_SB(sb);
2933
2934 /*
2935 * switch to non delalloc mode if we are running low
2936 * on free block. The free block accounting via percpu
2937 * counters can get slightly wrong with percpu_counter_batch getting
2938 * accumulated on each CPU without updating global counters
2939 * Delalloc need an accurate free block accounting. So switch
2940 * to non delalloc when we are near to error range.
2941 */
2942 free_clusters =
2943 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2944 dirty_clusters =
2945 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2946 /*
2947 * Start pushing delalloc when 1/2 of free blocks are dirty.
2948 */
2949 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2950 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2951
2952 if (2 * free_clusters < 3 * dirty_clusters ||
2953 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2954 /*
2955 * free block count is less than 150% of dirty blocks
2956 * or free blocks is less than watermark
2957 */
2958 return 1;
2959 }
2960 return 0;
2961 }
2962
ext4_da_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,struct page ** pagep,void ** fsdata)2963 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2964 loff_t pos, unsigned len,
2965 struct page **pagep, void **fsdata)
2966 {
2967 int ret, retries = 0;
2968 struct page *page;
2969 pgoff_t index;
2970 struct inode *inode = mapping->host;
2971
2972 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2973 return -EIO;
2974
2975 index = pos >> PAGE_SHIFT;
2976
2977 if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) {
2978 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2979 return ext4_write_begin(file, mapping, pos,
2980 len, pagep, fsdata);
2981 }
2982 *fsdata = (void *)0;
2983 trace_ext4_da_write_begin(inode, pos, len);
2984
2985 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2986 ret = ext4_da_write_inline_data_begin(mapping, inode, pos, len,
2987 pagep, fsdata);
2988 if (ret < 0)
2989 return ret;
2990 if (ret == 1)
2991 return 0;
2992 }
2993
2994 retry:
2995 page = grab_cache_page_write_begin(mapping, index);
2996 if (!page)
2997 return -ENOMEM;
2998
2999 /* In case writeback began while the page was unlocked */
3000 wait_for_stable_page(page);
3001
3002 #ifdef CONFIG_FS_ENCRYPTION
3003 ret = ext4_block_write_begin(page, pos, len,
3004 ext4_da_get_block_prep);
3005 #else
3006 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3007 #endif
3008 if (ret < 0) {
3009 unlock_page(page);
3010 put_page(page);
3011 /*
3012 * block_write_begin may have instantiated a few blocks
3013 * outside i_size. Trim these off again. Don't need
3014 * i_size_read because we hold inode lock.
3015 */
3016 if (pos + len > inode->i_size)
3017 ext4_truncate_failed_write(inode);
3018
3019 if (ret == -ENOSPC &&
3020 ext4_should_retry_alloc(inode->i_sb, &retries))
3021 goto retry;
3022 return ret;
3023 }
3024
3025 *pagep = page;
3026 return ret;
3027 }
3028
3029 /*
3030 * Check if we should update i_disksize
3031 * when write to the end of file but not require block allocation
3032 */
ext4_da_should_update_i_disksize(struct page * page,unsigned long offset)3033 static int ext4_da_should_update_i_disksize(struct page *page,
3034 unsigned long offset)
3035 {
3036 struct buffer_head *bh;
3037 struct inode *inode = page->mapping->host;
3038 unsigned int idx;
3039 int i;
3040
3041 bh = page_buffers(page);
3042 idx = offset >> inode->i_blkbits;
3043
3044 for (i = 0; i < idx; i++)
3045 bh = bh->b_this_page;
3046
3047 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3048 return 0;
3049 return 1;
3050 }
3051
ext4_da_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)3052 static int ext4_da_write_end(struct file *file,
3053 struct address_space *mapping,
3054 loff_t pos, unsigned len, unsigned copied,
3055 struct page *page, void *fsdata)
3056 {
3057 struct inode *inode = mapping->host;
3058 loff_t new_i_size;
3059 unsigned long start, end;
3060 int write_mode = (int)(unsigned long)fsdata;
3061
3062 if (write_mode == FALL_BACK_TO_NONDELALLOC)
3063 return ext4_write_end(file, mapping, pos,
3064 len, copied, page, fsdata);
3065
3066 trace_ext4_da_write_end(inode, pos, len, copied);
3067
3068 if (write_mode != CONVERT_INLINE_DATA &&
3069 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3070 ext4_has_inline_data(inode))
3071 return ext4_write_inline_data_end(inode, pos, len, copied, page);
3072
3073 start = pos & (PAGE_SIZE - 1);
3074 end = start + copied - 1;
3075
3076 /*
3077 * Since we are holding inode lock, we are sure i_disksize <=
3078 * i_size. We also know that if i_disksize < i_size, there are
3079 * delalloc writes pending in the range upto i_size. If the end of
3080 * the current write is <= i_size, there's no need to touch
3081 * i_disksize since writeback will push i_disksize upto i_size
3082 * eventually. If the end of the current write is > i_size and
3083 * inside an allocated block (ext4_da_should_update_i_disksize()
3084 * check), we need to update i_disksize here as neither
3085 * ext4_writepage() nor certain ext4_writepages() paths not
3086 * allocating blocks update i_disksize.
3087 *
3088 * Note that we defer inode dirtying to generic_write_end() /
3089 * ext4_da_write_inline_data_end().
3090 */
3091 new_i_size = pos + copied;
3092 if (copied && new_i_size > inode->i_size &&
3093 ext4_da_should_update_i_disksize(page, end))
3094 ext4_update_i_disksize(inode, new_i_size);
3095
3096 return generic_write_end(file, mapping, pos, len, copied, page, fsdata);
3097 }
3098
3099 /*
3100 * Force all delayed allocation blocks to be allocated for a given inode.
3101 */
ext4_alloc_da_blocks(struct inode * inode)3102 int ext4_alloc_da_blocks(struct inode *inode)
3103 {
3104 trace_ext4_alloc_da_blocks(inode);
3105
3106 if (!EXT4_I(inode)->i_reserved_data_blocks)
3107 return 0;
3108
3109 /*
3110 * We do something simple for now. The filemap_flush() will
3111 * also start triggering a write of the data blocks, which is
3112 * not strictly speaking necessary (and for users of
3113 * laptop_mode, not even desirable). However, to do otherwise
3114 * would require replicating code paths in:
3115 *
3116 * ext4_writepages() ->
3117 * write_cache_pages() ---> (via passed in callback function)
3118 * __mpage_da_writepage() -->
3119 * mpage_add_bh_to_extent()
3120 * mpage_da_map_blocks()
3121 *
3122 * The problem is that write_cache_pages(), located in
3123 * mm/page-writeback.c, marks pages clean in preparation for
3124 * doing I/O, which is not desirable if we're not planning on
3125 * doing I/O at all.
3126 *
3127 * We could call write_cache_pages(), and then redirty all of
3128 * the pages by calling redirty_page_for_writepage() but that
3129 * would be ugly in the extreme. So instead we would need to
3130 * replicate parts of the code in the above functions,
3131 * simplifying them because we wouldn't actually intend to
3132 * write out the pages, but rather only collect contiguous
3133 * logical block extents, call the multi-block allocator, and
3134 * then update the buffer heads with the block allocations.
3135 *
3136 * For now, though, we'll cheat by calling filemap_flush(),
3137 * which will map the blocks, and start the I/O, but not
3138 * actually wait for the I/O to complete.
3139 */
3140 return filemap_flush(inode->i_mapping);
3141 }
3142
3143 /*
3144 * bmap() is special. It gets used by applications such as lilo and by
3145 * the swapper to find the on-disk block of a specific piece of data.
3146 *
3147 * Naturally, this is dangerous if the block concerned is still in the
3148 * journal. If somebody makes a swapfile on an ext4 data-journaling
3149 * filesystem and enables swap, then they may get a nasty shock when the
3150 * data getting swapped to that swapfile suddenly gets overwritten by
3151 * the original zero's written out previously to the journal and
3152 * awaiting writeback in the kernel's buffer cache.
3153 *
3154 * So, if we see any bmap calls here on a modified, data-journaled file,
3155 * take extra steps to flush any blocks which might be in the cache.
3156 */
ext4_bmap(struct address_space * mapping,sector_t block)3157 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3158 {
3159 struct inode *inode = mapping->host;
3160 journal_t *journal;
3161 sector_t ret = 0;
3162 int err;
3163
3164 inode_lock_shared(inode);
3165 /*
3166 * We can get here for an inline file via the FIBMAP ioctl
3167 */
3168 if (ext4_has_inline_data(inode))
3169 goto out;
3170
3171 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3172 test_opt(inode->i_sb, DELALLOC)) {
3173 /*
3174 * With delalloc we want to sync the file
3175 * so that we can make sure we allocate
3176 * blocks for file
3177 */
3178 filemap_write_and_wait(mapping);
3179 }
3180
3181 if (EXT4_JOURNAL(inode) &&
3182 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3183 /*
3184 * This is a REALLY heavyweight approach, but the use of
3185 * bmap on dirty files is expected to be extremely rare:
3186 * only if we run lilo or swapon on a freshly made file
3187 * do we expect this to happen.
3188 *
3189 * (bmap requires CAP_SYS_RAWIO so this does not
3190 * represent an unprivileged user DOS attack --- we'd be
3191 * in trouble if mortal users could trigger this path at
3192 * will.)
3193 *
3194 * NB. EXT4_STATE_JDATA is not set on files other than
3195 * regular files. If somebody wants to bmap a directory
3196 * or symlink and gets confused because the buffer
3197 * hasn't yet been flushed to disk, they deserve
3198 * everything they get.
3199 */
3200
3201 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3202 journal = EXT4_JOURNAL(inode);
3203 jbd2_journal_lock_updates(journal);
3204 err = jbd2_journal_flush(journal, 0);
3205 jbd2_journal_unlock_updates(journal);
3206
3207 if (err)
3208 goto out;
3209 }
3210
3211 ret = iomap_bmap(mapping, block, &ext4_iomap_ops);
3212
3213 out:
3214 inode_unlock_shared(inode);
3215 return ret;
3216 }
3217
ext4_read_folio(struct file * file,struct folio * folio)3218 static int ext4_read_folio(struct file *file, struct folio *folio)
3219 {
3220 struct page *page = &folio->page;
3221 int ret = -EAGAIN;
3222 struct inode *inode = page->mapping->host;
3223
3224 trace_ext4_readpage(page);
3225
3226 if (ext4_has_inline_data(inode))
3227 ret = ext4_readpage_inline(inode, page);
3228
3229 if (ret == -EAGAIN)
3230 return ext4_mpage_readpages(inode, NULL, page);
3231
3232 return ret;
3233 }
3234
ext4_readahead(struct readahead_control * rac)3235 static void ext4_readahead(struct readahead_control *rac)
3236 {
3237 struct inode *inode = rac->mapping->host;
3238
3239 /* If the file has inline data, no need to do readahead. */
3240 if (ext4_has_inline_data(inode))
3241 return;
3242
3243 ext4_mpage_readpages(inode, rac, NULL);
3244 }
3245
ext4_invalidate_folio(struct folio * folio,size_t offset,size_t length)3246 static void ext4_invalidate_folio(struct folio *folio, size_t offset,
3247 size_t length)
3248 {
3249 trace_ext4_invalidate_folio(folio, offset, length);
3250
3251 /* No journalling happens on data buffers when this function is used */
3252 WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio)));
3253
3254 block_invalidate_folio(folio, offset, length);
3255 }
3256
__ext4_journalled_invalidate_folio(struct folio * folio,size_t offset,size_t length)3257 static int __ext4_journalled_invalidate_folio(struct folio *folio,
3258 size_t offset, size_t length)
3259 {
3260 journal_t *journal = EXT4_JOURNAL(folio->mapping->host);
3261
3262 trace_ext4_journalled_invalidate_folio(folio, offset, length);
3263
3264 /*
3265 * If it's a full truncate we just forget about the pending dirtying
3266 */
3267 if (offset == 0 && length == folio_size(folio))
3268 folio_clear_checked(folio);
3269
3270 return jbd2_journal_invalidate_folio(journal, folio, offset, length);
3271 }
3272
3273 /* Wrapper for aops... */
ext4_journalled_invalidate_folio(struct folio * folio,size_t offset,size_t length)3274 static void ext4_journalled_invalidate_folio(struct folio *folio,
3275 size_t offset,
3276 size_t length)
3277 {
3278 WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0);
3279 }
3280
ext4_release_folio(struct folio * folio,gfp_t wait)3281 static bool ext4_release_folio(struct folio *folio, gfp_t wait)
3282 {
3283 journal_t *journal = EXT4_JOURNAL(folio->mapping->host);
3284
3285 trace_ext4_releasepage(&folio->page);
3286
3287 /* Page has dirty journalled data -> cannot release */
3288 if (folio_test_checked(folio))
3289 return false;
3290 if (journal)
3291 return jbd2_journal_try_to_free_buffers(journal, folio);
3292 else
3293 return try_to_free_buffers(folio);
3294 }
3295
ext4_inode_datasync_dirty(struct inode * inode)3296 static bool ext4_inode_datasync_dirty(struct inode *inode)
3297 {
3298 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3299
3300 if (journal) {
3301 if (jbd2_transaction_committed(journal,
3302 EXT4_I(inode)->i_datasync_tid))
3303 return false;
3304 if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3305 return !list_empty(&EXT4_I(inode)->i_fc_list);
3306 return true;
3307 }
3308
3309 /* Any metadata buffers to write? */
3310 if (!list_empty(&inode->i_mapping->private_list))
3311 return true;
3312 return inode->i_state & I_DIRTY_DATASYNC;
3313 }
3314
ext4_set_iomap(struct inode * inode,struct iomap * iomap,struct ext4_map_blocks * map,loff_t offset,loff_t length,unsigned int flags)3315 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3316 struct ext4_map_blocks *map, loff_t offset,
3317 loff_t length, unsigned int flags)
3318 {
3319 u8 blkbits = inode->i_blkbits;
3320
3321 /*
3322 * Writes that span EOF might trigger an I/O size update on completion,
3323 * so consider them to be dirty for the purpose of O_DSYNC, even if
3324 * there is no other metadata changes being made or are pending.
3325 */
3326 iomap->flags = 0;
3327 if (ext4_inode_datasync_dirty(inode) ||
3328 offset + length > i_size_read(inode))
3329 iomap->flags |= IOMAP_F_DIRTY;
3330
3331 if (map->m_flags & EXT4_MAP_NEW)
3332 iomap->flags |= IOMAP_F_NEW;
3333
3334 if (flags & IOMAP_DAX)
3335 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3336 else
3337 iomap->bdev = inode->i_sb->s_bdev;
3338 iomap->offset = (u64) map->m_lblk << blkbits;
3339 iomap->length = (u64) map->m_len << blkbits;
3340
3341 if ((map->m_flags & EXT4_MAP_MAPPED) &&
3342 !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3343 iomap->flags |= IOMAP_F_MERGED;
3344
3345 /*
3346 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3347 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3348 * set. In order for any allocated unwritten extents to be converted
3349 * into written extents correctly within the ->end_io() handler, we
3350 * need to ensure that the iomap->type is set appropriately. Hence, the
3351 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3352 * been set first.
3353 */
3354 if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3355 iomap->type = IOMAP_UNWRITTEN;
3356 iomap->addr = (u64) map->m_pblk << blkbits;
3357 if (flags & IOMAP_DAX)
3358 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3359 } else if (map->m_flags & EXT4_MAP_MAPPED) {
3360 iomap->type = IOMAP_MAPPED;
3361 iomap->addr = (u64) map->m_pblk << blkbits;
3362 if (flags & IOMAP_DAX)
3363 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3364 } else {
3365 iomap->type = IOMAP_HOLE;
3366 iomap->addr = IOMAP_NULL_ADDR;
3367 }
3368 }
3369
ext4_iomap_alloc(struct inode * inode,struct ext4_map_blocks * map,unsigned int flags)3370 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3371 unsigned int flags)
3372 {
3373 handle_t *handle;
3374 u8 blkbits = inode->i_blkbits;
3375 int ret, dio_credits, m_flags = 0, retries = 0;
3376
3377 /*
3378 * Trim the mapping request to the maximum value that we can map at
3379 * once for direct I/O.
3380 */
3381 if (map->m_len > DIO_MAX_BLOCKS)
3382 map->m_len = DIO_MAX_BLOCKS;
3383 dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3384
3385 retry:
3386 /*
3387 * Either we allocate blocks and then don't get an unwritten extent, so
3388 * in that case we have reserved enough credits. Or, the blocks are
3389 * already allocated and unwritten. In that case, the extent conversion
3390 * fits into the credits as well.
3391 */
3392 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3393 if (IS_ERR(handle))
3394 return PTR_ERR(handle);
3395
3396 /*
3397 * DAX and direct I/O are the only two operations that are currently
3398 * supported with IOMAP_WRITE.
3399 */
3400 WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT)));
3401 if (flags & IOMAP_DAX)
3402 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3403 /*
3404 * We use i_size instead of i_disksize here because delalloc writeback
3405 * can complete at any point during the I/O and subsequently push the
3406 * i_disksize out to i_size. This could be beyond where direct I/O is
3407 * happening and thus expose allocated blocks to direct I/O reads.
3408 */
3409 else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3410 m_flags = EXT4_GET_BLOCKS_CREATE;
3411 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3412 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3413
3414 ret = ext4_map_blocks(handle, inode, map, m_flags);
3415
3416 /*
3417 * We cannot fill holes in indirect tree based inodes as that could
3418 * expose stale data in the case of a crash. Use the magic error code
3419 * to fallback to buffered I/O.
3420 */
3421 if (!m_flags && !ret)
3422 ret = -ENOTBLK;
3423
3424 ext4_journal_stop(handle);
3425 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3426 goto retry;
3427
3428 return ret;
3429 }
3430
3431
ext4_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)3432 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3433 unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3434 {
3435 int ret;
3436 struct ext4_map_blocks map;
3437 u8 blkbits = inode->i_blkbits;
3438
3439 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3440 return -EINVAL;
3441
3442 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3443 return -ERANGE;
3444
3445 /*
3446 * Calculate the first and last logical blocks respectively.
3447 */
3448 map.m_lblk = offset >> blkbits;
3449 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3450 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3451
3452 if (flags & IOMAP_WRITE) {
3453 /*
3454 * We check here if the blocks are already allocated, then we
3455 * don't need to start a journal txn and we can directly return
3456 * the mapping information. This could boost performance
3457 * especially in multi-threaded overwrite requests.
3458 */
3459 if (offset + length <= i_size_read(inode)) {
3460 ret = ext4_map_blocks(NULL, inode, &map, 0);
3461 if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3462 goto out;
3463 }
3464 ret = ext4_iomap_alloc(inode, &map, flags);
3465 } else {
3466 ret = ext4_map_blocks(NULL, inode, &map, 0);
3467 }
3468
3469 if (ret < 0)
3470 return ret;
3471 out:
3472 /*
3473 * When inline encryption is enabled, sometimes I/O to an encrypted file
3474 * has to be broken up to guarantee DUN contiguity. Handle this by
3475 * limiting the length of the mapping returned.
3476 */
3477 map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
3478
3479 ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3480
3481 return 0;
3482 }
3483
ext4_iomap_overwrite_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)3484 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3485 loff_t length, unsigned flags, struct iomap *iomap,
3486 struct iomap *srcmap)
3487 {
3488 int ret;
3489
3490 /*
3491 * Even for writes we don't need to allocate blocks, so just pretend
3492 * we are reading to save overhead of starting a transaction.
3493 */
3494 flags &= ~IOMAP_WRITE;
3495 ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3496 WARN_ON_ONCE(iomap->type != IOMAP_MAPPED);
3497 return ret;
3498 }
3499
ext4_iomap_end(struct inode * inode,loff_t offset,loff_t length,ssize_t written,unsigned flags,struct iomap * iomap)3500 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3501 ssize_t written, unsigned flags, struct iomap *iomap)
3502 {
3503 /*
3504 * Check to see whether an error occurred while writing out the data to
3505 * the allocated blocks. If so, return the magic error code so that we
3506 * fallback to buffered I/O and attempt to complete the remainder of
3507 * the I/O. Any blocks that may have been allocated in preparation for
3508 * the direct I/O will be reused during buffered I/O.
3509 */
3510 if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3511 return -ENOTBLK;
3512
3513 return 0;
3514 }
3515
3516 const struct iomap_ops ext4_iomap_ops = {
3517 .iomap_begin = ext4_iomap_begin,
3518 .iomap_end = ext4_iomap_end,
3519 };
3520
3521 const struct iomap_ops ext4_iomap_overwrite_ops = {
3522 .iomap_begin = ext4_iomap_overwrite_begin,
3523 .iomap_end = ext4_iomap_end,
3524 };
3525
ext4_iomap_is_delalloc(struct inode * inode,struct ext4_map_blocks * map)3526 static bool ext4_iomap_is_delalloc(struct inode *inode,
3527 struct ext4_map_blocks *map)
3528 {
3529 struct extent_status es;
3530 ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3531
3532 ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3533 map->m_lblk, end, &es);
3534
3535 if (!es.es_len || es.es_lblk > end)
3536 return false;
3537
3538 if (es.es_lblk > map->m_lblk) {
3539 map->m_len = es.es_lblk - map->m_lblk;
3540 return false;
3541 }
3542
3543 offset = map->m_lblk - es.es_lblk;
3544 map->m_len = es.es_len - offset;
3545
3546 return true;
3547 }
3548
ext4_iomap_begin_report(struct inode * inode,loff_t offset,loff_t length,unsigned int flags,struct iomap * iomap,struct iomap * srcmap)3549 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3550 loff_t length, unsigned int flags,
3551 struct iomap *iomap, struct iomap *srcmap)
3552 {
3553 int ret;
3554 bool delalloc = false;
3555 struct ext4_map_blocks map;
3556 u8 blkbits = inode->i_blkbits;
3557
3558 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3559 return -EINVAL;
3560
3561 if (ext4_has_inline_data(inode)) {
3562 ret = ext4_inline_data_iomap(inode, iomap);
3563 if (ret != -EAGAIN) {
3564 if (ret == 0 && offset >= iomap->length)
3565 ret = -ENOENT;
3566 return ret;
3567 }
3568 }
3569
3570 /*
3571 * Calculate the first and last logical block respectively.
3572 */
3573 map.m_lblk = offset >> blkbits;
3574 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3575 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3576
3577 /*
3578 * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3579 * So handle it here itself instead of querying ext4_map_blocks().
3580 * Since ext4_map_blocks() will warn about it and will return
3581 * -EIO error.
3582 */
3583 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3584 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3585
3586 if (offset >= sbi->s_bitmap_maxbytes) {
3587 map.m_flags = 0;
3588 goto set_iomap;
3589 }
3590 }
3591
3592 ret = ext4_map_blocks(NULL, inode, &map, 0);
3593 if (ret < 0)
3594 return ret;
3595 if (ret == 0)
3596 delalloc = ext4_iomap_is_delalloc(inode, &map);
3597
3598 set_iomap:
3599 ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3600 if (delalloc && iomap->type == IOMAP_HOLE)
3601 iomap->type = IOMAP_DELALLOC;
3602
3603 return 0;
3604 }
3605
3606 const struct iomap_ops ext4_iomap_report_ops = {
3607 .iomap_begin = ext4_iomap_begin_report,
3608 };
3609
3610 /*
3611 * Whenever the folio is being dirtied, corresponding buffers should already
3612 * be attached to the transaction (we take care of this in ext4_page_mkwrite()
3613 * and ext4_write_begin()). However we cannot move buffers to dirty transaction
3614 * lists here because ->dirty_folio is called under VFS locks and the folio
3615 * is not necessarily locked.
3616 *
3617 * We cannot just dirty the folio and leave attached buffers clean, because the
3618 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3619 * or jbddirty because all the journalling code will explode.
3620 *
3621 * So what we do is to mark the folio "pending dirty" and next time writepage
3622 * is called, propagate that into the buffers appropriately.
3623 */
ext4_journalled_dirty_folio(struct address_space * mapping,struct folio * folio)3624 static bool ext4_journalled_dirty_folio(struct address_space *mapping,
3625 struct folio *folio)
3626 {
3627 WARN_ON_ONCE(!folio_buffers(folio));
3628 folio_set_checked(folio);
3629 return filemap_dirty_folio(mapping, folio);
3630 }
3631
ext4_dirty_folio(struct address_space * mapping,struct folio * folio)3632 static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio)
3633 {
3634 WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio));
3635 WARN_ON_ONCE(!folio_buffers(folio));
3636 return block_dirty_folio(mapping, folio);
3637 }
3638
ext4_iomap_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)3639 static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3640 struct file *file, sector_t *span)
3641 {
3642 return iomap_swapfile_activate(sis, file, span,
3643 &ext4_iomap_report_ops);
3644 }
3645
3646 static const struct address_space_operations ext4_aops = {
3647 .read_folio = ext4_read_folio,
3648 .readahead = ext4_readahead,
3649 .writepage = ext4_writepage,
3650 .writepages = ext4_writepages,
3651 .write_begin = ext4_write_begin,
3652 .write_end = ext4_write_end,
3653 .dirty_folio = ext4_dirty_folio,
3654 .bmap = ext4_bmap,
3655 .invalidate_folio = ext4_invalidate_folio,
3656 .release_folio = ext4_release_folio,
3657 .direct_IO = noop_direct_IO,
3658 .migrate_folio = buffer_migrate_folio,
3659 .is_partially_uptodate = block_is_partially_uptodate,
3660 .error_remove_page = generic_error_remove_page,
3661 .swap_activate = ext4_iomap_swap_activate,
3662 };
3663
3664 static const struct address_space_operations ext4_journalled_aops = {
3665 .read_folio = ext4_read_folio,
3666 .readahead = ext4_readahead,
3667 .writepage = ext4_writepage,
3668 .writepages = ext4_writepages,
3669 .write_begin = ext4_write_begin,
3670 .write_end = ext4_journalled_write_end,
3671 .dirty_folio = ext4_journalled_dirty_folio,
3672 .bmap = ext4_bmap,
3673 .invalidate_folio = ext4_journalled_invalidate_folio,
3674 .release_folio = ext4_release_folio,
3675 .direct_IO = noop_direct_IO,
3676 .is_partially_uptodate = block_is_partially_uptodate,
3677 .error_remove_page = generic_error_remove_page,
3678 .swap_activate = ext4_iomap_swap_activate,
3679 };
3680
3681 static const struct address_space_operations ext4_da_aops = {
3682 .read_folio = ext4_read_folio,
3683 .readahead = ext4_readahead,
3684 .writepage = ext4_writepage,
3685 .writepages = ext4_writepages,
3686 .write_begin = ext4_da_write_begin,
3687 .write_end = ext4_da_write_end,
3688 .dirty_folio = ext4_dirty_folio,
3689 .bmap = ext4_bmap,
3690 .invalidate_folio = ext4_invalidate_folio,
3691 .release_folio = ext4_release_folio,
3692 .direct_IO = noop_direct_IO,
3693 .migrate_folio = buffer_migrate_folio,
3694 .is_partially_uptodate = block_is_partially_uptodate,
3695 .error_remove_page = generic_error_remove_page,
3696 .swap_activate = ext4_iomap_swap_activate,
3697 };
3698
3699 static const struct address_space_operations ext4_dax_aops = {
3700 .writepages = ext4_dax_writepages,
3701 .direct_IO = noop_direct_IO,
3702 .dirty_folio = noop_dirty_folio,
3703 .bmap = ext4_bmap,
3704 .swap_activate = ext4_iomap_swap_activate,
3705 };
3706
ext4_set_aops(struct inode * inode)3707 void ext4_set_aops(struct inode *inode)
3708 {
3709 switch (ext4_inode_journal_mode(inode)) {
3710 case EXT4_INODE_ORDERED_DATA_MODE:
3711 case EXT4_INODE_WRITEBACK_DATA_MODE:
3712 break;
3713 case EXT4_INODE_JOURNAL_DATA_MODE:
3714 inode->i_mapping->a_ops = &ext4_journalled_aops;
3715 return;
3716 default:
3717 BUG();
3718 }
3719 if (IS_DAX(inode))
3720 inode->i_mapping->a_ops = &ext4_dax_aops;
3721 else if (test_opt(inode->i_sb, DELALLOC))
3722 inode->i_mapping->a_ops = &ext4_da_aops;
3723 else
3724 inode->i_mapping->a_ops = &ext4_aops;
3725 }
3726
__ext4_block_zero_page_range(handle_t * handle,struct address_space * mapping,loff_t from,loff_t length)3727 static int __ext4_block_zero_page_range(handle_t *handle,
3728 struct address_space *mapping, loff_t from, loff_t length)
3729 {
3730 ext4_fsblk_t index = from >> PAGE_SHIFT;
3731 unsigned offset = from & (PAGE_SIZE-1);
3732 unsigned blocksize, pos;
3733 ext4_lblk_t iblock;
3734 struct inode *inode = mapping->host;
3735 struct buffer_head *bh;
3736 struct page *page;
3737 int err = 0;
3738
3739 page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3740 mapping_gfp_constraint(mapping, ~__GFP_FS));
3741 if (!page)
3742 return -ENOMEM;
3743
3744 blocksize = inode->i_sb->s_blocksize;
3745
3746 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3747
3748 if (!page_has_buffers(page))
3749 create_empty_buffers(page, blocksize, 0);
3750
3751 /* Find the buffer that contains "offset" */
3752 bh = page_buffers(page);
3753 pos = blocksize;
3754 while (offset >= pos) {
3755 bh = bh->b_this_page;
3756 iblock++;
3757 pos += blocksize;
3758 }
3759 if (buffer_freed(bh)) {
3760 BUFFER_TRACE(bh, "freed: skip");
3761 goto unlock;
3762 }
3763 if (!buffer_mapped(bh)) {
3764 BUFFER_TRACE(bh, "unmapped");
3765 ext4_get_block(inode, iblock, bh, 0);
3766 /* unmapped? It's a hole - nothing to do */
3767 if (!buffer_mapped(bh)) {
3768 BUFFER_TRACE(bh, "still unmapped");
3769 goto unlock;
3770 }
3771 }
3772
3773 /* Ok, it's mapped. Make sure it's up-to-date */
3774 if (PageUptodate(page))
3775 set_buffer_uptodate(bh);
3776
3777 if (!buffer_uptodate(bh)) {
3778 err = ext4_read_bh_lock(bh, 0, true);
3779 if (err)
3780 goto unlock;
3781 if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3782 /* We expect the key to be set. */
3783 BUG_ON(!fscrypt_has_encryption_key(inode));
3784 err = fscrypt_decrypt_pagecache_blocks(page, blocksize,
3785 bh_offset(bh));
3786 if (err) {
3787 clear_buffer_uptodate(bh);
3788 goto unlock;
3789 }
3790 }
3791 }
3792 if (ext4_should_journal_data(inode)) {
3793 BUFFER_TRACE(bh, "get write access");
3794 err = ext4_journal_get_write_access(handle, inode->i_sb, bh,
3795 EXT4_JTR_NONE);
3796 if (err)
3797 goto unlock;
3798 }
3799 zero_user(page, offset, length);
3800 BUFFER_TRACE(bh, "zeroed end of block");
3801
3802 if (ext4_should_journal_data(inode)) {
3803 err = ext4_handle_dirty_metadata(handle, inode, bh);
3804 } else {
3805 err = 0;
3806 mark_buffer_dirty(bh);
3807 if (ext4_should_order_data(inode))
3808 err = ext4_jbd2_inode_add_write(handle, inode, from,
3809 length);
3810 }
3811
3812 unlock:
3813 unlock_page(page);
3814 put_page(page);
3815 return err;
3816 }
3817
3818 /*
3819 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3820 * starting from file offset 'from'. The range to be zero'd must
3821 * be contained with in one block. If the specified range exceeds
3822 * the end of the block it will be shortened to end of the block
3823 * that corresponds to 'from'
3824 */
ext4_block_zero_page_range(handle_t * handle,struct address_space * mapping,loff_t from,loff_t length)3825 static int ext4_block_zero_page_range(handle_t *handle,
3826 struct address_space *mapping, loff_t from, loff_t length)
3827 {
3828 struct inode *inode = mapping->host;
3829 unsigned offset = from & (PAGE_SIZE-1);
3830 unsigned blocksize = inode->i_sb->s_blocksize;
3831 unsigned max = blocksize - (offset & (blocksize - 1));
3832
3833 /*
3834 * correct length if it does not fall between
3835 * 'from' and the end of the block
3836 */
3837 if (length > max || length < 0)
3838 length = max;
3839
3840 if (IS_DAX(inode)) {
3841 return dax_zero_range(inode, from, length, NULL,
3842 &ext4_iomap_ops);
3843 }
3844 return __ext4_block_zero_page_range(handle, mapping, from, length);
3845 }
3846
3847 /*
3848 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3849 * up to the end of the block which corresponds to `from'.
3850 * This required during truncate. We need to physically zero the tail end
3851 * of that block so it doesn't yield old data if the file is later grown.
3852 */
ext4_block_truncate_page(handle_t * handle,struct address_space * mapping,loff_t from)3853 static int ext4_block_truncate_page(handle_t *handle,
3854 struct address_space *mapping, loff_t from)
3855 {
3856 unsigned offset = from & (PAGE_SIZE-1);
3857 unsigned length;
3858 unsigned blocksize;
3859 struct inode *inode = mapping->host;
3860
3861 /* If we are processing an encrypted inode during orphan list handling */
3862 if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3863 return 0;
3864
3865 blocksize = inode->i_sb->s_blocksize;
3866 length = blocksize - (offset & (blocksize - 1));
3867
3868 return ext4_block_zero_page_range(handle, mapping, from, length);
3869 }
3870
ext4_zero_partial_blocks(handle_t * handle,struct inode * inode,loff_t lstart,loff_t length)3871 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3872 loff_t lstart, loff_t length)
3873 {
3874 struct super_block *sb = inode->i_sb;
3875 struct address_space *mapping = inode->i_mapping;
3876 unsigned partial_start, partial_end;
3877 ext4_fsblk_t start, end;
3878 loff_t byte_end = (lstart + length - 1);
3879 int err = 0;
3880
3881 partial_start = lstart & (sb->s_blocksize - 1);
3882 partial_end = byte_end & (sb->s_blocksize - 1);
3883
3884 start = lstart >> sb->s_blocksize_bits;
3885 end = byte_end >> sb->s_blocksize_bits;
3886
3887 /* Handle partial zero within the single block */
3888 if (start == end &&
3889 (partial_start || (partial_end != sb->s_blocksize - 1))) {
3890 err = ext4_block_zero_page_range(handle, mapping,
3891 lstart, length);
3892 return err;
3893 }
3894 /* Handle partial zero out on the start of the range */
3895 if (partial_start) {
3896 err = ext4_block_zero_page_range(handle, mapping,
3897 lstart, sb->s_blocksize);
3898 if (err)
3899 return err;
3900 }
3901 /* Handle partial zero out on the end of the range */
3902 if (partial_end != sb->s_blocksize - 1)
3903 err = ext4_block_zero_page_range(handle, mapping,
3904 byte_end - partial_end,
3905 partial_end + 1);
3906 return err;
3907 }
3908
ext4_can_truncate(struct inode * inode)3909 int ext4_can_truncate(struct inode *inode)
3910 {
3911 if (S_ISREG(inode->i_mode))
3912 return 1;
3913 if (S_ISDIR(inode->i_mode))
3914 return 1;
3915 if (S_ISLNK(inode->i_mode))
3916 return !ext4_inode_is_fast_symlink(inode);
3917 return 0;
3918 }
3919
3920 /*
3921 * We have to make sure i_disksize gets properly updated before we truncate
3922 * page cache due to hole punching or zero range. Otherwise i_disksize update
3923 * can get lost as it may have been postponed to submission of writeback but
3924 * that will never happen after we truncate page cache.
3925 */
ext4_update_disksize_before_punch(struct inode * inode,loff_t offset,loff_t len)3926 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3927 loff_t len)
3928 {
3929 handle_t *handle;
3930 int ret;
3931
3932 loff_t size = i_size_read(inode);
3933
3934 WARN_ON(!inode_is_locked(inode));
3935 if (offset > size || offset + len < size)
3936 return 0;
3937
3938 if (EXT4_I(inode)->i_disksize >= size)
3939 return 0;
3940
3941 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3942 if (IS_ERR(handle))
3943 return PTR_ERR(handle);
3944 ext4_update_i_disksize(inode, size);
3945 ret = ext4_mark_inode_dirty(handle, inode);
3946 ext4_journal_stop(handle);
3947
3948 return ret;
3949 }
3950
ext4_wait_dax_page(struct inode * inode)3951 static void ext4_wait_dax_page(struct inode *inode)
3952 {
3953 filemap_invalidate_unlock(inode->i_mapping);
3954 schedule();
3955 filemap_invalidate_lock(inode->i_mapping);
3956 }
3957
ext4_break_layouts(struct inode * inode)3958 int ext4_break_layouts(struct inode *inode)
3959 {
3960 struct page *page;
3961 int error;
3962
3963 if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock)))
3964 return -EINVAL;
3965
3966 do {
3967 page = dax_layout_busy_page(inode->i_mapping);
3968 if (!page)
3969 return 0;
3970
3971 error = ___wait_var_event(&page->_refcount,
3972 atomic_read(&page->_refcount) == 1,
3973 TASK_INTERRUPTIBLE, 0, 0,
3974 ext4_wait_dax_page(inode));
3975 } while (error == 0);
3976
3977 return error;
3978 }
3979
3980 /*
3981 * ext4_punch_hole: punches a hole in a file by releasing the blocks
3982 * associated with the given offset and length
3983 *
3984 * @inode: File inode
3985 * @offset: The offset where the hole will begin
3986 * @len: The length of the hole
3987 *
3988 * Returns: 0 on success or negative on failure
3989 */
3990
ext4_punch_hole(struct file * file,loff_t offset,loff_t length)3991 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3992 {
3993 struct inode *inode = file_inode(file);
3994 struct super_block *sb = inode->i_sb;
3995 ext4_lblk_t first_block, stop_block;
3996 struct address_space *mapping = inode->i_mapping;
3997 loff_t first_block_offset, last_block_offset, max_length;
3998 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3999 handle_t *handle;
4000 unsigned int credits;
4001 int ret = 0, ret2 = 0;
4002
4003 trace_ext4_punch_hole(inode, offset, length, 0);
4004
4005 /*
4006 * Write out all dirty pages to avoid race conditions
4007 * Then release them.
4008 */
4009 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4010 ret = filemap_write_and_wait_range(mapping, offset,
4011 offset + length - 1);
4012 if (ret)
4013 return ret;
4014 }
4015
4016 inode_lock(inode);
4017
4018 /* No need to punch hole beyond i_size */
4019 if (offset >= inode->i_size)
4020 goto out_mutex;
4021
4022 /*
4023 * If the hole extends beyond i_size, set the hole
4024 * to end after the page that contains i_size
4025 */
4026 if (offset + length > inode->i_size) {
4027 length = inode->i_size +
4028 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4029 offset;
4030 }
4031
4032 /*
4033 * For punch hole the length + offset needs to be within one block
4034 * before last range. Adjust the length if it goes beyond that limit.
4035 */
4036 max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize;
4037 if (offset + length > max_length)
4038 length = max_length - offset;
4039
4040 if (offset & (sb->s_blocksize - 1) ||
4041 (offset + length) & (sb->s_blocksize - 1)) {
4042 /*
4043 * Attach jinode to inode for jbd2 if we do any zeroing of
4044 * partial block
4045 */
4046 ret = ext4_inode_attach_jinode(inode);
4047 if (ret < 0)
4048 goto out_mutex;
4049
4050 }
4051
4052 /* Wait all existing dio workers, newcomers will block on i_rwsem */
4053 inode_dio_wait(inode);
4054
4055 ret = file_modified(file);
4056 if (ret)
4057 goto out_mutex;
4058
4059 /*
4060 * Prevent page faults from reinstantiating pages we have released from
4061 * page cache.
4062 */
4063 filemap_invalidate_lock(mapping);
4064
4065 ret = ext4_break_layouts(inode);
4066 if (ret)
4067 goto out_dio;
4068
4069 first_block_offset = round_up(offset, sb->s_blocksize);
4070 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4071
4072 /* Now release the pages and zero block aligned part of pages*/
4073 if (last_block_offset > first_block_offset) {
4074 ret = ext4_update_disksize_before_punch(inode, offset, length);
4075 if (ret)
4076 goto out_dio;
4077 truncate_pagecache_range(inode, first_block_offset,
4078 last_block_offset);
4079 }
4080
4081 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4082 credits = ext4_writepage_trans_blocks(inode);
4083 else
4084 credits = ext4_blocks_for_truncate(inode);
4085 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4086 if (IS_ERR(handle)) {
4087 ret = PTR_ERR(handle);
4088 ext4_std_error(sb, ret);
4089 goto out_dio;
4090 }
4091
4092 ret = ext4_zero_partial_blocks(handle, inode, offset,
4093 length);
4094 if (ret)
4095 goto out_stop;
4096
4097 first_block = (offset + sb->s_blocksize - 1) >>
4098 EXT4_BLOCK_SIZE_BITS(sb);
4099 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4100
4101 /* If there are blocks to remove, do it */
4102 if (stop_block > first_block) {
4103
4104 down_write(&EXT4_I(inode)->i_data_sem);
4105 ext4_discard_preallocations(inode, 0);
4106
4107 ret = ext4_es_remove_extent(inode, first_block,
4108 stop_block - first_block);
4109 if (ret) {
4110 up_write(&EXT4_I(inode)->i_data_sem);
4111 goto out_stop;
4112 }
4113
4114 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4115 ret = ext4_ext_remove_space(inode, first_block,
4116 stop_block - 1);
4117 else
4118 ret = ext4_ind_remove_space(handle, inode, first_block,
4119 stop_block);
4120
4121 up_write(&EXT4_I(inode)->i_data_sem);
4122 }
4123 ext4_fc_track_range(handle, inode, first_block, stop_block);
4124 if (IS_SYNC(inode))
4125 ext4_handle_sync(handle);
4126
4127 inode->i_mtime = inode->i_ctime = current_time(inode);
4128 ret2 = ext4_mark_inode_dirty(handle, inode);
4129 if (unlikely(ret2))
4130 ret = ret2;
4131 if (ret >= 0)
4132 ext4_update_inode_fsync_trans(handle, inode, 1);
4133 out_stop:
4134 ext4_journal_stop(handle);
4135 out_dio:
4136 filemap_invalidate_unlock(mapping);
4137 out_mutex:
4138 inode_unlock(inode);
4139 return ret;
4140 }
4141
ext4_inode_attach_jinode(struct inode * inode)4142 int ext4_inode_attach_jinode(struct inode *inode)
4143 {
4144 struct ext4_inode_info *ei = EXT4_I(inode);
4145 struct jbd2_inode *jinode;
4146
4147 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4148 return 0;
4149
4150 jinode = jbd2_alloc_inode(GFP_KERNEL);
4151 spin_lock(&inode->i_lock);
4152 if (!ei->jinode) {
4153 if (!jinode) {
4154 spin_unlock(&inode->i_lock);
4155 return -ENOMEM;
4156 }
4157 ei->jinode = jinode;
4158 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4159 jinode = NULL;
4160 }
4161 spin_unlock(&inode->i_lock);
4162 if (unlikely(jinode != NULL))
4163 jbd2_free_inode(jinode);
4164 return 0;
4165 }
4166
4167 /*
4168 * ext4_truncate()
4169 *
4170 * We block out ext4_get_block() block instantiations across the entire
4171 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4172 * simultaneously on behalf of the same inode.
4173 *
4174 * As we work through the truncate and commit bits of it to the journal there
4175 * is one core, guiding principle: the file's tree must always be consistent on
4176 * disk. We must be able to restart the truncate after a crash.
4177 *
4178 * The file's tree may be transiently inconsistent in memory (although it
4179 * probably isn't), but whenever we close off and commit a journal transaction,
4180 * the contents of (the filesystem + the journal) must be consistent and
4181 * restartable. It's pretty simple, really: bottom up, right to left (although
4182 * left-to-right works OK too).
4183 *
4184 * Note that at recovery time, journal replay occurs *before* the restart of
4185 * truncate against the orphan inode list.
4186 *
4187 * The committed inode has the new, desired i_size (which is the same as
4188 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4189 * that this inode's truncate did not complete and it will again call
4190 * ext4_truncate() to have another go. So there will be instantiated blocks
4191 * to the right of the truncation point in a crashed ext4 filesystem. But
4192 * that's fine - as long as they are linked from the inode, the post-crash
4193 * ext4_truncate() run will find them and release them.
4194 */
ext4_truncate(struct inode * inode)4195 int ext4_truncate(struct inode *inode)
4196 {
4197 struct ext4_inode_info *ei = EXT4_I(inode);
4198 unsigned int credits;
4199 int err = 0, err2;
4200 handle_t *handle;
4201 struct address_space *mapping = inode->i_mapping;
4202
4203 /*
4204 * There is a possibility that we're either freeing the inode
4205 * or it's a completely new inode. In those cases we might not
4206 * have i_rwsem locked because it's not necessary.
4207 */
4208 if (!(inode->i_state & (I_NEW|I_FREEING)))
4209 WARN_ON(!inode_is_locked(inode));
4210 trace_ext4_truncate_enter(inode);
4211
4212 if (!ext4_can_truncate(inode))
4213 goto out_trace;
4214
4215 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4216 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4217
4218 if (ext4_has_inline_data(inode)) {
4219 int has_inline = 1;
4220
4221 err = ext4_inline_data_truncate(inode, &has_inline);
4222 if (err || has_inline)
4223 goto out_trace;
4224 }
4225
4226 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4227 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4228 if (ext4_inode_attach_jinode(inode) < 0)
4229 goto out_trace;
4230 }
4231
4232 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4233 credits = ext4_writepage_trans_blocks(inode);
4234 else
4235 credits = ext4_blocks_for_truncate(inode);
4236
4237 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4238 if (IS_ERR(handle)) {
4239 err = PTR_ERR(handle);
4240 goto out_trace;
4241 }
4242
4243 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4244 ext4_block_truncate_page(handle, mapping, inode->i_size);
4245
4246 /*
4247 * We add the inode to the orphan list, so that if this
4248 * truncate spans multiple transactions, and we crash, we will
4249 * resume the truncate when the filesystem recovers. It also
4250 * marks the inode dirty, to catch the new size.
4251 *
4252 * Implication: the file must always be in a sane, consistent
4253 * truncatable state while each transaction commits.
4254 */
4255 err = ext4_orphan_add(handle, inode);
4256 if (err)
4257 goto out_stop;
4258
4259 down_write(&EXT4_I(inode)->i_data_sem);
4260
4261 ext4_discard_preallocations(inode, 0);
4262
4263 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4264 err = ext4_ext_truncate(handle, inode);
4265 else
4266 ext4_ind_truncate(handle, inode);
4267
4268 up_write(&ei->i_data_sem);
4269 if (err)
4270 goto out_stop;
4271
4272 if (IS_SYNC(inode))
4273 ext4_handle_sync(handle);
4274
4275 out_stop:
4276 /*
4277 * If this was a simple ftruncate() and the file will remain alive,
4278 * then we need to clear up the orphan record which we created above.
4279 * However, if this was a real unlink then we were called by
4280 * ext4_evict_inode(), and we allow that function to clean up the
4281 * orphan info for us.
4282 */
4283 if (inode->i_nlink)
4284 ext4_orphan_del(handle, inode);
4285
4286 inode->i_mtime = inode->i_ctime = current_time(inode);
4287 err2 = ext4_mark_inode_dirty(handle, inode);
4288 if (unlikely(err2 && !err))
4289 err = err2;
4290 ext4_journal_stop(handle);
4291
4292 out_trace:
4293 trace_ext4_truncate_exit(inode);
4294 return err;
4295 }
4296
ext4_inode_peek_iversion(const struct inode * inode)4297 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4298 {
4299 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4300 return inode_peek_iversion_raw(inode);
4301 else
4302 return inode_peek_iversion(inode);
4303 }
4304
ext4_inode_blocks_set(struct ext4_inode * raw_inode,struct ext4_inode_info * ei)4305 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode,
4306 struct ext4_inode_info *ei)
4307 {
4308 struct inode *inode = &(ei->vfs_inode);
4309 u64 i_blocks = READ_ONCE(inode->i_blocks);
4310 struct super_block *sb = inode->i_sb;
4311
4312 if (i_blocks <= ~0U) {
4313 /*
4314 * i_blocks can be represented in a 32 bit variable
4315 * as multiple of 512 bytes
4316 */
4317 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4318 raw_inode->i_blocks_high = 0;
4319 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4320 return 0;
4321 }
4322
4323 /*
4324 * This should never happen since sb->s_maxbytes should not have
4325 * allowed this, sb->s_maxbytes was set according to the huge_file
4326 * feature in ext4_fill_super().
4327 */
4328 if (!ext4_has_feature_huge_file(sb))
4329 return -EFSCORRUPTED;
4330
4331 if (i_blocks <= 0xffffffffffffULL) {
4332 /*
4333 * i_blocks can be represented in a 48 bit variable
4334 * as multiple of 512 bytes
4335 */
4336 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4337 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4338 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4339 } else {
4340 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4341 /* i_block is stored in file system block size */
4342 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4343 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4344 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4345 }
4346 return 0;
4347 }
4348
ext4_fill_raw_inode(struct inode * inode,struct ext4_inode * raw_inode)4349 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode)
4350 {
4351 struct ext4_inode_info *ei = EXT4_I(inode);
4352 uid_t i_uid;
4353 gid_t i_gid;
4354 projid_t i_projid;
4355 int block;
4356 int err;
4357
4358 err = ext4_inode_blocks_set(raw_inode, ei);
4359
4360 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4361 i_uid = i_uid_read(inode);
4362 i_gid = i_gid_read(inode);
4363 i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4364 if (!(test_opt(inode->i_sb, NO_UID32))) {
4365 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4366 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4367 /*
4368 * Fix up interoperability with old kernels. Otherwise,
4369 * old inodes get re-used with the upper 16 bits of the
4370 * uid/gid intact.
4371 */
4372 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4373 raw_inode->i_uid_high = 0;
4374 raw_inode->i_gid_high = 0;
4375 } else {
4376 raw_inode->i_uid_high =
4377 cpu_to_le16(high_16_bits(i_uid));
4378 raw_inode->i_gid_high =
4379 cpu_to_le16(high_16_bits(i_gid));
4380 }
4381 } else {
4382 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4383 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4384 raw_inode->i_uid_high = 0;
4385 raw_inode->i_gid_high = 0;
4386 }
4387 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4388
4389 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4390 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4391 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4392 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4393
4394 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4395 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4396 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4397 raw_inode->i_file_acl_high =
4398 cpu_to_le16(ei->i_file_acl >> 32);
4399 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4400 ext4_isize_set(raw_inode, ei->i_disksize);
4401
4402 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4403 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4404 if (old_valid_dev(inode->i_rdev)) {
4405 raw_inode->i_block[0] =
4406 cpu_to_le32(old_encode_dev(inode->i_rdev));
4407 raw_inode->i_block[1] = 0;
4408 } else {
4409 raw_inode->i_block[0] = 0;
4410 raw_inode->i_block[1] =
4411 cpu_to_le32(new_encode_dev(inode->i_rdev));
4412 raw_inode->i_block[2] = 0;
4413 }
4414 } else if (!ext4_has_inline_data(inode)) {
4415 for (block = 0; block < EXT4_N_BLOCKS; block++)
4416 raw_inode->i_block[block] = ei->i_data[block];
4417 }
4418
4419 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4420 u64 ivers = ext4_inode_peek_iversion(inode);
4421
4422 raw_inode->i_disk_version = cpu_to_le32(ivers);
4423 if (ei->i_extra_isize) {
4424 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4425 raw_inode->i_version_hi =
4426 cpu_to_le32(ivers >> 32);
4427 raw_inode->i_extra_isize =
4428 cpu_to_le16(ei->i_extra_isize);
4429 }
4430 }
4431
4432 if (i_projid != EXT4_DEF_PROJID &&
4433 !ext4_has_feature_project(inode->i_sb))
4434 err = err ?: -EFSCORRUPTED;
4435
4436 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4437 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4438 raw_inode->i_projid = cpu_to_le32(i_projid);
4439
4440 ext4_inode_csum_set(inode, raw_inode, ei);
4441 return err;
4442 }
4443
4444 /*
4445 * ext4_get_inode_loc returns with an extra refcount against the inode's
4446 * underlying buffer_head on success. If we pass 'inode' and it does not
4447 * have in-inode xattr, we have all inode data in memory that is needed
4448 * to recreate the on-disk version of this inode.
4449 */
__ext4_get_inode_loc(struct super_block * sb,unsigned long ino,struct inode * inode,struct ext4_iloc * iloc,ext4_fsblk_t * ret_block)4450 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4451 struct inode *inode, struct ext4_iloc *iloc,
4452 ext4_fsblk_t *ret_block)
4453 {
4454 struct ext4_group_desc *gdp;
4455 struct buffer_head *bh;
4456 ext4_fsblk_t block;
4457 struct blk_plug plug;
4458 int inodes_per_block, inode_offset;
4459
4460 iloc->bh = NULL;
4461 if (ino < EXT4_ROOT_INO ||
4462 ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4463 return -EFSCORRUPTED;
4464
4465 iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4466 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4467 if (!gdp)
4468 return -EIO;
4469
4470 /*
4471 * Figure out the offset within the block group inode table
4472 */
4473 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4474 inode_offset = ((ino - 1) %
4475 EXT4_INODES_PER_GROUP(sb));
4476 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4477 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4478
4479 bh = sb_getblk(sb, block);
4480 if (unlikely(!bh))
4481 return -ENOMEM;
4482 if (ext4_buffer_uptodate(bh))
4483 goto has_buffer;
4484
4485 lock_buffer(bh);
4486 if (ext4_buffer_uptodate(bh)) {
4487 /* Someone brought it uptodate while we waited */
4488 unlock_buffer(bh);
4489 goto has_buffer;
4490 }
4491
4492 /*
4493 * If we have all information of the inode in memory and this
4494 * is the only valid inode in the block, we need not read the
4495 * block.
4496 */
4497 if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4498 struct buffer_head *bitmap_bh;
4499 int i, start;
4500
4501 start = inode_offset & ~(inodes_per_block - 1);
4502
4503 /* Is the inode bitmap in cache? */
4504 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4505 if (unlikely(!bitmap_bh))
4506 goto make_io;
4507
4508 /*
4509 * If the inode bitmap isn't in cache then the
4510 * optimisation may end up performing two reads instead
4511 * of one, so skip it.
4512 */
4513 if (!buffer_uptodate(bitmap_bh)) {
4514 brelse(bitmap_bh);
4515 goto make_io;
4516 }
4517 for (i = start; i < start + inodes_per_block; i++) {
4518 if (i == inode_offset)
4519 continue;
4520 if (ext4_test_bit(i, bitmap_bh->b_data))
4521 break;
4522 }
4523 brelse(bitmap_bh);
4524 if (i == start + inodes_per_block) {
4525 struct ext4_inode *raw_inode =
4526 (struct ext4_inode *) (bh->b_data + iloc->offset);
4527
4528 /* all other inodes are free, so skip I/O */
4529 memset(bh->b_data, 0, bh->b_size);
4530 if (!ext4_test_inode_state(inode, EXT4_STATE_NEW))
4531 ext4_fill_raw_inode(inode, raw_inode);
4532 set_buffer_uptodate(bh);
4533 unlock_buffer(bh);
4534 goto has_buffer;
4535 }
4536 }
4537
4538 make_io:
4539 /*
4540 * If we need to do any I/O, try to pre-readahead extra
4541 * blocks from the inode table.
4542 */
4543 blk_start_plug(&plug);
4544 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4545 ext4_fsblk_t b, end, table;
4546 unsigned num;
4547 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4548
4549 table = ext4_inode_table(sb, gdp);
4550 /* s_inode_readahead_blks is always a power of 2 */
4551 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4552 if (table > b)
4553 b = table;
4554 end = b + ra_blks;
4555 num = EXT4_INODES_PER_GROUP(sb);
4556 if (ext4_has_group_desc_csum(sb))
4557 num -= ext4_itable_unused_count(sb, gdp);
4558 table += num / inodes_per_block;
4559 if (end > table)
4560 end = table;
4561 while (b <= end)
4562 ext4_sb_breadahead_unmovable(sb, b++);
4563 }
4564
4565 /*
4566 * There are other valid inodes in the buffer, this inode
4567 * has in-inode xattrs, or we don't have this inode in memory.
4568 * Read the block from disk.
4569 */
4570 trace_ext4_load_inode(sb, ino);
4571 ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL);
4572 blk_finish_plug(&plug);
4573 wait_on_buffer(bh);
4574 ext4_simulate_fail_bh(sb, bh, EXT4_SIM_INODE_EIO);
4575 if (!buffer_uptodate(bh)) {
4576 if (ret_block)
4577 *ret_block = block;
4578 brelse(bh);
4579 return -EIO;
4580 }
4581 has_buffer:
4582 iloc->bh = bh;
4583 return 0;
4584 }
4585
__ext4_get_inode_loc_noinmem(struct inode * inode,struct ext4_iloc * iloc)4586 static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4587 struct ext4_iloc *iloc)
4588 {
4589 ext4_fsblk_t err_blk = 0;
4590 int ret;
4591
4592 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc,
4593 &err_blk);
4594
4595 if (ret == -EIO)
4596 ext4_error_inode_block(inode, err_blk, EIO,
4597 "unable to read itable block");
4598
4599 return ret;
4600 }
4601
ext4_get_inode_loc(struct inode * inode,struct ext4_iloc * iloc)4602 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4603 {
4604 ext4_fsblk_t err_blk = 0;
4605 int ret;
4606
4607 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc,
4608 &err_blk);
4609
4610 if (ret == -EIO)
4611 ext4_error_inode_block(inode, err_blk, EIO,
4612 "unable to read itable block");
4613
4614 return ret;
4615 }
4616
4617
ext4_get_fc_inode_loc(struct super_block * sb,unsigned long ino,struct ext4_iloc * iloc)4618 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4619 struct ext4_iloc *iloc)
4620 {
4621 return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL);
4622 }
4623
ext4_should_enable_dax(struct inode * inode)4624 static bool ext4_should_enable_dax(struct inode *inode)
4625 {
4626 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4627
4628 if (test_opt2(inode->i_sb, DAX_NEVER))
4629 return false;
4630 if (!S_ISREG(inode->i_mode))
4631 return false;
4632 if (ext4_should_journal_data(inode))
4633 return false;
4634 if (ext4_has_inline_data(inode))
4635 return false;
4636 if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4637 return false;
4638 if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4639 return false;
4640 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4641 return false;
4642 if (test_opt(inode->i_sb, DAX_ALWAYS))
4643 return true;
4644
4645 return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4646 }
4647
ext4_set_inode_flags(struct inode * inode,bool init)4648 void ext4_set_inode_flags(struct inode *inode, bool init)
4649 {
4650 unsigned int flags = EXT4_I(inode)->i_flags;
4651 unsigned int new_fl = 0;
4652
4653 WARN_ON_ONCE(IS_DAX(inode) && init);
4654
4655 if (flags & EXT4_SYNC_FL)
4656 new_fl |= S_SYNC;
4657 if (flags & EXT4_APPEND_FL)
4658 new_fl |= S_APPEND;
4659 if (flags & EXT4_IMMUTABLE_FL)
4660 new_fl |= S_IMMUTABLE;
4661 if (flags & EXT4_NOATIME_FL)
4662 new_fl |= S_NOATIME;
4663 if (flags & EXT4_DIRSYNC_FL)
4664 new_fl |= S_DIRSYNC;
4665
4666 /* Because of the way inode_set_flags() works we must preserve S_DAX
4667 * here if already set. */
4668 new_fl |= (inode->i_flags & S_DAX);
4669 if (init && ext4_should_enable_dax(inode))
4670 new_fl |= S_DAX;
4671
4672 if (flags & EXT4_ENCRYPT_FL)
4673 new_fl |= S_ENCRYPTED;
4674 if (flags & EXT4_CASEFOLD_FL)
4675 new_fl |= S_CASEFOLD;
4676 if (flags & EXT4_VERITY_FL)
4677 new_fl |= S_VERITY;
4678 inode_set_flags(inode, new_fl,
4679 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4680 S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4681 }
4682
ext4_inode_blocks(struct ext4_inode * raw_inode,struct ext4_inode_info * ei)4683 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4684 struct ext4_inode_info *ei)
4685 {
4686 blkcnt_t i_blocks ;
4687 struct inode *inode = &(ei->vfs_inode);
4688 struct super_block *sb = inode->i_sb;
4689
4690 if (ext4_has_feature_huge_file(sb)) {
4691 /* we are using combined 48 bit field */
4692 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4693 le32_to_cpu(raw_inode->i_blocks_lo);
4694 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4695 /* i_blocks represent file system block size */
4696 return i_blocks << (inode->i_blkbits - 9);
4697 } else {
4698 return i_blocks;
4699 }
4700 } else {
4701 return le32_to_cpu(raw_inode->i_blocks_lo);
4702 }
4703 }
4704
ext4_iget_extra_inode(struct inode * inode,struct ext4_inode * raw_inode,struct ext4_inode_info * ei)4705 static inline int ext4_iget_extra_inode(struct inode *inode,
4706 struct ext4_inode *raw_inode,
4707 struct ext4_inode_info *ei)
4708 {
4709 __le32 *magic = (void *)raw_inode +
4710 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4711
4712 if (EXT4_INODE_HAS_XATTR_SPACE(inode) &&
4713 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4714 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4715 return ext4_find_inline_data_nolock(inode);
4716 } else
4717 EXT4_I(inode)->i_inline_off = 0;
4718 return 0;
4719 }
4720
ext4_get_projid(struct inode * inode,kprojid_t * projid)4721 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4722 {
4723 if (!ext4_has_feature_project(inode->i_sb))
4724 return -EOPNOTSUPP;
4725 *projid = EXT4_I(inode)->i_projid;
4726 return 0;
4727 }
4728
4729 /*
4730 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4731 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4732 * set.
4733 */
ext4_inode_set_iversion_queried(struct inode * inode,u64 val)4734 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4735 {
4736 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4737 inode_set_iversion_raw(inode, val);
4738 else
4739 inode_set_iversion_queried(inode, val);
4740 }
4741
__ext4_iget(struct super_block * sb,unsigned long ino,ext4_iget_flags flags,const char * function,unsigned int line)4742 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4743 ext4_iget_flags flags, const char *function,
4744 unsigned int line)
4745 {
4746 struct ext4_iloc iloc;
4747 struct ext4_inode *raw_inode;
4748 struct ext4_inode_info *ei;
4749 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4750 struct inode *inode;
4751 journal_t *journal = EXT4_SB(sb)->s_journal;
4752 long ret;
4753 loff_t size;
4754 int block;
4755 uid_t i_uid;
4756 gid_t i_gid;
4757 projid_t i_projid;
4758
4759 if ((!(flags & EXT4_IGET_SPECIAL) &&
4760 ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) ||
4761 ino == le32_to_cpu(es->s_usr_quota_inum) ||
4762 ino == le32_to_cpu(es->s_grp_quota_inum) ||
4763 ino == le32_to_cpu(es->s_prj_quota_inum) ||
4764 ino == le32_to_cpu(es->s_orphan_file_inum))) ||
4765 (ino < EXT4_ROOT_INO) ||
4766 (ino > le32_to_cpu(es->s_inodes_count))) {
4767 if (flags & EXT4_IGET_HANDLE)
4768 return ERR_PTR(-ESTALE);
4769 __ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4770 "inode #%lu: comm %s: iget: illegal inode #",
4771 ino, current->comm);
4772 return ERR_PTR(-EFSCORRUPTED);
4773 }
4774
4775 inode = iget_locked(sb, ino);
4776 if (!inode)
4777 return ERR_PTR(-ENOMEM);
4778 if (!(inode->i_state & I_NEW))
4779 return inode;
4780
4781 ei = EXT4_I(inode);
4782 iloc.bh = NULL;
4783
4784 ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4785 if (ret < 0)
4786 goto bad_inode;
4787 raw_inode = ext4_raw_inode(&iloc);
4788
4789 if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4790 ext4_error_inode(inode, function, line, 0,
4791 "iget: root inode unallocated");
4792 ret = -EFSCORRUPTED;
4793 goto bad_inode;
4794 }
4795
4796 if ((flags & EXT4_IGET_HANDLE) &&
4797 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4798 ret = -ESTALE;
4799 goto bad_inode;
4800 }
4801
4802 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4803 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4804 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4805 EXT4_INODE_SIZE(inode->i_sb) ||
4806 (ei->i_extra_isize & 3)) {
4807 ext4_error_inode(inode, function, line, 0,
4808 "iget: bad extra_isize %u "
4809 "(inode size %u)",
4810 ei->i_extra_isize,
4811 EXT4_INODE_SIZE(inode->i_sb));
4812 ret = -EFSCORRUPTED;
4813 goto bad_inode;
4814 }
4815 } else
4816 ei->i_extra_isize = 0;
4817
4818 /* Precompute checksum seed for inode metadata */
4819 if (ext4_has_metadata_csum(sb)) {
4820 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4821 __u32 csum;
4822 __le32 inum = cpu_to_le32(inode->i_ino);
4823 __le32 gen = raw_inode->i_generation;
4824 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4825 sizeof(inum));
4826 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4827 sizeof(gen));
4828 }
4829
4830 if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4831 ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4832 (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4833 ext4_error_inode_err(inode, function, line, 0,
4834 EFSBADCRC, "iget: checksum invalid");
4835 ret = -EFSBADCRC;
4836 goto bad_inode;
4837 }
4838
4839 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4840 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4841 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4842 if (ext4_has_feature_project(sb) &&
4843 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4844 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4845 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4846 else
4847 i_projid = EXT4_DEF_PROJID;
4848
4849 if (!(test_opt(inode->i_sb, NO_UID32))) {
4850 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4851 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4852 }
4853 i_uid_write(inode, i_uid);
4854 i_gid_write(inode, i_gid);
4855 ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4856 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4857
4858 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4859 ei->i_inline_off = 0;
4860 ei->i_dir_start_lookup = 0;
4861 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4862 /* We now have enough fields to check if the inode was active or not.
4863 * This is needed because nfsd might try to access dead inodes
4864 * the test is that same one that e2fsck uses
4865 * NeilBrown 1999oct15
4866 */
4867 if (inode->i_nlink == 0) {
4868 if ((inode->i_mode == 0 ||
4869 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4870 ino != EXT4_BOOT_LOADER_INO) {
4871 /* this inode is deleted */
4872 ret = -ESTALE;
4873 goto bad_inode;
4874 }
4875 /* The only unlinked inodes we let through here have
4876 * valid i_mode and are being read by the orphan
4877 * recovery code: that's fine, we're about to complete
4878 * the process of deleting those.
4879 * OR it is the EXT4_BOOT_LOADER_INO which is
4880 * not initialized on a new filesystem. */
4881 }
4882 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4883 ext4_set_inode_flags(inode, true);
4884 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4885 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4886 if (ext4_has_feature_64bit(sb))
4887 ei->i_file_acl |=
4888 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4889 inode->i_size = ext4_isize(sb, raw_inode);
4890 if ((size = i_size_read(inode)) < 0) {
4891 ext4_error_inode(inode, function, line, 0,
4892 "iget: bad i_size value: %lld", size);
4893 ret = -EFSCORRUPTED;
4894 goto bad_inode;
4895 }
4896 /*
4897 * If dir_index is not enabled but there's dir with INDEX flag set,
4898 * we'd normally treat htree data as empty space. But with metadata
4899 * checksumming that corrupts checksums so forbid that.
4900 */
4901 if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4902 ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4903 ext4_error_inode(inode, function, line, 0,
4904 "iget: Dir with htree data on filesystem without dir_index feature.");
4905 ret = -EFSCORRUPTED;
4906 goto bad_inode;
4907 }
4908 ei->i_disksize = inode->i_size;
4909 #ifdef CONFIG_QUOTA
4910 ei->i_reserved_quota = 0;
4911 #endif
4912 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4913 ei->i_block_group = iloc.block_group;
4914 ei->i_last_alloc_group = ~0;
4915 /*
4916 * NOTE! The in-memory inode i_data array is in little-endian order
4917 * even on big-endian machines: we do NOT byteswap the block numbers!
4918 */
4919 for (block = 0; block < EXT4_N_BLOCKS; block++)
4920 ei->i_data[block] = raw_inode->i_block[block];
4921 INIT_LIST_HEAD(&ei->i_orphan);
4922 ext4_fc_init_inode(&ei->vfs_inode);
4923
4924 /*
4925 * Set transaction id's of transactions that have to be committed
4926 * to finish f[data]sync. We set them to currently running transaction
4927 * as we cannot be sure that the inode or some of its metadata isn't
4928 * part of the transaction - the inode could have been reclaimed and
4929 * now it is reread from disk.
4930 */
4931 if (journal) {
4932 transaction_t *transaction;
4933 tid_t tid;
4934
4935 read_lock(&journal->j_state_lock);
4936 if (journal->j_running_transaction)
4937 transaction = journal->j_running_transaction;
4938 else
4939 transaction = journal->j_committing_transaction;
4940 if (transaction)
4941 tid = transaction->t_tid;
4942 else
4943 tid = journal->j_commit_sequence;
4944 read_unlock(&journal->j_state_lock);
4945 ei->i_sync_tid = tid;
4946 ei->i_datasync_tid = tid;
4947 }
4948
4949 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4950 if (ei->i_extra_isize == 0) {
4951 /* The extra space is currently unused. Use it. */
4952 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4953 ei->i_extra_isize = sizeof(struct ext4_inode) -
4954 EXT4_GOOD_OLD_INODE_SIZE;
4955 } else {
4956 ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4957 if (ret)
4958 goto bad_inode;
4959 }
4960 }
4961
4962 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4963 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4964 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4965 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4966
4967 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4968 u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4969
4970 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4971 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4972 ivers |=
4973 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4974 }
4975 ext4_inode_set_iversion_queried(inode, ivers);
4976 }
4977
4978 ret = 0;
4979 if (ei->i_file_acl &&
4980 !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
4981 ext4_error_inode(inode, function, line, 0,
4982 "iget: bad extended attribute block %llu",
4983 ei->i_file_acl);
4984 ret = -EFSCORRUPTED;
4985 goto bad_inode;
4986 } else if (!ext4_has_inline_data(inode)) {
4987 /* validate the block references in the inode */
4988 if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
4989 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4990 (S_ISLNK(inode->i_mode) &&
4991 !ext4_inode_is_fast_symlink(inode)))) {
4992 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4993 ret = ext4_ext_check_inode(inode);
4994 else
4995 ret = ext4_ind_check_inode(inode);
4996 }
4997 }
4998 if (ret)
4999 goto bad_inode;
5000
5001 if (S_ISREG(inode->i_mode)) {
5002 inode->i_op = &ext4_file_inode_operations;
5003 inode->i_fop = &ext4_file_operations;
5004 ext4_set_aops(inode);
5005 } else if (S_ISDIR(inode->i_mode)) {
5006 inode->i_op = &ext4_dir_inode_operations;
5007 inode->i_fop = &ext4_dir_operations;
5008 } else if (S_ISLNK(inode->i_mode)) {
5009 /* VFS does not allow setting these so must be corruption */
5010 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
5011 ext4_error_inode(inode, function, line, 0,
5012 "iget: immutable or append flags "
5013 "not allowed on symlinks");
5014 ret = -EFSCORRUPTED;
5015 goto bad_inode;
5016 }
5017 if (IS_ENCRYPTED(inode)) {
5018 inode->i_op = &ext4_encrypted_symlink_inode_operations;
5019 } else if (ext4_inode_is_fast_symlink(inode)) {
5020 inode->i_link = (char *)ei->i_data;
5021 inode->i_op = &ext4_fast_symlink_inode_operations;
5022 nd_terminate_link(ei->i_data, inode->i_size,
5023 sizeof(ei->i_data) - 1);
5024 } else {
5025 inode->i_op = &ext4_symlink_inode_operations;
5026 }
5027 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5028 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5029 inode->i_op = &ext4_special_inode_operations;
5030 if (raw_inode->i_block[0])
5031 init_special_inode(inode, inode->i_mode,
5032 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5033 else
5034 init_special_inode(inode, inode->i_mode,
5035 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5036 } else if (ino == EXT4_BOOT_LOADER_INO) {
5037 make_bad_inode(inode);
5038 } else {
5039 ret = -EFSCORRUPTED;
5040 ext4_error_inode(inode, function, line, 0,
5041 "iget: bogus i_mode (%o)", inode->i_mode);
5042 goto bad_inode;
5043 }
5044 if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
5045 ext4_error_inode(inode, function, line, 0,
5046 "casefold flag without casefold feature");
5047 brelse(iloc.bh);
5048
5049 unlock_new_inode(inode);
5050 return inode;
5051
5052 bad_inode:
5053 brelse(iloc.bh);
5054 iget_failed(inode);
5055 return ERR_PTR(ret);
5056 }
5057
__ext4_update_other_inode_time(struct super_block * sb,unsigned long orig_ino,unsigned long ino,struct ext4_inode * raw_inode)5058 static void __ext4_update_other_inode_time(struct super_block *sb,
5059 unsigned long orig_ino,
5060 unsigned long ino,
5061 struct ext4_inode *raw_inode)
5062 {
5063 struct inode *inode;
5064
5065 inode = find_inode_by_ino_rcu(sb, ino);
5066 if (!inode)
5067 return;
5068
5069 if (!inode_is_dirtytime_only(inode))
5070 return;
5071
5072 spin_lock(&inode->i_lock);
5073 if (inode_is_dirtytime_only(inode)) {
5074 struct ext4_inode_info *ei = EXT4_I(inode);
5075
5076 inode->i_state &= ~I_DIRTY_TIME;
5077 spin_unlock(&inode->i_lock);
5078
5079 spin_lock(&ei->i_raw_lock);
5080 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5081 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5082 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5083 ext4_inode_csum_set(inode, raw_inode, ei);
5084 spin_unlock(&ei->i_raw_lock);
5085 trace_ext4_other_inode_update_time(inode, orig_ino);
5086 return;
5087 }
5088 spin_unlock(&inode->i_lock);
5089 }
5090
5091 /*
5092 * Opportunistically update the other time fields for other inodes in
5093 * the same inode table block.
5094 */
ext4_update_other_inodes_time(struct super_block * sb,unsigned long orig_ino,char * buf)5095 static void ext4_update_other_inodes_time(struct super_block *sb,
5096 unsigned long orig_ino, char *buf)
5097 {
5098 unsigned long ino;
5099 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5100 int inode_size = EXT4_INODE_SIZE(sb);
5101
5102 /*
5103 * Calculate the first inode in the inode table block. Inode
5104 * numbers are one-based. That is, the first inode in a block
5105 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5106 */
5107 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5108 rcu_read_lock();
5109 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5110 if (ino == orig_ino)
5111 continue;
5112 __ext4_update_other_inode_time(sb, orig_ino, ino,
5113 (struct ext4_inode *)buf);
5114 }
5115 rcu_read_unlock();
5116 }
5117
5118 /*
5119 * Post the struct inode info into an on-disk inode location in the
5120 * buffer-cache. This gobbles the caller's reference to the
5121 * buffer_head in the inode location struct.
5122 *
5123 * The caller must have write access to iloc->bh.
5124 */
ext4_do_update_inode(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)5125 static int ext4_do_update_inode(handle_t *handle,
5126 struct inode *inode,
5127 struct ext4_iloc *iloc)
5128 {
5129 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5130 struct ext4_inode_info *ei = EXT4_I(inode);
5131 struct buffer_head *bh = iloc->bh;
5132 struct super_block *sb = inode->i_sb;
5133 int err;
5134 int need_datasync = 0, set_large_file = 0;
5135
5136 spin_lock(&ei->i_raw_lock);
5137
5138 /*
5139 * For fields not tracked in the in-memory inode, initialise them
5140 * to zero for new inodes.
5141 */
5142 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5143 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5144
5145 if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode))
5146 need_datasync = 1;
5147 if (ei->i_disksize > 0x7fffffffULL) {
5148 if (!ext4_has_feature_large_file(sb) ||
5149 EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV))
5150 set_large_file = 1;
5151 }
5152
5153 err = ext4_fill_raw_inode(inode, raw_inode);
5154 spin_unlock(&ei->i_raw_lock);
5155 if (err) {
5156 EXT4_ERROR_INODE(inode, "corrupted inode contents");
5157 goto out_brelse;
5158 }
5159
5160 if (inode->i_sb->s_flags & SB_LAZYTIME)
5161 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5162 bh->b_data);
5163
5164 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5165 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5166 if (err)
5167 goto out_error;
5168 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5169 if (set_large_file) {
5170 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5171 err = ext4_journal_get_write_access(handle, sb,
5172 EXT4_SB(sb)->s_sbh,
5173 EXT4_JTR_NONE);
5174 if (err)
5175 goto out_error;
5176 lock_buffer(EXT4_SB(sb)->s_sbh);
5177 ext4_set_feature_large_file(sb);
5178 ext4_superblock_csum_set(sb);
5179 unlock_buffer(EXT4_SB(sb)->s_sbh);
5180 ext4_handle_sync(handle);
5181 err = ext4_handle_dirty_metadata(handle, NULL,
5182 EXT4_SB(sb)->s_sbh);
5183 }
5184 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5185 out_error:
5186 ext4_std_error(inode->i_sb, err);
5187 out_brelse:
5188 brelse(bh);
5189 return err;
5190 }
5191
5192 /*
5193 * ext4_write_inode()
5194 *
5195 * We are called from a few places:
5196 *
5197 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5198 * Here, there will be no transaction running. We wait for any running
5199 * transaction to commit.
5200 *
5201 * - Within flush work (sys_sync(), kupdate and such).
5202 * We wait on commit, if told to.
5203 *
5204 * - Within iput_final() -> write_inode_now()
5205 * We wait on commit, if told to.
5206 *
5207 * In all cases it is actually safe for us to return without doing anything,
5208 * because the inode has been copied into a raw inode buffer in
5209 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
5210 * writeback.
5211 *
5212 * Note that we are absolutely dependent upon all inode dirtiers doing the
5213 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5214 * which we are interested.
5215 *
5216 * It would be a bug for them to not do this. The code:
5217 *
5218 * mark_inode_dirty(inode)
5219 * stuff();
5220 * inode->i_size = expr;
5221 *
5222 * is in error because write_inode() could occur while `stuff()' is running,
5223 * and the new i_size will be lost. Plus the inode will no longer be on the
5224 * superblock's dirty inode list.
5225 */
ext4_write_inode(struct inode * inode,struct writeback_control * wbc)5226 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5227 {
5228 int err;
5229
5230 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5231 sb_rdonly(inode->i_sb))
5232 return 0;
5233
5234 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5235 return -EIO;
5236
5237 if (EXT4_SB(inode->i_sb)->s_journal) {
5238 if (ext4_journal_current_handle()) {
5239 ext4_debug("called recursively, non-PF_MEMALLOC!\n");
5240 dump_stack();
5241 return -EIO;
5242 }
5243
5244 /*
5245 * No need to force transaction in WB_SYNC_NONE mode. Also
5246 * ext4_sync_fs() will force the commit after everything is
5247 * written.
5248 */
5249 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5250 return 0;
5251
5252 err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5253 EXT4_I(inode)->i_sync_tid);
5254 } else {
5255 struct ext4_iloc iloc;
5256
5257 err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5258 if (err)
5259 return err;
5260 /*
5261 * sync(2) will flush the whole buffer cache. No need to do
5262 * it here separately for each inode.
5263 */
5264 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5265 sync_dirty_buffer(iloc.bh);
5266 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5267 ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5268 "IO error syncing inode");
5269 err = -EIO;
5270 }
5271 brelse(iloc.bh);
5272 }
5273 return err;
5274 }
5275
5276 /*
5277 * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate
5278 * buffers that are attached to a folio straddling i_size and are undergoing
5279 * commit. In that case we have to wait for commit to finish and try again.
5280 */
ext4_wait_for_tail_page_commit(struct inode * inode)5281 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5282 {
5283 unsigned offset;
5284 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5285 tid_t commit_tid = 0;
5286 int ret;
5287
5288 offset = inode->i_size & (PAGE_SIZE - 1);
5289 /*
5290 * If the folio is fully truncated, we don't need to wait for any commit
5291 * (and we even should not as __ext4_journalled_invalidate_folio() may
5292 * strip all buffers from the folio but keep the folio dirty which can then
5293 * confuse e.g. concurrent ext4_writepage() seeing dirty folio without
5294 * buffers). Also we don't need to wait for any commit if all buffers in
5295 * the folio remain valid. This is most beneficial for the common case of
5296 * blocksize == PAGESIZE.
5297 */
5298 if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5299 return;
5300 while (1) {
5301 struct folio *folio = filemap_lock_folio(inode->i_mapping,
5302 inode->i_size >> PAGE_SHIFT);
5303 if (!folio)
5304 return;
5305 ret = __ext4_journalled_invalidate_folio(folio, offset,
5306 folio_size(folio) - offset);
5307 folio_unlock(folio);
5308 folio_put(folio);
5309 if (ret != -EBUSY)
5310 return;
5311 commit_tid = 0;
5312 read_lock(&journal->j_state_lock);
5313 if (journal->j_committing_transaction)
5314 commit_tid = journal->j_committing_transaction->t_tid;
5315 read_unlock(&journal->j_state_lock);
5316 if (commit_tid)
5317 jbd2_log_wait_commit(journal, commit_tid);
5318 }
5319 }
5320
5321 /*
5322 * ext4_setattr()
5323 *
5324 * Called from notify_change.
5325 *
5326 * We want to trap VFS attempts to truncate the file as soon as
5327 * possible. In particular, we want to make sure that when the VFS
5328 * shrinks i_size, we put the inode on the orphan list and modify
5329 * i_disksize immediately, so that during the subsequent flushing of
5330 * dirty pages and freeing of disk blocks, we can guarantee that any
5331 * commit will leave the blocks being flushed in an unused state on
5332 * disk. (On recovery, the inode will get truncated and the blocks will
5333 * be freed, so we have a strong guarantee that no future commit will
5334 * leave these blocks visible to the user.)
5335 *
5336 * Another thing we have to assure is that if we are in ordered mode
5337 * and inode is still attached to the committing transaction, we must
5338 * we start writeout of all the dirty pages which are being truncated.
5339 * This way we are sure that all the data written in the previous
5340 * transaction are already on disk (truncate waits for pages under
5341 * writeback).
5342 *
5343 * Called with inode->i_rwsem down.
5344 */
ext4_setattr(struct user_namespace * mnt_userns,struct dentry * dentry,struct iattr * attr)5345 int ext4_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
5346 struct iattr *attr)
5347 {
5348 struct inode *inode = d_inode(dentry);
5349 int error, rc = 0;
5350 int orphan = 0;
5351 const unsigned int ia_valid = attr->ia_valid;
5352 bool inc_ivers = true;
5353
5354 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5355 return -EIO;
5356
5357 if (unlikely(IS_IMMUTABLE(inode)))
5358 return -EPERM;
5359
5360 if (unlikely(IS_APPEND(inode) &&
5361 (ia_valid & (ATTR_MODE | ATTR_UID |
5362 ATTR_GID | ATTR_TIMES_SET))))
5363 return -EPERM;
5364
5365 error = setattr_prepare(mnt_userns, dentry, attr);
5366 if (error)
5367 return error;
5368
5369 error = fscrypt_prepare_setattr(dentry, attr);
5370 if (error)
5371 return error;
5372
5373 error = fsverity_prepare_setattr(dentry, attr);
5374 if (error)
5375 return error;
5376
5377 if (is_quota_modification(mnt_userns, inode, attr)) {
5378 error = dquot_initialize(inode);
5379 if (error)
5380 return error;
5381 }
5382
5383 if (i_uid_needs_update(mnt_userns, attr, inode) ||
5384 i_gid_needs_update(mnt_userns, attr, inode)) {
5385 handle_t *handle;
5386
5387 /* (user+group)*(old+new) structure, inode write (sb,
5388 * inode block, ? - but truncate inode update has it) */
5389 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5390 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5391 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5392 if (IS_ERR(handle)) {
5393 error = PTR_ERR(handle);
5394 goto err_out;
5395 }
5396
5397 /* dquot_transfer() calls back ext4_get_inode_usage() which
5398 * counts xattr inode references.
5399 */
5400 down_read(&EXT4_I(inode)->xattr_sem);
5401 error = dquot_transfer(mnt_userns, inode, attr);
5402 up_read(&EXT4_I(inode)->xattr_sem);
5403
5404 if (error) {
5405 ext4_journal_stop(handle);
5406 return error;
5407 }
5408 /* Update corresponding info in inode so that everything is in
5409 * one transaction */
5410 i_uid_update(mnt_userns, attr, inode);
5411 i_gid_update(mnt_userns, attr, inode);
5412 error = ext4_mark_inode_dirty(handle, inode);
5413 ext4_journal_stop(handle);
5414 if (unlikely(error)) {
5415 return error;
5416 }
5417 }
5418
5419 if (attr->ia_valid & ATTR_SIZE) {
5420 handle_t *handle;
5421 loff_t oldsize = inode->i_size;
5422 loff_t old_disksize;
5423 int shrink = (attr->ia_size < inode->i_size);
5424
5425 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5426 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5427
5428 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5429 return -EFBIG;
5430 }
5431 }
5432 if (!S_ISREG(inode->i_mode)) {
5433 return -EINVAL;
5434 }
5435
5436 if (attr->ia_size == inode->i_size)
5437 inc_ivers = false;
5438
5439 if (shrink) {
5440 if (ext4_should_order_data(inode)) {
5441 error = ext4_begin_ordered_truncate(inode,
5442 attr->ia_size);
5443 if (error)
5444 goto err_out;
5445 }
5446 /*
5447 * Blocks are going to be removed from the inode. Wait
5448 * for dio in flight.
5449 */
5450 inode_dio_wait(inode);
5451 }
5452
5453 filemap_invalidate_lock(inode->i_mapping);
5454
5455 rc = ext4_break_layouts(inode);
5456 if (rc) {
5457 filemap_invalidate_unlock(inode->i_mapping);
5458 goto err_out;
5459 }
5460
5461 if (attr->ia_size != inode->i_size) {
5462 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5463 if (IS_ERR(handle)) {
5464 error = PTR_ERR(handle);
5465 goto out_mmap_sem;
5466 }
5467 if (ext4_handle_valid(handle) && shrink) {
5468 error = ext4_orphan_add(handle, inode);
5469 orphan = 1;
5470 }
5471 /*
5472 * Update c/mtime on truncate up, ext4_truncate() will
5473 * update c/mtime in shrink case below
5474 */
5475 if (!shrink) {
5476 inode->i_mtime = current_time(inode);
5477 inode->i_ctime = inode->i_mtime;
5478 }
5479
5480 if (shrink)
5481 ext4_fc_track_range(handle, inode,
5482 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5483 inode->i_sb->s_blocksize_bits,
5484 EXT_MAX_BLOCKS - 1);
5485 else
5486 ext4_fc_track_range(
5487 handle, inode,
5488 (oldsize > 0 ? oldsize - 1 : oldsize) >>
5489 inode->i_sb->s_blocksize_bits,
5490 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5491 inode->i_sb->s_blocksize_bits);
5492
5493 down_write(&EXT4_I(inode)->i_data_sem);
5494 old_disksize = EXT4_I(inode)->i_disksize;
5495 EXT4_I(inode)->i_disksize = attr->ia_size;
5496 rc = ext4_mark_inode_dirty(handle, inode);
5497 if (!error)
5498 error = rc;
5499 /*
5500 * We have to update i_size under i_data_sem together
5501 * with i_disksize to avoid races with writeback code
5502 * running ext4_wb_update_i_disksize().
5503 */
5504 if (!error)
5505 i_size_write(inode, attr->ia_size);
5506 else
5507 EXT4_I(inode)->i_disksize = old_disksize;
5508 up_write(&EXT4_I(inode)->i_data_sem);
5509 ext4_journal_stop(handle);
5510 if (error)
5511 goto out_mmap_sem;
5512 if (!shrink) {
5513 pagecache_isize_extended(inode, oldsize,
5514 inode->i_size);
5515 } else if (ext4_should_journal_data(inode)) {
5516 ext4_wait_for_tail_page_commit(inode);
5517 }
5518 }
5519
5520 /*
5521 * Truncate pagecache after we've waited for commit
5522 * in data=journal mode to make pages freeable.
5523 */
5524 truncate_pagecache(inode, inode->i_size);
5525 /*
5526 * Call ext4_truncate() even if i_size didn't change to
5527 * truncate possible preallocated blocks.
5528 */
5529 if (attr->ia_size <= oldsize) {
5530 rc = ext4_truncate(inode);
5531 if (rc)
5532 error = rc;
5533 }
5534 out_mmap_sem:
5535 filemap_invalidate_unlock(inode->i_mapping);
5536 }
5537
5538 if (!error) {
5539 if (inc_ivers)
5540 inode_inc_iversion(inode);
5541 setattr_copy(mnt_userns, inode, attr);
5542 mark_inode_dirty(inode);
5543 }
5544
5545 /*
5546 * If the call to ext4_truncate failed to get a transaction handle at
5547 * all, we need to clean up the in-core orphan list manually.
5548 */
5549 if (orphan && inode->i_nlink)
5550 ext4_orphan_del(NULL, inode);
5551
5552 if (!error && (ia_valid & ATTR_MODE))
5553 rc = posix_acl_chmod(mnt_userns, inode, inode->i_mode);
5554
5555 err_out:
5556 if (error)
5557 ext4_std_error(inode->i_sb, error);
5558 if (!error)
5559 error = rc;
5560 return error;
5561 }
5562
ext4_dio_alignment(struct inode * inode)5563 u32 ext4_dio_alignment(struct inode *inode)
5564 {
5565 if (fsverity_active(inode))
5566 return 0;
5567 if (ext4_should_journal_data(inode))
5568 return 0;
5569 if (ext4_has_inline_data(inode))
5570 return 0;
5571 if (IS_ENCRYPTED(inode)) {
5572 if (!fscrypt_dio_supported(inode))
5573 return 0;
5574 return i_blocksize(inode);
5575 }
5576 return 1; /* use the iomap defaults */
5577 }
5578
ext4_getattr(struct user_namespace * mnt_userns,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)5579 int ext4_getattr(struct user_namespace *mnt_userns, const struct path *path,
5580 struct kstat *stat, u32 request_mask, unsigned int query_flags)
5581 {
5582 struct inode *inode = d_inode(path->dentry);
5583 struct ext4_inode *raw_inode;
5584 struct ext4_inode_info *ei = EXT4_I(inode);
5585 unsigned int flags;
5586
5587 if ((request_mask & STATX_BTIME) &&
5588 EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5589 stat->result_mask |= STATX_BTIME;
5590 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5591 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5592 }
5593
5594 /*
5595 * Return the DIO alignment restrictions if requested. We only return
5596 * this information when requested, since on encrypted files it might
5597 * take a fair bit of work to get if the file wasn't opened recently.
5598 */
5599 if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
5600 u32 dio_align = ext4_dio_alignment(inode);
5601
5602 stat->result_mask |= STATX_DIOALIGN;
5603 if (dio_align == 1) {
5604 struct block_device *bdev = inode->i_sb->s_bdev;
5605
5606 /* iomap defaults */
5607 stat->dio_mem_align = bdev_dma_alignment(bdev) + 1;
5608 stat->dio_offset_align = bdev_logical_block_size(bdev);
5609 } else {
5610 stat->dio_mem_align = dio_align;
5611 stat->dio_offset_align = dio_align;
5612 }
5613 }
5614
5615 flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5616 if (flags & EXT4_APPEND_FL)
5617 stat->attributes |= STATX_ATTR_APPEND;
5618 if (flags & EXT4_COMPR_FL)
5619 stat->attributes |= STATX_ATTR_COMPRESSED;
5620 if (flags & EXT4_ENCRYPT_FL)
5621 stat->attributes |= STATX_ATTR_ENCRYPTED;
5622 if (flags & EXT4_IMMUTABLE_FL)
5623 stat->attributes |= STATX_ATTR_IMMUTABLE;
5624 if (flags & EXT4_NODUMP_FL)
5625 stat->attributes |= STATX_ATTR_NODUMP;
5626 if (flags & EXT4_VERITY_FL)
5627 stat->attributes |= STATX_ATTR_VERITY;
5628
5629 stat->attributes_mask |= (STATX_ATTR_APPEND |
5630 STATX_ATTR_COMPRESSED |
5631 STATX_ATTR_ENCRYPTED |
5632 STATX_ATTR_IMMUTABLE |
5633 STATX_ATTR_NODUMP |
5634 STATX_ATTR_VERITY);
5635
5636 generic_fillattr(mnt_userns, inode, stat);
5637 return 0;
5638 }
5639
ext4_file_getattr(struct user_namespace * mnt_userns,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)5640 int ext4_file_getattr(struct user_namespace *mnt_userns,
5641 const struct path *path, struct kstat *stat,
5642 u32 request_mask, unsigned int query_flags)
5643 {
5644 struct inode *inode = d_inode(path->dentry);
5645 u64 delalloc_blocks;
5646
5647 ext4_getattr(mnt_userns, path, stat, request_mask, query_flags);
5648
5649 /*
5650 * If there is inline data in the inode, the inode will normally not
5651 * have data blocks allocated (it may have an external xattr block).
5652 * Report at least one sector for such files, so tools like tar, rsync,
5653 * others don't incorrectly think the file is completely sparse.
5654 */
5655 if (unlikely(ext4_has_inline_data(inode)))
5656 stat->blocks += (stat->size + 511) >> 9;
5657
5658 /*
5659 * We can't update i_blocks if the block allocation is delayed
5660 * otherwise in the case of system crash before the real block
5661 * allocation is done, we will have i_blocks inconsistent with
5662 * on-disk file blocks.
5663 * We always keep i_blocks updated together with real
5664 * allocation. But to not confuse with user, stat
5665 * will return the blocks that include the delayed allocation
5666 * blocks for this file.
5667 */
5668 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5669 EXT4_I(inode)->i_reserved_data_blocks);
5670 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5671 return 0;
5672 }
5673
ext4_index_trans_blocks(struct inode * inode,int lblocks,int pextents)5674 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5675 int pextents)
5676 {
5677 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5678 return ext4_ind_trans_blocks(inode, lblocks);
5679 return ext4_ext_index_trans_blocks(inode, pextents);
5680 }
5681
5682 /*
5683 * Account for index blocks, block groups bitmaps and block group
5684 * descriptor blocks if modify datablocks and index blocks
5685 * worse case, the indexs blocks spread over different block groups
5686 *
5687 * If datablocks are discontiguous, they are possible to spread over
5688 * different block groups too. If they are contiguous, with flexbg,
5689 * they could still across block group boundary.
5690 *
5691 * Also account for superblock, inode, quota and xattr blocks
5692 */
ext4_meta_trans_blocks(struct inode * inode,int lblocks,int pextents)5693 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5694 int pextents)
5695 {
5696 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5697 int gdpblocks;
5698 int idxblocks;
5699 int ret = 0;
5700
5701 /*
5702 * How many index blocks need to touch to map @lblocks logical blocks
5703 * to @pextents physical extents?
5704 */
5705 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5706
5707 ret = idxblocks;
5708
5709 /*
5710 * Now let's see how many group bitmaps and group descriptors need
5711 * to account
5712 */
5713 groups = idxblocks + pextents;
5714 gdpblocks = groups;
5715 if (groups > ngroups)
5716 groups = ngroups;
5717 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5718 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5719
5720 /* bitmaps and block group descriptor blocks */
5721 ret += groups + gdpblocks;
5722
5723 /* Blocks for super block, inode, quota and xattr blocks */
5724 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5725
5726 return ret;
5727 }
5728
5729 /*
5730 * Calculate the total number of credits to reserve to fit
5731 * the modification of a single pages into a single transaction,
5732 * which may include multiple chunks of block allocations.
5733 *
5734 * This could be called via ext4_write_begin()
5735 *
5736 * We need to consider the worse case, when
5737 * one new block per extent.
5738 */
ext4_writepage_trans_blocks(struct inode * inode)5739 int ext4_writepage_trans_blocks(struct inode *inode)
5740 {
5741 int bpp = ext4_journal_blocks_per_page(inode);
5742 int ret;
5743
5744 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5745
5746 /* Account for data blocks for journalled mode */
5747 if (ext4_should_journal_data(inode))
5748 ret += bpp;
5749 return ret;
5750 }
5751
5752 /*
5753 * Calculate the journal credits for a chunk of data modification.
5754 *
5755 * This is called from DIO, fallocate or whoever calling
5756 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5757 *
5758 * journal buffers for data blocks are not included here, as DIO
5759 * and fallocate do no need to journal data buffers.
5760 */
ext4_chunk_trans_blocks(struct inode * inode,int nrblocks)5761 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5762 {
5763 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5764 }
5765
5766 /*
5767 * The caller must have previously called ext4_reserve_inode_write().
5768 * Give this, we know that the caller already has write access to iloc->bh.
5769 */
ext4_mark_iloc_dirty(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)5770 int ext4_mark_iloc_dirty(handle_t *handle,
5771 struct inode *inode, struct ext4_iloc *iloc)
5772 {
5773 int err = 0;
5774
5775 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5776 put_bh(iloc->bh);
5777 return -EIO;
5778 }
5779 ext4_fc_track_inode(handle, inode);
5780
5781 /* the do_update_inode consumes one bh->b_count */
5782 get_bh(iloc->bh);
5783
5784 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5785 err = ext4_do_update_inode(handle, inode, iloc);
5786 put_bh(iloc->bh);
5787 return err;
5788 }
5789
5790 /*
5791 * On success, We end up with an outstanding reference count against
5792 * iloc->bh. This _must_ be cleaned up later.
5793 */
5794
5795 int
ext4_reserve_inode_write(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)5796 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5797 struct ext4_iloc *iloc)
5798 {
5799 int err;
5800
5801 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5802 return -EIO;
5803
5804 err = ext4_get_inode_loc(inode, iloc);
5805 if (!err) {
5806 BUFFER_TRACE(iloc->bh, "get_write_access");
5807 err = ext4_journal_get_write_access(handle, inode->i_sb,
5808 iloc->bh, EXT4_JTR_NONE);
5809 if (err) {
5810 brelse(iloc->bh);
5811 iloc->bh = NULL;
5812 }
5813 }
5814 ext4_std_error(inode->i_sb, err);
5815 return err;
5816 }
5817
__ext4_expand_extra_isize(struct inode * inode,unsigned int new_extra_isize,struct ext4_iloc * iloc,handle_t * handle,int * no_expand)5818 static int __ext4_expand_extra_isize(struct inode *inode,
5819 unsigned int new_extra_isize,
5820 struct ext4_iloc *iloc,
5821 handle_t *handle, int *no_expand)
5822 {
5823 struct ext4_inode *raw_inode;
5824 struct ext4_xattr_ibody_header *header;
5825 unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5826 struct ext4_inode_info *ei = EXT4_I(inode);
5827 int error;
5828
5829 /* this was checked at iget time, but double check for good measure */
5830 if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5831 (ei->i_extra_isize & 3)) {
5832 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5833 ei->i_extra_isize,
5834 EXT4_INODE_SIZE(inode->i_sb));
5835 return -EFSCORRUPTED;
5836 }
5837 if ((new_extra_isize < ei->i_extra_isize) ||
5838 (new_extra_isize < 4) ||
5839 (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5840 return -EINVAL; /* Should never happen */
5841
5842 raw_inode = ext4_raw_inode(iloc);
5843
5844 header = IHDR(inode, raw_inode);
5845
5846 /* No extended attributes present */
5847 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5848 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5849 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5850 EXT4_I(inode)->i_extra_isize, 0,
5851 new_extra_isize - EXT4_I(inode)->i_extra_isize);
5852 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5853 return 0;
5854 }
5855
5856 /* try to expand with EAs present */
5857 error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5858 raw_inode, handle);
5859 if (error) {
5860 /*
5861 * Inode size expansion failed; don't try again
5862 */
5863 *no_expand = 1;
5864 }
5865
5866 return error;
5867 }
5868
5869 /*
5870 * Expand an inode by new_extra_isize bytes.
5871 * Returns 0 on success or negative error number on failure.
5872 */
ext4_try_to_expand_extra_isize(struct inode * inode,unsigned int new_extra_isize,struct ext4_iloc iloc,handle_t * handle)5873 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5874 unsigned int new_extra_isize,
5875 struct ext4_iloc iloc,
5876 handle_t *handle)
5877 {
5878 int no_expand;
5879 int error;
5880
5881 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5882 return -EOVERFLOW;
5883
5884 /*
5885 * In nojournal mode, we can immediately attempt to expand
5886 * the inode. When journaled, we first need to obtain extra
5887 * buffer credits since we may write into the EA block
5888 * with this same handle. If journal_extend fails, then it will
5889 * only result in a minor loss of functionality for that inode.
5890 * If this is felt to be critical, then e2fsck should be run to
5891 * force a large enough s_min_extra_isize.
5892 */
5893 if (ext4_journal_extend(handle,
5894 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5895 return -ENOSPC;
5896
5897 if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5898 return -EBUSY;
5899
5900 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5901 handle, &no_expand);
5902 ext4_write_unlock_xattr(inode, &no_expand);
5903
5904 return error;
5905 }
5906
ext4_expand_extra_isize(struct inode * inode,unsigned int new_extra_isize,struct ext4_iloc * iloc)5907 int ext4_expand_extra_isize(struct inode *inode,
5908 unsigned int new_extra_isize,
5909 struct ext4_iloc *iloc)
5910 {
5911 handle_t *handle;
5912 int no_expand;
5913 int error, rc;
5914
5915 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5916 brelse(iloc->bh);
5917 return -EOVERFLOW;
5918 }
5919
5920 handle = ext4_journal_start(inode, EXT4_HT_INODE,
5921 EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5922 if (IS_ERR(handle)) {
5923 error = PTR_ERR(handle);
5924 brelse(iloc->bh);
5925 return error;
5926 }
5927
5928 ext4_write_lock_xattr(inode, &no_expand);
5929
5930 BUFFER_TRACE(iloc->bh, "get_write_access");
5931 error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh,
5932 EXT4_JTR_NONE);
5933 if (error) {
5934 brelse(iloc->bh);
5935 goto out_unlock;
5936 }
5937
5938 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5939 handle, &no_expand);
5940
5941 rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5942 if (!error)
5943 error = rc;
5944
5945 out_unlock:
5946 ext4_write_unlock_xattr(inode, &no_expand);
5947 ext4_journal_stop(handle);
5948 return error;
5949 }
5950
5951 /*
5952 * What we do here is to mark the in-core inode as clean with respect to inode
5953 * dirtiness (it may still be data-dirty).
5954 * This means that the in-core inode may be reaped by prune_icache
5955 * without having to perform any I/O. This is a very good thing,
5956 * because *any* task may call prune_icache - even ones which
5957 * have a transaction open against a different journal.
5958 *
5959 * Is this cheating? Not really. Sure, we haven't written the
5960 * inode out, but prune_icache isn't a user-visible syncing function.
5961 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5962 * we start and wait on commits.
5963 */
__ext4_mark_inode_dirty(handle_t * handle,struct inode * inode,const char * func,unsigned int line)5964 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5965 const char *func, unsigned int line)
5966 {
5967 struct ext4_iloc iloc;
5968 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5969 int err;
5970
5971 might_sleep();
5972 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5973 err = ext4_reserve_inode_write(handle, inode, &iloc);
5974 if (err)
5975 goto out;
5976
5977 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5978 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5979 iloc, handle);
5980
5981 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5982 out:
5983 if (unlikely(err))
5984 ext4_error_inode_err(inode, func, line, 0, err,
5985 "mark_inode_dirty error");
5986 return err;
5987 }
5988
5989 /*
5990 * ext4_dirty_inode() is called from __mark_inode_dirty()
5991 *
5992 * We're really interested in the case where a file is being extended.
5993 * i_size has been changed by generic_commit_write() and we thus need
5994 * to include the updated inode in the current transaction.
5995 *
5996 * Also, dquot_alloc_block() will always dirty the inode when blocks
5997 * are allocated to the file.
5998 *
5999 * If the inode is marked synchronous, we don't honour that here - doing
6000 * so would cause a commit on atime updates, which we don't bother doing.
6001 * We handle synchronous inodes at the highest possible level.
6002 */
ext4_dirty_inode(struct inode * inode,int flags)6003 void ext4_dirty_inode(struct inode *inode, int flags)
6004 {
6005 handle_t *handle;
6006
6007 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
6008 if (IS_ERR(handle))
6009 return;
6010 ext4_mark_inode_dirty(handle, inode);
6011 ext4_journal_stop(handle);
6012 }
6013
ext4_change_inode_journal_flag(struct inode * inode,int val)6014 int ext4_change_inode_journal_flag(struct inode *inode, int val)
6015 {
6016 journal_t *journal;
6017 handle_t *handle;
6018 int err;
6019 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6020
6021 /*
6022 * We have to be very careful here: changing a data block's
6023 * journaling status dynamically is dangerous. If we write a
6024 * data block to the journal, change the status and then delete
6025 * that block, we risk forgetting to revoke the old log record
6026 * from the journal and so a subsequent replay can corrupt data.
6027 * So, first we make sure that the journal is empty and that
6028 * nobody is changing anything.
6029 */
6030
6031 journal = EXT4_JOURNAL(inode);
6032 if (!journal)
6033 return 0;
6034 if (is_journal_aborted(journal))
6035 return -EROFS;
6036
6037 /* Wait for all existing dio workers */
6038 inode_dio_wait(inode);
6039
6040 /*
6041 * Before flushing the journal and switching inode's aops, we have
6042 * to flush all dirty data the inode has. There can be outstanding
6043 * delayed allocations, there can be unwritten extents created by
6044 * fallocate or buffered writes in dioread_nolock mode covered by
6045 * dirty data which can be converted only after flushing the dirty
6046 * data (and journalled aops don't know how to handle these cases).
6047 */
6048 if (val) {
6049 filemap_invalidate_lock(inode->i_mapping);
6050 err = filemap_write_and_wait(inode->i_mapping);
6051 if (err < 0) {
6052 filemap_invalidate_unlock(inode->i_mapping);
6053 return err;
6054 }
6055 }
6056
6057 percpu_down_write(&sbi->s_writepages_rwsem);
6058 jbd2_journal_lock_updates(journal);
6059
6060 /*
6061 * OK, there are no updates running now, and all cached data is
6062 * synced to disk. We are now in a completely consistent state
6063 * which doesn't have anything in the journal, and we know that
6064 * no filesystem updates are running, so it is safe to modify
6065 * the inode's in-core data-journaling state flag now.
6066 */
6067
6068 if (val)
6069 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6070 else {
6071 err = jbd2_journal_flush(journal, 0);
6072 if (err < 0) {
6073 jbd2_journal_unlock_updates(journal);
6074 percpu_up_write(&sbi->s_writepages_rwsem);
6075 return err;
6076 }
6077 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6078 }
6079 ext4_set_aops(inode);
6080
6081 jbd2_journal_unlock_updates(journal);
6082 percpu_up_write(&sbi->s_writepages_rwsem);
6083
6084 if (val)
6085 filemap_invalidate_unlock(inode->i_mapping);
6086
6087 /* Finally we can mark the inode as dirty. */
6088
6089 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6090 if (IS_ERR(handle))
6091 return PTR_ERR(handle);
6092
6093 ext4_fc_mark_ineligible(inode->i_sb,
6094 EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle);
6095 err = ext4_mark_inode_dirty(handle, inode);
6096 ext4_handle_sync(handle);
6097 ext4_journal_stop(handle);
6098 ext4_std_error(inode->i_sb, err);
6099
6100 return err;
6101 }
6102
ext4_bh_unmapped(handle_t * handle,struct inode * inode,struct buffer_head * bh)6103 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode,
6104 struct buffer_head *bh)
6105 {
6106 return !buffer_mapped(bh);
6107 }
6108
ext4_page_mkwrite(struct vm_fault * vmf)6109 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6110 {
6111 struct vm_area_struct *vma = vmf->vma;
6112 struct page *page = vmf->page;
6113 loff_t size;
6114 unsigned long len;
6115 int err;
6116 vm_fault_t ret;
6117 struct file *file = vma->vm_file;
6118 struct inode *inode = file_inode(file);
6119 struct address_space *mapping = inode->i_mapping;
6120 handle_t *handle;
6121 get_block_t *get_block;
6122 int retries = 0;
6123
6124 if (unlikely(IS_IMMUTABLE(inode)))
6125 return VM_FAULT_SIGBUS;
6126
6127 sb_start_pagefault(inode->i_sb);
6128 file_update_time(vma->vm_file);
6129
6130 filemap_invalidate_lock_shared(mapping);
6131
6132 err = ext4_convert_inline_data(inode);
6133 if (err)
6134 goto out_ret;
6135
6136 /*
6137 * On data journalling we skip straight to the transaction handle:
6138 * there's no delalloc; page truncated will be checked later; the
6139 * early return w/ all buffers mapped (calculates size/len) can't
6140 * be used; and there's no dioread_nolock, so only ext4_get_block.
6141 */
6142 if (ext4_should_journal_data(inode))
6143 goto retry_alloc;
6144
6145 /* Delalloc case is easy... */
6146 if (test_opt(inode->i_sb, DELALLOC) &&
6147 !ext4_nonda_switch(inode->i_sb)) {
6148 do {
6149 err = block_page_mkwrite(vma, vmf,
6150 ext4_da_get_block_prep);
6151 } while (err == -ENOSPC &&
6152 ext4_should_retry_alloc(inode->i_sb, &retries));
6153 goto out_ret;
6154 }
6155
6156 lock_page(page);
6157 size = i_size_read(inode);
6158 /* Page got truncated from under us? */
6159 if (page->mapping != mapping || page_offset(page) > size) {
6160 unlock_page(page);
6161 ret = VM_FAULT_NOPAGE;
6162 goto out;
6163 }
6164
6165 if (page->index == size >> PAGE_SHIFT)
6166 len = size & ~PAGE_MASK;
6167 else
6168 len = PAGE_SIZE;
6169 /*
6170 * Return if we have all the buffers mapped. This avoids the need to do
6171 * journal_start/journal_stop which can block and take a long time
6172 *
6173 * This cannot be done for data journalling, as we have to add the
6174 * inode to the transaction's list to writeprotect pages on commit.
6175 */
6176 if (page_has_buffers(page)) {
6177 if (!ext4_walk_page_buffers(NULL, inode, page_buffers(page),
6178 0, len, NULL,
6179 ext4_bh_unmapped)) {
6180 /* Wait so that we don't change page under IO */
6181 wait_for_stable_page(page);
6182 ret = VM_FAULT_LOCKED;
6183 goto out;
6184 }
6185 }
6186 unlock_page(page);
6187 /* OK, we need to fill the hole... */
6188 if (ext4_should_dioread_nolock(inode))
6189 get_block = ext4_get_block_unwritten;
6190 else
6191 get_block = ext4_get_block;
6192 retry_alloc:
6193 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6194 ext4_writepage_trans_blocks(inode));
6195 if (IS_ERR(handle)) {
6196 ret = VM_FAULT_SIGBUS;
6197 goto out;
6198 }
6199 /*
6200 * Data journalling can't use block_page_mkwrite() because it
6201 * will set_buffer_dirty() before do_journal_get_write_access()
6202 * thus might hit warning messages for dirty metadata buffers.
6203 */
6204 if (!ext4_should_journal_data(inode)) {
6205 err = block_page_mkwrite(vma, vmf, get_block);
6206 } else {
6207 lock_page(page);
6208 size = i_size_read(inode);
6209 /* Page got truncated from under us? */
6210 if (page->mapping != mapping || page_offset(page) > size) {
6211 ret = VM_FAULT_NOPAGE;
6212 goto out_error;
6213 }
6214
6215 if (page->index == size >> PAGE_SHIFT)
6216 len = size & ~PAGE_MASK;
6217 else
6218 len = PAGE_SIZE;
6219
6220 err = __block_write_begin(page, 0, len, ext4_get_block);
6221 if (!err) {
6222 ret = VM_FAULT_SIGBUS;
6223 if (ext4_walk_page_buffers(handle, inode,
6224 page_buffers(page), 0, len, NULL,
6225 do_journal_get_write_access))
6226 goto out_error;
6227 if (ext4_walk_page_buffers(handle, inode,
6228 page_buffers(page), 0, len, NULL,
6229 write_end_fn))
6230 goto out_error;
6231 if (ext4_jbd2_inode_add_write(handle, inode,
6232 page_offset(page), len))
6233 goto out_error;
6234 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6235 } else {
6236 unlock_page(page);
6237 }
6238 }
6239 ext4_journal_stop(handle);
6240 if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6241 goto retry_alloc;
6242 out_ret:
6243 ret = block_page_mkwrite_return(err);
6244 out:
6245 filemap_invalidate_unlock_shared(mapping);
6246 sb_end_pagefault(inode->i_sb);
6247 return ret;
6248 out_error:
6249 unlock_page(page);
6250 ext4_journal_stop(handle);
6251 goto out;
6252 }
6253