1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/exit.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/blkdev.h>
52 #include <linux/task_io_accounting_ops.h>
53 #include <linux/tracehook.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/random.h>
64 #include <linux/rcuwait.h>
65 #include <linux/compat.h>
66 
67 #include <linux/uaccess.h>
68 #include <asm/unistd.h>
69 #include <asm/pgtable.h>
70 #include <asm/mmu_context.h>
71 
__unhash_process(struct task_struct * p,bool group_dead)72 static void __unhash_process(struct task_struct *p, bool group_dead)
73 {
74 	nr_threads--;
75 	detach_pid(p, PIDTYPE_PID);
76 	if (group_dead) {
77 		detach_pid(p, PIDTYPE_TGID);
78 		detach_pid(p, PIDTYPE_PGID);
79 		detach_pid(p, PIDTYPE_SID);
80 
81 		list_del_rcu(&p->tasks);
82 		list_del_init(&p->sibling);
83 		__this_cpu_dec(process_counts);
84 	}
85 	list_del_rcu(&p->thread_group);
86 	list_del_rcu(&p->thread_node);
87 }
88 
89 /*
90  * This function expects the tasklist_lock write-locked.
91  */
__exit_signal(struct task_struct * tsk)92 static void __exit_signal(struct task_struct *tsk)
93 {
94 	struct signal_struct *sig = tsk->signal;
95 	bool group_dead = thread_group_leader(tsk);
96 	struct sighand_struct *sighand;
97 	struct tty_struct *uninitialized_var(tty);
98 	u64 utime, stime;
99 
100 	sighand = rcu_dereference_check(tsk->sighand,
101 					lockdep_tasklist_lock_is_held());
102 	spin_lock(&sighand->siglock);
103 
104 #ifdef CONFIG_POSIX_TIMERS
105 	posix_cpu_timers_exit(tsk);
106 	if (group_dead) {
107 		posix_cpu_timers_exit_group(tsk);
108 	} else {
109 		/*
110 		 * This can only happen if the caller is de_thread().
111 		 * FIXME: this is the temporary hack, we should teach
112 		 * posix-cpu-timers to handle this case correctly.
113 		 */
114 		if (unlikely(has_group_leader_pid(tsk)))
115 			posix_cpu_timers_exit_group(tsk);
116 	}
117 #endif
118 
119 	if (group_dead) {
120 		tty = sig->tty;
121 		sig->tty = NULL;
122 	} else {
123 		/*
124 		 * If there is any task waiting for the group exit
125 		 * then notify it:
126 		 */
127 		if (sig->notify_count > 0 && !--sig->notify_count)
128 			wake_up_process(sig->group_exit_task);
129 
130 		if (tsk == sig->curr_target)
131 			sig->curr_target = next_thread(tsk);
132 	}
133 
134 	add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
135 			      sizeof(unsigned long long));
136 
137 	/*
138 	 * Accumulate here the counters for all threads as they die. We could
139 	 * skip the group leader because it is the last user of signal_struct,
140 	 * but we want to avoid the race with thread_group_cputime() which can
141 	 * see the empty ->thread_head list.
142 	 */
143 	task_cputime(tsk, &utime, &stime);
144 	write_seqlock(&sig->stats_lock);
145 	sig->utime += utime;
146 	sig->stime += stime;
147 	sig->gtime += task_gtime(tsk);
148 	sig->min_flt += tsk->min_flt;
149 	sig->maj_flt += tsk->maj_flt;
150 	sig->nvcsw += tsk->nvcsw;
151 	sig->nivcsw += tsk->nivcsw;
152 	sig->inblock += task_io_get_inblock(tsk);
153 	sig->oublock += task_io_get_oublock(tsk);
154 	task_io_accounting_add(&sig->ioac, &tsk->ioac);
155 	sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
156 	sig->nr_threads--;
157 	__unhash_process(tsk, group_dead);
158 	write_sequnlock(&sig->stats_lock);
159 
160 	/*
161 	 * Do this under ->siglock, we can race with another thread
162 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
163 	 */
164 	flush_sigqueue(&tsk->pending);
165 	tsk->sighand = NULL;
166 	spin_unlock(&sighand->siglock);
167 
168 	__cleanup_sighand(sighand);
169 	clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
170 	if (group_dead) {
171 		flush_sigqueue(&sig->shared_pending);
172 		tty_kref_put(tty);
173 	}
174 }
175 
delayed_put_task_struct(struct rcu_head * rhp)176 static void delayed_put_task_struct(struct rcu_head *rhp)
177 {
178 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
179 
180 	perf_event_delayed_put(tsk);
181 	trace_sched_process_free(tsk);
182 	put_task_struct(tsk);
183 }
184 
put_task_struct_rcu_user(struct task_struct * task)185 void put_task_struct_rcu_user(struct task_struct *task)
186 {
187 	if (refcount_dec_and_test(&task->rcu_users))
188 		call_rcu(&task->rcu, delayed_put_task_struct);
189 }
190 
release_task(struct task_struct * p)191 void release_task(struct task_struct *p)
192 {
193 	struct task_struct *leader;
194 	int zap_leader;
195 repeat:
196 	/* don't need to get the RCU readlock here - the process is dead and
197 	 * can't be modifying its own credentials. But shut RCU-lockdep up */
198 	rcu_read_lock();
199 	atomic_dec(&__task_cred(p)->user->processes);
200 	rcu_read_unlock();
201 
202 	proc_flush_task(p);
203 	cgroup_release(p);
204 
205 	write_lock_irq(&tasklist_lock);
206 	ptrace_release_task(p);
207 	__exit_signal(p);
208 
209 	/*
210 	 * If we are the last non-leader member of the thread
211 	 * group, and the leader is zombie, then notify the
212 	 * group leader's parent process. (if it wants notification.)
213 	 */
214 	zap_leader = 0;
215 	leader = p->group_leader;
216 	if (leader != p && thread_group_empty(leader)
217 			&& leader->exit_state == EXIT_ZOMBIE) {
218 		/*
219 		 * If we were the last child thread and the leader has
220 		 * exited already, and the leader's parent ignores SIGCHLD,
221 		 * then we are the one who should release the leader.
222 		 */
223 		zap_leader = do_notify_parent(leader, leader->exit_signal);
224 		if (zap_leader)
225 			leader->exit_state = EXIT_DEAD;
226 	}
227 
228 	write_unlock_irq(&tasklist_lock);
229 	release_thread(p);
230 	put_task_struct_rcu_user(p);
231 
232 	p = leader;
233 	if (unlikely(zap_leader))
234 		goto repeat;
235 }
236 
rcuwait_wake_up(struct rcuwait * w)237 void rcuwait_wake_up(struct rcuwait *w)
238 {
239 	struct task_struct *task;
240 
241 	rcu_read_lock();
242 
243 	/*
244 	 * Order condition vs @task, such that everything prior to the load
245 	 * of @task is visible. This is the condition as to why the user called
246 	 * rcuwait_trywake() in the first place. Pairs with set_current_state()
247 	 * barrier (A) in rcuwait_wait_event().
248 	 *
249 	 *    WAIT                WAKE
250 	 *    [S] tsk = current	  [S] cond = true
251 	 *        MB (A)	      MB (B)
252 	 *    [L] cond		  [L] tsk
253 	 */
254 	smp_mb(); /* (B) */
255 
256 	task = rcu_dereference(w->task);
257 	if (task)
258 		wake_up_process(task);
259 	rcu_read_unlock();
260 }
261 
262 /*
263  * Determine if a process group is "orphaned", according to the POSIX
264  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
265  * by terminal-generated stop signals.  Newly orphaned process groups are
266  * to receive a SIGHUP and a SIGCONT.
267  *
268  * "I ask you, have you ever known what it is to be an orphan?"
269  */
will_become_orphaned_pgrp(struct pid * pgrp,struct task_struct * ignored_task)270 static int will_become_orphaned_pgrp(struct pid *pgrp,
271 					struct task_struct *ignored_task)
272 {
273 	struct task_struct *p;
274 
275 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
276 		if ((p == ignored_task) ||
277 		    (p->exit_state && thread_group_empty(p)) ||
278 		    is_global_init(p->real_parent))
279 			continue;
280 
281 		if (task_pgrp(p->real_parent) != pgrp &&
282 		    task_session(p->real_parent) == task_session(p))
283 			return 0;
284 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
285 
286 	return 1;
287 }
288 
is_current_pgrp_orphaned(void)289 int is_current_pgrp_orphaned(void)
290 {
291 	int retval;
292 
293 	read_lock(&tasklist_lock);
294 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
295 	read_unlock(&tasklist_lock);
296 
297 	return retval;
298 }
299 
has_stopped_jobs(struct pid * pgrp)300 static bool has_stopped_jobs(struct pid *pgrp)
301 {
302 	struct task_struct *p;
303 
304 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
305 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
306 			return true;
307 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
308 
309 	return false;
310 }
311 
312 /*
313  * Check to see if any process groups have become orphaned as
314  * a result of our exiting, and if they have any stopped jobs,
315  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
316  */
317 static void
kill_orphaned_pgrp(struct task_struct * tsk,struct task_struct * parent)318 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
319 {
320 	struct pid *pgrp = task_pgrp(tsk);
321 	struct task_struct *ignored_task = tsk;
322 
323 	if (!parent)
324 		/* exit: our father is in a different pgrp than
325 		 * we are and we were the only connection outside.
326 		 */
327 		parent = tsk->real_parent;
328 	else
329 		/* reparent: our child is in a different pgrp than
330 		 * we are, and it was the only connection outside.
331 		 */
332 		ignored_task = NULL;
333 
334 	if (task_pgrp(parent) != pgrp &&
335 	    task_session(parent) == task_session(tsk) &&
336 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
337 	    has_stopped_jobs(pgrp)) {
338 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
339 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
340 	}
341 }
342 
343 #ifdef CONFIG_MEMCG
344 /*
345  * A task is exiting.   If it owned this mm, find a new owner for the mm.
346  */
mm_update_next_owner(struct mm_struct * mm)347 void mm_update_next_owner(struct mm_struct *mm)
348 {
349 	struct task_struct *c, *g, *p = current;
350 
351 retry:
352 	/*
353 	 * If the exiting or execing task is not the owner, it's
354 	 * someone else's problem.
355 	 */
356 	if (mm->owner != p)
357 		return;
358 	/*
359 	 * The current owner is exiting/execing and there are no other
360 	 * candidates.  Do not leave the mm pointing to a possibly
361 	 * freed task structure.
362 	 */
363 	if (atomic_read(&mm->mm_users) <= 1) {
364 		WRITE_ONCE(mm->owner, NULL);
365 		return;
366 	}
367 
368 	read_lock(&tasklist_lock);
369 	/*
370 	 * Search in the children
371 	 */
372 	list_for_each_entry(c, &p->children, sibling) {
373 		if (c->mm == mm)
374 			goto assign_new_owner;
375 	}
376 
377 	/*
378 	 * Search in the siblings
379 	 */
380 	list_for_each_entry(c, &p->real_parent->children, sibling) {
381 		if (c->mm == mm)
382 			goto assign_new_owner;
383 	}
384 
385 	/*
386 	 * Search through everything else, we should not get here often.
387 	 */
388 	for_each_process(g) {
389 		if (g->flags & PF_KTHREAD)
390 			continue;
391 		for_each_thread(g, c) {
392 			if (c->mm == mm)
393 				goto assign_new_owner;
394 			if (c->mm)
395 				break;
396 		}
397 	}
398 	read_unlock(&tasklist_lock);
399 	/*
400 	 * We found no owner yet mm_users > 1: this implies that we are
401 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
402 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
403 	 */
404 	WRITE_ONCE(mm->owner, NULL);
405 	return;
406 
407 assign_new_owner:
408 	BUG_ON(c == p);
409 	get_task_struct(c);
410 	/*
411 	 * The task_lock protects c->mm from changing.
412 	 * We always want mm->owner->mm == mm
413 	 */
414 	task_lock(c);
415 	/*
416 	 * Delay read_unlock() till we have the task_lock()
417 	 * to ensure that c does not slip away underneath us
418 	 */
419 	read_unlock(&tasklist_lock);
420 	if (c->mm != mm) {
421 		task_unlock(c);
422 		put_task_struct(c);
423 		goto retry;
424 	}
425 	WRITE_ONCE(mm->owner, c);
426 	task_unlock(c);
427 	put_task_struct(c);
428 }
429 #endif /* CONFIG_MEMCG */
430 
431 /*
432  * Turn us into a lazy TLB process if we
433  * aren't already..
434  */
exit_mm(void)435 static void exit_mm(void)
436 {
437 	struct mm_struct *mm = current->mm;
438 	struct core_state *core_state;
439 
440 	mm_release(current, mm);
441 	if (!mm)
442 		return;
443 	sync_mm_rss(mm);
444 	/*
445 	 * Serialize with any possible pending coredump.
446 	 * We must hold mmap_sem around checking core_state
447 	 * and clearing tsk->mm.  The core-inducing thread
448 	 * will increment ->nr_threads for each thread in the
449 	 * group with ->mm != NULL.
450 	 */
451 	down_read(&mm->mmap_sem);
452 	core_state = mm->core_state;
453 	if (core_state) {
454 		struct core_thread self;
455 
456 		up_read(&mm->mmap_sem);
457 
458 		self.task = current;
459 		self.next = xchg(&core_state->dumper.next, &self);
460 		/*
461 		 * Implies mb(), the result of xchg() must be visible
462 		 * to core_state->dumper.
463 		 */
464 		if (atomic_dec_and_test(&core_state->nr_threads))
465 			complete(&core_state->startup);
466 
467 		for (;;) {
468 			set_current_state(TASK_UNINTERRUPTIBLE);
469 			if (!self.task) /* see coredump_finish() */
470 				break;
471 			freezable_schedule();
472 		}
473 		__set_current_state(TASK_RUNNING);
474 		down_read(&mm->mmap_sem);
475 	}
476 	mmgrab(mm);
477 	BUG_ON(mm != current->active_mm);
478 	/* more a memory barrier than a real lock */
479 	task_lock(current);
480 	current->mm = NULL;
481 	up_read(&mm->mmap_sem);
482 	enter_lazy_tlb(mm, current);
483 	task_unlock(current);
484 	mm_update_next_owner(mm);
485 	mmput(mm);
486 	if (test_thread_flag(TIF_MEMDIE))
487 		exit_oom_victim();
488 }
489 
find_alive_thread(struct task_struct * p)490 static struct task_struct *find_alive_thread(struct task_struct *p)
491 {
492 	struct task_struct *t;
493 
494 	for_each_thread(p, t) {
495 		if (!(t->flags & PF_EXITING))
496 			return t;
497 	}
498 	return NULL;
499 }
500 
find_child_reaper(struct task_struct * father,struct list_head * dead)501 static struct task_struct *find_child_reaper(struct task_struct *father,
502 						struct list_head *dead)
503 	__releases(&tasklist_lock)
504 	__acquires(&tasklist_lock)
505 {
506 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
507 	struct task_struct *reaper = pid_ns->child_reaper;
508 	struct task_struct *p, *n;
509 
510 	if (likely(reaper != father))
511 		return reaper;
512 
513 	reaper = find_alive_thread(father);
514 	if (reaper) {
515 		pid_ns->child_reaper = reaper;
516 		return reaper;
517 	}
518 
519 	write_unlock_irq(&tasklist_lock);
520 	if (unlikely(pid_ns == &init_pid_ns)) {
521 		panic("Attempted to kill init! exitcode=0x%08x\n",
522 			father->signal->group_exit_code ?: father->exit_code);
523 	}
524 
525 	list_for_each_entry_safe(p, n, dead, ptrace_entry) {
526 		list_del_init(&p->ptrace_entry);
527 		release_task(p);
528 	}
529 
530 	zap_pid_ns_processes(pid_ns);
531 	write_lock_irq(&tasklist_lock);
532 
533 	return father;
534 }
535 
536 /*
537  * When we die, we re-parent all our children, and try to:
538  * 1. give them to another thread in our thread group, if such a member exists
539  * 2. give it to the first ancestor process which prctl'd itself as a
540  *    child_subreaper for its children (like a service manager)
541  * 3. give it to the init process (PID 1) in our pid namespace
542  */
find_new_reaper(struct task_struct * father,struct task_struct * child_reaper)543 static struct task_struct *find_new_reaper(struct task_struct *father,
544 					   struct task_struct *child_reaper)
545 {
546 	struct task_struct *thread, *reaper;
547 
548 	thread = find_alive_thread(father);
549 	if (thread)
550 		return thread;
551 
552 	if (father->signal->has_child_subreaper) {
553 		unsigned int ns_level = task_pid(father)->level;
554 		/*
555 		 * Find the first ->is_child_subreaper ancestor in our pid_ns.
556 		 * We can't check reaper != child_reaper to ensure we do not
557 		 * cross the namespaces, the exiting parent could be injected
558 		 * by setns() + fork().
559 		 * We check pid->level, this is slightly more efficient than
560 		 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
561 		 */
562 		for (reaper = father->real_parent;
563 		     task_pid(reaper)->level == ns_level;
564 		     reaper = reaper->real_parent) {
565 			if (reaper == &init_task)
566 				break;
567 			if (!reaper->signal->is_child_subreaper)
568 				continue;
569 			thread = find_alive_thread(reaper);
570 			if (thread)
571 				return thread;
572 		}
573 	}
574 
575 	return child_reaper;
576 }
577 
578 /*
579 * Any that need to be release_task'd are put on the @dead list.
580  */
reparent_leader(struct task_struct * father,struct task_struct * p,struct list_head * dead)581 static void reparent_leader(struct task_struct *father, struct task_struct *p,
582 				struct list_head *dead)
583 {
584 	if (unlikely(p->exit_state == EXIT_DEAD))
585 		return;
586 
587 	/* We don't want people slaying init. */
588 	p->exit_signal = SIGCHLD;
589 
590 	/* If it has exited notify the new parent about this child's death. */
591 	if (!p->ptrace &&
592 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
593 		if (do_notify_parent(p, p->exit_signal)) {
594 			p->exit_state = EXIT_DEAD;
595 			list_add(&p->ptrace_entry, dead);
596 		}
597 	}
598 
599 	kill_orphaned_pgrp(p, father);
600 }
601 
602 /*
603  * This does two things:
604  *
605  * A.  Make init inherit all the child processes
606  * B.  Check to see if any process groups have become orphaned
607  *	as a result of our exiting, and if they have any stopped
608  *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
609  */
forget_original_parent(struct task_struct * father,struct list_head * dead)610 static void forget_original_parent(struct task_struct *father,
611 					struct list_head *dead)
612 {
613 	struct task_struct *p, *t, *reaper;
614 
615 	if (unlikely(!list_empty(&father->ptraced)))
616 		exit_ptrace(father, dead);
617 
618 	/* Can drop and reacquire tasklist_lock */
619 	reaper = find_child_reaper(father, dead);
620 	if (list_empty(&father->children))
621 		return;
622 
623 	reaper = find_new_reaper(father, reaper);
624 	list_for_each_entry(p, &father->children, sibling) {
625 		for_each_thread(p, t) {
626 			t->real_parent = reaper;
627 			BUG_ON((!t->ptrace) != (t->parent == father));
628 			if (likely(!t->ptrace))
629 				t->parent = t->real_parent;
630 			if (t->pdeath_signal)
631 				group_send_sig_info(t->pdeath_signal,
632 						    SEND_SIG_NOINFO, t,
633 						    PIDTYPE_TGID);
634 		}
635 		/*
636 		 * If this is a threaded reparent there is no need to
637 		 * notify anyone anything has happened.
638 		 */
639 		if (!same_thread_group(reaper, father))
640 			reparent_leader(father, p, dead);
641 	}
642 	list_splice_tail_init(&father->children, &reaper->children);
643 }
644 
645 /*
646  * Send signals to all our closest relatives so that they know
647  * to properly mourn us..
648  */
exit_notify(struct task_struct * tsk,int group_dead)649 static void exit_notify(struct task_struct *tsk, int group_dead)
650 {
651 	bool autoreap;
652 	struct task_struct *p, *n;
653 	LIST_HEAD(dead);
654 
655 	write_lock_irq(&tasklist_lock);
656 	forget_original_parent(tsk, &dead);
657 
658 	if (group_dead)
659 		kill_orphaned_pgrp(tsk->group_leader, NULL);
660 
661 	tsk->exit_state = EXIT_ZOMBIE;
662 	if (unlikely(tsk->ptrace)) {
663 		int sig = thread_group_leader(tsk) &&
664 				thread_group_empty(tsk) &&
665 				!ptrace_reparented(tsk) ?
666 			tsk->exit_signal : SIGCHLD;
667 		autoreap = do_notify_parent(tsk, sig);
668 	} else if (thread_group_leader(tsk)) {
669 		autoreap = thread_group_empty(tsk) &&
670 			do_notify_parent(tsk, tsk->exit_signal);
671 	} else {
672 		autoreap = true;
673 	}
674 
675 	if (autoreap) {
676 		tsk->exit_state = EXIT_DEAD;
677 		list_add(&tsk->ptrace_entry, &dead);
678 	}
679 
680 	/* mt-exec, de_thread() is waiting for group leader */
681 	if (unlikely(tsk->signal->notify_count < 0))
682 		wake_up_process(tsk->signal->group_exit_task);
683 	write_unlock_irq(&tasklist_lock);
684 
685 	list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
686 		list_del_init(&p->ptrace_entry);
687 		release_task(p);
688 	}
689 }
690 
691 #ifdef CONFIG_DEBUG_STACK_USAGE
check_stack_usage(void)692 static void check_stack_usage(void)
693 {
694 	static DEFINE_SPINLOCK(low_water_lock);
695 	static int lowest_to_date = THREAD_SIZE;
696 	unsigned long free;
697 
698 	free = stack_not_used(current);
699 
700 	if (free >= lowest_to_date)
701 		return;
702 
703 	spin_lock(&low_water_lock);
704 	if (free < lowest_to_date) {
705 		pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
706 			current->comm, task_pid_nr(current), free);
707 		lowest_to_date = free;
708 	}
709 	spin_unlock(&low_water_lock);
710 }
711 #else
check_stack_usage(void)712 static inline void check_stack_usage(void) {}
713 #endif
714 
do_exit(long code)715 void __noreturn do_exit(long code)
716 {
717 	struct task_struct *tsk = current;
718 	int group_dead;
719 
720 	profile_task_exit(tsk);
721 	kcov_task_exit(tsk);
722 
723 	WARN_ON(blk_needs_flush_plug(tsk));
724 
725 	if (unlikely(in_interrupt()))
726 		panic("Aiee, killing interrupt handler!");
727 	if (unlikely(!tsk->pid))
728 		panic("Attempted to kill the idle task!");
729 
730 	/*
731 	 * If do_exit is called because this processes oopsed, it's possible
732 	 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
733 	 * continuing. Amongst other possible reasons, this is to prevent
734 	 * mm_release()->clear_child_tid() from writing to a user-controlled
735 	 * kernel address.
736 	 */
737 	set_fs(USER_DS);
738 
739 	ptrace_event(PTRACE_EVENT_EXIT, code);
740 
741 	validate_creds_for_do_exit(tsk);
742 
743 	/*
744 	 * We're taking recursive faults here in do_exit. Safest is to just
745 	 * leave this task alone and wait for reboot.
746 	 */
747 	if (unlikely(tsk->flags & PF_EXITING)) {
748 		pr_alert("Fixing recursive fault but reboot is needed!\n");
749 		/*
750 		 * We can do this unlocked here. The futex code uses
751 		 * this flag just to verify whether the pi state
752 		 * cleanup has been done or not. In the worst case it
753 		 * loops once more. We pretend that the cleanup was
754 		 * done as there is no way to return. Either the
755 		 * OWNER_DIED bit is set by now or we push the blocked
756 		 * task into the wait for ever nirwana as well.
757 		 */
758 		tsk->flags |= PF_EXITPIDONE;
759 		set_current_state(TASK_UNINTERRUPTIBLE);
760 		schedule();
761 	}
762 
763 	exit_signals(tsk);  /* sets PF_EXITING */
764 	/*
765 	 * Ensure that all new tsk->pi_lock acquisitions must observe
766 	 * PF_EXITING. Serializes against futex.c:attach_to_pi_owner().
767 	 */
768 	smp_mb();
769 	/*
770 	 * Ensure that we must observe the pi_state in exit_mm() ->
771 	 * mm_release() -> exit_pi_state_list().
772 	 */
773 	raw_spin_lock_irq(&tsk->pi_lock);
774 	raw_spin_unlock_irq(&tsk->pi_lock);
775 
776 	if (unlikely(in_atomic())) {
777 		pr_info("note: %s[%d] exited with preempt_count %d\n",
778 			current->comm, task_pid_nr(current),
779 			preempt_count());
780 		preempt_count_set(PREEMPT_ENABLED);
781 	}
782 
783 	/* sync mm's RSS info before statistics gathering */
784 	if (tsk->mm)
785 		sync_mm_rss(tsk->mm);
786 	acct_update_integrals(tsk);
787 	group_dead = atomic_dec_and_test(&tsk->signal->live);
788 	if (group_dead) {
789 #ifdef CONFIG_POSIX_TIMERS
790 		hrtimer_cancel(&tsk->signal->real_timer);
791 		exit_itimers(tsk->signal);
792 #endif
793 		if (tsk->mm)
794 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
795 	}
796 	acct_collect(code, group_dead);
797 	if (group_dead)
798 		tty_audit_exit();
799 	audit_free(tsk);
800 
801 	tsk->exit_code = code;
802 	taskstats_exit(tsk, group_dead);
803 
804 	exit_mm();
805 
806 	if (group_dead)
807 		acct_process();
808 	trace_sched_process_exit(tsk);
809 
810 	exit_sem(tsk);
811 	exit_shm(tsk);
812 	exit_files(tsk);
813 	exit_fs(tsk);
814 	if (group_dead)
815 		disassociate_ctty(1);
816 	exit_task_namespaces(tsk);
817 	exit_task_work(tsk);
818 	exit_thread(tsk);
819 	exit_umh(tsk);
820 
821 	/*
822 	 * Flush inherited counters to the parent - before the parent
823 	 * gets woken up by child-exit notifications.
824 	 *
825 	 * because of cgroup mode, must be called before cgroup_exit()
826 	 */
827 	perf_event_exit_task(tsk);
828 
829 	sched_autogroup_exit_task(tsk);
830 	cgroup_exit(tsk);
831 
832 	/*
833 	 * FIXME: do that only when needed, using sched_exit tracepoint
834 	 */
835 	flush_ptrace_hw_breakpoint(tsk);
836 
837 	exit_tasks_rcu_start();
838 	exit_notify(tsk, group_dead);
839 	proc_exit_connector(tsk);
840 	mpol_put_task_policy(tsk);
841 #ifdef CONFIG_FUTEX
842 	if (unlikely(current->pi_state_cache))
843 		kfree(current->pi_state_cache);
844 #endif
845 	/*
846 	 * Make sure we are holding no locks:
847 	 */
848 	debug_check_no_locks_held();
849 	/*
850 	 * We can do this unlocked here. The futex code uses this flag
851 	 * just to verify whether the pi state cleanup has been done
852 	 * or not. In the worst case it loops once more.
853 	 */
854 	tsk->flags |= PF_EXITPIDONE;
855 
856 	if (tsk->io_context)
857 		exit_io_context(tsk);
858 
859 	if (tsk->splice_pipe)
860 		free_pipe_info(tsk->splice_pipe);
861 
862 	if (tsk->task_frag.page)
863 		put_page(tsk->task_frag.page);
864 
865 	validate_creds_for_do_exit(tsk);
866 
867 	check_stack_usage();
868 	preempt_disable();
869 	if (tsk->nr_dirtied)
870 		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
871 	exit_rcu();
872 	exit_tasks_rcu_finish();
873 
874 	lockdep_free_task(tsk);
875 	do_task_dead();
876 }
877 EXPORT_SYMBOL_GPL(do_exit);
878 
complete_and_exit(struct completion * comp,long code)879 void complete_and_exit(struct completion *comp, long code)
880 {
881 	if (comp)
882 		complete(comp);
883 
884 	do_exit(code);
885 }
886 EXPORT_SYMBOL(complete_and_exit);
887 
SYSCALL_DEFINE1(exit,int,error_code)888 SYSCALL_DEFINE1(exit, int, error_code)
889 {
890 	do_exit((error_code&0xff)<<8);
891 }
892 
893 /*
894  * Take down every thread in the group.  This is called by fatal signals
895  * as well as by sys_exit_group (below).
896  */
897 void
do_group_exit(int exit_code)898 do_group_exit(int exit_code)
899 {
900 	struct signal_struct *sig = current->signal;
901 
902 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
903 
904 	if (signal_group_exit(sig))
905 		exit_code = sig->group_exit_code;
906 	else if (!thread_group_empty(current)) {
907 		struct sighand_struct *const sighand = current->sighand;
908 
909 		spin_lock_irq(&sighand->siglock);
910 		if (signal_group_exit(sig))
911 			/* Another thread got here before we took the lock.  */
912 			exit_code = sig->group_exit_code;
913 		else {
914 			sig->group_exit_code = exit_code;
915 			sig->flags = SIGNAL_GROUP_EXIT;
916 			zap_other_threads(current);
917 		}
918 		spin_unlock_irq(&sighand->siglock);
919 	}
920 
921 	do_exit(exit_code);
922 	/* NOTREACHED */
923 }
924 
925 /*
926  * this kills every thread in the thread group. Note that any externally
927  * wait4()-ing process will get the correct exit code - even if this
928  * thread is not the thread group leader.
929  */
SYSCALL_DEFINE1(exit_group,int,error_code)930 SYSCALL_DEFINE1(exit_group, int, error_code)
931 {
932 	do_group_exit((error_code & 0xff) << 8);
933 	/* NOTREACHED */
934 	return 0;
935 }
936 
937 struct waitid_info {
938 	pid_t pid;
939 	uid_t uid;
940 	int status;
941 	int cause;
942 };
943 
944 struct wait_opts {
945 	enum pid_type		wo_type;
946 	int			wo_flags;
947 	struct pid		*wo_pid;
948 
949 	struct waitid_info	*wo_info;
950 	int			wo_stat;
951 	struct rusage		*wo_rusage;
952 
953 	wait_queue_entry_t		child_wait;
954 	int			notask_error;
955 };
956 
eligible_pid(struct wait_opts * wo,struct task_struct * p)957 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
958 {
959 	return	wo->wo_type == PIDTYPE_MAX ||
960 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
961 }
962 
963 static int
eligible_child(struct wait_opts * wo,bool ptrace,struct task_struct * p)964 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
965 {
966 	if (!eligible_pid(wo, p))
967 		return 0;
968 
969 	/*
970 	 * Wait for all children (clone and not) if __WALL is set or
971 	 * if it is traced by us.
972 	 */
973 	if (ptrace || (wo->wo_flags & __WALL))
974 		return 1;
975 
976 	/*
977 	 * Otherwise, wait for clone children *only* if __WCLONE is set;
978 	 * otherwise, wait for non-clone children *only*.
979 	 *
980 	 * Note: a "clone" child here is one that reports to its parent
981 	 * using a signal other than SIGCHLD, or a non-leader thread which
982 	 * we can only see if it is traced by us.
983 	 */
984 	if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
985 		return 0;
986 
987 	return 1;
988 }
989 
990 /*
991  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
992  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
993  * the lock and this task is uninteresting.  If we return nonzero, we have
994  * released the lock and the system call should return.
995  */
wait_task_zombie(struct wait_opts * wo,struct task_struct * p)996 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
997 {
998 	int state, status;
999 	pid_t pid = task_pid_vnr(p);
1000 	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1001 	struct waitid_info *infop;
1002 
1003 	if (!likely(wo->wo_flags & WEXITED))
1004 		return 0;
1005 
1006 	if (unlikely(wo->wo_flags & WNOWAIT)) {
1007 		status = p->exit_code;
1008 		get_task_struct(p);
1009 		read_unlock(&tasklist_lock);
1010 		sched_annotate_sleep();
1011 		if (wo->wo_rusage)
1012 			getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1013 		put_task_struct(p);
1014 		goto out_info;
1015 	}
1016 	/*
1017 	 * Move the task's state to DEAD/TRACE, only one thread can do this.
1018 	 */
1019 	state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1020 		EXIT_TRACE : EXIT_DEAD;
1021 	if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1022 		return 0;
1023 	/*
1024 	 * We own this thread, nobody else can reap it.
1025 	 */
1026 	read_unlock(&tasklist_lock);
1027 	sched_annotate_sleep();
1028 
1029 	/*
1030 	 * Check thread_group_leader() to exclude the traced sub-threads.
1031 	 */
1032 	if (state == EXIT_DEAD && thread_group_leader(p)) {
1033 		struct signal_struct *sig = p->signal;
1034 		struct signal_struct *psig = current->signal;
1035 		unsigned long maxrss;
1036 		u64 tgutime, tgstime;
1037 
1038 		/*
1039 		 * The resource counters for the group leader are in its
1040 		 * own task_struct.  Those for dead threads in the group
1041 		 * are in its signal_struct, as are those for the child
1042 		 * processes it has previously reaped.  All these
1043 		 * accumulate in the parent's signal_struct c* fields.
1044 		 *
1045 		 * We don't bother to take a lock here to protect these
1046 		 * p->signal fields because the whole thread group is dead
1047 		 * and nobody can change them.
1048 		 *
1049 		 * psig->stats_lock also protects us from our sub-theads
1050 		 * which can reap other children at the same time. Until
1051 		 * we change k_getrusage()-like users to rely on this lock
1052 		 * we have to take ->siglock as well.
1053 		 *
1054 		 * We use thread_group_cputime_adjusted() to get times for
1055 		 * the thread group, which consolidates times for all threads
1056 		 * in the group including the group leader.
1057 		 */
1058 		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1059 		spin_lock_irq(&current->sighand->siglock);
1060 		write_seqlock(&psig->stats_lock);
1061 		psig->cutime += tgutime + sig->cutime;
1062 		psig->cstime += tgstime + sig->cstime;
1063 		psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1064 		psig->cmin_flt +=
1065 			p->min_flt + sig->min_flt + sig->cmin_flt;
1066 		psig->cmaj_flt +=
1067 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1068 		psig->cnvcsw +=
1069 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1070 		psig->cnivcsw +=
1071 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1072 		psig->cinblock +=
1073 			task_io_get_inblock(p) +
1074 			sig->inblock + sig->cinblock;
1075 		psig->coublock +=
1076 			task_io_get_oublock(p) +
1077 			sig->oublock + sig->coublock;
1078 		maxrss = max(sig->maxrss, sig->cmaxrss);
1079 		if (psig->cmaxrss < maxrss)
1080 			psig->cmaxrss = maxrss;
1081 		task_io_accounting_add(&psig->ioac, &p->ioac);
1082 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1083 		write_sequnlock(&psig->stats_lock);
1084 		spin_unlock_irq(&current->sighand->siglock);
1085 	}
1086 
1087 	if (wo->wo_rusage)
1088 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1089 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1090 		? p->signal->group_exit_code : p->exit_code;
1091 	wo->wo_stat = status;
1092 
1093 	if (state == EXIT_TRACE) {
1094 		write_lock_irq(&tasklist_lock);
1095 		/* We dropped tasklist, ptracer could die and untrace */
1096 		ptrace_unlink(p);
1097 
1098 		/* If parent wants a zombie, don't release it now */
1099 		state = EXIT_ZOMBIE;
1100 		if (do_notify_parent(p, p->exit_signal))
1101 			state = EXIT_DEAD;
1102 		p->exit_state = state;
1103 		write_unlock_irq(&tasklist_lock);
1104 	}
1105 	if (state == EXIT_DEAD)
1106 		release_task(p);
1107 
1108 out_info:
1109 	infop = wo->wo_info;
1110 	if (infop) {
1111 		if ((status & 0x7f) == 0) {
1112 			infop->cause = CLD_EXITED;
1113 			infop->status = status >> 8;
1114 		} else {
1115 			infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1116 			infop->status = status & 0x7f;
1117 		}
1118 		infop->pid = pid;
1119 		infop->uid = uid;
1120 	}
1121 
1122 	return pid;
1123 }
1124 
task_stopped_code(struct task_struct * p,bool ptrace)1125 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1126 {
1127 	if (ptrace) {
1128 		if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1129 			return &p->exit_code;
1130 	} else {
1131 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1132 			return &p->signal->group_exit_code;
1133 	}
1134 	return NULL;
1135 }
1136 
1137 /**
1138  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1139  * @wo: wait options
1140  * @ptrace: is the wait for ptrace
1141  * @p: task to wait for
1142  *
1143  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1144  *
1145  * CONTEXT:
1146  * read_lock(&tasklist_lock), which is released if return value is
1147  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1148  *
1149  * RETURNS:
1150  * 0 if wait condition didn't exist and search for other wait conditions
1151  * should continue.  Non-zero return, -errno on failure and @p's pid on
1152  * success, implies that tasklist_lock is released and wait condition
1153  * search should terminate.
1154  */
wait_task_stopped(struct wait_opts * wo,int ptrace,struct task_struct * p)1155 static int wait_task_stopped(struct wait_opts *wo,
1156 				int ptrace, struct task_struct *p)
1157 {
1158 	struct waitid_info *infop;
1159 	int exit_code, *p_code, why;
1160 	uid_t uid = 0; /* unneeded, required by compiler */
1161 	pid_t pid;
1162 
1163 	/*
1164 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1165 	 */
1166 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1167 		return 0;
1168 
1169 	if (!task_stopped_code(p, ptrace))
1170 		return 0;
1171 
1172 	exit_code = 0;
1173 	spin_lock_irq(&p->sighand->siglock);
1174 
1175 	p_code = task_stopped_code(p, ptrace);
1176 	if (unlikely(!p_code))
1177 		goto unlock_sig;
1178 
1179 	exit_code = *p_code;
1180 	if (!exit_code)
1181 		goto unlock_sig;
1182 
1183 	if (!unlikely(wo->wo_flags & WNOWAIT))
1184 		*p_code = 0;
1185 
1186 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1187 unlock_sig:
1188 	spin_unlock_irq(&p->sighand->siglock);
1189 	if (!exit_code)
1190 		return 0;
1191 
1192 	/*
1193 	 * Now we are pretty sure this task is interesting.
1194 	 * Make sure it doesn't get reaped out from under us while we
1195 	 * give up the lock and then examine it below.  We don't want to
1196 	 * keep holding onto the tasklist_lock while we call getrusage and
1197 	 * possibly take page faults for user memory.
1198 	 */
1199 	get_task_struct(p);
1200 	pid = task_pid_vnr(p);
1201 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1202 	read_unlock(&tasklist_lock);
1203 	sched_annotate_sleep();
1204 	if (wo->wo_rusage)
1205 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1206 	put_task_struct(p);
1207 
1208 	if (likely(!(wo->wo_flags & WNOWAIT)))
1209 		wo->wo_stat = (exit_code << 8) | 0x7f;
1210 
1211 	infop = wo->wo_info;
1212 	if (infop) {
1213 		infop->cause = why;
1214 		infop->status = exit_code;
1215 		infop->pid = pid;
1216 		infop->uid = uid;
1217 	}
1218 	return pid;
1219 }
1220 
1221 /*
1222  * Handle do_wait work for one task in a live, non-stopped state.
1223  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1224  * the lock and this task is uninteresting.  If we return nonzero, we have
1225  * released the lock and the system call should return.
1226  */
wait_task_continued(struct wait_opts * wo,struct task_struct * p)1227 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1228 {
1229 	struct waitid_info *infop;
1230 	pid_t pid;
1231 	uid_t uid;
1232 
1233 	if (!unlikely(wo->wo_flags & WCONTINUED))
1234 		return 0;
1235 
1236 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1237 		return 0;
1238 
1239 	spin_lock_irq(&p->sighand->siglock);
1240 	/* Re-check with the lock held.  */
1241 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1242 		spin_unlock_irq(&p->sighand->siglock);
1243 		return 0;
1244 	}
1245 	if (!unlikely(wo->wo_flags & WNOWAIT))
1246 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1247 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1248 	spin_unlock_irq(&p->sighand->siglock);
1249 
1250 	pid = task_pid_vnr(p);
1251 	get_task_struct(p);
1252 	read_unlock(&tasklist_lock);
1253 	sched_annotate_sleep();
1254 	if (wo->wo_rusage)
1255 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1256 	put_task_struct(p);
1257 
1258 	infop = wo->wo_info;
1259 	if (!infop) {
1260 		wo->wo_stat = 0xffff;
1261 	} else {
1262 		infop->cause = CLD_CONTINUED;
1263 		infop->pid = pid;
1264 		infop->uid = uid;
1265 		infop->status = SIGCONT;
1266 	}
1267 	return pid;
1268 }
1269 
1270 /*
1271  * Consider @p for a wait by @parent.
1272  *
1273  * -ECHILD should be in ->notask_error before the first call.
1274  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1275  * Returns zero if the search for a child should continue;
1276  * then ->notask_error is 0 if @p is an eligible child,
1277  * or still -ECHILD.
1278  */
wait_consider_task(struct wait_opts * wo,int ptrace,struct task_struct * p)1279 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1280 				struct task_struct *p)
1281 {
1282 	/*
1283 	 * We can race with wait_task_zombie() from another thread.
1284 	 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1285 	 * can't confuse the checks below.
1286 	 */
1287 	int exit_state = READ_ONCE(p->exit_state);
1288 	int ret;
1289 
1290 	if (unlikely(exit_state == EXIT_DEAD))
1291 		return 0;
1292 
1293 	ret = eligible_child(wo, ptrace, p);
1294 	if (!ret)
1295 		return ret;
1296 
1297 	if (unlikely(exit_state == EXIT_TRACE)) {
1298 		/*
1299 		 * ptrace == 0 means we are the natural parent. In this case
1300 		 * we should clear notask_error, debugger will notify us.
1301 		 */
1302 		if (likely(!ptrace))
1303 			wo->notask_error = 0;
1304 		return 0;
1305 	}
1306 
1307 	if (likely(!ptrace) && unlikely(p->ptrace)) {
1308 		/*
1309 		 * If it is traced by its real parent's group, just pretend
1310 		 * the caller is ptrace_do_wait() and reap this child if it
1311 		 * is zombie.
1312 		 *
1313 		 * This also hides group stop state from real parent; otherwise
1314 		 * a single stop can be reported twice as group and ptrace stop.
1315 		 * If a ptracer wants to distinguish these two events for its
1316 		 * own children it should create a separate process which takes
1317 		 * the role of real parent.
1318 		 */
1319 		if (!ptrace_reparented(p))
1320 			ptrace = 1;
1321 	}
1322 
1323 	/* slay zombie? */
1324 	if (exit_state == EXIT_ZOMBIE) {
1325 		/* we don't reap group leaders with subthreads */
1326 		if (!delay_group_leader(p)) {
1327 			/*
1328 			 * A zombie ptracee is only visible to its ptracer.
1329 			 * Notification and reaping will be cascaded to the
1330 			 * real parent when the ptracer detaches.
1331 			 */
1332 			if (unlikely(ptrace) || likely(!p->ptrace))
1333 				return wait_task_zombie(wo, p);
1334 		}
1335 
1336 		/*
1337 		 * Allow access to stopped/continued state via zombie by
1338 		 * falling through.  Clearing of notask_error is complex.
1339 		 *
1340 		 * When !@ptrace:
1341 		 *
1342 		 * If WEXITED is set, notask_error should naturally be
1343 		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1344 		 * so, if there are live subthreads, there are events to
1345 		 * wait for.  If all subthreads are dead, it's still safe
1346 		 * to clear - this function will be called again in finite
1347 		 * amount time once all the subthreads are released and
1348 		 * will then return without clearing.
1349 		 *
1350 		 * When @ptrace:
1351 		 *
1352 		 * Stopped state is per-task and thus can't change once the
1353 		 * target task dies.  Only continued and exited can happen.
1354 		 * Clear notask_error if WCONTINUED | WEXITED.
1355 		 */
1356 		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1357 			wo->notask_error = 0;
1358 	} else {
1359 		/*
1360 		 * @p is alive and it's gonna stop, continue or exit, so
1361 		 * there always is something to wait for.
1362 		 */
1363 		wo->notask_error = 0;
1364 	}
1365 
1366 	/*
1367 	 * Wait for stopped.  Depending on @ptrace, different stopped state
1368 	 * is used and the two don't interact with each other.
1369 	 */
1370 	ret = wait_task_stopped(wo, ptrace, p);
1371 	if (ret)
1372 		return ret;
1373 
1374 	/*
1375 	 * Wait for continued.  There's only one continued state and the
1376 	 * ptracer can consume it which can confuse the real parent.  Don't
1377 	 * use WCONTINUED from ptracer.  You don't need or want it.
1378 	 */
1379 	return wait_task_continued(wo, p);
1380 }
1381 
1382 /*
1383  * Do the work of do_wait() for one thread in the group, @tsk.
1384  *
1385  * -ECHILD should be in ->notask_error before the first call.
1386  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1387  * Returns zero if the search for a child should continue; then
1388  * ->notask_error is 0 if there were any eligible children,
1389  * or still -ECHILD.
1390  */
do_wait_thread(struct wait_opts * wo,struct task_struct * tsk)1391 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1392 {
1393 	struct task_struct *p;
1394 
1395 	list_for_each_entry(p, &tsk->children, sibling) {
1396 		int ret = wait_consider_task(wo, 0, p);
1397 
1398 		if (ret)
1399 			return ret;
1400 	}
1401 
1402 	return 0;
1403 }
1404 
ptrace_do_wait(struct wait_opts * wo,struct task_struct * tsk)1405 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1406 {
1407 	struct task_struct *p;
1408 
1409 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1410 		int ret = wait_consider_task(wo, 1, p);
1411 
1412 		if (ret)
1413 			return ret;
1414 	}
1415 
1416 	return 0;
1417 }
1418 
child_wait_callback(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)1419 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1420 				int sync, void *key)
1421 {
1422 	struct wait_opts *wo = container_of(wait, struct wait_opts,
1423 						child_wait);
1424 	struct task_struct *p = key;
1425 
1426 	if (!eligible_pid(wo, p))
1427 		return 0;
1428 
1429 	if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1430 		return 0;
1431 
1432 	return default_wake_function(wait, mode, sync, key);
1433 }
1434 
__wake_up_parent(struct task_struct * p,struct task_struct * parent)1435 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1436 {
1437 	__wake_up_sync_key(&parent->signal->wait_chldexit,
1438 				TASK_INTERRUPTIBLE, 1, p);
1439 }
1440 
do_wait(struct wait_opts * wo)1441 static long do_wait(struct wait_opts *wo)
1442 {
1443 	struct task_struct *tsk;
1444 	int retval;
1445 
1446 	trace_sched_process_wait(wo->wo_pid);
1447 
1448 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1449 	wo->child_wait.private = current;
1450 	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1451 repeat:
1452 	/*
1453 	 * If there is nothing that can match our criteria, just get out.
1454 	 * We will clear ->notask_error to zero if we see any child that
1455 	 * might later match our criteria, even if we are not able to reap
1456 	 * it yet.
1457 	 */
1458 	wo->notask_error = -ECHILD;
1459 	if ((wo->wo_type < PIDTYPE_MAX) &&
1460 	   (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1461 		goto notask;
1462 
1463 	set_current_state(TASK_INTERRUPTIBLE);
1464 	read_lock(&tasklist_lock);
1465 	tsk = current;
1466 	do {
1467 		retval = do_wait_thread(wo, tsk);
1468 		if (retval)
1469 			goto end;
1470 
1471 		retval = ptrace_do_wait(wo, tsk);
1472 		if (retval)
1473 			goto end;
1474 
1475 		if (wo->wo_flags & __WNOTHREAD)
1476 			break;
1477 	} while_each_thread(current, tsk);
1478 	read_unlock(&tasklist_lock);
1479 
1480 notask:
1481 	retval = wo->notask_error;
1482 	if (!retval && !(wo->wo_flags & WNOHANG)) {
1483 		retval = -ERESTARTSYS;
1484 		if (!signal_pending(current)) {
1485 			schedule();
1486 			goto repeat;
1487 		}
1488 	}
1489 end:
1490 	__set_current_state(TASK_RUNNING);
1491 	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1492 	return retval;
1493 }
1494 
pidfd_get_pid(unsigned int fd)1495 static struct pid *pidfd_get_pid(unsigned int fd)
1496 {
1497 	struct fd f;
1498 	struct pid *pid;
1499 
1500 	f = fdget(fd);
1501 	if (!f.file)
1502 		return ERR_PTR(-EBADF);
1503 
1504 	pid = pidfd_pid(f.file);
1505 	if (!IS_ERR(pid))
1506 		get_pid(pid);
1507 
1508 	fdput(f);
1509 	return pid;
1510 }
1511 
kernel_waitid(int which,pid_t upid,struct waitid_info * infop,int options,struct rusage * ru)1512 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1513 			  int options, struct rusage *ru)
1514 {
1515 	struct wait_opts wo;
1516 	struct pid *pid = NULL;
1517 	enum pid_type type;
1518 	long ret;
1519 
1520 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1521 			__WNOTHREAD|__WCLONE|__WALL))
1522 		return -EINVAL;
1523 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1524 		return -EINVAL;
1525 
1526 	switch (which) {
1527 	case P_ALL:
1528 		type = PIDTYPE_MAX;
1529 		break;
1530 	case P_PID:
1531 		type = PIDTYPE_PID;
1532 		if (upid <= 0)
1533 			return -EINVAL;
1534 
1535 		pid = find_get_pid(upid);
1536 		break;
1537 	case P_PGID:
1538 		type = PIDTYPE_PGID;
1539 		if (upid < 0)
1540 			return -EINVAL;
1541 
1542 		if (upid)
1543 			pid = find_get_pid(upid);
1544 		else
1545 			pid = get_task_pid(current, PIDTYPE_PGID);
1546 		break;
1547 	case P_PIDFD:
1548 		type = PIDTYPE_PID;
1549 		if (upid < 0)
1550 			return -EINVAL;
1551 
1552 		pid = pidfd_get_pid(upid);
1553 		if (IS_ERR(pid))
1554 			return PTR_ERR(pid);
1555 		break;
1556 	default:
1557 		return -EINVAL;
1558 	}
1559 
1560 	wo.wo_type	= type;
1561 	wo.wo_pid	= pid;
1562 	wo.wo_flags	= options;
1563 	wo.wo_info	= infop;
1564 	wo.wo_rusage	= ru;
1565 	ret = do_wait(&wo);
1566 
1567 	put_pid(pid);
1568 	return ret;
1569 }
1570 
SYSCALL_DEFINE5(waitid,int,which,pid_t,upid,struct siginfo __user *,infop,int,options,struct rusage __user *,ru)1571 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1572 		infop, int, options, struct rusage __user *, ru)
1573 {
1574 	struct rusage r;
1575 	struct waitid_info info = {.status = 0};
1576 	long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1577 	int signo = 0;
1578 
1579 	if (err > 0) {
1580 		signo = SIGCHLD;
1581 		err = 0;
1582 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1583 			return -EFAULT;
1584 	}
1585 	if (!infop)
1586 		return err;
1587 
1588 	if (!user_access_begin(infop, sizeof(*infop)))
1589 		return -EFAULT;
1590 
1591 	unsafe_put_user(signo, &infop->si_signo, Efault);
1592 	unsafe_put_user(0, &infop->si_errno, Efault);
1593 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1594 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1595 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1596 	unsafe_put_user(info.status, &infop->si_status, Efault);
1597 	user_access_end();
1598 	return err;
1599 Efault:
1600 	user_access_end();
1601 	return -EFAULT;
1602 }
1603 
kernel_wait4(pid_t upid,int __user * stat_addr,int options,struct rusage * ru)1604 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1605 		  struct rusage *ru)
1606 {
1607 	struct wait_opts wo;
1608 	struct pid *pid = NULL;
1609 	enum pid_type type;
1610 	long ret;
1611 
1612 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1613 			__WNOTHREAD|__WCLONE|__WALL))
1614 		return -EINVAL;
1615 
1616 	/* -INT_MIN is not defined */
1617 	if (upid == INT_MIN)
1618 		return -ESRCH;
1619 
1620 	if (upid == -1)
1621 		type = PIDTYPE_MAX;
1622 	else if (upid < 0) {
1623 		type = PIDTYPE_PGID;
1624 		pid = find_get_pid(-upid);
1625 	} else if (upid == 0) {
1626 		type = PIDTYPE_PGID;
1627 		pid = get_task_pid(current, PIDTYPE_PGID);
1628 	} else /* upid > 0 */ {
1629 		type = PIDTYPE_PID;
1630 		pid = find_get_pid(upid);
1631 	}
1632 
1633 	wo.wo_type	= type;
1634 	wo.wo_pid	= pid;
1635 	wo.wo_flags	= options | WEXITED;
1636 	wo.wo_info	= NULL;
1637 	wo.wo_stat	= 0;
1638 	wo.wo_rusage	= ru;
1639 	ret = do_wait(&wo);
1640 	put_pid(pid);
1641 	if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1642 		ret = -EFAULT;
1643 
1644 	return ret;
1645 }
1646 
SYSCALL_DEFINE4(wait4,pid_t,upid,int __user *,stat_addr,int,options,struct rusage __user *,ru)1647 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1648 		int, options, struct rusage __user *, ru)
1649 {
1650 	struct rusage r;
1651 	long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1652 
1653 	if (err > 0) {
1654 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1655 			return -EFAULT;
1656 	}
1657 	return err;
1658 }
1659 
1660 #ifdef __ARCH_WANT_SYS_WAITPID
1661 
1662 /*
1663  * sys_waitpid() remains for compatibility. waitpid() should be
1664  * implemented by calling sys_wait4() from libc.a.
1665  */
SYSCALL_DEFINE3(waitpid,pid_t,pid,int __user *,stat_addr,int,options)1666 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1667 {
1668 	return kernel_wait4(pid, stat_addr, options, NULL);
1669 }
1670 
1671 #endif
1672 
1673 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(wait4,compat_pid_t,pid,compat_uint_t __user *,stat_addr,int,options,struct compat_rusage __user *,ru)1674 COMPAT_SYSCALL_DEFINE4(wait4,
1675 	compat_pid_t, pid,
1676 	compat_uint_t __user *, stat_addr,
1677 	int, options,
1678 	struct compat_rusage __user *, ru)
1679 {
1680 	struct rusage r;
1681 	long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1682 	if (err > 0) {
1683 		if (ru && put_compat_rusage(&r, ru))
1684 			return -EFAULT;
1685 	}
1686 	return err;
1687 }
1688 
COMPAT_SYSCALL_DEFINE5(waitid,int,which,compat_pid_t,pid,struct compat_siginfo __user *,infop,int,options,struct compat_rusage __user *,uru)1689 COMPAT_SYSCALL_DEFINE5(waitid,
1690 		int, which, compat_pid_t, pid,
1691 		struct compat_siginfo __user *, infop, int, options,
1692 		struct compat_rusage __user *, uru)
1693 {
1694 	struct rusage ru;
1695 	struct waitid_info info = {.status = 0};
1696 	long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1697 	int signo = 0;
1698 	if (err > 0) {
1699 		signo = SIGCHLD;
1700 		err = 0;
1701 		if (uru) {
1702 			/* kernel_waitid() overwrites everything in ru */
1703 			if (COMPAT_USE_64BIT_TIME)
1704 				err = copy_to_user(uru, &ru, sizeof(ru));
1705 			else
1706 				err = put_compat_rusage(&ru, uru);
1707 			if (err)
1708 				return -EFAULT;
1709 		}
1710 	}
1711 
1712 	if (!infop)
1713 		return err;
1714 
1715 	if (!user_access_begin(infop, sizeof(*infop)))
1716 		return -EFAULT;
1717 
1718 	unsafe_put_user(signo, &infop->si_signo, Efault);
1719 	unsafe_put_user(0, &infop->si_errno, Efault);
1720 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1721 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1722 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1723 	unsafe_put_user(info.status, &infop->si_status, Efault);
1724 	user_access_end();
1725 	return err;
1726 Efault:
1727 	user_access_end();
1728 	return -EFAULT;
1729 }
1730 #endif
1731 
abort(void)1732 __weak void abort(void)
1733 {
1734 	BUG();
1735 
1736 	/* if that doesn't kill us, halt */
1737 	panic("Oops failed to kill thread");
1738 }
1739 EXPORT_SYMBOL(abort);
1740