1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
4  */
5 #ifndef LINUX_DMAENGINE_H
6 #define LINUX_DMAENGINE_H
7 
8 #include <linux/device.h>
9 #include <linux/err.h>
10 #include <linux/uio.h>
11 #include <linux/bug.h>
12 #include <linux/scatterlist.h>
13 #include <linux/bitmap.h>
14 #include <linux/types.h>
15 #include <asm/page.h>
16 
17 /**
18  * typedef dma_cookie_t - an opaque DMA cookie
19  *
20  * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
21  */
22 typedef s32 dma_cookie_t;
23 #define DMA_MIN_COOKIE	1
24 
dma_submit_error(dma_cookie_t cookie)25 static inline int dma_submit_error(dma_cookie_t cookie)
26 {
27 	return cookie < 0 ? cookie : 0;
28 }
29 
30 /**
31  * enum dma_status - DMA transaction status
32  * @DMA_COMPLETE: transaction completed
33  * @DMA_IN_PROGRESS: transaction not yet processed
34  * @DMA_PAUSED: transaction is paused
35  * @DMA_ERROR: transaction failed
36  */
37 enum dma_status {
38 	DMA_COMPLETE,
39 	DMA_IN_PROGRESS,
40 	DMA_PAUSED,
41 	DMA_ERROR,
42 	DMA_OUT_OF_ORDER,
43 };
44 
45 /**
46  * enum dma_transaction_type - DMA transaction types/indexes
47  *
48  * Note: The DMA_ASYNC_TX capability is not to be set by drivers.  It is
49  * automatically set as dma devices are registered.
50  */
51 enum dma_transaction_type {
52 	DMA_MEMCPY,
53 	DMA_XOR,
54 	DMA_PQ,
55 	DMA_XOR_VAL,
56 	DMA_PQ_VAL,
57 	DMA_MEMSET,
58 	DMA_MEMSET_SG,
59 	DMA_INTERRUPT,
60 	DMA_PRIVATE,
61 	DMA_ASYNC_TX,
62 	DMA_SLAVE,
63 	DMA_CYCLIC,
64 	DMA_INTERLEAVE,
65 	DMA_COMPLETION_NO_ORDER,
66 	DMA_REPEAT,
67 	DMA_LOAD_EOT,
68 /* last transaction type for creation of the capabilities mask */
69 	DMA_TX_TYPE_END,
70 };
71 
72 /**
73  * enum dma_transfer_direction - dma transfer mode and direction indicator
74  * @DMA_MEM_TO_MEM: Async/Memcpy mode
75  * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device
76  * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory
77  * @DMA_DEV_TO_DEV: Slave mode & From Device to Device
78  */
79 enum dma_transfer_direction {
80 	DMA_MEM_TO_MEM,
81 	DMA_MEM_TO_DEV,
82 	DMA_DEV_TO_MEM,
83 	DMA_DEV_TO_DEV,
84 	DMA_TRANS_NONE,
85 };
86 
87 /**
88  * Interleaved Transfer Request
89  * ----------------------------
90  * A chunk is collection of contiguous bytes to be transferred.
91  * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG).
92  * ICGs may or may not change between chunks.
93  * A FRAME is the smallest series of contiguous {chunk,icg} pairs,
94  *  that when repeated an integral number of times, specifies the transfer.
95  * A transfer template is specification of a Frame, the number of times
96  *  it is to be repeated and other per-transfer attributes.
97  *
98  * Practically, a client driver would have ready a template for each
99  *  type of transfer it is going to need during its lifetime and
100  *  set only 'src_start' and 'dst_start' before submitting the requests.
101  *
102  *
103  *  |      Frame-1        |       Frame-2       | ~ |       Frame-'numf'  |
104  *  |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...|
105  *
106  *    ==  Chunk size
107  *    ... ICG
108  */
109 
110 /**
111  * struct data_chunk - Element of scatter-gather list that makes a frame.
112  * @size: Number of bytes to read from source.
113  *	  size_dst := fn(op, size_src), so doesn't mean much for destination.
114  * @icg: Number of bytes to jump after last src/dst address of this
115  *	 chunk and before first src/dst address for next chunk.
116  *	 Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false.
117  *	 Ignored for src(assumed 0), if src_inc is true and src_sgl is false.
118  * @dst_icg: Number of bytes to jump after last dst address of this
119  *	 chunk and before the first dst address for next chunk.
120  *	 Ignored if dst_inc is true and dst_sgl is false.
121  * @src_icg: Number of bytes to jump after last src address of this
122  *	 chunk and before the first src address for next chunk.
123  *	 Ignored if src_inc is true and src_sgl is false.
124  */
125 struct data_chunk {
126 	size_t size;
127 	size_t icg;
128 	size_t dst_icg;
129 	size_t src_icg;
130 };
131 
132 /**
133  * struct dma_interleaved_template - Template to convey DMAC the transfer pattern
134  *	 and attributes.
135  * @src_start: Bus address of source for the first chunk.
136  * @dst_start: Bus address of destination for the first chunk.
137  * @dir: Specifies the type of Source and Destination.
138  * @src_inc: If the source address increments after reading from it.
139  * @dst_inc: If the destination address increments after writing to it.
140  * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read).
141  *		Otherwise, source is read contiguously (icg ignored).
142  *		Ignored if src_inc is false.
143  * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write).
144  *		Otherwise, destination is filled contiguously (icg ignored).
145  *		Ignored if dst_inc is false.
146  * @numf: Number of frames in this template.
147  * @frame_size: Number of chunks in a frame i.e, size of sgl[].
148  * @sgl: Array of {chunk,icg} pairs that make up a frame.
149  */
150 struct dma_interleaved_template {
151 	dma_addr_t src_start;
152 	dma_addr_t dst_start;
153 	enum dma_transfer_direction dir;
154 	bool src_inc;
155 	bool dst_inc;
156 	bool src_sgl;
157 	bool dst_sgl;
158 	size_t numf;
159 	size_t frame_size;
160 	struct data_chunk sgl[];
161 };
162 
163 /**
164  * enum dma_ctrl_flags - DMA flags to augment operation preparation,
165  *  control completion, and communicate status.
166  * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
167  *  this transaction
168  * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
169  *  acknowledges receipt, i.e. has a chance to establish any dependency
170  *  chains
171  * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
172  * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
173  * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
174  *  sources that were the result of a previous operation, in the case of a PQ
175  *  operation it continues the calculation with new sources
176  * @DMA_PREP_FENCE - tell the driver that subsequent operations depend
177  *  on the result of this operation
178  * @DMA_CTRL_REUSE: client can reuse the descriptor and submit again till
179  *  cleared or freed
180  * @DMA_PREP_CMD: tell the driver that the data passed to DMA API is command
181  *  data and the descriptor should be in different format from normal
182  *  data descriptors.
183  * @DMA_PREP_REPEAT: tell the driver that the transaction shall be automatically
184  *  repeated when it ends until a transaction is issued on the same channel
185  *  with the DMA_PREP_LOAD_EOT flag set. This flag is only applicable to
186  *  interleaved transactions and is ignored for all other transaction types.
187  * @DMA_PREP_LOAD_EOT: tell the driver that the transaction shall replace any
188  *  active repeated (as indicated by DMA_PREP_REPEAT) transaction when the
189  *  repeated transaction ends. Not setting this flag when the previously queued
190  *  transaction is marked with DMA_PREP_REPEAT will cause the new transaction
191  *  to never be processed and stay in the issued queue forever. The flag is
192  *  ignored if the previous transaction is not a repeated transaction.
193  */
194 enum dma_ctrl_flags {
195 	DMA_PREP_INTERRUPT = (1 << 0),
196 	DMA_CTRL_ACK = (1 << 1),
197 	DMA_PREP_PQ_DISABLE_P = (1 << 2),
198 	DMA_PREP_PQ_DISABLE_Q = (1 << 3),
199 	DMA_PREP_CONTINUE = (1 << 4),
200 	DMA_PREP_FENCE = (1 << 5),
201 	DMA_CTRL_REUSE = (1 << 6),
202 	DMA_PREP_CMD = (1 << 7),
203 	DMA_PREP_REPEAT = (1 << 8),
204 	DMA_PREP_LOAD_EOT = (1 << 9),
205 };
206 
207 /**
208  * enum sum_check_bits - bit position of pq_check_flags
209  */
210 enum sum_check_bits {
211 	SUM_CHECK_P = 0,
212 	SUM_CHECK_Q = 1,
213 };
214 
215 /**
216  * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
217  * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
218  * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
219  */
220 enum sum_check_flags {
221 	SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
222 	SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
223 };
224 
225 
226 /**
227  * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
228  * See linux/cpumask.h
229  */
230 typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
231 
232 /**
233  * struct dma_chan_percpu - the per-CPU part of struct dma_chan
234  * @memcpy_count: transaction counter
235  * @bytes_transferred: byte counter
236  */
237 
238 /**
239  * enum dma_desc_metadata_mode - per descriptor metadata mode types supported
240  * @DESC_METADATA_CLIENT - the metadata buffer is allocated/provided by the
241  *  client driver and it is attached (via the dmaengine_desc_attach_metadata()
242  *  helper) to the descriptor.
243  *
244  * Client drivers interested to use this mode can follow:
245  * - DMA_MEM_TO_DEV / DEV_MEM_TO_MEM:
246  *   1. prepare the descriptor (dmaengine_prep_*)
247  *	construct the metadata in the client's buffer
248  *   2. use dmaengine_desc_attach_metadata() to attach the buffer to the
249  *	descriptor
250  *   3. submit the transfer
251  * - DMA_DEV_TO_MEM:
252  *   1. prepare the descriptor (dmaengine_prep_*)
253  *   2. use dmaengine_desc_attach_metadata() to attach the buffer to the
254  *	descriptor
255  *   3. submit the transfer
256  *   4. when the transfer is completed, the metadata should be available in the
257  *	attached buffer
258  *
259  * @DESC_METADATA_ENGINE - the metadata buffer is allocated/managed by the DMA
260  *  driver. The client driver can ask for the pointer, maximum size and the
261  *  currently used size of the metadata and can directly update or read it.
262  *  dmaengine_desc_get_metadata_ptr() and dmaengine_desc_set_metadata_len() is
263  *  provided as helper functions.
264  *
265  *  Note: the metadata area for the descriptor is no longer valid after the
266  *  transfer has been completed (valid up to the point when the completion
267  *  callback returns if used).
268  *
269  * Client drivers interested to use this mode can follow:
270  * - DMA_MEM_TO_DEV / DEV_MEM_TO_MEM:
271  *   1. prepare the descriptor (dmaengine_prep_*)
272  *   2. use dmaengine_desc_get_metadata_ptr() to get the pointer to the engine's
273  *	metadata area
274  *   3. update the metadata at the pointer
275  *   4. use dmaengine_desc_set_metadata_len()  to tell the DMA engine the amount
276  *	of data the client has placed into the metadata buffer
277  *   5. submit the transfer
278  * - DMA_DEV_TO_MEM:
279  *   1. prepare the descriptor (dmaengine_prep_*)
280  *   2. submit the transfer
281  *   3. on transfer completion, use dmaengine_desc_get_metadata_ptr() to get the
282  *	pointer to the engine's metadata area
283  *   4. Read out the metadata from the pointer
284  *
285  * Note: the two mode is not compatible and clients must use one mode for a
286  * descriptor.
287  */
288 enum dma_desc_metadata_mode {
289 	DESC_METADATA_NONE = 0,
290 	DESC_METADATA_CLIENT = BIT(0),
291 	DESC_METADATA_ENGINE = BIT(1),
292 };
293 
294 struct dma_chan_percpu {
295 	/* stats */
296 	unsigned long memcpy_count;
297 	unsigned long bytes_transferred;
298 };
299 
300 /**
301  * struct dma_router - DMA router structure
302  * @dev: pointer to the DMA router device
303  * @route_free: function to be called when the route can be disconnected
304  */
305 struct dma_router {
306 	struct device *dev;
307 	void (*route_free)(struct device *dev, void *route_data);
308 };
309 
310 /**
311  * struct dma_chan - devices supply DMA channels, clients use them
312  * @device: ptr to the dma device who supplies this channel, always !%NULL
313  * @slave: ptr to the device using this channel
314  * @cookie: last cookie value returned to client
315  * @completed_cookie: last completed cookie for this channel
316  * @chan_id: channel ID for sysfs
317  * @dev: class device for sysfs
318  * @name: backlink name for sysfs
319  * @dbg_client_name: slave name for debugfs in format:
320  *	dev_name(requester's dev):channel name, for example: "2b00000.mcasp:tx"
321  * @device_node: used to add this to the device chan list
322  * @local: per-cpu pointer to a struct dma_chan_percpu
323  * @client_count: how many clients are using this channel
324  * @table_count: number of appearances in the mem-to-mem allocation table
325  * @router: pointer to the DMA router structure
326  * @route_data: channel specific data for the router
327  * @private: private data for certain client-channel associations
328  */
329 struct dma_chan {
330 	struct dma_device *device;
331 	struct device *slave;
332 	dma_cookie_t cookie;
333 	dma_cookie_t completed_cookie;
334 
335 	/* sysfs */
336 	int chan_id;
337 	struct dma_chan_dev *dev;
338 	const char *name;
339 #ifdef CONFIG_DEBUG_FS
340 	char *dbg_client_name;
341 #endif
342 
343 	struct list_head device_node;
344 	struct dma_chan_percpu __percpu *local;
345 	int client_count;
346 	int table_count;
347 
348 	/* DMA router */
349 	struct dma_router *router;
350 	void *route_data;
351 
352 	void *private;
353 };
354 
355 /**
356  * struct dma_chan_dev - relate sysfs device node to backing channel device
357  * @chan: driver channel device
358  * @device: sysfs device
359  * @dev_id: parent dma_device dev_id
360  */
361 struct dma_chan_dev {
362 	struct dma_chan *chan;
363 	struct device device;
364 	int dev_id;
365 };
366 
367 /**
368  * enum dma_slave_buswidth - defines bus width of the DMA slave
369  * device, source or target buses
370  */
371 enum dma_slave_buswidth {
372 	DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
373 	DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
374 	DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
375 	DMA_SLAVE_BUSWIDTH_3_BYTES = 3,
376 	DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
377 	DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
378 	DMA_SLAVE_BUSWIDTH_16_BYTES = 16,
379 	DMA_SLAVE_BUSWIDTH_32_BYTES = 32,
380 	DMA_SLAVE_BUSWIDTH_64_BYTES = 64,
381 };
382 
383 /**
384  * struct dma_slave_config - dma slave channel runtime config
385  * @direction: whether the data shall go in or out on this slave
386  * channel, right now. DMA_MEM_TO_DEV and DMA_DEV_TO_MEM are
387  * legal values. DEPRECATED, drivers should use the direction argument
388  * to the device_prep_slave_sg and device_prep_dma_cyclic functions or
389  * the dir field in the dma_interleaved_template structure.
390  * @src_addr: this is the physical address where DMA slave data
391  * should be read (RX), if the source is memory this argument is
392  * ignored.
393  * @dst_addr: this is the physical address where DMA slave data
394  * should be written (TX), if the source is memory this argument
395  * is ignored.
396  * @src_addr_width: this is the width in bytes of the source (RX)
397  * register where DMA data shall be read. If the source
398  * is memory this may be ignored depending on architecture.
399  * Legal values: 1, 2, 3, 4, 8, 16, 32, 64.
400  * @dst_addr_width: same as src_addr_width but for destination
401  * target (TX) mutatis mutandis.
402  * @src_maxburst: the maximum number of words (note: words, as in
403  * units of the src_addr_width member, not bytes) that can be sent
404  * in one burst to the device. Typically something like half the
405  * FIFO depth on I/O peripherals so you don't overflow it. This
406  * may or may not be applicable on memory sources.
407  * @dst_maxburst: same as src_maxburst but for destination target
408  * mutatis mutandis.
409  * @src_port_window_size: The length of the register area in words the data need
410  * to be accessed on the device side. It is only used for devices which is using
411  * an area instead of a single register to receive the data. Typically the DMA
412  * loops in this area in order to transfer the data.
413  * @dst_port_window_size: same as src_port_window_size but for the destination
414  * port.
415  * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill
416  * with 'true' if peripheral should be flow controller. Direction will be
417  * selected at Runtime.
418  * @slave_id: Slave requester id. Only valid for slave channels. The dma
419  * slave peripheral will have unique id as dma requester which need to be
420  * pass as slave config.
421  *
422  * This struct is passed in as configuration data to a DMA engine
423  * in order to set up a certain channel for DMA transport at runtime.
424  * The DMA device/engine has to provide support for an additional
425  * callback in the dma_device structure, device_config and this struct
426  * will then be passed in as an argument to the function.
427  *
428  * The rationale for adding configuration information to this struct is as
429  * follows: if it is likely that more than one DMA slave controllers in
430  * the world will support the configuration option, then make it generic.
431  * If not: if it is fixed so that it be sent in static from the platform
432  * data, then prefer to do that.
433  */
434 struct dma_slave_config {
435 	enum dma_transfer_direction direction;
436 	phys_addr_t src_addr;
437 	phys_addr_t dst_addr;
438 	enum dma_slave_buswidth src_addr_width;
439 	enum dma_slave_buswidth dst_addr_width;
440 	u32 src_maxburst;
441 	u32 dst_maxburst;
442 	u32 src_port_window_size;
443 	u32 dst_port_window_size;
444 	bool device_fc;
445 	unsigned int slave_id;
446 };
447 
448 /**
449  * enum dma_residue_granularity - Granularity of the reported transfer residue
450  * @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The
451  *  DMA channel is only able to tell whether a descriptor has been completed or
452  *  not, which means residue reporting is not supported by this channel. The
453  *  residue field of the dma_tx_state field will always be 0.
454  * @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully
455  *  completed segment of the transfer (For cyclic transfers this is after each
456  *  period). This is typically implemented by having the hardware generate an
457  *  interrupt after each transferred segment and then the drivers updates the
458  *  outstanding residue by the size of the segment. Another possibility is if
459  *  the hardware supports scatter-gather and the segment descriptor has a field
460  *  which gets set after the segment has been completed. The driver then counts
461  *  the number of segments without the flag set to compute the residue.
462  * @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred
463  *  burst. This is typically only supported if the hardware has a progress
464  *  register of some sort (E.g. a register with the current read/write address
465  *  or a register with the amount of bursts/beats/bytes that have been
466  *  transferred or still need to be transferred).
467  */
468 enum dma_residue_granularity {
469 	DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0,
470 	DMA_RESIDUE_GRANULARITY_SEGMENT = 1,
471 	DMA_RESIDUE_GRANULARITY_BURST = 2,
472 };
473 
474 /**
475  * struct dma_slave_caps - expose capabilities of a slave channel only
476  * @src_addr_widths: bit mask of src addr widths the channel supports.
477  *	Width is specified in bytes, e.g. for a channel supporting
478  *	a width of 4 the mask should have BIT(4) set.
479  * @dst_addr_widths: bit mask of dst addr widths the channel supports
480  * @directions: bit mask of slave directions the channel supports.
481  *	Since the enum dma_transfer_direction is not defined as bit flag for
482  *	each type, the dma controller should set BIT(<TYPE>) and same
483  *	should be checked by controller as well
484  * @min_burst: min burst capability per-transfer
485  * @max_burst: max burst capability per-transfer
486  * @max_sg_burst: max number of SG list entries executed in a single burst
487  *	DMA tansaction with no software intervention for reinitialization.
488  *	Zero value means unlimited number of entries.
489  * @cmd_pause: true, if pause is supported (i.e. for reading residue or
490  *	       for resume later)
491  * @cmd_resume: true, if resume is supported
492  * @cmd_terminate: true, if terminate cmd is supported
493  * @residue_granularity: granularity of the reported transfer residue
494  * @descriptor_reuse: if a descriptor can be reused by client and
495  * resubmitted multiple times
496  */
497 struct dma_slave_caps {
498 	u32 src_addr_widths;
499 	u32 dst_addr_widths;
500 	u32 directions;
501 	u32 min_burst;
502 	u32 max_burst;
503 	u32 max_sg_burst;
504 	bool cmd_pause;
505 	bool cmd_resume;
506 	bool cmd_terminate;
507 	enum dma_residue_granularity residue_granularity;
508 	bool descriptor_reuse;
509 };
510 
dma_chan_name(struct dma_chan * chan)511 static inline const char *dma_chan_name(struct dma_chan *chan)
512 {
513 	return dev_name(&chan->dev->device);
514 }
515 
516 void dma_chan_cleanup(struct kref *kref);
517 
518 /**
519  * typedef dma_filter_fn - callback filter for dma_request_channel
520  * @chan: channel to be reviewed
521  * @filter_param: opaque parameter passed through dma_request_channel
522  *
523  * When this optional parameter is specified in a call to dma_request_channel a
524  * suitable channel is passed to this routine for further dispositioning before
525  * being returned.  Where 'suitable' indicates a non-busy channel that
526  * satisfies the given capability mask.  It returns 'true' to indicate that the
527  * channel is suitable.
528  */
529 typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
530 
531 typedef void (*dma_async_tx_callback)(void *dma_async_param);
532 
533 enum dmaengine_tx_result {
534 	DMA_TRANS_NOERROR = 0,		/* SUCCESS */
535 	DMA_TRANS_READ_FAILED,		/* Source DMA read failed */
536 	DMA_TRANS_WRITE_FAILED,		/* Destination DMA write failed */
537 	DMA_TRANS_ABORTED,		/* Op never submitted / aborted */
538 };
539 
540 struct dmaengine_result {
541 	enum dmaengine_tx_result result;
542 	u32 residue;
543 };
544 
545 typedef void (*dma_async_tx_callback_result)(void *dma_async_param,
546 				const struct dmaengine_result *result);
547 
548 struct dmaengine_unmap_data {
549 #if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
550 	u16 map_cnt;
551 #else
552 	u8 map_cnt;
553 #endif
554 	u8 to_cnt;
555 	u8 from_cnt;
556 	u8 bidi_cnt;
557 	struct device *dev;
558 	struct kref kref;
559 	size_t len;
560 	dma_addr_t addr[];
561 };
562 
563 struct dma_async_tx_descriptor;
564 
565 struct dma_descriptor_metadata_ops {
566 	int (*attach)(struct dma_async_tx_descriptor *desc, void *data,
567 		      size_t len);
568 
569 	void *(*get_ptr)(struct dma_async_tx_descriptor *desc,
570 			 size_t *payload_len, size_t *max_len);
571 	int (*set_len)(struct dma_async_tx_descriptor *desc,
572 		       size_t payload_len);
573 };
574 
575 /**
576  * struct dma_async_tx_descriptor - async transaction descriptor
577  * ---dma generic offload fields---
578  * @cookie: tracking cookie for this transaction, set to -EBUSY if
579  *	this tx is sitting on a dependency list
580  * @flags: flags to augment operation preparation, control completion, and
581  *	communicate status
582  * @phys: physical address of the descriptor
583  * @chan: target channel for this operation
584  * @tx_submit: accept the descriptor, assign ordered cookie and mark the
585  * descriptor pending. To be pushed on .issue_pending() call
586  * @callback: routine to call after this operation is complete
587  * @callback_param: general parameter to pass to the callback routine
588  * @desc_metadata_mode: core managed metadata mode to protect mixed use of
589  *	DESC_METADATA_CLIENT or DESC_METADATA_ENGINE. Otherwise
590  *	DESC_METADATA_NONE
591  * @metadata_ops: DMA driver provided metadata mode ops, need to be set by the
592  *	DMA driver if metadata mode is supported with the descriptor
593  * ---async_tx api specific fields---
594  * @next: at completion submit this descriptor
595  * @parent: pointer to the next level up in the dependency chain
596  * @lock: protect the parent and next pointers
597  */
598 struct dma_async_tx_descriptor {
599 	dma_cookie_t cookie;
600 	enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
601 	dma_addr_t phys;
602 	struct dma_chan *chan;
603 	dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
604 	int (*desc_free)(struct dma_async_tx_descriptor *tx);
605 	dma_async_tx_callback callback;
606 	dma_async_tx_callback_result callback_result;
607 	void *callback_param;
608 	struct dmaengine_unmap_data *unmap;
609 	enum dma_desc_metadata_mode desc_metadata_mode;
610 	struct dma_descriptor_metadata_ops *metadata_ops;
611 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
612 	struct dma_async_tx_descriptor *next;
613 	struct dma_async_tx_descriptor *parent;
614 	spinlock_t lock;
615 #endif
616 };
617 
618 #ifdef CONFIG_DMA_ENGINE
dma_set_unmap(struct dma_async_tx_descriptor * tx,struct dmaengine_unmap_data * unmap)619 static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
620 				 struct dmaengine_unmap_data *unmap)
621 {
622 	kref_get(&unmap->kref);
623 	tx->unmap = unmap;
624 }
625 
626 struct dmaengine_unmap_data *
627 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags);
628 void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap);
629 #else
dma_set_unmap(struct dma_async_tx_descriptor * tx,struct dmaengine_unmap_data * unmap)630 static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
631 				 struct dmaengine_unmap_data *unmap)
632 {
633 }
634 static inline struct dmaengine_unmap_data *
dmaengine_get_unmap_data(struct device * dev,int nr,gfp_t flags)635 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
636 {
637 	return NULL;
638 }
dmaengine_unmap_put(struct dmaengine_unmap_data * unmap)639 static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
640 {
641 }
642 #endif
643 
dma_descriptor_unmap(struct dma_async_tx_descriptor * tx)644 static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx)
645 {
646 	if (!tx->unmap)
647 		return;
648 
649 	dmaengine_unmap_put(tx->unmap);
650 	tx->unmap = NULL;
651 }
652 
653 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
txd_lock(struct dma_async_tx_descriptor * txd)654 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
655 {
656 }
txd_unlock(struct dma_async_tx_descriptor * txd)657 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
658 {
659 }
txd_chain(struct dma_async_tx_descriptor * txd,struct dma_async_tx_descriptor * next)660 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
661 {
662 	BUG();
663 }
txd_clear_parent(struct dma_async_tx_descriptor * txd)664 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
665 {
666 }
txd_clear_next(struct dma_async_tx_descriptor * txd)667 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
668 {
669 }
txd_next(struct dma_async_tx_descriptor * txd)670 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
671 {
672 	return NULL;
673 }
txd_parent(struct dma_async_tx_descriptor * txd)674 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
675 {
676 	return NULL;
677 }
678 
679 #else
txd_lock(struct dma_async_tx_descriptor * txd)680 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
681 {
682 	spin_lock_bh(&txd->lock);
683 }
txd_unlock(struct dma_async_tx_descriptor * txd)684 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
685 {
686 	spin_unlock_bh(&txd->lock);
687 }
txd_chain(struct dma_async_tx_descriptor * txd,struct dma_async_tx_descriptor * next)688 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
689 {
690 	txd->next = next;
691 	next->parent = txd;
692 }
txd_clear_parent(struct dma_async_tx_descriptor * txd)693 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
694 {
695 	txd->parent = NULL;
696 }
txd_clear_next(struct dma_async_tx_descriptor * txd)697 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
698 {
699 	txd->next = NULL;
700 }
txd_parent(struct dma_async_tx_descriptor * txd)701 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
702 {
703 	return txd->parent;
704 }
txd_next(struct dma_async_tx_descriptor * txd)705 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
706 {
707 	return txd->next;
708 }
709 #endif
710 
711 /**
712  * struct dma_tx_state - filled in to report the status of
713  * a transfer.
714  * @last: last completed DMA cookie
715  * @used: last issued DMA cookie (i.e. the one in progress)
716  * @residue: the remaining number of bytes left to transmit
717  *	on the selected transfer for states DMA_IN_PROGRESS and
718  *	DMA_PAUSED if this is implemented in the driver, else 0
719  * @in_flight_bytes: amount of data in bytes cached by the DMA.
720  */
721 struct dma_tx_state {
722 	dma_cookie_t last;
723 	dma_cookie_t used;
724 	u32 residue;
725 	u32 in_flight_bytes;
726 };
727 
728 /**
729  * enum dmaengine_alignment - defines alignment of the DMA async tx
730  * buffers
731  */
732 enum dmaengine_alignment {
733 	DMAENGINE_ALIGN_1_BYTE = 0,
734 	DMAENGINE_ALIGN_2_BYTES = 1,
735 	DMAENGINE_ALIGN_4_BYTES = 2,
736 	DMAENGINE_ALIGN_8_BYTES = 3,
737 	DMAENGINE_ALIGN_16_BYTES = 4,
738 	DMAENGINE_ALIGN_32_BYTES = 5,
739 	DMAENGINE_ALIGN_64_BYTES = 6,
740 };
741 
742 /**
743  * struct dma_slave_map - associates slave device and it's slave channel with
744  * parameter to be used by a filter function
745  * @devname: name of the device
746  * @slave: slave channel name
747  * @param: opaque parameter to pass to struct dma_filter.fn
748  */
749 struct dma_slave_map {
750 	const char *devname;
751 	const char *slave;
752 	void *param;
753 };
754 
755 /**
756  * struct dma_filter - information for slave device/channel to filter_fn/param
757  * mapping
758  * @fn: filter function callback
759  * @mapcnt: number of slave device/channel in the map
760  * @map: array of channel to filter mapping data
761  */
762 struct dma_filter {
763 	dma_filter_fn fn;
764 	int mapcnt;
765 	const struct dma_slave_map *map;
766 };
767 
768 /**
769  * struct dma_device - info on the entity supplying DMA services
770  * @chancnt: how many DMA channels are supported
771  * @privatecnt: how many DMA channels are requested by dma_request_channel
772  * @channels: the list of struct dma_chan
773  * @global_node: list_head for global dma_device_list
774  * @filter: information for device/slave to filter function/param mapping
775  * @cap_mask: one or more dma_capability flags
776  * @desc_metadata_modes: supported metadata modes by the DMA device
777  * @max_xor: maximum number of xor sources, 0 if no capability
778  * @max_pq: maximum number of PQ sources and PQ-continue capability
779  * @copy_align: alignment shift for memcpy operations
780  * @xor_align: alignment shift for xor operations
781  * @pq_align: alignment shift for pq operations
782  * @fill_align: alignment shift for memset operations
783  * @dev_id: unique device ID
784  * @dev: struct device reference for dma mapping api
785  * @owner: owner module (automatically set based on the provided dev)
786  * @src_addr_widths: bit mask of src addr widths the device supports
787  *	Width is specified in bytes, e.g. for a device supporting
788  *	a width of 4 the mask should have BIT(4) set.
789  * @dst_addr_widths: bit mask of dst addr widths the device supports
790  * @directions: bit mask of slave directions the device supports.
791  *	Since the enum dma_transfer_direction is not defined as bit flag for
792  *	each type, the dma controller should set BIT(<TYPE>) and same
793  *	should be checked by controller as well
794  * @min_burst: min burst capability per-transfer
795  * @max_burst: max burst capability per-transfer
796  * @max_sg_burst: max number of SG list entries executed in a single burst
797  *	DMA tansaction with no software intervention for reinitialization.
798  *	Zero value means unlimited number of entries.
799  * @residue_granularity: granularity of the transfer residue reported
800  *	by tx_status
801  * @device_alloc_chan_resources: allocate resources and return the
802  *	number of allocated descriptors
803  * @device_free_chan_resources: release DMA channel's resources
804  * @device_prep_dma_memcpy: prepares a memcpy operation
805  * @device_prep_dma_xor: prepares a xor operation
806  * @device_prep_dma_xor_val: prepares a xor validation operation
807  * @device_prep_dma_pq: prepares a pq operation
808  * @device_prep_dma_pq_val: prepares a pqzero_sum operation
809  * @device_prep_dma_memset: prepares a memset operation
810  * @device_prep_dma_memset_sg: prepares a memset operation over a scatter list
811  * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
812  * @device_prep_slave_sg: prepares a slave dma operation
813  * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
814  *	The function takes a buffer of size buf_len. The callback function will
815  *	be called after period_len bytes have been transferred.
816  * @device_prep_interleaved_dma: Transfer expression in a generic way.
817  * @device_prep_dma_imm_data: DMA's 8 byte immediate data to the dst address
818  * @device_caps: May be used to override the generic DMA slave capabilities
819  *	with per-channel specific ones
820  * @device_config: Pushes a new configuration to a channel, return 0 or an error
821  *	code
822  * @device_pause: Pauses any transfer happening on a channel. Returns
823  *	0 or an error code
824  * @device_resume: Resumes any transfer on a channel previously
825  *	paused. Returns 0 or an error code
826  * @device_terminate_all: Aborts all transfers on a channel. Returns 0
827  *	or an error code
828  * @device_synchronize: Synchronizes the termination of a transfers to the
829  *  current context.
830  * @device_tx_status: poll for transaction completion, the optional
831  *	txstate parameter can be supplied with a pointer to get a
832  *	struct with auxiliary transfer status information, otherwise the call
833  *	will just return a simple status code
834  * @device_issue_pending: push pending transactions to hardware
835  * @descriptor_reuse: a submitted transfer can be resubmitted after completion
836  * @device_release: called sometime atfer dma_async_device_unregister() is
837  *     called and there are no further references to this structure. This
838  *     must be implemented to free resources however many existing drivers
839  *     do not and are therefore not safe to unbind while in use.
840  * @dbg_summary_show: optional routine to show contents in debugfs; default code
841  *     will be used when this is omitted, but custom code can show extra,
842  *     controller specific information.
843  */
844 struct dma_device {
845 	struct kref ref;
846 	unsigned int chancnt;
847 	unsigned int privatecnt;
848 	struct list_head channels;
849 	struct list_head global_node;
850 	struct dma_filter filter;
851 	dma_cap_mask_t  cap_mask;
852 	enum dma_desc_metadata_mode desc_metadata_modes;
853 	unsigned short max_xor;
854 	unsigned short max_pq;
855 	enum dmaengine_alignment copy_align;
856 	enum dmaengine_alignment xor_align;
857 	enum dmaengine_alignment pq_align;
858 	enum dmaengine_alignment fill_align;
859 	#define DMA_HAS_PQ_CONTINUE (1 << 15)
860 
861 	int dev_id;
862 	struct device *dev;
863 	struct module *owner;
864 	struct ida chan_ida;
865 	struct mutex chan_mutex;	/* to protect chan_ida */
866 
867 	u32 src_addr_widths;
868 	u32 dst_addr_widths;
869 	u32 directions;
870 	u32 min_burst;
871 	u32 max_burst;
872 	u32 max_sg_burst;
873 	bool descriptor_reuse;
874 	enum dma_residue_granularity residue_granularity;
875 
876 	int (*device_alloc_chan_resources)(struct dma_chan *chan);
877 	void (*device_free_chan_resources)(struct dma_chan *chan);
878 
879 	struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
880 		struct dma_chan *chan, dma_addr_t dst, dma_addr_t src,
881 		size_t len, unsigned long flags);
882 	struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
883 		struct dma_chan *chan, dma_addr_t dst, dma_addr_t *src,
884 		unsigned int src_cnt, size_t len, unsigned long flags);
885 	struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(
886 		struct dma_chan *chan, dma_addr_t *src,	unsigned int src_cnt,
887 		size_t len, enum sum_check_flags *result, unsigned long flags);
888 	struct dma_async_tx_descriptor *(*device_prep_dma_pq)(
889 		struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
890 		unsigned int src_cnt, const unsigned char *scf,
891 		size_t len, unsigned long flags);
892 	struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(
893 		struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
894 		unsigned int src_cnt, const unsigned char *scf, size_t len,
895 		enum sum_check_flags *pqres, unsigned long flags);
896 	struct dma_async_tx_descriptor *(*device_prep_dma_memset)(
897 		struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
898 		unsigned long flags);
899 	struct dma_async_tx_descriptor *(*device_prep_dma_memset_sg)(
900 		struct dma_chan *chan, struct scatterlist *sg,
901 		unsigned int nents, int value, unsigned long flags);
902 	struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
903 		struct dma_chan *chan, unsigned long flags);
904 
905 	struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
906 		struct dma_chan *chan, struct scatterlist *sgl,
907 		unsigned int sg_len, enum dma_transfer_direction direction,
908 		unsigned long flags, void *context);
909 	struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(
910 		struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
911 		size_t period_len, enum dma_transfer_direction direction,
912 		unsigned long flags);
913 	struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)(
914 		struct dma_chan *chan, struct dma_interleaved_template *xt,
915 		unsigned long flags);
916 	struct dma_async_tx_descriptor *(*device_prep_dma_imm_data)(
917 		struct dma_chan *chan, dma_addr_t dst, u64 data,
918 		unsigned long flags);
919 
920 	void (*device_caps)(struct dma_chan *chan,
921 			    struct dma_slave_caps *caps);
922 	int (*device_config)(struct dma_chan *chan,
923 			     struct dma_slave_config *config);
924 	int (*device_pause)(struct dma_chan *chan);
925 	int (*device_resume)(struct dma_chan *chan);
926 	int (*device_terminate_all)(struct dma_chan *chan);
927 	void (*device_synchronize)(struct dma_chan *chan);
928 
929 	enum dma_status (*device_tx_status)(struct dma_chan *chan,
930 					    dma_cookie_t cookie,
931 					    struct dma_tx_state *txstate);
932 	void (*device_issue_pending)(struct dma_chan *chan);
933 	void (*device_release)(struct dma_device *dev);
934 	/* debugfs support */
935 #ifdef CONFIG_DEBUG_FS
936 	void (*dbg_summary_show)(struct seq_file *s, struct dma_device *dev);
937 	struct dentry *dbg_dev_root;
938 #endif
939 };
940 
dmaengine_slave_config(struct dma_chan * chan,struct dma_slave_config * config)941 static inline int dmaengine_slave_config(struct dma_chan *chan,
942 					  struct dma_slave_config *config)
943 {
944 	if (chan->device->device_config)
945 		return chan->device->device_config(chan, config);
946 
947 	return -ENOSYS;
948 }
949 
is_slave_direction(enum dma_transfer_direction direction)950 static inline bool is_slave_direction(enum dma_transfer_direction direction)
951 {
952 	return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM);
953 }
954 
dmaengine_prep_slave_single(struct dma_chan * chan,dma_addr_t buf,size_t len,enum dma_transfer_direction dir,unsigned long flags)955 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single(
956 	struct dma_chan *chan, dma_addr_t buf, size_t len,
957 	enum dma_transfer_direction dir, unsigned long flags)
958 {
959 	struct scatterlist sg;
960 	sg_init_table(&sg, 1);
961 	sg_dma_address(&sg) = buf;
962 	sg_dma_len(&sg) = len;
963 
964 	if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
965 		return NULL;
966 
967 	return chan->device->device_prep_slave_sg(chan, &sg, 1,
968 						  dir, flags, NULL);
969 }
970 
dmaengine_prep_slave_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction dir,unsigned long flags)971 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg(
972 	struct dma_chan *chan, struct scatterlist *sgl,	unsigned int sg_len,
973 	enum dma_transfer_direction dir, unsigned long flags)
974 {
975 	if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
976 		return NULL;
977 
978 	return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
979 						  dir, flags, NULL);
980 }
981 
982 #ifdef CONFIG_RAPIDIO_DMA_ENGINE
983 struct rio_dma_ext;
dmaengine_prep_rio_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction dir,unsigned long flags,struct rio_dma_ext * rio_ext)984 static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg(
985 	struct dma_chan *chan, struct scatterlist *sgl,	unsigned int sg_len,
986 	enum dma_transfer_direction dir, unsigned long flags,
987 	struct rio_dma_ext *rio_ext)
988 {
989 	if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
990 		return NULL;
991 
992 	return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
993 						  dir, flags, rio_ext);
994 }
995 #endif
996 
dmaengine_prep_dma_cyclic(struct dma_chan * chan,dma_addr_t buf_addr,size_t buf_len,size_t period_len,enum dma_transfer_direction dir,unsigned long flags)997 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic(
998 		struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
999 		size_t period_len, enum dma_transfer_direction dir,
1000 		unsigned long flags)
1001 {
1002 	if (!chan || !chan->device || !chan->device->device_prep_dma_cyclic)
1003 		return NULL;
1004 
1005 	return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len,
1006 						period_len, dir, flags);
1007 }
1008 
dmaengine_prep_interleaved_dma(struct dma_chan * chan,struct dma_interleaved_template * xt,unsigned long flags)1009 static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma(
1010 		struct dma_chan *chan, struct dma_interleaved_template *xt,
1011 		unsigned long flags)
1012 {
1013 	if (!chan || !chan->device || !chan->device->device_prep_interleaved_dma)
1014 		return NULL;
1015 	if (flags & DMA_PREP_REPEAT &&
1016 	    !test_bit(DMA_REPEAT, chan->device->cap_mask.bits))
1017 		return NULL;
1018 
1019 	return chan->device->device_prep_interleaved_dma(chan, xt, flags);
1020 }
1021 
dmaengine_prep_dma_memset(struct dma_chan * chan,dma_addr_t dest,int value,size_t len,unsigned long flags)1022 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memset(
1023 		struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
1024 		unsigned long flags)
1025 {
1026 	if (!chan || !chan->device || !chan->device->device_prep_dma_memset)
1027 		return NULL;
1028 
1029 	return chan->device->device_prep_dma_memset(chan, dest, value,
1030 						    len, flags);
1031 }
1032 
dmaengine_prep_dma_memcpy(struct dma_chan * chan,dma_addr_t dest,dma_addr_t src,size_t len,unsigned long flags)1033 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memcpy(
1034 		struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1035 		size_t len, unsigned long flags)
1036 {
1037 	if (!chan || !chan->device || !chan->device->device_prep_dma_memcpy)
1038 		return NULL;
1039 
1040 	return chan->device->device_prep_dma_memcpy(chan, dest, src,
1041 						    len, flags);
1042 }
1043 
dmaengine_is_metadata_mode_supported(struct dma_chan * chan,enum dma_desc_metadata_mode mode)1044 static inline bool dmaengine_is_metadata_mode_supported(struct dma_chan *chan,
1045 		enum dma_desc_metadata_mode mode)
1046 {
1047 	if (!chan)
1048 		return false;
1049 
1050 	return !!(chan->device->desc_metadata_modes & mode);
1051 }
1052 
1053 #ifdef CONFIG_DMA_ENGINE
1054 int dmaengine_desc_attach_metadata(struct dma_async_tx_descriptor *desc,
1055 				   void *data, size_t len);
1056 void *dmaengine_desc_get_metadata_ptr(struct dma_async_tx_descriptor *desc,
1057 				      size_t *payload_len, size_t *max_len);
1058 int dmaengine_desc_set_metadata_len(struct dma_async_tx_descriptor *desc,
1059 				    size_t payload_len);
1060 #else /* CONFIG_DMA_ENGINE */
dmaengine_desc_attach_metadata(struct dma_async_tx_descriptor * desc,void * data,size_t len)1061 static inline int dmaengine_desc_attach_metadata(
1062 		struct dma_async_tx_descriptor *desc, void *data, size_t len)
1063 {
1064 	return -EINVAL;
1065 }
dmaengine_desc_get_metadata_ptr(struct dma_async_tx_descriptor * desc,size_t * payload_len,size_t * max_len)1066 static inline void *dmaengine_desc_get_metadata_ptr(
1067 		struct dma_async_tx_descriptor *desc, size_t *payload_len,
1068 		size_t *max_len)
1069 {
1070 	return NULL;
1071 }
dmaengine_desc_set_metadata_len(struct dma_async_tx_descriptor * desc,size_t payload_len)1072 static inline int dmaengine_desc_set_metadata_len(
1073 		struct dma_async_tx_descriptor *desc, size_t payload_len)
1074 {
1075 	return -EINVAL;
1076 }
1077 #endif /* CONFIG_DMA_ENGINE */
1078 
1079 /**
1080  * dmaengine_terminate_all() - Terminate all active DMA transfers
1081  * @chan: The channel for which to terminate the transfers
1082  *
1083  * This function is DEPRECATED use either dmaengine_terminate_sync() or
1084  * dmaengine_terminate_async() instead.
1085  */
dmaengine_terminate_all(struct dma_chan * chan)1086 static inline int dmaengine_terminate_all(struct dma_chan *chan)
1087 {
1088 	if (chan->device->device_terminate_all)
1089 		return chan->device->device_terminate_all(chan);
1090 
1091 	return -ENOSYS;
1092 }
1093 
1094 /**
1095  * dmaengine_terminate_async() - Terminate all active DMA transfers
1096  * @chan: The channel for which to terminate the transfers
1097  *
1098  * Calling this function will terminate all active and pending descriptors
1099  * that have previously been submitted to the channel. It is not guaranteed
1100  * though that the transfer for the active descriptor has stopped when the
1101  * function returns. Furthermore it is possible the complete callback of a
1102  * submitted transfer is still running when this function returns.
1103  *
1104  * dmaengine_synchronize() needs to be called before it is safe to free
1105  * any memory that is accessed by previously submitted descriptors or before
1106  * freeing any resources accessed from within the completion callback of any
1107  * previously submitted descriptors.
1108  *
1109  * This function can be called from atomic context as well as from within a
1110  * complete callback of a descriptor submitted on the same channel.
1111  *
1112  * If none of the two conditions above apply consider using
1113  * dmaengine_terminate_sync() instead.
1114  */
dmaengine_terminate_async(struct dma_chan * chan)1115 static inline int dmaengine_terminate_async(struct dma_chan *chan)
1116 {
1117 	if (chan->device->device_terminate_all)
1118 		return chan->device->device_terminate_all(chan);
1119 
1120 	return -EINVAL;
1121 }
1122 
1123 /**
1124  * dmaengine_synchronize() - Synchronize DMA channel termination
1125  * @chan: The channel to synchronize
1126  *
1127  * Synchronizes to the DMA channel termination to the current context. When this
1128  * function returns it is guaranteed that all transfers for previously issued
1129  * descriptors have stopped and it is safe to free the memory associated
1130  * with them. Furthermore it is guaranteed that all complete callback functions
1131  * for a previously submitted descriptor have finished running and it is safe to
1132  * free resources accessed from within the complete callbacks.
1133  *
1134  * The behavior of this function is undefined if dma_async_issue_pending() has
1135  * been called between dmaengine_terminate_async() and this function.
1136  *
1137  * This function must only be called from non-atomic context and must not be
1138  * called from within a complete callback of a descriptor submitted on the same
1139  * channel.
1140  */
dmaengine_synchronize(struct dma_chan * chan)1141 static inline void dmaengine_synchronize(struct dma_chan *chan)
1142 {
1143 	might_sleep();
1144 
1145 	if (chan->device->device_synchronize)
1146 		chan->device->device_synchronize(chan);
1147 }
1148 
1149 /**
1150  * dmaengine_terminate_sync() - Terminate all active DMA transfers
1151  * @chan: The channel for which to terminate the transfers
1152  *
1153  * Calling this function will terminate all active and pending transfers
1154  * that have previously been submitted to the channel. It is similar to
1155  * dmaengine_terminate_async() but guarantees that the DMA transfer has actually
1156  * stopped and that all complete callbacks have finished running when the
1157  * function returns.
1158  *
1159  * This function must only be called from non-atomic context and must not be
1160  * called from within a complete callback of a descriptor submitted on the same
1161  * channel.
1162  */
dmaengine_terminate_sync(struct dma_chan * chan)1163 static inline int dmaengine_terminate_sync(struct dma_chan *chan)
1164 {
1165 	int ret;
1166 
1167 	ret = dmaengine_terminate_async(chan);
1168 	if (ret)
1169 		return ret;
1170 
1171 	dmaengine_synchronize(chan);
1172 
1173 	return 0;
1174 }
1175 
dmaengine_pause(struct dma_chan * chan)1176 static inline int dmaengine_pause(struct dma_chan *chan)
1177 {
1178 	if (chan->device->device_pause)
1179 		return chan->device->device_pause(chan);
1180 
1181 	return -ENOSYS;
1182 }
1183 
dmaengine_resume(struct dma_chan * chan)1184 static inline int dmaengine_resume(struct dma_chan *chan)
1185 {
1186 	if (chan->device->device_resume)
1187 		return chan->device->device_resume(chan);
1188 
1189 	return -ENOSYS;
1190 }
1191 
dmaengine_tx_status(struct dma_chan * chan,dma_cookie_t cookie,struct dma_tx_state * state)1192 static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan,
1193 	dma_cookie_t cookie, struct dma_tx_state *state)
1194 {
1195 	return chan->device->device_tx_status(chan, cookie, state);
1196 }
1197 
dmaengine_submit(struct dma_async_tx_descriptor * desc)1198 static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
1199 {
1200 	return desc->tx_submit(desc);
1201 }
1202 
dmaengine_check_align(enum dmaengine_alignment align,size_t off1,size_t off2,size_t len)1203 static inline bool dmaengine_check_align(enum dmaengine_alignment align,
1204 					 size_t off1, size_t off2, size_t len)
1205 {
1206 	return !(((1 << align) - 1) & (off1 | off2 | len));
1207 }
1208 
is_dma_copy_aligned(struct dma_device * dev,size_t off1,size_t off2,size_t len)1209 static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1,
1210 				       size_t off2, size_t len)
1211 {
1212 	return dmaengine_check_align(dev->copy_align, off1, off2, len);
1213 }
1214 
is_dma_xor_aligned(struct dma_device * dev,size_t off1,size_t off2,size_t len)1215 static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1,
1216 				      size_t off2, size_t len)
1217 {
1218 	return dmaengine_check_align(dev->xor_align, off1, off2, len);
1219 }
1220 
is_dma_pq_aligned(struct dma_device * dev,size_t off1,size_t off2,size_t len)1221 static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1,
1222 				     size_t off2, size_t len)
1223 {
1224 	return dmaengine_check_align(dev->pq_align, off1, off2, len);
1225 }
1226 
is_dma_fill_aligned(struct dma_device * dev,size_t off1,size_t off2,size_t len)1227 static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1,
1228 				       size_t off2, size_t len)
1229 {
1230 	return dmaengine_check_align(dev->fill_align, off1, off2, len);
1231 }
1232 
1233 static inline void
dma_set_maxpq(struct dma_device * dma,int maxpq,int has_pq_continue)1234 dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
1235 {
1236 	dma->max_pq = maxpq;
1237 	if (has_pq_continue)
1238 		dma->max_pq |= DMA_HAS_PQ_CONTINUE;
1239 }
1240 
dmaf_continue(enum dma_ctrl_flags flags)1241 static inline bool dmaf_continue(enum dma_ctrl_flags flags)
1242 {
1243 	return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
1244 }
1245 
dmaf_p_disabled_continue(enum dma_ctrl_flags flags)1246 static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
1247 {
1248 	enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
1249 
1250 	return (flags & mask) == mask;
1251 }
1252 
dma_dev_has_pq_continue(struct dma_device * dma)1253 static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
1254 {
1255 	return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
1256 }
1257 
dma_dev_to_maxpq(struct dma_device * dma)1258 static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
1259 {
1260 	return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
1261 }
1262 
1263 /* dma_maxpq - reduce maxpq in the face of continued operations
1264  * @dma - dma device with PQ capability
1265  * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
1266  *
1267  * When an engine does not support native continuation we need 3 extra
1268  * source slots to reuse P and Q with the following coefficients:
1269  * 1/ {00} * P : remove P from Q', but use it as a source for P'
1270  * 2/ {01} * Q : use Q to continue Q' calculation
1271  * 3/ {00} * Q : subtract Q from P' to cancel (2)
1272  *
1273  * In the case where P is disabled we only need 1 extra source:
1274  * 1/ {01} * Q : use Q to continue Q' calculation
1275  */
dma_maxpq(struct dma_device * dma,enum dma_ctrl_flags flags)1276 static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
1277 {
1278 	if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags))
1279 		return dma_dev_to_maxpq(dma);
1280 	if (dmaf_p_disabled_continue(flags))
1281 		return dma_dev_to_maxpq(dma) - 1;
1282 	if (dmaf_continue(flags))
1283 		return dma_dev_to_maxpq(dma) - 3;
1284 	BUG();
1285 }
1286 
dmaengine_get_icg(bool inc,bool sgl,size_t icg,size_t dir_icg)1287 static inline size_t dmaengine_get_icg(bool inc, bool sgl, size_t icg,
1288 				      size_t dir_icg)
1289 {
1290 	if (inc) {
1291 		if (dir_icg)
1292 			return dir_icg;
1293 		if (sgl)
1294 			return icg;
1295 	}
1296 
1297 	return 0;
1298 }
1299 
dmaengine_get_dst_icg(struct dma_interleaved_template * xt,struct data_chunk * chunk)1300 static inline size_t dmaengine_get_dst_icg(struct dma_interleaved_template *xt,
1301 					   struct data_chunk *chunk)
1302 {
1303 	return dmaengine_get_icg(xt->dst_inc, xt->dst_sgl,
1304 				 chunk->icg, chunk->dst_icg);
1305 }
1306 
dmaengine_get_src_icg(struct dma_interleaved_template * xt,struct data_chunk * chunk)1307 static inline size_t dmaengine_get_src_icg(struct dma_interleaved_template *xt,
1308 					   struct data_chunk *chunk)
1309 {
1310 	return dmaengine_get_icg(xt->src_inc, xt->src_sgl,
1311 				 chunk->icg, chunk->src_icg);
1312 }
1313 
1314 /* --- public DMA engine API --- */
1315 
1316 #ifdef CONFIG_DMA_ENGINE
1317 void dmaengine_get(void);
1318 void dmaengine_put(void);
1319 #else
dmaengine_get(void)1320 static inline void dmaengine_get(void)
1321 {
1322 }
dmaengine_put(void)1323 static inline void dmaengine_put(void)
1324 {
1325 }
1326 #endif
1327 
1328 #ifdef CONFIG_ASYNC_TX_DMA
1329 #define async_dmaengine_get()	dmaengine_get()
1330 #define async_dmaengine_put()	dmaengine_put()
1331 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
1332 #define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
1333 #else
1334 #define async_dma_find_channel(type) dma_find_channel(type)
1335 #endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */
1336 #else
async_dmaengine_get(void)1337 static inline void async_dmaengine_get(void)
1338 {
1339 }
async_dmaengine_put(void)1340 static inline void async_dmaengine_put(void)
1341 {
1342 }
1343 static inline struct dma_chan *
async_dma_find_channel(enum dma_transaction_type type)1344 async_dma_find_channel(enum dma_transaction_type type)
1345 {
1346 	return NULL;
1347 }
1348 #endif /* CONFIG_ASYNC_TX_DMA */
1349 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
1350 				  struct dma_chan *chan);
1351 
async_tx_ack(struct dma_async_tx_descriptor * tx)1352 static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
1353 {
1354 	tx->flags |= DMA_CTRL_ACK;
1355 }
1356 
async_tx_clear_ack(struct dma_async_tx_descriptor * tx)1357 static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
1358 {
1359 	tx->flags &= ~DMA_CTRL_ACK;
1360 }
1361 
async_tx_test_ack(struct dma_async_tx_descriptor * tx)1362 static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
1363 {
1364 	return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
1365 }
1366 
1367 #define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
1368 static inline void
__dma_cap_set(enum dma_transaction_type tx_type,dma_cap_mask_t * dstp)1369 __dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
1370 {
1371 	set_bit(tx_type, dstp->bits);
1372 }
1373 
1374 #define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
1375 static inline void
__dma_cap_clear(enum dma_transaction_type tx_type,dma_cap_mask_t * dstp)1376 __dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
1377 {
1378 	clear_bit(tx_type, dstp->bits);
1379 }
1380 
1381 #define dma_cap_zero(mask) __dma_cap_zero(&(mask))
__dma_cap_zero(dma_cap_mask_t * dstp)1382 static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
1383 {
1384 	bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
1385 }
1386 
1387 #define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
1388 static inline int
__dma_has_cap(enum dma_transaction_type tx_type,dma_cap_mask_t * srcp)1389 __dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
1390 {
1391 	return test_bit(tx_type, srcp->bits);
1392 }
1393 
1394 #define for_each_dma_cap_mask(cap, mask) \
1395 	for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END)
1396 
1397 /**
1398  * dma_async_issue_pending - flush pending transactions to HW
1399  * @chan: target DMA channel
1400  *
1401  * This allows drivers to push copies to HW in batches,
1402  * reducing MMIO writes where possible.
1403  */
dma_async_issue_pending(struct dma_chan * chan)1404 static inline void dma_async_issue_pending(struct dma_chan *chan)
1405 {
1406 	chan->device->device_issue_pending(chan);
1407 }
1408 
1409 /**
1410  * dma_async_is_tx_complete - poll for transaction completion
1411  * @chan: DMA channel
1412  * @cookie: transaction identifier to check status of
1413  * @last: returns last completed cookie, can be NULL
1414  * @used: returns last issued cookie, can be NULL
1415  *
1416  * If @last and @used are passed in, upon return they reflect the driver
1417  * internal state and can be used with dma_async_is_complete() to check
1418  * the status of multiple cookies without re-checking hardware state.
1419  */
dma_async_is_tx_complete(struct dma_chan * chan,dma_cookie_t cookie,dma_cookie_t * last,dma_cookie_t * used)1420 static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
1421 	dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
1422 {
1423 	struct dma_tx_state state;
1424 	enum dma_status status;
1425 
1426 	status = chan->device->device_tx_status(chan, cookie, &state);
1427 	if (last)
1428 		*last = state.last;
1429 	if (used)
1430 		*used = state.used;
1431 	return status;
1432 }
1433 
1434 /**
1435  * dma_async_is_complete - test a cookie against chan state
1436  * @cookie: transaction identifier to test status of
1437  * @last_complete: last know completed transaction
1438  * @last_used: last cookie value handed out
1439  *
1440  * dma_async_is_complete() is used in dma_async_is_tx_complete()
1441  * the test logic is separated for lightweight testing of multiple cookies
1442  */
dma_async_is_complete(dma_cookie_t cookie,dma_cookie_t last_complete,dma_cookie_t last_used)1443 static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
1444 			dma_cookie_t last_complete, dma_cookie_t last_used)
1445 {
1446 	if (last_complete <= last_used) {
1447 		if ((cookie <= last_complete) || (cookie > last_used))
1448 			return DMA_COMPLETE;
1449 	} else {
1450 		if ((cookie <= last_complete) && (cookie > last_used))
1451 			return DMA_COMPLETE;
1452 	}
1453 	return DMA_IN_PROGRESS;
1454 }
1455 
1456 static inline void
dma_set_tx_state(struct dma_tx_state * st,dma_cookie_t last,dma_cookie_t used,u32 residue)1457 dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
1458 {
1459 	if (!st)
1460 		return;
1461 
1462 	st->last = last;
1463 	st->used = used;
1464 	st->residue = residue;
1465 }
1466 
1467 #ifdef CONFIG_DMA_ENGINE
1468 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
1469 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
1470 enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
1471 void dma_issue_pending_all(void);
1472 struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1473 				       dma_filter_fn fn, void *fn_param,
1474 				       struct device_node *np);
1475 
1476 struct dma_chan *dma_request_chan(struct device *dev, const char *name);
1477 struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask);
1478 
1479 void dma_release_channel(struct dma_chan *chan);
1480 int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps);
1481 #else
dma_find_channel(enum dma_transaction_type tx_type)1482 static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
1483 {
1484 	return NULL;
1485 }
dma_sync_wait(struct dma_chan * chan,dma_cookie_t cookie)1486 static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
1487 {
1488 	return DMA_COMPLETE;
1489 }
dma_wait_for_async_tx(struct dma_async_tx_descriptor * tx)1490 static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1491 {
1492 	return DMA_COMPLETE;
1493 }
dma_issue_pending_all(void)1494 static inline void dma_issue_pending_all(void)
1495 {
1496 }
__dma_request_channel(const dma_cap_mask_t * mask,dma_filter_fn fn,void * fn_param,struct device_node * np)1497 static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1498 						     dma_filter_fn fn,
1499 						     void *fn_param,
1500 						     struct device_node *np)
1501 {
1502 	return NULL;
1503 }
dma_request_chan(struct device * dev,const char * name)1504 static inline struct dma_chan *dma_request_chan(struct device *dev,
1505 						const char *name)
1506 {
1507 	return ERR_PTR(-ENODEV);
1508 }
dma_request_chan_by_mask(const dma_cap_mask_t * mask)1509 static inline struct dma_chan *dma_request_chan_by_mask(
1510 						const dma_cap_mask_t *mask)
1511 {
1512 	return ERR_PTR(-ENODEV);
1513 }
dma_release_channel(struct dma_chan * chan)1514 static inline void dma_release_channel(struct dma_chan *chan)
1515 {
1516 }
dma_get_slave_caps(struct dma_chan * chan,struct dma_slave_caps * caps)1517 static inline int dma_get_slave_caps(struct dma_chan *chan,
1518 				     struct dma_slave_caps *caps)
1519 {
1520 	return -ENXIO;
1521 }
1522 #endif
1523 
dmaengine_desc_set_reuse(struct dma_async_tx_descriptor * tx)1524 static inline int dmaengine_desc_set_reuse(struct dma_async_tx_descriptor *tx)
1525 {
1526 	struct dma_slave_caps caps;
1527 	int ret;
1528 
1529 	ret = dma_get_slave_caps(tx->chan, &caps);
1530 	if (ret)
1531 		return ret;
1532 
1533 	if (!caps.descriptor_reuse)
1534 		return -EPERM;
1535 
1536 	tx->flags |= DMA_CTRL_REUSE;
1537 	return 0;
1538 }
1539 
dmaengine_desc_clear_reuse(struct dma_async_tx_descriptor * tx)1540 static inline void dmaengine_desc_clear_reuse(struct dma_async_tx_descriptor *tx)
1541 {
1542 	tx->flags &= ~DMA_CTRL_REUSE;
1543 }
1544 
dmaengine_desc_test_reuse(struct dma_async_tx_descriptor * tx)1545 static inline bool dmaengine_desc_test_reuse(struct dma_async_tx_descriptor *tx)
1546 {
1547 	return (tx->flags & DMA_CTRL_REUSE) == DMA_CTRL_REUSE;
1548 }
1549 
dmaengine_desc_free(struct dma_async_tx_descriptor * desc)1550 static inline int dmaengine_desc_free(struct dma_async_tx_descriptor *desc)
1551 {
1552 	/* this is supported for reusable desc, so check that */
1553 	if (!dmaengine_desc_test_reuse(desc))
1554 		return -EPERM;
1555 
1556 	return desc->desc_free(desc);
1557 }
1558 
1559 /* --- DMA device --- */
1560 
1561 int dma_async_device_register(struct dma_device *device);
1562 int dmaenginem_async_device_register(struct dma_device *device);
1563 void dma_async_device_unregister(struct dma_device *device);
1564 int dma_async_device_channel_register(struct dma_device *device,
1565 				      struct dma_chan *chan);
1566 void dma_async_device_channel_unregister(struct dma_device *device,
1567 					 struct dma_chan *chan);
1568 void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
1569 #define dma_request_channel(mask, x, y) \
1570 	__dma_request_channel(&(mask), x, y, NULL)
1571 
1572 /* Deprecated, please use dma_request_chan() directly */
1573 static inline struct dma_chan * __deprecated
dma_request_slave_channel(struct device * dev,const char * name)1574 dma_request_slave_channel(struct device *dev, const char *name)
1575 {
1576 	struct dma_chan *ch = dma_request_chan(dev, name);
1577 
1578 	return IS_ERR(ch) ? NULL : ch;
1579 }
1580 
1581 static inline struct dma_chan
dma_request_slave_channel_compat(const dma_cap_mask_t mask,dma_filter_fn fn,void * fn_param,struct device * dev,const char * name)1582 *dma_request_slave_channel_compat(const dma_cap_mask_t mask,
1583 				  dma_filter_fn fn, void *fn_param,
1584 				  struct device *dev, const char *name)
1585 {
1586 	struct dma_chan *chan;
1587 
1588 	chan = dma_request_slave_channel(dev, name);
1589 	if (chan)
1590 		return chan;
1591 
1592 	if (!fn || !fn_param)
1593 		return NULL;
1594 
1595 	return __dma_request_channel(&mask, fn, fn_param, NULL);
1596 }
1597 
1598 static inline char *
dmaengine_get_direction_text(enum dma_transfer_direction dir)1599 dmaengine_get_direction_text(enum dma_transfer_direction dir)
1600 {
1601 	switch (dir) {
1602 	case DMA_DEV_TO_MEM:
1603 		return "DEV_TO_MEM";
1604 	case DMA_MEM_TO_DEV:
1605 		return "MEM_TO_DEV";
1606 	case DMA_MEM_TO_MEM:
1607 		return "MEM_TO_MEM";
1608 	case DMA_DEV_TO_DEV:
1609 		return "DEV_TO_DEV";
1610 	default:
1611 		return "invalid";
1612 	}
1613 }
1614 #endif /* DMAENGINE_H */
1615