1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2018 Christoph Hellwig.
4 *
5 * DMA operations that map physical memory directly without using an IOMMU.
6 */
7 #include <linux/memblock.h> /* for max_pfn */
8 #include <linux/export.h>
9 #include <linux/mm.h>
10 #include <linux/dma-direct.h>
11 #include <linux/scatterlist.h>
12 #include <linux/dma-contiguous.h>
13 #include <linux/dma-noncoherent.h>
14 #include <linux/pfn.h>
15 #include <linux/set_memory.h>
16 #include <linux/swiotlb.h>
17
18 /*
19 * Most architectures use ZONE_DMA for the first 16 Megabytes, but
20 * some use it for entirely different regions:
21 */
22 #ifndef ARCH_ZONE_DMA_BITS
23 #define ARCH_ZONE_DMA_BITS 24
24 #endif
25
report_addr(struct device * dev,dma_addr_t dma_addr,size_t size)26 static void report_addr(struct device *dev, dma_addr_t dma_addr, size_t size)
27 {
28 if (!dev->dma_mask) {
29 dev_err_once(dev, "DMA map on device without dma_mask\n");
30 } else if (*dev->dma_mask >= DMA_BIT_MASK(32) || dev->bus_dma_mask) {
31 dev_err_once(dev,
32 "overflow %pad+%zu of DMA mask %llx bus mask %llx\n",
33 &dma_addr, size, *dev->dma_mask, dev->bus_dma_mask);
34 }
35 WARN_ON_ONCE(1);
36 }
37
phys_to_dma_direct(struct device * dev,phys_addr_t phys)38 static inline dma_addr_t phys_to_dma_direct(struct device *dev,
39 phys_addr_t phys)
40 {
41 if (force_dma_unencrypted(dev))
42 return __phys_to_dma(dev, phys);
43 return phys_to_dma(dev, phys);
44 }
45
dma_direct_get_required_mask(struct device * dev)46 u64 dma_direct_get_required_mask(struct device *dev)
47 {
48 u64 max_dma = phys_to_dma_direct(dev, (max_pfn - 1) << PAGE_SHIFT);
49
50 return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
51 }
52
__dma_direct_optimal_gfp_mask(struct device * dev,u64 dma_mask,u64 * phys_mask)53 static gfp_t __dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask,
54 u64 *phys_mask)
55 {
56 if (dev->bus_dma_mask && dev->bus_dma_mask < dma_mask)
57 dma_mask = dev->bus_dma_mask;
58
59 if (force_dma_unencrypted(dev))
60 *phys_mask = __dma_to_phys(dev, dma_mask);
61 else
62 *phys_mask = dma_to_phys(dev, dma_mask);
63
64 /*
65 * Optimistically try the zone that the physical address mask falls
66 * into first. If that returns memory that isn't actually addressable
67 * we will fallback to the next lower zone and try again.
68 *
69 * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
70 * zones.
71 */
72 if (*phys_mask <= DMA_BIT_MASK(ARCH_ZONE_DMA_BITS))
73 return GFP_DMA;
74 if (*phys_mask <= DMA_BIT_MASK(32))
75 return GFP_DMA32;
76 return 0;
77 }
78
dma_coherent_ok(struct device * dev,phys_addr_t phys,size_t size)79 static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
80 {
81 return phys_to_dma_direct(dev, phys) + size - 1 <=
82 min_not_zero(dev->coherent_dma_mask, dev->bus_dma_mask);
83 }
84
__dma_direct_alloc_pages(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t gfp,unsigned long attrs)85 struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
86 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
87 {
88 size_t alloc_size = PAGE_ALIGN(size);
89 int node = dev_to_node(dev);
90 struct page *page = NULL;
91 u64 phys_mask;
92
93 if (attrs & DMA_ATTR_NO_WARN)
94 gfp |= __GFP_NOWARN;
95
96 /* we always manually zero the memory once we are done: */
97 gfp &= ~__GFP_ZERO;
98 gfp |= __dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
99 &phys_mask);
100 page = dma_alloc_contiguous(dev, alloc_size, gfp);
101 if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
102 dma_free_contiguous(dev, page, alloc_size);
103 page = NULL;
104 }
105 again:
106 if (!page)
107 page = alloc_pages_node(node, gfp, get_order(alloc_size));
108 if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
109 dma_free_contiguous(dev, page, size);
110 page = NULL;
111
112 if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
113 phys_mask < DMA_BIT_MASK(64) &&
114 !(gfp & (GFP_DMA32 | GFP_DMA))) {
115 gfp |= GFP_DMA32;
116 goto again;
117 }
118
119 if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
120 gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
121 goto again;
122 }
123 }
124
125 return page;
126 }
127
dma_direct_alloc_pages(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t gfp,unsigned long attrs)128 void *dma_direct_alloc_pages(struct device *dev, size_t size,
129 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
130 {
131 struct page *page;
132 void *ret;
133
134 page = __dma_direct_alloc_pages(dev, size, dma_handle, gfp, attrs);
135 if (!page)
136 return NULL;
137
138 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
139 !force_dma_unencrypted(dev)) {
140 /* remove any dirty cache lines on the kernel alias */
141 if (!PageHighMem(page))
142 arch_dma_prep_coherent(page, size);
143 *dma_handle = phys_to_dma(dev, page_to_phys(page));
144 /* return the page pointer as the opaque cookie */
145 return page;
146 }
147
148 if (PageHighMem(page)) {
149 /*
150 * Depending on the cma= arguments and per-arch setup
151 * dma_alloc_contiguous could return highmem pages.
152 * Without remapping there is no way to return them here,
153 * so log an error and fail.
154 */
155 dev_info(dev, "Rejecting highmem page from CMA.\n");
156 __dma_direct_free_pages(dev, size, page);
157 return NULL;
158 }
159
160 ret = page_address(page);
161 if (force_dma_unencrypted(dev)) {
162 set_memory_decrypted((unsigned long)ret, 1 << get_order(size));
163 *dma_handle = __phys_to_dma(dev, page_to_phys(page));
164 } else {
165 *dma_handle = phys_to_dma(dev, page_to_phys(page));
166 }
167 memset(ret, 0, size);
168
169 if (IS_ENABLED(CONFIG_ARCH_HAS_UNCACHED_SEGMENT) &&
170 dma_alloc_need_uncached(dev, attrs)) {
171 arch_dma_prep_coherent(page, size);
172 ret = uncached_kernel_address(ret);
173 }
174
175 return ret;
176 }
177
__dma_direct_free_pages(struct device * dev,size_t size,struct page * page)178 void __dma_direct_free_pages(struct device *dev, size_t size, struct page *page)
179 {
180 dma_free_contiguous(dev, page, size);
181 }
182
dma_direct_free_pages(struct device * dev,size_t size,void * cpu_addr,dma_addr_t dma_addr,unsigned long attrs)183 void dma_direct_free_pages(struct device *dev, size_t size, void *cpu_addr,
184 dma_addr_t dma_addr, unsigned long attrs)
185 {
186 unsigned int page_order = get_order(size);
187
188 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
189 !force_dma_unencrypted(dev)) {
190 /* cpu_addr is a struct page cookie, not a kernel address */
191 __dma_direct_free_pages(dev, size, cpu_addr);
192 return;
193 }
194
195 if (force_dma_unencrypted(dev))
196 set_memory_encrypted((unsigned long)cpu_addr, 1 << page_order);
197
198 if (IS_ENABLED(CONFIG_ARCH_HAS_UNCACHED_SEGMENT) &&
199 dma_alloc_need_uncached(dev, attrs))
200 cpu_addr = cached_kernel_address(cpu_addr);
201 __dma_direct_free_pages(dev, size, virt_to_page(cpu_addr));
202 }
203
dma_direct_alloc(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t gfp,unsigned long attrs)204 void *dma_direct_alloc(struct device *dev, size_t size,
205 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
206 {
207 if (!IS_ENABLED(CONFIG_ARCH_HAS_UNCACHED_SEGMENT) &&
208 dma_alloc_need_uncached(dev, attrs))
209 return arch_dma_alloc(dev, size, dma_handle, gfp, attrs);
210 return dma_direct_alloc_pages(dev, size, dma_handle, gfp, attrs);
211 }
212
dma_direct_free(struct device * dev,size_t size,void * cpu_addr,dma_addr_t dma_addr,unsigned long attrs)213 void dma_direct_free(struct device *dev, size_t size,
214 void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
215 {
216 if (!IS_ENABLED(CONFIG_ARCH_HAS_UNCACHED_SEGMENT) &&
217 dma_alloc_need_uncached(dev, attrs))
218 arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
219 else
220 dma_direct_free_pages(dev, size, cpu_addr, dma_addr, attrs);
221 }
222
223 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
224 defined(CONFIG_SWIOTLB)
dma_direct_sync_single_for_device(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)225 void dma_direct_sync_single_for_device(struct device *dev,
226 dma_addr_t addr, size_t size, enum dma_data_direction dir)
227 {
228 phys_addr_t paddr = dma_to_phys(dev, addr);
229
230 if (unlikely(is_swiotlb_buffer(paddr)))
231 swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_DEVICE);
232
233 if (!dev_is_dma_coherent(dev))
234 arch_sync_dma_for_device(dev, paddr, size, dir);
235 }
236 EXPORT_SYMBOL(dma_direct_sync_single_for_device);
237
dma_direct_sync_sg_for_device(struct device * dev,struct scatterlist * sgl,int nents,enum dma_data_direction dir)238 void dma_direct_sync_sg_for_device(struct device *dev,
239 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
240 {
241 struct scatterlist *sg;
242 int i;
243
244 for_each_sg(sgl, sg, nents, i) {
245 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
246
247 if (unlikely(is_swiotlb_buffer(paddr)))
248 swiotlb_tbl_sync_single(dev, paddr, sg->length,
249 dir, SYNC_FOR_DEVICE);
250
251 if (!dev_is_dma_coherent(dev))
252 arch_sync_dma_for_device(dev, paddr, sg->length,
253 dir);
254 }
255 }
256 EXPORT_SYMBOL(dma_direct_sync_sg_for_device);
257 #endif
258
259 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
260 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
261 defined(CONFIG_SWIOTLB)
dma_direct_sync_single_for_cpu(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)262 void dma_direct_sync_single_for_cpu(struct device *dev,
263 dma_addr_t addr, size_t size, enum dma_data_direction dir)
264 {
265 phys_addr_t paddr = dma_to_phys(dev, addr);
266
267 if (!dev_is_dma_coherent(dev)) {
268 arch_sync_dma_for_cpu(dev, paddr, size, dir);
269 arch_sync_dma_for_cpu_all(dev);
270 }
271
272 if (unlikely(is_swiotlb_buffer(paddr)))
273 swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_CPU);
274 }
275 EXPORT_SYMBOL(dma_direct_sync_single_for_cpu);
276
dma_direct_sync_sg_for_cpu(struct device * dev,struct scatterlist * sgl,int nents,enum dma_data_direction dir)277 void dma_direct_sync_sg_for_cpu(struct device *dev,
278 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
279 {
280 struct scatterlist *sg;
281 int i;
282
283 for_each_sg(sgl, sg, nents, i) {
284 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
285
286 if (!dev_is_dma_coherent(dev))
287 arch_sync_dma_for_cpu(dev, paddr, sg->length, dir);
288
289 if (unlikely(is_swiotlb_buffer(paddr)))
290 swiotlb_tbl_sync_single(dev, paddr, sg->length, dir,
291 SYNC_FOR_CPU);
292 }
293
294 if (!dev_is_dma_coherent(dev))
295 arch_sync_dma_for_cpu_all(dev);
296 }
297 EXPORT_SYMBOL(dma_direct_sync_sg_for_cpu);
298
dma_direct_unmap_page(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir,unsigned long attrs)299 void dma_direct_unmap_page(struct device *dev, dma_addr_t addr,
300 size_t size, enum dma_data_direction dir, unsigned long attrs)
301 {
302 phys_addr_t phys = dma_to_phys(dev, addr);
303
304 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
305 dma_direct_sync_single_for_cpu(dev, addr, size, dir);
306
307 if (unlikely(is_swiotlb_buffer(phys)))
308 swiotlb_tbl_unmap_single(dev, phys, size, size, dir, attrs);
309 }
310 EXPORT_SYMBOL(dma_direct_unmap_page);
311
dma_direct_unmap_sg(struct device * dev,struct scatterlist * sgl,int nents,enum dma_data_direction dir,unsigned long attrs)312 void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
313 int nents, enum dma_data_direction dir, unsigned long attrs)
314 {
315 struct scatterlist *sg;
316 int i;
317
318 for_each_sg(sgl, sg, nents, i)
319 dma_direct_unmap_page(dev, sg->dma_address, sg_dma_len(sg), dir,
320 attrs);
321 }
322 EXPORT_SYMBOL(dma_direct_unmap_sg);
323 #endif
324
dma_direct_possible(struct device * dev,dma_addr_t dma_addr,size_t size)325 static inline bool dma_direct_possible(struct device *dev, dma_addr_t dma_addr,
326 size_t size)
327 {
328 return swiotlb_force != SWIOTLB_FORCE &&
329 dma_capable(dev, dma_addr, size);
330 }
331
dma_direct_map_page(struct device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction dir,unsigned long attrs)332 dma_addr_t dma_direct_map_page(struct device *dev, struct page *page,
333 unsigned long offset, size_t size, enum dma_data_direction dir,
334 unsigned long attrs)
335 {
336 phys_addr_t phys = page_to_phys(page) + offset;
337 dma_addr_t dma_addr = phys_to_dma(dev, phys);
338
339 if (unlikely(!dma_direct_possible(dev, dma_addr, size)) &&
340 !swiotlb_map(dev, &phys, &dma_addr, size, dir, attrs)) {
341 report_addr(dev, dma_addr, size);
342 return DMA_MAPPING_ERROR;
343 }
344
345 if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
346 arch_sync_dma_for_device(dev, phys, size, dir);
347 return dma_addr;
348 }
349 EXPORT_SYMBOL(dma_direct_map_page);
350
dma_direct_map_sg(struct device * dev,struct scatterlist * sgl,int nents,enum dma_data_direction dir,unsigned long attrs)351 int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
352 enum dma_data_direction dir, unsigned long attrs)
353 {
354 int i;
355 struct scatterlist *sg;
356
357 for_each_sg(sgl, sg, nents, i) {
358 sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
359 sg->offset, sg->length, dir, attrs);
360 if (sg->dma_address == DMA_MAPPING_ERROR)
361 goto out_unmap;
362 sg_dma_len(sg) = sg->length;
363 }
364
365 return nents;
366
367 out_unmap:
368 dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
369 return 0;
370 }
371 EXPORT_SYMBOL(dma_direct_map_sg);
372
dma_direct_map_resource(struct device * dev,phys_addr_t paddr,size_t size,enum dma_data_direction dir,unsigned long attrs)373 dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
374 size_t size, enum dma_data_direction dir, unsigned long attrs)
375 {
376 dma_addr_t dma_addr = paddr;
377
378 if (unlikely(!dma_direct_possible(dev, dma_addr, size))) {
379 report_addr(dev, dma_addr, size);
380 return DMA_MAPPING_ERROR;
381 }
382
383 return dma_addr;
384 }
385 EXPORT_SYMBOL(dma_direct_map_resource);
386
387 /*
388 * Because 32-bit DMA masks are so common we expect every architecture to be
389 * able to satisfy them - either by not supporting more physical memory, or by
390 * providing a ZONE_DMA32. If neither is the case, the architecture needs to
391 * use an IOMMU instead of the direct mapping.
392 */
dma_direct_supported(struct device * dev,u64 mask)393 int dma_direct_supported(struct device *dev, u64 mask)
394 {
395 u64 min_mask;
396
397 if (IS_ENABLED(CONFIG_ZONE_DMA))
398 min_mask = DMA_BIT_MASK(ARCH_ZONE_DMA_BITS);
399 else
400 min_mask = DMA_BIT_MASK(32);
401
402 min_mask = min_t(u64, min_mask, (max_pfn - 1) << PAGE_SHIFT);
403
404 /*
405 * This check needs to be against the actual bit mask value, so
406 * use __phys_to_dma() here so that the SME encryption mask isn't
407 * part of the check.
408 */
409 return mask >= __phys_to_dma(dev, min_mask);
410 }
411
dma_direct_max_mapping_size(struct device * dev)412 size_t dma_direct_max_mapping_size(struct device *dev)
413 {
414 /* If SWIOTLB is active, use its maximum mapping size */
415 if (is_swiotlb_active() &&
416 (dma_addressing_limited(dev) || swiotlb_force == SWIOTLB_FORCE))
417 return swiotlb_max_mapping_size(dev);
418 return SIZE_MAX;
419 }
420