1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2012 ARM Ltd.
4  * Copyright (c) 2014 The Linux Foundation
5  */
6 #include <linux/dma-direct.h>
7 #include <linux/dma-noncoherent.h>
8 #include <linux/dma-contiguous.h>
9 #include <linux/init.h>
10 #include <linux/genalloc.h>
11 #include <linux/slab.h>
12 #include <linux/vmalloc.h>
13 
dma_common_find_pages(void * cpu_addr)14 struct page **dma_common_find_pages(void *cpu_addr)
15 {
16 	struct vm_struct *area = find_vm_area(cpu_addr);
17 
18 	if (!area || area->flags != VM_DMA_COHERENT)
19 		return NULL;
20 	return area->pages;
21 }
22 
__dma_common_pages_remap(struct page ** pages,size_t size,pgprot_t prot,const void * caller)23 static struct vm_struct *__dma_common_pages_remap(struct page **pages,
24 			size_t size, pgprot_t prot, const void *caller)
25 {
26 	struct vm_struct *area;
27 
28 	area = get_vm_area_caller(size, VM_DMA_COHERENT, caller);
29 	if (!area)
30 		return NULL;
31 
32 	if (map_vm_area(area, prot, pages)) {
33 		vunmap(area->addr);
34 		return NULL;
35 	}
36 
37 	return area;
38 }
39 
40 /*
41  * Remaps an array of PAGE_SIZE pages into another vm_area.
42  * Cannot be used in non-sleeping contexts
43  */
dma_common_pages_remap(struct page ** pages,size_t size,pgprot_t prot,const void * caller)44 void *dma_common_pages_remap(struct page **pages, size_t size,
45 			 pgprot_t prot, const void *caller)
46 {
47 	struct vm_struct *area;
48 
49 	area = __dma_common_pages_remap(pages, size, prot, caller);
50 	if (!area)
51 		return NULL;
52 
53 	area->pages = pages;
54 
55 	return area->addr;
56 }
57 
58 /*
59  * Remaps an allocated contiguous region into another vm_area.
60  * Cannot be used in non-sleeping contexts
61  */
dma_common_contiguous_remap(struct page * page,size_t size,pgprot_t prot,const void * caller)62 void *dma_common_contiguous_remap(struct page *page, size_t size,
63 			pgprot_t prot, const void *caller)
64 {
65 	int i;
66 	struct page **pages;
67 	struct vm_struct *area;
68 
69 	pages = kmalloc(sizeof(struct page *) << get_order(size), GFP_KERNEL);
70 	if (!pages)
71 		return NULL;
72 
73 	for (i = 0; i < (size >> PAGE_SHIFT); i++)
74 		pages[i] = nth_page(page, i);
75 
76 	area = __dma_common_pages_remap(pages, size, prot, caller);
77 
78 	kfree(pages);
79 
80 	if (!area)
81 		return NULL;
82 	return area->addr;
83 }
84 
85 /*
86  * Unmaps a range previously mapped by dma_common_*_remap
87  */
dma_common_free_remap(void * cpu_addr,size_t size)88 void dma_common_free_remap(void *cpu_addr, size_t size)
89 {
90 	struct vm_struct *area = find_vm_area(cpu_addr);
91 
92 	if (!area || area->flags != VM_DMA_COHERENT) {
93 		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
94 		return;
95 	}
96 
97 	unmap_kernel_range((unsigned long)cpu_addr, PAGE_ALIGN(size));
98 	vunmap(cpu_addr);
99 }
100 
101 #ifdef CONFIG_DMA_DIRECT_REMAP
102 static struct gen_pool *atomic_pool __ro_after_init;
103 
104 #define DEFAULT_DMA_COHERENT_POOL_SIZE  SZ_256K
105 static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE;
106 
early_coherent_pool(char * p)107 static int __init early_coherent_pool(char *p)
108 {
109 	atomic_pool_size = memparse(p, &p);
110 	return 0;
111 }
112 early_param("coherent_pool", early_coherent_pool);
113 
dma_atomic_pool_gfp(void)114 static gfp_t dma_atomic_pool_gfp(void)
115 {
116 	if (IS_ENABLED(CONFIG_ZONE_DMA))
117 		return GFP_DMA;
118 	if (IS_ENABLED(CONFIG_ZONE_DMA32))
119 		return GFP_DMA32;
120 	return GFP_KERNEL;
121 }
122 
dma_atomic_pool_init(void)123 static int __init dma_atomic_pool_init(void)
124 {
125 	unsigned int pool_size_order = get_order(atomic_pool_size);
126 	unsigned long nr_pages = atomic_pool_size >> PAGE_SHIFT;
127 	struct page *page;
128 	void *addr;
129 	int ret;
130 
131 	if (dev_get_cma_area(NULL))
132 		page = dma_alloc_from_contiguous(NULL, nr_pages,
133 						 pool_size_order, false);
134 	else
135 		page = alloc_pages(dma_atomic_pool_gfp(), pool_size_order);
136 	if (!page)
137 		goto out;
138 
139 	arch_dma_prep_coherent(page, atomic_pool_size);
140 
141 	atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
142 	if (!atomic_pool)
143 		goto free_page;
144 
145 	addr = dma_common_contiguous_remap(page, atomic_pool_size,
146 					   pgprot_dmacoherent(PAGE_KERNEL),
147 					   __builtin_return_address(0));
148 	if (!addr)
149 		goto destroy_genpool;
150 
151 	ret = gen_pool_add_virt(atomic_pool, (unsigned long)addr,
152 				page_to_phys(page), atomic_pool_size, -1);
153 	if (ret)
154 		goto remove_mapping;
155 	gen_pool_set_algo(atomic_pool, gen_pool_first_fit_order_align, NULL);
156 
157 	pr_info("DMA: preallocated %zu KiB pool for atomic allocations\n",
158 		atomic_pool_size / 1024);
159 	return 0;
160 
161 remove_mapping:
162 	dma_common_free_remap(addr, atomic_pool_size);
163 destroy_genpool:
164 	gen_pool_destroy(atomic_pool);
165 	atomic_pool = NULL;
166 free_page:
167 	if (!dma_release_from_contiguous(NULL, page, nr_pages))
168 		__free_pages(page, pool_size_order);
169 out:
170 	pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
171 		atomic_pool_size / 1024);
172 	return -ENOMEM;
173 }
174 postcore_initcall(dma_atomic_pool_init);
175 
dma_in_atomic_pool(void * start,size_t size)176 bool dma_in_atomic_pool(void *start, size_t size)
177 {
178 	if (unlikely(!atomic_pool))
179 		return false;
180 
181 	return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
182 }
183 
dma_alloc_from_pool(size_t size,struct page ** ret_page,gfp_t flags)184 void *dma_alloc_from_pool(size_t size, struct page **ret_page, gfp_t flags)
185 {
186 	unsigned long val;
187 	void *ptr = NULL;
188 
189 	if (!atomic_pool) {
190 		WARN(1, "coherent pool not initialised!\n");
191 		return NULL;
192 	}
193 
194 	val = gen_pool_alloc(atomic_pool, size);
195 	if (val) {
196 		phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
197 
198 		*ret_page = pfn_to_page(__phys_to_pfn(phys));
199 		ptr = (void *)val;
200 		memset(ptr, 0, size);
201 	}
202 
203 	return ptr;
204 }
205 
dma_free_from_pool(void * start,size_t size)206 bool dma_free_from_pool(void *start, size_t size)
207 {
208 	if (!dma_in_atomic_pool(start, size))
209 		return false;
210 	gen_pool_free(atomic_pool, (unsigned long)start, size);
211 	return true;
212 }
213 
arch_dma_alloc(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t flags,unsigned long attrs)214 void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle,
215 		gfp_t flags, unsigned long attrs)
216 {
217 	struct page *page = NULL;
218 	void *ret;
219 
220 	size = PAGE_ALIGN(size);
221 
222 	if (!gfpflags_allow_blocking(flags)) {
223 		ret = dma_alloc_from_pool(size, &page, flags);
224 		if (!ret)
225 			return NULL;
226 		goto done;
227 	}
228 
229 	page = __dma_direct_alloc_pages(dev, size, dma_handle, flags, attrs);
230 	if (!page)
231 		return NULL;
232 
233 	/* remove any dirty cache lines on the kernel alias */
234 	arch_dma_prep_coherent(page, size);
235 
236 	/* create a coherent mapping */
237 	ret = dma_common_contiguous_remap(page, size,
238 			dma_pgprot(dev, PAGE_KERNEL, attrs),
239 			__builtin_return_address(0));
240 	if (!ret) {
241 		__dma_direct_free_pages(dev, size, page);
242 		return ret;
243 	}
244 
245 	memset(ret, 0, size);
246 done:
247 	*dma_handle = phys_to_dma(dev, page_to_phys(page));
248 	return ret;
249 }
250 
arch_dma_free(struct device * dev,size_t size,void * vaddr,dma_addr_t dma_handle,unsigned long attrs)251 void arch_dma_free(struct device *dev, size_t size, void *vaddr,
252 		dma_addr_t dma_handle, unsigned long attrs)
253 {
254 	if (!dma_free_from_pool(vaddr, PAGE_ALIGN(size))) {
255 		phys_addr_t phys = dma_to_phys(dev, dma_handle);
256 		struct page *page = pfn_to_page(__phys_to_pfn(phys));
257 
258 		vunmap(vaddr);
259 		__dma_direct_free_pages(dev, size, page);
260 	}
261 }
262 
arch_dma_coherent_to_pfn(struct device * dev,void * cpu_addr,dma_addr_t dma_addr)263 long arch_dma_coherent_to_pfn(struct device *dev, void *cpu_addr,
264 		dma_addr_t dma_addr)
265 {
266 	return __phys_to_pfn(dma_to_phys(dev, dma_addr));
267 }
268 #endif /* CONFIG_DMA_DIRECT_REMAP */
269