1 /*
2  * Copyright (C) 2001 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/atomic.h>
21 #include <linux/blk-mq.h>
22 #include <linux/mount.h>
23 #include <linux/dax.h>
24 
25 #define DM_MSG_PREFIX "table"
26 
27 #define MAX_DEPTH 16
28 #define NODE_SIZE L1_CACHE_BYTES
29 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
30 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
31 
32 struct dm_table {
33 	struct mapped_device *md;
34 	enum dm_queue_mode type;
35 
36 	/* btree table */
37 	unsigned int depth;
38 	unsigned int counts[MAX_DEPTH];	/* in nodes */
39 	sector_t *index[MAX_DEPTH];
40 
41 	unsigned int num_targets;
42 	unsigned int num_allocated;
43 	sector_t *highs;
44 	struct dm_target *targets;
45 
46 	struct target_type *immutable_target_type;
47 
48 	bool integrity_supported:1;
49 	bool singleton:1;
50 	unsigned integrity_added:1;
51 
52 	/*
53 	 * Indicates the rw permissions for the new logical
54 	 * device.  This should be a combination of FMODE_READ
55 	 * and FMODE_WRITE.
56 	 */
57 	fmode_t mode;
58 
59 	/* a list of devices used by this table */
60 	struct list_head devices;
61 
62 	/* events get handed up using this callback */
63 	void (*event_fn)(void *);
64 	void *event_context;
65 
66 	struct dm_md_mempools *mempools;
67 
68 	struct list_head target_callbacks;
69 };
70 
71 /*
72  * Similar to ceiling(log_size(n))
73  */
int_log(unsigned int n,unsigned int base)74 static unsigned int int_log(unsigned int n, unsigned int base)
75 {
76 	int result = 0;
77 
78 	while (n > 1) {
79 		n = dm_div_up(n, base);
80 		result++;
81 	}
82 
83 	return result;
84 }
85 
86 /*
87  * Calculate the index of the child node of the n'th node k'th key.
88  */
get_child(unsigned int n,unsigned int k)89 static inline unsigned int get_child(unsigned int n, unsigned int k)
90 {
91 	return (n * CHILDREN_PER_NODE) + k;
92 }
93 
94 /*
95  * Return the n'th node of level l from table t.
96  */
get_node(struct dm_table * t,unsigned int l,unsigned int n)97 static inline sector_t *get_node(struct dm_table *t,
98 				 unsigned int l, unsigned int n)
99 {
100 	return t->index[l] + (n * KEYS_PER_NODE);
101 }
102 
103 /*
104  * Return the highest key that you could lookup from the n'th
105  * node on level l of the btree.
106  */
high(struct dm_table * t,unsigned int l,unsigned int n)107 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
108 {
109 	for (; l < t->depth - 1; l++)
110 		n = get_child(n, CHILDREN_PER_NODE - 1);
111 
112 	if (n >= t->counts[l])
113 		return (sector_t) - 1;
114 
115 	return get_node(t, l, n)[KEYS_PER_NODE - 1];
116 }
117 
118 /*
119  * Fills in a level of the btree based on the highs of the level
120  * below it.
121  */
setup_btree_index(unsigned int l,struct dm_table * t)122 static int setup_btree_index(unsigned int l, struct dm_table *t)
123 {
124 	unsigned int n, k;
125 	sector_t *node;
126 
127 	for (n = 0U; n < t->counts[l]; n++) {
128 		node = get_node(t, l, n);
129 
130 		for (k = 0U; k < KEYS_PER_NODE; k++)
131 			node[k] = high(t, l + 1, get_child(n, k));
132 	}
133 
134 	return 0;
135 }
136 
dm_vcalloc(unsigned long nmemb,unsigned long elem_size)137 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
138 {
139 	unsigned long size;
140 	void *addr;
141 
142 	/*
143 	 * Check that we're not going to overflow.
144 	 */
145 	if (nmemb > (ULONG_MAX / elem_size))
146 		return NULL;
147 
148 	size = nmemb * elem_size;
149 	addr = vzalloc(size);
150 
151 	return addr;
152 }
153 EXPORT_SYMBOL(dm_vcalloc);
154 
155 /*
156  * highs, and targets are managed as dynamic arrays during a
157  * table load.
158  */
alloc_targets(struct dm_table * t,unsigned int num)159 static int alloc_targets(struct dm_table *t, unsigned int num)
160 {
161 	sector_t *n_highs;
162 	struct dm_target *n_targets;
163 
164 	/*
165 	 * Allocate both the target array and offset array at once.
166 	 */
167 	n_highs = (sector_t *) dm_vcalloc(num, sizeof(struct dm_target) +
168 					  sizeof(sector_t));
169 	if (!n_highs)
170 		return -ENOMEM;
171 
172 	n_targets = (struct dm_target *) (n_highs + num);
173 
174 	memset(n_highs, -1, sizeof(*n_highs) * num);
175 	vfree(t->highs);
176 
177 	t->num_allocated = num;
178 	t->highs = n_highs;
179 	t->targets = n_targets;
180 
181 	return 0;
182 }
183 
dm_table_create(struct dm_table ** result,fmode_t mode,unsigned num_targets,struct mapped_device * md)184 int dm_table_create(struct dm_table **result, fmode_t mode,
185 		    unsigned num_targets, struct mapped_device *md)
186 {
187 	struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
188 
189 	if (!t)
190 		return -ENOMEM;
191 
192 	INIT_LIST_HEAD(&t->devices);
193 	INIT_LIST_HEAD(&t->target_callbacks);
194 
195 	if (!num_targets)
196 		num_targets = KEYS_PER_NODE;
197 
198 	num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
199 
200 	if (!num_targets) {
201 		kfree(t);
202 		return -ENOMEM;
203 	}
204 
205 	if (alloc_targets(t, num_targets)) {
206 		kfree(t);
207 		return -ENOMEM;
208 	}
209 
210 	t->type = DM_TYPE_NONE;
211 	t->mode = mode;
212 	t->md = md;
213 	*result = t;
214 	return 0;
215 }
216 
free_devices(struct list_head * devices,struct mapped_device * md)217 static void free_devices(struct list_head *devices, struct mapped_device *md)
218 {
219 	struct list_head *tmp, *next;
220 
221 	list_for_each_safe(tmp, next, devices) {
222 		struct dm_dev_internal *dd =
223 		    list_entry(tmp, struct dm_dev_internal, list);
224 		DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
225 		       dm_device_name(md), dd->dm_dev->name);
226 		dm_put_table_device(md, dd->dm_dev);
227 		kfree(dd);
228 	}
229 }
230 
dm_table_destroy(struct dm_table * t)231 void dm_table_destroy(struct dm_table *t)
232 {
233 	unsigned int i;
234 
235 	if (!t)
236 		return;
237 
238 	/* free the indexes */
239 	if (t->depth >= 2)
240 		vfree(t->index[t->depth - 2]);
241 
242 	/* free the targets */
243 	for (i = 0; i < t->num_targets; i++) {
244 		struct dm_target *tgt = t->targets + i;
245 
246 		if (tgt->type->dtr)
247 			tgt->type->dtr(tgt);
248 
249 		dm_put_target_type(tgt->type);
250 	}
251 
252 	vfree(t->highs);
253 
254 	/* free the device list */
255 	free_devices(&t->devices, t->md);
256 
257 	dm_free_md_mempools(t->mempools);
258 
259 	kfree(t);
260 }
261 
262 /*
263  * See if we've already got a device in the list.
264  */
find_device(struct list_head * l,dev_t dev)265 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
266 {
267 	struct dm_dev_internal *dd;
268 
269 	list_for_each_entry (dd, l, list)
270 		if (dd->dm_dev->bdev->bd_dev == dev)
271 			return dd;
272 
273 	return NULL;
274 }
275 
276 /*
277  * If possible, this checks an area of a destination device is invalid.
278  */
device_area_is_invalid(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)279 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
280 				  sector_t start, sector_t len, void *data)
281 {
282 	struct request_queue *q;
283 	struct queue_limits *limits = data;
284 	struct block_device *bdev = dev->bdev;
285 	sector_t dev_size =
286 		i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
287 	unsigned short logical_block_size_sectors =
288 		limits->logical_block_size >> SECTOR_SHIFT;
289 	char b[BDEVNAME_SIZE];
290 
291 	/*
292 	 * Some devices exist without request functions,
293 	 * such as loop devices not yet bound to backing files.
294 	 * Forbid the use of such devices.
295 	 */
296 	q = bdev_get_queue(bdev);
297 	if (!q || !q->make_request_fn) {
298 		DMWARN("%s: %s is not yet initialised: "
299 		       "start=%llu, len=%llu, dev_size=%llu",
300 		       dm_device_name(ti->table->md), bdevname(bdev, b),
301 		       (unsigned long long)start,
302 		       (unsigned long long)len,
303 		       (unsigned long long)dev_size);
304 		return 1;
305 	}
306 
307 	if (!dev_size)
308 		return 0;
309 
310 	if ((start >= dev_size) || (start + len > dev_size)) {
311 		DMWARN("%s: %s too small for target: "
312 		       "start=%llu, len=%llu, dev_size=%llu",
313 		       dm_device_name(ti->table->md), bdevname(bdev, b),
314 		       (unsigned long long)start,
315 		       (unsigned long long)len,
316 		       (unsigned long long)dev_size);
317 		return 1;
318 	}
319 
320 	/*
321 	 * If the target is mapped to zoned block device(s), check
322 	 * that the zones are not partially mapped.
323 	 */
324 	if (bdev_zoned_model(bdev) != BLK_ZONED_NONE) {
325 		unsigned int zone_sectors = bdev_zone_sectors(bdev);
326 
327 		if (start & (zone_sectors - 1)) {
328 			DMWARN("%s: start=%llu not aligned to h/w zone size %u of %s",
329 			       dm_device_name(ti->table->md),
330 			       (unsigned long long)start,
331 			       zone_sectors, bdevname(bdev, b));
332 			return 1;
333 		}
334 
335 		/*
336 		 * Note: The last zone of a zoned block device may be smaller
337 		 * than other zones. So for a target mapping the end of a
338 		 * zoned block device with such a zone, len would not be zone
339 		 * aligned. We do not allow such last smaller zone to be part
340 		 * of the mapping here to ensure that mappings with multiple
341 		 * devices do not end up with a smaller zone in the middle of
342 		 * the sector range.
343 		 */
344 		if (len & (zone_sectors - 1)) {
345 			DMWARN("%s: len=%llu not aligned to h/w zone size %u of %s",
346 			       dm_device_name(ti->table->md),
347 			       (unsigned long long)len,
348 			       zone_sectors, bdevname(bdev, b));
349 			return 1;
350 		}
351 	}
352 
353 	if (logical_block_size_sectors <= 1)
354 		return 0;
355 
356 	if (start & (logical_block_size_sectors - 1)) {
357 		DMWARN("%s: start=%llu not aligned to h/w "
358 		       "logical block size %u of %s",
359 		       dm_device_name(ti->table->md),
360 		       (unsigned long long)start,
361 		       limits->logical_block_size, bdevname(bdev, b));
362 		return 1;
363 	}
364 
365 	if (len & (logical_block_size_sectors - 1)) {
366 		DMWARN("%s: len=%llu not aligned to h/w "
367 		       "logical block size %u of %s",
368 		       dm_device_name(ti->table->md),
369 		       (unsigned long long)len,
370 		       limits->logical_block_size, bdevname(bdev, b));
371 		return 1;
372 	}
373 
374 	return 0;
375 }
376 
377 /*
378  * This upgrades the mode on an already open dm_dev, being
379  * careful to leave things as they were if we fail to reopen the
380  * device and not to touch the existing bdev field in case
381  * it is accessed concurrently inside dm_table_any_congested().
382  */
upgrade_mode(struct dm_dev_internal * dd,fmode_t new_mode,struct mapped_device * md)383 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
384 			struct mapped_device *md)
385 {
386 	int r;
387 	struct dm_dev *old_dev, *new_dev;
388 
389 	old_dev = dd->dm_dev;
390 
391 	r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
392 				dd->dm_dev->mode | new_mode, &new_dev);
393 	if (r)
394 		return r;
395 
396 	dd->dm_dev = new_dev;
397 	dm_put_table_device(md, old_dev);
398 
399 	return 0;
400 }
401 
402 /*
403  * Convert the path to a device
404  */
dm_get_dev_t(const char * path)405 dev_t dm_get_dev_t(const char *path)
406 {
407 	dev_t dev;
408 	struct block_device *bdev;
409 
410 	bdev = lookup_bdev(path);
411 	if (IS_ERR(bdev))
412 		dev = name_to_dev_t(path);
413 	else {
414 		dev = bdev->bd_dev;
415 		bdput(bdev);
416 	}
417 
418 	return dev;
419 }
420 EXPORT_SYMBOL_GPL(dm_get_dev_t);
421 
422 /*
423  * Add a device to the list, or just increment the usage count if
424  * it's already present.
425  */
dm_get_device(struct dm_target * ti,const char * path,fmode_t mode,struct dm_dev ** result)426 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
427 		  struct dm_dev **result)
428 {
429 	int r;
430 	dev_t dev;
431 	struct dm_dev_internal *dd;
432 	struct dm_table *t = ti->table;
433 
434 	BUG_ON(!t);
435 
436 	dev = dm_get_dev_t(path);
437 	if (!dev)
438 		return -ENODEV;
439 
440 	dd = find_device(&t->devices, dev);
441 	if (!dd) {
442 		dd = kmalloc(sizeof(*dd), GFP_KERNEL);
443 		if (!dd)
444 			return -ENOMEM;
445 
446 		if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
447 			kfree(dd);
448 			return r;
449 		}
450 
451 		refcount_set(&dd->count, 1);
452 		list_add(&dd->list, &t->devices);
453 		goto out;
454 
455 	} else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
456 		r = upgrade_mode(dd, mode, t->md);
457 		if (r)
458 			return r;
459 	}
460 	refcount_inc(&dd->count);
461 out:
462 	*result = dd->dm_dev;
463 	return 0;
464 }
465 EXPORT_SYMBOL(dm_get_device);
466 
dm_set_device_limits(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)467 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
468 				sector_t start, sector_t len, void *data)
469 {
470 	struct queue_limits *limits = data;
471 	struct block_device *bdev = dev->bdev;
472 	struct request_queue *q = bdev_get_queue(bdev);
473 	char b[BDEVNAME_SIZE];
474 
475 	if (unlikely(!q)) {
476 		DMWARN("%s: Cannot set limits for nonexistent device %s",
477 		       dm_device_name(ti->table->md), bdevname(bdev, b));
478 		return 0;
479 	}
480 
481 	if (bdev_stack_limits(limits, bdev, start) < 0)
482 		DMWARN("%s: adding target device %s caused an alignment inconsistency: "
483 		       "physical_block_size=%u, logical_block_size=%u, "
484 		       "alignment_offset=%u, start=%llu",
485 		       dm_device_name(ti->table->md), bdevname(bdev, b),
486 		       q->limits.physical_block_size,
487 		       q->limits.logical_block_size,
488 		       q->limits.alignment_offset,
489 		       (unsigned long long) start << SECTOR_SHIFT);
490 
491 	limits->zoned = blk_queue_zoned_model(q);
492 
493 	return 0;
494 }
495 
496 /*
497  * Decrement a device's use count and remove it if necessary.
498  */
dm_put_device(struct dm_target * ti,struct dm_dev * d)499 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
500 {
501 	int found = 0;
502 	struct list_head *devices = &ti->table->devices;
503 	struct dm_dev_internal *dd;
504 
505 	list_for_each_entry(dd, devices, list) {
506 		if (dd->dm_dev == d) {
507 			found = 1;
508 			break;
509 		}
510 	}
511 	if (!found) {
512 		DMWARN("%s: device %s not in table devices list",
513 		       dm_device_name(ti->table->md), d->name);
514 		return;
515 	}
516 	if (refcount_dec_and_test(&dd->count)) {
517 		dm_put_table_device(ti->table->md, d);
518 		list_del(&dd->list);
519 		kfree(dd);
520 	}
521 }
522 EXPORT_SYMBOL(dm_put_device);
523 
524 /*
525  * Checks to see if the target joins onto the end of the table.
526  */
adjoin(struct dm_table * table,struct dm_target * ti)527 static int adjoin(struct dm_table *table, struct dm_target *ti)
528 {
529 	struct dm_target *prev;
530 
531 	if (!table->num_targets)
532 		return !ti->begin;
533 
534 	prev = &table->targets[table->num_targets - 1];
535 	return (ti->begin == (prev->begin + prev->len));
536 }
537 
538 /*
539  * Used to dynamically allocate the arg array.
540  *
541  * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
542  * process messages even if some device is suspended. These messages have a
543  * small fixed number of arguments.
544  *
545  * On the other hand, dm-switch needs to process bulk data using messages and
546  * excessive use of GFP_NOIO could cause trouble.
547  */
realloc_argv(unsigned * size,char ** old_argv)548 static char **realloc_argv(unsigned *size, char **old_argv)
549 {
550 	char **argv;
551 	unsigned new_size;
552 	gfp_t gfp;
553 
554 	if (*size) {
555 		new_size = *size * 2;
556 		gfp = GFP_KERNEL;
557 	} else {
558 		new_size = 8;
559 		gfp = GFP_NOIO;
560 	}
561 	argv = kmalloc_array(new_size, sizeof(*argv), gfp);
562 	if (argv && old_argv) {
563 		memcpy(argv, old_argv, *size * sizeof(*argv));
564 		*size = new_size;
565 	}
566 
567 	kfree(old_argv);
568 	return argv;
569 }
570 
571 /*
572  * Destructively splits up the argument list to pass to ctr.
573  */
dm_split_args(int * argc,char *** argvp,char * input)574 int dm_split_args(int *argc, char ***argvp, char *input)
575 {
576 	char *start, *end = input, *out, **argv = NULL;
577 	unsigned array_size = 0;
578 
579 	*argc = 0;
580 
581 	if (!input) {
582 		*argvp = NULL;
583 		return 0;
584 	}
585 
586 	argv = realloc_argv(&array_size, argv);
587 	if (!argv)
588 		return -ENOMEM;
589 
590 	while (1) {
591 		/* Skip whitespace */
592 		start = skip_spaces(end);
593 
594 		if (!*start)
595 			break;	/* success, we hit the end */
596 
597 		/* 'out' is used to remove any back-quotes */
598 		end = out = start;
599 		while (*end) {
600 			/* Everything apart from '\0' can be quoted */
601 			if (*end == '\\' && *(end + 1)) {
602 				*out++ = *(end + 1);
603 				end += 2;
604 				continue;
605 			}
606 
607 			if (isspace(*end))
608 				break;	/* end of token */
609 
610 			*out++ = *end++;
611 		}
612 
613 		/* have we already filled the array ? */
614 		if ((*argc + 1) > array_size) {
615 			argv = realloc_argv(&array_size, argv);
616 			if (!argv)
617 				return -ENOMEM;
618 		}
619 
620 		/* we know this is whitespace */
621 		if (*end)
622 			end++;
623 
624 		/* terminate the string and put it in the array */
625 		*out = '\0';
626 		argv[*argc] = start;
627 		(*argc)++;
628 	}
629 
630 	*argvp = argv;
631 	return 0;
632 }
633 
634 /*
635  * Impose necessary and sufficient conditions on a devices's table such
636  * that any incoming bio which respects its logical_block_size can be
637  * processed successfully.  If it falls across the boundary between
638  * two or more targets, the size of each piece it gets split into must
639  * be compatible with the logical_block_size of the target processing it.
640  */
validate_hardware_logical_block_alignment(struct dm_table * table,struct queue_limits * limits)641 static int validate_hardware_logical_block_alignment(struct dm_table *table,
642 						 struct queue_limits *limits)
643 {
644 	/*
645 	 * This function uses arithmetic modulo the logical_block_size
646 	 * (in units of 512-byte sectors).
647 	 */
648 	unsigned short device_logical_block_size_sects =
649 		limits->logical_block_size >> SECTOR_SHIFT;
650 
651 	/*
652 	 * Offset of the start of the next table entry, mod logical_block_size.
653 	 */
654 	unsigned short next_target_start = 0;
655 
656 	/*
657 	 * Given an aligned bio that extends beyond the end of a
658 	 * target, how many sectors must the next target handle?
659 	 */
660 	unsigned short remaining = 0;
661 
662 	struct dm_target *uninitialized_var(ti);
663 	struct queue_limits ti_limits;
664 	unsigned i;
665 
666 	/*
667 	 * Check each entry in the table in turn.
668 	 */
669 	for (i = 0; i < dm_table_get_num_targets(table); i++) {
670 		ti = dm_table_get_target(table, i);
671 
672 		blk_set_stacking_limits(&ti_limits);
673 
674 		/* combine all target devices' limits */
675 		if (ti->type->iterate_devices)
676 			ti->type->iterate_devices(ti, dm_set_device_limits,
677 						  &ti_limits);
678 
679 		/*
680 		 * If the remaining sectors fall entirely within this
681 		 * table entry are they compatible with its logical_block_size?
682 		 */
683 		if (remaining < ti->len &&
684 		    remaining & ((ti_limits.logical_block_size >>
685 				  SECTOR_SHIFT) - 1))
686 			break;	/* Error */
687 
688 		next_target_start =
689 		    (unsigned short) ((next_target_start + ti->len) &
690 				      (device_logical_block_size_sects - 1));
691 		remaining = next_target_start ?
692 		    device_logical_block_size_sects - next_target_start : 0;
693 	}
694 
695 	if (remaining) {
696 		DMWARN("%s: table line %u (start sect %llu len %llu) "
697 		       "not aligned to h/w logical block size %u",
698 		       dm_device_name(table->md), i,
699 		       (unsigned long long) ti->begin,
700 		       (unsigned long long) ti->len,
701 		       limits->logical_block_size);
702 		return -EINVAL;
703 	}
704 
705 	return 0;
706 }
707 
dm_table_add_target(struct dm_table * t,const char * type,sector_t start,sector_t len,char * params)708 int dm_table_add_target(struct dm_table *t, const char *type,
709 			sector_t start, sector_t len, char *params)
710 {
711 	int r = -EINVAL, argc;
712 	char **argv;
713 	struct dm_target *tgt;
714 
715 	if (t->singleton) {
716 		DMERR("%s: target type %s must appear alone in table",
717 		      dm_device_name(t->md), t->targets->type->name);
718 		return -EINVAL;
719 	}
720 
721 	BUG_ON(t->num_targets >= t->num_allocated);
722 
723 	tgt = t->targets + t->num_targets;
724 	memset(tgt, 0, sizeof(*tgt));
725 
726 	if (!len) {
727 		DMERR("%s: zero-length target", dm_device_name(t->md));
728 		return -EINVAL;
729 	}
730 
731 	tgt->type = dm_get_target_type(type);
732 	if (!tgt->type) {
733 		DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
734 		return -EINVAL;
735 	}
736 
737 	if (dm_target_needs_singleton(tgt->type)) {
738 		if (t->num_targets) {
739 			tgt->error = "singleton target type must appear alone in table";
740 			goto bad;
741 		}
742 		t->singleton = true;
743 	}
744 
745 	if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
746 		tgt->error = "target type may not be included in a read-only table";
747 		goto bad;
748 	}
749 
750 	if (t->immutable_target_type) {
751 		if (t->immutable_target_type != tgt->type) {
752 			tgt->error = "immutable target type cannot be mixed with other target types";
753 			goto bad;
754 		}
755 	} else if (dm_target_is_immutable(tgt->type)) {
756 		if (t->num_targets) {
757 			tgt->error = "immutable target type cannot be mixed with other target types";
758 			goto bad;
759 		}
760 		t->immutable_target_type = tgt->type;
761 	}
762 
763 	if (dm_target_has_integrity(tgt->type))
764 		t->integrity_added = 1;
765 
766 	tgt->table = t;
767 	tgt->begin = start;
768 	tgt->len = len;
769 	tgt->error = "Unknown error";
770 
771 	/*
772 	 * Does this target adjoin the previous one ?
773 	 */
774 	if (!adjoin(t, tgt)) {
775 		tgt->error = "Gap in table";
776 		goto bad;
777 	}
778 
779 	r = dm_split_args(&argc, &argv, params);
780 	if (r) {
781 		tgt->error = "couldn't split parameters (insufficient memory)";
782 		goto bad;
783 	}
784 
785 	r = tgt->type->ctr(tgt, argc, argv);
786 	kfree(argv);
787 	if (r)
788 		goto bad;
789 
790 	t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
791 
792 	if (!tgt->num_discard_bios && tgt->discards_supported)
793 		DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
794 		       dm_device_name(t->md), type);
795 
796 	return 0;
797 
798  bad:
799 	DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
800 	dm_put_target_type(tgt->type);
801 	return r;
802 }
803 
804 /*
805  * Target argument parsing helpers.
806  */
validate_next_arg(const struct dm_arg * arg,struct dm_arg_set * arg_set,unsigned * value,char ** error,unsigned grouped)807 static int validate_next_arg(const struct dm_arg *arg,
808 			     struct dm_arg_set *arg_set,
809 			     unsigned *value, char **error, unsigned grouped)
810 {
811 	const char *arg_str = dm_shift_arg(arg_set);
812 	char dummy;
813 
814 	if (!arg_str ||
815 	    (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
816 	    (*value < arg->min) ||
817 	    (*value > arg->max) ||
818 	    (grouped && arg_set->argc < *value)) {
819 		*error = arg->error;
820 		return -EINVAL;
821 	}
822 
823 	return 0;
824 }
825 
dm_read_arg(const struct dm_arg * arg,struct dm_arg_set * arg_set,unsigned * value,char ** error)826 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
827 		unsigned *value, char **error)
828 {
829 	return validate_next_arg(arg, arg_set, value, error, 0);
830 }
831 EXPORT_SYMBOL(dm_read_arg);
832 
dm_read_arg_group(const struct dm_arg * arg,struct dm_arg_set * arg_set,unsigned * value,char ** error)833 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
834 		      unsigned *value, char **error)
835 {
836 	return validate_next_arg(arg, arg_set, value, error, 1);
837 }
838 EXPORT_SYMBOL(dm_read_arg_group);
839 
dm_shift_arg(struct dm_arg_set * as)840 const char *dm_shift_arg(struct dm_arg_set *as)
841 {
842 	char *r;
843 
844 	if (as->argc) {
845 		as->argc--;
846 		r = *as->argv;
847 		as->argv++;
848 		return r;
849 	}
850 
851 	return NULL;
852 }
853 EXPORT_SYMBOL(dm_shift_arg);
854 
dm_consume_args(struct dm_arg_set * as,unsigned num_args)855 void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
856 {
857 	BUG_ON(as->argc < num_args);
858 	as->argc -= num_args;
859 	as->argv += num_args;
860 }
861 EXPORT_SYMBOL(dm_consume_args);
862 
__table_type_bio_based(enum dm_queue_mode table_type)863 static bool __table_type_bio_based(enum dm_queue_mode table_type)
864 {
865 	return (table_type == DM_TYPE_BIO_BASED ||
866 		table_type == DM_TYPE_DAX_BIO_BASED ||
867 		table_type == DM_TYPE_NVME_BIO_BASED);
868 }
869 
__table_type_request_based(enum dm_queue_mode table_type)870 static bool __table_type_request_based(enum dm_queue_mode table_type)
871 {
872 	return table_type == DM_TYPE_REQUEST_BASED;
873 }
874 
dm_table_set_type(struct dm_table * t,enum dm_queue_mode type)875 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
876 {
877 	t->type = type;
878 }
879 EXPORT_SYMBOL_GPL(dm_table_set_type);
880 
881 /* validate the dax capability of the target device span */
device_supports_dax(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)882 int device_supports_dax(struct dm_target *ti, struct dm_dev *dev,
883 			sector_t start, sector_t len, void *data)
884 {
885 	int blocksize = *(int *) data;
886 
887 	return generic_fsdax_supported(dev->dax_dev, dev->bdev, blocksize,
888 				       start, len);
889 }
890 
891 /* Check devices support synchronous DAX */
device_dax_synchronous(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)892 static int device_dax_synchronous(struct dm_target *ti, struct dm_dev *dev,
893 				  sector_t start, sector_t len, void *data)
894 {
895 	return dev->dax_dev && dax_synchronous(dev->dax_dev);
896 }
897 
dm_table_supports_dax(struct dm_table * t,iterate_devices_callout_fn iterate_fn,int * blocksize)898 bool dm_table_supports_dax(struct dm_table *t,
899 			   iterate_devices_callout_fn iterate_fn, int *blocksize)
900 {
901 	struct dm_target *ti;
902 	unsigned i;
903 
904 	/* Ensure that all targets support DAX. */
905 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
906 		ti = dm_table_get_target(t, i);
907 
908 		if (!ti->type->direct_access)
909 			return false;
910 
911 		if (!ti->type->iterate_devices ||
912 		    !ti->type->iterate_devices(ti, iterate_fn, blocksize))
913 			return false;
914 	}
915 
916 	return true;
917 }
918 
919 static bool dm_table_does_not_support_partial_completion(struct dm_table *t);
920 
921 struct verify_rq_based_data {
922 	unsigned sq_count;
923 	unsigned mq_count;
924 };
925 
device_is_rq_based(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)926 static int device_is_rq_based(struct dm_target *ti, struct dm_dev *dev,
927 			      sector_t start, sector_t len, void *data)
928 {
929 	struct request_queue *q = bdev_get_queue(dev->bdev);
930 	struct verify_rq_based_data *v = data;
931 
932 	if (queue_is_mq(q))
933 		v->mq_count++;
934 	else
935 		v->sq_count++;
936 
937 	return queue_is_mq(q);
938 }
939 
dm_table_determine_type(struct dm_table * t)940 static int dm_table_determine_type(struct dm_table *t)
941 {
942 	unsigned i;
943 	unsigned bio_based = 0, request_based = 0, hybrid = 0;
944 	struct verify_rq_based_data v = {.sq_count = 0, .mq_count = 0};
945 	struct dm_target *tgt;
946 	struct list_head *devices = dm_table_get_devices(t);
947 	enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
948 	int page_size = PAGE_SIZE;
949 
950 	if (t->type != DM_TYPE_NONE) {
951 		/* target already set the table's type */
952 		if (t->type == DM_TYPE_BIO_BASED) {
953 			/* possibly upgrade to a variant of bio-based */
954 			goto verify_bio_based;
955 		}
956 		BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
957 		BUG_ON(t->type == DM_TYPE_NVME_BIO_BASED);
958 		goto verify_rq_based;
959 	}
960 
961 	for (i = 0; i < t->num_targets; i++) {
962 		tgt = t->targets + i;
963 		if (dm_target_hybrid(tgt))
964 			hybrid = 1;
965 		else if (dm_target_request_based(tgt))
966 			request_based = 1;
967 		else
968 			bio_based = 1;
969 
970 		if (bio_based && request_based) {
971 			DMERR("Inconsistent table: different target types"
972 			      " can't be mixed up");
973 			return -EINVAL;
974 		}
975 	}
976 
977 	if (hybrid && !bio_based && !request_based) {
978 		/*
979 		 * The targets can work either way.
980 		 * Determine the type from the live device.
981 		 * Default to bio-based if device is new.
982 		 */
983 		if (__table_type_request_based(live_md_type))
984 			request_based = 1;
985 		else
986 			bio_based = 1;
987 	}
988 
989 	if (bio_based) {
990 verify_bio_based:
991 		/* We must use this table as bio-based */
992 		t->type = DM_TYPE_BIO_BASED;
993 		if (dm_table_supports_dax(t, device_supports_dax, &page_size) ||
994 		    (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
995 			t->type = DM_TYPE_DAX_BIO_BASED;
996 		} else {
997 			/* Check if upgrading to NVMe bio-based is valid or required */
998 			tgt = dm_table_get_immutable_target(t);
999 			if (tgt && !tgt->max_io_len && dm_table_does_not_support_partial_completion(t)) {
1000 				t->type = DM_TYPE_NVME_BIO_BASED;
1001 				goto verify_rq_based; /* must be stacked directly on NVMe (blk-mq) */
1002 			} else if (list_empty(devices) && live_md_type == DM_TYPE_NVME_BIO_BASED) {
1003 				t->type = DM_TYPE_NVME_BIO_BASED;
1004 			}
1005 		}
1006 		return 0;
1007 	}
1008 
1009 	BUG_ON(!request_based); /* No targets in this table */
1010 
1011 	t->type = DM_TYPE_REQUEST_BASED;
1012 
1013 verify_rq_based:
1014 	/*
1015 	 * Request-based dm supports only tables that have a single target now.
1016 	 * To support multiple targets, request splitting support is needed,
1017 	 * and that needs lots of changes in the block-layer.
1018 	 * (e.g. request completion process for partial completion.)
1019 	 */
1020 	if (t->num_targets > 1) {
1021 		DMERR("%s DM doesn't support multiple targets",
1022 		      t->type == DM_TYPE_NVME_BIO_BASED ? "nvme bio-based" : "request-based");
1023 		return -EINVAL;
1024 	}
1025 
1026 	if (list_empty(devices)) {
1027 		int srcu_idx;
1028 		struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
1029 
1030 		/* inherit live table's type */
1031 		if (live_table)
1032 			t->type = live_table->type;
1033 		dm_put_live_table(t->md, srcu_idx);
1034 		return 0;
1035 	}
1036 
1037 	tgt = dm_table_get_immutable_target(t);
1038 	if (!tgt) {
1039 		DMERR("table load rejected: immutable target is required");
1040 		return -EINVAL;
1041 	} else if (tgt->max_io_len) {
1042 		DMERR("table load rejected: immutable target that splits IO is not supported");
1043 		return -EINVAL;
1044 	}
1045 
1046 	/* Non-request-stackable devices can't be used for request-based dm */
1047 	if (!tgt->type->iterate_devices ||
1048 	    !tgt->type->iterate_devices(tgt, device_is_rq_based, &v)) {
1049 		DMERR("table load rejected: including non-request-stackable devices");
1050 		return -EINVAL;
1051 	}
1052 	if (v.sq_count > 0) {
1053 		DMERR("table load rejected: not all devices are blk-mq request-stackable");
1054 		return -EINVAL;
1055 	}
1056 
1057 	return 0;
1058 }
1059 
dm_table_get_type(struct dm_table * t)1060 enum dm_queue_mode dm_table_get_type(struct dm_table *t)
1061 {
1062 	return t->type;
1063 }
1064 
dm_table_get_immutable_target_type(struct dm_table * t)1065 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
1066 {
1067 	return t->immutable_target_type;
1068 }
1069 
dm_table_get_immutable_target(struct dm_table * t)1070 struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
1071 {
1072 	/* Immutable target is implicitly a singleton */
1073 	if (t->num_targets > 1 ||
1074 	    !dm_target_is_immutable(t->targets[0].type))
1075 		return NULL;
1076 
1077 	return t->targets;
1078 }
1079 
dm_table_get_wildcard_target(struct dm_table * t)1080 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
1081 {
1082 	struct dm_target *ti;
1083 	unsigned i;
1084 
1085 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1086 		ti = dm_table_get_target(t, i);
1087 		if (dm_target_is_wildcard(ti->type))
1088 			return ti;
1089 	}
1090 
1091 	return NULL;
1092 }
1093 
dm_table_bio_based(struct dm_table * t)1094 bool dm_table_bio_based(struct dm_table *t)
1095 {
1096 	return __table_type_bio_based(dm_table_get_type(t));
1097 }
1098 
dm_table_request_based(struct dm_table * t)1099 bool dm_table_request_based(struct dm_table *t)
1100 {
1101 	return __table_type_request_based(dm_table_get_type(t));
1102 }
1103 
dm_table_alloc_md_mempools(struct dm_table * t,struct mapped_device * md)1104 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1105 {
1106 	enum dm_queue_mode type = dm_table_get_type(t);
1107 	unsigned per_io_data_size = 0;
1108 	unsigned min_pool_size = 0;
1109 	struct dm_target *ti;
1110 	unsigned i;
1111 
1112 	if (unlikely(type == DM_TYPE_NONE)) {
1113 		DMWARN("no table type is set, can't allocate mempools");
1114 		return -EINVAL;
1115 	}
1116 
1117 	if (__table_type_bio_based(type))
1118 		for (i = 0; i < t->num_targets; i++) {
1119 			ti = t->targets + i;
1120 			per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1121 			min_pool_size = max(min_pool_size, ti->num_flush_bios);
1122 		}
1123 
1124 	t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported,
1125 					   per_io_data_size, min_pool_size);
1126 	if (!t->mempools)
1127 		return -ENOMEM;
1128 
1129 	return 0;
1130 }
1131 
dm_table_free_md_mempools(struct dm_table * t)1132 void dm_table_free_md_mempools(struct dm_table *t)
1133 {
1134 	dm_free_md_mempools(t->mempools);
1135 	t->mempools = NULL;
1136 }
1137 
dm_table_get_md_mempools(struct dm_table * t)1138 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
1139 {
1140 	return t->mempools;
1141 }
1142 
setup_indexes(struct dm_table * t)1143 static int setup_indexes(struct dm_table *t)
1144 {
1145 	int i;
1146 	unsigned int total = 0;
1147 	sector_t *indexes;
1148 
1149 	/* allocate the space for *all* the indexes */
1150 	for (i = t->depth - 2; i >= 0; i--) {
1151 		t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1152 		total += t->counts[i];
1153 	}
1154 
1155 	indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
1156 	if (!indexes)
1157 		return -ENOMEM;
1158 
1159 	/* set up internal nodes, bottom-up */
1160 	for (i = t->depth - 2; i >= 0; i--) {
1161 		t->index[i] = indexes;
1162 		indexes += (KEYS_PER_NODE * t->counts[i]);
1163 		setup_btree_index(i, t);
1164 	}
1165 
1166 	return 0;
1167 }
1168 
1169 /*
1170  * Builds the btree to index the map.
1171  */
dm_table_build_index(struct dm_table * t)1172 static int dm_table_build_index(struct dm_table *t)
1173 {
1174 	int r = 0;
1175 	unsigned int leaf_nodes;
1176 
1177 	/* how many indexes will the btree have ? */
1178 	leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1179 	t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1180 
1181 	/* leaf layer has already been set up */
1182 	t->counts[t->depth - 1] = leaf_nodes;
1183 	t->index[t->depth - 1] = t->highs;
1184 
1185 	if (t->depth >= 2)
1186 		r = setup_indexes(t);
1187 
1188 	return r;
1189 }
1190 
integrity_profile_exists(struct gendisk * disk)1191 static bool integrity_profile_exists(struct gendisk *disk)
1192 {
1193 	return !!blk_get_integrity(disk);
1194 }
1195 
1196 /*
1197  * Get a disk whose integrity profile reflects the table's profile.
1198  * Returns NULL if integrity support was inconsistent or unavailable.
1199  */
dm_table_get_integrity_disk(struct dm_table * t)1200 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
1201 {
1202 	struct list_head *devices = dm_table_get_devices(t);
1203 	struct dm_dev_internal *dd = NULL;
1204 	struct gendisk *prev_disk = NULL, *template_disk = NULL;
1205 	unsigned i;
1206 
1207 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1208 		struct dm_target *ti = dm_table_get_target(t, i);
1209 		if (!dm_target_passes_integrity(ti->type))
1210 			goto no_integrity;
1211 	}
1212 
1213 	list_for_each_entry(dd, devices, list) {
1214 		template_disk = dd->dm_dev->bdev->bd_disk;
1215 		if (!integrity_profile_exists(template_disk))
1216 			goto no_integrity;
1217 		else if (prev_disk &&
1218 			 blk_integrity_compare(prev_disk, template_disk) < 0)
1219 			goto no_integrity;
1220 		prev_disk = template_disk;
1221 	}
1222 
1223 	return template_disk;
1224 
1225 no_integrity:
1226 	if (prev_disk)
1227 		DMWARN("%s: integrity not set: %s and %s profile mismatch",
1228 		       dm_device_name(t->md),
1229 		       prev_disk->disk_name,
1230 		       template_disk->disk_name);
1231 	return NULL;
1232 }
1233 
1234 /*
1235  * Register the mapped device for blk_integrity support if the
1236  * underlying devices have an integrity profile.  But all devices may
1237  * not have matching profiles (checking all devices isn't reliable
1238  * during table load because this table may use other DM device(s) which
1239  * must be resumed before they will have an initialized integity
1240  * profile).  Consequently, stacked DM devices force a 2 stage integrity
1241  * profile validation: First pass during table load, final pass during
1242  * resume.
1243  */
dm_table_register_integrity(struct dm_table * t)1244 static int dm_table_register_integrity(struct dm_table *t)
1245 {
1246 	struct mapped_device *md = t->md;
1247 	struct gendisk *template_disk = NULL;
1248 
1249 	/* If target handles integrity itself do not register it here. */
1250 	if (t->integrity_added)
1251 		return 0;
1252 
1253 	template_disk = dm_table_get_integrity_disk(t);
1254 	if (!template_disk)
1255 		return 0;
1256 
1257 	if (!integrity_profile_exists(dm_disk(md))) {
1258 		t->integrity_supported = true;
1259 		/*
1260 		 * Register integrity profile during table load; we can do
1261 		 * this because the final profile must match during resume.
1262 		 */
1263 		blk_integrity_register(dm_disk(md),
1264 				       blk_get_integrity(template_disk));
1265 		return 0;
1266 	}
1267 
1268 	/*
1269 	 * If DM device already has an initialized integrity
1270 	 * profile the new profile should not conflict.
1271 	 */
1272 	if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1273 		DMWARN("%s: conflict with existing integrity profile: "
1274 		       "%s profile mismatch",
1275 		       dm_device_name(t->md),
1276 		       template_disk->disk_name);
1277 		return 1;
1278 	}
1279 
1280 	/* Preserve existing integrity profile */
1281 	t->integrity_supported = true;
1282 	return 0;
1283 }
1284 
1285 /*
1286  * Prepares the table for use by building the indices,
1287  * setting the type, and allocating mempools.
1288  */
dm_table_complete(struct dm_table * t)1289 int dm_table_complete(struct dm_table *t)
1290 {
1291 	int r;
1292 
1293 	r = dm_table_determine_type(t);
1294 	if (r) {
1295 		DMERR("unable to determine table type");
1296 		return r;
1297 	}
1298 
1299 	r = dm_table_build_index(t);
1300 	if (r) {
1301 		DMERR("unable to build btrees");
1302 		return r;
1303 	}
1304 
1305 	r = dm_table_register_integrity(t);
1306 	if (r) {
1307 		DMERR("could not register integrity profile.");
1308 		return r;
1309 	}
1310 
1311 	r = dm_table_alloc_md_mempools(t, t->md);
1312 	if (r)
1313 		DMERR("unable to allocate mempools");
1314 
1315 	return r;
1316 }
1317 
1318 static DEFINE_MUTEX(_event_lock);
dm_table_event_callback(struct dm_table * t,void (* fn)(void *),void * context)1319 void dm_table_event_callback(struct dm_table *t,
1320 			     void (*fn)(void *), void *context)
1321 {
1322 	mutex_lock(&_event_lock);
1323 	t->event_fn = fn;
1324 	t->event_context = context;
1325 	mutex_unlock(&_event_lock);
1326 }
1327 
dm_table_event(struct dm_table * t)1328 void dm_table_event(struct dm_table *t)
1329 {
1330 	/*
1331 	 * You can no longer call dm_table_event() from interrupt
1332 	 * context, use a bottom half instead.
1333 	 */
1334 	BUG_ON(in_interrupt());
1335 
1336 	mutex_lock(&_event_lock);
1337 	if (t->event_fn)
1338 		t->event_fn(t->event_context);
1339 	mutex_unlock(&_event_lock);
1340 }
1341 EXPORT_SYMBOL(dm_table_event);
1342 
dm_table_get_size(struct dm_table * t)1343 inline sector_t dm_table_get_size(struct dm_table *t)
1344 {
1345 	return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1346 }
1347 EXPORT_SYMBOL(dm_table_get_size);
1348 
dm_table_get_target(struct dm_table * t,unsigned int index)1349 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1350 {
1351 	if (index >= t->num_targets)
1352 		return NULL;
1353 
1354 	return t->targets + index;
1355 }
1356 
1357 /*
1358  * Search the btree for the correct target.
1359  *
1360  * Caller should check returned pointer for NULL
1361  * to trap I/O beyond end of device.
1362  */
dm_table_find_target(struct dm_table * t,sector_t sector)1363 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1364 {
1365 	unsigned int l, n = 0, k = 0;
1366 	sector_t *node;
1367 
1368 	if (unlikely(sector >= dm_table_get_size(t)))
1369 		return NULL;
1370 
1371 	for (l = 0; l < t->depth; l++) {
1372 		n = get_child(n, k);
1373 		node = get_node(t, l, n);
1374 
1375 		for (k = 0; k < KEYS_PER_NODE; k++)
1376 			if (node[k] >= sector)
1377 				break;
1378 	}
1379 
1380 	return &t->targets[(KEYS_PER_NODE * n) + k];
1381 }
1382 
count_device(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1383 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1384 			sector_t start, sector_t len, void *data)
1385 {
1386 	unsigned *num_devices = data;
1387 
1388 	(*num_devices)++;
1389 
1390 	return 0;
1391 }
1392 
1393 /*
1394  * Check whether a table has no data devices attached using each
1395  * target's iterate_devices method.
1396  * Returns false if the result is unknown because a target doesn't
1397  * support iterate_devices.
1398  */
dm_table_has_no_data_devices(struct dm_table * table)1399 bool dm_table_has_no_data_devices(struct dm_table *table)
1400 {
1401 	struct dm_target *ti;
1402 	unsigned i, num_devices;
1403 
1404 	for (i = 0; i < dm_table_get_num_targets(table); i++) {
1405 		ti = dm_table_get_target(table, i);
1406 
1407 		if (!ti->type->iterate_devices)
1408 			return false;
1409 
1410 		num_devices = 0;
1411 		ti->type->iterate_devices(ti, count_device, &num_devices);
1412 		if (num_devices)
1413 			return false;
1414 	}
1415 
1416 	return true;
1417 }
1418 
device_is_zoned_model(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1419 static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1420 				 sector_t start, sector_t len, void *data)
1421 {
1422 	struct request_queue *q = bdev_get_queue(dev->bdev);
1423 	enum blk_zoned_model *zoned_model = data;
1424 
1425 	return q && blk_queue_zoned_model(q) == *zoned_model;
1426 }
1427 
dm_table_supports_zoned_model(struct dm_table * t,enum blk_zoned_model zoned_model)1428 static bool dm_table_supports_zoned_model(struct dm_table *t,
1429 					  enum blk_zoned_model zoned_model)
1430 {
1431 	struct dm_target *ti;
1432 	unsigned i;
1433 
1434 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1435 		ti = dm_table_get_target(t, i);
1436 
1437 		if (zoned_model == BLK_ZONED_HM &&
1438 		    !dm_target_supports_zoned_hm(ti->type))
1439 			return false;
1440 
1441 		if (!ti->type->iterate_devices ||
1442 		    !ti->type->iterate_devices(ti, device_is_zoned_model, &zoned_model))
1443 			return false;
1444 	}
1445 
1446 	return true;
1447 }
1448 
device_matches_zone_sectors(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1449 static int device_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1450 				       sector_t start, sector_t len, void *data)
1451 {
1452 	struct request_queue *q = bdev_get_queue(dev->bdev);
1453 	unsigned int *zone_sectors = data;
1454 
1455 	return q && blk_queue_zone_sectors(q) == *zone_sectors;
1456 }
1457 
dm_table_matches_zone_sectors(struct dm_table * t,unsigned int zone_sectors)1458 static bool dm_table_matches_zone_sectors(struct dm_table *t,
1459 					  unsigned int zone_sectors)
1460 {
1461 	struct dm_target *ti;
1462 	unsigned i;
1463 
1464 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1465 		ti = dm_table_get_target(t, i);
1466 
1467 		if (!ti->type->iterate_devices ||
1468 		    !ti->type->iterate_devices(ti, device_matches_zone_sectors, &zone_sectors))
1469 			return false;
1470 	}
1471 
1472 	return true;
1473 }
1474 
validate_hardware_zoned_model(struct dm_table * table,enum blk_zoned_model zoned_model,unsigned int zone_sectors)1475 static int validate_hardware_zoned_model(struct dm_table *table,
1476 					 enum blk_zoned_model zoned_model,
1477 					 unsigned int zone_sectors)
1478 {
1479 	if (zoned_model == BLK_ZONED_NONE)
1480 		return 0;
1481 
1482 	if (!dm_table_supports_zoned_model(table, zoned_model)) {
1483 		DMERR("%s: zoned model is not consistent across all devices",
1484 		      dm_device_name(table->md));
1485 		return -EINVAL;
1486 	}
1487 
1488 	/* Check zone size validity and compatibility */
1489 	if (!zone_sectors || !is_power_of_2(zone_sectors))
1490 		return -EINVAL;
1491 
1492 	if (!dm_table_matches_zone_sectors(table, zone_sectors)) {
1493 		DMERR("%s: zone sectors is not consistent across all devices",
1494 		      dm_device_name(table->md));
1495 		return -EINVAL;
1496 	}
1497 
1498 	return 0;
1499 }
1500 
1501 /*
1502  * Establish the new table's queue_limits and validate them.
1503  */
dm_calculate_queue_limits(struct dm_table * table,struct queue_limits * limits)1504 int dm_calculate_queue_limits(struct dm_table *table,
1505 			      struct queue_limits *limits)
1506 {
1507 	struct dm_target *ti;
1508 	struct queue_limits ti_limits;
1509 	unsigned i;
1510 	enum blk_zoned_model zoned_model = BLK_ZONED_NONE;
1511 	unsigned int zone_sectors = 0;
1512 
1513 	blk_set_stacking_limits(limits);
1514 
1515 	for (i = 0; i < dm_table_get_num_targets(table); i++) {
1516 		blk_set_stacking_limits(&ti_limits);
1517 
1518 		ti = dm_table_get_target(table, i);
1519 
1520 		if (!ti->type->iterate_devices)
1521 			goto combine_limits;
1522 
1523 		/*
1524 		 * Combine queue limits of all the devices this target uses.
1525 		 */
1526 		ti->type->iterate_devices(ti, dm_set_device_limits,
1527 					  &ti_limits);
1528 
1529 		if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1530 			/*
1531 			 * After stacking all limits, validate all devices
1532 			 * in table support this zoned model and zone sectors.
1533 			 */
1534 			zoned_model = ti_limits.zoned;
1535 			zone_sectors = ti_limits.chunk_sectors;
1536 		}
1537 
1538 		/* Set I/O hints portion of queue limits */
1539 		if (ti->type->io_hints)
1540 			ti->type->io_hints(ti, &ti_limits);
1541 
1542 		/*
1543 		 * Check each device area is consistent with the target's
1544 		 * overall queue limits.
1545 		 */
1546 		if (ti->type->iterate_devices(ti, device_area_is_invalid,
1547 					      &ti_limits))
1548 			return -EINVAL;
1549 
1550 combine_limits:
1551 		/*
1552 		 * Merge this target's queue limits into the overall limits
1553 		 * for the table.
1554 		 */
1555 		if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1556 			DMWARN("%s: adding target device "
1557 			       "(start sect %llu len %llu) "
1558 			       "caused an alignment inconsistency",
1559 			       dm_device_name(table->md),
1560 			       (unsigned long long) ti->begin,
1561 			       (unsigned long long) ti->len);
1562 
1563 		/*
1564 		 * FIXME: this should likely be moved to blk_stack_limits(), would
1565 		 * also eliminate limits->zoned stacking hack in dm_set_device_limits()
1566 		 */
1567 		if (limits->zoned == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1568 			/*
1569 			 * By default, the stacked limits zoned model is set to
1570 			 * BLK_ZONED_NONE in blk_set_stacking_limits(). Update
1571 			 * this model using the first target model reported
1572 			 * that is not BLK_ZONED_NONE. This will be either the
1573 			 * first target device zoned model or the model reported
1574 			 * by the target .io_hints.
1575 			 */
1576 			limits->zoned = ti_limits.zoned;
1577 		}
1578 	}
1579 
1580 	/*
1581 	 * Verify that the zoned model and zone sectors, as determined before
1582 	 * any .io_hints override, are the same across all devices in the table.
1583 	 * - this is especially relevant if .io_hints is emulating a disk-managed
1584 	 *   zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices.
1585 	 * BUT...
1586 	 */
1587 	if (limits->zoned != BLK_ZONED_NONE) {
1588 		/*
1589 		 * ...IF the above limits stacking determined a zoned model
1590 		 * validate that all of the table's devices conform to it.
1591 		 */
1592 		zoned_model = limits->zoned;
1593 		zone_sectors = limits->chunk_sectors;
1594 	}
1595 	if (validate_hardware_zoned_model(table, zoned_model, zone_sectors))
1596 		return -EINVAL;
1597 
1598 	return validate_hardware_logical_block_alignment(table, limits);
1599 }
1600 
1601 /*
1602  * Verify that all devices have an integrity profile that matches the
1603  * DM device's registered integrity profile.  If the profiles don't
1604  * match then unregister the DM device's integrity profile.
1605  */
dm_table_verify_integrity(struct dm_table * t)1606 static void dm_table_verify_integrity(struct dm_table *t)
1607 {
1608 	struct gendisk *template_disk = NULL;
1609 
1610 	if (t->integrity_added)
1611 		return;
1612 
1613 	if (t->integrity_supported) {
1614 		/*
1615 		 * Verify that the original integrity profile
1616 		 * matches all the devices in this table.
1617 		 */
1618 		template_disk = dm_table_get_integrity_disk(t);
1619 		if (template_disk &&
1620 		    blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1621 			return;
1622 	}
1623 
1624 	if (integrity_profile_exists(dm_disk(t->md))) {
1625 		DMWARN("%s: unable to establish an integrity profile",
1626 		       dm_device_name(t->md));
1627 		blk_integrity_unregister(dm_disk(t->md));
1628 	}
1629 }
1630 
device_flush_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1631 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1632 				sector_t start, sector_t len, void *data)
1633 {
1634 	unsigned long flush = (unsigned long) data;
1635 	struct request_queue *q = bdev_get_queue(dev->bdev);
1636 
1637 	return q && (q->queue_flags & flush);
1638 }
1639 
dm_table_supports_flush(struct dm_table * t,unsigned long flush)1640 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1641 {
1642 	struct dm_target *ti;
1643 	unsigned i;
1644 
1645 	/*
1646 	 * Require at least one underlying device to support flushes.
1647 	 * t->devices includes internal dm devices such as mirror logs
1648 	 * so we need to use iterate_devices here, which targets
1649 	 * supporting flushes must provide.
1650 	 */
1651 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1652 		ti = dm_table_get_target(t, i);
1653 
1654 		if (!ti->num_flush_bios)
1655 			continue;
1656 
1657 		if (ti->flush_supported)
1658 			return true;
1659 
1660 		if (ti->type->iterate_devices &&
1661 		    ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1662 			return true;
1663 	}
1664 
1665 	return false;
1666 }
1667 
device_dax_write_cache_enabled(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1668 static int device_dax_write_cache_enabled(struct dm_target *ti,
1669 					  struct dm_dev *dev, sector_t start,
1670 					  sector_t len, void *data)
1671 {
1672 	struct dax_device *dax_dev = dev->dax_dev;
1673 
1674 	if (!dax_dev)
1675 		return false;
1676 
1677 	if (dax_write_cache_enabled(dax_dev))
1678 		return true;
1679 	return false;
1680 }
1681 
dm_table_supports_dax_write_cache(struct dm_table * t)1682 static int dm_table_supports_dax_write_cache(struct dm_table *t)
1683 {
1684 	struct dm_target *ti;
1685 	unsigned i;
1686 
1687 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1688 		ti = dm_table_get_target(t, i);
1689 
1690 		if (ti->type->iterate_devices &&
1691 		    ti->type->iterate_devices(ti,
1692 				device_dax_write_cache_enabled, NULL))
1693 			return true;
1694 	}
1695 
1696 	return false;
1697 }
1698 
device_is_nonrot(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1699 static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1700 			    sector_t start, sector_t len, void *data)
1701 {
1702 	struct request_queue *q = bdev_get_queue(dev->bdev);
1703 
1704 	return q && blk_queue_nonrot(q);
1705 }
1706 
device_is_not_random(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1707 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1708 			     sector_t start, sector_t len, void *data)
1709 {
1710 	struct request_queue *q = bdev_get_queue(dev->bdev);
1711 
1712 	return q && !blk_queue_add_random(q);
1713 }
1714 
dm_table_all_devices_attribute(struct dm_table * t,iterate_devices_callout_fn func)1715 static bool dm_table_all_devices_attribute(struct dm_table *t,
1716 					   iterate_devices_callout_fn func)
1717 {
1718 	struct dm_target *ti;
1719 	unsigned i;
1720 
1721 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1722 		ti = dm_table_get_target(t, i);
1723 
1724 		if (!ti->type->iterate_devices ||
1725 		    !ti->type->iterate_devices(ti, func, NULL))
1726 			return false;
1727 	}
1728 
1729 	return true;
1730 }
1731 
device_no_partial_completion(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1732 static int device_no_partial_completion(struct dm_target *ti, struct dm_dev *dev,
1733 					sector_t start, sector_t len, void *data)
1734 {
1735 	char b[BDEVNAME_SIZE];
1736 
1737 	/* For now, NVMe devices are the only devices of this class */
1738 	return (strncmp(bdevname(dev->bdev, b), "nvme", 4) == 0);
1739 }
1740 
dm_table_does_not_support_partial_completion(struct dm_table * t)1741 static bool dm_table_does_not_support_partial_completion(struct dm_table *t)
1742 {
1743 	return dm_table_all_devices_attribute(t, device_no_partial_completion);
1744 }
1745 
device_not_write_same_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1746 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1747 					 sector_t start, sector_t len, void *data)
1748 {
1749 	struct request_queue *q = bdev_get_queue(dev->bdev);
1750 
1751 	return q && !q->limits.max_write_same_sectors;
1752 }
1753 
dm_table_supports_write_same(struct dm_table * t)1754 static bool dm_table_supports_write_same(struct dm_table *t)
1755 {
1756 	struct dm_target *ti;
1757 	unsigned i;
1758 
1759 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1760 		ti = dm_table_get_target(t, i);
1761 
1762 		if (!ti->num_write_same_bios)
1763 			return false;
1764 
1765 		if (!ti->type->iterate_devices ||
1766 		    ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1767 			return false;
1768 	}
1769 
1770 	return true;
1771 }
1772 
device_not_write_zeroes_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1773 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1774 					   sector_t start, sector_t len, void *data)
1775 {
1776 	struct request_queue *q = bdev_get_queue(dev->bdev);
1777 
1778 	return q && !q->limits.max_write_zeroes_sectors;
1779 }
1780 
dm_table_supports_write_zeroes(struct dm_table * t)1781 static bool dm_table_supports_write_zeroes(struct dm_table *t)
1782 {
1783 	struct dm_target *ti;
1784 	unsigned i = 0;
1785 
1786 	while (i < dm_table_get_num_targets(t)) {
1787 		ti = dm_table_get_target(t, i++);
1788 
1789 		if (!ti->num_write_zeroes_bios)
1790 			return false;
1791 
1792 		if (!ti->type->iterate_devices ||
1793 		    ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1794 			return false;
1795 	}
1796 
1797 	return true;
1798 }
1799 
device_not_discard_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1800 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1801 				      sector_t start, sector_t len, void *data)
1802 {
1803 	struct request_queue *q = bdev_get_queue(dev->bdev);
1804 
1805 	return q && !blk_queue_discard(q);
1806 }
1807 
dm_table_supports_discards(struct dm_table * t)1808 static bool dm_table_supports_discards(struct dm_table *t)
1809 {
1810 	struct dm_target *ti;
1811 	unsigned i;
1812 
1813 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1814 		ti = dm_table_get_target(t, i);
1815 
1816 		if (!ti->num_discard_bios)
1817 			return false;
1818 
1819 		/*
1820 		 * Either the target provides discard support (as implied by setting
1821 		 * 'discards_supported') or it relies on _all_ data devices having
1822 		 * discard support.
1823 		 */
1824 		if (!ti->discards_supported &&
1825 		    (!ti->type->iterate_devices ||
1826 		     ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1827 			return false;
1828 	}
1829 
1830 	return true;
1831 }
1832 
device_not_secure_erase_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1833 static int device_not_secure_erase_capable(struct dm_target *ti,
1834 					   struct dm_dev *dev, sector_t start,
1835 					   sector_t len, void *data)
1836 {
1837 	struct request_queue *q = bdev_get_queue(dev->bdev);
1838 
1839 	return q && !blk_queue_secure_erase(q);
1840 }
1841 
dm_table_supports_secure_erase(struct dm_table * t)1842 static bool dm_table_supports_secure_erase(struct dm_table *t)
1843 {
1844 	struct dm_target *ti;
1845 	unsigned int i;
1846 
1847 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1848 		ti = dm_table_get_target(t, i);
1849 
1850 		if (!ti->num_secure_erase_bios)
1851 			return false;
1852 
1853 		if (!ti->type->iterate_devices ||
1854 		    ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
1855 			return false;
1856 	}
1857 
1858 	return true;
1859 }
1860 
device_requires_stable_pages(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1861 static int device_requires_stable_pages(struct dm_target *ti,
1862 					struct dm_dev *dev, sector_t start,
1863 					sector_t len, void *data)
1864 {
1865 	struct request_queue *q = bdev_get_queue(dev->bdev);
1866 
1867 	return q && bdi_cap_stable_pages_required(q->backing_dev_info);
1868 }
1869 
1870 /*
1871  * If any underlying device requires stable pages, a table must require
1872  * them as well.  Only targets that support iterate_devices are considered:
1873  * don't want error, zero, etc to require stable pages.
1874  */
dm_table_requires_stable_pages(struct dm_table * t)1875 static bool dm_table_requires_stable_pages(struct dm_table *t)
1876 {
1877 	struct dm_target *ti;
1878 	unsigned i;
1879 
1880 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1881 		ti = dm_table_get_target(t, i);
1882 
1883 		if (ti->type->iterate_devices &&
1884 		    ti->type->iterate_devices(ti, device_requires_stable_pages, NULL))
1885 			return true;
1886 	}
1887 
1888 	return false;
1889 }
1890 
dm_table_set_restrictions(struct dm_table * t,struct request_queue * q,struct queue_limits * limits)1891 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1892 			       struct queue_limits *limits)
1893 {
1894 	bool wc = false, fua = false;
1895 	int page_size = PAGE_SIZE;
1896 
1897 	/*
1898 	 * Copy table's limits to the DM device's request_queue
1899 	 */
1900 	q->limits = *limits;
1901 
1902 	if (!dm_table_supports_discards(t)) {
1903 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
1904 		/* Must also clear discard limits... */
1905 		q->limits.max_discard_sectors = 0;
1906 		q->limits.max_hw_discard_sectors = 0;
1907 		q->limits.discard_granularity = 0;
1908 		q->limits.discard_alignment = 0;
1909 		q->limits.discard_misaligned = 0;
1910 	} else
1911 		blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
1912 
1913 	if (dm_table_supports_secure_erase(t))
1914 		blk_queue_flag_set(QUEUE_FLAG_SECERASE, q);
1915 
1916 	if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
1917 		wc = true;
1918 		if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
1919 			fua = true;
1920 	}
1921 	blk_queue_write_cache(q, wc, fua);
1922 
1923 	if (dm_table_supports_dax(t, device_supports_dax, &page_size)) {
1924 		blk_queue_flag_set(QUEUE_FLAG_DAX, q);
1925 		if (dm_table_supports_dax(t, device_dax_synchronous, NULL))
1926 			set_dax_synchronous(t->md->dax_dev);
1927 	}
1928 	else
1929 		blk_queue_flag_clear(QUEUE_FLAG_DAX, q);
1930 
1931 	if (dm_table_supports_dax_write_cache(t))
1932 		dax_write_cache(t->md->dax_dev, true);
1933 
1934 	/* Ensure that all underlying devices are non-rotational. */
1935 	if (dm_table_all_devices_attribute(t, device_is_nonrot))
1936 		blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
1937 	else
1938 		blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
1939 
1940 	if (!dm_table_supports_write_same(t))
1941 		q->limits.max_write_same_sectors = 0;
1942 	if (!dm_table_supports_write_zeroes(t))
1943 		q->limits.max_write_zeroes_sectors = 0;
1944 
1945 	dm_table_verify_integrity(t);
1946 
1947 	/*
1948 	 * Some devices don't use blk_integrity but still want stable pages
1949 	 * because they do their own checksumming.
1950 	 */
1951 	if (dm_table_requires_stable_pages(t))
1952 		q->backing_dev_info->capabilities |= BDI_CAP_STABLE_WRITES;
1953 	else
1954 		q->backing_dev_info->capabilities &= ~BDI_CAP_STABLE_WRITES;
1955 
1956 	/*
1957 	 * Determine whether or not this queue's I/O timings contribute
1958 	 * to the entropy pool, Only request-based targets use this.
1959 	 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1960 	 * have it set.
1961 	 */
1962 	if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
1963 		blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
1964 
1965 	/*
1966 	 * For a zoned target, the number of zones should be updated for the
1967 	 * correct value to be exposed in sysfs queue/nr_zones. For a BIO based
1968 	 * target, this is all that is needed. For a request based target, the
1969 	 * queue zone bitmaps must also be updated.
1970 	 * Use blk_revalidate_disk_zones() to handle this.
1971 	 */
1972 	if (blk_queue_is_zoned(q))
1973 		blk_revalidate_disk_zones(t->md->disk);
1974 
1975 	/* Allow reads to exceed readahead limits */
1976 	q->backing_dev_info->io_pages = limits->max_sectors >> (PAGE_SHIFT - 9);
1977 }
1978 
dm_table_get_num_targets(struct dm_table * t)1979 unsigned int dm_table_get_num_targets(struct dm_table *t)
1980 {
1981 	return t->num_targets;
1982 }
1983 
dm_table_get_devices(struct dm_table * t)1984 struct list_head *dm_table_get_devices(struct dm_table *t)
1985 {
1986 	return &t->devices;
1987 }
1988 
dm_table_get_mode(struct dm_table * t)1989 fmode_t dm_table_get_mode(struct dm_table *t)
1990 {
1991 	return t->mode;
1992 }
1993 EXPORT_SYMBOL(dm_table_get_mode);
1994 
1995 enum suspend_mode {
1996 	PRESUSPEND,
1997 	PRESUSPEND_UNDO,
1998 	POSTSUSPEND,
1999 };
2000 
suspend_targets(struct dm_table * t,enum suspend_mode mode)2001 static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
2002 {
2003 	int i = t->num_targets;
2004 	struct dm_target *ti = t->targets;
2005 
2006 	lockdep_assert_held(&t->md->suspend_lock);
2007 
2008 	while (i--) {
2009 		switch (mode) {
2010 		case PRESUSPEND:
2011 			if (ti->type->presuspend)
2012 				ti->type->presuspend(ti);
2013 			break;
2014 		case PRESUSPEND_UNDO:
2015 			if (ti->type->presuspend_undo)
2016 				ti->type->presuspend_undo(ti);
2017 			break;
2018 		case POSTSUSPEND:
2019 			if (ti->type->postsuspend)
2020 				ti->type->postsuspend(ti);
2021 			break;
2022 		}
2023 		ti++;
2024 	}
2025 }
2026 
dm_table_presuspend_targets(struct dm_table * t)2027 void dm_table_presuspend_targets(struct dm_table *t)
2028 {
2029 	if (!t)
2030 		return;
2031 
2032 	suspend_targets(t, PRESUSPEND);
2033 }
2034 
dm_table_presuspend_undo_targets(struct dm_table * t)2035 void dm_table_presuspend_undo_targets(struct dm_table *t)
2036 {
2037 	if (!t)
2038 		return;
2039 
2040 	suspend_targets(t, PRESUSPEND_UNDO);
2041 }
2042 
dm_table_postsuspend_targets(struct dm_table * t)2043 void dm_table_postsuspend_targets(struct dm_table *t)
2044 {
2045 	if (!t)
2046 		return;
2047 
2048 	suspend_targets(t, POSTSUSPEND);
2049 }
2050 
dm_table_resume_targets(struct dm_table * t)2051 int dm_table_resume_targets(struct dm_table *t)
2052 {
2053 	int i, r = 0;
2054 
2055 	lockdep_assert_held(&t->md->suspend_lock);
2056 
2057 	for (i = 0; i < t->num_targets; i++) {
2058 		struct dm_target *ti = t->targets + i;
2059 
2060 		if (!ti->type->preresume)
2061 			continue;
2062 
2063 		r = ti->type->preresume(ti);
2064 		if (r) {
2065 			DMERR("%s: %s: preresume failed, error = %d",
2066 			      dm_device_name(t->md), ti->type->name, r);
2067 			return r;
2068 		}
2069 	}
2070 
2071 	for (i = 0; i < t->num_targets; i++) {
2072 		struct dm_target *ti = t->targets + i;
2073 
2074 		if (ti->type->resume)
2075 			ti->type->resume(ti);
2076 	}
2077 
2078 	return 0;
2079 }
2080 
dm_table_add_target_callbacks(struct dm_table * t,struct dm_target_callbacks * cb)2081 void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
2082 {
2083 	list_add(&cb->list, &t->target_callbacks);
2084 }
2085 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
2086 
dm_table_any_congested(struct dm_table * t,int bdi_bits)2087 int dm_table_any_congested(struct dm_table *t, int bdi_bits)
2088 {
2089 	struct dm_dev_internal *dd;
2090 	struct list_head *devices = dm_table_get_devices(t);
2091 	struct dm_target_callbacks *cb;
2092 	int r = 0;
2093 
2094 	list_for_each_entry(dd, devices, list) {
2095 		struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
2096 		char b[BDEVNAME_SIZE];
2097 
2098 		if (likely(q))
2099 			r |= bdi_congested(q->backing_dev_info, bdi_bits);
2100 		else
2101 			DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
2102 				     dm_device_name(t->md),
2103 				     bdevname(dd->dm_dev->bdev, b));
2104 	}
2105 
2106 	list_for_each_entry(cb, &t->target_callbacks, list)
2107 		if (cb->congested_fn)
2108 			r |= cb->congested_fn(cb, bdi_bits);
2109 
2110 	return r;
2111 }
2112 
dm_table_get_md(struct dm_table * t)2113 struct mapped_device *dm_table_get_md(struct dm_table *t)
2114 {
2115 	return t->md;
2116 }
2117 EXPORT_SYMBOL(dm_table_get_md);
2118 
dm_table_device_name(struct dm_table * t)2119 const char *dm_table_device_name(struct dm_table *t)
2120 {
2121 	return dm_device_name(t->md);
2122 }
2123 EXPORT_SYMBOL_GPL(dm_table_device_name);
2124 
dm_table_run_md_queue_async(struct dm_table * t)2125 void dm_table_run_md_queue_async(struct dm_table *t)
2126 {
2127 	struct mapped_device *md;
2128 	struct request_queue *queue;
2129 
2130 	if (!dm_table_request_based(t))
2131 		return;
2132 
2133 	md = dm_table_get_md(t);
2134 	queue = dm_get_md_queue(md);
2135 	if (queue)
2136 		blk_mq_run_hw_queues(queue, true);
2137 }
2138 EXPORT_SYMBOL(dm_table_run_md_queue_async);
2139 
2140