1 /*
2 * Copyright (C) 2001 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm-core.h"
9
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/atomic.h>
21 #include <linux/blk-mq.h>
22 #include <linux/mount.h>
23 #include <linux/dax.h>
24
25 #define DM_MSG_PREFIX "table"
26
27 #define MAX_DEPTH 16
28 #define NODE_SIZE L1_CACHE_BYTES
29 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
30 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
31
32 struct dm_table {
33 struct mapped_device *md;
34 enum dm_queue_mode type;
35
36 /* btree table */
37 unsigned int depth;
38 unsigned int counts[MAX_DEPTH]; /* in nodes */
39 sector_t *index[MAX_DEPTH];
40
41 unsigned int num_targets;
42 unsigned int num_allocated;
43 sector_t *highs;
44 struct dm_target *targets;
45
46 struct target_type *immutable_target_type;
47
48 bool integrity_supported:1;
49 bool singleton:1;
50 bool all_blk_mq:1;
51 unsigned integrity_added:1;
52
53 /*
54 * Indicates the rw permissions for the new logical
55 * device. This should be a combination of FMODE_READ
56 * and FMODE_WRITE.
57 */
58 fmode_t mode;
59
60 /* a list of devices used by this table */
61 struct list_head devices;
62
63 /* events get handed up using this callback */
64 void (*event_fn)(void *);
65 void *event_context;
66
67 struct dm_md_mempools *mempools;
68
69 struct list_head target_callbacks;
70 };
71
72 /*
73 * Similar to ceiling(log_size(n))
74 */
int_log(unsigned int n,unsigned int base)75 static unsigned int int_log(unsigned int n, unsigned int base)
76 {
77 int result = 0;
78
79 while (n > 1) {
80 n = dm_div_up(n, base);
81 result++;
82 }
83
84 return result;
85 }
86
87 /*
88 * Calculate the index of the child node of the n'th node k'th key.
89 */
get_child(unsigned int n,unsigned int k)90 static inline unsigned int get_child(unsigned int n, unsigned int k)
91 {
92 return (n * CHILDREN_PER_NODE) + k;
93 }
94
95 /*
96 * Return the n'th node of level l from table t.
97 */
get_node(struct dm_table * t,unsigned int l,unsigned int n)98 static inline sector_t *get_node(struct dm_table *t,
99 unsigned int l, unsigned int n)
100 {
101 return t->index[l] + (n * KEYS_PER_NODE);
102 }
103
104 /*
105 * Return the highest key that you could lookup from the n'th
106 * node on level l of the btree.
107 */
high(struct dm_table * t,unsigned int l,unsigned int n)108 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
109 {
110 for (; l < t->depth - 1; l++)
111 n = get_child(n, CHILDREN_PER_NODE - 1);
112
113 if (n >= t->counts[l])
114 return (sector_t) - 1;
115
116 return get_node(t, l, n)[KEYS_PER_NODE - 1];
117 }
118
119 /*
120 * Fills in a level of the btree based on the highs of the level
121 * below it.
122 */
setup_btree_index(unsigned int l,struct dm_table * t)123 static int setup_btree_index(unsigned int l, struct dm_table *t)
124 {
125 unsigned int n, k;
126 sector_t *node;
127
128 for (n = 0U; n < t->counts[l]; n++) {
129 node = get_node(t, l, n);
130
131 for (k = 0U; k < KEYS_PER_NODE; k++)
132 node[k] = high(t, l + 1, get_child(n, k));
133 }
134
135 return 0;
136 }
137
dm_vcalloc(unsigned long nmemb,unsigned long elem_size)138 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
139 {
140 unsigned long size;
141 void *addr;
142
143 /*
144 * Check that we're not going to overflow.
145 */
146 if (nmemb > (ULONG_MAX / elem_size))
147 return NULL;
148
149 size = nmemb * elem_size;
150 addr = vzalloc(size);
151
152 return addr;
153 }
154 EXPORT_SYMBOL(dm_vcalloc);
155
156 /*
157 * highs, and targets are managed as dynamic arrays during a
158 * table load.
159 */
alloc_targets(struct dm_table * t,unsigned int num)160 static int alloc_targets(struct dm_table *t, unsigned int num)
161 {
162 sector_t *n_highs;
163 struct dm_target *n_targets;
164
165 /*
166 * Allocate both the target array and offset array at once.
167 * Append an empty entry to catch sectors beyond the end of
168 * the device.
169 */
170 n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
171 sizeof(sector_t));
172 if (!n_highs)
173 return -ENOMEM;
174
175 n_targets = (struct dm_target *) (n_highs + num);
176
177 memset(n_highs, -1, sizeof(*n_highs) * num);
178 vfree(t->highs);
179
180 t->num_allocated = num;
181 t->highs = n_highs;
182 t->targets = n_targets;
183
184 return 0;
185 }
186
dm_table_create(struct dm_table ** result,fmode_t mode,unsigned num_targets,struct mapped_device * md)187 int dm_table_create(struct dm_table **result, fmode_t mode,
188 unsigned num_targets, struct mapped_device *md)
189 {
190 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
191
192 if (!t)
193 return -ENOMEM;
194
195 INIT_LIST_HEAD(&t->devices);
196 INIT_LIST_HEAD(&t->target_callbacks);
197
198 if (!num_targets)
199 num_targets = KEYS_PER_NODE;
200
201 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
202
203 if (!num_targets) {
204 kfree(t);
205 return -ENOMEM;
206 }
207
208 if (alloc_targets(t, num_targets)) {
209 kfree(t);
210 return -ENOMEM;
211 }
212
213 t->type = DM_TYPE_NONE;
214 t->mode = mode;
215 t->md = md;
216 *result = t;
217 return 0;
218 }
219
free_devices(struct list_head * devices,struct mapped_device * md)220 static void free_devices(struct list_head *devices, struct mapped_device *md)
221 {
222 struct list_head *tmp, *next;
223
224 list_for_each_safe(tmp, next, devices) {
225 struct dm_dev_internal *dd =
226 list_entry(tmp, struct dm_dev_internal, list);
227 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
228 dm_device_name(md), dd->dm_dev->name);
229 dm_put_table_device(md, dd->dm_dev);
230 kfree(dd);
231 }
232 }
233
dm_table_destroy(struct dm_table * t)234 void dm_table_destroy(struct dm_table *t)
235 {
236 unsigned int i;
237
238 if (!t)
239 return;
240
241 /* free the indexes */
242 if (t->depth >= 2)
243 vfree(t->index[t->depth - 2]);
244
245 /* free the targets */
246 for (i = 0; i < t->num_targets; i++) {
247 struct dm_target *tgt = t->targets + i;
248
249 if (tgt->type->dtr)
250 tgt->type->dtr(tgt);
251
252 dm_put_target_type(tgt->type);
253 }
254
255 vfree(t->highs);
256
257 /* free the device list */
258 free_devices(&t->devices, t->md);
259
260 dm_free_md_mempools(t->mempools);
261
262 kfree(t);
263 }
264
265 /*
266 * See if we've already got a device in the list.
267 */
find_device(struct list_head * l,dev_t dev)268 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
269 {
270 struct dm_dev_internal *dd;
271
272 list_for_each_entry (dd, l, list)
273 if (dd->dm_dev->bdev->bd_dev == dev)
274 return dd;
275
276 return NULL;
277 }
278
279 /*
280 * If possible, this checks an area of a destination device is invalid.
281 */
device_area_is_invalid(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)282 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
283 sector_t start, sector_t len, void *data)
284 {
285 struct request_queue *q;
286 struct queue_limits *limits = data;
287 struct block_device *bdev = dev->bdev;
288 sector_t dev_size =
289 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
290 unsigned short logical_block_size_sectors =
291 limits->logical_block_size >> SECTOR_SHIFT;
292 char b[BDEVNAME_SIZE];
293
294 /*
295 * Some devices exist without request functions,
296 * such as loop devices not yet bound to backing files.
297 * Forbid the use of such devices.
298 */
299 q = bdev_get_queue(bdev);
300 if (!q || !q->make_request_fn) {
301 DMWARN("%s: %s is not yet initialised: "
302 "start=%llu, len=%llu, dev_size=%llu",
303 dm_device_name(ti->table->md), bdevname(bdev, b),
304 (unsigned long long)start,
305 (unsigned long long)len,
306 (unsigned long long)dev_size);
307 return 1;
308 }
309
310 if (!dev_size)
311 return 0;
312
313 if ((start >= dev_size) || (start + len > dev_size)) {
314 DMWARN("%s: %s too small for target: "
315 "start=%llu, len=%llu, dev_size=%llu",
316 dm_device_name(ti->table->md), bdevname(bdev, b),
317 (unsigned long long)start,
318 (unsigned long long)len,
319 (unsigned long long)dev_size);
320 return 1;
321 }
322
323 /*
324 * If the target is mapped to zoned block device(s), check
325 * that the zones are not partially mapped.
326 */
327 if (bdev_zoned_model(bdev) != BLK_ZONED_NONE) {
328 unsigned int zone_sectors = bdev_zone_sectors(bdev);
329
330 if (start & (zone_sectors - 1)) {
331 DMWARN("%s: start=%llu not aligned to h/w zone size %u of %s",
332 dm_device_name(ti->table->md),
333 (unsigned long long)start,
334 zone_sectors, bdevname(bdev, b));
335 return 1;
336 }
337
338 /*
339 * Note: The last zone of a zoned block device may be smaller
340 * than other zones. So for a target mapping the end of a
341 * zoned block device with such a zone, len would not be zone
342 * aligned. We do not allow such last smaller zone to be part
343 * of the mapping here to ensure that mappings with multiple
344 * devices do not end up with a smaller zone in the middle of
345 * the sector range.
346 */
347 if (len & (zone_sectors - 1)) {
348 DMWARN("%s: len=%llu not aligned to h/w zone size %u of %s",
349 dm_device_name(ti->table->md),
350 (unsigned long long)len,
351 zone_sectors, bdevname(bdev, b));
352 return 1;
353 }
354 }
355
356 if (logical_block_size_sectors <= 1)
357 return 0;
358
359 if (start & (logical_block_size_sectors - 1)) {
360 DMWARN("%s: start=%llu not aligned to h/w "
361 "logical block size %u of %s",
362 dm_device_name(ti->table->md),
363 (unsigned long long)start,
364 limits->logical_block_size, bdevname(bdev, b));
365 return 1;
366 }
367
368 if (len & (logical_block_size_sectors - 1)) {
369 DMWARN("%s: len=%llu not aligned to h/w "
370 "logical block size %u of %s",
371 dm_device_name(ti->table->md),
372 (unsigned long long)len,
373 limits->logical_block_size, bdevname(bdev, b));
374 return 1;
375 }
376
377 return 0;
378 }
379
380 /*
381 * This upgrades the mode on an already open dm_dev, being
382 * careful to leave things as they were if we fail to reopen the
383 * device and not to touch the existing bdev field in case
384 * it is accessed concurrently inside dm_table_any_congested().
385 */
upgrade_mode(struct dm_dev_internal * dd,fmode_t new_mode,struct mapped_device * md)386 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
387 struct mapped_device *md)
388 {
389 int r;
390 struct dm_dev *old_dev, *new_dev;
391
392 old_dev = dd->dm_dev;
393
394 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
395 dd->dm_dev->mode | new_mode, &new_dev);
396 if (r)
397 return r;
398
399 dd->dm_dev = new_dev;
400 dm_put_table_device(md, old_dev);
401
402 return 0;
403 }
404
405 /*
406 * Convert the path to a device
407 */
dm_get_dev_t(const char * path)408 dev_t dm_get_dev_t(const char *path)
409 {
410 dev_t dev;
411 struct block_device *bdev;
412
413 bdev = lookup_bdev(path);
414 if (IS_ERR(bdev))
415 dev = name_to_dev_t(path);
416 else {
417 dev = bdev->bd_dev;
418 bdput(bdev);
419 }
420
421 return dev;
422 }
423 EXPORT_SYMBOL_GPL(dm_get_dev_t);
424
425 /*
426 * Add a device to the list, or just increment the usage count if
427 * it's already present.
428 */
dm_get_device(struct dm_target * ti,const char * path,fmode_t mode,struct dm_dev ** result)429 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
430 struct dm_dev **result)
431 {
432 int r;
433 dev_t dev;
434 struct dm_dev_internal *dd;
435 struct dm_table *t = ti->table;
436
437 BUG_ON(!t);
438
439 dev = dm_get_dev_t(path);
440 if (!dev)
441 return -ENODEV;
442
443 dd = find_device(&t->devices, dev);
444 if (!dd) {
445 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
446 if (!dd)
447 return -ENOMEM;
448
449 if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
450 kfree(dd);
451 return r;
452 }
453
454 refcount_set(&dd->count, 1);
455 list_add(&dd->list, &t->devices);
456 goto out;
457
458 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
459 r = upgrade_mode(dd, mode, t->md);
460 if (r)
461 return r;
462 }
463 refcount_inc(&dd->count);
464 out:
465 *result = dd->dm_dev;
466 return 0;
467 }
468 EXPORT_SYMBOL(dm_get_device);
469
dm_set_device_limits(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)470 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
471 sector_t start, sector_t len, void *data)
472 {
473 struct queue_limits *limits = data;
474 struct block_device *bdev = dev->bdev;
475 struct request_queue *q = bdev_get_queue(bdev);
476 char b[BDEVNAME_SIZE];
477
478 if (unlikely(!q)) {
479 DMWARN("%s: Cannot set limits for nonexistent device %s",
480 dm_device_name(ti->table->md), bdevname(bdev, b));
481 return 0;
482 }
483
484 if (bdev_stack_limits(limits, bdev, start) < 0)
485 DMWARN("%s: adding target device %s caused an alignment inconsistency: "
486 "physical_block_size=%u, logical_block_size=%u, "
487 "alignment_offset=%u, start=%llu",
488 dm_device_name(ti->table->md), bdevname(bdev, b),
489 q->limits.physical_block_size,
490 q->limits.logical_block_size,
491 q->limits.alignment_offset,
492 (unsigned long long) start << SECTOR_SHIFT);
493
494 limits->zoned = blk_queue_zoned_model(q);
495
496 return 0;
497 }
498
499 /*
500 * Decrement a device's use count and remove it if necessary.
501 */
dm_put_device(struct dm_target * ti,struct dm_dev * d)502 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
503 {
504 int found = 0;
505 struct list_head *devices = &ti->table->devices;
506 struct dm_dev_internal *dd;
507
508 list_for_each_entry(dd, devices, list) {
509 if (dd->dm_dev == d) {
510 found = 1;
511 break;
512 }
513 }
514 if (!found) {
515 DMWARN("%s: device %s not in table devices list",
516 dm_device_name(ti->table->md), d->name);
517 return;
518 }
519 if (refcount_dec_and_test(&dd->count)) {
520 dm_put_table_device(ti->table->md, d);
521 list_del(&dd->list);
522 kfree(dd);
523 }
524 }
525 EXPORT_SYMBOL(dm_put_device);
526
527 /*
528 * Checks to see if the target joins onto the end of the table.
529 */
adjoin(struct dm_table * table,struct dm_target * ti)530 static int adjoin(struct dm_table *table, struct dm_target *ti)
531 {
532 struct dm_target *prev;
533
534 if (!table->num_targets)
535 return !ti->begin;
536
537 prev = &table->targets[table->num_targets - 1];
538 return (ti->begin == (prev->begin + prev->len));
539 }
540
541 /*
542 * Used to dynamically allocate the arg array.
543 *
544 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
545 * process messages even if some device is suspended. These messages have a
546 * small fixed number of arguments.
547 *
548 * On the other hand, dm-switch needs to process bulk data using messages and
549 * excessive use of GFP_NOIO could cause trouble.
550 */
realloc_argv(unsigned * size,char ** old_argv)551 static char **realloc_argv(unsigned *size, char **old_argv)
552 {
553 char **argv;
554 unsigned new_size;
555 gfp_t gfp;
556
557 if (*size) {
558 new_size = *size * 2;
559 gfp = GFP_KERNEL;
560 } else {
561 new_size = 8;
562 gfp = GFP_NOIO;
563 }
564 argv = kmalloc_array(new_size, sizeof(*argv), gfp);
565 if (argv) {
566 memcpy(argv, old_argv, *size * sizeof(*argv));
567 *size = new_size;
568 }
569
570 kfree(old_argv);
571 return argv;
572 }
573
574 /*
575 * Destructively splits up the argument list to pass to ctr.
576 */
dm_split_args(int * argc,char *** argvp,char * input)577 int dm_split_args(int *argc, char ***argvp, char *input)
578 {
579 char *start, *end = input, *out, **argv = NULL;
580 unsigned array_size = 0;
581
582 *argc = 0;
583
584 if (!input) {
585 *argvp = NULL;
586 return 0;
587 }
588
589 argv = realloc_argv(&array_size, argv);
590 if (!argv)
591 return -ENOMEM;
592
593 while (1) {
594 /* Skip whitespace */
595 start = skip_spaces(end);
596
597 if (!*start)
598 break; /* success, we hit the end */
599
600 /* 'out' is used to remove any back-quotes */
601 end = out = start;
602 while (*end) {
603 /* Everything apart from '\0' can be quoted */
604 if (*end == '\\' && *(end + 1)) {
605 *out++ = *(end + 1);
606 end += 2;
607 continue;
608 }
609
610 if (isspace(*end))
611 break; /* end of token */
612
613 *out++ = *end++;
614 }
615
616 /* have we already filled the array ? */
617 if ((*argc + 1) > array_size) {
618 argv = realloc_argv(&array_size, argv);
619 if (!argv)
620 return -ENOMEM;
621 }
622
623 /* we know this is whitespace */
624 if (*end)
625 end++;
626
627 /* terminate the string and put it in the array */
628 *out = '\0';
629 argv[*argc] = start;
630 (*argc)++;
631 }
632
633 *argvp = argv;
634 return 0;
635 }
636
637 /*
638 * Impose necessary and sufficient conditions on a devices's table such
639 * that any incoming bio which respects its logical_block_size can be
640 * processed successfully. If it falls across the boundary between
641 * two or more targets, the size of each piece it gets split into must
642 * be compatible with the logical_block_size of the target processing it.
643 */
validate_hardware_logical_block_alignment(struct dm_table * table,struct queue_limits * limits)644 static int validate_hardware_logical_block_alignment(struct dm_table *table,
645 struct queue_limits *limits)
646 {
647 /*
648 * This function uses arithmetic modulo the logical_block_size
649 * (in units of 512-byte sectors).
650 */
651 unsigned short device_logical_block_size_sects =
652 limits->logical_block_size >> SECTOR_SHIFT;
653
654 /*
655 * Offset of the start of the next table entry, mod logical_block_size.
656 */
657 unsigned short next_target_start = 0;
658
659 /*
660 * Given an aligned bio that extends beyond the end of a
661 * target, how many sectors must the next target handle?
662 */
663 unsigned short remaining = 0;
664
665 struct dm_target *uninitialized_var(ti);
666 struct queue_limits ti_limits;
667 unsigned i;
668
669 /*
670 * Check each entry in the table in turn.
671 */
672 for (i = 0; i < dm_table_get_num_targets(table); i++) {
673 ti = dm_table_get_target(table, i);
674
675 blk_set_stacking_limits(&ti_limits);
676
677 /* combine all target devices' limits */
678 if (ti->type->iterate_devices)
679 ti->type->iterate_devices(ti, dm_set_device_limits,
680 &ti_limits);
681
682 /*
683 * If the remaining sectors fall entirely within this
684 * table entry are they compatible with its logical_block_size?
685 */
686 if (remaining < ti->len &&
687 remaining & ((ti_limits.logical_block_size >>
688 SECTOR_SHIFT) - 1))
689 break; /* Error */
690
691 next_target_start =
692 (unsigned short) ((next_target_start + ti->len) &
693 (device_logical_block_size_sects - 1));
694 remaining = next_target_start ?
695 device_logical_block_size_sects - next_target_start : 0;
696 }
697
698 if (remaining) {
699 DMWARN("%s: table line %u (start sect %llu len %llu) "
700 "not aligned to h/w logical block size %u",
701 dm_device_name(table->md), i,
702 (unsigned long long) ti->begin,
703 (unsigned long long) ti->len,
704 limits->logical_block_size);
705 return -EINVAL;
706 }
707
708 return 0;
709 }
710
dm_table_add_target(struct dm_table * t,const char * type,sector_t start,sector_t len,char * params)711 int dm_table_add_target(struct dm_table *t, const char *type,
712 sector_t start, sector_t len, char *params)
713 {
714 int r = -EINVAL, argc;
715 char **argv;
716 struct dm_target *tgt;
717
718 if (t->singleton) {
719 DMERR("%s: target type %s must appear alone in table",
720 dm_device_name(t->md), t->targets->type->name);
721 return -EINVAL;
722 }
723
724 BUG_ON(t->num_targets >= t->num_allocated);
725
726 tgt = t->targets + t->num_targets;
727 memset(tgt, 0, sizeof(*tgt));
728
729 if (!len) {
730 DMERR("%s: zero-length target", dm_device_name(t->md));
731 return -EINVAL;
732 }
733
734 tgt->type = dm_get_target_type(type);
735 if (!tgt->type) {
736 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
737 return -EINVAL;
738 }
739
740 if (dm_target_needs_singleton(tgt->type)) {
741 if (t->num_targets) {
742 tgt->error = "singleton target type must appear alone in table";
743 goto bad;
744 }
745 t->singleton = true;
746 }
747
748 if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
749 tgt->error = "target type may not be included in a read-only table";
750 goto bad;
751 }
752
753 if (t->immutable_target_type) {
754 if (t->immutable_target_type != tgt->type) {
755 tgt->error = "immutable target type cannot be mixed with other target types";
756 goto bad;
757 }
758 } else if (dm_target_is_immutable(tgt->type)) {
759 if (t->num_targets) {
760 tgt->error = "immutable target type cannot be mixed with other target types";
761 goto bad;
762 }
763 t->immutable_target_type = tgt->type;
764 }
765
766 if (dm_target_has_integrity(tgt->type))
767 t->integrity_added = 1;
768
769 tgt->table = t;
770 tgt->begin = start;
771 tgt->len = len;
772 tgt->error = "Unknown error";
773
774 /*
775 * Does this target adjoin the previous one ?
776 */
777 if (!adjoin(t, tgt)) {
778 tgt->error = "Gap in table";
779 goto bad;
780 }
781
782 r = dm_split_args(&argc, &argv, params);
783 if (r) {
784 tgt->error = "couldn't split parameters (insufficient memory)";
785 goto bad;
786 }
787
788 r = tgt->type->ctr(tgt, argc, argv);
789 kfree(argv);
790 if (r)
791 goto bad;
792
793 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
794
795 if (!tgt->num_discard_bios && tgt->discards_supported)
796 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
797 dm_device_name(t->md), type);
798
799 return 0;
800
801 bad:
802 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
803 dm_put_target_type(tgt->type);
804 return r;
805 }
806
807 /*
808 * Target argument parsing helpers.
809 */
validate_next_arg(const struct dm_arg * arg,struct dm_arg_set * arg_set,unsigned * value,char ** error,unsigned grouped)810 static int validate_next_arg(const struct dm_arg *arg,
811 struct dm_arg_set *arg_set,
812 unsigned *value, char **error, unsigned grouped)
813 {
814 const char *arg_str = dm_shift_arg(arg_set);
815 char dummy;
816
817 if (!arg_str ||
818 (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
819 (*value < arg->min) ||
820 (*value > arg->max) ||
821 (grouped && arg_set->argc < *value)) {
822 *error = arg->error;
823 return -EINVAL;
824 }
825
826 return 0;
827 }
828
dm_read_arg(const struct dm_arg * arg,struct dm_arg_set * arg_set,unsigned * value,char ** error)829 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
830 unsigned *value, char **error)
831 {
832 return validate_next_arg(arg, arg_set, value, error, 0);
833 }
834 EXPORT_SYMBOL(dm_read_arg);
835
dm_read_arg_group(const struct dm_arg * arg,struct dm_arg_set * arg_set,unsigned * value,char ** error)836 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
837 unsigned *value, char **error)
838 {
839 return validate_next_arg(arg, arg_set, value, error, 1);
840 }
841 EXPORT_SYMBOL(dm_read_arg_group);
842
dm_shift_arg(struct dm_arg_set * as)843 const char *dm_shift_arg(struct dm_arg_set *as)
844 {
845 char *r;
846
847 if (as->argc) {
848 as->argc--;
849 r = *as->argv;
850 as->argv++;
851 return r;
852 }
853
854 return NULL;
855 }
856 EXPORT_SYMBOL(dm_shift_arg);
857
dm_consume_args(struct dm_arg_set * as,unsigned num_args)858 void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
859 {
860 BUG_ON(as->argc < num_args);
861 as->argc -= num_args;
862 as->argv += num_args;
863 }
864 EXPORT_SYMBOL(dm_consume_args);
865
__table_type_bio_based(enum dm_queue_mode table_type)866 static bool __table_type_bio_based(enum dm_queue_mode table_type)
867 {
868 return (table_type == DM_TYPE_BIO_BASED ||
869 table_type == DM_TYPE_DAX_BIO_BASED ||
870 table_type == DM_TYPE_NVME_BIO_BASED);
871 }
872
__table_type_request_based(enum dm_queue_mode table_type)873 static bool __table_type_request_based(enum dm_queue_mode table_type)
874 {
875 return (table_type == DM_TYPE_REQUEST_BASED ||
876 table_type == DM_TYPE_MQ_REQUEST_BASED);
877 }
878
dm_table_set_type(struct dm_table * t,enum dm_queue_mode type)879 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
880 {
881 t->type = type;
882 }
883 EXPORT_SYMBOL_GPL(dm_table_set_type);
884
device_supports_dax(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)885 static int device_supports_dax(struct dm_target *ti, struct dm_dev *dev,
886 sector_t start, sector_t len, void *data)
887 {
888 return bdev_dax_supported(dev->bdev, PAGE_SIZE);
889 }
890
dm_table_supports_dax(struct dm_table * t)891 static bool dm_table_supports_dax(struct dm_table *t)
892 {
893 struct dm_target *ti;
894 unsigned i;
895
896 /* Ensure that all targets support DAX. */
897 for (i = 0; i < dm_table_get_num_targets(t); i++) {
898 ti = dm_table_get_target(t, i);
899
900 if (!ti->type->direct_access)
901 return false;
902
903 if (!ti->type->iterate_devices ||
904 !ti->type->iterate_devices(ti, device_supports_dax, NULL))
905 return false;
906 }
907
908 return true;
909 }
910
911 static bool dm_table_does_not_support_partial_completion(struct dm_table *t);
912
913 struct verify_rq_based_data {
914 unsigned sq_count;
915 unsigned mq_count;
916 };
917
device_is_rq_based(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)918 static int device_is_rq_based(struct dm_target *ti, struct dm_dev *dev,
919 sector_t start, sector_t len, void *data)
920 {
921 struct request_queue *q = bdev_get_queue(dev->bdev);
922 struct verify_rq_based_data *v = data;
923
924 if (q->mq_ops)
925 v->mq_count++;
926 else
927 v->sq_count++;
928
929 return queue_is_rq_based(q);
930 }
931
dm_table_determine_type(struct dm_table * t)932 static int dm_table_determine_type(struct dm_table *t)
933 {
934 unsigned i;
935 unsigned bio_based = 0, request_based = 0, hybrid = 0;
936 struct verify_rq_based_data v = {.sq_count = 0, .mq_count = 0};
937 struct dm_target *tgt;
938 struct list_head *devices = dm_table_get_devices(t);
939 enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
940
941 if (t->type != DM_TYPE_NONE) {
942 /* target already set the table's type */
943 if (t->type == DM_TYPE_BIO_BASED) {
944 /* possibly upgrade to a variant of bio-based */
945 goto verify_bio_based;
946 }
947 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
948 BUG_ON(t->type == DM_TYPE_NVME_BIO_BASED);
949 goto verify_rq_based;
950 }
951
952 for (i = 0; i < t->num_targets; i++) {
953 tgt = t->targets + i;
954 if (dm_target_hybrid(tgt))
955 hybrid = 1;
956 else if (dm_target_request_based(tgt))
957 request_based = 1;
958 else
959 bio_based = 1;
960
961 if (bio_based && request_based) {
962 DMERR("Inconsistent table: different target types"
963 " can't be mixed up");
964 return -EINVAL;
965 }
966 }
967
968 if (hybrid && !bio_based && !request_based) {
969 /*
970 * The targets can work either way.
971 * Determine the type from the live device.
972 * Default to bio-based if device is new.
973 */
974 if (__table_type_request_based(live_md_type))
975 request_based = 1;
976 else
977 bio_based = 1;
978 }
979
980 if (bio_based) {
981 verify_bio_based:
982 /* We must use this table as bio-based */
983 t->type = DM_TYPE_BIO_BASED;
984 if (dm_table_supports_dax(t) ||
985 (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
986 t->type = DM_TYPE_DAX_BIO_BASED;
987 } else {
988 /* Check if upgrading to NVMe bio-based is valid or required */
989 tgt = dm_table_get_immutable_target(t);
990 if (tgt && !tgt->max_io_len && dm_table_does_not_support_partial_completion(t)) {
991 t->type = DM_TYPE_NVME_BIO_BASED;
992 goto verify_rq_based; /* must be stacked directly on NVMe (blk-mq) */
993 } else if (list_empty(devices) && live_md_type == DM_TYPE_NVME_BIO_BASED) {
994 t->type = DM_TYPE_NVME_BIO_BASED;
995 }
996 }
997 return 0;
998 }
999
1000 BUG_ON(!request_based); /* No targets in this table */
1001
1002 /*
1003 * The only way to establish DM_TYPE_MQ_REQUEST_BASED is by
1004 * having a compatible target use dm_table_set_type.
1005 */
1006 t->type = DM_TYPE_REQUEST_BASED;
1007
1008 verify_rq_based:
1009 /*
1010 * Request-based dm supports only tables that have a single target now.
1011 * To support multiple targets, request splitting support is needed,
1012 * and that needs lots of changes in the block-layer.
1013 * (e.g. request completion process for partial completion.)
1014 */
1015 if (t->num_targets > 1) {
1016 DMERR("%s DM doesn't support multiple targets",
1017 t->type == DM_TYPE_NVME_BIO_BASED ? "nvme bio-based" : "request-based");
1018 return -EINVAL;
1019 }
1020
1021 if (list_empty(devices)) {
1022 int srcu_idx;
1023 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
1024
1025 /* inherit live table's type and all_blk_mq */
1026 if (live_table) {
1027 t->type = live_table->type;
1028 t->all_blk_mq = live_table->all_blk_mq;
1029 }
1030 dm_put_live_table(t->md, srcu_idx);
1031 return 0;
1032 }
1033
1034 tgt = dm_table_get_immutable_target(t);
1035 if (!tgt) {
1036 DMERR("table load rejected: immutable target is required");
1037 return -EINVAL;
1038 } else if (tgt->max_io_len) {
1039 DMERR("table load rejected: immutable target that splits IO is not supported");
1040 return -EINVAL;
1041 }
1042
1043 /* Non-request-stackable devices can't be used for request-based dm */
1044 if (!tgt->type->iterate_devices ||
1045 !tgt->type->iterate_devices(tgt, device_is_rq_based, &v)) {
1046 DMERR("table load rejected: including non-request-stackable devices");
1047 return -EINVAL;
1048 }
1049 if (v.sq_count && v.mq_count) {
1050 DMERR("table load rejected: not all devices are blk-mq request-stackable");
1051 return -EINVAL;
1052 }
1053 t->all_blk_mq = v.mq_count > 0;
1054
1055 if (!t->all_blk_mq &&
1056 (t->type == DM_TYPE_MQ_REQUEST_BASED || t->type == DM_TYPE_NVME_BIO_BASED)) {
1057 DMERR("table load rejected: all devices are not blk-mq request-stackable");
1058 return -EINVAL;
1059 }
1060
1061 return 0;
1062 }
1063
dm_table_get_type(struct dm_table * t)1064 enum dm_queue_mode dm_table_get_type(struct dm_table *t)
1065 {
1066 return t->type;
1067 }
1068
dm_table_get_immutable_target_type(struct dm_table * t)1069 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
1070 {
1071 return t->immutable_target_type;
1072 }
1073
dm_table_get_immutable_target(struct dm_table * t)1074 struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
1075 {
1076 /* Immutable target is implicitly a singleton */
1077 if (t->num_targets > 1 ||
1078 !dm_target_is_immutable(t->targets[0].type))
1079 return NULL;
1080
1081 return t->targets;
1082 }
1083
dm_table_get_wildcard_target(struct dm_table * t)1084 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
1085 {
1086 struct dm_target *ti;
1087 unsigned i;
1088
1089 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1090 ti = dm_table_get_target(t, i);
1091 if (dm_target_is_wildcard(ti->type))
1092 return ti;
1093 }
1094
1095 return NULL;
1096 }
1097
dm_table_bio_based(struct dm_table * t)1098 bool dm_table_bio_based(struct dm_table *t)
1099 {
1100 return __table_type_bio_based(dm_table_get_type(t));
1101 }
1102
dm_table_request_based(struct dm_table * t)1103 bool dm_table_request_based(struct dm_table *t)
1104 {
1105 return __table_type_request_based(dm_table_get_type(t));
1106 }
1107
dm_table_all_blk_mq_devices(struct dm_table * t)1108 bool dm_table_all_blk_mq_devices(struct dm_table *t)
1109 {
1110 return t->all_blk_mq;
1111 }
1112
dm_table_alloc_md_mempools(struct dm_table * t,struct mapped_device * md)1113 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1114 {
1115 enum dm_queue_mode type = dm_table_get_type(t);
1116 unsigned per_io_data_size = 0;
1117 unsigned min_pool_size = 0;
1118 struct dm_target *ti;
1119 unsigned i;
1120
1121 if (unlikely(type == DM_TYPE_NONE)) {
1122 DMWARN("no table type is set, can't allocate mempools");
1123 return -EINVAL;
1124 }
1125
1126 if (__table_type_bio_based(type))
1127 for (i = 0; i < t->num_targets; i++) {
1128 ti = t->targets + i;
1129 per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1130 min_pool_size = max(min_pool_size, ti->num_flush_bios);
1131 }
1132
1133 t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported,
1134 per_io_data_size, min_pool_size);
1135 if (!t->mempools)
1136 return -ENOMEM;
1137
1138 return 0;
1139 }
1140
dm_table_free_md_mempools(struct dm_table * t)1141 void dm_table_free_md_mempools(struct dm_table *t)
1142 {
1143 dm_free_md_mempools(t->mempools);
1144 t->mempools = NULL;
1145 }
1146
dm_table_get_md_mempools(struct dm_table * t)1147 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
1148 {
1149 return t->mempools;
1150 }
1151
setup_indexes(struct dm_table * t)1152 static int setup_indexes(struct dm_table *t)
1153 {
1154 int i;
1155 unsigned int total = 0;
1156 sector_t *indexes;
1157
1158 /* allocate the space for *all* the indexes */
1159 for (i = t->depth - 2; i >= 0; i--) {
1160 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1161 total += t->counts[i];
1162 }
1163
1164 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
1165 if (!indexes)
1166 return -ENOMEM;
1167
1168 /* set up internal nodes, bottom-up */
1169 for (i = t->depth - 2; i >= 0; i--) {
1170 t->index[i] = indexes;
1171 indexes += (KEYS_PER_NODE * t->counts[i]);
1172 setup_btree_index(i, t);
1173 }
1174
1175 return 0;
1176 }
1177
1178 /*
1179 * Builds the btree to index the map.
1180 */
dm_table_build_index(struct dm_table * t)1181 static int dm_table_build_index(struct dm_table *t)
1182 {
1183 int r = 0;
1184 unsigned int leaf_nodes;
1185
1186 /* how many indexes will the btree have ? */
1187 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1188 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1189
1190 /* leaf layer has already been set up */
1191 t->counts[t->depth - 1] = leaf_nodes;
1192 t->index[t->depth - 1] = t->highs;
1193
1194 if (t->depth >= 2)
1195 r = setup_indexes(t);
1196
1197 return r;
1198 }
1199
integrity_profile_exists(struct gendisk * disk)1200 static bool integrity_profile_exists(struct gendisk *disk)
1201 {
1202 return !!blk_get_integrity(disk);
1203 }
1204
1205 /*
1206 * Get a disk whose integrity profile reflects the table's profile.
1207 * Returns NULL if integrity support was inconsistent or unavailable.
1208 */
dm_table_get_integrity_disk(struct dm_table * t)1209 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
1210 {
1211 struct list_head *devices = dm_table_get_devices(t);
1212 struct dm_dev_internal *dd = NULL;
1213 struct gendisk *prev_disk = NULL, *template_disk = NULL;
1214 unsigned i;
1215
1216 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1217 struct dm_target *ti = dm_table_get_target(t, i);
1218 if (!dm_target_passes_integrity(ti->type))
1219 goto no_integrity;
1220 }
1221
1222 list_for_each_entry(dd, devices, list) {
1223 template_disk = dd->dm_dev->bdev->bd_disk;
1224 if (!integrity_profile_exists(template_disk))
1225 goto no_integrity;
1226 else if (prev_disk &&
1227 blk_integrity_compare(prev_disk, template_disk) < 0)
1228 goto no_integrity;
1229 prev_disk = template_disk;
1230 }
1231
1232 return template_disk;
1233
1234 no_integrity:
1235 if (prev_disk)
1236 DMWARN("%s: integrity not set: %s and %s profile mismatch",
1237 dm_device_name(t->md),
1238 prev_disk->disk_name,
1239 template_disk->disk_name);
1240 return NULL;
1241 }
1242
1243 /*
1244 * Register the mapped device for blk_integrity support if the
1245 * underlying devices have an integrity profile. But all devices may
1246 * not have matching profiles (checking all devices isn't reliable
1247 * during table load because this table may use other DM device(s) which
1248 * must be resumed before they will have an initialized integity
1249 * profile). Consequently, stacked DM devices force a 2 stage integrity
1250 * profile validation: First pass during table load, final pass during
1251 * resume.
1252 */
dm_table_register_integrity(struct dm_table * t)1253 static int dm_table_register_integrity(struct dm_table *t)
1254 {
1255 struct mapped_device *md = t->md;
1256 struct gendisk *template_disk = NULL;
1257
1258 /* If target handles integrity itself do not register it here. */
1259 if (t->integrity_added)
1260 return 0;
1261
1262 template_disk = dm_table_get_integrity_disk(t);
1263 if (!template_disk)
1264 return 0;
1265
1266 if (!integrity_profile_exists(dm_disk(md))) {
1267 t->integrity_supported = true;
1268 /*
1269 * Register integrity profile during table load; we can do
1270 * this because the final profile must match during resume.
1271 */
1272 blk_integrity_register(dm_disk(md),
1273 blk_get_integrity(template_disk));
1274 return 0;
1275 }
1276
1277 /*
1278 * If DM device already has an initialized integrity
1279 * profile the new profile should not conflict.
1280 */
1281 if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1282 DMWARN("%s: conflict with existing integrity profile: "
1283 "%s profile mismatch",
1284 dm_device_name(t->md),
1285 template_disk->disk_name);
1286 return 1;
1287 }
1288
1289 /* Preserve existing integrity profile */
1290 t->integrity_supported = true;
1291 return 0;
1292 }
1293
1294 /*
1295 * Prepares the table for use by building the indices,
1296 * setting the type, and allocating mempools.
1297 */
dm_table_complete(struct dm_table * t)1298 int dm_table_complete(struct dm_table *t)
1299 {
1300 int r;
1301
1302 r = dm_table_determine_type(t);
1303 if (r) {
1304 DMERR("unable to determine table type");
1305 return r;
1306 }
1307
1308 r = dm_table_build_index(t);
1309 if (r) {
1310 DMERR("unable to build btrees");
1311 return r;
1312 }
1313
1314 r = dm_table_register_integrity(t);
1315 if (r) {
1316 DMERR("could not register integrity profile.");
1317 return r;
1318 }
1319
1320 r = dm_table_alloc_md_mempools(t, t->md);
1321 if (r)
1322 DMERR("unable to allocate mempools");
1323
1324 return r;
1325 }
1326
1327 static DEFINE_MUTEX(_event_lock);
dm_table_event_callback(struct dm_table * t,void (* fn)(void *),void * context)1328 void dm_table_event_callback(struct dm_table *t,
1329 void (*fn)(void *), void *context)
1330 {
1331 mutex_lock(&_event_lock);
1332 t->event_fn = fn;
1333 t->event_context = context;
1334 mutex_unlock(&_event_lock);
1335 }
1336
dm_table_event(struct dm_table * t)1337 void dm_table_event(struct dm_table *t)
1338 {
1339 /*
1340 * You can no longer call dm_table_event() from interrupt
1341 * context, use a bottom half instead.
1342 */
1343 BUG_ON(in_interrupt());
1344
1345 mutex_lock(&_event_lock);
1346 if (t->event_fn)
1347 t->event_fn(t->event_context);
1348 mutex_unlock(&_event_lock);
1349 }
1350 EXPORT_SYMBOL(dm_table_event);
1351
dm_table_get_size(struct dm_table * t)1352 sector_t dm_table_get_size(struct dm_table *t)
1353 {
1354 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1355 }
1356 EXPORT_SYMBOL(dm_table_get_size);
1357
dm_table_get_target(struct dm_table * t,unsigned int index)1358 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1359 {
1360 if (index >= t->num_targets)
1361 return NULL;
1362
1363 return t->targets + index;
1364 }
1365
1366 /*
1367 * Search the btree for the correct target.
1368 *
1369 * Caller should check returned pointer with dm_target_is_valid()
1370 * to trap I/O beyond end of device.
1371 */
dm_table_find_target(struct dm_table * t,sector_t sector)1372 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1373 {
1374 unsigned int l, n = 0, k = 0;
1375 sector_t *node;
1376
1377 for (l = 0; l < t->depth; l++) {
1378 n = get_child(n, k);
1379 node = get_node(t, l, n);
1380
1381 for (k = 0; k < KEYS_PER_NODE; k++)
1382 if (node[k] >= sector)
1383 break;
1384 }
1385
1386 return &t->targets[(KEYS_PER_NODE * n) + k];
1387 }
1388
count_device(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1389 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1390 sector_t start, sector_t len, void *data)
1391 {
1392 unsigned *num_devices = data;
1393
1394 (*num_devices)++;
1395
1396 return 0;
1397 }
1398
1399 /*
1400 * Check whether a table has no data devices attached using each
1401 * target's iterate_devices method.
1402 * Returns false if the result is unknown because a target doesn't
1403 * support iterate_devices.
1404 */
dm_table_has_no_data_devices(struct dm_table * table)1405 bool dm_table_has_no_data_devices(struct dm_table *table)
1406 {
1407 struct dm_target *ti;
1408 unsigned i, num_devices;
1409
1410 for (i = 0; i < dm_table_get_num_targets(table); i++) {
1411 ti = dm_table_get_target(table, i);
1412
1413 if (!ti->type->iterate_devices)
1414 return false;
1415
1416 num_devices = 0;
1417 ti->type->iterate_devices(ti, count_device, &num_devices);
1418 if (num_devices)
1419 return false;
1420 }
1421
1422 return true;
1423 }
1424
device_is_zoned_model(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1425 static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1426 sector_t start, sector_t len, void *data)
1427 {
1428 struct request_queue *q = bdev_get_queue(dev->bdev);
1429 enum blk_zoned_model *zoned_model = data;
1430
1431 return q && blk_queue_zoned_model(q) == *zoned_model;
1432 }
1433
dm_table_supports_zoned_model(struct dm_table * t,enum blk_zoned_model zoned_model)1434 static bool dm_table_supports_zoned_model(struct dm_table *t,
1435 enum blk_zoned_model zoned_model)
1436 {
1437 struct dm_target *ti;
1438 unsigned i;
1439
1440 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1441 ti = dm_table_get_target(t, i);
1442
1443 if (zoned_model == BLK_ZONED_HM &&
1444 !dm_target_supports_zoned_hm(ti->type))
1445 return false;
1446
1447 if (!ti->type->iterate_devices ||
1448 !ti->type->iterate_devices(ti, device_is_zoned_model, &zoned_model))
1449 return false;
1450 }
1451
1452 return true;
1453 }
1454
device_matches_zone_sectors(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1455 static int device_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1456 sector_t start, sector_t len, void *data)
1457 {
1458 struct request_queue *q = bdev_get_queue(dev->bdev);
1459 unsigned int *zone_sectors = data;
1460
1461 return q && blk_queue_zone_sectors(q) == *zone_sectors;
1462 }
1463
dm_table_matches_zone_sectors(struct dm_table * t,unsigned int zone_sectors)1464 static bool dm_table_matches_zone_sectors(struct dm_table *t,
1465 unsigned int zone_sectors)
1466 {
1467 struct dm_target *ti;
1468 unsigned i;
1469
1470 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1471 ti = dm_table_get_target(t, i);
1472
1473 if (!ti->type->iterate_devices ||
1474 !ti->type->iterate_devices(ti, device_matches_zone_sectors, &zone_sectors))
1475 return false;
1476 }
1477
1478 return true;
1479 }
1480
validate_hardware_zoned_model(struct dm_table * table,enum blk_zoned_model zoned_model,unsigned int zone_sectors)1481 static int validate_hardware_zoned_model(struct dm_table *table,
1482 enum blk_zoned_model zoned_model,
1483 unsigned int zone_sectors)
1484 {
1485 if (zoned_model == BLK_ZONED_NONE)
1486 return 0;
1487
1488 if (!dm_table_supports_zoned_model(table, zoned_model)) {
1489 DMERR("%s: zoned model is not consistent across all devices",
1490 dm_device_name(table->md));
1491 return -EINVAL;
1492 }
1493
1494 /* Check zone size validity and compatibility */
1495 if (!zone_sectors || !is_power_of_2(zone_sectors))
1496 return -EINVAL;
1497
1498 if (!dm_table_matches_zone_sectors(table, zone_sectors)) {
1499 DMERR("%s: zone sectors is not consistent across all devices",
1500 dm_device_name(table->md));
1501 return -EINVAL;
1502 }
1503
1504 return 0;
1505 }
1506
1507 /*
1508 * Establish the new table's queue_limits and validate them.
1509 */
dm_calculate_queue_limits(struct dm_table * table,struct queue_limits * limits)1510 int dm_calculate_queue_limits(struct dm_table *table,
1511 struct queue_limits *limits)
1512 {
1513 struct dm_target *ti;
1514 struct queue_limits ti_limits;
1515 unsigned i;
1516 enum blk_zoned_model zoned_model = BLK_ZONED_NONE;
1517 unsigned int zone_sectors = 0;
1518
1519 blk_set_stacking_limits(limits);
1520
1521 for (i = 0; i < dm_table_get_num_targets(table); i++) {
1522 blk_set_stacking_limits(&ti_limits);
1523
1524 ti = dm_table_get_target(table, i);
1525
1526 if (!ti->type->iterate_devices)
1527 goto combine_limits;
1528
1529 /*
1530 * Combine queue limits of all the devices this target uses.
1531 */
1532 ti->type->iterate_devices(ti, dm_set_device_limits,
1533 &ti_limits);
1534
1535 if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1536 /*
1537 * After stacking all limits, validate all devices
1538 * in table support this zoned model and zone sectors.
1539 */
1540 zoned_model = ti_limits.zoned;
1541 zone_sectors = ti_limits.chunk_sectors;
1542 }
1543
1544 /* Set I/O hints portion of queue limits */
1545 if (ti->type->io_hints)
1546 ti->type->io_hints(ti, &ti_limits);
1547
1548 /*
1549 * Check each device area is consistent with the target's
1550 * overall queue limits.
1551 */
1552 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1553 &ti_limits))
1554 return -EINVAL;
1555
1556 combine_limits:
1557 /*
1558 * Merge this target's queue limits into the overall limits
1559 * for the table.
1560 */
1561 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1562 DMWARN("%s: adding target device "
1563 "(start sect %llu len %llu) "
1564 "caused an alignment inconsistency",
1565 dm_device_name(table->md),
1566 (unsigned long long) ti->begin,
1567 (unsigned long long) ti->len);
1568
1569 /*
1570 * FIXME: this should likely be moved to blk_stack_limits(), would
1571 * also eliminate limits->zoned stacking hack in dm_set_device_limits()
1572 */
1573 if (limits->zoned == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1574 /*
1575 * By default, the stacked limits zoned model is set to
1576 * BLK_ZONED_NONE in blk_set_stacking_limits(). Update
1577 * this model using the first target model reported
1578 * that is not BLK_ZONED_NONE. This will be either the
1579 * first target device zoned model or the model reported
1580 * by the target .io_hints.
1581 */
1582 limits->zoned = ti_limits.zoned;
1583 }
1584 }
1585
1586 /*
1587 * Verify that the zoned model and zone sectors, as determined before
1588 * any .io_hints override, are the same across all devices in the table.
1589 * - this is especially relevant if .io_hints is emulating a disk-managed
1590 * zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices.
1591 * BUT...
1592 */
1593 if (limits->zoned != BLK_ZONED_NONE) {
1594 /*
1595 * ...IF the above limits stacking determined a zoned model
1596 * validate that all of the table's devices conform to it.
1597 */
1598 zoned_model = limits->zoned;
1599 zone_sectors = limits->chunk_sectors;
1600 }
1601 if (validate_hardware_zoned_model(table, zoned_model, zone_sectors))
1602 return -EINVAL;
1603
1604 return validate_hardware_logical_block_alignment(table, limits);
1605 }
1606
1607 /*
1608 * Verify that all devices have an integrity profile that matches the
1609 * DM device's registered integrity profile. If the profiles don't
1610 * match then unregister the DM device's integrity profile.
1611 */
dm_table_verify_integrity(struct dm_table * t)1612 static void dm_table_verify_integrity(struct dm_table *t)
1613 {
1614 struct gendisk *template_disk = NULL;
1615
1616 if (t->integrity_added)
1617 return;
1618
1619 if (t->integrity_supported) {
1620 /*
1621 * Verify that the original integrity profile
1622 * matches all the devices in this table.
1623 */
1624 template_disk = dm_table_get_integrity_disk(t);
1625 if (template_disk &&
1626 blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1627 return;
1628 }
1629
1630 if (integrity_profile_exists(dm_disk(t->md))) {
1631 DMWARN("%s: unable to establish an integrity profile",
1632 dm_device_name(t->md));
1633 blk_integrity_unregister(dm_disk(t->md));
1634 }
1635 }
1636
device_flush_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1637 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1638 sector_t start, sector_t len, void *data)
1639 {
1640 unsigned long flush = (unsigned long) data;
1641 struct request_queue *q = bdev_get_queue(dev->bdev);
1642
1643 return q && (q->queue_flags & flush);
1644 }
1645
dm_table_supports_flush(struct dm_table * t,unsigned long flush)1646 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1647 {
1648 struct dm_target *ti;
1649 unsigned i;
1650
1651 /*
1652 * Require at least one underlying device to support flushes.
1653 * t->devices includes internal dm devices such as mirror logs
1654 * so we need to use iterate_devices here, which targets
1655 * supporting flushes must provide.
1656 */
1657 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1658 ti = dm_table_get_target(t, i);
1659
1660 if (!ti->num_flush_bios)
1661 continue;
1662
1663 if (ti->flush_supported)
1664 return true;
1665
1666 if (ti->type->iterate_devices &&
1667 ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1668 return true;
1669 }
1670
1671 return false;
1672 }
1673
device_dax_write_cache_enabled(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1674 static int device_dax_write_cache_enabled(struct dm_target *ti,
1675 struct dm_dev *dev, sector_t start,
1676 sector_t len, void *data)
1677 {
1678 struct dax_device *dax_dev = dev->dax_dev;
1679
1680 if (!dax_dev)
1681 return false;
1682
1683 if (dax_write_cache_enabled(dax_dev))
1684 return true;
1685 return false;
1686 }
1687
dm_table_supports_dax_write_cache(struct dm_table * t)1688 static int dm_table_supports_dax_write_cache(struct dm_table *t)
1689 {
1690 struct dm_target *ti;
1691 unsigned i;
1692
1693 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1694 ti = dm_table_get_target(t, i);
1695
1696 if (ti->type->iterate_devices &&
1697 ti->type->iterate_devices(ti,
1698 device_dax_write_cache_enabled, NULL))
1699 return true;
1700 }
1701
1702 return false;
1703 }
1704
device_is_nonrot(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1705 static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1706 sector_t start, sector_t len, void *data)
1707 {
1708 struct request_queue *q = bdev_get_queue(dev->bdev);
1709
1710 return q && blk_queue_nonrot(q);
1711 }
1712
device_is_not_random(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1713 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1714 sector_t start, sector_t len, void *data)
1715 {
1716 struct request_queue *q = bdev_get_queue(dev->bdev);
1717
1718 return q && !blk_queue_add_random(q);
1719 }
1720
queue_supports_sg_merge(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1721 static int queue_supports_sg_merge(struct dm_target *ti, struct dm_dev *dev,
1722 sector_t start, sector_t len, void *data)
1723 {
1724 struct request_queue *q = bdev_get_queue(dev->bdev);
1725
1726 return q && !test_bit(QUEUE_FLAG_NO_SG_MERGE, &q->queue_flags);
1727 }
1728
dm_table_all_devices_attribute(struct dm_table * t,iterate_devices_callout_fn func)1729 static bool dm_table_all_devices_attribute(struct dm_table *t,
1730 iterate_devices_callout_fn func)
1731 {
1732 struct dm_target *ti;
1733 unsigned i;
1734
1735 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1736 ti = dm_table_get_target(t, i);
1737
1738 if (!ti->type->iterate_devices ||
1739 !ti->type->iterate_devices(ti, func, NULL))
1740 return false;
1741 }
1742
1743 return true;
1744 }
1745
device_no_partial_completion(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1746 static int device_no_partial_completion(struct dm_target *ti, struct dm_dev *dev,
1747 sector_t start, sector_t len, void *data)
1748 {
1749 char b[BDEVNAME_SIZE];
1750
1751 /* For now, NVMe devices are the only devices of this class */
1752 return (strncmp(bdevname(dev->bdev, b), "nvme", 4) == 0);
1753 }
1754
dm_table_does_not_support_partial_completion(struct dm_table * t)1755 static bool dm_table_does_not_support_partial_completion(struct dm_table *t)
1756 {
1757 return dm_table_all_devices_attribute(t, device_no_partial_completion);
1758 }
1759
device_not_write_same_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1760 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1761 sector_t start, sector_t len, void *data)
1762 {
1763 struct request_queue *q = bdev_get_queue(dev->bdev);
1764
1765 return q && !q->limits.max_write_same_sectors;
1766 }
1767
dm_table_supports_write_same(struct dm_table * t)1768 static bool dm_table_supports_write_same(struct dm_table *t)
1769 {
1770 struct dm_target *ti;
1771 unsigned i;
1772
1773 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1774 ti = dm_table_get_target(t, i);
1775
1776 if (!ti->num_write_same_bios)
1777 return false;
1778
1779 if (!ti->type->iterate_devices ||
1780 ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1781 return false;
1782 }
1783
1784 return true;
1785 }
1786
device_not_write_zeroes_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1787 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1788 sector_t start, sector_t len, void *data)
1789 {
1790 struct request_queue *q = bdev_get_queue(dev->bdev);
1791
1792 return q && !q->limits.max_write_zeroes_sectors;
1793 }
1794
dm_table_supports_write_zeroes(struct dm_table * t)1795 static bool dm_table_supports_write_zeroes(struct dm_table *t)
1796 {
1797 struct dm_target *ti;
1798 unsigned i = 0;
1799
1800 while (i < dm_table_get_num_targets(t)) {
1801 ti = dm_table_get_target(t, i++);
1802
1803 if (!ti->num_write_zeroes_bios)
1804 return false;
1805
1806 if (!ti->type->iterate_devices ||
1807 ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1808 return false;
1809 }
1810
1811 return true;
1812 }
1813
device_not_discard_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1814 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1815 sector_t start, sector_t len, void *data)
1816 {
1817 struct request_queue *q = bdev_get_queue(dev->bdev);
1818
1819 return q && !blk_queue_discard(q);
1820 }
1821
dm_table_supports_discards(struct dm_table * t)1822 static bool dm_table_supports_discards(struct dm_table *t)
1823 {
1824 struct dm_target *ti;
1825 unsigned i;
1826
1827 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1828 ti = dm_table_get_target(t, i);
1829
1830 if (!ti->num_discard_bios)
1831 return false;
1832
1833 /*
1834 * Either the target provides discard support (as implied by setting
1835 * 'discards_supported') or it relies on _all_ data devices having
1836 * discard support.
1837 */
1838 if (!ti->discards_supported &&
1839 (!ti->type->iterate_devices ||
1840 ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1841 return false;
1842 }
1843
1844 return true;
1845 }
1846
device_not_secure_erase_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1847 static int device_not_secure_erase_capable(struct dm_target *ti,
1848 struct dm_dev *dev, sector_t start,
1849 sector_t len, void *data)
1850 {
1851 struct request_queue *q = bdev_get_queue(dev->bdev);
1852
1853 return q && !blk_queue_secure_erase(q);
1854 }
1855
dm_table_supports_secure_erase(struct dm_table * t)1856 static bool dm_table_supports_secure_erase(struct dm_table *t)
1857 {
1858 struct dm_target *ti;
1859 unsigned int i;
1860
1861 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1862 ti = dm_table_get_target(t, i);
1863
1864 if (!ti->num_secure_erase_bios)
1865 return false;
1866
1867 if (!ti->type->iterate_devices ||
1868 ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
1869 return false;
1870 }
1871
1872 return true;
1873 }
1874
dm_table_set_restrictions(struct dm_table * t,struct request_queue * q,struct queue_limits * limits)1875 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1876 struct queue_limits *limits)
1877 {
1878 bool wc = false, fua = false;
1879
1880 /*
1881 * Copy table's limits to the DM device's request_queue
1882 */
1883 q->limits = *limits;
1884
1885 if (!dm_table_supports_discards(t)) {
1886 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
1887 /* Must also clear discard limits... */
1888 q->limits.max_discard_sectors = 0;
1889 q->limits.max_hw_discard_sectors = 0;
1890 q->limits.discard_granularity = 0;
1891 q->limits.discard_alignment = 0;
1892 q->limits.discard_misaligned = 0;
1893 } else
1894 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
1895
1896 if (dm_table_supports_secure_erase(t))
1897 blk_queue_flag_set(QUEUE_FLAG_SECERASE, q);
1898
1899 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
1900 wc = true;
1901 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
1902 fua = true;
1903 }
1904 blk_queue_write_cache(q, wc, fua);
1905
1906 if (dm_table_supports_dax(t))
1907 blk_queue_flag_set(QUEUE_FLAG_DAX, q);
1908 else
1909 blk_queue_flag_clear(QUEUE_FLAG_DAX, q);
1910
1911 if (dm_table_supports_dax_write_cache(t))
1912 dax_write_cache(t->md->dax_dev, true);
1913
1914 /* Ensure that all underlying devices are non-rotational. */
1915 if (dm_table_all_devices_attribute(t, device_is_nonrot))
1916 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
1917 else
1918 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
1919
1920 if (!dm_table_supports_write_same(t))
1921 q->limits.max_write_same_sectors = 0;
1922 if (!dm_table_supports_write_zeroes(t))
1923 q->limits.max_write_zeroes_sectors = 0;
1924
1925 if (dm_table_all_devices_attribute(t, queue_supports_sg_merge))
1926 blk_queue_flag_clear(QUEUE_FLAG_NO_SG_MERGE, q);
1927 else
1928 blk_queue_flag_set(QUEUE_FLAG_NO_SG_MERGE, q);
1929
1930 dm_table_verify_integrity(t);
1931
1932 /*
1933 * Determine whether or not this queue's I/O timings contribute
1934 * to the entropy pool, Only request-based targets use this.
1935 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1936 * have it set.
1937 */
1938 if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
1939 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
1940 }
1941
dm_table_get_num_targets(struct dm_table * t)1942 unsigned int dm_table_get_num_targets(struct dm_table *t)
1943 {
1944 return t->num_targets;
1945 }
1946
dm_table_get_devices(struct dm_table * t)1947 struct list_head *dm_table_get_devices(struct dm_table *t)
1948 {
1949 return &t->devices;
1950 }
1951
dm_table_get_mode(struct dm_table * t)1952 fmode_t dm_table_get_mode(struct dm_table *t)
1953 {
1954 return t->mode;
1955 }
1956 EXPORT_SYMBOL(dm_table_get_mode);
1957
1958 enum suspend_mode {
1959 PRESUSPEND,
1960 PRESUSPEND_UNDO,
1961 POSTSUSPEND,
1962 };
1963
suspend_targets(struct dm_table * t,enum suspend_mode mode)1964 static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
1965 {
1966 int i = t->num_targets;
1967 struct dm_target *ti = t->targets;
1968
1969 lockdep_assert_held(&t->md->suspend_lock);
1970
1971 while (i--) {
1972 switch (mode) {
1973 case PRESUSPEND:
1974 if (ti->type->presuspend)
1975 ti->type->presuspend(ti);
1976 break;
1977 case PRESUSPEND_UNDO:
1978 if (ti->type->presuspend_undo)
1979 ti->type->presuspend_undo(ti);
1980 break;
1981 case POSTSUSPEND:
1982 if (ti->type->postsuspend)
1983 ti->type->postsuspend(ti);
1984 break;
1985 }
1986 ti++;
1987 }
1988 }
1989
dm_table_presuspend_targets(struct dm_table * t)1990 void dm_table_presuspend_targets(struct dm_table *t)
1991 {
1992 if (!t)
1993 return;
1994
1995 suspend_targets(t, PRESUSPEND);
1996 }
1997
dm_table_presuspend_undo_targets(struct dm_table * t)1998 void dm_table_presuspend_undo_targets(struct dm_table *t)
1999 {
2000 if (!t)
2001 return;
2002
2003 suspend_targets(t, PRESUSPEND_UNDO);
2004 }
2005
dm_table_postsuspend_targets(struct dm_table * t)2006 void dm_table_postsuspend_targets(struct dm_table *t)
2007 {
2008 if (!t)
2009 return;
2010
2011 suspend_targets(t, POSTSUSPEND);
2012 }
2013
dm_table_resume_targets(struct dm_table * t)2014 int dm_table_resume_targets(struct dm_table *t)
2015 {
2016 int i, r = 0;
2017
2018 lockdep_assert_held(&t->md->suspend_lock);
2019
2020 for (i = 0; i < t->num_targets; i++) {
2021 struct dm_target *ti = t->targets + i;
2022
2023 if (!ti->type->preresume)
2024 continue;
2025
2026 r = ti->type->preresume(ti);
2027 if (r) {
2028 DMERR("%s: %s: preresume failed, error = %d",
2029 dm_device_name(t->md), ti->type->name, r);
2030 return r;
2031 }
2032 }
2033
2034 for (i = 0; i < t->num_targets; i++) {
2035 struct dm_target *ti = t->targets + i;
2036
2037 if (ti->type->resume)
2038 ti->type->resume(ti);
2039 }
2040
2041 return 0;
2042 }
2043
dm_table_add_target_callbacks(struct dm_table * t,struct dm_target_callbacks * cb)2044 void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
2045 {
2046 list_add(&cb->list, &t->target_callbacks);
2047 }
2048 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
2049
dm_table_any_congested(struct dm_table * t,int bdi_bits)2050 int dm_table_any_congested(struct dm_table *t, int bdi_bits)
2051 {
2052 struct dm_dev_internal *dd;
2053 struct list_head *devices = dm_table_get_devices(t);
2054 struct dm_target_callbacks *cb;
2055 int r = 0;
2056
2057 list_for_each_entry(dd, devices, list) {
2058 struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
2059 char b[BDEVNAME_SIZE];
2060
2061 if (likely(q))
2062 r |= bdi_congested(q->backing_dev_info, bdi_bits);
2063 else
2064 DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
2065 dm_device_name(t->md),
2066 bdevname(dd->dm_dev->bdev, b));
2067 }
2068
2069 list_for_each_entry(cb, &t->target_callbacks, list)
2070 if (cb->congested_fn)
2071 r |= cb->congested_fn(cb, bdi_bits);
2072
2073 return r;
2074 }
2075
dm_table_get_md(struct dm_table * t)2076 struct mapped_device *dm_table_get_md(struct dm_table *t)
2077 {
2078 return t->md;
2079 }
2080 EXPORT_SYMBOL(dm_table_get_md);
2081
dm_table_run_md_queue_async(struct dm_table * t)2082 void dm_table_run_md_queue_async(struct dm_table *t)
2083 {
2084 struct mapped_device *md;
2085 struct request_queue *queue;
2086 unsigned long flags;
2087
2088 if (!dm_table_request_based(t))
2089 return;
2090
2091 md = dm_table_get_md(t);
2092 queue = dm_get_md_queue(md);
2093 if (queue) {
2094 if (queue->mq_ops)
2095 blk_mq_run_hw_queues(queue, true);
2096 else {
2097 spin_lock_irqsave(queue->queue_lock, flags);
2098 blk_run_queue_async(queue);
2099 spin_unlock_irqrestore(queue->queue_lock, flags);
2100 }
2101 }
2102 }
2103 EXPORT_SYMBOL(dm_table_run_md_queue_async);
2104
2105