1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2001 Sistina Software (UK) Limited.
4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 *
6 * This file is released under the GPL.
7 */
8
9 #include "dm-core.h"
10 #include "dm-rq.h"
11
12 #include <linux/module.h>
13 #include <linux/vmalloc.h>
14 #include <linux/blkdev.h>
15 #include <linux/blk-integrity.h>
16 #include <linux/namei.h>
17 #include <linux/ctype.h>
18 #include <linux/string.h>
19 #include <linux/slab.h>
20 #include <linux/interrupt.h>
21 #include <linux/mutex.h>
22 #include <linux/delay.h>
23 #include <linux/atomic.h>
24 #include <linux/blk-mq.h>
25 #include <linux/mount.h>
26 #include <linux/dax.h>
27
28 #define DM_MSG_PREFIX "table"
29
30 #define NODE_SIZE L1_CACHE_BYTES
31 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
32 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
33
34 /*
35 * Similar to ceiling(log_size(n))
36 */
int_log(unsigned int n,unsigned int base)37 static unsigned int int_log(unsigned int n, unsigned int base)
38 {
39 int result = 0;
40
41 while (n > 1) {
42 n = dm_div_up(n, base);
43 result++;
44 }
45
46 return result;
47 }
48
49 /*
50 * Calculate the index of the child node of the n'th node k'th key.
51 */
get_child(unsigned int n,unsigned int k)52 static inline unsigned int get_child(unsigned int n, unsigned int k)
53 {
54 return (n * CHILDREN_PER_NODE) + k;
55 }
56
57 /*
58 * Return the n'th node of level l from table t.
59 */
get_node(struct dm_table * t,unsigned int l,unsigned int n)60 static inline sector_t *get_node(struct dm_table *t,
61 unsigned int l, unsigned int n)
62 {
63 return t->index[l] + (n * KEYS_PER_NODE);
64 }
65
66 /*
67 * Return the highest key that you could lookup from the n'th
68 * node on level l of the btree.
69 */
high(struct dm_table * t,unsigned int l,unsigned int n)70 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
71 {
72 for (; l < t->depth - 1; l++)
73 n = get_child(n, CHILDREN_PER_NODE - 1);
74
75 if (n >= t->counts[l])
76 return (sector_t) -1;
77
78 return get_node(t, l, n)[KEYS_PER_NODE - 1];
79 }
80
81 /*
82 * Fills in a level of the btree based on the highs of the level
83 * below it.
84 */
setup_btree_index(unsigned int l,struct dm_table * t)85 static int setup_btree_index(unsigned int l, struct dm_table *t)
86 {
87 unsigned int n, k;
88 sector_t *node;
89
90 for (n = 0U; n < t->counts[l]; n++) {
91 node = get_node(t, l, n);
92
93 for (k = 0U; k < KEYS_PER_NODE; k++)
94 node[k] = high(t, l + 1, get_child(n, k));
95 }
96
97 return 0;
98 }
99
100 /*
101 * highs, and targets are managed as dynamic arrays during a
102 * table load.
103 */
alloc_targets(struct dm_table * t,unsigned int num)104 static int alloc_targets(struct dm_table *t, unsigned int num)
105 {
106 sector_t *n_highs;
107 struct dm_target *n_targets;
108
109 /*
110 * Allocate both the target array and offset array at once.
111 */
112 n_highs = kvcalloc(num, sizeof(struct dm_target) + sizeof(sector_t),
113 GFP_KERNEL);
114 if (!n_highs)
115 return -ENOMEM;
116
117 n_targets = (struct dm_target *) (n_highs + num);
118
119 memset(n_highs, -1, sizeof(*n_highs) * num);
120 kvfree(t->highs);
121
122 t->num_allocated = num;
123 t->highs = n_highs;
124 t->targets = n_targets;
125
126 return 0;
127 }
128
dm_table_create(struct dm_table ** result,blk_mode_t mode,unsigned int num_targets,struct mapped_device * md)129 int dm_table_create(struct dm_table **result, blk_mode_t mode,
130 unsigned int num_targets, struct mapped_device *md)
131 {
132 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
133
134 if (!t)
135 return -ENOMEM;
136
137 INIT_LIST_HEAD(&t->devices);
138 init_rwsem(&t->devices_lock);
139
140 if (!num_targets)
141 num_targets = KEYS_PER_NODE;
142
143 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
144
145 if (!num_targets) {
146 kfree(t);
147 return -ENOMEM;
148 }
149
150 if (alloc_targets(t, num_targets)) {
151 kfree(t);
152 return -ENOMEM;
153 }
154
155 t->type = DM_TYPE_NONE;
156 t->mode = mode;
157 t->md = md;
158 *result = t;
159 return 0;
160 }
161
free_devices(struct list_head * devices,struct mapped_device * md)162 static void free_devices(struct list_head *devices, struct mapped_device *md)
163 {
164 struct list_head *tmp, *next;
165
166 list_for_each_safe(tmp, next, devices) {
167 struct dm_dev_internal *dd =
168 list_entry(tmp, struct dm_dev_internal, list);
169 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
170 dm_device_name(md), dd->dm_dev->name);
171 dm_put_table_device(md, dd->dm_dev);
172 kfree(dd);
173 }
174 }
175
176 static void dm_table_destroy_crypto_profile(struct dm_table *t);
177
dm_table_destroy(struct dm_table * t)178 void dm_table_destroy(struct dm_table *t)
179 {
180 if (!t)
181 return;
182
183 /* free the indexes */
184 if (t->depth >= 2)
185 kvfree(t->index[t->depth - 2]);
186
187 /* free the targets */
188 for (unsigned int i = 0; i < t->num_targets; i++) {
189 struct dm_target *ti = dm_table_get_target(t, i);
190
191 if (ti->type->dtr)
192 ti->type->dtr(ti);
193
194 dm_put_target_type(ti->type);
195 }
196
197 kvfree(t->highs);
198
199 /* free the device list */
200 free_devices(&t->devices, t->md);
201
202 dm_free_md_mempools(t->mempools);
203
204 dm_table_destroy_crypto_profile(t);
205
206 kfree(t);
207 }
208
209 /*
210 * See if we've already got a device in the list.
211 */
find_device(struct list_head * l,dev_t dev)212 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
213 {
214 struct dm_dev_internal *dd;
215
216 list_for_each_entry(dd, l, list)
217 if (dd->dm_dev->bdev->bd_dev == dev)
218 return dd;
219
220 return NULL;
221 }
222
223 /*
224 * If possible, this checks an area of a destination device is invalid.
225 */
device_area_is_invalid(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)226 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
227 sector_t start, sector_t len, void *data)
228 {
229 struct queue_limits *limits = data;
230 struct block_device *bdev = dev->bdev;
231 sector_t dev_size = bdev_nr_sectors(bdev);
232 unsigned short logical_block_size_sectors =
233 limits->logical_block_size >> SECTOR_SHIFT;
234
235 if (!dev_size)
236 return 0;
237
238 if ((start >= dev_size) || (start + len > dev_size)) {
239 DMERR("%s: %pg too small for target: start=%llu, len=%llu, dev_size=%llu",
240 dm_device_name(ti->table->md), bdev,
241 (unsigned long long)start,
242 (unsigned long long)len,
243 (unsigned long long)dev_size);
244 return 1;
245 }
246
247 /*
248 * If the target is mapped to zoned block device(s), check
249 * that the zones are not partially mapped.
250 */
251 if (bdev_is_zoned(bdev)) {
252 unsigned int zone_sectors = bdev_zone_sectors(bdev);
253
254 if (start & (zone_sectors - 1)) {
255 DMERR("%s: start=%llu not aligned to h/w zone size %u of %pg",
256 dm_device_name(ti->table->md),
257 (unsigned long long)start,
258 zone_sectors, bdev);
259 return 1;
260 }
261
262 /*
263 * Note: The last zone of a zoned block device may be smaller
264 * than other zones. So for a target mapping the end of a
265 * zoned block device with such a zone, len would not be zone
266 * aligned. We do not allow such last smaller zone to be part
267 * of the mapping here to ensure that mappings with multiple
268 * devices do not end up with a smaller zone in the middle of
269 * the sector range.
270 */
271 if (len & (zone_sectors - 1)) {
272 DMERR("%s: len=%llu not aligned to h/w zone size %u of %pg",
273 dm_device_name(ti->table->md),
274 (unsigned long long)len,
275 zone_sectors, bdev);
276 return 1;
277 }
278 }
279
280 if (logical_block_size_sectors <= 1)
281 return 0;
282
283 if (start & (logical_block_size_sectors - 1)) {
284 DMERR("%s: start=%llu not aligned to h/w logical block size %u of %pg",
285 dm_device_name(ti->table->md),
286 (unsigned long long)start,
287 limits->logical_block_size, bdev);
288 return 1;
289 }
290
291 if (len & (logical_block_size_sectors - 1)) {
292 DMERR("%s: len=%llu not aligned to h/w logical block size %u of %pg",
293 dm_device_name(ti->table->md),
294 (unsigned long long)len,
295 limits->logical_block_size, bdev);
296 return 1;
297 }
298
299 return 0;
300 }
301
302 /*
303 * This upgrades the mode on an already open dm_dev, being
304 * careful to leave things as they were if we fail to reopen the
305 * device and not to touch the existing bdev field in case
306 * it is accessed concurrently.
307 */
upgrade_mode(struct dm_dev_internal * dd,blk_mode_t new_mode,struct mapped_device * md)308 static int upgrade_mode(struct dm_dev_internal *dd, blk_mode_t new_mode,
309 struct mapped_device *md)
310 {
311 int r;
312 struct dm_dev *old_dev, *new_dev;
313
314 old_dev = dd->dm_dev;
315
316 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
317 dd->dm_dev->mode | new_mode, &new_dev);
318 if (r)
319 return r;
320
321 dd->dm_dev = new_dev;
322 dm_put_table_device(md, old_dev);
323
324 return 0;
325 }
326
327 /*
328 * Add a device to the list, or just increment the usage count if
329 * it's already present.
330 *
331 * Note: the __ref annotation is because this function can call the __init
332 * marked early_lookup_bdev when called during early boot code from dm-init.c.
333 */
dm_get_device(struct dm_target * ti,const char * path,blk_mode_t mode,struct dm_dev ** result)334 int __ref dm_get_device(struct dm_target *ti, const char *path, blk_mode_t mode,
335 struct dm_dev **result)
336 {
337 int r;
338 dev_t dev;
339 unsigned int major, minor;
340 char dummy;
341 struct dm_dev_internal *dd;
342 struct dm_table *t = ti->table;
343
344 BUG_ON(!t);
345
346 if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
347 /* Extract the major/minor numbers */
348 dev = MKDEV(major, minor);
349 if (MAJOR(dev) != major || MINOR(dev) != minor)
350 return -EOVERFLOW;
351 } else {
352 r = lookup_bdev(path, &dev);
353 #ifndef MODULE
354 if (r && system_state < SYSTEM_RUNNING)
355 r = early_lookup_bdev(path, &dev);
356 #endif
357 if (r)
358 return r;
359 }
360 if (dev == disk_devt(t->md->disk))
361 return -EINVAL;
362
363 down_write(&t->devices_lock);
364
365 dd = find_device(&t->devices, dev);
366 if (!dd) {
367 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
368 if (!dd) {
369 r = -ENOMEM;
370 goto unlock_ret_r;
371 }
372
373 r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev);
374 if (r) {
375 kfree(dd);
376 goto unlock_ret_r;
377 }
378
379 refcount_set(&dd->count, 1);
380 list_add(&dd->list, &t->devices);
381 goto out;
382
383 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
384 r = upgrade_mode(dd, mode, t->md);
385 if (r)
386 goto unlock_ret_r;
387 }
388 refcount_inc(&dd->count);
389 out:
390 up_write(&t->devices_lock);
391 *result = dd->dm_dev;
392 return 0;
393
394 unlock_ret_r:
395 up_write(&t->devices_lock);
396 return r;
397 }
398 EXPORT_SYMBOL(dm_get_device);
399
dm_set_device_limits(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)400 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
401 sector_t start, sector_t len, void *data)
402 {
403 struct queue_limits *limits = data;
404 struct block_device *bdev = dev->bdev;
405 struct request_queue *q = bdev_get_queue(bdev);
406
407 if (unlikely(!q)) {
408 DMWARN("%s: Cannot set limits for nonexistent device %pg",
409 dm_device_name(ti->table->md), bdev);
410 return 0;
411 }
412
413 if (blk_stack_limits(limits, &q->limits,
414 get_start_sect(bdev) + start) < 0)
415 DMWARN("%s: adding target device %pg caused an alignment inconsistency: "
416 "physical_block_size=%u, logical_block_size=%u, "
417 "alignment_offset=%u, start=%llu",
418 dm_device_name(ti->table->md), bdev,
419 q->limits.physical_block_size,
420 q->limits.logical_block_size,
421 q->limits.alignment_offset,
422 (unsigned long long) start << SECTOR_SHIFT);
423 return 0;
424 }
425
426 /*
427 * Decrement a device's use count and remove it if necessary.
428 */
dm_put_device(struct dm_target * ti,struct dm_dev * d)429 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
430 {
431 int found = 0;
432 struct dm_table *t = ti->table;
433 struct list_head *devices = &t->devices;
434 struct dm_dev_internal *dd;
435
436 down_write(&t->devices_lock);
437
438 list_for_each_entry(dd, devices, list) {
439 if (dd->dm_dev == d) {
440 found = 1;
441 break;
442 }
443 }
444 if (!found) {
445 DMERR("%s: device %s not in table devices list",
446 dm_device_name(t->md), d->name);
447 goto unlock_ret;
448 }
449 if (refcount_dec_and_test(&dd->count)) {
450 dm_put_table_device(t->md, d);
451 list_del(&dd->list);
452 kfree(dd);
453 }
454
455 unlock_ret:
456 up_write(&t->devices_lock);
457 }
458 EXPORT_SYMBOL(dm_put_device);
459
460 /*
461 * Checks to see if the target joins onto the end of the table.
462 */
adjoin(struct dm_table * t,struct dm_target * ti)463 static int adjoin(struct dm_table *t, struct dm_target *ti)
464 {
465 struct dm_target *prev;
466
467 if (!t->num_targets)
468 return !ti->begin;
469
470 prev = &t->targets[t->num_targets - 1];
471 return (ti->begin == (prev->begin + prev->len));
472 }
473
474 /*
475 * Used to dynamically allocate the arg array.
476 *
477 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
478 * process messages even if some device is suspended. These messages have a
479 * small fixed number of arguments.
480 *
481 * On the other hand, dm-switch needs to process bulk data using messages and
482 * excessive use of GFP_NOIO could cause trouble.
483 */
realloc_argv(unsigned int * size,char ** old_argv)484 static char **realloc_argv(unsigned int *size, char **old_argv)
485 {
486 char **argv;
487 unsigned int new_size;
488 gfp_t gfp;
489
490 if (*size) {
491 new_size = *size * 2;
492 gfp = GFP_KERNEL;
493 } else {
494 new_size = 8;
495 gfp = GFP_NOIO;
496 }
497 argv = kmalloc_array(new_size, sizeof(*argv), gfp);
498 if (argv && old_argv) {
499 memcpy(argv, old_argv, *size * sizeof(*argv));
500 *size = new_size;
501 }
502
503 kfree(old_argv);
504 return argv;
505 }
506
507 /*
508 * Destructively splits up the argument list to pass to ctr.
509 */
dm_split_args(int * argc,char *** argvp,char * input)510 int dm_split_args(int *argc, char ***argvp, char *input)
511 {
512 char *start, *end = input, *out, **argv = NULL;
513 unsigned int array_size = 0;
514
515 *argc = 0;
516
517 if (!input) {
518 *argvp = NULL;
519 return 0;
520 }
521
522 argv = realloc_argv(&array_size, argv);
523 if (!argv)
524 return -ENOMEM;
525
526 while (1) {
527 /* Skip whitespace */
528 start = skip_spaces(end);
529
530 if (!*start)
531 break; /* success, we hit the end */
532
533 /* 'out' is used to remove any back-quotes */
534 end = out = start;
535 while (*end) {
536 /* Everything apart from '\0' can be quoted */
537 if (*end == '\\' && *(end + 1)) {
538 *out++ = *(end + 1);
539 end += 2;
540 continue;
541 }
542
543 if (isspace(*end))
544 break; /* end of token */
545
546 *out++ = *end++;
547 }
548
549 /* have we already filled the array ? */
550 if ((*argc + 1) > array_size) {
551 argv = realloc_argv(&array_size, argv);
552 if (!argv)
553 return -ENOMEM;
554 }
555
556 /* we know this is whitespace */
557 if (*end)
558 end++;
559
560 /* terminate the string and put it in the array */
561 *out = '\0';
562 argv[*argc] = start;
563 (*argc)++;
564 }
565
566 *argvp = argv;
567 return 0;
568 }
569
570 /*
571 * Impose necessary and sufficient conditions on a devices's table such
572 * that any incoming bio which respects its logical_block_size can be
573 * processed successfully. If it falls across the boundary between
574 * two or more targets, the size of each piece it gets split into must
575 * be compatible with the logical_block_size of the target processing it.
576 */
validate_hardware_logical_block_alignment(struct dm_table * t,struct queue_limits * limits)577 static int validate_hardware_logical_block_alignment(struct dm_table *t,
578 struct queue_limits *limits)
579 {
580 /*
581 * This function uses arithmetic modulo the logical_block_size
582 * (in units of 512-byte sectors).
583 */
584 unsigned short device_logical_block_size_sects =
585 limits->logical_block_size >> SECTOR_SHIFT;
586
587 /*
588 * Offset of the start of the next table entry, mod logical_block_size.
589 */
590 unsigned short next_target_start = 0;
591
592 /*
593 * Given an aligned bio that extends beyond the end of a
594 * target, how many sectors must the next target handle?
595 */
596 unsigned short remaining = 0;
597
598 struct dm_target *ti;
599 struct queue_limits ti_limits;
600 unsigned int i;
601
602 /*
603 * Check each entry in the table in turn.
604 */
605 for (i = 0; i < t->num_targets; i++) {
606 ti = dm_table_get_target(t, i);
607
608 blk_set_stacking_limits(&ti_limits);
609
610 /* combine all target devices' limits */
611 if (ti->type->iterate_devices)
612 ti->type->iterate_devices(ti, dm_set_device_limits,
613 &ti_limits);
614
615 /*
616 * If the remaining sectors fall entirely within this
617 * table entry are they compatible with its logical_block_size?
618 */
619 if (remaining < ti->len &&
620 remaining & ((ti_limits.logical_block_size >>
621 SECTOR_SHIFT) - 1))
622 break; /* Error */
623
624 next_target_start =
625 (unsigned short) ((next_target_start + ti->len) &
626 (device_logical_block_size_sects - 1));
627 remaining = next_target_start ?
628 device_logical_block_size_sects - next_target_start : 0;
629 }
630
631 if (remaining) {
632 DMERR("%s: table line %u (start sect %llu len %llu) "
633 "not aligned to h/w logical block size %u",
634 dm_device_name(t->md), i,
635 (unsigned long long) ti->begin,
636 (unsigned long long) ti->len,
637 limits->logical_block_size);
638 return -EINVAL;
639 }
640
641 return 0;
642 }
643
dm_table_add_target(struct dm_table * t,const char * type,sector_t start,sector_t len,char * params)644 int dm_table_add_target(struct dm_table *t, const char *type,
645 sector_t start, sector_t len, char *params)
646 {
647 int r = -EINVAL, argc;
648 char **argv;
649 struct dm_target *ti;
650
651 if (t->singleton) {
652 DMERR("%s: target type %s must appear alone in table",
653 dm_device_name(t->md), t->targets->type->name);
654 return -EINVAL;
655 }
656
657 BUG_ON(t->num_targets >= t->num_allocated);
658
659 ti = t->targets + t->num_targets;
660 memset(ti, 0, sizeof(*ti));
661
662 if (!len) {
663 DMERR("%s: zero-length target", dm_device_name(t->md));
664 return -EINVAL;
665 }
666
667 ti->type = dm_get_target_type(type);
668 if (!ti->type) {
669 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
670 return -EINVAL;
671 }
672
673 if (dm_target_needs_singleton(ti->type)) {
674 if (t->num_targets) {
675 ti->error = "singleton target type must appear alone in table";
676 goto bad;
677 }
678 t->singleton = true;
679 }
680
681 if (dm_target_always_writeable(ti->type) &&
682 !(t->mode & BLK_OPEN_WRITE)) {
683 ti->error = "target type may not be included in a read-only table";
684 goto bad;
685 }
686
687 if (t->immutable_target_type) {
688 if (t->immutable_target_type != ti->type) {
689 ti->error = "immutable target type cannot be mixed with other target types";
690 goto bad;
691 }
692 } else if (dm_target_is_immutable(ti->type)) {
693 if (t->num_targets) {
694 ti->error = "immutable target type cannot be mixed with other target types";
695 goto bad;
696 }
697 t->immutable_target_type = ti->type;
698 }
699
700 if (dm_target_has_integrity(ti->type))
701 t->integrity_added = 1;
702
703 ti->table = t;
704 ti->begin = start;
705 ti->len = len;
706 ti->error = "Unknown error";
707
708 /*
709 * Does this target adjoin the previous one ?
710 */
711 if (!adjoin(t, ti)) {
712 ti->error = "Gap in table";
713 goto bad;
714 }
715
716 r = dm_split_args(&argc, &argv, params);
717 if (r) {
718 ti->error = "couldn't split parameters";
719 goto bad;
720 }
721
722 r = ti->type->ctr(ti, argc, argv);
723 kfree(argv);
724 if (r)
725 goto bad;
726
727 t->highs[t->num_targets++] = ti->begin + ti->len - 1;
728
729 if (!ti->num_discard_bios && ti->discards_supported)
730 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
731 dm_device_name(t->md), type);
732
733 if (ti->limit_swap_bios && !static_key_enabled(&swap_bios_enabled.key))
734 static_branch_enable(&swap_bios_enabled);
735
736 return 0;
737
738 bad:
739 DMERR("%s: %s: %s (%pe)", dm_device_name(t->md), type, ti->error, ERR_PTR(r));
740 dm_put_target_type(ti->type);
741 return r;
742 }
743
744 /*
745 * Target argument parsing helpers.
746 */
validate_next_arg(const struct dm_arg * arg,struct dm_arg_set * arg_set,unsigned int * value,char ** error,unsigned int grouped)747 static int validate_next_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
748 unsigned int *value, char **error, unsigned int grouped)
749 {
750 const char *arg_str = dm_shift_arg(arg_set);
751 char dummy;
752
753 if (!arg_str ||
754 (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
755 (*value < arg->min) ||
756 (*value > arg->max) ||
757 (grouped && arg_set->argc < *value)) {
758 *error = arg->error;
759 return -EINVAL;
760 }
761
762 return 0;
763 }
764
dm_read_arg(const struct dm_arg * arg,struct dm_arg_set * arg_set,unsigned int * value,char ** error)765 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
766 unsigned int *value, char **error)
767 {
768 return validate_next_arg(arg, arg_set, value, error, 0);
769 }
770 EXPORT_SYMBOL(dm_read_arg);
771
dm_read_arg_group(const struct dm_arg * arg,struct dm_arg_set * arg_set,unsigned int * value,char ** error)772 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
773 unsigned int *value, char **error)
774 {
775 return validate_next_arg(arg, arg_set, value, error, 1);
776 }
777 EXPORT_SYMBOL(dm_read_arg_group);
778
dm_shift_arg(struct dm_arg_set * as)779 const char *dm_shift_arg(struct dm_arg_set *as)
780 {
781 char *r;
782
783 if (as->argc) {
784 as->argc--;
785 r = *as->argv;
786 as->argv++;
787 return r;
788 }
789
790 return NULL;
791 }
792 EXPORT_SYMBOL(dm_shift_arg);
793
dm_consume_args(struct dm_arg_set * as,unsigned int num_args)794 void dm_consume_args(struct dm_arg_set *as, unsigned int num_args)
795 {
796 BUG_ON(as->argc < num_args);
797 as->argc -= num_args;
798 as->argv += num_args;
799 }
800 EXPORT_SYMBOL(dm_consume_args);
801
__table_type_bio_based(enum dm_queue_mode table_type)802 static bool __table_type_bio_based(enum dm_queue_mode table_type)
803 {
804 return (table_type == DM_TYPE_BIO_BASED ||
805 table_type == DM_TYPE_DAX_BIO_BASED);
806 }
807
__table_type_request_based(enum dm_queue_mode table_type)808 static bool __table_type_request_based(enum dm_queue_mode table_type)
809 {
810 return table_type == DM_TYPE_REQUEST_BASED;
811 }
812
dm_table_set_type(struct dm_table * t,enum dm_queue_mode type)813 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
814 {
815 t->type = type;
816 }
817 EXPORT_SYMBOL_GPL(dm_table_set_type);
818
819 /* validate the dax capability of the target device span */
device_not_dax_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)820 static int device_not_dax_capable(struct dm_target *ti, struct dm_dev *dev,
821 sector_t start, sector_t len, void *data)
822 {
823 if (dev->dax_dev)
824 return false;
825
826 DMDEBUG("%pg: error: dax unsupported by block device", dev->bdev);
827 return true;
828 }
829
830 /* Check devices support synchronous DAX */
device_not_dax_synchronous_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)831 static int device_not_dax_synchronous_capable(struct dm_target *ti, struct dm_dev *dev,
832 sector_t start, sector_t len, void *data)
833 {
834 return !dev->dax_dev || !dax_synchronous(dev->dax_dev);
835 }
836
dm_table_supports_dax(struct dm_table * t,iterate_devices_callout_fn iterate_fn)837 static bool dm_table_supports_dax(struct dm_table *t,
838 iterate_devices_callout_fn iterate_fn)
839 {
840 /* Ensure that all targets support DAX. */
841 for (unsigned int i = 0; i < t->num_targets; i++) {
842 struct dm_target *ti = dm_table_get_target(t, i);
843
844 if (!ti->type->direct_access)
845 return false;
846
847 if (!ti->type->iterate_devices ||
848 ti->type->iterate_devices(ti, iterate_fn, NULL))
849 return false;
850 }
851
852 return true;
853 }
854
device_is_rq_stackable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)855 static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev,
856 sector_t start, sector_t len, void *data)
857 {
858 struct block_device *bdev = dev->bdev;
859 struct request_queue *q = bdev_get_queue(bdev);
860
861 /* request-based cannot stack on partitions! */
862 if (bdev_is_partition(bdev))
863 return false;
864
865 return queue_is_mq(q);
866 }
867
dm_table_determine_type(struct dm_table * t)868 static int dm_table_determine_type(struct dm_table *t)
869 {
870 unsigned int bio_based = 0, request_based = 0, hybrid = 0;
871 struct dm_target *ti;
872 struct list_head *devices = dm_table_get_devices(t);
873 enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
874
875 if (t->type != DM_TYPE_NONE) {
876 /* target already set the table's type */
877 if (t->type == DM_TYPE_BIO_BASED) {
878 /* possibly upgrade to a variant of bio-based */
879 goto verify_bio_based;
880 }
881 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
882 goto verify_rq_based;
883 }
884
885 for (unsigned int i = 0; i < t->num_targets; i++) {
886 ti = dm_table_get_target(t, i);
887 if (dm_target_hybrid(ti))
888 hybrid = 1;
889 else if (dm_target_request_based(ti))
890 request_based = 1;
891 else
892 bio_based = 1;
893
894 if (bio_based && request_based) {
895 DMERR("Inconsistent table: different target types can't be mixed up");
896 return -EINVAL;
897 }
898 }
899
900 if (hybrid && !bio_based && !request_based) {
901 /*
902 * The targets can work either way.
903 * Determine the type from the live device.
904 * Default to bio-based if device is new.
905 */
906 if (__table_type_request_based(live_md_type))
907 request_based = 1;
908 else
909 bio_based = 1;
910 }
911
912 if (bio_based) {
913 verify_bio_based:
914 /* We must use this table as bio-based */
915 t->type = DM_TYPE_BIO_BASED;
916 if (dm_table_supports_dax(t, device_not_dax_capable) ||
917 (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
918 t->type = DM_TYPE_DAX_BIO_BASED;
919 }
920 return 0;
921 }
922
923 BUG_ON(!request_based); /* No targets in this table */
924
925 t->type = DM_TYPE_REQUEST_BASED;
926
927 verify_rq_based:
928 /*
929 * Request-based dm supports only tables that have a single target now.
930 * To support multiple targets, request splitting support is needed,
931 * and that needs lots of changes in the block-layer.
932 * (e.g. request completion process for partial completion.)
933 */
934 if (t->num_targets > 1) {
935 DMERR("request-based DM doesn't support multiple targets");
936 return -EINVAL;
937 }
938
939 if (list_empty(devices)) {
940 int srcu_idx;
941 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
942
943 /* inherit live table's type */
944 if (live_table)
945 t->type = live_table->type;
946 dm_put_live_table(t->md, srcu_idx);
947 return 0;
948 }
949
950 ti = dm_table_get_immutable_target(t);
951 if (!ti) {
952 DMERR("table load rejected: immutable target is required");
953 return -EINVAL;
954 } else if (ti->max_io_len) {
955 DMERR("table load rejected: immutable target that splits IO is not supported");
956 return -EINVAL;
957 }
958
959 /* Non-request-stackable devices can't be used for request-based dm */
960 if (!ti->type->iterate_devices ||
961 !ti->type->iterate_devices(ti, device_is_rq_stackable, NULL)) {
962 DMERR("table load rejected: including non-request-stackable devices");
963 return -EINVAL;
964 }
965
966 return 0;
967 }
968
dm_table_get_type(struct dm_table * t)969 enum dm_queue_mode dm_table_get_type(struct dm_table *t)
970 {
971 return t->type;
972 }
973
dm_table_get_immutable_target_type(struct dm_table * t)974 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
975 {
976 return t->immutable_target_type;
977 }
978
dm_table_get_immutable_target(struct dm_table * t)979 struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
980 {
981 /* Immutable target is implicitly a singleton */
982 if (t->num_targets > 1 ||
983 !dm_target_is_immutable(t->targets[0].type))
984 return NULL;
985
986 return t->targets;
987 }
988
dm_table_get_wildcard_target(struct dm_table * t)989 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
990 {
991 for (unsigned int i = 0; i < t->num_targets; i++) {
992 struct dm_target *ti = dm_table_get_target(t, i);
993
994 if (dm_target_is_wildcard(ti->type))
995 return ti;
996 }
997
998 return NULL;
999 }
1000
dm_table_bio_based(struct dm_table * t)1001 bool dm_table_bio_based(struct dm_table *t)
1002 {
1003 return __table_type_bio_based(dm_table_get_type(t));
1004 }
1005
dm_table_request_based(struct dm_table * t)1006 bool dm_table_request_based(struct dm_table *t)
1007 {
1008 return __table_type_request_based(dm_table_get_type(t));
1009 }
1010
1011 static bool dm_table_supports_poll(struct dm_table *t);
1012
dm_table_alloc_md_mempools(struct dm_table * t,struct mapped_device * md)1013 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1014 {
1015 enum dm_queue_mode type = dm_table_get_type(t);
1016 unsigned int per_io_data_size = 0, front_pad, io_front_pad;
1017 unsigned int min_pool_size = 0, pool_size;
1018 struct dm_md_mempools *pools;
1019
1020 if (unlikely(type == DM_TYPE_NONE)) {
1021 DMERR("no table type is set, can't allocate mempools");
1022 return -EINVAL;
1023 }
1024
1025 pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
1026 if (!pools)
1027 return -ENOMEM;
1028
1029 if (type == DM_TYPE_REQUEST_BASED) {
1030 pool_size = dm_get_reserved_rq_based_ios();
1031 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
1032 goto init_bs;
1033 }
1034
1035 for (unsigned int i = 0; i < t->num_targets; i++) {
1036 struct dm_target *ti = dm_table_get_target(t, i);
1037
1038 per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1039 min_pool_size = max(min_pool_size, ti->num_flush_bios);
1040 }
1041 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
1042 front_pad = roundup(per_io_data_size,
1043 __alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET;
1044
1045 io_front_pad = roundup(per_io_data_size,
1046 __alignof__(struct dm_io)) + DM_IO_BIO_OFFSET;
1047 if (bioset_init(&pools->io_bs, pool_size, io_front_pad,
1048 dm_table_supports_poll(t) ? BIOSET_PERCPU_CACHE : 0))
1049 goto out_free_pools;
1050 if (t->integrity_supported &&
1051 bioset_integrity_create(&pools->io_bs, pool_size))
1052 goto out_free_pools;
1053 init_bs:
1054 if (bioset_init(&pools->bs, pool_size, front_pad, 0))
1055 goto out_free_pools;
1056 if (t->integrity_supported &&
1057 bioset_integrity_create(&pools->bs, pool_size))
1058 goto out_free_pools;
1059
1060 t->mempools = pools;
1061 return 0;
1062
1063 out_free_pools:
1064 dm_free_md_mempools(pools);
1065 return -ENOMEM;
1066 }
1067
setup_indexes(struct dm_table * t)1068 static int setup_indexes(struct dm_table *t)
1069 {
1070 int i;
1071 unsigned int total = 0;
1072 sector_t *indexes;
1073
1074 /* allocate the space for *all* the indexes */
1075 for (i = t->depth - 2; i >= 0; i--) {
1076 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1077 total += t->counts[i];
1078 }
1079
1080 indexes = kvcalloc(total, NODE_SIZE, GFP_KERNEL);
1081 if (!indexes)
1082 return -ENOMEM;
1083
1084 /* set up internal nodes, bottom-up */
1085 for (i = t->depth - 2; i >= 0; i--) {
1086 t->index[i] = indexes;
1087 indexes += (KEYS_PER_NODE * t->counts[i]);
1088 setup_btree_index(i, t);
1089 }
1090
1091 return 0;
1092 }
1093
1094 /*
1095 * Builds the btree to index the map.
1096 */
dm_table_build_index(struct dm_table * t)1097 static int dm_table_build_index(struct dm_table *t)
1098 {
1099 int r = 0;
1100 unsigned int leaf_nodes;
1101
1102 /* how many indexes will the btree have ? */
1103 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1104 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1105
1106 /* leaf layer has already been set up */
1107 t->counts[t->depth - 1] = leaf_nodes;
1108 t->index[t->depth - 1] = t->highs;
1109
1110 if (t->depth >= 2)
1111 r = setup_indexes(t);
1112
1113 return r;
1114 }
1115
integrity_profile_exists(struct gendisk * disk)1116 static bool integrity_profile_exists(struct gendisk *disk)
1117 {
1118 return !!blk_get_integrity(disk);
1119 }
1120
1121 /*
1122 * Get a disk whose integrity profile reflects the table's profile.
1123 * Returns NULL if integrity support was inconsistent or unavailable.
1124 */
dm_table_get_integrity_disk(struct dm_table * t)1125 static struct gendisk *dm_table_get_integrity_disk(struct dm_table *t)
1126 {
1127 struct list_head *devices = dm_table_get_devices(t);
1128 struct dm_dev_internal *dd = NULL;
1129 struct gendisk *prev_disk = NULL, *template_disk = NULL;
1130
1131 for (unsigned int i = 0; i < t->num_targets; i++) {
1132 struct dm_target *ti = dm_table_get_target(t, i);
1133
1134 if (!dm_target_passes_integrity(ti->type))
1135 goto no_integrity;
1136 }
1137
1138 list_for_each_entry(dd, devices, list) {
1139 template_disk = dd->dm_dev->bdev->bd_disk;
1140 if (!integrity_profile_exists(template_disk))
1141 goto no_integrity;
1142 else if (prev_disk &&
1143 blk_integrity_compare(prev_disk, template_disk) < 0)
1144 goto no_integrity;
1145 prev_disk = template_disk;
1146 }
1147
1148 return template_disk;
1149
1150 no_integrity:
1151 if (prev_disk)
1152 DMWARN("%s: integrity not set: %s and %s profile mismatch",
1153 dm_device_name(t->md),
1154 prev_disk->disk_name,
1155 template_disk->disk_name);
1156 return NULL;
1157 }
1158
1159 /*
1160 * Register the mapped device for blk_integrity support if the
1161 * underlying devices have an integrity profile. But all devices may
1162 * not have matching profiles (checking all devices isn't reliable
1163 * during table load because this table may use other DM device(s) which
1164 * must be resumed before they will have an initialized integity
1165 * profile). Consequently, stacked DM devices force a 2 stage integrity
1166 * profile validation: First pass during table load, final pass during
1167 * resume.
1168 */
dm_table_register_integrity(struct dm_table * t)1169 static int dm_table_register_integrity(struct dm_table *t)
1170 {
1171 struct mapped_device *md = t->md;
1172 struct gendisk *template_disk = NULL;
1173
1174 /* If target handles integrity itself do not register it here. */
1175 if (t->integrity_added)
1176 return 0;
1177
1178 template_disk = dm_table_get_integrity_disk(t);
1179 if (!template_disk)
1180 return 0;
1181
1182 if (!integrity_profile_exists(dm_disk(md))) {
1183 t->integrity_supported = true;
1184 /*
1185 * Register integrity profile during table load; we can do
1186 * this because the final profile must match during resume.
1187 */
1188 blk_integrity_register(dm_disk(md),
1189 blk_get_integrity(template_disk));
1190 return 0;
1191 }
1192
1193 /*
1194 * If DM device already has an initialized integrity
1195 * profile the new profile should not conflict.
1196 */
1197 if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1198 DMERR("%s: conflict with existing integrity profile: %s profile mismatch",
1199 dm_device_name(t->md),
1200 template_disk->disk_name);
1201 return 1;
1202 }
1203
1204 /* Preserve existing integrity profile */
1205 t->integrity_supported = true;
1206 return 0;
1207 }
1208
1209 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1210
1211 struct dm_crypto_profile {
1212 struct blk_crypto_profile profile;
1213 struct mapped_device *md;
1214 };
1215
dm_keyslot_evict_callback(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1216 static int dm_keyslot_evict_callback(struct dm_target *ti, struct dm_dev *dev,
1217 sector_t start, sector_t len, void *data)
1218 {
1219 const struct blk_crypto_key *key = data;
1220
1221 blk_crypto_evict_key(dev->bdev, key);
1222 return 0;
1223 }
1224
1225 /*
1226 * When an inline encryption key is evicted from a device-mapper device, evict
1227 * it from all the underlying devices.
1228 */
dm_keyslot_evict(struct blk_crypto_profile * profile,const struct blk_crypto_key * key,unsigned int slot)1229 static int dm_keyslot_evict(struct blk_crypto_profile *profile,
1230 const struct blk_crypto_key *key, unsigned int slot)
1231 {
1232 struct mapped_device *md =
1233 container_of(profile, struct dm_crypto_profile, profile)->md;
1234 struct dm_table *t;
1235 int srcu_idx;
1236
1237 t = dm_get_live_table(md, &srcu_idx);
1238 if (!t)
1239 return 0;
1240
1241 for (unsigned int i = 0; i < t->num_targets; i++) {
1242 struct dm_target *ti = dm_table_get_target(t, i);
1243
1244 if (!ti->type->iterate_devices)
1245 continue;
1246 ti->type->iterate_devices(ti, dm_keyslot_evict_callback,
1247 (void *)key);
1248 }
1249
1250 dm_put_live_table(md, srcu_idx);
1251 return 0;
1252 }
1253
1254 static int
device_intersect_crypto_capabilities(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1255 device_intersect_crypto_capabilities(struct dm_target *ti, struct dm_dev *dev,
1256 sector_t start, sector_t len, void *data)
1257 {
1258 struct blk_crypto_profile *parent = data;
1259 struct blk_crypto_profile *child =
1260 bdev_get_queue(dev->bdev)->crypto_profile;
1261
1262 blk_crypto_intersect_capabilities(parent, child);
1263 return 0;
1264 }
1265
dm_destroy_crypto_profile(struct blk_crypto_profile * profile)1266 void dm_destroy_crypto_profile(struct blk_crypto_profile *profile)
1267 {
1268 struct dm_crypto_profile *dmcp = container_of(profile,
1269 struct dm_crypto_profile,
1270 profile);
1271
1272 if (!profile)
1273 return;
1274
1275 blk_crypto_profile_destroy(profile);
1276 kfree(dmcp);
1277 }
1278
dm_table_destroy_crypto_profile(struct dm_table * t)1279 static void dm_table_destroy_crypto_profile(struct dm_table *t)
1280 {
1281 dm_destroy_crypto_profile(t->crypto_profile);
1282 t->crypto_profile = NULL;
1283 }
1284
1285 /*
1286 * Constructs and initializes t->crypto_profile with a crypto profile that
1287 * represents the common set of crypto capabilities of the devices described by
1288 * the dm_table. However, if the constructed crypto profile doesn't support all
1289 * crypto capabilities that are supported by the current mapped_device, it
1290 * returns an error instead, since we don't support removing crypto capabilities
1291 * on table changes. Finally, if the constructed crypto profile is "empty" (has
1292 * no crypto capabilities at all), it just sets t->crypto_profile to NULL.
1293 */
dm_table_construct_crypto_profile(struct dm_table * t)1294 static int dm_table_construct_crypto_profile(struct dm_table *t)
1295 {
1296 struct dm_crypto_profile *dmcp;
1297 struct blk_crypto_profile *profile;
1298 unsigned int i;
1299 bool empty_profile = true;
1300
1301 dmcp = kmalloc(sizeof(*dmcp), GFP_KERNEL);
1302 if (!dmcp)
1303 return -ENOMEM;
1304 dmcp->md = t->md;
1305
1306 profile = &dmcp->profile;
1307 blk_crypto_profile_init(profile, 0);
1308 profile->ll_ops.keyslot_evict = dm_keyslot_evict;
1309 profile->max_dun_bytes_supported = UINT_MAX;
1310 memset(profile->modes_supported, 0xFF,
1311 sizeof(profile->modes_supported));
1312
1313 for (i = 0; i < t->num_targets; i++) {
1314 struct dm_target *ti = dm_table_get_target(t, i);
1315
1316 if (!dm_target_passes_crypto(ti->type)) {
1317 blk_crypto_intersect_capabilities(profile, NULL);
1318 break;
1319 }
1320 if (!ti->type->iterate_devices)
1321 continue;
1322 ti->type->iterate_devices(ti,
1323 device_intersect_crypto_capabilities,
1324 profile);
1325 }
1326
1327 if (t->md->queue &&
1328 !blk_crypto_has_capabilities(profile,
1329 t->md->queue->crypto_profile)) {
1330 DMERR("Inline encryption capabilities of new DM table were more restrictive than the old table's. This is not supported!");
1331 dm_destroy_crypto_profile(profile);
1332 return -EINVAL;
1333 }
1334
1335 /*
1336 * If the new profile doesn't actually support any crypto capabilities,
1337 * we may as well represent it with a NULL profile.
1338 */
1339 for (i = 0; i < ARRAY_SIZE(profile->modes_supported); i++) {
1340 if (profile->modes_supported[i]) {
1341 empty_profile = false;
1342 break;
1343 }
1344 }
1345
1346 if (empty_profile) {
1347 dm_destroy_crypto_profile(profile);
1348 profile = NULL;
1349 }
1350
1351 /*
1352 * t->crypto_profile is only set temporarily while the table is being
1353 * set up, and it gets set to NULL after the profile has been
1354 * transferred to the request_queue.
1355 */
1356 t->crypto_profile = profile;
1357
1358 return 0;
1359 }
1360
dm_update_crypto_profile(struct request_queue * q,struct dm_table * t)1361 static void dm_update_crypto_profile(struct request_queue *q,
1362 struct dm_table *t)
1363 {
1364 if (!t->crypto_profile)
1365 return;
1366
1367 /* Make the crypto profile less restrictive. */
1368 if (!q->crypto_profile) {
1369 blk_crypto_register(t->crypto_profile, q);
1370 } else {
1371 blk_crypto_update_capabilities(q->crypto_profile,
1372 t->crypto_profile);
1373 dm_destroy_crypto_profile(t->crypto_profile);
1374 }
1375 t->crypto_profile = NULL;
1376 }
1377
1378 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1379
dm_table_construct_crypto_profile(struct dm_table * t)1380 static int dm_table_construct_crypto_profile(struct dm_table *t)
1381 {
1382 return 0;
1383 }
1384
dm_destroy_crypto_profile(struct blk_crypto_profile * profile)1385 void dm_destroy_crypto_profile(struct blk_crypto_profile *profile)
1386 {
1387 }
1388
dm_table_destroy_crypto_profile(struct dm_table * t)1389 static void dm_table_destroy_crypto_profile(struct dm_table *t)
1390 {
1391 }
1392
dm_update_crypto_profile(struct request_queue * q,struct dm_table * t)1393 static void dm_update_crypto_profile(struct request_queue *q,
1394 struct dm_table *t)
1395 {
1396 }
1397
1398 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1399
1400 /*
1401 * Prepares the table for use by building the indices,
1402 * setting the type, and allocating mempools.
1403 */
dm_table_complete(struct dm_table * t)1404 int dm_table_complete(struct dm_table *t)
1405 {
1406 int r;
1407
1408 r = dm_table_determine_type(t);
1409 if (r) {
1410 DMERR("unable to determine table type");
1411 return r;
1412 }
1413
1414 r = dm_table_build_index(t);
1415 if (r) {
1416 DMERR("unable to build btrees");
1417 return r;
1418 }
1419
1420 r = dm_table_register_integrity(t);
1421 if (r) {
1422 DMERR("could not register integrity profile.");
1423 return r;
1424 }
1425
1426 r = dm_table_construct_crypto_profile(t);
1427 if (r) {
1428 DMERR("could not construct crypto profile.");
1429 return r;
1430 }
1431
1432 r = dm_table_alloc_md_mempools(t, t->md);
1433 if (r)
1434 DMERR("unable to allocate mempools");
1435
1436 return r;
1437 }
1438
1439 static DEFINE_MUTEX(_event_lock);
dm_table_event_callback(struct dm_table * t,void (* fn)(void *),void * context)1440 void dm_table_event_callback(struct dm_table *t,
1441 void (*fn)(void *), void *context)
1442 {
1443 mutex_lock(&_event_lock);
1444 t->event_fn = fn;
1445 t->event_context = context;
1446 mutex_unlock(&_event_lock);
1447 }
1448
dm_table_event(struct dm_table * t)1449 void dm_table_event(struct dm_table *t)
1450 {
1451 mutex_lock(&_event_lock);
1452 if (t->event_fn)
1453 t->event_fn(t->event_context);
1454 mutex_unlock(&_event_lock);
1455 }
1456 EXPORT_SYMBOL(dm_table_event);
1457
dm_table_get_size(struct dm_table * t)1458 inline sector_t dm_table_get_size(struct dm_table *t)
1459 {
1460 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1461 }
1462 EXPORT_SYMBOL(dm_table_get_size);
1463
1464 /*
1465 * Search the btree for the correct target.
1466 *
1467 * Caller should check returned pointer for NULL
1468 * to trap I/O beyond end of device.
1469 */
dm_table_find_target(struct dm_table * t,sector_t sector)1470 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1471 {
1472 unsigned int l, n = 0, k = 0;
1473 sector_t *node;
1474
1475 if (unlikely(sector >= dm_table_get_size(t)))
1476 return NULL;
1477
1478 for (l = 0; l < t->depth; l++) {
1479 n = get_child(n, k);
1480 node = get_node(t, l, n);
1481
1482 for (k = 0; k < KEYS_PER_NODE; k++)
1483 if (node[k] >= sector)
1484 break;
1485 }
1486
1487 return &t->targets[(KEYS_PER_NODE * n) + k];
1488 }
1489
device_not_poll_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1490 static int device_not_poll_capable(struct dm_target *ti, struct dm_dev *dev,
1491 sector_t start, sector_t len, void *data)
1492 {
1493 struct request_queue *q = bdev_get_queue(dev->bdev);
1494
1495 return !test_bit(QUEUE_FLAG_POLL, &q->queue_flags);
1496 }
1497
1498 /*
1499 * type->iterate_devices() should be called when the sanity check needs to
1500 * iterate and check all underlying data devices. iterate_devices() will
1501 * iterate all underlying data devices until it encounters a non-zero return
1502 * code, returned by whether the input iterate_devices_callout_fn, or
1503 * iterate_devices() itself internally.
1504 *
1505 * For some target type (e.g. dm-stripe), one call of iterate_devices() may
1506 * iterate multiple underlying devices internally, in which case a non-zero
1507 * return code returned by iterate_devices_callout_fn will stop the iteration
1508 * in advance.
1509 *
1510 * Cases requiring _any_ underlying device supporting some kind of attribute,
1511 * should use the iteration structure like dm_table_any_dev_attr(), or call
1512 * it directly. @func should handle semantics of positive examples, e.g.
1513 * capable of something.
1514 *
1515 * Cases requiring _all_ underlying devices supporting some kind of attribute,
1516 * should use the iteration structure like dm_table_supports_nowait() or
1517 * dm_table_supports_discards(). Or introduce dm_table_all_devs_attr() that
1518 * uses an @anti_func that handle semantics of counter examples, e.g. not
1519 * capable of something. So: return !dm_table_any_dev_attr(t, anti_func, data);
1520 */
dm_table_any_dev_attr(struct dm_table * t,iterate_devices_callout_fn func,void * data)1521 static bool dm_table_any_dev_attr(struct dm_table *t,
1522 iterate_devices_callout_fn func, void *data)
1523 {
1524 for (unsigned int i = 0; i < t->num_targets; i++) {
1525 struct dm_target *ti = dm_table_get_target(t, i);
1526
1527 if (ti->type->iterate_devices &&
1528 ti->type->iterate_devices(ti, func, data))
1529 return true;
1530 }
1531
1532 return false;
1533 }
1534
count_device(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1535 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1536 sector_t start, sector_t len, void *data)
1537 {
1538 unsigned int *num_devices = data;
1539
1540 (*num_devices)++;
1541
1542 return 0;
1543 }
1544
dm_table_supports_poll(struct dm_table * t)1545 static bool dm_table_supports_poll(struct dm_table *t)
1546 {
1547 for (unsigned int i = 0; i < t->num_targets; i++) {
1548 struct dm_target *ti = dm_table_get_target(t, i);
1549
1550 if (!ti->type->iterate_devices ||
1551 ti->type->iterate_devices(ti, device_not_poll_capable, NULL))
1552 return false;
1553 }
1554
1555 return true;
1556 }
1557
1558 /*
1559 * Check whether a table has no data devices attached using each
1560 * target's iterate_devices method.
1561 * Returns false if the result is unknown because a target doesn't
1562 * support iterate_devices.
1563 */
dm_table_has_no_data_devices(struct dm_table * t)1564 bool dm_table_has_no_data_devices(struct dm_table *t)
1565 {
1566 for (unsigned int i = 0; i < t->num_targets; i++) {
1567 struct dm_target *ti = dm_table_get_target(t, i);
1568 unsigned int num_devices = 0;
1569
1570 if (!ti->type->iterate_devices)
1571 return false;
1572
1573 ti->type->iterate_devices(ti, count_device, &num_devices);
1574 if (num_devices)
1575 return false;
1576 }
1577
1578 return true;
1579 }
1580
device_not_zoned_model(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1581 static int device_not_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1582 sector_t start, sector_t len, void *data)
1583 {
1584 struct request_queue *q = bdev_get_queue(dev->bdev);
1585 enum blk_zoned_model *zoned_model = data;
1586
1587 return blk_queue_zoned_model(q) != *zoned_model;
1588 }
1589
1590 /*
1591 * Check the device zoned model based on the target feature flag. If the target
1592 * has the DM_TARGET_ZONED_HM feature flag set, host-managed zoned devices are
1593 * also accepted but all devices must have the same zoned model. If the target
1594 * has the DM_TARGET_MIXED_ZONED_MODEL feature set, the devices can have any
1595 * zoned model with all zoned devices having the same zone size.
1596 */
dm_table_supports_zoned_model(struct dm_table * t,enum blk_zoned_model zoned_model)1597 static bool dm_table_supports_zoned_model(struct dm_table *t,
1598 enum blk_zoned_model zoned_model)
1599 {
1600 for (unsigned int i = 0; i < t->num_targets; i++) {
1601 struct dm_target *ti = dm_table_get_target(t, i);
1602
1603 if (dm_target_supports_zoned_hm(ti->type)) {
1604 if (!ti->type->iterate_devices ||
1605 ti->type->iterate_devices(ti, device_not_zoned_model,
1606 &zoned_model))
1607 return false;
1608 } else if (!dm_target_supports_mixed_zoned_model(ti->type)) {
1609 if (zoned_model == BLK_ZONED_HM)
1610 return false;
1611 }
1612 }
1613
1614 return true;
1615 }
1616
device_not_matches_zone_sectors(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1617 static int device_not_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1618 sector_t start, sector_t len, void *data)
1619 {
1620 unsigned int *zone_sectors = data;
1621
1622 if (!bdev_is_zoned(dev->bdev))
1623 return 0;
1624 return bdev_zone_sectors(dev->bdev) != *zone_sectors;
1625 }
1626
1627 /*
1628 * Check consistency of zoned model and zone sectors across all targets. For
1629 * zone sectors, if the destination device is a zoned block device, it shall
1630 * have the specified zone_sectors.
1631 */
validate_hardware_zoned_model(struct dm_table * t,enum blk_zoned_model zoned_model,unsigned int zone_sectors)1632 static int validate_hardware_zoned_model(struct dm_table *t,
1633 enum blk_zoned_model zoned_model,
1634 unsigned int zone_sectors)
1635 {
1636 if (zoned_model == BLK_ZONED_NONE)
1637 return 0;
1638
1639 if (!dm_table_supports_zoned_model(t, zoned_model)) {
1640 DMERR("%s: zoned model is not consistent across all devices",
1641 dm_device_name(t->md));
1642 return -EINVAL;
1643 }
1644
1645 /* Check zone size validity and compatibility */
1646 if (!zone_sectors || !is_power_of_2(zone_sectors))
1647 return -EINVAL;
1648
1649 if (dm_table_any_dev_attr(t, device_not_matches_zone_sectors, &zone_sectors)) {
1650 DMERR("%s: zone sectors is not consistent across all zoned devices",
1651 dm_device_name(t->md));
1652 return -EINVAL;
1653 }
1654
1655 return 0;
1656 }
1657
1658 /*
1659 * Establish the new table's queue_limits and validate them.
1660 */
dm_calculate_queue_limits(struct dm_table * t,struct queue_limits * limits)1661 int dm_calculate_queue_limits(struct dm_table *t,
1662 struct queue_limits *limits)
1663 {
1664 struct queue_limits ti_limits;
1665 enum blk_zoned_model zoned_model = BLK_ZONED_NONE;
1666 unsigned int zone_sectors = 0;
1667
1668 blk_set_stacking_limits(limits);
1669
1670 for (unsigned int i = 0; i < t->num_targets; i++) {
1671 struct dm_target *ti = dm_table_get_target(t, i);
1672
1673 blk_set_stacking_limits(&ti_limits);
1674
1675 if (!ti->type->iterate_devices) {
1676 /* Set I/O hints portion of queue limits */
1677 if (ti->type->io_hints)
1678 ti->type->io_hints(ti, &ti_limits);
1679 goto combine_limits;
1680 }
1681
1682 /*
1683 * Combine queue limits of all the devices this target uses.
1684 */
1685 ti->type->iterate_devices(ti, dm_set_device_limits,
1686 &ti_limits);
1687
1688 if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1689 /*
1690 * After stacking all limits, validate all devices
1691 * in table support this zoned model and zone sectors.
1692 */
1693 zoned_model = ti_limits.zoned;
1694 zone_sectors = ti_limits.chunk_sectors;
1695 }
1696
1697 /* Set I/O hints portion of queue limits */
1698 if (ti->type->io_hints)
1699 ti->type->io_hints(ti, &ti_limits);
1700
1701 /*
1702 * Check each device area is consistent with the target's
1703 * overall queue limits.
1704 */
1705 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1706 &ti_limits))
1707 return -EINVAL;
1708
1709 combine_limits:
1710 /*
1711 * Merge this target's queue limits into the overall limits
1712 * for the table.
1713 */
1714 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1715 DMWARN("%s: adding target device (start sect %llu len %llu) "
1716 "caused an alignment inconsistency",
1717 dm_device_name(t->md),
1718 (unsigned long long) ti->begin,
1719 (unsigned long long) ti->len);
1720 }
1721
1722 /*
1723 * Verify that the zoned model and zone sectors, as determined before
1724 * any .io_hints override, are the same across all devices in the table.
1725 * - this is especially relevant if .io_hints is emulating a disk-managed
1726 * zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices.
1727 * BUT...
1728 */
1729 if (limits->zoned != BLK_ZONED_NONE) {
1730 /*
1731 * ...IF the above limits stacking determined a zoned model
1732 * validate that all of the table's devices conform to it.
1733 */
1734 zoned_model = limits->zoned;
1735 zone_sectors = limits->chunk_sectors;
1736 }
1737 if (validate_hardware_zoned_model(t, zoned_model, zone_sectors))
1738 return -EINVAL;
1739
1740 return validate_hardware_logical_block_alignment(t, limits);
1741 }
1742
1743 /*
1744 * Verify that all devices have an integrity profile that matches the
1745 * DM device's registered integrity profile. If the profiles don't
1746 * match then unregister the DM device's integrity profile.
1747 */
dm_table_verify_integrity(struct dm_table * t)1748 static void dm_table_verify_integrity(struct dm_table *t)
1749 {
1750 struct gendisk *template_disk = NULL;
1751
1752 if (t->integrity_added)
1753 return;
1754
1755 if (t->integrity_supported) {
1756 /*
1757 * Verify that the original integrity profile
1758 * matches all the devices in this table.
1759 */
1760 template_disk = dm_table_get_integrity_disk(t);
1761 if (template_disk &&
1762 blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1763 return;
1764 }
1765
1766 if (integrity_profile_exists(dm_disk(t->md))) {
1767 DMWARN("%s: unable to establish an integrity profile",
1768 dm_device_name(t->md));
1769 blk_integrity_unregister(dm_disk(t->md));
1770 }
1771 }
1772
device_flush_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1773 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1774 sector_t start, sector_t len, void *data)
1775 {
1776 unsigned long flush = (unsigned long) data;
1777 struct request_queue *q = bdev_get_queue(dev->bdev);
1778
1779 return (q->queue_flags & flush);
1780 }
1781
dm_table_supports_flush(struct dm_table * t,unsigned long flush)1782 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1783 {
1784 /*
1785 * Require at least one underlying device to support flushes.
1786 * t->devices includes internal dm devices such as mirror logs
1787 * so we need to use iterate_devices here, which targets
1788 * supporting flushes must provide.
1789 */
1790 for (unsigned int i = 0; i < t->num_targets; i++) {
1791 struct dm_target *ti = dm_table_get_target(t, i);
1792
1793 if (!ti->num_flush_bios)
1794 continue;
1795
1796 if (ti->flush_supported)
1797 return true;
1798
1799 if (ti->type->iterate_devices &&
1800 ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1801 return true;
1802 }
1803
1804 return false;
1805 }
1806
device_dax_write_cache_enabled(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1807 static int device_dax_write_cache_enabled(struct dm_target *ti,
1808 struct dm_dev *dev, sector_t start,
1809 sector_t len, void *data)
1810 {
1811 struct dax_device *dax_dev = dev->dax_dev;
1812
1813 if (!dax_dev)
1814 return false;
1815
1816 if (dax_write_cache_enabled(dax_dev))
1817 return true;
1818 return false;
1819 }
1820
device_is_rotational(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1821 static int device_is_rotational(struct dm_target *ti, struct dm_dev *dev,
1822 sector_t start, sector_t len, void *data)
1823 {
1824 return !bdev_nonrot(dev->bdev);
1825 }
1826
device_is_not_random(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1827 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1828 sector_t start, sector_t len, void *data)
1829 {
1830 struct request_queue *q = bdev_get_queue(dev->bdev);
1831
1832 return !blk_queue_add_random(q);
1833 }
1834
device_not_write_zeroes_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1835 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1836 sector_t start, sector_t len, void *data)
1837 {
1838 struct request_queue *q = bdev_get_queue(dev->bdev);
1839
1840 return !q->limits.max_write_zeroes_sectors;
1841 }
1842
dm_table_supports_write_zeroes(struct dm_table * t)1843 static bool dm_table_supports_write_zeroes(struct dm_table *t)
1844 {
1845 for (unsigned int i = 0; i < t->num_targets; i++) {
1846 struct dm_target *ti = dm_table_get_target(t, i);
1847
1848 if (!ti->num_write_zeroes_bios)
1849 return false;
1850
1851 if (!ti->type->iterate_devices ||
1852 ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1853 return false;
1854 }
1855
1856 return true;
1857 }
1858
device_not_nowait_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1859 static int device_not_nowait_capable(struct dm_target *ti, struct dm_dev *dev,
1860 sector_t start, sector_t len, void *data)
1861 {
1862 return !bdev_nowait(dev->bdev);
1863 }
1864
dm_table_supports_nowait(struct dm_table * t)1865 static bool dm_table_supports_nowait(struct dm_table *t)
1866 {
1867 for (unsigned int i = 0; i < t->num_targets; i++) {
1868 struct dm_target *ti = dm_table_get_target(t, i);
1869
1870 if (!dm_target_supports_nowait(ti->type))
1871 return false;
1872
1873 if (!ti->type->iterate_devices ||
1874 ti->type->iterate_devices(ti, device_not_nowait_capable, NULL))
1875 return false;
1876 }
1877
1878 return true;
1879 }
1880
device_not_discard_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1881 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1882 sector_t start, sector_t len, void *data)
1883 {
1884 return !bdev_max_discard_sectors(dev->bdev);
1885 }
1886
dm_table_supports_discards(struct dm_table * t)1887 static bool dm_table_supports_discards(struct dm_table *t)
1888 {
1889 for (unsigned int i = 0; i < t->num_targets; i++) {
1890 struct dm_target *ti = dm_table_get_target(t, i);
1891
1892 if (!ti->num_discard_bios)
1893 return false;
1894
1895 /*
1896 * Either the target provides discard support (as implied by setting
1897 * 'discards_supported') or it relies on _all_ data devices having
1898 * discard support.
1899 */
1900 if (!ti->discards_supported &&
1901 (!ti->type->iterate_devices ||
1902 ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1903 return false;
1904 }
1905
1906 return true;
1907 }
1908
device_not_secure_erase_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1909 static int device_not_secure_erase_capable(struct dm_target *ti,
1910 struct dm_dev *dev, sector_t start,
1911 sector_t len, void *data)
1912 {
1913 return !bdev_max_secure_erase_sectors(dev->bdev);
1914 }
1915
dm_table_supports_secure_erase(struct dm_table * t)1916 static bool dm_table_supports_secure_erase(struct dm_table *t)
1917 {
1918 for (unsigned int i = 0; i < t->num_targets; i++) {
1919 struct dm_target *ti = dm_table_get_target(t, i);
1920
1921 if (!ti->num_secure_erase_bios)
1922 return false;
1923
1924 if (!ti->type->iterate_devices ||
1925 ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
1926 return false;
1927 }
1928
1929 return true;
1930 }
1931
device_requires_stable_pages(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1932 static int device_requires_stable_pages(struct dm_target *ti,
1933 struct dm_dev *dev, sector_t start,
1934 sector_t len, void *data)
1935 {
1936 return bdev_stable_writes(dev->bdev);
1937 }
1938
dm_table_set_restrictions(struct dm_table * t,struct request_queue * q,struct queue_limits * limits)1939 int dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1940 struct queue_limits *limits)
1941 {
1942 bool wc = false, fua = false;
1943 int r;
1944
1945 /*
1946 * Copy table's limits to the DM device's request_queue
1947 */
1948 q->limits = *limits;
1949
1950 if (dm_table_supports_nowait(t))
1951 blk_queue_flag_set(QUEUE_FLAG_NOWAIT, q);
1952 else
1953 blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, q);
1954
1955 if (!dm_table_supports_discards(t)) {
1956 q->limits.max_discard_sectors = 0;
1957 q->limits.max_hw_discard_sectors = 0;
1958 q->limits.discard_granularity = 0;
1959 q->limits.discard_alignment = 0;
1960 q->limits.discard_misaligned = 0;
1961 }
1962
1963 if (!dm_table_supports_secure_erase(t))
1964 q->limits.max_secure_erase_sectors = 0;
1965
1966 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
1967 wc = true;
1968 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
1969 fua = true;
1970 }
1971 blk_queue_write_cache(q, wc, fua);
1972
1973 if (dm_table_supports_dax(t, device_not_dax_capable)) {
1974 blk_queue_flag_set(QUEUE_FLAG_DAX, q);
1975 if (dm_table_supports_dax(t, device_not_dax_synchronous_capable))
1976 set_dax_synchronous(t->md->dax_dev);
1977 } else
1978 blk_queue_flag_clear(QUEUE_FLAG_DAX, q);
1979
1980 if (dm_table_any_dev_attr(t, device_dax_write_cache_enabled, NULL))
1981 dax_write_cache(t->md->dax_dev, true);
1982
1983 /* Ensure that all underlying devices are non-rotational. */
1984 if (dm_table_any_dev_attr(t, device_is_rotational, NULL))
1985 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
1986 else
1987 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
1988
1989 if (!dm_table_supports_write_zeroes(t))
1990 q->limits.max_write_zeroes_sectors = 0;
1991
1992 dm_table_verify_integrity(t);
1993
1994 /*
1995 * Some devices don't use blk_integrity but still want stable pages
1996 * because they do their own checksumming.
1997 * If any underlying device requires stable pages, a table must require
1998 * them as well. Only targets that support iterate_devices are considered:
1999 * don't want error, zero, etc to require stable pages.
2000 */
2001 if (dm_table_any_dev_attr(t, device_requires_stable_pages, NULL))
2002 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
2003 else
2004 blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q);
2005
2006 /*
2007 * Determine whether or not this queue's I/O timings contribute
2008 * to the entropy pool, Only request-based targets use this.
2009 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
2010 * have it set.
2011 */
2012 if (blk_queue_add_random(q) &&
2013 dm_table_any_dev_attr(t, device_is_not_random, NULL))
2014 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2015
2016 /*
2017 * For a zoned target, setup the zones related queue attributes
2018 * and resources necessary for zone append emulation if necessary.
2019 */
2020 if (blk_queue_is_zoned(q)) {
2021 r = dm_set_zones_restrictions(t, q);
2022 if (r)
2023 return r;
2024 if (!static_key_enabled(&zoned_enabled.key))
2025 static_branch_enable(&zoned_enabled);
2026 }
2027
2028 dm_update_crypto_profile(q, t);
2029 disk_update_readahead(t->md->disk);
2030
2031 /*
2032 * Check for request-based device is left to
2033 * dm_mq_init_request_queue()->blk_mq_init_allocated_queue().
2034 *
2035 * For bio-based device, only set QUEUE_FLAG_POLL when all
2036 * underlying devices supporting polling.
2037 */
2038 if (__table_type_bio_based(t->type)) {
2039 if (dm_table_supports_poll(t))
2040 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
2041 else
2042 blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
2043 }
2044
2045 return 0;
2046 }
2047
dm_table_get_devices(struct dm_table * t)2048 struct list_head *dm_table_get_devices(struct dm_table *t)
2049 {
2050 return &t->devices;
2051 }
2052
dm_table_get_mode(struct dm_table * t)2053 blk_mode_t dm_table_get_mode(struct dm_table *t)
2054 {
2055 return t->mode;
2056 }
2057 EXPORT_SYMBOL(dm_table_get_mode);
2058
2059 enum suspend_mode {
2060 PRESUSPEND,
2061 PRESUSPEND_UNDO,
2062 POSTSUSPEND,
2063 };
2064
suspend_targets(struct dm_table * t,enum suspend_mode mode)2065 static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
2066 {
2067 lockdep_assert_held(&t->md->suspend_lock);
2068
2069 for (unsigned int i = 0; i < t->num_targets; i++) {
2070 struct dm_target *ti = dm_table_get_target(t, i);
2071
2072 switch (mode) {
2073 case PRESUSPEND:
2074 if (ti->type->presuspend)
2075 ti->type->presuspend(ti);
2076 break;
2077 case PRESUSPEND_UNDO:
2078 if (ti->type->presuspend_undo)
2079 ti->type->presuspend_undo(ti);
2080 break;
2081 case POSTSUSPEND:
2082 if (ti->type->postsuspend)
2083 ti->type->postsuspend(ti);
2084 break;
2085 }
2086 }
2087 }
2088
dm_table_presuspend_targets(struct dm_table * t)2089 void dm_table_presuspend_targets(struct dm_table *t)
2090 {
2091 if (!t)
2092 return;
2093
2094 suspend_targets(t, PRESUSPEND);
2095 }
2096
dm_table_presuspend_undo_targets(struct dm_table * t)2097 void dm_table_presuspend_undo_targets(struct dm_table *t)
2098 {
2099 if (!t)
2100 return;
2101
2102 suspend_targets(t, PRESUSPEND_UNDO);
2103 }
2104
dm_table_postsuspend_targets(struct dm_table * t)2105 void dm_table_postsuspend_targets(struct dm_table *t)
2106 {
2107 if (!t)
2108 return;
2109
2110 suspend_targets(t, POSTSUSPEND);
2111 }
2112
dm_table_resume_targets(struct dm_table * t)2113 int dm_table_resume_targets(struct dm_table *t)
2114 {
2115 unsigned int i;
2116 int r = 0;
2117
2118 lockdep_assert_held(&t->md->suspend_lock);
2119
2120 for (i = 0; i < t->num_targets; i++) {
2121 struct dm_target *ti = dm_table_get_target(t, i);
2122
2123 if (!ti->type->preresume)
2124 continue;
2125
2126 r = ti->type->preresume(ti);
2127 if (r) {
2128 DMERR("%s: %s: preresume failed, error = %d",
2129 dm_device_name(t->md), ti->type->name, r);
2130 return r;
2131 }
2132 }
2133
2134 for (i = 0; i < t->num_targets; i++) {
2135 struct dm_target *ti = dm_table_get_target(t, i);
2136
2137 if (ti->type->resume)
2138 ti->type->resume(ti);
2139 }
2140
2141 return 0;
2142 }
2143
dm_table_get_md(struct dm_table * t)2144 struct mapped_device *dm_table_get_md(struct dm_table *t)
2145 {
2146 return t->md;
2147 }
2148 EXPORT_SYMBOL(dm_table_get_md);
2149
dm_table_device_name(struct dm_table * t)2150 const char *dm_table_device_name(struct dm_table *t)
2151 {
2152 return dm_device_name(t->md);
2153 }
2154 EXPORT_SYMBOL_GPL(dm_table_device_name);
2155
dm_table_run_md_queue_async(struct dm_table * t)2156 void dm_table_run_md_queue_async(struct dm_table *t)
2157 {
2158 if (!dm_table_request_based(t))
2159 return;
2160
2161 if (t->md->queue)
2162 blk_mq_run_hw_queues(t->md->queue, true);
2163 }
2164 EXPORT_SYMBOL(dm_table_run_md_queue_async);
2165
2166