1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11 
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/mm.h>
16 #include <linux/sched/signal.h>
17 #include <linux/blkpg.h>
18 #include <linux/bio.h>
19 #include <linux/mempool.h>
20 #include <linux/dax.h>
21 #include <linux/slab.h>
22 #include <linux/idr.h>
23 #include <linux/uio.h>
24 #include <linux/hdreg.h>
25 #include <linux/delay.h>
26 #include <linux/wait.h>
27 #include <linux/pr.h>
28 #include <linux/refcount.h>
29 #include <linux/part_stat.h>
30 #include <linux/blk-crypto.h>
31 
32 #define DM_MSG_PREFIX "core"
33 
34 /*
35  * Cookies are numeric values sent with CHANGE and REMOVE
36  * uevents while resuming, removing or renaming the device.
37  */
38 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
39 #define DM_COOKIE_LENGTH 24
40 
41 static const char *_name = DM_NAME;
42 
43 static unsigned int major = 0;
44 static unsigned int _major = 0;
45 
46 static DEFINE_IDR(_minor_idr);
47 
48 static DEFINE_SPINLOCK(_minor_lock);
49 
50 static void do_deferred_remove(struct work_struct *w);
51 
52 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
53 
54 static struct workqueue_struct *deferred_remove_workqueue;
55 
56 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
57 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
58 
dm_issue_global_event(void)59 void dm_issue_global_event(void)
60 {
61 	atomic_inc(&dm_global_event_nr);
62 	wake_up(&dm_global_eventq);
63 }
64 
65 /*
66  * One of these is allocated (on-stack) per original bio.
67  */
68 struct clone_info {
69 	struct dm_table *map;
70 	struct bio *bio;
71 	struct dm_io *io;
72 	sector_t sector;
73 	unsigned sector_count;
74 };
75 
76 /*
77  * One of these is allocated per clone bio.
78  */
79 #define DM_TIO_MAGIC 7282014
80 struct dm_target_io {
81 	unsigned magic;
82 	struct dm_io *io;
83 	struct dm_target *ti;
84 	unsigned target_bio_nr;
85 	unsigned *len_ptr;
86 	bool inside_dm_io;
87 	struct bio clone;
88 };
89 
90 /*
91  * One of these is allocated per original bio.
92  * It contains the first clone used for that original.
93  */
94 #define DM_IO_MAGIC 5191977
95 struct dm_io {
96 	unsigned magic;
97 	struct mapped_device *md;
98 	blk_status_t status;
99 	atomic_t io_count;
100 	struct bio *orig_bio;
101 	unsigned long start_time;
102 	spinlock_t endio_lock;
103 	struct dm_stats_aux stats_aux;
104 	/* last member of dm_target_io is 'struct bio' */
105 	struct dm_target_io tio;
106 };
107 
dm_per_bio_data(struct bio * bio,size_t data_size)108 void *dm_per_bio_data(struct bio *bio, size_t data_size)
109 {
110 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
111 	if (!tio->inside_dm_io)
112 		return (char *)bio - offsetof(struct dm_target_io, clone) - data_size;
113 	return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size;
114 }
115 EXPORT_SYMBOL_GPL(dm_per_bio_data);
116 
dm_bio_from_per_bio_data(void * data,size_t data_size)117 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
118 {
119 	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
120 	if (io->magic == DM_IO_MAGIC)
121 		return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone));
122 	BUG_ON(io->magic != DM_TIO_MAGIC);
123 	return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone));
124 }
125 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
126 
dm_bio_get_target_bio_nr(const struct bio * bio)127 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
128 {
129 	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
130 }
131 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
132 
133 #define MINOR_ALLOCED ((void *)-1)
134 
135 /*
136  * Bits for the md->flags field.
137  */
138 #define DMF_BLOCK_IO_FOR_SUSPEND 0
139 #define DMF_SUSPENDED 1
140 #define DMF_FROZEN 2
141 #define DMF_FREEING 3
142 #define DMF_DELETING 4
143 #define DMF_NOFLUSH_SUSPENDING 5
144 #define DMF_DEFERRED_REMOVE 6
145 #define DMF_SUSPENDED_INTERNALLY 7
146 #define DMF_POST_SUSPENDING 8
147 
148 #define DM_NUMA_NODE NUMA_NO_NODE
149 static int dm_numa_node = DM_NUMA_NODE;
150 
151 /*
152  * For mempools pre-allocation at the table loading time.
153  */
154 struct dm_md_mempools {
155 	struct bio_set bs;
156 	struct bio_set io_bs;
157 };
158 
159 struct table_device {
160 	struct list_head list;
161 	refcount_t count;
162 	struct dm_dev dm_dev;
163 };
164 
165 /*
166  * Bio-based DM's mempools' reserved IOs set by the user.
167  */
168 #define RESERVED_BIO_BASED_IOS		16
169 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
170 
__dm_get_module_param_int(int * module_param,int min,int max)171 static int __dm_get_module_param_int(int *module_param, int min, int max)
172 {
173 	int param = READ_ONCE(*module_param);
174 	int modified_param = 0;
175 	bool modified = true;
176 
177 	if (param < min)
178 		modified_param = min;
179 	else if (param > max)
180 		modified_param = max;
181 	else
182 		modified = false;
183 
184 	if (modified) {
185 		(void)cmpxchg(module_param, param, modified_param);
186 		param = modified_param;
187 	}
188 
189 	return param;
190 }
191 
__dm_get_module_param(unsigned * module_param,unsigned def,unsigned max)192 unsigned __dm_get_module_param(unsigned *module_param,
193 			       unsigned def, unsigned max)
194 {
195 	unsigned param = READ_ONCE(*module_param);
196 	unsigned modified_param = 0;
197 
198 	if (!param)
199 		modified_param = def;
200 	else if (param > max)
201 		modified_param = max;
202 
203 	if (modified_param) {
204 		(void)cmpxchg(module_param, param, modified_param);
205 		param = modified_param;
206 	}
207 
208 	return param;
209 }
210 
dm_get_reserved_bio_based_ios(void)211 unsigned dm_get_reserved_bio_based_ios(void)
212 {
213 	return __dm_get_module_param(&reserved_bio_based_ios,
214 				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
215 }
216 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
217 
dm_get_numa_node(void)218 static unsigned dm_get_numa_node(void)
219 {
220 	return __dm_get_module_param_int(&dm_numa_node,
221 					 DM_NUMA_NODE, num_online_nodes() - 1);
222 }
223 
local_init(void)224 static int __init local_init(void)
225 {
226 	int r;
227 
228 	r = dm_uevent_init();
229 	if (r)
230 		return r;
231 
232 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
233 	if (!deferred_remove_workqueue) {
234 		r = -ENOMEM;
235 		goto out_uevent_exit;
236 	}
237 
238 	_major = major;
239 	r = register_blkdev(_major, _name);
240 	if (r < 0)
241 		goto out_free_workqueue;
242 
243 	if (!_major)
244 		_major = r;
245 
246 	return 0;
247 
248 out_free_workqueue:
249 	destroy_workqueue(deferred_remove_workqueue);
250 out_uevent_exit:
251 	dm_uevent_exit();
252 
253 	return r;
254 }
255 
local_exit(void)256 static void local_exit(void)
257 {
258 	flush_scheduled_work();
259 	destroy_workqueue(deferred_remove_workqueue);
260 
261 	unregister_blkdev(_major, _name);
262 	dm_uevent_exit();
263 
264 	_major = 0;
265 
266 	DMINFO("cleaned up");
267 }
268 
269 static int (*_inits[])(void) __initdata = {
270 	local_init,
271 	dm_target_init,
272 	dm_linear_init,
273 	dm_stripe_init,
274 	dm_io_init,
275 	dm_kcopyd_init,
276 	dm_interface_init,
277 	dm_statistics_init,
278 };
279 
280 static void (*_exits[])(void) = {
281 	local_exit,
282 	dm_target_exit,
283 	dm_linear_exit,
284 	dm_stripe_exit,
285 	dm_io_exit,
286 	dm_kcopyd_exit,
287 	dm_interface_exit,
288 	dm_statistics_exit,
289 };
290 
dm_init(void)291 static int __init dm_init(void)
292 {
293 	const int count = ARRAY_SIZE(_inits);
294 
295 	int r, i;
296 
297 	for (i = 0; i < count; i++) {
298 		r = _inits[i]();
299 		if (r)
300 			goto bad;
301 	}
302 
303 	return 0;
304 
305       bad:
306 	while (i--)
307 		_exits[i]();
308 
309 	return r;
310 }
311 
dm_exit(void)312 static void __exit dm_exit(void)
313 {
314 	int i = ARRAY_SIZE(_exits);
315 
316 	while (i--)
317 		_exits[i]();
318 
319 	/*
320 	 * Should be empty by this point.
321 	 */
322 	idr_destroy(&_minor_idr);
323 }
324 
325 /*
326  * Block device functions
327  */
dm_deleting_md(struct mapped_device * md)328 int dm_deleting_md(struct mapped_device *md)
329 {
330 	return test_bit(DMF_DELETING, &md->flags);
331 }
332 
dm_blk_open(struct block_device * bdev,fmode_t mode)333 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
334 {
335 	struct mapped_device *md;
336 
337 	spin_lock(&_minor_lock);
338 
339 	md = bdev->bd_disk->private_data;
340 	if (!md)
341 		goto out;
342 
343 	if (test_bit(DMF_FREEING, &md->flags) ||
344 	    dm_deleting_md(md)) {
345 		md = NULL;
346 		goto out;
347 	}
348 
349 	dm_get(md);
350 	atomic_inc(&md->open_count);
351 out:
352 	spin_unlock(&_minor_lock);
353 
354 	return md ? 0 : -ENXIO;
355 }
356 
dm_blk_close(struct gendisk * disk,fmode_t mode)357 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
358 {
359 	struct mapped_device *md;
360 
361 	spin_lock(&_minor_lock);
362 
363 	md = disk->private_data;
364 	if (WARN_ON(!md))
365 		goto out;
366 
367 	if (atomic_dec_and_test(&md->open_count) &&
368 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
369 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
370 
371 	dm_put(md);
372 out:
373 	spin_unlock(&_minor_lock);
374 }
375 
dm_open_count(struct mapped_device * md)376 int dm_open_count(struct mapped_device *md)
377 {
378 	return atomic_read(&md->open_count);
379 }
380 
381 /*
382  * Guarantees nothing is using the device before it's deleted.
383  */
dm_lock_for_deletion(struct mapped_device * md,bool mark_deferred,bool only_deferred)384 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
385 {
386 	int r = 0;
387 
388 	spin_lock(&_minor_lock);
389 
390 	if (dm_open_count(md)) {
391 		r = -EBUSY;
392 		if (mark_deferred)
393 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
394 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
395 		r = -EEXIST;
396 	else
397 		set_bit(DMF_DELETING, &md->flags);
398 
399 	spin_unlock(&_minor_lock);
400 
401 	return r;
402 }
403 
dm_cancel_deferred_remove(struct mapped_device * md)404 int dm_cancel_deferred_remove(struct mapped_device *md)
405 {
406 	int r = 0;
407 
408 	spin_lock(&_minor_lock);
409 
410 	if (test_bit(DMF_DELETING, &md->flags))
411 		r = -EBUSY;
412 	else
413 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
414 
415 	spin_unlock(&_minor_lock);
416 
417 	return r;
418 }
419 
do_deferred_remove(struct work_struct * w)420 static void do_deferred_remove(struct work_struct *w)
421 {
422 	dm_deferred_remove();
423 }
424 
dm_blk_getgeo(struct block_device * bdev,struct hd_geometry * geo)425 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
426 {
427 	struct mapped_device *md = bdev->bd_disk->private_data;
428 
429 	return dm_get_geometry(md, geo);
430 }
431 
432 #ifdef CONFIG_BLK_DEV_ZONED
dm_report_zones_cb(struct blk_zone * zone,unsigned int idx,void * data)433 int dm_report_zones_cb(struct blk_zone *zone, unsigned int idx, void *data)
434 {
435 	struct dm_report_zones_args *args = data;
436 	sector_t sector_diff = args->tgt->begin - args->start;
437 
438 	/*
439 	 * Ignore zones beyond the target range.
440 	 */
441 	if (zone->start >= args->start + args->tgt->len)
442 		return 0;
443 
444 	/*
445 	 * Remap the start sector and write pointer position of the zone
446 	 * to match its position in the target range.
447 	 */
448 	zone->start += sector_diff;
449 	if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) {
450 		if (zone->cond == BLK_ZONE_COND_FULL)
451 			zone->wp = zone->start + zone->len;
452 		else if (zone->cond == BLK_ZONE_COND_EMPTY)
453 			zone->wp = zone->start;
454 		else
455 			zone->wp += sector_diff;
456 	}
457 
458 	args->next_sector = zone->start + zone->len;
459 	return args->orig_cb(zone, args->zone_idx++, args->orig_data);
460 }
461 EXPORT_SYMBOL_GPL(dm_report_zones_cb);
462 
dm_blk_report_zones(struct gendisk * disk,sector_t sector,unsigned int nr_zones,report_zones_cb cb,void * data)463 static int dm_blk_report_zones(struct gendisk *disk, sector_t sector,
464 		unsigned int nr_zones, report_zones_cb cb, void *data)
465 {
466 	struct mapped_device *md = disk->private_data;
467 	struct dm_table *map;
468 	int srcu_idx, ret;
469 	struct dm_report_zones_args args = {
470 		.next_sector = sector,
471 		.orig_data = data,
472 		.orig_cb = cb,
473 	};
474 
475 	if (dm_suspended_md(md))
476 		return -EAGAIN;
477 
478 	map = dm_get_live_table(md, &srcu_idx);
479 	if (!map) {
480 		ret = -EIO;
481 		goto out;
482 	}
483 
484 	do {
485 		struct dm_target *tgt;
486 
487 		tgt = dm_table_find_target(map, args.next_sector);
488 		if (WARN_ON_ONCE(!tgt->type->report_zones)) {
489 			ret = -EIO;
490 			goto out;
491 		}
492 
493 		args.tgt = tgt;
494 		ret = tgt->type->report_zones(tgt, &args,
495 					      nr_zones - args.zone_idx);
496 		if (ret < 0)
497 			goto out;
498 	} while (args.zone_idx < nr_zones &&
499 		 args.next_sector < get_capacity(disk));
500 
501 	ret = args.zone_idx;
502 out:
503 	dm_put_live_table(md, srcu_idx);
504 	return ret;
505 }
506 #else
507 #define dm_blk_report_zones		NULL
508 #endif /* CONFIG_BLK_DEV_ZONED */
509 
dm_prepare_ioctl(struct mapped_device * md,int * srcu_idx,struct block_device ** bdev)510 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
511 			    struct block_device **bdev)
512 {
513 	struct dm_target *tgt;
514 	struct dm_table *map;
515 	int r;
516 
517 retry:
518 	r = -ENOTTY;
519 	map = dm_get_live_table(md, srcu_idx);
520 	if (!map || !dm_table_get_size(map))
521 		return r;
522 
523 	/* We only support devices that have a single target */
524 	if (dm_table_get_num_targets(map) != 1)
525 		return r;
526 
527 	tgt = dm_table_get_target(map, 0);
528 	if (!tgt->type->prepare_ioctl)
529 		return r;
530 
531 	if (dm_suspended_md(md))
532 		return -EAGAIN;
533 
534 	r = tgt->type->prepare_ioctl(tgt, bdev);
535 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
536 		dm_put_live_table(md, *srcu_idx);
537 		msleep(10);
538 		goto retry;
539 	}
540 
541 	return r;
542 }
543 
dm_unprepare_ioctl(struct mapped_device * md,int srcu_idx)544 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
545 {
546 	dm_put_live_table(md, srcu_idx);
547 }
548 
dm_blk_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)549 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
550 			unsigned int cmd, unsigned long arg)
551 {
552 	struct mapped_device *md = bdev->bd_disk->private_data;
553 	int r, srcu_idx;
554 
555 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
556 	if (r < 0)
557 		goto out;
558 
559 	if (r > 0) {
560 		/*
561 		 * Target determined this ioctl is being issued against a
562 		 * subset of the parent bdev; require extra privileges.
563 		 */
564 		if (!capable(CAP_SYS_RAWIO)) {
565 			DMWARN_LIMIT(
566 	"%s: sending ioctl %x to DM device without required privilege.",
567 				current->comm, cmd);
568 			r = -ENOIOCTLCMD;
569 			goto out;
570 		}
571 	}
572 
573 	r =  __blkdev_driver_ioctl(bdev, mode, cmd, arg);
574 out:
575 	dm_unprepare_ioctl(md, srcu_idx);
576 	return r;
577 }
578 
dm_start_time_ns_from_clone(struct bio * bio)579 u64 dm_start_time_ns_from_clone(struct bio *bio)
580 {
581 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
582 	struct dm_io *io = tio->io;
583 
584 	return jiffies_to_nsecs(io->start_time);
585 }
586 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
587 
start_io_acct(struct dm_io * io)588 static void start_io_acct(struct dm_io *io)
589 {
590 	struct mapped_device *md = io->md;
591 	struct bio *bio = io->orig_bio;
592 
593 	io->start_time = bio_start_io_acct(bio);
594 	if (unlikely(dm_stats_used(&md->stats)))
595 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
596 				    bio->bi_iter.bi_sector, bio_sectors(bio),
597 				    false, 0, &io->stats_aux);
598 }
599 
end_io_acct(struct dm_io * io)600 static void end_io_acct(struct dm_io *io)
601 {
602 	struct mapped_device *md = io->md;
603 	struct bio *bio = io->orig_bio;
604 	unsigned long duration = jiffies - io->start_time;
605 
606 	bio_end_io_acct(bio, io->start_time);
607 
608 	if (unlikely(dm_stats_used(&md->stats)))
609 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
610 				    bio->bi_iter.bi_sector, bio_sectors(bio),
611 				    true, duration, &io->stats_aux);
612 
613 	/* nudge anyone waiting on suspend queue */
614 	if (unlikely(wq_has_sleeper(&md->wait)))
615 		wake_up(&md->wait);
616 }
617 
alloc_io(struct mapped_device * md,struct bio * bio)618 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
619 {
620 	struct dm_io *io;
621 	struct dm_target_io *tio;
622 	struct bio *clone;
623 
624 	clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs);
625 	if (!clone)
626 		return NULL;
627 
628 	tio = container_of(clone, struct dm_target_io, clone);
629 	tio->inside_dm_io = true;
630 	tio->io = NULL;
631 
632 	io = container_of(tio, struct dm_io, tio);
633 	io->magic = DM_IO_MAGIC;
634 	io->status = 0;
635 	atomic_set(&io->io_count, 1);
636 	io->orig_bio = bio;
637 	io->md = md;
638 	spin_lock_init(&io->endio_lock);
639 
640 	start_io_acct(io);
641 
642 	return io;
643 }
644 
free_io(struct mapped_device * md,struct dm_io * io)645 static void free_io(struct mapped_device *md, struct dm_io *io)
646 {
647 	bio_put(&io->tio.clone);
648 }
649 
alloc_tio(struct clone_info * ci,struct dm_target * ti,unsigned target_bio_nr,gfp_t gfp_mask)650 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
651 				      unsigned target_bio_nr, gfp_t gfp_mask)
652 {
653 	struct dm_target_io *tio;
654 
655 	if (!ci->io->tio.io) {
656 		/* the dm_target_io embedded in ci->io is available */
657 		tio = &ci->io->tio;
658 	} else {
659 		struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs);
660 		if (!clone)
661 			return NULL;
662 
663 		tio = container_of(clone, struct dm_target_io, clone);
664 		tio->inside_dm_io = false;
665 	}
666 
667 	tio->magic = DM_TIO_MAGIC;
668 	tio->io = ci->io;
669 	tio->ti = ti;
670 	tio->target_bio_nr = target_bio_nr;
671 
672 	return tio;
673 }
674 
free_tio(struct dm_target_io * tio)675 static void free_tio(struct dm_target_io *tio)
676 {
677 	if (tio->inside_dm_io)
678 		return;
679 	bio_put(&tio->clone);
680 }
681 
682 /*
683  * Add the bio to the list of deferred io.
684  */
queue_io(struct mapped_device * md,struct bio * bio)685 static void queue_io(struct mapped_device *md, struct bio *bio)
686 {
687 	unsigned long flags;
688 
689 	spin_lock_irqsave(&md->deferred_lock, flags);
690 	bio_list_add(&md->deferred, bio);
691 	spin_unlock_irqrestore(&md->deferred_lock, flags);
692 	queue_work(md->wq, &md->work);
693 }
694 
695 /*
696  * Everyone (including functions in this file), should use this
697  * function to access the md->map field, and make sure they call
698  * dm_put_live_table() when finished.
699  */
dm_get_live_table(struct mapped_device * md,int * srcu_idx)700 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
701 {
702 	*srcu_idx = srcu_read_lock(&md->io_barrier);
703 
704 	return srcu_dereference(md->map, &md->io_barrier);
705 }
706 
dm_put_live_table(struct mapped_device * md,int srcu_idx)707 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
708 {
709 	srcu_read_unlock(&md->io_barrier, srcu_idx);
710 }
711 
dm_sync_table(struct mapped_device * md)712 void dm_sync_table(struct mapped_device *md)
713 {
714 	synchronize_srcu(&md->io_barrier);
715 	synchronize_rcu_expedited();
716 }
717 
718 /*
719  * A fast alternative to dm_get_live_table/dm_put_live_table.
720  * The caller must not block between these two functions.
721  */
dm_get_live_table_fast(struct mapped_device * md)722 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
723 {
724 	rcu_read_lock();
725 	return rcu_dereference(md->map);
726 }
727 
dm_put_live_table_fast(struct mapped_device * md)728 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
729 {
730 	rcu_read_unlock();
731 }
732 
733 static char *_dm_claim_ptr = "I belong to device-mapper";
734 
735 /*
736  * Open a table device so we can use it as a map destination.
737  */
open_table_device(struct table_device * td,dev_t dev,struct mapped_device * md)738 static int open_table_device(struct table_device *td, dev_t dev,
739 			     struct mapped_device *md)
740 {
741 	struct block_device *bdev;
742 
743 	int r;
744 
745 	BUG_ON(td->dm_dev.bdev);
746 
747 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
748 	if (IS_ERR(bdev))
749 		return PTR_ERR(bdev);
750 
751 	r = bd_link_disk_holder(bdev, dm_disk(md));
752 	if (r) {
753 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
754 		return r;
755 	}
756 
757 	td->dm_dev.bdev = bdev;
758 	td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
759 	return 0;
760 }
761 
762 /*
763  * Close a table device that we've been using.
764  */
close_table_device(struct table_device * td,struct mapped_device * md)765 static void close_table_device(struct table_device *td, struct mapped_device *md)
766 {
767 	if (!td->dm_dev.bdev)
768 		return;
769 
770 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
771 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
772 	put_dax(td->dm_dev.dax_dev);
773 	td->dm_dev.bdev = NULL;
774 	td->dm_dev.dax_dev = NULL;
775 }
776 
find_table_device(struct list_head * l,dev_t dev,fmode_t mode)777 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
778 					      fmode_t mode)
779 {
780 	struct table_device *td;
781 
782 	list_for_each_entry(td, l, list)
783 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
784 			return td;
785 
786 	return NULL;
787 }
788 
dm_get_table_device(struct mapped_device * md,dev_t dev,fmode_t mode,struct dm_dev ** result)789 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
790 			struct dm_dev **result)
791 {
792 	int r;
793 	struct table_device *td;
794 
795 	mutex_lock(&md->table_devices_lock);
796 	td = find_table_device(&md->table_devices, dev, mode);
797 	if (!td) {
798 		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
799 		if (!td) {
800 			mutex_unlock(&md->table_devices_lock);
801 			return -ENOMEM;
802 		}
803 
804 		td->dm_dev.mode = mode;
805 		td->dm_dev.bdev = NULL;
806 
807 		if ((r = open_table_device(td, dev, md))) {
808 			mutex_unlock(&md->table_devices_lock);
809 			kfree(td);
810 			return r;
811 		}
812 
813 		format_dev_t(td->dm_dev.name, dev);
814 
815 		refcount_set(&td->count, 1);
816 		list_add(&td->list, &md->table_devices);
817 	} else {
818 		refcount_inc(&td->count);
819 	}
820 	mutex_unlock(&md->table_devices_lock);
821 
822 	*result = &td->dm_dev;
823 	return 0;
824 }
825 EXPORT_SYMBOL_GPL(dm_get_table_device);
826 
dm_put_table_device(struct mapped_device * md,struct dm_dev * d)827 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
828 {
829 	struct table_device *td = container_of(d, struct table_device, dm_dev);
830 
831 	mutex_lock(&md->table_devices_lock);
832 	if (refcount_dec_and_test(&td->count)) {
833 		close_table_device(td, md);
834 		list_del(&td->list);
835 		kfree(td);
836 	}
837 	mutex_unlock(&md->table_devices_lock);
838 }
839 EXPORT_SYMBOL(dm_put_table_device);
840 
free_table_devices(struct list_head * devices)841 static void free_table_devices(struct list_head *devices)
842 {
843 	struct list_head *tmp, *next;
844 
845 	list_for_each_safe(tmp, next, devices) {
846 		struct table_device *td = list_entry(tmp, struct table_device, list);
847 
848 		DMWARN("dm_destroy: %s still exists with %d references",
849 		       td->dm_dev.name, refcount_read(&td->count));
850 		kfree(td);
851 	}
852 }
853 
854 /*
855  * Get the geometry associated with a dm device
856  */
dm_get_geometry(struct mapped_device * md,struct hd_geometry * geo)857 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
858 {
859 	*geo = md->geometry;
860 
861 	return 0;
862 }
863 
864 /*
865  * Set the geometry of a device.
866  */
dm_set_geometry(struct mapped_device * md,struct hd_geometry * geo)867 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
868 {
869 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
870 
871 	if (geo->start > sz) {
872 		DMWARN("Start sector is beyond the geometry limits.");
873 		return -EINVAL;
874 	}
875 
876 	md->geometry = *geo;
877 
878 	return 0;
879 }
880 
__noflush_suspending(struct mapped_device * md)881 static int __noflush_suspending(struct mapped_device *md)
882 {
883 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
884 }
885 
886 /*
887  * Decrements the number of outstanding ios that a bio has been
888  * cloned into, completing the original io if necc.
889  */
dec_pending(struct dm_io * io,blk_status_t error)890 static void dec_pending(struct dm_io *io, blk_status_t error)
891 {
892 	unsigned long flags;
893 	blk_status_t io_error;
894 	struct bio *bio;
895 	struct mapped_device *md = io->md;
896 
897 	/* Push-back supersedes any I/O errors */
898 	if (unlikely(error)) {
899 		spin_lock_irqsave(&io->endio_lock, flags);
900 		if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
901 			io->status = error;
902 		spin_unlock_irqrestore(&io->endio_lock, flags);
903 	}
904 
905 	if (atomic_dec_and_test(&io->io_count)) {
906 		if (io->status == BLK_STS_DM_REQUEUE) {
907 			/*
908 			 * Target requested pushing back the I/O.
909 			 */
910 			spin_lock_irqsave(&md->deferred_lock, flags);
911 			if (__noflush_suspending(md))
912 				/* NOTE early return due to BLK_STS_DM_REQUEUE below */
913 				bio_list_add_head(&md->deferred, io->orig_bio);
914 			else
915 				/* noflush suspend was interrupted. */
916 				io->status = BLK_STS_IOERR;
917 			spin_unlock_irqrestore(&md->deferred_lock, flags);
918 		}
919 
920 		io_error = io->status;
921 		bio = io->orig_bio;
922 		end_io_acct(io);
923 		free_io(md, io);
924 
925 		if (io_error == BLK_STS_DM_REQUEUE)
926 			return;
927 
928 		if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
929 			/*
930 			 * Preflush done for flush with data, reissue
931 			 * without REQ_PREFLUSH.
932 			 */
933 			bio->bi_opf &= ~REQ_PREFLUSH;
934 			queue_io(md, bio);
935 		} else {
936 			/* done with normal IO or empty flush */
937 			if (io_error)
938 				bio->bi_status = io_error;
939 			bio_endio(bio);
940 		}
941 	}
942 }
943 
disable_discard(struct mapped_device * md)944 void disable_discard(struct mapped_device *md)
945 {
946 	struct queue_limits *limits = dm_get_queue_limits(md);
947 
948 	/* device doesn't really support DISCARD, disable it */
949 	limits->max_discard_sectors = 0;
950 	blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue);
951 }
952 
disable_write_same(struct mapped_device * md)953 void disable_write_same(struct mapped_device *md)
954 {
955 	struct queue_limits *limits = dm_get_queue_limits(md);
956 
957 	/* device doesn't really support WRITE SAME, disable it */
958 	limits->max_write_same_sectors = 0;
959 }
960 
disable_write_zeroes(struct mapped_device * md)961 void disable_write_zeroes(struct mapped_device *md)
962 {
963 	struct queue_limits *limits = dm_get_queue_limits(md);
964 
965 	/* device doesn't really support WRITE ZEROES, disable it */
966 	limits->max_write_zeroes_sectors = 0;
967 }
968 
clone_endio(struct bio * bio)969 static void clone_endio(struct bio *bio)
970 {
971 	blk_status_t error = bio->bi_status;
972 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
973 	struct dm_io *io = tio->io;
974 	struct mapped_device *md = tio->io->md;
975 	dm_endio_fn endio = tio->ti->type->end_io;
976 	struct bio *orig_bio = io->orig_bio;
977 
978 	if (unlikely(error == BLK_STS_TARGET)) {
979 		if (bio_op(bio) == REQ_OP_DISCARD &&
980 		    !bio->bi_disk->queue->limits.max_discard_sectors)
981 			disable_discard(md);
982 		else if (bio_op(bio) == REQ_OP_WRITE_SAME &&
983 			 !bio->bi_disk->queue->limits.max_write_same_sectors)
984 			disable_write_same(md);
985 		else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
986 			 !bio->bi_disk->queue->limits.max_write_zeroes_sectors)
987 			disable_write_zeroes(md);
988 	}
989 
990 	/*
991 	 * For zone-append bios get offset in zone of the written
992 	 * sector and add that to the original bio sector pos.
993 	 */
994 	if (bio_op(orig_bio) == REQ_OP_ZONE_APPEND) {
995 		sector_t written_sector = bio->bi_iter.bi_sector;
996 		struct request_queue *q = orig_bio->bi_disk->queue;
997 		u64 mask = (u64)blk_queue_zone_sectors(q) - 1;
998 
999 		orig_bio->bi_iter.bi_sector += written_sector & mask;
1000 	}
1001 
1002 	if (endio) {
1003 		int r = endio(tio->ti, bio, &error);
1004 		switch (r) {
1005 		case DM_ENDIO_REQUEUE:
1006 			error = BLK_STS_DM_REQUEUE;
1007 			fallthrough;
1008 		case DM_ENDIO_DONE:
1009 			break;
1010 		case DM_ENDIO_INCOMPLETE:
1011 			/* The target will handle the io */
1012 			return;
1013 		default:
1014 			DMWARN("unimplemented target endio return value: %d", r);
1015 			BUG();
1016 		}
1017 	}
1018 
1019 	free_tio(tio);
1020 	dec_pending(io, error);
1021 }
1022 
1023 /*
1024  * Return maximum size of I/O possible at the supplied sector up to the current
1025  * target boundary.
1026  */
max_io_len_target_boundary(struct dm_target * ti,sector_t target_offset)1027 static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1028 						  sector_t target_offset)
1029 {
1030 	return ti->len - target_offset;
1031 }
1032 
max_io_len(struct dm_target * ti,sector_t sector)1033 static sector_t max_io_len(struct dm_target *ti, sector_t sector)
1034 {
1035 	sector_t target_offset = dm_target_offset(ti, sector);
1036 	sector_t len = max_io_len_target_boundary(ti, target_offset);
1037 	sector_t max_len;
1038 
1039 	/*
1040 	 * Does the target need to split IO even further?
1041 	 * - varied (per target) IO splitting is a tenet of DM; this
1042 	 *   explains why stacked chunk_sectors based splitting via
1043 	 *   blk_max_size_offset() isn't possible here. So pass in
1044 	 *   ti->max_io_len to override stacked chunk_sectors.
1045 	 */
1046 	if (ti->max_io_len) {
1047 		max_len = blk_max_size_offset(ti->table->md->queue,
1048 					      target_offset, ti->max_io_len);
1049 		if (len > max_len)
1050 			len = max_len;
1051 	}
1052 
1053 	return len;
1054 }
1055 
dm_set_target_max_io_len(struct dm_target * ti,sector_t len)1056 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1057 {
1058 	if (len > UINT_MAX) {
1059 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1060 		      (unsigned long long)len, UINT_MAX);
1061 		ti->error = "Maximum size of target IO is too large";
1062 		return -EINVAL;
1063 	}
1064 
1065 	ti->max_io_len = (uint32_t) len;
1066 
1067 	return 0;
1068 }
1069 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1070 
dm_dax_get_live_target(struct mapped_device * md,sector_t sector,int * srcu_idx)1071 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1072 						sector_t sector, int *srcu_idx)
1073 	__acquires(md->io_barrier)
1074 {
1075 	struct dm_table *map;
1076 	struct dm_target *ti;
1077 
1078 	map = dm_get_live_table(md, srcu_idx);
1079 	if (!map)
1080 		return NULL;
1081 
1082 	ti = dm_table_find_target(map, sector);
1083 	if (!ti)
1084 		return NULL;
1085 
1086 	return ti;
1087 }
1088 
dm_dax_direct_access(struct dax_device * dax_dev,pgoff_t pgoff,long nr_pages,void ** kaddr,pfn_t * pfn)1089 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1090 				 long nr_pages, void **kaddr, pfn_t *pfn)
1091 {
1092 	struct mapped_device *md = dax_get_private(dax_dev);
1093 	sector_t sector = pgoff * PAGE_SECTORS;
1094 	struct dm_target *ti;
1095 	long len, ret = -EIO;
1096 	int srcu_idx;
1097 
1098 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1099 
1100 	if (!ti)
1101 		goto out;
1102 	if (!ti->type->direct_access)
1103 		goto out;
1104 	len = max_io_len(ti, sector) / PAGE_SECTORS;
1105 	if (len < 1)
1106 		goto out;
1107 	nr_pages = min(len, nr_pages);
1108 	ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1109 
1110  out:
1111 	dm_put_live_table(md, srcu_idx);
1112 
1113 	return ret;
1114 }
1115 
dm_dax_supported(struct dax_device * dax_dev,struct block_device * bdev,int blocksize,sector_t start,sector_t len)1116 static bool dm_dax_supported(struct dax_device *dax_dev, struct block_device *bdev,
1117 		int blocksize, sector_t start, sector_t len)
1118 {
1119 	struct mapped_device *md = dax_get_private(dax_dev);
1120 	struct dm_table *map;
1121 	bool ret = false;
1122 	int srcu_idx;
1123 
1124 	map = dm_get_live_table(md, &srcu_idx);
1125 	if (!map)
1126 		goto out;
1127 
1128 	ret = dm_table_supports_dax(map, device_supports_dax, &blocksize);
1129 
1130 out:
1131 	dm_put_live_table(md, srcu_idx);
1132 
1133 	return ret;
1134 }
1135 
dm_dax_copy_from_iter(struct dax_device * dax_dev,pgoff_t pgoff,void * addr,size_t bytes,struct iov_iter * i)1136 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1137 				    void *addr, size_t bytes, struct iov_iter *i)
1138 {
1139 	struct mapped_device *md = dax_get_private(dax_dev);
1140 	sector_t sector = pgoff * PAGE_SECTORS;
1141 	struct dm_target *ti;
1142 	long ret = 0;
1143 	int srcu_idx;
1144 
1145 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1146 
1147 	if (!ti)
1148 		goto out;
1149 	if (!ti->type->dax_copy_from_iter) {
1150 		ret = copy_from_iter(addr, bytes, i);
1151 		goto out;
1152 	}
1153 	ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1154  out:
1155 	dm_put_live_table(md, srcu_idx);
1156 
1157 	return ret;
1158 }
1159 
dm_dax_copy_to_iter(struct dax_device * dax_dev,pgoff_t pgoff,void * addr,size_t bytes,struct iov_iter * i)1160 static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1161 		void *addr, size_t bytes, struct iov_iter *i)
1162 {
1163 	struct mapped_device *md = dax_get_private(dax_dev);
1164 	sector_t sector = pgoff * PAGE_SECTORS;
1165 	struct dm_target *ti;
1166 	long ret = 0;
1167 	int srcu_idx;
1168 
1169 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1170 
1171 	if (!ti)
1172 		goto out;
1173 	if (!ti->type->dax_copy_to_iter) {
1174 		ret = copy_to_iter(addr, bytes, i);
1175 		goto out;
1176 	}
1177 	ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i);
1178  out:
1179 	dm_put_live_table(md, srcu_idx);
1180 
1181 	return ret;
1182 }
1183 
dm_dax_zero_page_range(struct dax_device * dax_dev,pgoff_t pgoff,size_t nr_pages)1184 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1185 				  size_t nr_pages)
1186 {
1187 	struct mapped_device *md = dax_get_private(dax_dev);
1188 	sector_t sector = pgoff * PAGE_SECTORS;
1189 	struct dm_target *ti;
1190 	int ret = -EIO;
1191 	int srcu_idx;
1192 
1193 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1194 
1195 	if (!ti)
1196 		goto out;
1197 	if (WARN_ON(!ti->type->dax_zero_page_range)) {
1198 		/*
1199 		 * ->zero_page_range() is mandatory dax operation. If we are
1200 		 *  here, something is wrong.
1201 		 */
1202 		goto out;
1203 	}
1204 	ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1205  out:
1206 	dm_put_live_table(md, srcu_idx);
1207 
1208 	return ret;
1209 }
1210 
1211 /*
1212  * A target may call dm_accept_partial_bio only from the map routine.  It is
1213  * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_RESET,
1214  * REQ_OP_ZONE_OPEN, REQ_OP_ZONE_CLOSE and REQ_OP_ZONE_FINISH.
1215  *
1216  * dm_accept_partial_bio informs the dm that the target only wants to process
1217  * additional n_sectors sectors of the bio and the rest of the data should be
1218  * sent in a next bio.
1219  *
1220  * A diagram that explains the arithmetics:
1221  * +--------------------+---------------+-------+
1222  * |         1          |       2       |   3   |
1223  * +--------------------+---------------+-------+
1224  *
1225  * <-------------- *tio->len_ptr --------------->
1226  *                      <------- bi_size ------->
1227  *                      <-- n_sectors -->
1228  *
1229  * Region 1 was already iterated over with bio_advance or similar function.
1230  *	(it may be empty if the target doesn't use bio_advance)
1231  * Region 2 is the remaining bio size that the target wants to process.
1232  *	(it may be empty if region 1 is non-empty, although there is no reason
1233  *	 to make it empty)
1234  * The target requires that region 3 is to be sent in the next bio.
1235  *
1236  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1237  * the partially processed part (the sum of regions 1+2) must be the same for all
1238  * copies of the bio.
1239  */
dm_accept_partial_bio(struct bio * bio,unsigned n_sectors)1240 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1241 {
1242 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1243 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1244 	BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1245 	BUG_ON(bi_size > *tio->len_ptr);
1246 	BUG_ON(n_sectors > bi_size);
1247 	*tio->len_ptr -= bi_size - n_sectors;
1248 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1249 }
1250 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1251 
__map_bio(struct dm_target_io * tio)1252 static blk_qc_t __map_bio(struct dm_target_io *tio)
1253 {
1254 	int r;
1255 	sector_t sector;
1256 	struct bio *clone = &tio->clone;
1257 	struct dm_io *io = tio->io;
1258 	struct dm_target *ti = tio->ti;
1259 	blk_qc_t ret = BLK_QC_T_NONE;
1260 
1261 	clone->bi_end_io = clone_endio;
1262 
1263 	/*
1264 	 * Map the clone.  If r == 0 we don't need to do
1265 	 * anything, the target has assumed ownership of
1266 	 * this io.
1267 	 */
1268 	atomic_inc(&io->io_count);
1269 	sector = clone->bi_iter.bi_sector;
1270 
1271 	r = ti->type->map(ti, clone);
1272 	switch (r) {
1273 	case DM_MAPIO_SUBMITTED:
1274 		break;
1275 	case DM_MAPIO_REMAPPED:
1276 		/* the bio has been remapped so dispatch it */
1277 		trace_block_bio_remap(clone->bi_disk->queue, clone,
1278 				      bio_dev(io->orig_bio), sector);
1279 		ret = submit_bio_noacct(clone);
1280 		break;
1281 	case DM_MAPIO_KILL:
1282 		free_tio(tio);
1283 		dec_pending(io, BLK_STS_IOERR);
1284 		break;
1285 	case DM_MAPIO_REQUEUE:
1286 		free_tio(tio);
1287 		dec_pending(io, BLK_STS_DM_REQUEUE);
1288 		break;
1289 	default:
1290 		DMWARN("unimplemented target map return value: %d", r);
1291 		BUG();
1292 	}
1293 
1294 	return ret;
1295 }
1296 
bio_setup_sector(struct bio * bio,sector_t sector,unsigned len)1297 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1298 {
1299 	bio->bi_iter.bi_sector = sector;
1300 	bio->bi_iter.bi_size = to_bytes(len);
1301 }
1302 
1303 /*
1304  * Creates a bio that consists of range of complete bvecs.
1305  */
clone_bio(struct dm_target_io * tio,struct bio * bio,sector_t sector,unsigned len)1306 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1307 		     sector_t sector, unsigned len)
1308 {
1309 	struct bio *clone = &tio->clone;
1310 	int r;
1311 
1312 	__bio_clone_fast(clone, bio);
1313 
1314 	r = bio_crypt_clone(clone, bio, GFP_NOIO);
1315 	if (r < 0)
1316 		return r;
1317 
1318 	if (bio_integrity(bio)) {
1319 		if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1320 			     !dm_target_passes_integrity(tio->ti->type))) {
1321 			DMWARN("%s: the target %s doesn't support integrity data.",
1322 				dm_device_name(tio->io->md),
1323 				tio->ti->type->name);
1324 			return -EIO;
1325 		}
1326 
1327 		r = bio_integrity_clone(clone, bio, GFP_NOIO);
1328 		if (r < 0)
1329 			return r;
1330 	}
1331 
1332 	bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1333 	clone->bi_iter.bi_size = to_bytes(len);
1334 
1335 	if (bio_integrity(bio))
1336 		bio_integrity_trim(clone);
1337 
1338 	return 0;
1339 }
1340 
alloc_multiple_bios(struct bio_list * blist,struct clone_info * ci,struct dm_target * ti,unsigned num_bios)1341 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1342 				struct dm_target *ti, unsigned num_bios)
1343 {
1344 	struct dm_target_io *tio;
1345 	int try;
1346 
1347 	if (!num_bios)
1348 		return;
1349 
1350 	if (num_bios == 1) {
1351 		tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1352 		bio_list_add(blist, &tio->clone);
1353 		return;
1354 	}
1355 
1356 	for (try = 0; try < 2; try++) {
1357 		int bio_nr;
1358 		struct bio *bio;
1359 
1360 		if (try)
1361 			mutex_lock(&ci->io->md->table_devices_lock);
1362 		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1363 			tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1364 			if (!tio)
1365 				break;
1366 
1367 			bio_list_add(blist, &tio->clone);
1368 		}
1369 		if (try)
1370 			mutex_unlock(&ci->io->md->table_devices_lock);
1371 		if (bio_nr == num_bios)
1372 			return;
1373 
1374 		while ((bio = bio_list_pop(blist))) {
1375 			tio = container_of(bio, struct dm_target_io, clone);
1376 			free_tio(tio);
1377 		}
1378 	}
1379 }
1380 
__clone_and_map_simple_bio(struct clone_info * ci,struct dm_target_io * tio,unsigned * len)1381 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci,
1382 					   struct dm_target_io *tio, unsigned *len)
1383 {
1384 	struct bio *clone = &tio->clone;
1385 
1386 	tio->len_ptr = len;
1387 
1388 	__bio_clone_fast(clone, ci->bio);
1389 	if (len)
1390 		bio_setup_sector(clone, ci->sector, *len);
1391 
1392 	return __map_bio(tio);
1393 }
1394 
__send_duplicate_bios(struct clone_info * ci,struct dm_target * ti,unsigned num_bios,unsigned * len)1395 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1396 				  unsigned num_bios, unsigned *len)
1397 {
1398 	struct bio_list blist = BIO_EMPTY_LIST;
1399 	struct bio *bio;
1400 	struct dm_target_io *tio;
1401 
1402 	alloc_multiple_bios(&blist, ci, ti, num_bios);
1403 
1404 	while ((bio = bio_list_pop(&blist))) {
1405 		tio = container_of(bio, struct dm_target_io, clone);
1406 		(void) __clone_and_map_simple_bio(ci, tio, len);
1407 	}
1408 }
1409 
__send_empty_flush(struct clone_info * ci)1410 static int __send_empty_flush(struct clone_info *ci)
1411 {
1412 	unsigned target_nr = 0;
1413 	struct dm_target *ti;
1414 	struct bio flush_bio;
1415 
1416 	/*
1417 	 * Use an on-stack bio for this, it's safe since we don't
1418 	 * need to reference it after submit. It's just used as
1419 	 * the basis for the clone(s).
1420 	 */
1421 	bio_init(&flush_bio, NULL, 0);
1422 	flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1423 	ci->bio = &flush_bio;
1424 	ci->sector_count = 0;
1425 
1426 	/*
1427 	 * Empty flush uses a statically initialized bio, as the base for
1428 	 * cloning.  However, blkg association requires that a bdev is
1429 	 * associated with a gendisk, which doesn't happen until the bdev is
1430 	 * opened.  So, blkg association is done at issue time of the flush
1431 	 * rather than when the device is created in alloc_dev().
1432 	 */
1433 	bio_set_dev(ci->bio, ci->io->md->bdev);
1434 
1435 	BUG_ON(bio_has_data(ci->bio));
1436 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1437 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1438 
1439 	bio_uninit(ci->bio);
1440 	return 0;
1441 }
1442 
__clone_and_map_data_bio(struct clone_info * ci,struct dm_target * ti,sector_t sector,unsigned * len)1443 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1444 				    sector_t sector, unsigned *len)
1445 {
1446 	struct bio *bio = ci->bio;
1447 	struct dm_target_io *tio;
1448 	int r;
1449 
1450 	tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1451 	tio->len_ptr = len;
1452 	r = clone_bio(tio, bio, sector, *len);
1453 	if (r < 0) {
1454 		free_tio(tio);
1455 		return r;
1456 	}
1457 	(void) __map_bio(tio);
1458 
1459 	return 0;
1460 }
1461 
__send_changing_extent_only(struct clone_info * ci,struct dm_target * ti,unsigned num_bios)1462 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1463 				       unsigned num_bios)
1464 {
1465 	unsigned len;
1466 
1467 	/*
1468 	 * Even though the device advertised support for this type of
1469 	 * request, that does not mean every target supports it, and
1470 	 * reconfiguration might also have changed that since the
1471 	 * check was performed.
1472 	 */
1473 	if (!num_bios)
1474 		return -EOPNOTSUPP;
1475 
1476 	len = min_t(sector_t, ci->sector_count,
1477 		    max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector)));
1478 
1479 	__send_duplicate_bios(ci, ti, num_bios, &len);
1480 
1481 	ci->sector += len;
1482 	ci->sector_count -= len;
1483 
1484 	return 0;
1485 }
1486 
is_abnormal_io(struct bio * bio)1487 static bool is_abnormal_io(struct bio *bio)
1488 {
1489 	bool r = false;
1490 
1491 	switch (bio_op(bio)) {
1492 	case REQ_OP_DISCARD:
1493 	case REQ_OP_SECURE_ERASE:
1494 	case REQ_OP_WRITE_SAME:
1495 	case REQ_OP_WRITE_ZEROES:
1496 		r = true;
1497 		break;
1498 	}
1499 
1500 	return r;
1501 }
1502 
__process_abnormal_io(struct clone_info * ci,struct dm_target * ti,int * result)1503 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1504 				  int *result)
1505 {
1506 	struct bio *bio = ci->bio;
1507 	unsigned num_bios = 0;
1508 
1509 	switch (bio_op(bio)) {
1510 	case REQ_OP_DISCARD:
1511 		num_bios = ti->num_discard_bios;
1512 		break;
1513 	case REQ_OP_SECURE_ERASE:
1514 		num_bios = ti->num_secure_erase_bios;
1515 		break;
1516 	case REQ_OP_WRITE_SAME:
1517 		num_bios = ti->num_write_same_bios;
1518 		break;
1519 	case REQ_OP_WRITE_ZEROES:
1520 		num_bios = ti->num_write_zeroes_bios;
1521 		break;
1522 	default:
1523 		return false;
1524 	}
1525 
1526 	*result = __send_changing_extent_only(ci, ti, num_bios);
1527 	return true;
1528 }
1529 
1530 /*
1531  * Select the correct strategy for processing a non-flush bio.
1532  */
__split_and_process_non_flush(struct clone_info * ci)1533 static int __split_and_process_non_flush(struct clone_info *ci)
1534 {
1535 	struct dm_target *ti;
1536 	unsigned len;
1537 	int r;
1538 
1539 	ti = dm_table_find_target(ci->map, ci->sector);
1540 	if (!ti)
1541 		return -EIO;
1542 
1543 	if (__process_abnormal_io(ci, ti, &r))
1544 		return r;
1545 
1546 	len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1547 
1548 	r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1549 	if (r < 0)
1550 		return r;
1551 
1552 	ci->sector += len;
1553 	ci->sector_count -= len;
1554 
1555 	return 0;
1556 }
1557 
init_clone_info(struct clone_info * ci,struct mapped_device * md,struct dm_table * map,struct bio * bio)1558 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1559 			    struct dm_table *map, struct bio *bio)
1560 {
1561 	ci->map = map;
1562 	ci->io = alloc_io(md, bio);
1563 	ci->sector = bio->bi_iter.bi_sector;
1564 }
1565 
1566 #define __dm_part_stat_sub(part, field, subnd)	\
1567 	(part_stat_get(part, field) -= (subnd))
1568 
1569 /*
1570  * Entry point to split a bio into clones and submit them to the targets.
1571  */
__split_and_process_bio(struct mapped_device * md,struct dm_table * map,struct bio * bio)1572 static blk_qc_t __split_and_process_bio(struct mapped_device *md,
1573 					struct dm_table *map, struct bio *bio)
1574 {
1575 	struct clone_info ci;
1576 	blk_qc_t ret = BLK_QC_T_NONE;
1577 	int error = 0;
1578 
1579 	init_clone_info(&ci, md, map, bio);
1580 
1581 	if (bio->bi_opf & REQ_PREFLUSH) {
1582 		error = __send_empty_flush(&ci);
1583 		/* dec_pending submits any data associated with flush */
1584 	} else if (op_is_zone_mgmt(bio_op(bio))) {
1585 		ci.bio = bio;
1586 		ci.sector_count = 0;
1587 		error = __split_and_process_non_flush(&ci);
1588 	} else {
1589 		ci.bio = bio;
1590 		ci.sector_count = bio_sectors(bio);
1591 		while (ci.sector_count && !error) {
1592 			error = __split_and_process_non_flush(&ci);
1593 			if (current->bio_list && ci.sector_count && !error) {
1594 				/*
1595 				 * Remainder must be passed to submit_bio_noacct()
1596 				 * so that it gets handled *after* bios already submitted
1597 				 * have been completely processed.
1598 				 * We take a clone of the original to store in
1599 				 * ci.io->orig_bio to be used by end_io_acct() and
1600 				 * for dec_pending to use for completion handling.
1601 				 */
1602 				struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count,
1603 							  GFP_NOIO, &md->queue->bio_split);
1604 				ci.io->orig_bio = b;
1605 
1606 				/*
1607 				 * Adjust IO stats for each split, otherwise upon queue
1608 				 * reentry there will be redundant IO accounting.
1609 				 * NOTE: this is a stop-gap fix, a proper fix involves
1610 				 * significant refactoring of DM core's bio splitting
1611 				 * (by eliminating DM's splitting and just using bio_split)
1612 				 */
1613 				part_stat_lock();
1614 				__dm_part_stat_sub(&dm_disk(md)->part0,
1615 						   sectors[op_stat_group(bio_op(bio))], ci.sector_count);
1616 				part_stat_unlock();
1617 
1618 				bio_chain(b, bio);
1619 				trace_block_split(md->queue, b, bio->bi_iter.bi_sector);
1620 				ret = submit_bio_noacct(bio);
1621 				break;
1622 			}
1623 		}
1624 	}
1625 
1626 	/* drop the extra reference count */
1627 	dec_pending(ci.io, errno_to_blk_status(error));
1628 	return ret;
1629 }
1630 
dm_submit_bio(struct bio * bio)1631 static blk_qc_t dm_submit_bio(struct bio *bio)
1632 {
1633 	struct mapped_device *md = bio->bi_disk->private_data;
1634 	blk_qc_t ret = BLK_QC_T_NONE;
1635 	int srcu_idx;
1636 	struct dm_table *map;
1637 
1638 	map = dm_get_live_table(md, &srcu_idx);
1639 	if (unlikely(!map)) {
1640 		DMERR_LIMIT("%s: mapping table unavailable, erroring io",
1641 			    dm_device_name(md));
1642 		bio_io_error(bio);
1643 		goto out;
1644 	}
1645 
1646 	/* If suspended, queue this IO for later */
1647 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1648 		if (bio->bi_opf & REQ_NOWAIT)
1649 			bio_wouldblock_error(bio);
1650 		else if (bio->bi_opf & REQ_RAHEAD)
1651 			bio_io_error(bio);
1652 		else
1653 			queue_io(md, bio);
1654 		goto out;
1655 	}
1656 
1657 	/*
1658 	 * Use blk_queue_split() for abnormal IO (e.g. discard, writesame, etc)
1659 	 * otherwise associated queue_limits won't be imposed.
1660 	 */
1661 	if (is_abnormal_io(bio))
1662 		blk_queue_split(&bio);
1663 
1664 	ret = __split_and_process_bio(md, map, bio);
1665 out:
1666 	dm_put_live_table(md, srcu_idx);
1667 	return ret;
1668 }
1669 
1670 /*-----------------------------------------------------------------
1671  * An IDR is used to keep track of allocated minor numbers.
1672  *---------------------------------------------------------------*/
free_minor(int minor)1673 static void free_minor(int minor)
1674 {
1675 	spin_lock(&_minor_lock);
1676 	idr_remove(&_minor_idr, minor);
1677 	spin_unlock(&_minor_lock);
1678 }
1679 
1680 /*
1681  * See if the device with a specific minor # is free.
1682  */
specific_minor(int minor)1683 static int specific_minor(int minor)
1684 {
1685 	int r;
1686 
1687 	if (minor >= (1 << MINORBITS))
1688 		return -EINVAL;
1689 
1690 	idr_preload(GFP_KERNEL);
1691 	spin_lock(&_minor_lock);
1692 
1693 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1694 
1695 	spin_unlock(&_minor_lock);
1696 	idr_preload_end();
1697 	if (r < 0)
1698 		return r == -ENOSPC ? -EBUSY : r;
1699 	return 0;
1700 }
1701 
next_free_minor(int * minor)1702 static int next_free_minor(int *minor)
1703 {
1704 	int r;
1705 
1706 	idr_preload(GFP_KERNEL);
1707 	spin_lock(&_minor_lock);
1708 
1709 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1710 
1711 	spin_unlock(&_minor_lock);
1712 	idr_preload_end();
1713 	if (r < 0)
1714 		return r;
1715 	*minor = r;
1716 	return 0;
1717 }
1718 
1719 static const struct block_device_operations dm_blk_dops;
1720 static const struct block_device_operations dm_rq_blk_dops;
1721 static const struct dax_operations dm_dax_ops;
1722 
1723 static void dm_wq_work(struct work_struct *work);
1724 
cleanup_mapped_device(struct mapped_device * md)1725 static void cleanup_mapped_device(struct mapped_device *md)
1726 {
1727 	if (md->wq)
1728 		destroy_workqueue(md->wq);
1729 	bioset_exit(&md->bs);
1730 	bioset_exit(&md->io_bs);
1731 
1732 	if (md->dax_dev) {
1733 		kill_dax(md->dax_dev);
1734 		put_dax(md->dax_dev);
1735 		md->dax_dev = NULL;
1736 	}
1737 
1738 	if (md->disk) {
1739 		spin_lock(&_minor_lock);
1740 		md->disk->private_data = NULL;
1741 		spin_unlock(&_minor_lock);
1742 		del_gendisk(md->disk);
1743 		put_disk(md->disk);
1744 	}
1745 
1746 	if (md->queue)
1747 		blk_cleanup_queue(md->queue);
1748 
1749 	cleanup_srcu_struct(&md->io_barrier);
1750 
1751 	if (md->bdev) {
1752 		bdput(md->bdev);
1753 		md->bdev = NULL;
1754 	}
1755 
1756 	mutex_destroy(&md->suspend_lock);
1757 	mutex_destroy(&md->type_lock);
1758 	mutex_destroy(&md->table_devices_lock);
1759 
1760 	dm_mq_cleanup_mapped_device(md);
1761 }
1762 
1763 /*
1764  * Allocate and initialise a blank device with a given minor.
1765  */
alloc_dev(int minor)1766 static struct mapped_device *alloc_dev(int minor)
1767 {
1768 	int r, numa_node_id = dm_get_numa_node();
1769 	struct mapped_device *md;
1770 	void *old_md;
1771 
1772 	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1773 	if (!md) {
1774 		DMWARN("unable to allocate device, out of memory.");
1775 		return NULL;
1776 	}
1777 
1778 	if (!try_module_get(THIS_MODULE))
1779 		goto bad_module_get;
1780 
1781 	/* get a minor number for the dev */
1782 	if (minor == DM_ANY_MINOR)
1783 		r = next_free_minor(&minor);
1784 	else
1785 		r = specific_minor(minor);
1786 	if (r < 0)
1787 		goto bad_minor;
1788 
1789 	r = init_srcu_struct(&md->io_barrier);
1790 	if (r < 0)
1791 		goto bad_io_barrier;
1792 
1793 	md->numa_node_id = numa_node_id;
1794 	md->init_tio_pdu = false;
1795 	md->type = DM_TYPE_NONE;
1796 	mutex_init(&md->suspend_lock);
1797 	mutex_init(&md->type_lock);
1798 	mutex_init(&md->table_devices_lock);
1799 	spin_lock_init(&md->deferred_lock);
1800 	atomic_set(&md->holders, 1);
1801 	atomic_set(&md->open_count, 0);
1802 	atomic_set(&md->event_nr, 0);
1803 	atomic_set(&md->uevent_seq, 0);
1804 	INIT_LIST_HEAD(&md->uevent_list);
1805 	INIT_LIST_HEAD(&md->table_devices);
1806 	spin_lock_init(&md->uevent_lock);
1807 
1808 	/*
1809 	 * default to bio-based until DM table is loaded and md->type
1810 	 * established. If request-based table is loaded: blk-mq will
1811 	 * override accordingly.
1812 	 */
1813 	md->queue = blk_alloc_queue(numa_node_id);
1814 	if (!md->queue)
1815 		goto bad;
1816 
1817 	md->disk = alloc_disk_node(1, md->numa_node_id);
1818 	if (!md->disk)
1819 		goto bad;
1820 
1821 	init_waitqueue_head(&md->wait);
1822 	INIT_WORK(&md->work, dm_wq_work);
1823 	init_waitqueue_head(&md->eventq);
1824 	init_completion(&md->kobj_holder.completion);
1825 
1826 	md->disk->major = _major;
1827 	md->disk->first_minor = minor;
1828 	md->disk->fops = &dm_blk_dops;
1829 	md->disk->queue = md->queue;
1830 	md->disk->private_data = md;
1831 	sprintf(md->disk->disk_name, "dm-%d", minor);
1832 
1833 	if (IS_ENABLED(CONFIG_DAX_DRIVER)) {
1834 		md->dax_dev = alloc_dax(md, md->disk->disk_name,
1835 					&dm_dax_ops, 0);
1836 		if (IS_ERR(md->dax_dev))
1837 			goto bad;
1838 	}
1839 
1840 	add_disk_no_queue_reg(md->disk);
1841 	format_dev_t(md->name, MKDEV(_major, minor));
1842 
1843 	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1844 	if (!md->wq)
1845 		goto bad;
1846 
1847 	md->bdev = bdget_disk(md->disk, 0);
1848 	if (!md->bdev)
1849 		goto bad;
1850 
1851 	dm_stats_init(&md->stats);
1852 
1853 	/* Populate the mapping, nobody knows we exist yet */
1854 	spin_lock(&_minor_lock);
1855 	old_md = idr_replace(&_minor_idr, md, minor);
1856 	spin_unlock(&_minor_lock);
1857 
1858 	BUG_ON(old_md != MINOR_ALLOCED);
1859 
1860 	return md;
1861 
1862 bad:
1863 	cleanup_mapped_device(md);
1864 bad_io_barrier:
1865 	free_minor(minor);
1866 bad_minor:
1867 	module_put(THIS_MODULE);
1868 bad_module_get:
1869 	kvfree(md);
1870 	return NULL;
1871 }
1872 
1873 static void unlock_fs(struct mapped_device *md);
1874 
free_dev(struct mapped_device * md)1875 static void free_dev(struct mapped_device *md)
1876 {
1877 	int minor = MINOR(disk_devt(md->disk));
1878 
1879 	unlock_fs(md);
1880 
1881 	cleanup_mapped_device(md);
1882 
1883 	free_table_devices(&md->table_devices);
1884 	dm_stats_cleanup(&md->stats);
1885 	free_minor(minor);
1886 
1887 	module_put(THIS_MODULE);
1888 	kvfree(md);
1889 }
1890 
__bind_mempools(struct mapped_device * md,struct dm_table * t)1891 static int __bind_mempools(struct mapped_device *md, struct dm_table *t)
1892 {
1893 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1894 	int ret = 0;
1895 
1896 	if (dm_table_bio_based(t)) {
1897 		/*
1898 		 * The md may already have mempools that need changing.
1899 		 * If so, reload bioset because front_pad may have changed
1900 		 * because a different table was loaded.
1901 		 */
1902 		bioset_exit(&md->bs);
1903 		bioset_exit(&md->io_bs);
1904 
1905 	} else if (bioset_initialized(&md->bs)) {
1906 		/*
1907 		 * There's no need to reload with request-based dm
1908 		 * because the size of front_pad doesn't change.
1909 		 * Note for future: If you are to reload bioset,
1910 		 * prep-ed requests in the queue may refer
1911 		 * to bio from the old bioset, so you must walk
1912 		 * through the queue to unprep.
1913 		 */
1914 		goto out;
1915 	}
1916 
1917 	BUG_ON(!p ||
1918 	       bioset_initialized(&md->bs) ||
1919 	       bioset_initialized(&md->io_bs));
1920 
1921 	ret = bioset_init_from_src(&md->bs, &p->bs);
1922 	if (ret)
1923 		goto out;
1924 	ret = bioset_init_from_src(&md->io_bs, &p->io_bs);
1925 	if (ret)
1926 		bioset_exit(&md->bs);
1927 out:
1928 	/* mempool bind completed, no longer need any mempools in the table */
1929 	dm_table_free_md_mempools(t);
1930 	return ret;
1931 }
1932 
1933 /*
1934  * Bind a table to the device.
1935  */
event_callback(void * context)1936 static void event_callback(void *context)
1937 {
1938 	unsigned long flags;
1939 	LIST_HEAD(uevents);
1940 	struct mapped_device *md = (struct mapped_device *) context;
1941 
1942 	spin_lock_irqsave(&md->uevent_lock, flags);
1943 	list_splice_init(&md->uevent_list, &uevents);
1944 	spin_unlock_irqrestore(&md->uevent_lock, flags);
1945 
1946 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1947 
1948 	atomic_inc(&md->event_nr);
1949 	wake_up(&md->eventq);
1950 	dm_issue_global_event();
1951 }
1952 
1953 /*
1954  * Returns old map, which caller must destroy.
1955  */
__bind(struct mapped_device * md,struct dm_table * t,struct queue_limits * limits)1956 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
1957 			       struct queue_limits *limits)
1958 {
1959 	struct dm_table *old_map;
1960 	struct request_queue *q = md->queue;
1961 	bool request_based = dm_table_request_based(t);
1962 	sector_t size;
1963 	int ret;
1964 
1965 	lockdep_assert_held(&md->suspend_lock);
1966 
1967 	size = dm_table_get_size(t);
1968 
1969 	/*
1970 	 * Wipe any geometry if the size of the table changed.
1971 	 */
1972 	if (size != dm_get_size(md))
1973 		memset(&md->geometry, 0, sizeof(md->geometry));
1974 
1975 	set_capacity(md->disk, size);
1976 	bd_set_nr_sectors(md->bdev, size);
1977 
1978 	dm_table_event_callback(t, event_callback, md);
1979 
1980 	/*
1981 	 * The queue hasn't been stopped yet, if the old table type wasn't
1982 	 * for request-based during suspension.  So stop it to prevent
1983 	 * I/O mapping before resume.
1984 	 * This must be done before setting the queue restrictions,
1985 	 * because request-based dm may be run just after the setting.
1986 	 */
1987 	if (request_based)
1988 		dm_stop_queue(q);
1989 
1990 	if (request_based) {
1991 		/*
1992 		 * Leverage the fact that request-based DM targets are
1993 		 * immutable singletons - used to optimize dm_mq_queue_rq.
1994 		 */
1995 		md->immutable_target = dm_table_get_immutable_target(t);
1996 	}
1997 
1998 	ret = __bind_mempools(md, t);
1999 	if (ret) {
2000 		old_map = ERR_PTR(ret);
2001 		goto out;
2002 	}
2003 
2004 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2005 	rcu_assign_pointer(md->map, (void *)t);
2006 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2007 
2008 	dm_table_set_restrictions(t, q, limits);
2009 	if (old_map)
2010 		dm_sync_table(md);
2011 
2012 out:
2013 	return old_map;
2014 }
2015 
2016 /*
2017  * Returns unbound table for the caller to free.
2018  */
__unbind(struct mapped_device * md)2019 static struct dm_table *__unbind(struct mapped_device *md)
2020 {
2021 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2022 
2023 	if (!map)
2024 		return NULL;
2025 
2026 	dm_table_event_callback(map, NULL, NULL);
2027 	RCU_INIT_POINTER(md->map, NULL);
2028 	dm_sync_table(md);
2029 
2030 	return map;
2031 }
2032 
2033 /*
2034  * Constructor for a new device.
2035  */
dm_create(int minor,struct mapped_device ** result)2036 int dm_create(int minor, struct mapped_device **result)
2037 {
2038 	int r;
2039 	struct mapped_device *md;
2040 
2041 	md = alloc_dev(minor);
2042 	if (!md)
2043 		return -ENXIO;
2044 
2045 	r = dm_sysfs_init(md);
2046 	if (r) {
2047 		free_dev(md);
2048 		return r;
2049 	}
2050 
2051 	*result = md;
2052 	return 0;
2053 }
2054 
2055 /*
2056  * Functions to manage md->type.
2057  * All are required to hold md->type_lock.
2058  */
dm_lock_md_type(struct mapped_device * md)2059 void dm_lock_md_type(struct mapped_device *md)
2060 {
2061 	mutex_lock(&md->type_lock);
2062 }
2063 
dm_unlock_md_type(struct mapped_device * md)2064 void dm_unlock_md_type(struct mapped_device *md)
2065 {
2066 	mutex_unlock(&md->type_lock);
2067 }
2068 
dm_set_md_type(struct mapped_device * md,enum dm_queue_mode type)2069 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2070 {
2071 	BUG_ON(!mutex_is_locked(&md->type_lock));
2072 	md->type = type;
2073 }
2074 
dm_get_md_type(struct mapped_device * md)2075 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2076 {
2077 	return md->type;
2078 }
2079 
dm_get_immutable_target_type(struct mapped_device * md)2080 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2081 {
2082 	return md->immutable_target_type;
2083 }
2084 
2085 /*
2086  * The queue_limits are only valid as long as you have a reference
2087  * count on 'md'.
2088  */
dm_get_queue_limits(struct mapped_device * md)2089 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2090 {
2091 	BUG_ON(!atomic_read(&md->holders));
2092 	return &md->queue->limits;
2093 }
2094 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2095 
2096 /*
2097  * Setup the DM device's queue based on md's type
2098  */
dm_setup_md_queue(struct mapped_device * md,struct dm_table * t)2099 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2100 {
2101 	int r;
2102 	struct queue_limits limits;
2103 	enum dm_queue_mode type = dm_get_md_type(md);
2104 
2105 	switch (type) {
2106 	case DM_TYPE_REQUEST_BASED:
2107 		md->disk->fops = &dm_rq_blk_dops;
2108 		r = dm_mq_init_request_queue(md, t);
2109 		if (r) {
2110 			DMERR("Cannot initialize queue for request-based dm mapped device");
2111 			return r;
2112 		}
2113 		break;
2114 	case DM_TYPE_BIO_BASED:
2115 	case DM_TYPE_DAX_BIO_BASED:
2116 		break;
2117 	case DM_TYPE_NONE:
2118 		WARN_ON_ONCE(true);
2119 		break;
2120 	}
2121 
2122 	r = dm_calculate_queue_limits(t, &limits);
2123 	if (r) {
2124 		DMERR("Cannot calculate initial queue limits");
2125 		return r;
2126 	}
2127 	dm_table_set_restrictions(t, md->queue, &limits);
2128 	blk_register_queue(md->disk);
2129 
2130 	return 0;
2131 }
2132 
dm_get_md(dev_t dev)2133 struct mapped_device *dm_get_md(dev_t dev)
2134 {
2135 	struct mapped_device *md;
2136 	unsigned minor = MINOR(dev);
2137 
2138 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2139 		return NULL;
2140 
2141 	spin_lock(&_minor_lock);
2142 
2143 	md = idr_find(&_minor_idr, minor);
2144 	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2145 	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2146 		md = NULL;
2147 		goto out;
2148 	}
2149 	dm_get(md);
2150 out:
2151 	spin_unlock(&_minor_lock);
2152 
2153 	return md;
2154 }
2155 EXPORT_SYMBOL_GPL(dm_get_md);
2156 
dm_get_mdptr(struct mapped_device * md)2157 void *dm_get_mdptr(struct mapped_device *md)
2158 {
2159 	return md->interface_ptr;
2160 }
2161 
dm_set_mdptr(struct mapped_device * md,void * ptr)2162 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2163 {
2164 	md->interface_ptr = ptr;
2165 }
2166 
dm_get(struct mapped_device * md)2167 void dm_get(struct mapped_device *md)
2168 {
2169 	atomic_inc(&md->holders);
2170 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2171 }
2172 
dm_hold(struct mapped_device * md)2173 int dm_hold(struct mapped_device *md)
2174 {
2175 	spin_lock(&_minor_lock);
2176 	if (test_bit(DMF_FREEING, &md->flags)) {
2177 		spin_unlock(&_minor_lock);
2178 		return -EBUSY;
2179 	}
2180 	dm_get(md);
2181 	spin_unlock(&_minor_lock);
2182 	return 0;
2183 }
2184 EXPORT_SYMBOL_GPL(dm_hold);
2185 
dm_device_name(struct mapped_device * md)2186 const char *dm_device_name(struct mapped_device *md)
2187 {
2188 	return md->name;
2189 }
2190 EXPORT_SYMBOL_GPL(dm_device_name);
2191 
__dm_destroy(struct mapped_device * md,bool wait)2192 static void __dm_destroy(struct mapped_device *md, bool wait)
2193 {
2194 	struct dm_table *map;
2195 	int srcu_idx;
2196 
2197 	might_sleep();
2198 
2199 	spin_lock(&_minor_lock);
2200 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2201 	set_bit(DMF_FREEING, &md->flags);
2202 	spin_unlock(&_minor_lock);
2203 
2204 	blk_set_queue_dying(md->queue);
2205 
2206 	/*
2207 	 * Take suspend_lock so that presuspend and postsuspend methods
2208 	 * do not race with internal suspend.
2209 	 */
2210 	mutex_lock(&md->suspend_lock);
2211 	map = dm_get_live_table(md, &srcu_idx);
2212 	if (!dm_suspended_md(md)) {
2213 		dm_table_presuspend_targets(map);
2214 		set_bit(DMF_SUSPENDED, &md->flags);
2215 		set_bit(DMF_POST_SUSPENDING, &md->flags);
2216 		dm_table_postsuspend_targets(map);
2217 	}
2218 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2219 	dm_put_live_table(md, srcu_idx);
2220 	mutex_unlock(&md->suspend_lock);
2221 
2222 	/*
2223 	 * Rare, but there may be I/O requests still going to complete,
2224 	 * for example.  Wait for all references to disappear.
2225 	 * No one should increment the reference count of the mapped_device,
2226 	 * after the mapped_device state becomes DMF_FREEING.
2227 	 */
2228 	if (wait)
2229 		while (atomic_read(&md->holders))
2230 			msleep(1);
2231 	else if (atomic_read(&md->holders))
2232 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2233 		       dm_device_name(md), atomic_read(&md->holders));
2234 
2235 	dm_sysfs_exit(md);
2236 	dm_table_destroy(__unbind(md));
2237 	free_dev(md);
2238 }
2239 
dm_destroy(struct mapped_device * md)2240 void dm_destroy(struct mapped_device *md)
2241 {
2242 	__dm_destroy(md, true);
2243 }
2244 
dm_destroy_immediate(struct mapped_device * md)2245 void dm_destroy_immediate(struct mapped_device *md)
2246 {
2247 	__dm_destroy(md, false);
2248 }
2249 
dm_put(struct mapped_device * md)2250 void dm_put(struct mapped_device *md)
2251 {
2252 	atomic_dec(&md->holders);
2253 }
2254 EXPORT_SYMBOL_GPL(dm_put);
2255 
md_in_flight_bios(struct mapped_device * md)2256 static bool md_in_flight_bios(struct mapped_device *md)
2257 {
2258 	int cpu;
2259 	struct hd_struct *part = &dm_disk(md)->part0;
2260 	long sum = 0;
2261 
2262 	for_each_possible_cpu(cpu) {
2263 		sum += part_stat_local_read_cpu(part, in_flight[0], cpu);
2264 		sum += part_stat_local_read_cpu(part, in_flight[1], cpu);
2265 	}
2266 
2267 	return sum != 0;
2268 }
2269 
dm_wait_for_bios_completion(struct mapped_device * md,long task_state)2270 static int dm_wait_for_bios_completion(struct mapped_device *md, long task_state)
2271 {
2272 	int r = 0;
2273 	DEFINE_WAIT(wait);
2274 
2275 	while (true) {
2276 		prepare_to_wait(&md->wait, &wait, task_state);
2277 
2278 		if (!md_in_flight_bios(md))
2279 			break;
2280 
2281 		if (signal_pending_state(task_state, current)) {
2282 			r = -EINTR;
2283 			break;
2284 		}
2285 
2286 		io_schedule();
2287 	}
2288 	finish_wait(&md->wait, &wait);
2289 
2290 	return r;
2291 }
2292 
dm_wait_for_completion(struct mapped_device * md,long task_state)2293 static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2294 {
2295 	int r = 0;
2296 
2297 	if (!queue_is_mq(md->queue))
2298 		return dm_wait_for_bios_completion(md, task_state);
2299 
2300 	while (true) {
2301 		if (!blk_mq_queue_inflight(md->queue))
2302 			break;
2303 
2304 		if (signal_pending_state(task_state, current)) {
2305 			r = -EINTR;
2306 			break;
2307 		}
2308 
2309 		msleep(5);
2310 	}
2311 
2312 	return r;
2313 }
2314 
2315 /*
2316  * Process the deferred bios
2317  */
dm_wq_work(struct work_struct * work)2318 static void dm_wq_work(struct work_struct *work)
2319 {
2320 	struct mapped_device *md = container_of(work, struct mapped_device, work);
2321 	struct bio *bio;
2322 
2323 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2324 		spin_lock_irq(&md->deferred_lock);
2325 		bio = bio_list_pop(&md->deferred);
2326 		spin_unlock_irq(&md->deferred_lock);
2327 
2328 		if (!bio)
2329 			break;
2330 
2331 		submit_bio_noacct(bio);
2332 	}
2333 }
2334 
dm_queue_flush(struct mapped_device * md)2335 static void dm_queue_flush(struct mapped_device *md)
2336 {
2337 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2338 	smp_mb__after_atomic();
2339 	queue_work(md->wq, &md->work);
2340 }
2341 
2342 /*
2343  * Swap in a new table, returning the old one for the caller to destroy.
2344  */
dm_swap_table(struct mapped_device * md,struct dm_table * table)2345 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2346 {
2347 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2348 	struct queue_limits limits;
2349 	int r;
2350 
2351 	mutex_lock(&md->suspend_lock);
2352 
2353 	/* device must be suspended */
2354 	if (!dm_suspended_md(md))
2355 		goto out;
2356 
2357 	/*
2358 	 * If the new table has no data devices, retain the existing limits.
2359 	 * This helps multipath with queue_if_no_path if all paths disappear,
2360 	 * then new I/O is queued based on these limits, and then some paths
2361 	 * reappear.
2362 	 */
2363 	if (dm_table_has_no_data_devices(table)) {
2364 		live_map = dm_get_live_table_fast(md);
2365 		if (live_map)
2366 			limits = md->queue->limits;
2367 		dm_put_live_table_fast(md);
2368 	}
2369 
2370 	if (!live_map) {
2371 		r = dm_calculate_queue_limits(table, &limits);
2372 		if (r) {
2373 			map = ERR_PTR(r);
2374 			goto out;
2375 		}
2376 	}
2377 
2378 	map = __bind(md, table, &limits);
2379 	dm_issue_global_event();
2380 
2381 out:
2382 	mutex_unlock(&md->suspend_lock);
2383 	return map;
2384 }
2385 
2386 /*
2387  * Functions to lock and unlock any filesystem running on the
2388  * device.
2389  */
lock_fs(struct mapped_device * md)2390 static int lock_fs(struct mapped_device *md)
2391 {
2392 	int r;
2393 
2394 	WARN_ON(md->frozen_sb);
2395 
2396 	md->frozen_sb = freeze_bdev(md->bdev);
2397 	if (IS_ERR(md->frozen_sb)) {
2398 		r = PTR_ERR(md->frozen_sb);
2399 		md->frozen_sb = NULL;
2400 		return r;
2401 	}
2402 
2403 	set_bit(DMF_FROZEN, &md->flags);
2404 
2405 	return 0;
2406 }
2407 
unlock_fs(struct mapped_device * md)2408 static void unlock_fs(struct mapped_device *md)
2409 {
2410 	if (!test_bit(DMF_FROZEN, &md->flags))
2411 		return;
2412 
2413 	thaw_bdev(md->bdev, md->frozen_sb);
2414 	md->frozen_sb = NULL;
2415 	clear_bit(DMF_FROZEN, &md->flags);
2416 }
2417 
2418 /*
2419  * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2420  * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2421  * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2422  *
2423  * If __dm_suspend returns 0, the device is completely quiescent
2424  * now. There is no request-processing activity. All new requests
2425  * are being added to md->deferred list.
2426  */
__dm_suspend(struct mapped_device * md,struct dm_table * map,unsigned suspend_flags,long task_state,int dmf_suspended_flag)2427 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2428 			unsigned suspend_flags, long task_state,
2429 			int dmf_suspended_flag)
2430 {
2431 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2432 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2433 	int r;
2434 
2435 	lockdep_assert_held(&md->suspend_lock);
2436 
2437 	/*
2438 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2439 	 * This flag is cleared before dm_suspend returns.
2440 	 */
2441 	if (noflush)
2442 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2443 	else
2444 		DMDEBUG("%s: suspending with flush", dm_device_name(md));
2445 
2446 	/*
2447 	 * This gets reverted if there's an error later and the targets
2448 	 * provide the .presuspend_undo hook.
2449 	 */
2450 	dm_table_presuspend_targets(map);
2451 
2452 	/*
2453 	 * Flush I/O to the device.
2454 	 * Any I/O submitted after lock_fs() may not be flushed.
2455 	 * noflush takes precedence over do_lockfs.
2456 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2457 	 */
2458 	if (!noflush && do_lockfs) {
2459 		r = lock_fs(md);
2460 		if (r) {
2461 			dm_table_presuspend_undo_targets(map);
2462 			return r;
2463 		}
2464 	}
2465 
2466 	/*
2467 	 * Here we must make sure that no processes are submitting requests
2468 	 * to target drivers i.e. no one may be executing
2469 	 * __split_and_process_bio from dm_submit_bio.
2470 	 *
2471 	 * To get all processes out of __split_and_process_bio in dm_submit_bio,
2472 	 * we take the write lock. To prevent any process from reentering
2473 	 * __split_and_process_bio from dm_submit_bio and quiesce the thread
2474 	 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2475 	 * flush_workqueue(md->wq).
2476 	 */
2477 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2478 	if (map)
2479 		synchronize_srcu(&md->io_barrier);
2480 
2481 	/*
2482 	 * Stop md->queue before flushing md->wq in case request-based
2483 	 * dm defers requests to md->wq from md->queue.
2484 	 */
2485 	if (dm_request_based(md))
2486 		dm_stop_queue(md->queue);
2487 
2488 	flush_workqueue(md->wq);
2489 
2490 	/*
2491 	 * At this point no more requests are entering target request routines.
2492 	 * We call dm_wait_for_completion to wait for all existing requests
2493 	 * to finish.
2494 	 */
2495 	r = dm_wait_for_completion(md, task_state);
2496 	if (!r)
2497 		set_bit(dmf_suspended_flag, &md->flags);
2498 
2499 	if (noflush)
2500 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2501 	if (map)
2502 		synchronize_srcu(&md->io_barrier);
2503 
2504 	/* were we interrupted ? */
2505 	if (r < 0) {
2506 		dm_queue_flush(md);
2507 
2508 		if (dm_request_based(md))
2509 			dm_start_queue(md->queue);
2510 
2511 		unlock_fs(md);
2512 		dm_table_presuspend_undo_targets(map);
2513 		/* pushback list is already flushed, so skip flush */
2514 	}
2515 
2516 	return r;
2517 }
2518 
2519 /*
2520  * We need to be able to change a mapping table under a mounted
2521  * filesystem.  For example we might want to move some data in
2522  * the background.  Before the table can be swapped with
2523  * dm_bind_table, dm_suspend must be called to flush any in
2524  * flight bios and ensure that any further io gets deferred.
2525  */
2526 /*
2527  * Suspend mechanism in request-based dm.
2528  *
2529  * 1. Flush all I/Os by lock_fs() if needed.
2530  * 2. Stop dispatching any I/O by stopping the request_queue.
2531  * 3. Wait for all in-flight I/Os to be completed or requeued.
2532  *
2533  * To abort suspend, start the request_queue.
2534  */
dm_suspend(struct mapped_device * md,unsigned suspend_flags)2535 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2536 {
2537 	struct dm_table *map = NULL;
2538 	int r = 0;
2539 
2540 retry:
2541 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2542 
2543 	if (dm_suspended_md(md)) {
2544 		r = -EINVAL;
2545 		goto out_unlock;
2546 	}
2547 
2548 	if (dm_suspended_internally_md(md)) {
2549 		/* already internally suspended, wait for internal resume */
2550 		mutex_unlock(&md->suspend_lock);
2551 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2552 		if (r)
2553 			return r;
2554 		goto retry;
2555 	}
2556 
2557 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2558 
2559 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2560 	if (r)
2561 		goto out_unlock;
2562 
2563 	set_bit(DMF_POST_SUSPENDING, &md->flags);
2564 	dm_table_postsuspend_targets(map);
2565 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2566 
2567 out_unlock:
2568 	mutex_unlock(&md->suspend_lock);
2569 	return r;
2570 }
2571 
__dm_resume(struct mapped_device * md,struct dm_table * map)2572 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2573 {
2574 	if (map) {
2575 		int r = dm_table_resume_targets(map);
2576 		if (r)
2577 			return r;
2578 	}
2579 
2580 	dm_queue_flush(md);
2581 
2582 	/*
2583 	 * Flushing deferred I/Os must be done after targets are resumed
2584 	 * so that mapping of targets can work correctly.
2585 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2586 	 */
2587 	if (dm_request_based(md))
2588 		dm_start_queue(md->queue);
2589 
2590 	unlock_fs(md);
2591 
2592 	return 0;
2593 }
2594 
dm_resume(struct mapped_device * md)2595 int dm_resume(struct mapped_device *md)
2596 {
2597 	int r;
2598 	struct dm_table *map = NULL;
2599 
2600 retry:
2601 	r = -EINVAL;
2602 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2603 
2604 	if (!dm_suspended_md(md))
2605 		goto out;
2606 
2607 	if (dm_suspended_internally_md(md)) {
2608 		/* already internally suspended, wait for internal resume */
2609 		mutex_unlock(&md->suspend_lock);
2610 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2611 		if (r)
2612 			return r;
2613 		goto retry;
2614 	}
2615 
2616 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2617 	if (!map || !dm_table_get_size(map))
2618 		goto out;
2619 
2620 	r = __dm_resume(md, map);
2621 	if (r)
2622 		goto out;
2623 
2624 	clear_bit(DMF_SUSPENDED, &md->flags);
2625 out:
2626 	mutex_unlock(&md->suspend_lock);
2627 
2628 	return r;
2629 }
2630 
2631 /*
2632  * Internal suspend/resume works like userspace-driven suspend. It waits
2633  * until all bios finish and prevents issuing new bios to the target drivers.
2634  * It may be used only from the kernel.
2635  */
2636 
__dm_internal_suspend(struct mapped_device * md,unsigned suspend_flags)2637 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2638 {
2639 	struct dm_table *map = NULL;
2640 
2641 	lockdep_assert_held(&md->suspend_lock);
2642 
2643 	if (md->internal_suspend_count++)
2644 		return; /* nested internal suspend */
2645 
2646 	if (dm_suspended_md(md)) {
2647 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2648 		return; /* nest suspend */
2649 	}
2650 
2651 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2652 
2653 	/*
2654 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2655 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2656 	 * would require changing .presuspend to return an error -- avoid this
2657 	 * until there is a need for more elaborate variants of internal suspend.
2658 	 */
2659 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2660 			    DMF_SUSPENDED_INTERNALLY);
2661 
2662 	set_bit(DMF_POST_SUSPENDING, &md->flags);
2663 	dm_table_postsuspend_targets(map);
2664 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2665 }
2666 
__dm_internal_resume(struct mapped_device * md)2667 static void __dm_internal_resume(struct mapped_device *md)
2668 {
2669 	BUG_ON(!md->internal_suspend_count);
2670 
2671 	if (--md->internal_suspend_count)
2672 		return; /* resume from nested internal suspend */
2673 
2674 	if (dm_suspended_md(md))
2675 		goto done; /* resume from nested suspend */
2676 
2677 	/*
2678 	 * NOTE: existing callers don't need to call dm_table_resume_targets
2679 	 * (which may fail -- so best to avoid it for now by passing NULL map)
2680 	 */
2681 	(void) __dm_resume(md, NULL);
2682 
2683 done:
2684 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2685 	smp_mb__after_atomic();
2686 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2687 }
2688 
dm_internal_suspend_noflush(struct mapped_device * md)2689 void dm_internal_suspend_noflush(struct mapped_device *md)
2690 {
2691 	mutex_lock(&md->suspend_lock);
2692 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2693 	mutex_unlock(&md->suspend_lock);
2694 }
2695 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2696 
dm_internal_resume(struct mapped_device * md)2697 void dm_internal_resume(struct mapped_device *md)
2698 {
2699 	mutex_lock(&md->suspend_lock);
2700 	__dm_internal_resume(md);
2701 	mutex_unlock(&md->suspend_lock);
2702 }
2703 EXPORT_SYMBOL_GPL(dm_internal_resume);
2704 
2705 /*
2706  * Fast variants of internal suspend/resume hold md->suspend_lock,
2707  * which prevents interaction with userspace-driven suspend.
2708  */
2709 
dm_internal_suspend_fast(struct mapped_device * md)2710 void dm_internal_suspend_fast(struct mapped_device *md)
2711 {
2712 	mutex_lock(&md->suspend_lock);
2713 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2714 		return;
2715 
2716 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2717 	synchronize_srcu(&md->io_barrier);
2718 	flush_workqueue(md->wq);
2719 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2720 }
2721 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2722 
dm_internal_resume_fast(struct mapped_device * md)2723 void dm_internal_resume_fast(struct mapped_device *md)
2724 {
2725 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2726 		goto done;
2727 
2728 	dm_queue_flush(md);
2729 
2730 done:
2731 	mutex_unlock(&md->suspend_lock);
2732 }
2733 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2734 
2735 /*-----------------------------------------------------------------
2736  * Event notification.
2737  *---------------------------------------------------------------*/
dm_kobject_uevent(struct mapped_device * md,enum kobject_action action,unsigned cookie)2738 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2739 		       unsigned cookie)
2740 {
2741 	int r;
2742 	unsigned noio_flag;
2743 	char udev_cookie[DM_COOKIE_LENGTH];
2744 	char *envp[] = { udev_cookie, NULL };
2745 
2746 	noio_flag = memalloc_noio_save();
2747 
2748 	if (!cookie)
2749 		r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2750 	else {
2751 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2752 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2753 		r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2754 				       action, envp);
2755 	}
2756 
2757 	memalloc_noio_restore(noio_flag);
2758 
2759 	return r;
2760 }
2761 
dm_next_uevent_seq(struct mapped_device * md)2762 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2763 {
2764 	return atomic_add_return(1, &md->uevent_seq);
2765 }
2766 
dm_get_event_nr(struct mapped_device * md)2767 uint32_t dm_get_event_nr(struct mapped_device *md)
2768 {
2769 	return atomic_read(&md->event_nr);
2770 }
2771 
dm_wait_event(struct mapped_device * md,int event_nr)2772 int dm_wait_event(struct mapped_device *md, int event_nr)
2773 {
2774 	return wait_event_interruptible(md->eventq,
2775 			(event_nr != atomic_read(&md->event_nr)));
2776 }
2777 
dm_uevent_add(struct mapped_device * md,struct list_head * elist)2778 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2779 {
2780 	unsigned long flags;
2781 
2782 	spin_lock_irqsave(&md->uevent_lock, flags);
2783 	list_add(elist, &md->uevent_list);
2784 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2785 }
2786 
2787 /*
2788  * The gendisk is only valid as long as you have a reference
2789  * count on 'md'.
2790  */
dm_disk(struct mapped_device * md)2791 struct gendisk *dm_disk(struct mapped_device *md)
2792 {
2793 	return md->disk;
2794 }
2795 EXPORT_SYMBOL_GPL(dm_disk);
2796 
dm_kobject(struct mapped_device * md)2797 struct kobject *dm_kobject(struct mapped_device *md)
2798 {
2799 	return &md->kobj_holder.kobj;
2800 }
2801 
dm_get_from_kobject(struct kobject * kobj)2802 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2803 {
2804 	struct mapped_device *md;
2805 
2806 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2807 
2808 	spin_lock(&_minor_lock);
2809 	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2810 		md = NULL;
2811 		goto out;
2812 	}
2813 	dm_get(md);
2814 out:
2815 	spin_unlock(&_minor_lock);
2816 
2817 	return md;
2818 }
2819 
dm_suspended_md(struct mapped_device * md)2820 int dm_suspended_md(struct mapped_device *md)
2821 {
2822 	return test_bit(DMF_SUSPENDED, &md->flags);
2823 }
2824 
dm_post_suspending_md(struct mapped_device * md)2825 static int dm_post_suspending_md(struct mapped_device *md)
2826 {
2827 	return test_bit(DMF_POST_SUSPENDING, &md->flags);
2828 }
2829 
dm_suspended_internally_md(struct mapped_device * md)2830 int dm_suspended_internally_md(struct mapped_device *md)
2831 {
2832 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2833 }
2834 
dm_test_deferred_remove_flag(struct mapped_device * md)2835 int dm_test_deferred_remove_flag(struct mapped_device *md)
2836 {
2837 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2838 }
2839 
dm_suspended(struct dm_target * ti)2840 int dm_suspended(struct dm_target *ti)
2841 {
2842 	return dm_suspended_md(ti->table->md);
2843 }
2844 EXPORT_SYMBOL_GPL(dm_suspended);
2845 
dm_post_suspending(struct dm_target * ti)2846 int dm_post_suspending(struct dm_target *ti)
2847 {
2848 	return dm_post_suspending_md(ti->table->md);
2849 }
2850 EXPORT_SYMBOL_GPL(dm_post_suspending);
2851 
dm_noflush_suspending(struct dm_target * ti)2852 int dm_noflush_suspending(struct dm_target *ti)
2853 {
2854 	return __noflush_suspending(ti->table->md);
2855 }
2856 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2857 
dm_alloc_md_mempools(struct mapped_device * md,enum dm_queue_mode type,unsigned integrity,unsigned per_io_data_size,unsigned min_pool_size)2858 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2859 					    unsigned integrity, unsigned per_io_data_size,
2860 					    unsigned min_pool_size)
2861 {
2862 	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2863 	unsigned int pool_size = 0;
2864 	unsigned int front_pad, io_front_pad;
2865 	int ret;
2866 
2867 	if (!pools)
2868 		return NULL;
2869 
2870 	switch (type) {
2871 	case DM_TYPE_BIO_BASED:
2872 	case DM_TYPE_DAX_BIO_BASED:
2873 		pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2874 		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2875 		io_front_pad = roundup(front_pad,  __alignof__(struct dm_io)) + offsetof(struct dm_io, tio);
2876 		ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0);
2877 		if (ret)
2878 			goto out;
2879 		if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
2880 			goto out;
2881 		break;
2882 	case DM_TYPE_REQUEST_BASED:
2883 		pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
2884 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2885 		/* per_io_data_size is used for blk-mq pdu at queue allocation */
2886 		break;
2887 	default:
2888 		BUG();
2889 	}
2890 
2891 	ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
2892 	if (ret)
2893 		goto out;
2894 
2895 	if (integrity && bioset_integrity_create(&pools->bs, pool_size))
2896 		goto out;
2897 
2898 	return pools;
2899 
2900 out:
2901 	dm_free_md_mempools(pools);
2902 
2903 	return NULL;
2904 }
2905 
dm_free_md_mempools(struct dm_md_mempools * pools)2906 void dm_free_md_mempools(struct dm_md_mempools *pools)
2907 {
2908 	if (!pools)
2909 		return;
2910 
2911 	bioset_exit(&pools->bs);
2912 	bioset_exit(&pools->io_bs);
2913 
2914 	kfree(pools);
2915 }
2916 
2917 struct dm_pr {
2918 	u64	old_key;
2919 	u64	new_key;
2920 	u32	flags;
2921 	bool	fail_early;
2922 };
2923 
dm_call_pr(struct block_device * bdev,iterate_devices_callout_fn fn,void * data)2924 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2925 		      void *data)
2926 {
2927 	struct mapped_device *md = bdev->bd_disk->private_data;
2928 	struct dm_table *table;
2929 	struct dm_target *ti;
2930 	int ret = -ENOTTY, srcu_idx;
2931 
2932 	table = dm_get_live_table(md, &srcu_idx);
2933 	if (!table || !dm_table_get_size(table))
2934 		goto out;
2935 
2936 	/* We only support devices that have a single target */
2937 	if (dm_table_get_num_targets(table) != 1)
2938 		goto out;
2939 	ti = dm_table_get_target(table, 0);
2940 
2941 	ret = -EINVAL;
2942 	if (!ti->type->iterate_devices)
2943 		goto out;
2944 
2945 	ret = ti->type->iterate_devices(ti, fn, data);
2946 out:
2947 	dm_put_live_table(md, srcu_idx);
2948 	return ret;
2949 }
2950 
2951 /*
2952  * For register / unregister we need to manually call out to every path.
2953  */
__dm_pr_register(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)2954 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
2955 			    sector_t start, sector_t len, void *data)
2956 {
2957 	struct dm_pr *pr = data;
2958 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
2959 
2960 	if (!ops || !ops->pr_register)
2961 		return -EOPNOTSUPP;
2962 	return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
2963 }
2964 
dm_pr_register(struct block_device * bdev,u64 old_key,u64 new_key,u32 flags)2965 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
2966 			  u32 flags)
2967 {
2968 	struct dm_pr pr = {
2969 		.old_key	= old_key,
2970 		.new_key	= new_key,
2971 		.flags		= flags,
2972 		.fail_early	= true,
2973 	};
2974 	int ret;
2975 
2976 	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
2977 	if (ret && new_key) {
2978 		/* unregister all paths if we failed to register any path */
2979 		pr.old_key = new_key;
2980 		pr.new_key = 0;
2981 		pr.flags = 0;
2982 		pr.fail_early = false;
2983 		dm_call_pr(bdev, __dm_pr_register, &pr);
2984 	}
2985 
2986 	return ret;
2987 }
2988 
dm_pr_reserve(struct block_device * bdev,u64 key,enum pr_type type,u32 flags)2989 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
2990 			 u32 flags)
2991 {
2992 	struct mapped_device *md = bdev->bd_disk->private_data;
2993 	const struct pr_ops *ops;
2994 	int r, srcu_idx;
2995 
2996 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
2997 	if (r < 0)
2998 		goto out;
2999 
3000 	ops = bdev->bd_disk->fops->pr_ops;
3001 	if (ops && ops->pr_reserve)
3002 		r = ops->pr_reserve(bdev, key, type, flags);
3003 	else
3004 		r = -EOPNOTSUPP;
3005 out:
3006 	dm_unprepare_ioctl(md, srcu_idx);
3007 	return r;
3008 }
3009 
dm_pr_release(struct block_device * bdev,u64 key,enum pr_type type)3010 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3011 {
3012 	struct mapped_device *md = bdev->bd_disk->private_data;
3013 	const struct pr_ops *ops;
3014 	int r, srcu_idx;
3015 
3016 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3017 	if (r < 0)
3018 		goto out;
3019 
3020 	ops = bdev->bd_disk->fops->pr_ops;
3021 	if (ops && ops->pr_release)
3022 		r = ops->pr_release(bdev, key, type);
3023 	else
3024 		r = -EOPNOTSUPP;
3025 out:
3026 	dm_unprepare_ioctl(md, srcu_idx);
3027 	return r;
3028 }
3029 
dm_pr_preempt(struct block_device * bdev,u64 old_key,u64 new_key,enum pr_type type,bool abort)3030 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3031 			 enum pr_type type, bool abort)
3032 {
3033 	struct mapped_device *md = bdev->bd_disk->private_data;
3034 	const struct pr_ops *ops;
3035 	int r, srcu_idx;
3036 
3037 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3038 	if (r < 0)
3039 		goto out;
3040 
3041 	ops = bdev->bd_disk->fops->pr_ops;
3042 	if (ops && ops->pr_preempt)
3043 		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3044 	else
3045 		r = -EOPNOTSUPP;
3046 out:
3047 	dm_unprepare_ioctl(md, srcu_idx);
3048 	return r;
3049 }
3050 
dm_pr_clear(struct block_device * bdev,u64 key)3051 static int dm_pr_clear(struct block_device *bdev, u64 key)
3052 {
3053 	struct mapped_device *md = bdev->bd_disk->private_data;
3054 	const struct pr_ops *ops;
3055 	int r, srcu_idx;
3056 
3057 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3058 	if (r < 0)
3059 		goto out;
3060 
3061 	ops = bdev->bd_disk->fops->pr_ops;
3062 	if (ops && ops->pr_clear)
3063 		r = ops->pr_clear(bdev, key);
3064 	else
3065 		r = -EOPNOTSUPP;
3066 out:
3067 	dm_unprepare_ioctl(md, srcu_idx);
3068 	return r;
3069 }
3070 
3071 static const struct pr_ops dm_pr_ops = {
3072 	.pr_register	= dm_pr_register,
3073 	.pr_reserve	= dm_pr_reserve,
3074 	.pr_release	= dm_pr_release,
3075 	.pr_preempt	= dm_pr_preempt,
3076 	.pr_clear	= dm_pr_clear,
3077 };
3078 
3079 static const struct block_device_operations dm_blk_dops = {
3080 	.submit_bio = dm_submit_bio,
3081 	.open = dm_blk_open,
3082 	.release = dm_blk_close,
3083 	.ioctl = dm_blk_ioctl,
3084 	.getgeo = dm_blk_getgeo,
3085 	.report_zones = dm_blk_report_zones,
3086 	.pr_ops = &dm_pr_ops,
3087 	.owner = THIS_MODULE
3088 };
3089 
3090 static const struct block_device_operations dm_rq_blk_dops = {
3091 	.open = dm_blk_open,
3092 	.release = dm_blk_close,
3093 	.ioctl = dm_blk_ioctl,
3094 	.getgeo = dm_blk_getgeo,
3095 	.pr_ops = &dm_pr_ops,
3096 	.owner = THIS_MODULE
3097 };
3098 
3099 static const struct dax_operations dm_dax_ops = {
3100 	.direct_access = dm_dax_direct_access,
3101 	.dax_supported = dm_dax_supported,
3102 	.copy_from_iter = dm_dax_copy_from_iter,
3103 	.copy_to_iter = dm_dax_copy_to_iter,
3104 	.zero_page_range = dm_dax_zero_page_range,
3105 };
3106 
3107 /*
3108  * module hooks
3109  */
3110 module_init(dm_init);
3111 module_exit(dm_exit);
3112 
3113 module_param(major, uint, 0);
3114 MODULE_PARM_DESC(major, "The major number of the device mapper");
3115 
3116 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3117 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3118 
3119 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3120 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3121 
3122 MODULE_DESCRIPTION(DM_NAME " driver");
3123 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3124 MODULE_LICENSE("GPL");
3125