1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/mm.h>
16 #include <linux/sched/signal.h>
17 #include <linux/blkpg.h>
18 #include <linux/bio.h>
19 #include <linux/mempool.h>
20 #include <linux/dax.h>
21 #include <linux/slab.h>
22 #include <linux/idr.h>
23 #include <linux/uio.h>
24 #include <linux/hdreg.h>
25 #include <linux/delay.h>
26 #include <linux/wait.h>
27 #include <linux/pr.h>
28 #include <linux/refcount.h>
29 #include <linux/part_stat.h>
30 #include <linux/blk-crypto.h>
31
32 #define DM_MSG_PREFIX "core"
33
34 /*
35 * Cookies are numeric values sent with CHANGE and REMOVE
36 * uevents while resuming, removing or renaming the device.
37 */
38 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
39 #define DM_COOKIE_LENGTH 24
40
41 static const char *_name = DM_NAME;
42
43 static unsigned int major = 0;
44 static unsigned int _major = 0;
45
46 static DEFINE_IDR(_minor_idr);
47
48 static DEFINE_SPINLOCK(_minor_lock);
49
50 static void do_deferred_remove(struct work_struct *w);
51
52 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
53
54 static struct workqueue_struct *deferred_remove_workqueue;
55
56 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
57 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
58
dm_issue_global_event(void)59 void dm_issue_global_event(void)
60 {
61 atomic_inc(&dm_global_event_nr);
62 wake_up(&dm_global_eventq);
63 }
64
65 /*
66 * One of these is allocated (on-stack) per original bio.
67 */
68 struct clone_info {
69 struct dm_table *map;
70 struct bio *bio;
71 struct dm_io *io;
72 sector_t sector;
73 unsigned sector_count;
74 };
75
76 /*
77 * One of these is allocated per clone bio.
78 */
79 #define DM_TIO_MAGIC 7282014
80 struct dm_target_io {
81 unsigned magic;
82 struct dm_io *io;
83 struct dm_target *ti;
84 unsigned target_bio_nr;
85 unsigned *len_ptr;
86 bool inside_dm_io;
87 struct bio clone;
88 };
89
90 /*
91 * One of these is allocated per original bio.
92 * It contains the first clone used for that original.
93 */
94 #define DM_IO_MAGIC 5191977
95 struct dm_io {
96 unsigned magic;
97 struct mapped_device *md;
98 blk_status_t status;
99 atomic_t io_count;
100 struct bio *orig_bio;
101 unsigned long start_time;
102 spinlock_t endio_lock;
103 struct dm_stats_aux stats_aux;
104 /* last member of dm_target_io is 'struct bio' */
105 struct dm_target_io tio;
106 };
107
dm_per_bio_data(struct bio * bio,size_t data_size)108 void *dm_per_bio_data(struct bio *bio, size_t data_size)
109 {
110 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
111 if (!tio->inside_dm_io)
112 return (char *)bio - offsetof(struct dm_target_io, clone) - data_size;
113 return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size;
114 }
115 EXPORT_SYMBOL_GPL(dm_per_bio_data);
116
dm_bio_from_per_bio_data(void * data,size_t data_size)117 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
118 {
119 struct dm_io *io = (struct dm_io *)((char *)data + data_size);
120 if (io->magic == DM_IO_MAGIC)
121 return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone));
122 BUG_ON(io->magic != DM_TIO_MAGIC);
123 return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone));
124 }
125 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
126
dm_bio_get_target_bio_nr(const struct bio * bio)127 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
128 {
129 return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
130 }
131 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
132
133 #define MINOR_ALLOCED ((void *)-1)
134
135 /*
136 * Bits for the md->flags field.
137 */
138 #define DMF_BLOCK_IO_FOR_SUSPEND 0
139 #define DMF_SUSPENDED 1
140 #define DMF_FROZEN 2
141 #define DMF_FREEING 3
142 #define DMF_DELETING 4
143 #define DMF_NOFLUSH_SUSPENDING 5
144 #define DMF_DEFERRED_REMOVE 6
145 #define DMF_SUSPENDED_INTERNALLY 7
146 #define DMF_POST_SUSPENDING 8
147
148 #define DM_NUMA_NODE NUMA_NO_NODE
149 static int dm_numa_node = DM_NUMA_NODE;
150
151 /*
152 * For mempools pre-allocation at the table loading time.
153 */
154 struct dm_md_mempools {
155 struct bio_set bs;
156 struct bio_set io_bs;
157 };
158
159 struct table_device {
160 struct list_head list;
161 refcount_t count;
162 struct dm_dev dm_dev;
163 };
164
165 /*
166 * Bio-based DM's mempools' reserved IOs set by the user.
167 */
168 #define RESERVED_BIO_BASED_IOS 16
169 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
170
__dm_get_module_param_int(int * module_param,int min,int max)171 static int __dm_get_module_param_int(int *module_param, int min, int max)
172 {
173 int param = READ_ONCE(*module_param);
174 int modified_param = 0;
175 bool modified = true;
176
177 if (param < min)
178 modified_param = min;
179 else if (param > max)
180 modified_param = max;
181 else
182 modified = false;
183
184 if (modified) {
185 (void)cmpxchg(module_param, param, modified_param);
186 param = modified_param;
187 }
188
189 return param;
190 }
191
__dm_get_module_param(unsigned * module_param,unsigned def,unsigned max)192 unsigned __dm_get_module_param(unsigned *module_param,
193 unsigned def, unsigned max)
194 {
195 unsigned param = READ_ONCE(*module_param);
196 unsigned modified_param = 0;
197
198 if (!param)
199 modified_param = def;
200 else if (param > max)
201 modified_param = max;
202
203 if (modified_param) {
204 (void)cmpxchg(module_param, param, modified_param);
205 param = modified_param;
206 }
207
208 return param;
209 }
210
dm_get_reserved_bio_based_ios(void)211 unsigned dm_get_reserved_bio_based_ios(void)
212 {
213 return __dm_get_module_param(&reserved_bio_based_ios,
214 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
215 }
216 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
217
dm_get_numa_node(void)218 static unsigned dm_get_numa_node(void)
219 {
220 return __dm_get_module_param_int(&dm_numa_node,
221 DM_NUMA_NODE, num_online_nodes() - 1);
222 }
223
local_init(void)224 static int __init local_init(void)
225 {
226 int r;
227
228 r = dm_uevent_init();
229 if (r)
230 return r;
231
232 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
233 if (!deferred_remove_workqueue) {
234 r = -ENOMEM;
235 goto out_uevent_exit;
236 }
237
238 _major = major;
239 r = register_blkdev(_major, _name);
240 if (r < 0)
241 goto out_free_workqueue;
242
243 if (!_major)
244 _major = r;
245
246 return 0;
247
248 out_free_workqueue:
249 destroy_workqueue(deferred_remove_workqueue);
250 out_uevent_exit:
251 dm_uevent_exit();
252
253 return r;
254 }
255
local_exit(void)256 static void local_exit(void)
257 {
258 flush_scheduled_work();
259 destroy_workqueue(deferred_remove_workqueue);
260
261 unregister_blkdev(_major, _name);
262 dm_uevent_exit();
263
264 _major = 0;
265
266 DMINFO("cleaned up");
267 }
268
269 static int (*_inits[])(void) __initdata = {
270 local_init,
271 dm_target_init,
272 dm_linear_init,
273 dm_stripe_init,
274 dm_io_init,
275 dm_kcopyd_init,
276 dm_interface_init,
277 dm_statistics_init,
278 };
279
280 static void (*_exits[])(void) = {
281 local_exit,
282 dm_target_exit,
283 dm_linear_exit,
284 dm_stripe_exit,
285 dm_io_exit,
286 dm_kcopyd_exit,
287 dm_interface_exit,
288 dm_statistics_exit,
289 };
290
dm_init(void)291 static int __init dm_init(void)
292 {
293 const int count = ARRAY_SIZE(_inits);
294
295 int r, i;
296
297 for (i = 0; i < count; i++) {
298 r = _inits[i]();
299 if (r)
300 goto bad;
301 }
302
303 return 0;
304
305 bad:
306 while (i--)
307 _exits[i]();
308
309 return r;
310 }
311
dm_exit(void)312 static void __exit dm_exit(void)
313 {
314 int i = ARRAY_SIZE(_exits);
315
316 while (i--)
317 _exits[i]();
318
319 /*
320 * Should be empty by this point.
321 */
322 idr_destroy(&_minor_idr);
323 }
324
325 /*
326 * Block device functions
327 */
dm_deleting_md(struct mapped_device * md)328 int dm_deleting_md(struct mapped_device *md)
329 {
330 return test_bit(DMF_DELETING, &md->flags);
331 }
332
dm_blk_open(struct block_device * bdev,fmode_t mode)333 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
334 {
335 struct mapped_device *md;
336
337 spin_lock(&_minor_lock);
338
339 md = bdev->bd_disk->private_data;
340 if (!md)
341 goto out;
342
343 if (test_bit(DMF_FREEING, &md->flags) ||
344 dm_deleting_md(md)) {
345 md = NULL;
346 goto out;
347 }
348
349 dm_get(md);
350 atomic_inc(&md->open_count);
351 out:
352 spin_unlock(&_minor_lock);
353
354 return md ? 0 : -ENXIO;
355 }
356
dm_blk_close(struct gendisk * disk,fmode_t mode)357 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
358 {
359 struct mapped_device *md;
360
361 spin_lock(&_minor_lock);
362
363 md = disk->private_data;
364 if (WARN_ON(!md))
365 goto out;
366
367 if (atomic_dec_and_test(&md->open_count) &&
368 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
369 queue_work(deferred_remove_workqueue, &deferred_remove_work);
370
371 dm_put(md);
372 out:
373 spin_unlock(&_minor_lock);
374 }
375
dm_open_count(struct mapped_device * md)376 int dm_open_count(struct mapped_device *md)
377 {
378 return atomic_read(&md->open_count);
379 }
380
381 /*
382 * Guarantees nothing is using the device before it's deleted.
383 */
dm_lock_for_deletion(struct mapped_device * md,bool mark_deferred,bool only_deferred)384 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
385 {
386 int r = 0;
387
388 spin_lock(&_minor_lock);
389
390 if (dm_open_count(md)) {
391 r = -EBUSY;
392 if (mark_deferred)
393 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
394 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
395 r = -EEXIST;
396 else
397 set_bit(DMF_DELETING, &md->flags);
398
399 spin_unlock(&_minor_lock);
400
401 return r;
402 }
403
dm_cancel_deferred_remove(struct mapped_device * md)404 int dm_cancel_deferred_remove(struct mapped_device *md)
405 {
406 int r = 0;
407
408 spin_lock(&_minor_lock);
409
410 if (test_bit(DMF_DELETING, &md->flags))
411 r = -EBUSY;
412 else
413 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
414
415 spin_unlock(&_minor_lock);
416
417 return r;
418 }
419
do_deferred_remove(struct work_struct * w)420 static void do_deferred_remove(struct work_struct *w)
421 {
422 dm_deferred_remove();
423 }
424
dm_blk_getgeo(struct block_device * bdev,struct hd_geometry * geo)425 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
426 {
427 struct mapped_device *md = bdev->bd_disk->private_data;
428
429 return dm_get_geometry(md, geo);
430 }
431
432 #ifdef CONFIG_BLK_DEV_ZONED
dm_report_zones_cb(struct blk_zone * zone,unsigned int idx,void * data)433 int dm_report_zones_cb(struct blk_zone *zone, unsigned int idx, void *data)
434 {
435 struct dm_report_zones_args *args = data;
436 sector_t sector_diff = args->tgt->begin - args->start;
437
438 /*
439 * Ignore zones beyond the target range.
440 */
441 if (zone->start >= args->start + args->tgt->len)
442 return 0;
443
444 /*
445 * Remap the start sector and write pointer position of the zone
446 * to match its position in the target range.
447 */
448 zone->start += sector_diff;
449 if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) {
450 if (zone->cond == BLK_ZONE_COND_FULL)
451 zone->wp = zone->start + zone->len;
452 else if (zone->cond == BLK_ZONE_COND_EMPTY)
453 zone->wp = zone->start;
454 else
455 zone->wp += sector_diff;
456 }
457
458 args->next_sector = zone->start + zone->len;
459 return args->orig_cb(zone, args->zone_idx++, args->orig_data);
460 }
461 EXPORT_SYMBOL_GPL(dm_report_zones_cb);
462
dm_blk_report_zones(struct gendisk * disk,sector_t sector,unsigned int nr_zones,report_zones_cb cb,void * data)463 static int dm_blk_report_zones(struct gendisk *disk, sector_t sector,
464 unsigned int nr_zones, report_zones_cb cb, void *data)
465 {
466 struct mapped_device *md = disk->private_data;
467 struct dm_table *map;
468 int srcu_idx, ret;
469 struct dm_report_zones_args args = {
470 .next_sector = sector,
471 .orig_data = data,
472 .orig_cb = cb,
473 };
474
475 if (dm_suspended_md(md))
476 return -EAGAIN;
477
478 map = dm_get_live_table(md, &srcu_idx);
479 if (!map) {
480 ret = -EIO;
481 goto out;
482 }
483
484 do {
485 struct dm_target *tgt;
486
487 tgt = dm_table_find_target(map, args.next_sector);
488 if (WARN_ON_ONCE(!tgt->type->report_zones)) {
489 ret = -EIO;
490 goto out;
491 }
492
493 args.tgt = tgt;
494 ret = tgt->type->report_zones(tgt, &args,
495 nr_zones - args.zone_idx);
496 if (ret < 0)
497 goto out;
498 } while (args.zone_idx < nr_zones &&
499 args.next_sector < get_capacity(disk));
500
501 ret = args.zone_idx;
502 out:
503 dm_put_live_table(md, srcu_idx);
504 return ret;
505 }
506 #else
507 #define dm_blk_report_zones NULL
508 #endif /* CONFIG_BLK_DEV_ZONED */
509
dm_prepare_ioctl(struct mapped_device * md,int * srcu_idx,struct block_device ** bdev)510 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
511 struct block_device **bdev)
512 {
513 struct dm_target *tgt;
514 struct dm_table *map;
515 int r;
516
517 retry:
518 r = -ENOTTY;
519 map = dm_get_live_table(md, srcu_idx);
520 if (!map || !dm_table_get_size(map))
521 return r;
522
523 /* We only support devices that have a single target */
524 if (dm_table_get_num_targets(map) != 1)
525 return r;
526
527 tgt = dm_table_get_target(map, 0);
528 if (!tgt->type->prepare_ioctl)
529 return r;
530
531 if (dm_suspended_md(md))
532 return -EAGAIN;
533
534 r = tgt->type->prepare_ioctl(tgt, bdev);
535 if (r == -ENOTCONN && !fatal_signal_pending(current)) {
536 dm_put_live_table(md, *srcu_idx);
537 msleep(10);
538 goto retry;
539 }
540
541 return r;
542 }
543
dm_unprepare_ioctl(struct mapped_device * md,int srcu_idx)544 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
545 {
546 dm_put_live_table(md, srcu_idx);
547 }
548
dm_blk_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)549 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
550 unsigned int cmd, unsigned long arg)
551 {
552 struct mapped_device *md = bdev->bd_disk->private_data;
553 int r, srcu_idx;
554
555 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
556 if (r < 0)
557 goto out;
558
559 if (r > 0) {
560 /*
561 * Target determined this ioctl is being issued against a
562 * subset of the parent bdev; require extra privileges.
563 */
564 if (!capable(CAP_SYS_RAWIO)) {
565 DMWARN_LIMIT(
566 "%s: sending ioctl %x to DM device without required privilege.",
567 current->comm, cmd);
568 r = -ENOIOCTLCMD;
569 goto out;
570 }
571 }
572
573 r = __blkdev_driver_ioctl(bdev, mode, cmd, arg);
574 out:
575 dm_unprepare_ioctl(md, srcu_idx);
576 return r;
577 }
578
dm_start_time_ns_from_clone(struct bio * bio)579 u64 dm_start_time_ns_from_clone(struct bio *bio)
580 {
581 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
582 struct dm_io *io = tio->io;
583
584 return jiffies_to_nsecs(io->start_time);
585 }
586 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
587
start_io_acct(struct dm_io * io)588 static void start_io_acct(struct dm_io *io)
589 {
590 struct mapped_device *md = io->md;
591 struct bio *bio = io->orig_bio;
592
593 io->start_time = bio_start_io_acct(bio);
594 if (unlikely(dm_stats_used(&md->stats)))
595 dm_stats_account_io(&md->stats, bio_data_dir(bio),
596 bio->bi_iter.bi_sector, bio_sectors(bio),
597 false, 0, &io->stats_aux);
598 }
599
end_io_acct(struct dm_io * io)600 static void end_io_acct(struct dm_io *io)
601 {
602 struct mapped_device *md = io->md;
603 struct bio *bio = io->orig_bio;
604 unsigned long duration = jiffies - io->start_time;
605
606 bio_end_io_acct(bio, io->start_time);
607
608 if (unlikely(dm_stats_used(&md->stats)))
609 dm_stats_account_io(&md->stats, bio_data_dir(bio),
610 bio->bi_iter.bi_sector, bio_sectors(bio),
611 true, duration, &io->stats_aux);
612
613 /* nudge anyone waiting on suspend queue */
614 if (unlikely(wq_has_sleeper(&md->wait)))
615 wake_up(&md->wait);
616 }
617
alloc_io(struct mapped_device * md,struct bio * bio)618 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
619 {
620 struct dm_io *io;
621 struct dm_target_io *tio;
622 struct bio *clone;
623
624 clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs);
625 if (!clone)
626 return NULL;
627
628 tio = container_of(clone, struct dm_target_io, clone);
629 tio->inside_dm_io = true;
630 tio->io = NULL;
631
632 io = container_of(tio, struct dm_io, tio);
633 io->magic = DM_IO_MAGIC;
634 io->status = 0;
635 atomic_set(&io->io_count, 1);
636 io->orig_bio = bio;
637 io->md = md;
638 spin_lock_init(&io->endio_lock);
639
640 start_io_acct(io);
641
642 return io;
643 }
644
free_io(struct mapped_device * md,struct dm_io * io)645 static void free_io(struct mapped_device *md, struct dm_io *io)
646 {
647 bio_put(&io->tio.clone);
648 }
649
alloc_tio(struct clone_info * ci,struct dm_target * ti,unsigned target_bio_nr,gfp_t gfp_mask)650 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
651 unsigned target_bio_nr, gfp_t gfp_mask)
652 {
653 struct dm_target_io *tio;
654
655 if (!ci->io->tio.io) {
656 /* the dm_target_io embedded in ci->io is available */
657 tio = &ci->io->tio;
658 } else {
659 struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs);
660 if (!clone)
661 return NULL;
662
663 tio = container_of(clone, struct dm_target_io, clone);
664 tio->inside_dm_io = false;
665 }
666
667 tio->magic = DM_TIO_MAGIC;
668 tio->io = ci->io;
669 tio->ti = ti;
670 tio->target_bio_nr = target_bio_nr;
671
672 return tio;
673 }
674
free_tio(struct dm_target_io * tio)675 static void free_tio(struct dm_target_io *tio)
676 {
677 if (tio->inside_dm_io)
678 return;
679 bio_put(&tio->clone);
680 }
681
682 /*
683 * Add the bio to the list of deferred io.
684 */
queue_io(struct mapped_device * md,struct bio * bio)685 static void queue_io(struct mapped_device *md, struct bio *bio)
686 {
687 unsigned long flags;
688
689 spin_lock_irqsave(&md->deferred_lock, flags);
690 bio_list_add(&md->deferred, bio);
691 spin_unlock_irqrestore(&md->deferred_lock, flags);
692 queue_work(md->wq, &md->work);
693 }
694
695 /*
696 * Everyone (including functions in this file), should use this
697 * function to access the md->map field, and make sure they call
698 * dm_put_live_table() when finished.
699 */
dm_get_live_table(struct mapped_device * md,int * srcu_idx)700 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
701 {
702 *srcu_idx = srcu_read_lock(&md->io_barrier);
703
704 return srcu_dereference(md->map, &md->io_barrier);
705 }
706
dm_put_live_table(struct mapped_device * md,int srcu_idx)707 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
708 {
709 srcu_read_unlock(&md->io_barrier, srcu_idx);
710 }
711
dm_sync_table(struct mapped_device * md)712 void dm_sync_table(struct mapped_device *md)
713 {
714 synchronize_srcu(&md->io_barrier);
715 synchronize_rcu_expedited();
716 }
717
718 /*
719 * A fast alternative to dm_get_live_table/dm_put_live_table.
720 * The caller must not block between these two functions.
721 */
dm_get_live_table_fast(struct mapped_device * md)722 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
723 {
724 rcu_read_lock();
725 return rcu_dereference(md->map);
726 }
727
dm_put_live_table_fast(struct mapped_device * md)728 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
729 {
730 rcu_read_unlock();
731 }
732
733 static char *_dm_claim_ptr = "I belong to device-mapper";
734
735 /*
736 * Open a table device so we can use it as a map destination.
737 */
open_table_device(struct table_device * td,dev_t dev,struct mapped_device * md)738 static int open_table_device(struct table_device *td, dev_t dev,
739 struct mapped_device *md)
740 {
741 struct block_device *bdev;
742
743 int r;
744
745 BUG_ON(td->dm_dev.bdev);
746
747 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
748 if (IS_ERR(bdev))
749 return PTR_ERR(bdev);
750
751 r = bd_link_disk_holder(bdev, dm_disk(md));
752 if (r) {
753 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
754 return r;
755 }
756
757 td->dm_dev.bdev = bdev;
758 td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
759 return 0;
760 }
761
762 /*
763 * Close a table device that we've been using.
764 */
close_table_device(struct table_device * td,struct mapped_device * md)765 static void close_table_device(struct table_device *td, struct mapped_device *md)
766 {
767 if (!td->dm_dev.bdev)
768 return;
769
770 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
771 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
772 put_dax(td->dm_dev.dax_dev);
773 td->dm_dev.bdev = NULL;
774 td->dm_dev.dax_dev = NULL;
775 }
776
find_table_device(struct list_head * l,dev_t dev,fmode_t mode)777 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
778 fmode_t mode)
779 {
780 struct table_device *td;
781
782 list_for_each_entry(td, l, list)
783 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
784 return td;
785
786 return NULL;
787 }
788
dm_get_table_device(struct mapped_device * md,dev_t dev,fmode_t mode,struct dm_dev ** result)789 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
790 struct dm_dev **result)
791 {
792 int r;
793 struct table_device *td;
794
795 mutex_lock(&md->table_devices_lock);
796 td = find_table_device(&md->table_devices, dev, mode);
797 if (!td) {
798 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
799 if (!td) {
800 mutex_unlock(&md->table_devices_lock);
801 return -ENOMEM;
802 }
803
804 td->dm_dev.mode = mode;
805 td->dm_dev.bdev = NULL;
806
807 if ((r = open_table_device(td, dev, md))) {
808 mutex_unlock(&md->table_devices_lock);
809 kfree(td);
810 return r;
811 }
812
813 format_dev_t(td->dm_dev.name, dev);
814
815 refcount_set(&td->count, 1);
816 list_add(&td->list, &md->table_devices);
817 } else {
818 refcount_inc(&td->count);
819 }
820 mutex_unlock(&md->table_devices_lock);
821
822 *result = &td->dm_dev;
823 return 0;
824 }
825 EXPORT_SYMBOL_GPL(dm_get_table_device);
826
dm_put_table_device(struct mapped_device * md,struct dm_dev * d)827 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
828 {
829 struct table_device *td = container_of(d, struct table_device, dm_dev);
830
831 mutex_lock(&md->table_devices_lock);
832 if (refcount_dec_and_test(&td->count)) {
833 close_table_device(td, md);
834 list_del(&td->list);
835 kfree(td);
836 }
837 mutex_unlock(&md->table_devices_lock);
838 }
839 EXPORT_SYMBOL(dm_put_table_device);
840
free_table_devices(struct list_head * devices)841 static void free_table_devices(struct list_head *devices)
842 {
843 struct list_head *tmp, *next;
844
845 list_for_each_safe(tmp, next, devices) {
846 struct table_device *td = list_entry(tmp, struct table_device, list);
847
848 DMWARN("dm_destroy: %s still exists with %d references",
849 td->dm_dev.name, refcount_read(&td->count));
850 kfree(td);
851 }
852 }
853
854 /*
855 * Get the geometry associated with a dm device
856 */
dm_get_geometry(struct mapped_device * md,struct hd_geometry * geo)857 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
858 {
859 *geo = md->geometry;
860
861 return 0;
862 }
863
864 /*
865 * Set the geometry of a device.
866 */
dm_set_geometry(struct mapped_device * md,struct hd_geometry * geo)867 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
868 {
869 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
870
871 if (geo->start > sz) {
872 DMWARN("Start sector is beyond the geometry limits.");
873 return -EINVAL;
874 }
875
876 md->geometry = *geo;
877
878 return 0;
879 }
880
__noflush_suspending(struct mapped_device * md)881 static int __noflush_suspending(struct mapped_device *md)
882 {
883 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
884 }
885
886 /*
887 * Decrements the number of outstanding ios that a bio has been
888 * cloned into, completing the original io if necc.
889 */
dec_pending(struct dm_io * io,blk_status_t error)890 static void dec_pending(struct dm_io *io, blk_status_t error)
891 {
892 unsigned long flags;
893 blk_status_t io_error;
894 struct bio *bio;
895 struct mapped_device *md = io->md;
896
897 /* Push-back supersedes any I/O errors */
898 if (unlikely(error)) {
899 spin_lock_irqsave(&io->endio_lock, flags);
900 if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
901 io->status = error;
902 spin_unlock_irqrestore(&io->endio_lock, flags);
903 }
904
905 if (atomic_dec_and_test(&io->io_count)) {
906 if (io->status == BLK_STS_DM_REQUEUE) {
907 /*
908 * Target requested pushing back the I/O.
909 */
910 spin_lock_irqsave(&md->deferred_lock, flags);
911 if (__noflush_suspending(md))
912 /* NOTE early return due to BLK_STS_DM_REQUEUE below */
913 bio_list_add_head(&md->deferred, io->orig_bio);
914 else
915 /* noflush suspend was interrupted. */
916 io->status = BLK_STS_IOERR;
917 spin_unlock_irqrestore(&md->deferred_lock, flags);
918 }
919
920 io_error = io->status;
921 bio = io->orig_bio;
922 end_io_acct(io);
923 free_io(md, io);
924
925 if (io_error == BLK_STS_DM_REQUEUE)
926 return;
927
928 if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
929 /*
930 * Preflush done for flush with data, reissue
931 * without REQ_PREFLUSH.
932 */
933 bio->bi_opf &= ~REQ_PREFLUSH;
934 queue_io(md, bio);
935 } else {
936 /* done with normal IO or empty flush */
937 if (io_error)
938 bio->bi_status = io_error;
939 bio_endio(bio);
940 }
941 }
942 }
943
disable_discard(struct mapped_device * md)944 void disable_discard(struct mapped_device *md)
945 {
946 struct queue_limits *limits = dm_get_queue_limits(md);
947
948 /* device doesn't really support DISCARD, disable it */
949 limits->max_discard_sectors = 0;
950 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue);
951 }
952
disable_write_same(struct mapped_device * md)953 void disable_write_same(struct mapped_device *md)
954 {
955 struct queue_limits *limits = dm_get_queue_limits(md);
956
957 /* device doesn't really support WRITE SAME, disable it */
958 limits->max_write_same_sectors = 0;
959 }
960
disable_write_zeroes(struct mapped_device * md)961 void disable_write_zeroes(struct mapped_device *md)
962 {
963 struct queue_limits *limits = dm_get_queue_limits(md);
964
965 /* device doesn't really support WRITE ZEROES, disable it */
966 limits->max_write_zeroes_sectors = 0;
967 }
968
clone_endio(struct bio * bio)969 static void clone_endio(struct bio *bio)
970 {
971 blk_status_t error = bio->bi_status;
972 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
973 struct dm_io *io = tio->io;
974 struct mapped_device *md = tio->io->md;
975 dm_endio_fn endio = tio->ti->type->end_io;
976 struct bio *orig_bio = io->orig_bio;
977
978 if (unlikely(error == BLK_STS_TARGET)) {
979 if (bio_op(bio) == REQ_OP_DISCARD &&
980 !bio->bi_disk->queue->limits.max_discard_sectors)
981 disable_discard(md);
982 else if (bio_op(bio) == REQ_OP_WRITE_SAME &&
983 !bio->bi_disk->queue->limits.max_write_same_sectors)
984 disable_write_same(md);
985 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
986 !bio->bi_disk->queue->limits.max_write_zeroes_sectors)
987 disable_write_zeroes(md);
988 }
989
990 /*
991 * For zone-append bios get offset in zone of the written
992 * sector and add that to the original bio sector pos.
993 */
994 if (bio_op(orig_bio) == REQ_OP_ZONE_APPEND) {
995 sector_t written_sector = bio->bi_iter.bi_sector;
996 struct request_queue *q = orig_bio->bi_disk->queue;
997 u64 mask = (u64)blk_queue_zone_sectors(q) - 1;
998
999 orig_bio->bi_iter.bi_sector += written_sector & mask;
1000 }
1001
1002 if (endio) {
1003 int r = endio(tio->ti, bio, &error);
1004 switch (r) {
1005 case DM_ENDIO_REQUEUE:
1006 error = BLK_STS_DM_REQUEUE;
1007 fallthrough;
1008 case DM_ENDIO_DONE:
1009 break;
1010 case DM_ENDIO_INCOMPLETE:
1011 /* The target will handle the io */
1012 return;
1013 default:
1014 DMWARN("unimplemented target endio return value: %d", r);
1015 BUG();
1016 }
1017 }
1018
1019 free_tio(tio);
1020 dec_pending(io, error);
1021 }
1022
1023 /*
1024 * Return maximum size of I/O possible at the supplied sector up to the current
1025 * target boundary.
1026 */
max_io_len_target_boundary(struct dm_target * ti,sector_t target_offset)1027 static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1028 sector_t target_offset)
1029 {
1030 return ti->len - target_offset;
1031 }
1032
max_io_len(struct dm_target * ti,sector_t sector)1033 static sector_t max_io_len(struct dm_target *ti, sector_t sector)
1034 {
1035 sector_t target_offset = dm_target_offset(ti, sector);
1036 sector_t len = max_io_len_target_boundary(ti, target_offset);
1037 sector_t max_len;
1038
1039 /*
1040 * Does the target need to split IO even further?
1041 * - varied (per target) IO splitting is a tenet of DM; this
1042 * explains why stacked chunk_sectors based splitting via
1043 * blk_max_size_offset() isn't possible here. So pass in
1044 * ti->max_io_len to override stacked chunk_sectors.
1045 */
1046 if (ti->max_io_len) {
1047 max_len = blk_max_size_offset(ti->table->md->queue,
1048 target_offset, ti->max_io_len);
1049 if (len > max_len)
1050 len = max_len;
1051 }
1052
1053 return len;
1054 }
1055
dm_set_target_max_io_len(struct dm_target * ti,sector_t len)1056 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1057 {
1058 if (len > UINT_MAX) {
1059 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1060 (unsigned long long)len, UINT_MAX);
1061 ti->error = "Maximum size of target IO is too large";
1062 return -EINVAL;
1063 }
1064
1065 ti->max_io_len = (uint32_t) len;
1066
1067 return 0;
1068 }
1069 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1070
dm_dax_get_live_target(struct mapped_device * md,sector_t sector,int * srcu_idx)1071 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1072 sector_t sector, int *srcu_idx)
1073 __acquires(md->io_barrier)
1074 {
1075 struct dm_table *map;
1076 struct dm_target *ti;
1077
1078 map = dm_get_live_table(md, srcu_idx);
1079 if (!map)
1080 return NULL;
1081
1082 ti = dm_table_find_target(map, sector);
1083 if (!ti)
1084 return NULL;
1085
1086 return ti;
1087 }
1088
dm_dax_direct_access(struct dax_device * dax_dev,pgoff_t pgoff,long nr_pages,void ** kaddr,pfn_t * pfn)1089 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1090 long nr_pages, void **kaddr, pfn_t *pfn)
1091 {
1092 struct mapped_device *md = dax_get_private(dax_dev);
1093 sector_t sector = pgoff * PAGE_SECTORS;
1094 struct dm_target *ti;
1095 long len, ret = -EIO;
1096 int srcu_idx;
1097
1098 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1099
1100 if (!ti)
1101 goto out;
1102 if (!ti->type->direct_access)
1103 goto out;
1104 len = max_io_len(ti, sector) / PAGE_SECTORS;
1105 if (len < 1)
1106 goto out;
1107 nr_pages = min(len, nr_pages);
1108 ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1109
1110 out:
1111 dm_put_live_table(md, srcu_idx);
1112
1113 return ret;
1114 }
1115
dm_dax_supported(struct dax_device * dax_dev,struct block_device * bdev,int blocksize,sector_t start,sector_t len)1116 static bool dm_dax_supported(struct dax_device *dax_dev, struct block_device *bdev,
1117 int blocksize, sector_t start, sector_t len)
1118 {
1119 struct mapped_device *md = dax_get_private(dax_dev);
1120 struct dm_table *map;
1121 bool ret = false;
1122 int srcu_idx;
1123
1124 map = dm_get_live_table(md, &srcu_idx);
1125 if (!map)
1126 goto out;
1127
1128 ret = dm_table_supports_dax(map, device_supports_dax, &blocksize);
1129
1130 out:
1131 dm_put_live_table(md, srcu_idx);
1132
1133 return ret;
1134 }
1135
dm_dax_copy_from_iter(struct dax_device * dax_dev,pgoff_t pgoff,void * addr,size_t bytes,struct iov_iter * i)1136 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1137 void *addr, size_t bytes, struct iov_iter *i)
1138 {
1139 struct mapped_device *md = dax_get_private(dax_dev);
1140 sector_t sector = pgoff * PAGE_SECTORS;
1141 struct dm_target *ti;
1142 long ret = 0;
1143 int srcu_idx;
1144
1145 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1146
1147 if (!ti)
1148 goto out;
1149 if (!ti->type->dax_copy_from_iter) {
1150 ret = copy_from_iter(addr, bytes, i);
1151 goto out;
1152 }
1153 ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1154 out:
1155 dm_put_live_table(md, srcu_idx);
1156
1157 return ret;
1158 }
1159
dm_dax_copy_to_iter(struct dax_device * dax_dev,pgoff_t pgoff,void * addr,size_t bytes,struct iov_iter * i)1160 static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1161 void *addr, size_t bytes, struct iov_iter *i)
1162 {
1163 struct mapped_device *md = dax_get_private(dax_dev);
1164 sector_t sector = pgoff * PAGE_SECTORS;
1165 struct dm_target *ti;
1166 long ret = 0;
1167 int srcu_idx;
1168
1169 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1170
1171 if (!ti)
1172 goto out;
1173 if (!ti->type->dax_copy_to_iter) {
1174 ret = copy_to_iter(addr, bytes, i);
1175 goto out;
1176 }
1177 ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i);
1178 out:
1179 dm_put_live_table(md, srcu_idx);
1180
1181 return ret;
1182 }
1183
dm_dax_zero_page_range(struct dax_device * dax_dev,pgoff_t pgoff,size_t nr_pages)1184 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1185 size_t nr_pages)
1186 {
1187 struct mapped_device *md = dax_get_private(dax_dev);
1188 sector_t sector = pgoff * PAGE_SECTORS;
1189 struct dm_target *ti;
1190 int ret = -EIO;
1191 int srcu_idx;
1192
1193 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1194
1195 if (!ti)
1196 goto out;
1197 if (WARN_ON(!ti->type->dax_zero_page_range)) {
1198 /*
1199 * ->zero_page_range() is mandatory dax operation. If we are
1200 * here, something is wrong.
1201 */
1202 goto out;
1203 }
1204 ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1205 out:
1206 dm_put_live_table(md, srcu_idx);
1207
1208 return ret;
1209 }
1210
1211 /*
1212 * A target may call dm_accept_partial_bio only from the map routine. It is
1213 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_RESET,
1214 * REQ_OP_ZONE_OPEN, REQ_OP_ZONE_CLOSE and REQ_OP_ZONE_FINISH.
1215 *
1216 * dm_accept_partial_bio informs the dm that the target only wants to process
1217 * additional n_sectors sectors of the bio and the rest of the data should be
1218 * sent in a next bio.
1219 *
1220 * A diagram that explains the arithmetics:
1221 * +--------------------+---------------+-------+
1222 * | 1 | 2 | 3 |
1223 * +--------------------+---------------+-------+
1224 *
1225 * <-------------- *tio->len_ptr --------------->
1226 * <------- bi_size ------->
1227 * <-- n_sectors -->
1228 *
1229 * Region 1 was already iterated over with bio_advance or similar function.
1230 * (it may be empty if the target doesn't use bio_advance)
1231 * Region 2 is the remaining bio size that the target wants to process.
1232 * (it may be empty if region 1 is non-empty, although there is no reason
1233 * to make it empty)
1234 * The target requires that region 3 is to be sent in the next bio.
1235 *
1236 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1237 * the partially processed part (the sum of regions 1+2) must be the same for all
1238 * copies of the bio.
1239 */
dm_accept_partial_bio(struct bio * bio,unsigned n_sectors)1240 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1241 {
1242 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1243 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1244 BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1245 BUG_ON(bi_size > *tio->len_ptr);
1246 BUG_ON(n_sectors > bi_size);
1247 *tio->len_ptr -= bi_size - n_sectors;
1248 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1249 }
1250 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1251
__map_bio(struct dm_target_io * tio)1252 static blk_qc_t __map_bio(struct dm_target_io *tio)
1253 {
1254 int r;
1255 sector_t sector;
1256 struct bio *clone = &tio->clone;
1257 struct dm_io *io = tio->io;
1258 struct dm_target *ti = tio->ti;
1259 blk_qc_t ret = BLK_QC_T_NONE;
1260
1261 clone->bi_end_io = clone_endio;
1262
1263 /*
1264 * Map the clone. If r == 0 we don't need to do
1265 * anything, the target has assumed ownership of
1266 * this io.
1267 */
1268 atomic_inc(&io->io_count);
1269 sector = clone->bi_iter.bi_sector;
1270
1271 r = ti->type->map(ti, clone);
1272 switch (r) {
1273 case DM_MAPIO_SUBMITTED:
1274 break;
1275 case DM_MAPIO_REMAPPED:
1276 /* the bio has been remapped so dispatch it */
1277 trace_block_bio_remap(clone->bi_disk->queue, clone,
1278 bio_dev(io->orig_bio), sector);
1279 ret = submit_bio_noacct(clone);
1280 break;
1281 case DM_MAPIO_KILL:
1282 free_tio(tio);
1283 dec_pending(io, BLK_STS_IOERR);
1284 break;
1285 case DM_MAPIO_REQUEUE:
1286 free_tio(tio);
1287 dec_pending(io, BLK_STS_DM_REQUEUE);
1288 break;
1289 default:
1290 DMWARN("unimplemented target map return value: %d", r);
1291 BUG();
1292 }
1293
1294 return ret;
1295 }
1296
bio_setup_sector(struct bio * bio,sector_t sector,unsigned len)1297 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1298 {
1299 bio->bi_iter.bi_sector = sector;
1300 bio->bi_iter.bi_size = to_bytes(len);
1301 }
1302
1303 /*
1304 * Creates a bio that consists of range of complete bvecs.
1305 */
clone_bio(struct dm_target_io * tio,struct bio * bio,sector_t sector,unsigned len)1306 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1307 sector_t sector, unsigned len)
1308 {
1309 struct bio *clone = &tio->clone;
1310 int r;
1311
1312 __bio_clone_fast(clone, bio);
1313
1314 r = bio_crypt_clone(clone, bio, GFP_NOIO);
1315 if (r < 0)
1316 return r;
1317
1318 if (bio_integrity(bio)) {
1319 if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1320 !dm_target_passes_integrity(tio->ti->type))) {
1321 DMWARN("%s: the target %s doesn't support integrity data.",
1322 dm_device_name(tio->io->md),
1323 tio->ti->type->name);
1324 return -EIO;
1325 }
1326
1327 r = bio_integrity_clone(clone, bio, GFP_NOIO);
1328 if (r < 0)
1329 return r;
1330 }
1331
1332 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1333 clone->bi_iter.bi_size = to_bytes(len);
1334
1335 if (bio_integrity(bio))
1336 bio_integrity_trim(clone);
1337
1338 return 0;
1339 }
1340
alloc_multiple_bios(struct bio_list * blist,struct clone_info * ci,struct dm_target * ti,unsigned num_bios)1341 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1342 struct dm_target *ti, unsigned num_bios)
1343 {
1344 struct dm_target_io *tio;
1345 int try;
1346
1347 if (!num_bios)
1348 return;
1349
1350 if (num_bios == 1) {
1351 tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1352 bio_list_add(blist, &tio->clone);
1353 return;
1354 }
1355
1356 for (try = 0; try < 2; try++) {
1357 int bio_nr;
1358 struct bio *bio;
1359
1360 if (try)
1361 mutex_lock(&ci->io->md->table_devices_lock);
1362 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1363 tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1364 if (!tio)
1365 break;
1366
1367 bio_list_add(blist, &tio->clone);
1368 }
1369 if (try)
1370 mutex_unlock(&ci->io->md->table_devices_lock);
1371 if (bio_nr == num_bios)
1372 return;
1373
1374 while ((bio = bio_list_pop(blist))) {
1375 tio = container_of(bio, struct dm_target_io, clone);
1376 free_tio(tio);
1377 }
1378 }
1379 }
1380
__clone_and_map_simple_bio(struct clone_info * ci,struct dm_target_io * tio,unsigned * len)1381 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci,
1382 struct dm_target_io *tio, unsigned *len)
1383 {
1384 struct bio *clone = &tio->clone;
1385
1386 tio->len_ptr = len;
1387
1388 __bio_clone_fast(clone, ci->bio);
1389 if (len)
1390 bio_setup_sector(clone, ci->sector, *len);
1391
1392 return __map_bio(tio);
1393 }
1394
__send_duplicate_bios(struct clone_info * ci,struct dm_target * ti,unsigned num_bios,unsigned * len)1395 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1396 unsigned num_bios, unsigned *len)
1397 {
1398 struct bio_list blist = BIO_EMPTY_LIST;
1399 struct bio *bio;
1400 struct dm_target_io *tio;
1401
1402 alloc_multiple_bios(&blist, ci, ti, num_bios);
1403
1404 while ((bio = bio_list_pop(&blist))) {
1405 tio = container_of(bio, struct dm_target_io, clone);
1406 (void) __clone_and_map_simple_bio(ci, tio, len);
1407 }
1408 }
1409
__send_empty_flush(struct clone_info * ci)1410 static int __send_empty_flush(struct clone_info *ci)
1411 {
1412 unsigned target_nr = 0;
1413 struct dm_target *ti;
1414 struct bio flush_bio;
1415
1416 /*
1417 * Use an on-stack bio for this, it's safe since we don't
1418 * need to reference it after submit. It's just used as
1419 * the basis for the clone(s).
1420 */
1421 bio_init(&flush_bio, NULL, 0);
1422 flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1423 ci->bio = &flush_bio;
1424 ci->sector_count = 0;
1425
1426 /*
1427 * Empty flush uses a statically initialized bio, as the base for
1428 * cloning. However, blkg association requires that a bdev is
1429 * associated with a gendisk, which doesn't happen until the bdev is
1430 * opened. So, blkg association is done at issue time of the flush
1431 * rather than when the device is created in alloc_dev().
1432 */
1433 bio_set_dev(ci->bio, ci->io->md->bdev);
1434
1435 BUG_ON(bio_has_data(ci->bio));
1436 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1437 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1438
1439 bio_uninit(ci->bio);
1440 return 0;
1441 }
1442
__clone_and_map_data_bio(struct clone_info * ci,struct dm_target * ti,sector_t sector,unsigned * len)1443 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1444 sector_t sector, unsigned *len)
1445 {
1446 struct bio *bio = ci->bio;
1447 struct dm_target_io *tio;
1448 int r;
1449
1450 tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1451 tio->len_ptr = len;
1452 r = clone_bio(tio, bio, sector, *len);
1453 if (r < 0) {
1454 free_tio(tio);
1455 return r;
1456 }
1457 (void) __map_bio(tio);
1458
1459 return 0;
1460 }
1461
__send_changing_extent_only(struct clone_info * ci,struct dm_target * ti,unsigned num_bios)1462 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1463 unsigned num_bios)
1464 {
1465 unsigned len;
1466
1467 /*
1468 * Even though the device advertised support for this type of
1469 * request, that does not mean every target supports it, and
1470 * reconfiguration might also have changed that since the
1471 * check was performed.
1472 */
1473 if (!num_bios)
1474 return -EOPNOTSUPP;
1475
1476 len = min_t(sector_t, ci->sector_count,
1477 max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector)));
1478
1479 __send_duplicate_bios(ci, ti, num_bios, &len);
1480
1481 ci->sector += len;
1482 ci->sector_count -= len;
1483
1484 return 0;
1485 }
1486
is_abnormal_io(struct bio * bio)1487 static bool is_abnormal_io(struct bio *bio)
1488 {
1489 bool r = false;
1490
1491 switch (bio_op(bio)) {
1492 case REQ_OP_DISCARD:
1493 case REQ_OP_SECURE_ERASE:
1494 case REQ_OP_WRITE_SAME:
1495 case REQ_OP_WRITE_ZEROES:
1496 r = true;
1497 break;
1498 }
1499
1500 return r;
1501 }
1502
__process_abnormal_io(struct clone_info * ci,struct dm_target * ti,int * result)1503 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1504 int *result)
1505 {
1506 struct bio *bio = ci->bio;
1507 unsigned num_bios = 0;
1508
1509 switch (bio_op(bio)) {
1510 case REQ_OP_DISCARD:
1511 num_bios = ti->num_discard_bios;
1512 break;
1513 case REQ_OP_SECURE_ERASE:
1514 num_bios = ti->num_secure_erase_bios;
1515 break;
1516 case REQ_OP_WRITE_SAME:
1517 num_bios = ti->num_write_same_bios;
1518 break;
1519 case REQ_OP_WRITE_ZEROES:
1520 num_bios = ti->num_write_zeroes_bios;
1521 break;
1522 default:
1523 return false;
1524 }
1525
1526 *result = __send_changing_extent_only(ci, ti, num_bios);
1527 return true;
1528 }
1529
1530 /*
1531 * Select the correct strategy for processing a non-flush bio.
1532 */
__split_and_process_non_flush(struct clone_info * ci)1533 static int __split_and_process_non_flush(struct clone_info *ci)
1534 {
1535 struct dm_target *ti;
1536 unsigned len;
1537 int r;
1538
1539 ti = dm_table_find_target(ci->map, ci->sector);
1540 if (!ti)
1541 return -EIO;
1542
1543 if (__process_abnormal_io(ci, ti, &r))
1544 return r;
1545
1546 len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1547
1548 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1549 if (r < 0)
1550 return r;
1551
1552 ci->sector += len;
1553 ci->sector_count -= len;
1554
1555 return 0;
1556 }
1557
init_clone_info(struct clone_info * ci,struct mapped_device * md,struct dm_table * map,struct bio * bio)1558 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1559 struct dm_table *map, struct bio *bio)
1560 {
1561 ci->map = map;
1562 ci->io = alloc_io(md, bio);
1563 ci->sector = bio->bi_iter.bi_sector;
1564 }
1565
1566 #define __dm_part_stat_sub(part, field, subnd) \
1567 (part_stat_get(part, field) -= (subnd))
1568
1569 /*
1570 * Entry point to split a bio into clones and submit them to the targets.
1571 */
__split_and_process_bio(struct mapped_device * md,struct dm_table * map,struct bio * bio)1572 static blk_qc_t __split_and_process_bio(struct mapped_device *md,
1573 struct dm_table *map, struct bio *bio)
1574 {
1575 struct clone_info ci;
1576 blk_qc_t ret = BLK_QC_T_NONE;
1577 int error = 0;
1578
1579 init_clone_info(&ci, md, map, bio);
1580
1581 if (bio->bi_opf & REQ_PREFLUSH) {
1582 error = __send_empty_flush(&ci);
1583 /* dec_pending submits any data associated with flush */
1584 } else if (op_is_zone_mgmt(bio_op(bio))) {
1585 ci.bio = bio;
1586 ci.sector_count = 0;
1587 error = __split_and_process_non_flush(&ci);
1588 } else {
1589 ci.bio = bio;
1590 ci.sector_count = bio_sectors(bio);
1591 while (ci.sector_count && !error) {
1592 error = __split_and_process_non_flush(&ci);
1593 if (current->bio_list && ci.sector_count && !error) {
1594 /*
1595 * Remainder must be passed to submit_bio_noacct()
1596 * so that it gets handled *after* bios already submitted
1597 * have been completely processed.
1598 * We take a clone of the original to store in
1599 * ci.io->orig_bio to be used by end_io_acct() and
1600 * for dec_pending to use for completion handling.
1601 */
1602 struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count,
1603 GFP_NOIO, &md->queue->bio_split);
1604 ci.io->orig_bio = b;
1605
1606 /*
1607 * Adjust IO stats for each split, otherwise upon queue
1608 * reentry there will be redundant IO accounting.
1609 * NOTE: this is a stop-gap fix, a proper fix involves
1610 * significant refactoring of DM core's bio splitting
1611 * (by eliminating DM's splitting and just using bio_split)
1612 */
1613 part_stat_lock();
1614 __dm_part_stat_sub(&dm_disk(md)->part0,
1615 sectors[op_stat_group(bio_op(bio))], ci.sector_count);
1616 part_stat_unlock();
1617
1618 bio_chain(b, bio);
1619 trace_block_split(md->queue, b, bio->bi_iter.bi_sector);
1620 ret = submit_bio_noacct(bio);
1621 break;
1622 }
1623 }
1624 }
1625
1626 /* drop the extra reference count */
1627 dec_pending(ci.io, errno_to_blk_status(error));
1628 return ret;
1629 }
1630
dm_submit_bio(struct bio * bio)1631 static blk_qc_t dm_submit_bio(struct bio *bio)
1632 {
1633 struct mapped_device *md = bio->bi_disk->private_data;
1634 blk_qc_t ret = BLK_QC_T_NONE;
1635 int srcu_idx;
1636 struct dm_table *map;
1637
1638 map = dm_get_live_table(md, &srcu_idx);
1639 if (unlikely(!map)) {
1640 DMERR_LIMIT("%s: mapping table unavailable, erroring io",
1641 dm_device_name(md));
1642 bio_io_error(bio);
1643 goto out;
1644 }
1645
1646 /* If suspended, queue this IO for later */
1647 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1648 if (bio->bi_opf & REQ_NOWAIT)
1649 bio_wouldblock_error(bio);
1650 else if (bio->bi_opf & REQ_RAHEAD)
1651 bio_io_error(bio);
1652 else
1653 queue_io(md, bio);
1654 goto out;
1655 }
1656
1657 /*
1658 * Use blk_queue_split() for abnormal IO (e.g. discard, writesame, etc)
1659 * otherwise associated queue_limits won't be imposed.
1660 */
1661 if (is_abnormal_io(bio))
1662 blk_queue_split(&bio);
1663
1664 ret = __split_and_process_bio(md, map, bio);
1665 out:
1666 dm_put_live_table(md, srcu_idx);
1667 return ret;
1668 }
1669
1670 /*-----------------------------------------------------------------
1671 * An IDR is used to keep track of allocated minor numbers.
1672 *---------------------------------------------------------------*/
free_minor(int minor)1673 static void free_minor(int minor)
1674 {
1675 spin_lock(&_minor_lock);
1676 idr_remove(&_minor_idr, minor);
1677 spin_unlock(&_minor_lock);
1678 }
1679
1680 /*
1681 * See if the device with a specific minor # is free.
1682 */
specific_minor(int minor)1683 static int specific_minor(int minor)
1684 {
1685 int r;
1686
1687 if (minor >= (1 << MINORBITS))
1688 return -EINVAL;
1689
1690 idr_preload(GFP_KERNEL);
1691 spin_lock(&_minor_lock);
1692
1693 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1694
1695 spin_unlock(&_minor_lock);
1696 idr_preload_end();
1697 if (r < 0)
1698 return r == -ENOSPC ? -EBUSY : r;
1699 return 0;
1700 }
1701
next_free_minor(int * minor)1702 static int next_free_minor(int *minor)
1703 {
1704 int r;
1705
1706 idr_preload(GFP_KERNEL);
1707 spin_lock(&_minor_lock);
1708
1709 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1710
1711 spin_unlock(&_minor_lock);
1712 idr_preload_end();
1713 if (r < 0)
1714 return r;
1715 *minor = r;
1716 return 0;
1717 }
1718
1719 static const struct block_device_operations dm_blk_dops;
1720 static const struct block_device_operations dm_rq_blk_dops;
1721 static const struct dax_operations dm_dax_ops;
1722
1723 static void dm_wq_work(struct work_struct *work);
1724
cleanup_mapped_device(struct mapped_device * md)1725 static void cleanup_mapped_device(struct mapped_device *md)
1726 {
1727 if (md->wq)
1728 destroy_workqueue(md->wq);
1729 bioset_exit(&md->bs);
1730 bioset_exit(&md->io_bs);
1731
1732 if (md->dax_dev) {
1733 kill_dax(md->dax_dev);
1734 put_dax(md->dax_dev);
1735 md->dax_dev = NULL;
1736 }
1737
1738 if (md->disk) {
1739 spin_lock(&_minor_lock);
1740 md->disk->private_data = NULL;
1741 spin_unlock(&_minor_lock);
1742 del_gendisk(md->disk);
1743 put_disk(md->disk);
1744 }
1745
1746 if (md->queue)
1747 blk_cleanup_queue(md->queue);
1748
1749 cleanup_srcu_struct(&md->io_barrier);
1750
1751 if (md->bdev) {
1752 bdput(md->bdev);
1753 md->bdev = NULL;
1754 }
1755
1756 mutex_destroy(&md->suspend_lock);
1757 mutex_destroy(&md->type_lock);
1758 mutex_destroy(&md->table_devices_lock);
1759
1760 dm_mq_cleanup_mapped_device(md);
1761 }
1762
1763 /*
1764 * Allocate and initialise a blank device with a given minor.
1765 */
alloc_dev(int minor)1766 static struct mapped_device *alloc_dev(int minor)
1767 {
1768 int r, numa_node_id = dm_get_numa_node();
1769 struct mapped_device *md;
1770 void *old_md;
1771
1772 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1773 if (!md) {
1774 DMWARN("unable to allocate device, out of memory.");
1775 return NULL;
1776 }
1777
1778 if (!try_module_get(THIS_MODULE))
1779 goto bad_module_get;
1780
1781 /* get a minor number for the dev */
1782 if (minor == DM_ANY_MINOR)
1783 r = next_free_minor(&minor);
1784 else
1785 r = specific_minor(minor);
1786 if (r < 0)
1787 goto bad_minor;
1788
1789 r = init_srcu_struct(&md->io_barrier);
1790 if (r < 0)
1791 goto bad_io_barrier;
1792
1793 md->numa_node_id = numa_node_id;
1794 md->init_tio_pdu = false;
1795 md->type = DM_TYPE_NONE;
1796 mutex_init(&md->suspend_lock);
1797 mutex_init(&md->type_lock);
1798 mutex_init(&md->table_devices_lock);
1799 spin_lock_init(&md->deferred_lock);
1800 atomic_set(&md->holders, 1);
1801 atomic_set(&md->open_count, 0);
1802 atomic_set(&md->event_nr, 0);
1803 atomic_set(&md->uevent_seq, 0);
1804 INIT_LIST_HEAD(&md->uevent_list);
1805 INIT_LIST_HEAD(&md->table_devices);
1806 spin_lock_init(&md->uevent_lock);
1807
1808 /*
1809 * default to bio-based until DM table is loaded and md->type
1810 * established. If request-based table is loaded: blk-mq will
1811 * override accordingly.
1812 */
1813 md->queue = blk_alloc_queue(numa_node_id);
1814 if (!md->queue)
1815 goto bad;
1816
1817 md->disk = alloc_disk_node(1, md->numa_node_id);
1818 if (!md->disk)
1819 goto bad;
1820
1821 init_waitqueue_head(&md->wait);
1822 INIT_WORK(&md->work, dm_wq_work);
1823 init_waitqueue_head(&md->eventq);
1824 init_completion(&md->kobj_holder.completion);
1825
1826 md->disk->major = _major;
1827 md->disk->first_minor = minor;
1828 md->disk->fops = &dm_blk_dops;
1829 md->disk->queue = md->queue;
1830 md->disk->private_data = md;
1831 sprintf(md->disk->disk_name, "dm-%d", minor);
1832
1833 if (IS_ENABLED(CONFIG_DAX_DRIVER)) {
1834 md->dax_dev = alloc_dax(md, md->disk->disk_name,
1835 &dm_dax_ops, 0);
1836 if (IS_ERR(md->dax_dev))
1837 goto bad;
1838 }
1839
1840 add_disk_no_queue_reg(md->disk);
1841 format_dev_t(md->name, MKDEV(_major, minor));
1842
1843 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1844 if (!md->wq)
1845 goto bad;
1846
1847 md->bdev = bdget_disk(md->disk, 0);
1848 if (!md->bdev)
1849 goto bad;
1850
1851 dm_stats_init(&md->stats);
1852
1853 /* Populate the mapping, nobody knows we exist yet */
1854 spin_lock(&_minor_lock);
1855 old_md = idr_replace(&_minor_idr, md, minor);
1856 spin_unlock(&_minor_lock);
1857
1858 BUG_ON(old_md != MINOR_ALLOCED);
1859
1860 return md;
1861
1862 bad:
1863 cleanup_mapped_device(md);
1864 bad_io_barrier:
1865 free_minor(minor);
1866 bad_minor:
1867 module_put(THIS_MODULE);
1868 bad_module_get:
1869 kvfree(md);
1870 return NULL;
1871 }
1872
1873 static void unlock_fs(struct mapped_device *md);
1874
free_dev(struct mapped_device * md)1875 static void free_dev(struct mapped_device *md)
1876 {
1877 int minor = MINOR(disk_devt(md->disk));
1878
1879 unlock_fs(md);
1880
1881 cleanup_mapped_device(md);
1882
1883 free_table_devices(&md->table_devices);
1884 dm_stats_cleanup(&md->stats);
1885 free_minor(minor);
1886
1887 module_put(THIS_MODULE);
1888 kvfree(md);
1889 }
1890
__bind_mempools(struct mapped_device * md,struct dm_table * t)1891 static int __bind_mempools(struct mapped_device *md, struct dm_table *t)
1892 {
1893 struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1894 int ret = 0;
1895
1896 if (dm_table_bio_based(t)) {
1897 /*
1898 * The md may already have mempools that need changing.
1899 * If so, reload bioset because front_pad may have changed
1900 * because a different table was loaded.
1901 */
1902 bioset_exit(&md->bs);
1903 bioset_exit(&md->io_bs);
1904
1905 } else if (bioset_initialized(&md->bs)) {
1906 /*
1907 * There's no need to reload with request-based dm
1908 * because the size of front_pad doesn't change.
1909 * Note for future: If you are to reload bioset,
1910 * prep-ed requests in the queue may refer
1911 * to bio from the old bioset, so you must walk
1912 * through the queue to unprep.
1913 */
1914 goto out;
1915 }
1916
1917 BUG_ON(!p ||
1918 bioset_initialized(&md->bs) ||
1919 bioset_initialized(&md->io_bs));
1920
1921 ret = bioset_init_from_src(&md->bs, &p->bs);
1922 if (ret)
1923 goto out;
1924 ret = bioset_init_from_src(&md->io_bs, &p->io_bs);
1925 if (ret)
1926 bioset_exit(&md->bs);
1927 out:
1928 /* mempool bind completed, no longer need any mempools in the table */
1929 dm_table_free_md_mempools(t);
1930 return ret;
1931 }
1932
1933 /*
1934 * Bind a table to the device.
1935 */
event_callback(void * context)1936 static void event_callback(void *context)
1937 {
1938 unsigned long flags;
1939 LIST_HEAD(uevents);
1940 struct mapped_device *md = (struct mapped_device *) context;
1941
1942 spin_lock_irqsave(&md->uevent_lock, flags);
1943 list_splice_init(&md->uevent_list, &uevents);
1944 spin_unlock_irqrestore(&md->uevent_lock, flags);
1945
1946 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1947
1948 atomic_inc(&md->event_nr);
1949 wake_up(&md->eventq);
1950 dm_issue_global_event();
1951 }
1952
1953 /*
1954 * Returns old map, which caller must destroy.
1955 */
__bind(struct mapped_device * md,struct dm_table * t,struct queue_limits * limits)1956 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
1957 struct queue_limits *limits)
1958 {
1959 struct dm_table *old_map;
1960 struct request_queue *q = md->queue;
1961 bool request_based = dm_table_request_based(t);
1962 sector_t size;
1963 int ret;
1964
1965 lockdep_assert_held(&md->suspend_lock);
1966
1967 size = dm_table_get_size(t);
1968
1969 /*
1970 * Wipe any geometry if the size of the table changed.
1971 */
1972 if (size != dm_get_size(md))
1973 memset(&md->geometry, 0, sizeof(md->geometry));
1974
1975 set_capacity(md->disk, size);
1976 bd_set_nr_sectors(md->bdev, size);
1977
1978 dm_table_event_callback(t, event_callback, md);
1979
1980 /*
1981 * The queue hasn't been stopped yet, if the old table type wasn't
1982 * for request-based during suspension. So stop it to prevent
1983 * I/O mapping before resume.
1984 * This must be done before setting the queue restrictions,
1985 * because request-based dm may be run just after the setting.
1986 */
1987 if (request_based)
1988 dm_stop_queue(q);
1989
1990 if (request_based) {
1991 /*
1992 * Leverage the fact that request-based DM targets are
1993 * immutable singletons - used to optimize dm_mq_queue_rq.
1994 */
1995 md->immutable_target = dm_table_get_immutable_target(t);
1996 }
1997
1998 ret = __bind_mempools(md, t);
1999 if (ret) {
2000 old_map = ERR_PTR(ret);
2001 goto out;
2002 }
2003
2004 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2005 rcu_assign_pointer(md->map, (void *)t);
2006 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2007
2008 dm_table_set_restrictions(t, q, limits);
2009 if (old_map)
2010 dm_sync_table(md);
2011
2012 out:
2013 return old_map;
2014 }
2015
2016 /*
2017 * Returns unbound table for the caller to free.
2018 */
__unbind(struct mapped_device * md)2019 static struct dm_table *__unbind(struct mapped_device *md)
2020 {
2021 struct dm_table *map = rcu_dereference_protected(md->map, 1);
2022
2023 if (!map)
2024 return NULL;
2025
2026 dm_table_event_callback(map, NULL, NULL);
2027 RCU_INIT_POINTER(md->map, NULL);
2028 dm_sync_table(md);
2029
2030 return map;
2031 }
2032
2033 /*
2034 * Constructor for a new device.
2035 */
dm_create(int minor,struct mapped_device ** result)2036 int dm_create(int minor, struct mapped_device **result)
2037 {
2038 int r;
2039 struct mapped_device *md;
2040
2041 md = alloc_dev(minor);
2042 if (!md)
2043 return -ENXIO;
2044
2045 r = dm_sysfs_init(md);
2046 if (r) {
2047 free_dev(md);
2048 return r;
2049 }
2050
2051 *result = md;
2052 return 0;
2053 }
2054
2055 /*
2056 * Functions to manage md->type.
2057 * All are required to hold md->type_lock.
2058 */
dm_lock_md_type(struct mapped_device * md)2059 void dm_lock_md_type(struct mapped_device *md)
2060 {
2061 mutex_lock(&md->type_lock);
2062 }
2063
dm_unlock_md_type(struct mapped_device * md)2064 void dm_unlock_md_type(struct mapped_device *md)
2065 {
2066 mutex_unlock(&md->type_lock);
2067 }
2068
dm_set_md_type(struct mapped_device * md,enum dm_queue_mode type)2069 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2070 {
2071 BUG_ON(!mutex_is_locked(&md->type_lock));
2072 md->type = type;
2073 }
2074
dm_get_md_type(struct mapped_device * md)2075 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2076 {
2077 return md->type;
2078 }
2079
dm_get_immutable_target_type(struct mapped_device * md)2080 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2081 {
2082 return md->immutable_target_type;
2083 }
2084
2085 /*
2086 * The queue_limits are only valid as long as you have a reference
2087 * count on 'md'.
2088 */
dm_get_queue_limits(struct mapped_device * md)2089 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2090 {
2091 BUG_ON(!atomic_read(&md->holders));
2092 return &md->queue->limits;
2093 }
2094 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2095
2096 /*
2097 * Setup the DM device's queue based on md's type
2098 */
dm_setup_md_queue(struct mapped_device * md,struct dm_table * t)2099 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2100 {
2101 int r;
2102 struct queue_limits limits;
2103 enum dm_queue_mode type = dm_get_md_type(md);
2104
2105 switch (type) {
2106 case DM_TYPE_REQUEST_BASED:
2107 md->disk->fops = &dm_rq_blk_dops;
2108 r = dm_mq_init_request_queue(md, t);
2109 if (r) {
2110 DMERR("Cannot initialize queue for request-based dm mapped device");
2111 return r;
2112 }
2113 break;
2114 case DM_TYPE_BIO_BASED:
2115 case DM_TYPE_DAX_BIO_BASED:
2116 break;
2117 case DM_TYPE_NONE:
2118 WARN_ON_ONCE(true);
2119 break;
2120 }
2121
2122 r = dm_calculate_queue_limits(t, &limits);
2123 if (r) {
2124 DMERR("Cannot calculate initial queue limits");
2125 return r;
2126 }
2127 dm_table_set_restrictions(t, md->queue, &limits);
2128 blk_register_queue(md->disk);
2129
2130 return 0;
2131 }
2132
dm_get_md(dev_t dev)2133 struct mapped_device *dm_get_md(dev_t dev)
2134 {
2135 struct mapped_device *md;
2136 unsigned minor = MINOR(dev);
2137
2138 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2139 return NULL;
2140
2141 spin_lock(&_minor_lock);
2142
2143 md = idr_find(&_minor_idr, minor);
2144 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2145 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2146 md = NULL;
2147 goto out;
2148 }
2149 dm_get(md);
2150 out:
2151 spin_unlock(&_minor_lock);
2152
2153 return md;
2154 }
2155 EXPORT_SYMBOL_GPL(dm_get_md);
2156
dm_get_mdptr(struct mapped_device * md)2157 void *dm_get_mdptr(struct mapped_device *md)
2158 {
2159 return md->interface_ptr;
2160 }
2161
dm_set_mdptr(struct mapped_device * md,void * ptr)2162 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2163 {
2164 md->interface_ptr = ptr;
2165 }
2166
dm_get(struct mapped_device * md)2167 void dm_get(struct mapped_device *md)
2168 {
2169 atomic_inc(&md->holders);
2170 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2171 }
2172
dm_hold(struct mapped_device * md)2173 int dm_hold(struct mapped_device *md)
2174 {
2175 spin_lock(&_minor_lock);
2176 if (test_bit(DMF_FREEING, &md->flags)) {
2177 spin_unlock(&_minor_lock);
2178 return -EBUSY;
2179 }
2180 dm_get(md);
2181 spin_unlock(&_minor_lock);
2182 return 0;
2183 }
2184 EXPORT_SYMBOL_GPL(dm_hold);
2185
dm_device_name(struct mapped_device * md)2186 const char *dm_device_name(struct mapped_device *md)
2187 {
2188 return md->name;
2189 }
2190 EXPORT_SYMBOL_GPL(dm_device_name);
2191
__dm_destroy(struct mapped_device * md,bool wait)2192 static void __dm_destroy(struct mapped_device *md, bool wait)
2193 {
2194 struct dm_table *map;
2195 int srcu_idx;
2196
2197 might_sleep();
2198
2199 spin_lock(&_minor_lock);
2200 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2201 set_bit(DMF_FREEING, &md->flags);
2202 spin_unlock(&_minor_lock);
2203
2204 blk_set_queue_dying(md->queue);
2205
2206 /*
2207 * Take suspend_lock so that presuspend and postsuspend methods
2208 * do not race with internal suspend.
2209 */
2210 mutex_lock(&md->suspend_lock);
2211 map = dm_get_live_table(md, &srcu_idx);
2212 if (!dm_suspended_md(md)) {
2213 dm_table_presuspend_targets(map);
2214 set_bit(DMF_SUSPENDED, &md->flags);
2215 set_bit(DMF_POST_SUSPENDING, &md->flags);
2216 dm_table_postsuspend_targets(map);
2217 }
2218 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2219 dm_put_live_table(md, srcu_idx);
2220 mutex_unlock(&md->suspend_lock);
2221
2222 /*
2223 * Rare, but there may be I/O requests still going to complete,
2224 * for example. Wait for all references to disappear.
2225 * No one should increment the reference count of the mapped_device,
2226 * after the mapped_device state becomes DMF_FREEING.
2227 */
2228 if (wait)
2229 while (atomic_read(&md->holders))
2230 msleep(1);
2231 else if (atomic_read(&md->holders))
2232 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2233 dm_device_name(md), atomic_read(&md->holders));
2234
2235 dm_sysfs_exit(md);
2236 dm_table_destroy(__unbind(md));
2237 free_dev(md);
2238 }
2239
dm_destroy(struct mapped_device * md)2240 void dm_destroy(struct mapped_device *md)
2241 {
2242 __dm_destroy(md, true);
2243 }
2244
dm_destroy_immediate(struct mapped_device * md)2245 void dm_destroy_immediate(struct mapped_device *md)
2246 {
2247 __dm_destroy(md, false);
2248 }
2249
dm_put(struct mapped_device * md)2250 void dm_put(struct mapped_device *md)
2251 {
2252 atomic_dec(&md->holders);
2253 }
2254 EXPORT_SYMBOL_GPL(dm_put);
2255
md_in_flight_bios(struct mapped_device * md)2256 static bool md_in_flight_bios(struct mapped_device *md)
2257 {
2258 int cpu;
2259 struct hd_struct *part = &dm_disk(md)->part0;
2260 long sum = 0;
2261
2262 for_each_possible_cpu(cpu) {
2263 sum += part_stat_local_read_cpu(part, in_flight[0], cpu);
2264 sum += part_stat_local_read_cpu(part, in_flight[1], cpu);
2265 }
2266
2267 return sum != 0;
2268 }
2269
dm_wait_for_bios_completion(struct mapped_device * md,long task_state)2270 static int dm_wait_for_bios_completion(struct mapped_device *md, long task_state)
2271 {
2272 int r = 0;
2273 DEFINE_WAIT(wait);
2274
2275 while (true) {
2276 prepare_to_wait(&md->wait, &wait, task_state);
2277
2278 if (!md_in_flight_bios(md))
2279 break;
2280
2281 if (signal_pending_state(task_state, current)) {
2282 r = -EINTR;
2283 break;
2284 }
2285
2286 io_schedule();
2287 }
2288 finish_wait(&md->wait, &wait);
2289
2290 return r;
2291 }
2292
dm_wait_for_completion(struct mapped_device * md,long task_state)2293 static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2294 {
2295 int r = 0;
2296
2297 if (!queue_is_mq(md->queue))
2298 return dm_wait_for_bios_completion(md, task_state);
2299
2300 while (true) {
2301 if (!blk_mq_queue_inflight(md->queue))
2302 break;
2303
2304 if (signal_pending_state(task_state, current)) {
2305 r = -EINTR;
2306 break;
2307 }
2308
2309 msleep(5);
2310 }
2311
2312 return r;
2313 }
2314
2315 /*
2316 * Process the deferred bios
2317 */
dm_wq_work(struct work_struct * work)2318 static void dm_wq_work(struct work_struct *work)
2319 {
2320 struct mapped_device *md = container_of(work, struct mapped_device, work);
2321 struct bio *bio;
2322
2323 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2324 spin_lock_irq(&md->deferred_lock);
2325 bio = bio_list_pop(&md->deferred);
2326 spin_unlock_irq(&md->deferred_lock);
2327
2328 if (!bio)
2329 break;
2330
2331 submit_bio_noacct(bio);
2332 }
2333 }
2334
dm_queue_flush(struct mapped_device * md)2335 static void dm_queue_flush(struct mapped_device *md)
2336 {
2337 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2338 smp_mb__after_atomic();
2339 queue_work(md->wq, &md->work);
2340 }
2341
2342 /*
2343 * Swap in a new table, returning the old one for the caller to destroy.
2344 */
dm_swap_table(struct mapped_device * md,struct dm_table * table)2345 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2346 {
2347 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2348 struct queue_limits limits;
2349 int r;
2350
2351 mutex_lock(&md->suspend_lock);
2352
2353 /* device must be suspended */
2354 if (!dm_suspended_md(md))
2355 goto out;
2356
2357 /*
2358 * If the new table has no data devices, retain the existing limits.
2359 * This helps multipath with queue_if_no_path if all paths disappear,
2360 * then new I/O is queued based on these limits, and then some paths
2361 * reappear.
2362 */
2363 if (dm_table_has_no_data_devices(table)) {
2364 live_map = dm_get_live_table_fast(md);
2365 if (live_map)
2366 limits = md->queue->limits;
2367 dm_put_live_table_fast(md);
2368 }
2369
2370 if (!live_map) {
2371 r = dm_calculate_queue_limits(table, &limits);
2372 if (r) {
2373 map = ERR_PTR(r);
2374 goto out;
2375 }
2376 }
2377
2378 map = __bind(md, table, &limits);
2379 dm_issue_global_event();
2380
2381 out:
2382 mutex_unlock(&md->suspend_lock);
2383 return map;
2384 }
2385
2386 /*
2387 * Functions to lock and unlock any filesystem running on the
2388 * device.
2389 */
lock_fs(struct mapped_device * md)2390 static int lock_fs(struct mapped_device *md)
2391 {
2392 int r;
2393
2394 WARN_ON(md->frozen_sb);
2395
2396 md->frozen_sb = freeze_bdev(md->bdev);
2397 if (IS_ERR(md->frozen_sb)) {
2398 r = PTR_ERR(md->frozen_sb);
2399 md->frozen_sb = NULL;
2400 return r;
2401 }
2402
2403 set_bit(DMF_FROZEN, &md->flags);
2404
2405 return 0;
2406 }
2407
unlock_fs(struct mapped_device * md)2408 static void unlock_fs(struct mapped_device *md)
2409 {
2410 if (!test_bit(DMF_FROZEN, &md->flags))
2411 return;
2412
2413 thaw_bdev(md->bdev, md->frozen_sb);
2414 md->frozen_sb = NULL;
2415 clear_bit(DMF_FROZEN, &md->flags);
2416 }
2417
2418 /*
2419 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2420 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2421 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2422 *
2423 * If __dm_suspend returns 0, the device is completely quiescent
2424 * now. There is no request-processing activity. All new requests
2425 * are being added to md->deferred list.
2426 */
__dm_suspend(struct mapped_device * md,struct dm_table * map,unsigned suspend_flags,long task_state,int dmf_suspended_flag)2427 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2428 unsigned suspend_flags, long task_state,
2429 int dmf_suspended_flag)
2430 {
2431 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2432 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2433 int r;
2434
2435 lockdep_assert_held(&md->suspend_lock);
2436
2437 /*
2438 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2439 * This flag is cleared before dm_suspend returns.
2440 */
2441 if (noflush)
2442 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2443 else
2444 DMDEBUG("%s: suspending with flush", dm_device_name(md));
2445
2446 /*
2447 * This gets reverted if there's an error later and the targets
2448 * provide the .presuspend_undo hook.
2449 */
2450 dm_table_presuspend_targets(map);
2451
2452 /*
2453 * Flush I/O to the device.
2454 * Any I/O submitted after lock_fs() may not be flushed.
2455 * noflush takes precedence over do_lockfs.
2456 * (lock_fs() flushes I/Os and waits for them to complete.)
2457 */
2458 if (!noflush && do_lockfs) {
2459 r = lock_fs(md);
2460 if (r) {
2461 dm_table_presuspend_undo_targets(map);
2462 return r;
2463 }
2464 }
2465
2466 /*
2467 * Here we must make sure that no processes are submitting requests
2468 * to target drivers i.e. no one may be executing
2469 * __split_and_process_bio from dm_submit_bio.
2470 *
2471 * To get all processes out of __split_and_process_bio in dm_submit_bio,
2472 * we take the write lock. To prevent any process from reentering
2473 * __split_and_process_bio from dm_submit_bio and quiesce the thread
2474 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2475 * flush_workqueue(md->wq).
2476 */
2477 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2478 if (map)
2479 synchronize_srcu(&md->io_barrier);
2480
2481 /*
2482 * Stop md->queue before flushing md->wq in case request-based
2483 * dm defers requests to md->wq from md->queue.
2484 */
2485 if (dm_request_based(md))
2486 dm_stop_queue(md->queue);
2487
2488 flush_workqueue(md->wq);
2489
2490 /*
2491 * At this point no more requests are entering target request routines.
2492 * We call dm_wait_for_completion to wait for all existing requests
2493 * to finish.
2494 */
2495 r = dm_wait_for_completion(md, task_state);
2496 if (!r)
2497 set_bit(dmf_suspended_flag, &md->flags);
2498
2499 if (noflush)
2500 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2501 if (map)
2502 synchronize_srcu(&md->io_barrier);
2503
2504 /* were we interrupted ? */
2505 if (r < 0) {
2506 dm_queue_flush(md);
2507
2508 if (dm_request_based(md))
2509 dm_start_queue(md->queue);
2510
2511 unlock_fs(md);
2512 dm_table_presuspend_undo_targets(map);
2513 /* pushback list is already flushed, so skip flush */
2514 }
2515
2516 return r;
2517 }
2518
2519 /*
2520 * We need to be able to change a mapping table under a mounted
2521 * filesystem. For example we might want to move some data in
2522 * the background. Before the table can be swapped with
2523 * dm_bind_table, dm_suspend must be called to flush any in
2524 * flight bios and ensure that any further io gets deferred.
2525 */
2526 /*
2527 * Suspend mechanism in request-based dm.
2528 *
2529 * 1. Flush all I/Os by lock_fs() if needed.
2530 * 2. Stop dispatching any I/O by stopping the request_queue.
2531 * 3. Wait for all in-flight I/Os to be completed or requeued.
2532 *
2533 * To abort suspend, start the request_queue.
2534 */
dm_suspend(struct mapped_device * md,unsigned suspend_flags)2535 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2536 {
2537 struct dm_table *map = NULL;
2538 int r = 0;
2539
2540 retry:
2541 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2542
2543 if (dm_suspended_md(md)) {
2544 r = -EINVAL;
2545 goto out_unlock;
2546 }
2547
2548 if (dm_suspended_internally_md(md)) {
2549 /* already internally suspended, wait for internal resume */
2550 mutex_unlock(&md->suspend_lock);
2551 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2552 if (r)
2553 return r;
2554 goto retry;
2555 }
2556
2557 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2558
2559 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2560 if (r)
2561 goto out_unlock;
2562
2563 set_bit(DMF_POST_SUSPENDING, &md->flags);
2564 dm_table_postsuspend_targets(map);
2565 clear_bit(DMF_POST_SUSPENDING, &md->flags);
2566
2567 out_unlock:
2568 mutex_unlock(&md->suspend_lock);
2569 return r;
2570 }
2571
__dm_resume(struct mapped_device * md,struct dm_table * map)2572 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2573 {
2574 if (map) {
2575 int r = dm_table_resume_targets(map);
2576 if (r)
2577 return r;
2578 }
2579
2580 dm_queue_flush(md);
2581
2582 /*
2583 * Flushing deferred I/Os must be done after targets are resumed
2584 * so that mapping of targets can work correctly.
2585 * Request-based dm is queueing the deferred I/Os in its request_queue.
2586 */
2587 if (dm_request_based(md))
2588 dm_start_queue(md->queue);
2589
2590 unlock_fs(md);
2591
2592 return 0;
2593 }
2594
dm_resume(struct mapped_device * md)2595 int dm_resume(struct mapped_device *md)
2596 {
2597 int r;
2598 struct dm_table *map = NULL;
2599
2600 retry:
2601 r = -EINVAL;
2602 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2603
2604 if (!dm_suspended_md(md))
2605 goto out;
2606
2607 if (dm_suspended_internally_md(md)) {
2608 /* already internally suspended, wait for internal resume */
2609 mutex_unlock(&md->suspend_lock);
2610 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2611 if (r)
2612 return r;
2613 goto retry;
2614 }
2615
2616 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2617 if (!map || !dm_table_get_size(map))
2618 goto out;
2619
2620 r = __dm_resume(md, map);
2621 if (r)
2622 goto out;
2623
2624 clear_bit(DMF_SUSPENDED, &md->flags);
2625 out:
2626 mutex_unlock(&md->suspend_lock);
2627
2628 return r;
2629 }
2630
2631 /*
2632 * Internal suspend/resume works like userspace-driven suspend. It waits
2633 * until all bios finish and prevents issuing new bios to the target drivers.
2634 * It may be used only from the kernel.
2635 */
2636
__dm_internal_suspend(struct mapped_device * md,unsigned suspend_flags)2637 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2638 {
2639 struct dm_table *map = NULL;
2640
2641 lockdep_assert_held(&md->suspend_lock);
2642
2643 if (md->internal_suspend_count++)
2644 return; /* nested internal suspend */
2645
2646 if (dm_suspended_md(md)) {
2647 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2648 return; /* nest suspend */
2649 }
2650
2651 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2652
2653 /*
2654 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2655 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
2656 * would require changing .presuspend to return an error -- avoid this
2657 * until there is a need for more elaborate variants of internal suspend.
2658 */
2659 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2660 DMF_SUSPENDED_INTERNALLY);
2661
2662 set_bit(DMF_POST_SUSPENDING, &md->flags);
2663 dm_table_postsuspend_targets(map);
2664 clear_bit(DMF_POST_SUSPENDING, &md->flags);
2665 }
2666
__dm_internal_resume(struct mapped_device * md)2667 static void __dm_internal_resume(struct mapped_device *md)
2668 {
2669 BUG_ON(!md->internal_suspend_count);
2670
2671 if (--md->internal_suspend_count)
2672 return; /* resume from nested internal suspend */
2673
2674 if (dm_suspended_md(md))
2675 goto done; /* resume from nested suspend */
2676
2677 /*
2678 * NOTE: existing callers don't need to call dm_table_resume_targets
2679 * (which may fail -- so best to avoid it for now by passing NULL map)
2680 */
2681 (void) __dm_resume(md, NULL);
2682
2683 done:
2684 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2685 smp_mb__after_atomic();
2686 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2687 }
2688
dm_internal_suspend_noflush(struct mapped_device * md)2689 void dm_internal_suspend_noflush(struct mapped_device *md)
2690 {
2691 mutex_lock(&md->suspend_lock);
2692 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2693 mutex_unlock(&md->suspend_lock);
2694 }
2695 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2696
dm_internal_resume(struct mapped_device * md)2697 void dm_internal_resume(struct mapped_device *md)
2698 {
2699 mutex_lock(&md->suspend_lock);
2700 __dm_internal_resume(md);
2701 mutex_unlock(&md->suspend_lock);
2702 }
2703 EXPORT_SYMBOL_GPL(dm_internal_resume);
2704
2705 /*
2706 * Fast variants of internal suspend/resume hold md->suspend_lock,
2707 * which prevents interaction with userspace-driven suspend.
2708 */
2709
dm_internal_suspend_fast(struct mapped_device * md)2710 void dm_internal_suspend_fast(struct mapped_device *md)
2711 {
2712 mutex_lock(&md->suspend_lock);
2713 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2714 return;
2715
2716 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2717 synchronize_srcu(&md->io_barrier);
2718 flush_workqueue(md->wq);
2719 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2720 }
2721 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2722
dm_internal_resume_fast(struct mapped_device * md)2723 void dm_internal_resume_fast(struct mapped_device *md)
2724 {
2725 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2726 goto done;
2727
2728 dm_queue_flush(md);
2729
2730 done:
2731 mutex_unlock(&md->suspend_lock);
2732 }
2733 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2734
2735 /*-----------------------------------------------------------------
2736 * Event notification.
2737 *---------------------------------------------------------------*/
dm_kobject_uevent(struct mapped_device * md,enum kobject_action action,unsigned cookie)2738 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2739 unsigned cookie)
2740 {
2741 int r;
2742 unsigned noio_flag;
2743 char udev_cookie[DM_COOKIE_LENGTH];
2744 char *envp[] = { udev_cookie, NULL };
2745
2746 noio_flag = memalloc_noio_save();
2747
2748 if (!cookie)
2749 r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2750 else {
2751 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2752 DM_COOKIE_ENV_VAR_NAME, cookie);
2753 r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2754 action, envp);
2755 }
2756
2757 memalloc_noio_restore(noio_flag);
2758
2759 return r;
2760 }
2761
dm_next_uevent_seq(struct mapped_device * md)2762 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2763 {
2764 return atomic_add_return(1, &md->uevent_seq);
2765 }
2766
dm_get_event_nr(struct mapped_device * md)2767 uint32_t dm_get_event_nr(struct mapped_device *md)
2768 {
2769 return atomic_read(&md->event_nr);
2770 }
2771
dm_wait_event(struct mapped_device * md,int event_nr)2772 int dm_wait_event(struct mapped_device *md, int event_nr)
2773 {
2774 return wait_event_interruptible(md->eventq,
2775 (event_nr != atomic_read(&md->event_nr)));
2776 }
2777
dm_uevent_add(struct mapped_device * md,struct list_head * elist)2778 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2779 {
2780 unsigned long flags;
2781
2782 spin_lock_irqsave(&md->uevent_lock, flags);
2783 list_add(elist, &md->uevent_list);
2784 spin_unlock_irqrestore(&md->uevent_lock, flags);
2785 }
2786
2787 /*
2788 * The gendisk is only valid as long as you have a reference
2789 * count on 'md'.
2790 */
dm_disk(struct mapped_device * md)2791 struct gendisk *dm_disk(struct mapped_device *md)
2792 {
2793 return md->disk;
2794 }
2795 EXPORT_SYMBOL_GPL(dm_disk);
2796
dm_kobject(struct mapped_device * md)2797 struct kobject *dm_kobject(struct mapped_device *md)
2798 {
2799 return &md->kobj_holder.kobj;
2800 }
2801
dm_get_from_kobject(struct kobject * kobj)2802 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2803 {
2804 struct mapped_device *md;
2805
2806 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2807
2808 spin_lock(&_minor_lock);
2809 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2810 md = NULL;
2811 goto out;
2812 }
2813 dm_get(md);
2814 out:
2815 spin_unlock(&_minor_lock);
2816
2817 return md;
2818 }
2819
dm_suspended_md(struct mapped_device * md)2820 int dm_suspended_md(struct mapped_device *md)
2821 {
2822 return test_bit(DMF_SUSPENDED, &md->flags);
2823 }
2824
dm_post_suspending_md(struct mapped_device * md)2825 static int dm_post_suspending_md(struct mapped_device *md)
2826 {
2827 return test_bit(DMF_POST_SUSPENDING, &md->flags);
2828 }
2829
dm_suspended_internally_md(struct mapped_device * md)2830 int dm_suspended_internally_md(struct mapped_device *md)
2831 {
2832 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2833 }
2834
dm_test_deferred_remove_flag(struct mapped_device * md)2835 int dm_test_deferred_remove_flag(struct mapped_device *md)
2836 {
2837 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2838 }
2839
dm_suspended(struct dm_target * ti)2840 int dm_suspended(struct dm_target *ti)
2841 {
2842 return dm_suspended_md(ti->table->md);
2843 }
2844 EXPORT_SYMBOL_GPL(dm_suspended);
2845
dm_post_suspending(struct dm_target * ti)2846 int dm_post_suspending(struct dm_target *ti)
2847 {
2848 return dm_post_suspending_md(ti->table->md);
2849 }
2850 EXPORT_SYMBOL_GPL(dm_post_suspending);
2851
dm_noflush_suspending(struct dm_target * ti)2852 int dm_noflush_suspending(struct dm_target *ti)
2853 {
2854 return __noflush_suspending(ti->table->md);
2855 }
2856 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2857
dm_alloc_md_mempools(struct mapped_device * md,enum dm_queue_mode type,unsigned integrity,unsigned per_io_data_size,unsigned min_pool_size)2858 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2859 unsigned integrity, unsigned per_io_data_size,
2860 unsigned min_pool_size)
2861 {
2862 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2863 unsigned int pool_size = 0;
2864 unsigned int front_pad, io_front_pad;
2865 int ret;
2866
2867 if (!pools)
2868 return NULL;
2869
2870 switch (type) {
2871 case DM_TYPE_BIO_BASED:
2872 case DM_TYPE_DAX_BIO_BASED:
2873 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2874 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2875 io_front_pad = roundup(front_pad, __alignof__(struct dm_io)) + offsetof(struct dm_io, tio);
2876 ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0);
2877 if (ret)
2878 goto out;
2879 if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
2880 goto out;
2881 break;
2882 case DM_TYPE_REQUEST_BASED:
2883 pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
2884 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2885 /* per_io_data_size is used for blk-mq pdu at queue allocation */
2886 break;
2887 default:
2888 BUG();
2889 }
2890
2891 ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
2892 if (ret)
2893 goto out;
2894
2895 if (integrity && bioset_integrity_create(&pools->bs, pool_size))
2896 goto out;
2897
2898 return pools;
2899
2900 out:
2901 dm_free_md_mempools(pools);
2902
2903 return NULL;
2904 }
2905
dm_free_md_mempools(struct dm_md_mempools * pools)2906 void dm_free_md_mempools(struct dm_md_mempools *pools)
2907 {
2908 if (!pools)
2909 return;
2910
2911 bioset_exit(&pools->bs);
2912 bioset_exit(&pools->io_bs);
2913
2914 kfree(pools);
2915 }
2916
2917 struct dm_pr {
2918 u64 old_key;
2919 u64 new_key;
2920 u32 flags;
2921 bool fail_early;
2922 };
2923
dm_call_pr(struct block_device * bdev,iterate_devices_callout_fn fn,void * data)2924 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2925 void *data)
2926 {
2927 struct mapped_device *md = bdev->bd_disk->private_data;
2928 struct dm_table *table;
2929 struct dm_target *ti;
2930 int ret = -ENOTTY, srcu_idx;
2931
2932 table = dm_get_live_table(md, &srcu_idx);
2933 if (!table || !dm_table_get_size(table))
2934 goto out;
2935
2936 /* We only support devices that have a single target */
2937 if (dm_table_get_num_targets(table) != 1)
2938 goto out;
2939 ti = dm_table_get_target(table, 0);
2940
2941 ret = -EINVAL;
2942 if (!ti->type->iterate_devices)
2943 goto out;
2944
2945 ret = ti->type->iterate_devices(ti, fn, data);
2946 out:
2947 dm_put_live_table(md, srcu_idx);
2948 return ret;
2949 }
2950
2951 /*
2952 * For register / unregister we need to manually call out to every path.
2953 */
__dm_pr_register(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)2954 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
2955 sector_t start, sector_t len, void *data)
2956 {
2957 struct dm_pr *pr = data;
2958 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
2959
2960 if (!ops || !ops->pr_register)
2961 return -EOPNOTSUPP;
2962 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
2963 }
2964
dm_pr_register(struct block_device * bdev,u64 old_key,u64 new_key,u32 flags)2965 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
2966 u32 flags)
2967 {
2968 struct dm_pr pr = {
2969 .old_key = old_key,
2970 .new_key = new_key,
2971 .flags = flags,
2972 .fail_early = true,
2973 };
2974 int ret;
2975
2976 ret = dm_call_pr(bdev, __dm_pr_register, &pr);
2977 if (ret && new_key) {
2978 /* unregister all paths if we failed to register any path */
2979 pr.old_key = new_key;
2980 pr.new_key = 0;
2981 pr.flags = 0;
2982 pr.fail_early = false;
2983 dm_call_pr(bdev, __dm_pr_register, &pr);
2984 }
2985
2986 return ret;
2987 }
2988
dm_pr_reserve(struct block_device * bdev,u64 key,enum pr_type type,u32 flags)2989 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
2990 u32 flags)
2991 {
2992 struct mapped_device *md = bdev->bd_disk->private_data;
2993 const struct pr_ops *ops;
2994 int r, srcu_idx;
2995
2996 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
2997 if (r < 0)
2998 goto out;
2999
3000 ops = bdev->bd_disk->fops->pr_ops;
3001 if (ops && ops->pr_reserve)
3002 r = ops->pr_reserve(bdev, key, type, flags);
3003 else
3004 r = -EOPNOTSUPP;
3005 out:
3006 dm_unprepare_ioctl(md, srcu_idx);
3007 return r;
3008 }
3009
dm_pr_release(struct block_device * bdev,u64 key,enum pr_type type)3010 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3011 {
3012 struct mapped_device *md = bdev->bd_disk->private_data;
3013 const struct pr_ops *ops;
3014 int r, srcu_idx;
3015
3016 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3017 if (r < 0)
3018 goto out;
3019
3020 ops = bdev->bd_disk->fops->pr_ops;
3021 if (ops && ops->pr_release)
3022 r = ops->pr_release(bdev, key, type);
3023 else
3024 r = -EOPNOTSUPP;
3025 out:
3026 dm_unprepare_ioctl(md, srcu_idx);
3027 return r;
3028 }
3029
dm_pr_preempt(struct block_device * bdev,u64 old_key,u64 new_key,enum pr_type type,bool abort)3030 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3031 enum pr_type type, bool abort)
3032 {
3033 struct mapped_device *md = bdev->bd_disk->private_data;
3034 const struct pr_ops *ops;
3035 int r, srcu_idx;
3036
3037 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3038 if (r < 0)
3039 goto out;
3040
3041 ops = bdev->bd_disk->fops->pr_ops;
3042 if (ops && ops->pr_preempt)
3043 r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3044 else
3045 r = -EOPNOTSUPP;
3046 out:
3047 dm_unprepare_ioctl(md, srcu_idx);
3048 return r;
3049 }
3050
dm_pr_clear(struct block_device * bdev,u64 key)3051 static int dm_pr_clear(struct block_device *bdev, u64 key)
3052 {
3053 struct mapped_device *md = bdev->bd_disk->private_data;
3054 const struct pr_ops *ops;
3055 int r, srcu_idx;
3056
3057 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3058 if (r < 0)
3059 goto out;
3060
3061 ops = bdev->bd_disk->fops->pr_ops;
3062 if (ops && ops->pr_clear)
3063 r = ops->pr_clear(bdev, key);
3064 else
3065 r = -EOPNOTSUPP;
3066 out:
3067 dm_unprepare_ioctl(md, srcu_idx);
3068 return r;
3069 }
3070
3071 static const struct pr_ops dm_pr_ops = {
3072 .pr_register = dm_pr_register,
3073 .pr_reserve = dm_pr_reserve,
3074 .pr_release = dm_pr_release,
3075 .pr_preempt = dm_pr_preempt,
3076 .pr_clear = dm_pr_clear,
3077 };
3078
3079 static const struct block_device_operations dm_blk_dops = {
3080 .submit_bio = dm_submit_bio,
3081 .open = dm_blk_open,
3082 .release = dm_blk_close,
3083 .ioctl = dm_blk_ioctl,
3084 .getgeo = dm_blk_getgeo,
3085 .report_zones = dm_blk_report_zones,
3086 .pr_ops = &dm_pr_ops,
3087 .owner = THIS_MODULE
3088 };
3089
3090 static const struct block_device_operations dm_rq_blk_dops = {
3091 .open = dm_blk_open,
3092 .release = dm_blk_close,
3093 .ioctl = dm_blk_ioctl,
3094 .getgeo = dm_blk_getgeo,
3095 .pr_ops = &dm_pr_ops,
3096 .owner = THIS_MODULE
3097 };
3098
3099 static const struct dax_operations dm_dax_ops = {
3100 .direct_access = dm_dax_direct_access,
3101 .dax_supported = dm_dax_supported,
3102 .copy_from_iter = dm_dax_copy_from_iter,
3103 .copy_to_iter = dm_dax_copy_to_iter,
3104 .zero_page_range = dm_dax_zero_page_range,
3105 };
3106
3107 /*
3108 * module hooks
3109 */
3110 module_init(dm_init);
3111 module_exit(dm_exit);
3112
3113 module_param(major, uint, 0);
3114 MODULE_PARM_DESC(major, "The major number of the device mapper");
3115
3116 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3117 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3118
3119 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3120 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3121
3122 MODULE_DESCRIPTION(DM_NAME " driver");
3123 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3124 MODULE_LICENSE("GPL");
3125