1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Deadline Scheduling Class (SCHED_DEADLINE)
4  *
5  * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
6  *
7  * Tasks that periodically executes their instances for less than their
8  * runtime won't miss any of their deadlines.
9  * Tasks that are not periodic or sporadic or that tries to execute more
10  * than their reserved bandwidth will be slowed down (and may potentially
11  * miss some of their deadlines), and won't affect any other task.
12  *
13  * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
14  *                    Juri Lelli <juri.lelli@gmail.com>,
15  *                    Michael Trimarchi <michael@amarulasolutions.com>,
16  *                    Fabio Checconi <fchecconi@gmail.com>
17  */
18 #include "sched.h"
19 #include "pelt.h"
20 
21 struct dl_bandwidth def_dl_bandwidth;
22 
dl_task_of(struct sched_dl_entity * dl_se)23 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
24 {
25 	return container_of(dl_se, struct task_struct, dl);
26 }
27 
rq_of_dl_rq(struct dl_rq * dl_rq)28 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
29 {
30 	return container_of(dl_rq, struct rq, dl);
31 }
32 
dl_rq_of_se(struct sched_dl_entity * dl_se)33 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
34 {
35 	struct task_struct *p = dl_task_of(dl_se);
36 	struct rq *rq = task_rq(p);
37 
38 	return &rq->dl;
39 }
40 
on_dl_rq(struct sched_dl_entity * dl_se)41 static inline int on_dl_rq(struct sched_dl_entity *dl_se)
42 {
43 	return !RB_EMPTY_NODE(&dl_se->rb_node);
44 }
45 
46 #ifdef CONFIG_RT_MUTEXES
pi_of(struct sched_dl_entity * dl_se)47 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
48 {
49 	return dl_se->pi_se;
50 }
51 
is_dl_boosted(struct sched_dl_entity * dl_se)52 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
53 {
54 	return pi_of(dl_se) != dl_se;
55 }
56 #else
pi_of(struct sched_dl_entity * dl_se)57 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
58 {
59 	return dl_se;
60 }
61 
is_dl_boosted(struct sched_dl_entity * dl_se)62 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
63 {
64 	return false;
65 }
66 #endif
67 
68 #ifdef CONFIG_SMP
dl_bw_of(int i)69 static inline struct dl_bw *dl_bw_of(int i)
70 {
71 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
72 			 "sched RCU must be held");
73 	return &cpu_rq(i)->rd->dl_bw;
74 }
75 
dl_bw_cpus(int i)76 static inline int dl_bw_cpus(int i)
77 {
78 	struct root_domain *rd = cpu_rq(i)->rd;
79 	int cpus;
80 
81 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
82 			 "sched RCU must be held");
83 
84 	if (cpumask_subset(rd->span, cpu_active_mask))
85 		return cpumask_weight(rd->span);
86 
87 	cpus = 0;
88 
89 	for_each_cpu_and(i, rd->span, cpu_active_mask)
90 		cpus++;
91 
92 	return cpus;
93 }
94 
__dl_bw_capacity(int i)95 static inline unsigned long __dl_bw_capacity(int i)
96 {
97 	struct root_domain *rd = cpu_rq(i)->rd;
98 	unsigned long cap = 0;
99 
100 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
101 			 "sched RCU must be held");
102 
103 	for_each_cpu_and(i, rd->span, cpu_active_mask)
104 		cap += capacity_orig_of(i);
105 
106 	return cap;
107 }
108 
109 /*
110  * XXX Fix: If 'rq->rd == def_root_domain' perform AC against capacity
111  * of the CPU the task is running on rather rd's \Sum CPU capacity.
112  */
dl_bw_capacity(int i)113 static inline unsigned long dl_bw_capacity(int i)
114 {
115 	if (!static_branch_unlikely(&sched_asym_cpucapacity) &&
116 	    capacity_orig_of(i) == SCHED_CAPACITY_SCALE) {
117 		return dl_bw_cpus(i) << SCHED_CAPACITY_SHIFT;
118 	} else {
119 		return __dl_bw_capacity(i);
120 	}
121 }
122 #else
dl_bw_of(int i)123 static inline struct dl_bw *dl_bw_of(int i)
124 {
125 	return &cpu_rq(i)->dl.dl_bw;
126 }
127 
dl_bw_cpus(int i)128 static inline int dl_bw_cpus(int i)
129 {
130 	return 1;
131 }
132 
dl_bw_capacity(int i)133 static inline unsigned long dl_bw_capacity(int i)
134 {
135 	return SCHED_CAPACITY_SCALE;
136 }
137 #endif
138 
139 static inline
__add_running_bw(u64 dl_bw,struct dl_rq * dl_rq)140 void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
141 {
142 	u64 old = dl_rq->running_bw;
143 
144 	lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
145 	dl_rq->running_bw += dl_bw;
146 	SCHED_WARN_ON(dl_rq->running_bw < old); /* overflow */
147 	SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
148 	/* kick cpufreq (see the comment in kernel/sched/sched.h). */
149 	cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
150 }
151 
152 static inline
__sub_running_bw(u64 dl_bw,struct dl_rq * dl_rq)153 void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
154 {
155 	u64 old = dl_rq->running_bw;
156 
157 	lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
158 	dl_rq->running_bw -= dl_bw;
159 	SCHED_WARN_ON(dl_rq->running_bw > old); /* underflow */
160 	if (dl_rq->running_bw > old)
161 		dl_rq->running_bw = 0;
162 	/* kick cpufreq (see the comment in kernel/sched/sched.h). */
163 	cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
164 }
165 
166 static inline
__add_rq_bw(u64 dl_bw,struct dl_rq * dl_rq)167 void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
168 {
169 	u64 old = dl_rq->this_bw;
170 
171 	lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
172 	dl_rq->this_bw += dl_bw;
173 	SCHED_WARN_ON(dl_rq->this_bw < old); /* overflow */
174 }
175 
176 static inline
__sub_rq_bw(u64 dl_bw,struct dl_rq * dl_rq)177 void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
178 {
179 	u64 old = dl_rq->this_bw;
180 
181 	lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
182 	dl_rq->this_bw -= dl_bw;
183 	SCHED_WARN_ON(dl_rq->this_bw > old); /* underflow */
184 	if (dl_rq->this_bw > old)
185 		dl_rq->this_bw = 0;
186 	SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
187 }
188 
189 static inline
add_rq_bw(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)190 void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
191 {
192 	if (!dl_entity_is_special(dl_se))
193 		__add_rq_bw(dl_se->dl_bw, dl_rq);
194 }
195 
196 static inline
sub_rq_bw(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)197 void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
198 {
199 	if (!dl_entity_is_special(dl_se))
200 		__sub_rq_bw(dl_se->dl_bw, dl_rq);
201 }
202 
203 static inline
add_running_bw(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)204 void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
205 {
206 	if (!dl_entity_is_special(dl_se))
207 		__add_running_bw(dl_se->dl_bw, dl_rq);
208 }
209 
210 static inline
sub_running_bw(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)211 void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
212 {
213 	if (!dl_entity_is_special(dl_se))
214 		__sub_running_bw(dl_se->dl_bw, dl_rq);
215 }
216 
dl_change_utilization(struct task_struct * p,u64 new_bw)217 static void dl_change_utilization(struct task_struct *p, u64 new_bw)
218 {
219 	struct rq *rq;
220 
221 	BUG_ON(p->dl.flags & SCHED_FLAG_SUGOV);
222 
223 	if (task_on_rq_queued(p))
224 		return;
225 
226 	rq = task_rq(p);
227 	if (p->dl.dl_non_contending) {
228 		sub_running_bw(&p->dl, &rq->dl);
229 		p->dl.dl_non_contending = 0;
230 		/*
231 		 * If the timer handler is currently running and the
232 		 * timer cannot be cancelled, inactive_task_timer()
233 		 * will see that dl_not_contending is not set, and
234 		 * will not touch the rq's active utilization,
235 		 * so we are still safe.
236 		 */
237 		if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
238 			put_task_struct(p);
239 	}
240 	__sub_rq_bw(p->dl.dl_bw, &rq->dl);
241 	__add_rq_bw(new_bw, &rq->dl);
242 }
243 
244 /*
245  * The utilization of a task cannot be immediately removed from
246  * the rq active utilization (running_bw) when the task blocks.
247  * Instead, we have to wait for the so called "0-lag time".
248  *
249  * If a task blocks before the "0-lag time", a timer (the inactive
250  * timer) is armed, and running_bw is decreased when the timer
251  * fires.
252  *
253  * If the task wakes up again before the inactive timer fires,
254  * the timer is cancelled, whereas if the task wakes up after the
255  * inactive timer fired (and running_bw has been decreased) the
256  * task's utilization has to be added to running_bw again.
257  * A flag in the deadline scheduling entity (dl_non_contending)
258  * is used to avoid race conditions between the inactive timer handler
259  * and task wakeups.
260  *
261  * The following diagram shows how running_bw is updated. A task is
262  * "ACTIVE" when its utilization contributes to running_bw; an
263  * "ACTIVE contending" task is in the TASK_RUNNING state, while an
264  * "ACTIVE non contending" task is a blocked task for which the "0-lag time"
265  * has not passed yet. An "INACTIVE" task is a task for which the "0-lag"
266  * time already passed, which does not contribute to running_bw anymore.
267  *                              +------------------+
268  *             wakeup           |    ACTIVE        |
269  *          +------------------>+   contending     |
270  *          | add_running_bw    |                  |
271  *          |                   +----+------+------+
272  *          |                        |      ^
273  *          |                dequeue |      |
274  * +--------+-------+                |      |
275  * |                |   t >= 0-lag   |      | wakeup
276  * |    INACTIVE    |<---------------+      |
277  * |                | sub_running_bw |      |
278  * +--------+-------+                |      |
279  *          ^                        |      |
280  *          |              t < 0-lag |      |
281  *          |                        |      |
282  *          |                        V      |
283  *          |                   +----+------+------+
284  *          | sub_running_bw    |    ACTIVE        |
285  *          +-------------------+                  |
286  *            inactive timer    |  non contending  |
287  *            fired             +------------------+
288  *
289  * The task_non_contending() function is invoked when a task
290  * blocks, and checks if the 0-lag time already passed or
291  * not (in the first case, it directly updates running_bw;
292  * in the second case, it arms the inactive timer).
293  *
294  * The task_contending() function is invoked when a task wakes
295  * up, and checks if the task is still in the "ACTIVE non contending"
296  * state or not (in the second case, it updates running_bw).
297  */
task_non_contending(struct task_struct * p)298 static void task_non_contending(struct task_struct *p)
299 {
300 	struct sched_dl_entity *dl_se = &p->dl;
301 	struct hrtimer *timer = &dl_se->inactive_timer;
302 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
303 	struct rq *rq = rq_of_dl_rq(dl_rq);
304 	s64 zerolag_time;
305 
306 	/*
307 	 * If this is a non-deadline task that has been boosted,
308 	 * do nothing
309 	 */
310 	if (dl_se->dl_runtime == 0)
311 		return;
312 
313 	if (dl_entity_is_special(dl_se))
314 		return;
315 
316 	WARN_ON(dl_se->dl_non_contending);
317 
318 	zerolag_time = dl_se->deadline -
319 		 div64_long((dl_se->runtime * dl_se->dl_period),
320 			dl_se->dl_runtime);
321 
322 	/*
323 	 * Using relative times instead of the absolute "0-lag time"
324 	 * allows to simplify the code
325 	 */
326 	zerolag_time -= rq_clock(rq);
327 
328 	/*
329 	 * If the "0-lag time" already passed, decrease the active
330 	 * utilization now, instead of starting a timer
331 	 */
332 	if ((zerolag_time < 0) || hrtimer_active(&dl_se->inactive_timer)) {
333 		if (dl_task(p))
334 			sub_running_bw(dl_se, dl_rq);
335 		if (!dl_task(p) || p->state == TASK_DEAD) {
336 			struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
337 
338 			if (p->state == TASK_DEAD)
339 				sub_rq_bw(&p->dl, &rq->dl);
340 			raw_spin_lock(&dl_b->lock);
341 			__dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
342 			__dl_clear_params(p);
343 			raw_spin_unlock(&dl_b->lock);
344 		}
345 
346 		return;
347 	}
348 
349 	dl_se->dl_non_contending = 1;
350 	get_task_struct(p);
351 	hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL_HARD);
352 }
353 
task_contending(struct sched_dl_entity * dl_se,int flags)354 static void task_contending(struct sched_dl_entity *dl_se, int flags)
355 {
356 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
357 
358 	/*
359 	 * If this is a non-deadline task that has been boosted,
360 	 * do nothing
361 	 */
362 	if (dl_se->dl_runtime == 0)
363 		return;
364 
365 	if (flags & ENQUEUE_MIGRATED)
366 		add_rq_bw(dl_se, dl_rq);
367 
368 	if (dl_se->dl_non_contending) {
369 		dl_se->dl_non_contending = 0;
370 		/*
371 		 * If the timer handler is currently running and the
372 		 * timer cannot be cancelled, inactive_task_timer()
373 		 * will see that dl_not_contending is not set, and
374 		 * will not touch the rq's active utilization,
375 		 * so we are still safe.
376 		 */
377 		if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1)
378 			put_task_struct(dl_task_of(dl_se));
379 	} else {
380 		/*
381 		 * Since "dl_non_contending" is not set, the
382 		 * task's utilization has already been removed from
383 		 * active utilization (either when the task blocked,
384 		 * when the "inactive timer" fired).
385 		 * So, add it back.
386 		 */
387 		add_running_bw(dl_se, dl_rq);
388 	}
389 }
390 
is_leftmost(struct task_struct * p,struct dl_rq * dl_rq)391 static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
392 {
393 	struct sched_dl_entity *dl_se = &p->dl;
394 
395 	return dl_rq->root.rb_leftmost == &dl_se->rb_node;
396 }
397 
398 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
399 
init_dl_bandwidth(struct dl_bandwidth * dl_b,u64 period,u64 runtime)400 void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
401 {
402 	raw_spin_lock_init(&dl_b->dl_runtime_lock);
403 	dl_b->dl_period = period;
404 	dl_b->dl_runtime = runtime;
405 }
406 
init_dl_bw(struct dl_bw * dl_b)407 void init_dl_bw(struct dl_bw *dl_b)
408 {
409 	raw_spin_lock_init(&dl_b->lock);
410 	raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock);
411 	if (global_rt_runtime() == RUNTIME_INF)
412 		dl_b->bw = -1;
413 	else
414 		dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
415 	raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock);
416 	dl_b->total_bw = 0;
417 }
418 
init_dl_rq(struct dl_rq * dl_rq)419 void init_dl_rq(struct dl_rq *dl_rq)
420 {
421 	dl_rq->root = RB_ROOT_CACHED;
422 
423 #ifdef CONFIG_SMP
424 	/* zero means no -deadline tasks */
425 	dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
426 
427 	dl_rq->dl_nr_migratory = 0;
428 	dl_rq->overloaded = 0;
429 	dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED;
430 #else
431 	init_dl_bw(&dl_rq->dl_bw);
432 #endif
433 
434 	dl_rq->running_bw = 0;
435 	dl_rq->this_bw = 0;
436 	init_dl_rq_bw_ratio(dl_rq);
437 }
438 
439 #ifdef CONFIG_SMP
440 
dl_overloaded(struct rq * rq)441 static inline int dl_overloaded(struct rq *rq)
442 {
443 	return atomic_read(&rq->rd->dlo_count);
444 }
445 
dl_set_overload(struct rq * rq)446 static inline void dl_set_overload(struct rq *rq)
447 {
448 	if (!rq->online)
449 		return;
450 
451 	cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
452 	/*
453 	 * Must be visible before the overload count is
454 	 * set (as in sched_rt.c).
455 	 *
456 	 * Matched by the barrier in pull_dl_task().
457 	 */
458 	smp_wmb();
459 	atomic_inc(&rq->rd->dlo_count);
460 }
461 
dl_clear_overload(struct rq * rq)462 static inline void dl_clear_overload(struct rq *rq)
463 {
464 	if (!rq->online)
465 		return;
466 
467 	atomic_dec(&rq->rd->dlo_count);
468 	cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
469 }
470 
update_dl_migration(struct dl_rq * dl_rq)471 static void update_dl_migration(struct dl_rq *dl_rq)
472 {
473 	if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
474 		if (!dl_rq->overloaded) {
475 			dl_set_overload(rq_of_dl_rq(dl_rq));
476 			dl_rq->overloaded = 1;
477 		}
478 	} else if (dl_rq->overloaded) {
479 		dl_clear_overload(rq_of_dl_rq(dl_rq));
480 		dl_rq->overloaded = 0;
481 	}
482 }
483 
inc_dl_migration(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)484 static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
485 {
486 	struct task_struct *p = dl_task_of(dl_se);
487 
488 	if (p->nr_cpus_allowed > 1)
489 		dl_rq->dl_nr_migratory++;
490 
491 	update_dl_migration(dl_rq);
492 }
493 
dec_dl_migration(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)494 static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
495 {
496 	struct task_struct *p = dl_task_of(dl_se);
497 
498 	if (p->nr_cpus_allowed > 1)
499 		dl_rq->dl_nr_migratory--;
500 
501 	update_dl_migration(dl_rq);
502 }
503 
504 /*
505  * The list of pushable -deadline task is not a plist, like in
506  * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
507  */
enqueue_pushable_dl_task(struct rq * rq,struct task_struct * p)508 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
509 {
510 	struct dl_rq *dl_rq = &rq->dl;
511 	struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_root.rb_node;
512 	struct rb_node *parent = NULL;
513 	struct task_struct *entry;
514 	bool leftmost = true;
515 
516 	BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
517 
518 	while (*link) {
519 		parent = *link;
520 		entry = rb_entry(parent, struct task_struct,
521 				 pushable_dl_tasks);
522 		if (dl_entity_preempt(&p->dl, &entry->dl))
523 			link = &parent->rb_left;
524 		else {
525 			link = &parent->rb_right;
526 			leftmost = false;
527 		}
528 	}
529 
530 	if (leftmost)
531 		dl_rq->earliest_dl.next = p->dl.deadline;
532 
533 	rb_link_node(&p->pushable_dl_tasks, parent, link);
534 	rb_insert_color_cached(&p->pushable_dl_tasks,
535 			       &dl_rq->pushable_dl_tasks_root, leftmost);
536 }
537 
dequeue_pushable_dl_task(struct rq * rq,struct task_struct * p)538 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
539 {
540 	struct dl_rq *dl_rq = &rq->dl;
541 
542 	if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
543 		return;
544 
545 	if (dl_rq->pushable_dl_tasks_root.rb_leftmost == &p->pushable_dl_tasks) {
546 		struct rb_node *next_node;
547 
548 		next_node = rb_next(&p->pushable_dl_tasks);
549 		if (next_node) {
550 			dl_rq->earliest_dl.next = rb_entry(next_node,
551 				struct task_struct, pushable_dl_tasks)->dl.deadline;
552 		}
553 	}
554 
555 	rb_erase_cached(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
556 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
557 }
558 
has_pushable_dl_tasks(struct rq * rq)559 static inline int has_pushable_dl_tasks(struct rq *rq)
560 {
561 	return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root);
562 }
563 
564 static int push_dl_task(struct rq *rq);
565 
need_pull_dl_task(struct rq * rq,struct task_struct * prev)566 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
567 {
568 	return dl_task(prev);
569 }
570 
571 static DEFINE_PER_CPU(struct callback_head, dl_push_head);
572 static DEFINE_PER_CPU(struct callback_head, dl_pull_head);
573 
574 static void push_dl_tasks(struct rq *);
575 static void pull_dl_task(struct rq *);
576 
deadline_queue_push_tasks(struct rq * rq)577 static inline void deadline_queue_push_tasks(struct rq *rq)
578 {
579 	if (!has_pushable_dl_tasks(rq))
580 		return;
581 
582 	queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
583 }
584 
deadline_queue_pull_task(struct rq * rq)585 static inline void deadline_queue_pull_task(struct rq *rq)
586 {
587 	queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
588 }
589 
590 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
591 
dl_task_offline_migration(struct rq * rq,struct task_struct * p)592 static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
593 {
594 	struct rq *later_rq = NULL;
595 	struct dl_bw *dl_b;
596 
597 	later_rq = find_lock_later_rq(p, rq);
598 	if (!later_rq) {
599 		int cpu;
600 
601 		/*
602 		 * If we cannot preempt any rq, fall back to pick any
603 		 * online CPU:
604 		 */
605 		cpu = cpumask_any_and(cpu_active_mask, p->cpus_ptr);
606 		if (cpu >= nr_cpu_ids) {
607 			/*
608 			 * Failed to find any suitable CPU.
609 			 * The task will never come back!
610 			 */
611 			BUG_ON(dl_bandwidth_enabled());
612 
613 			/*
614 			 * If admission control is disabled we
615 			 * try a little harder to let the task
616 			 * run.
617 			 */
618 			cpu = cpumask_any(cpu_active_mask);
619 		}
620 		later_rq = cpu_rq(cpu);
621 		double_lock_balance(rq, later_rq);
622 	}
623 
624 	if (p->dl.dl_non_contending || p->dl.dl_throttled) {
625 		/*
626 		 * Inactive timer is armed (or callback is running, but
627 		 * waiting for us to release rq locks). In any case, when it
628 		 * will fire (or continue), it will see running_bw of this
629 		 * task migrated to later_rq (and correctly handle it).
630 		 */
631 		sub_running_bw(&p->dl, &rq->dl);
632 		sub_rq_bw(&p->dl, &rq->dl);
633 
634 		add_rq_bw(&p->dl, &later_rq->dl);
635 		add_running_bw(&p->dl, &later_rq->dl);
636 	} else {
637 		sub_rq_bw(&p->dl, &rq->dl);
638 		add_rq_bw(&p->dl, &later_rq->dl);
639 	}
640 
641 	/*
642 	 * And we finally need to fixup root_domain(s) bandwidth accounting,
643 	 * since p is still hanging out in the old (now moved to default) root
644 	 * domain.
645 	 */
646 	dl_b = &rq->rd->dl_bw;
647 	raw_spin_lock(&dl_b->lock);
648 	__dl_sub(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
649 	raw_spin_unlock(&dl_b->lock);
650 
651 	dl_b = &later_rq->rd->dl_bw;
652 	raw_spin_lock(&dl_b->lock);
653 	__dl_add(dl_b, p->dl.dl_bw, cpumask_weight(later_rq->rd->span));
654 	raw_spin_unlock(&dl_b->lock);
655 
656 	set_task_cpu(p, later_rq->cpu);
657 	double_unlock_balance(later_rq, rq);
658 
659 	return later_rq;
660 }
661 
662 #else
663 
664 static inline
enqueue_pushable_dl_task(struct rq * rq,struct task_struct * p)665 void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
666 {
667 }
668 
669 static inline
dequeue_pushable_dl_task(struct rq * rq,struct task_struct * p)670 void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
671 {
672 }
673 
674 static inline
inc_dl_migration(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)675 void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
676 {
677 }
678 
679 static inline
dec_dl_migration(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)680 void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
681 {
682 }
683 
need_pull_dl_task(struct rq * rq,struct task_struct * prev)684 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
685 {
686 	return false;
687 }
688 
pull_dl_task(struct rq * rq)689 static inline void pull_dl_task(struct rq *rq)
690 {
691 }
692 
deadline_queue_push_tasks(struct rq * rq)693 static inline void deadline_queue_push_tasks(struct rq *rq)
694 {
695 }
696 
deadline_queue_pull_task(struct rq * rq)697 static inline void deadline_queue_pull_task(struct rq *rq)
698 {
699 }
700 #endif /* CONFIG_SMP */
701 
702 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
703 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
704 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, int flags);
705 
706 /*
707  * We are being explicitly informed that a new instance is starting,
708  * and this means that:
709  *  - the absolute deadline of the entity has to be placed at
710  *    current time + relative deadline;
711  *  - the runtime of the entity has to be set to the maximum value.
712  *
713  * The capability of specifying such event is useful whenever a -deadline
714  * entity wants to (try to!) synchronize its behaviour with the scheduler's
715  * one, and to (try to!) reconcile itself with its own scheduling
716  * parameters.
717  */
setup_new_dl_entity(struct sched_dl_entity * dl_se)718 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se)
719 {
720 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
721 	struct rq *rq = rq_of_dl_rq(dl_rq);
722 
723 	WARN_ON(is_dl_boosted(dl_se));
724 	WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
725 
726 	/*
727 	 * We are racing with the deadline timer. So, do nothing because
728 	 * the deadline timer handler will take care of properly recharging
729 	 * the runtime and postponing the deadline
730 	 */
731 	if (dl_se->dl_throttled)
732 		return;
733 
734 	/*
735 	 * We use the regular wall clock time to set deadlines in the
736 	 * future; in fact, we must consider execution overheads (time
737 	 * spent on hardirq context, etc.).
738 	 */
739 	dl_se->deadline = rq_clock(rq) + dl_se->dl_deadline;
740 	dl_se->runtime = dl_se->dl_runtime;
741 }
742 
743 /*
744  * Pure Earliest Deadline First (EDF) scheduling does not deal with the
745  * possibility of a entity lasting more than what it declared, and thus
746  * exhausting its runtime.
747  *
748  * Here we are interested in making runtime overrun possible, but we do
749  * not want a entity which is misbehaving to affect the scheduling of all
750  * other entities.
751  * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
752  * is used, in order to confine each entity within its own bandwidth.
753  *
754  * This function deals exactly with that, and ensures that when the runtime
755  * of a entity is replenished, its deadline is also postponed. That ensures
756  * the overrunning entity can't interfere with other entity in the system and
757  * can't make them miss their deadlines. Reasons why this kind of overruns
758  * could happen are, typically, a entity voluntarily trying to overcome its
759  * runtime, or it just underestimated it during sched_setattr().
760  */
replenish_dl_entity(struct sched_dl_entity * dl_se)761 static void replenish_dl_entity(struct sched_dl_entity *dl_se)
762 {
763 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
764 	struct rq *rq = rq_of_dl_rq(dl_rq);
765 
766 	BUG_ON(pi_of(dl_se)->dl_runtime <= 0);
767 
768 	/*
769 	 * This could be the case for a !-dl task that is boosted.
770 	 * Just go with full inherited parameters.
771 	 */
772 	if (dl_se->dl_deadline == 0) {
773 		dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
774 		dl_se->runtime = pi_of(dl_se)->dl_runtime;
775 	}
776 
777 	if (dl_se->dl_yielded && dl_se->runtime > 0)
778 		dl_se->runtime = 0;
779 
780 	/*
781 	 * We keep moving the deadline away until we get some
782 	 * available runtime for the entity. This ensures correct
783 	 * handling of situations where the runtime overrun is
784 	 * arbitrary large.
785 	 */
786 	while (dl_se->runtime <= 0) {
787 		dl_se->deadline += pi_of(dl_se)->dl_period;
788 		dl_se->runtime += pi_of(dl_se)->dl_runtime;
789 	}
790 
791 	/*
792 	 * At this point, the deadline really should be "in
793 	 * the future" with respect to rq->clock. If it's
794 	 * not, we are, for some reason, lagging too much!
795 	 * Anyway, after having warn userspace abut that,
796 	 * we still try to keep the things running by
797 	 * resetting the deadline and the budget of the
798 	 * entity.
799 	 */
800 	if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
801 		printk_deferred_once("sched: DL replenish lagged too much\n");
802 		dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
803 		dl_se->runtime = pi_of(dl_se)->dl_runtime;
804 	}
805 
806 	if (dl_se->dl_yielded)
807 		dl_se->dl_yielded = 0;
808 	if (dl_se->dl_throttled)
809 		dl_se->dl_throttled = 0;
810 }
811 
812 /*
813  * Here we check if --at time t-- an entity (which is probably being
814  * [re]activated or, in general, enqueued) can use its remaining runtime
815  * and its current deadline _without_ exceeding the bandwidth it is
816  * assigned (function returns true if it can't). We are in fact applying
817  * one of the CBS rules: when a task wakes up, if the residual runtime
818  * over residual deadline fits within the allocated bandwidth, then we
819  * can keep the current (absolute) deadline and residual budget without
820  * disrupting the schedulability of the system. Otherwise, we should
821  * refill the runtime and set the deadline a period in the future,
822  * because keeping the current (absolute) deadline of the task would
823  * result in breaking guarantees promised to other tasks (refer to
824  * Documentation/scheduler/sched-deadline.rst for more information).
825  *
826  * This function returns true if:
827  *
828  *   runtime / (deadline - t) > dl_runtime / dl_deadline ,
829  *
830  * IOW we can't recycle current parameters.
831  *
832  * Notice that the bandwidth check is done against the deadline. For
833  * task with deadline equal to period this is the same of using
834  * dl_period instead of dl_deadline in the equation above.
835  */
dl_entity_overflow(struct sched_dl_entity * dl_se,u64 t)836 static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t)
837 {
838 	u64 left, right;
839 
840 	/*
841 	 * left and right are the two sides of the equation above,
842 	 * after a bit of shuffling to use multiplications instead
843 	 * of divisions.
844 	 *
845 	 * Note that none of the time values involved in the two
846 	 * multiplications are absolute: dl_deadline and dl_runtime
847 	 * are the relative deadline and the maximum runtime of each
848 	 * instance, runtime is the runtime left for the last instance
849 	 * and (deadline - t), since t is rq->clock, is the time left
850 	 * to the (absolute) deadline. Even if overflowing the u64 type
851 	 * is very unlikely to occur in both cases, here we scale down
852 	 * as we want to avoid that risk at all. Scaling down by 10
853 	 * means that we reduce granularity to 1us. We are fine with it,
854 	 * since this is only a true/false check and, anyway, thinking
855 	 * of anything below microseconds resolution is actually fiction
856 	 * (but still we want to give the user that illusion >;).
857 	 */
858 	left = (pi_of(dl_se)->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
859 	right = ((dl_se->deadline - t) >> DL_SCALE) *
860 		(pi_of(dl_se)->dl_runtime >> DL_SCALE);
861 
862 	return dl_time_before(right, left);
863 }
864 
865 /*
866  * Revised wakeup rule [1]: For self-suspending tasks, rather then
867  * re-initializing task's runtime and deadline, the revised wakeup
868  * rule adjusts the task's runtime to avoid the task to overrun its
869  * density.
870  *
871  * Reasoning: a task may overrun the density if:
872  *    runtime / (deadline - t) > dl_runtime / dl_deadline
873  *
874  * Therefore, runtime can be adjusted to:
875  *     runtime = (dl_runtime / dl_deadline) * (deadline - t)
876  *
877  * In such way that runtime will be equal to the maximum density
878  * the task can use without breaking any rule.
879  *
880  * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant
881  * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24.
882  */
883 static void
update_dl_revised_wakeup(struct sched_dl_entity * dl_se,struct rq * rq)884 update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq)
885 {
886 	u64 laxity = dl_se->deadline - rq_clock(rq);
887 
888 	/*
889 	 * If the task has deadline < period, and the deadline is in the past,
890 	 * it should already be throttled before this check.
891 	 *
892 	 * See update_dl_entity() comments for further details.
893 	 */
894 	WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq)));
895 
896 	dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT;
897 }
898 
899 /*
900  * Regarding the deadline, a task with implicit deadline has a relative
901  * deadline == relative period. A task with constrained deadline has a
902  * relative deadline <= relative period.
903  *
904  * We support constrained deadline tasks. However, there are some restrictions
905  * applied only for tasks which do not have an implicit deadline. See
906  * update_dl_entity() to know more about such restrictions.
907  *
908  * The dl_is_implicit() returns true if the task has an implicit deadline.
909  */
dl_is_implicit(struct sched_dl_entity * dl_se)910 static inline bool dl_is_implicit(struct sched_dl_entity *dl_se)
911 {
912 	return dl_se->dl_deadline == dl_se->dl_period;
913 }
914 
915 /*
916  * When a deadline entity is placed in the runqueue, its runtime and deadline
917  * might need to be updated. This is done by a CBS wake up rule. There are two
918  * different rules: 1) the original CBS; and 2) the Revisited CBS.
919  *
920  * When the task is starting a new period, the Original CBS is used. In this
921  * case, the runtime is replenished and a new absolute deadline is set.
922  *
923  * When a task is queued before the begin of the next period, using the
924  * remaining runtime and deadline could make the entity to overflow, see
925  * dl_entity_overflow() to find more about runtime overflow. When such case
926  * is detected, the runtime and deadline need to be updated.
927  *
928  * If the task has an implicit deadline, i.e., deadline == period, the Original
929  * CBS is applied. the runtime is replenished and a new absolute deadline is
930  * set, as in the previous cases.
931  *
932  * However, the Original CBS does not work properly for tasks with
933  * deadline < period, which are said to have a constrained deadline. By
934  * applying the Original CBS, a constrained deadline task would be able to run
935  * runtime/deadline in a period. With deadline < period, the task would
936  * overrun the runtime/period allowed bandwidth, breaking the admission test.
937  *
938  * In order to prevent this misbehave, the Revisited CBS is used for
939  * constrained deadline tasks when a runtime overflow is detected. In the
940  * Revisited CBS, rather than replenishing & setting a new absolute deadline,
941  * the remaining runtime of the task is reduced to avoid runtime overflow.
942  * Please refer to the comments update_dl_revised_wakeup() function to find
943  * more about the Revised CBS rule.
944  */
update_dl_entity(struct sched_dl_entity * dl_se)945 static void update_dl_entity(struct sched_dl_entity *dl_se)
946 {
947 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
948 	struct rq *rq = rq_of_dl_rq(dl_rq);
949 
950 	if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
951 	    dl_entity_overflow(dl_se, rq_clock(rq))) {
952 
953 		if (unlikely(!dl_is_implicit(dl_se) &&
954 			     !dl_time_before(dl_se->deadline, rq_clock(rq)) &&
955 			     !is_dl_boosted(dl_se))) {
956 			update_dl_revised_wakeup(dl_se, rq);
957 			return;
958 		}
959 
960 		dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
961 		dl_se->runtime = pi_of(dl_se)->dl_runtime;
962 	}
963 }
964 
dl_next_period(struct sched_dl_entity * dl_se)965 static inline u64 dl_next_period(struct sched_dl_entity *dl_se)
966 {
967 	return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period;
968 }
969 
970 /*
971  * If the entity depleted all its runtime, and if we want it to sleep
972  * while waiting for some new execution time to become available, we
973  * set the bandwidth replenishment timer to the replenishment instant
974  * and try to activate it.
975  *
976  * Notice that it is important for the caller to know if the timer
977  * actually started or not (i.e., the replenishment instant is in
978  * the future or in the past).
979  */
start_dl_timer(struct task_struct * p)980 static int start_dl_timer(struct task_struct *p)
981 {
982 	struct sched_dl_entity *dl_se = &p->dl;
983 	struct hrtimer *timer = &dl_se->dl_timer;
984 	struct rq *rq = task_rq(p);
985 	ktime_t now, act;
986 	s64 delta;
987 
988 	lockdep_assert_held(&rq->lock);
989 
990 	/*
991 	 * We want the timer to fire at the deadline, but considering
992 	 * that it is actually coming from rq->clock and not from
993 	 * hrtimer's time base reading.
994 	 */
995 	act = ns_to_ktime(dl_next_period(dl_se));
996 	now = hrtimer_cb_get_time(timer);
997 	delta = ktime_to_ns(now) - rq_clock(rq);
998 	act = ktime_add_ns(act, delta);
999 
1000 	/*
1001 	 * If the expiry time already passed, e.g., because the value
1002 	 * chosen as the deadline is too small, don't even try to
1003 	 * start the timer in the past!
1004 	 */
1005 	if (ktime_us_delta(act, now) < 0)
1006 		return 0;
1007 
1008 	/*
1009 	 * !enqueued will guarantee another callback; even if one is already in
1010 	 * progress. This ensures a balanced {get,put}_task_struct().
1011 	 *
1012 	 * The race against __run_timer() clearing the enqueued state is
1013 	 * harmless because we're holding task_rq()->lock, therefore the timer
1014 	 * expiring after we've done the check will wait on its task_rq_lock()
1015 	 * and observe our state.
1016 	 */
1017 	if (!hrtimer_is_queued(timer)) {
1018 		get_task_struct(p);
1019 		hrtimer_start(timer, act, HRTIMER_MODE_ABS_HARD);
1020 	}
1021 
1022 	return 1;
1023 }
1024 
1025 /*
1026  * This is the bandwidth enforcement timer callback. If here, we know
1027  * a task is not on its dl_rq, since the fact that the timer was running
1028  * means the task is throttled and needs a runtime replenishment.
1029  *
1030  * However, what we actually do depends on the fact the task is active,
1031  * (it is on its rq) or has been removed from there by a call to
1032  * dequeue_task_dl(). In the former case we must issue the runtime
1033  * replenishment and add the task back to the dl_rq; in the latter, we just
1034  * do nothing but clearing dl_throttled, so that runtime and deadline
1035  * updating (and the queueing back to dl_rq) will be done by the
1036  * next call to enqueue_task_dl().
1037  */
dl_task_timer(struct hrtimer * timer)1038 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
1039 {
1040 	struct sched_dl_entity *dl_se = container_of(timer,
1041 						     struct sched_dl_entity,
1042 						     dl_timer);
1043 	struct task_struct *p = dl_task_of(dl_se);
1044 	struct rq_flags rf;
1045 	struct rq *rq;
1046 
1047 	rq = task_rq_lock(p, &rf);
1048 
1049 	/*
1050 	 * The task might have changed its scheduling policy to something
1051 	 * different than SCHED_DEADLINE (through switched_from_dl()).
1052 	 */
1053 	if (!dl_task(p))
1054 		goto unlock;
1055 
1056 	/*
1057 	 * The task might have been boosted by someone else and might be in the
1058 	 * boosting/deboosting path, its not throttled.
1059 	 */
1060 	if (is_dl_boosted(dl_se))
1061 		goto unlock;
1062 
1063 	/*
1064 	 * Spurious timer due to start_dl_timer() race; or we already received
1065 	 * a replenishment from rt_mutex_setprio().
1066 	 */
1067 	if (!dl_se->dl_throttled)
1068 		goto unlock;
1069 
1070 	sched_clock_tick();
1071 	update_rq_clock(rq);
1072 
1073 	/*
1074 	 * If the throttle happened during sched-out; like:
1075 	 *
1076 	 *   schedule()
1077 	 *     deactivate_task()
1078 	 *       dequeue_task_dl()
1079 	 *         update_curr_dl()
1080 	 *           start_dl_timer()
1081 	 *         __dequeue_task_dl()
1082 	 *     prev->on_rq = 0;
1083 	 *
1084 	 * We can be both throttled and !queued. Replenish the counter
1085 	 * but do not enqueue -- wait for our wakeup to do that.
1086 	 */
1087 	if (!task_on_rq_queued(p)) {
1088 		replenish_dl_entity(dl_se);
1089 		goto unlock;
1090 	}
1091 
1092 #ifdef CONFIG_SMP
1093 	if (unlikely(!rq->online)) {
1094 		/*
1095 		 * If the runqueue is no longer available, migrate the
1096 		 * task elsewhere. This necessarily changes rq.
1097 		 */
1098 		lockdep_unpin_lock(&rq->lock, rf.cookie);
1099 		rq = dl_task_offline_migration(rq, p);
1100 		rf.cookie = lockdep_pin_lock(&rq->lock);
1101 		update_rq_clock(rq);
1102 
1103 		/*
1104 		 * Now that the task has been migrated to the new RQ and we
1105 		 * have that locked, proceed as normal and enqueue the task
1106 		 * there.
1107 		 */
1108 	}
1109 #endif
1110 
1111 	enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
1112 	if (dl_task(rq->curr))
1113 		check_preempt_curr_dl(rq, p, 0);
1114 	else
1115 		resched_curr(rq);
1116 
1117 #ifdef CONFIG_SMP
1118 	/*
1119 	 * Queueing this task back might have overloaded rq, check if we need
1120 	 * to kick someone away.
1121 	 */
1122 	if (has_pushable_dl_tasks(rq)) {
1123 		/*
1124 		 * Nothing relies on rq->lock after this, so its safe to drop
1125 		 * rq->lock.
1126 		 */
1127 		rq_unpin_lock(rq, &rf);
1128 		push_dl_task(rq);
1129 		rq_repin_lock(rq, &rf);
1130 	}
1131 #endif
1132 
1133 unlock:
1134 	task_rq_unlock(rq, p, &rf);
1135 
1136 	/*
1137 	 * This can free the task_struct, including this hrtimer, do not touch
1138 	 * anything related to that after this.
1139 	 */
1140 	put_task_struct(p);
1141 
1142 	return HRTIMER_NORESTART;
1143 }
1144 
init_dl_task_timer(struct sched_dl_entity * dl_se)1145 void init_dl_task_timer(struct sched_dl_entity *dl_se)
1146 {
1147 	struct hrtimer *timer = &dl_se->dl_timer;
1148 
1149 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1150 	timer->function = dl_task_timer;
1151 }
1152 
1153 /*
1154  * During the activation, CBS checks if it can reuse the current task's
1155  * runtime and period. If the deadline of the task is in the past, CBS
1156  * cannot use the runtime, and so it replenishes the task. This rule
1157  * works fine for implicit deadline tasks (deadline == period), and the
1158  * CBS was designed for implicit deadline tasks. However, a task with
1159  * constrained deadline (deadline < period) might be awakened after the
1160  * deadline, but before the next period. In this case, replenishing the
1161  * task would allow it to run for runtime / deadline. As in this case
1162  * deadline < period, CBS enables a task to run for more than the
1163  * runtime / period. In a very loaded system, this can cause a domino
1164  * effect, making other tasks miss their deadlines.
1165  *
1166  * To avoid this problem, in the activation of a constrained deadline
1167  * task after the deadline but before the next period, throttle the
1168  * task and set the replenishing timer to the begin of the next period,
1169  * unless it is boosted.
1170  */
dl_check_constrained_dl(struct sched_dl_entity * dl_se)1171 static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se)
1172 {
1173 	struct task_struct *p = dl_task_of(dl_se);
1174 	struct rq *rq = rq_of_dl_rq(dl_rq_of_se(dl_se));
1175 
1176 	if (dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1177 	    dl_time_before(rq_clock(rq), dl_next_period(dl_se))) {
1178 		if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(p)))
1179 			return;
1180 		dl_se->dl_throttled = 1;
1181 		if (dl_se->runtime > 0)
1182 			dl_se->runtime = 0;
1183 	}
1184 }
1185 
1186 static
dl_runtime_exceeded(struct sched_dl_entity * dl_se)1187 int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
1188 {
1189 	return (dl_se->runtime <= 0);
1190 }
1191 
1192 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
1193 
1194 /*
1195  * This function implements the GRUB accounting rule:
1196  * according to the GRUB reclaiming algorithm, the runtime is
1197  * not decreased as "dq = -dt", but as
1198  * "dq = -max{u / Umax, (1 - Uinact - Uextra)} dt",
1199  * where u is the utilization of the task, Umax is the maximum reclaimable
1200  * utilization, Uinact is the (per-runqueue) inactive utilization, computed
1201  * as the difference between the "total runqueue utilization" and the
1202  * runqueue active utilization, and Uextra is the (per runqueue) extra
1203  * reclaimable utilization.
1204  * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations
1205  * multiplied by 2^BW_SHIFT, the result has to be shifted right by
1206  * BW_SHIFT.
1207  * Since rq->dl.bw_ratio contains 1 / Umax multipled by 2^RATIO_SHIFT,
1208  * dl_bw is multiped by rq->dl.bw_ratio and shifted right by RATIO_SHIFT.
1209  * Since delta is a 64 bit variable, to have an overflow its value
1210  * should be larger than 2^(64 - 20 - 8), which is more than 64 seconds.
1211  * So, overflow is not an issue here.
1212  */
grub_reclaim(u64 delta,struct rq * rq,struct sched_dl_entity * dl_se)1213 static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se)
1214 {
1215 	u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */
1216 	u64 u_act;
1217 	u64 u_act_min = (dl_se->dl_bw * rq->dl.bw_ratio) >> RATIO_SHIFT;
1218 
1219 	/*
1220 	 * Instead of computing max{u * bw_ratio, (1 - u_inact - u_extra)},
1221 	 * we compare u_inact + rq->dl.extra_bw with
1222 	 * 1 - (u * rq->dl.bw_ratio >> RATIO_SHIFT), because
1223 	 * u_inact + rq->dl.extra_bw can be larger than
1224 	 * 1 * (so, 1 - u_inact - rq->dl.extra_bw would be negative
1225 	 * leading to wrong results)
1226 	 */
1227 	if (u_inact + rq->dl.extra_bw > BW_UNIT - u_act_min)
1228 		u_act = u_act_min;
1229 	else
1230 		u_act = BW_UNIT - u_inact - rq->dl.extra_bw;
1231 
1232 	return (delta * u_act) >> BW_SHIFT;
1233 }
1234 
1235 /*
1236  * Update the current task's runtime statistics (provided it is still
1237  * a -deadline task and has not been removed from the dl_rq).
1238  */
update_curr_dl(struct rq * rq)1239 static void update_curr_dl(struct rq *rq)
1240 {
1241 	struct task_struct *curr = rq->curr;
1242 	struct sched_dl_entity *dl_se = &curr->dl;
1243 	u64 delta_exec, scaled_delta_exec;
1244 	int cpu = cpu_of(rq);
1245 	u64 now;
1246 
1247 	if (!dl_task(curr) || !on_dl_rq(dl_se))
1248 		return;
1249 
1250 	/*
1251 	 * Consumed budget is computed considering the time as
1252 	 * observed by schedulable tasks (excluding time spent
1253 	 * in hardirq context, etc.). Deadlines are instead
1254 	 * computed using hard walltime. This seems to be the more
1255 	 * natural solution, but the full ramifications of this
1256 	 * approach need further study.
1257 	 */
1258 	now = rq_clock_task(rq);
1259 	delta_exec = now - curr->se.exec_start;
1260 	if (unlikely((s64)delta_exec <= 0)) {
1261 		if (unlikely(dl_se->dl_yielded))
1262 			goto throttle;
1263 		return;
1264 	}
1265 
1266 	schedstat_set(curr->se.statistics.exec_max,
1267 		      max(curr->se.statistics.exec_max, delta_exec));
1268 
1269 	curr->se.sum_exec_runtime += delta_exec;
1270 	account_group_exec_runtime(curr, delta_exec);
1271 
1272 	curr->se.exec_start = now;
1273 	cgroup_account_cputime(curr, delta_exec);
1274 
1275 	if (dl_entity_is_special(dl_se))
1276 		return;
1277 
1278 	/*
1279 	 * For tasks that participate in GRUB, we implement GRUB-PA: the
1280 	 * spare reclaimed bandwidth is used to clock down frequency.
1281 	 *
1282 	 * For the others, we still need to scale reservation parameters
1283 	 * according to current frequency and CPU maximum capacity.
1284 	 */
1285 	if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) {
1286 		scaled_delta_exec = grub_reclaim(delta_exec,
1287 						 rq,
1288 						 &curr->dl);
1289 	} else {
1290 		unsigned long scale_freq = arch_scale_freq_capacity(cpu);
1291 		unsigned long scale_cpu = arch_scale_cpu_capacity(cpu);
1292 
1293 		scaled_delta_exec = cap_scale(delta_exec, scale_freq);
1294 		scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu);
1295 	}
1296 
1297 	dl_se->runtime -= scaled_delta_exec;
1298 
1299 throttle:
1300 	if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
1301 		dl_se->dl_throttled = 1;
1302 
1303 		/* If requested, inform the user about runtime overruns. */
1304 		if (dl_runtime_exceeded(dl_se) &&
1305 		    (dl_se->flags & SCHED_FLAG_DL_OVERRUN))
1306 			dl_se->dl_overrun = 1;
1307 
1308 		__dequeue_task_dl(rq, curr, 0);
1309 		if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(curr)))
1310 			enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
1311 
1312 		if (!is_leftmost(curr, &rq->dl))
1313 			resched_curr(rq);
1314 	}
1315 
1316 	/*
1317 	 * Because -- for now -- we share the rt bandwidth, we need to
1318 	 * account our runtime there too, otherwise actual rt tasks
1319 	 * would be able to exceed the shared quota.
1320 	 *
1321 	 * Account to the root rt group for now.
1322 	 *
1323 	 * The solution we're working towards is having the RT groups scheduled
1324 	 * using deadline servers -- however there's a few nasties to figure
1325 	 * out before that can happen.
1326 	 */
1327 	if (rt_bandwidth_enabled()) {
1328 		struct rt_rq *rt_rq = &rq->rt;
1329 
1330 		raw_spin_lock(&rt_rq->rt_runtime_lock);
1331 		/*
1332 		 * We'll let actual RT tasks worry about the overflow here, we
1333 		 * have our own CBS to keep us inline; only account when RT
1334 		 * bandwidth is relevant.
1335 		 */
1336 		if (sched_rt_bandwidth_account(rt_rq))
1337 			rt_rq->rt_time += delta_exec;
1338 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
1339 	}
1340 }
1341 
inactive_task_timer(struct hrtimer * timer)1342 static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer)
1343 {
1344 	struct sched_dl_entity *dl_se = container_of(timer,
1345 						     struct sched_dl_entity,
1346 						     inactive_timer);
1347 	struct task_struct *p = dl_task_of(dl_se);
1348 	struct rq_flags rf;
1349 	struct rq *rq;
1350 
1351 	rq = task_rq_lock(p, &rf);
1352 
1353 	sched_clock_tick();
1354 	update_rq_clock(rq);
1355 
1356 	if (!dl_task(p) || p->state == TASK_DEAD) {
1357 		struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1358 
1359 		if (p->state == TASK_DEAD && dl_se->dl_non_contending) {
1360 			sub_running_bw(&p->dl, dl_rq_of_se(&p->dl));
1361 			sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl));
1362 			dl_se->dl_non_contending = 0;
1363 		}
1364 
1365 		raw_spin_lock(&dl_b->lock);
1366 		__dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
1367 		raw_spin_unlock(&dl_b->lock);
1368 		__dl_clear_params(p);
1369 
1370 		goto unlock;
1371 	}
1372 	if (dl_se->dl_non_contending == 0)
1373 		goto unlock;
1374 
1375 	sub_running_bw(dl_se, &rq->dl);
1376 	dl_se->dl_non_contending = 0;
1377 unlock:
1378 	task_rq_unlock(rq, p, &rf);
1379 	put_task_struct(p);
1380 
1381 	return HRTIMER_NORESTART;
1382 }
1383 
init_dl_inactive_task_timer(struct sched_dl_entity * dl_se)1384 void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se)
1385 {
1386 	struct hrtimer *timer = &dl_se->inactive_timer;
1387 
1388 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1389 	timer->function = inactive_task_timer;
1390 }
1391 
1392 #ifdef CONFIG_SMP
1393 
inc_dl_deadline(struct dl_rq * dl_rq,u64 deadline)1394 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1395 {
1396 	struct rq *rq = rq_of_dl_rq(dl_rq);
1397 
1398 	if (dl_rq->earliest_dl.curr == 0 ||
1399 	    dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
1400 		dl_rq->earliest_dl.curr = deadline;
1401 		cpudl_set(&rq->rd->cpudl, rq->cpu, deadline);
1402 	}
1403 }
1404 
dec_dl_deadline(struct dl_rq * dl_rq,u64 deadline)1405 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1406 {
1407 	struct rq *rq = rq_of_dl_rq(dl_rq);
1408 
1409 	/*
1410 	 * Since we may have removed our earliest (and/or next earliest)
1411 	 * task we must recompute them.
1412 	 */
1413 	if (!dl_rq->dl_nr_running) {
1414 		dl_rq->earliest_dl.curr = 0;
1415 		dl_rq->earliest_dl.next = 0;
1416 		cpudl_clear(&rq->rd->cpudl, rq->cpu);
1417 	} else {
1418 		struct rb_node *leftmost = dl_rq->root.rb_leftmost;
1419 		struct sched_dl_entity *entry;
1420 
1421 		entry = rb_entry(leftmost, struct sched_dl_entity, rb_node);
1422 		dl_rq->earliest_dl.curr = entry->deadline;
1423 		cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline);
1424 	}
1425 }
1426 
1427 #else
1428 
inc_dl_deadline(struct dl_rq * dl_rq,u64 deadline)1429 static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
dec_dl_deadline(struct dl_rq * dl_rq,u64 deadline)1430 static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1431 
1432 #endif /* CONFIG_SMP */
1433 
1434 static inline
inc_dl_tasks(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)1435 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1436 {
1437 	int prio = dl_task_of(dl_se)->prio;
1438 	u64 deadline = dl_se->deadline;
1439 
1440 	WARN_ON(!dl_prio(prio));
1441 	dl_rq->dl_nr_running++;
1442 	add_nr_running(rq_of_dl_rq(dl_rq), 1);
1443 
1444 	inc_dl_deadline(dl_rq, deadline);
1445 	inc_dl_migration(dl_se, dl_rq);
1446 }
1447 
1448 static inline
dec_dl_tasks(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)1449 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1450 {
1451 	int prio = dl_task_of(dl_se)->prio;
1452 
1453 	WARN_ON(!dl_prio(prio));
1454 	WARN_ON(!dl_rq->dl_nr_running);
1455 	dl_rq->dl_nr_running--;
1456 	sub_nr_running(rq_of_dl_rq(dl_rq), 1);
1457 
1458 	dec_dl_deadline(dl_rq, dl_se->deadline);
1459 	dec_dl_migration(dl_se, dl_rq);
1460 }
1461 
__enqueue_dl_entity(struct sched_dl_entity * dl_se)1462 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
1463 {
1464 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1465 	struct rb_node **link = &dl_rq->root.rb_root.rb_node;
1466 	struct rb_node *parent = NULL;
1467 	struct sched_dl_entity *entry;
1468 	int leftmost = 1;
1469 
1470 	BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node));
1471 
1472 	while (*link) {
1473 		parent = *link;
1474 		entry = rb_entry(parent, struct sched_dl_entity, rb_node);
1475 		if (dl_time_before(dl_se->deadline, entry->deadline))
1476 			link = &parent->rb_left;
1477 		else {
1478 			link = &parent->rb_right;
1479 			leftmost = 0;
1480 		}
1481 	}
1482 
1483 	rb_link_node(&dl_se->rb_node, parent, link);
1484 	rb_insert_color_cached(&dl_se->rb_node, &dl_rq->root, leftmost);
1485 
1486 	inc_dl_tasks(dl_se, dl_rq);
1487 }
1488 
__dequeue_dl_entity(struct sched_dl_entity * dl_se)1489 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
1490 {
1491 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1492 
1493 	if (RB_EMPTY_NODE(&dl_se->rb_node))
1494 		return;
1495 
1496 	rb_erase_cached(&dl_se->rb_node, &dl_rq->root);
1497 	RB_CLEAR_NODE(&dl_se->rb_node);
1498 
1499 	dec_dl_tasks(dl_se, dl_rq);
1500 }
1501 
1502 static void
enqueue_dl_entity(struct sched_dl_entity * dl_se,int flags)1503 enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags)
1504 {
1505 	BUG_ON(on_dl_rq(dl_se));
1506 
1507 	/*
1508 	 * If this is a wakeup or a new instance, the scheduling
1509 	 * parameters of the task might need updating. Otherwise,
1510 	 * we want a replenishment of its runtime.
1511 	 */
1512 	if (flags & ENQUEUE_WAKEUP) {
1513 		task_contending(dl_se, flags);
1514 		update_dl_entity(dl_se);
1515 	} else if (flags & ENQUEUE_REPLENISH) {
1516 		replenish_dl_entity(dl_se);
1517 	} else if ((flags & ENQUEUE_RESTORE) &&
1518 		  dl_time_before(dl_se->deadline,
1519 				 rq_clock(rq_of_dl_rq(dl_rq_of_se(dl_se))))) {
1520 		setup_new_dl_entity(dl_se);
1521 	}
1522 
1523 	__enqueue_dl_entity(dl_se);
1524 }
1525 
dequeue_dl_entity(struct sched_dl_entity * dl_se)1526 static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
1527 {
1528 	__dequeue_dl_entity(dl_se);
1529 }
1530 
enqueue_task_dl(struct rq * rq,struct task_struct * p,int flags)1531 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1532 {
1533 	if (is_dl_boosted(&p->dl)) {
1534 		/*
1535 		 * Because of delays in the detection of the overrun of a
1536 		 * thread's runtime, it might be the case that a thread
1537 		 * goes to sleep in a rt mutex with negative runtime. As
1538 		 * a consequence, the thread will be throttled.
1539 		 *
1540 		 * While waiting for the mutex, this thread can also be
1541 		 * boosted via PI, resulting in a thread that is throttled
1542 		 * and boosted at the same time.
1543 		 *
1544 		 * In this case, the boost overrides the throttle.
1545 		 */
1546 		if (p->dl.dl_throttled) {
1547 			/*
1548 			 * The replenish timer needs to be canceled. No
1549 			 * problem if it fires concurrently: boosted threads
1550 			 * are ignored in dl_task_timer().
1551 			 */
1552 			hrtimer_try_to_cancel(&p->dl.dl_timer);
1553 			p->dl.dl_throttled = 0;
1554 		}
1555 	} else if (!dl_prio(p->normal_prio)) {
1556 		/*
1557 		 * Special case in which we have a !SCHED_DEADLINE task that is going
1558 		 * to be deboosted, but exceeds its runtime while doing so. No point in
1559 		 * replenishing it, as it's going to return back to its original
1560 		 * scheduling class after this. If it has been throttled, we need to
1561 		 * clear the flag, otherwise the task may wake up as throttled after
1562 		 * being boosted again with no means to replenish the runtime and clear
1563 		 * the throttle.
1564 		 */
1565 		p->dl.dl_throttled = 0;
1566 		BUG_ON(!is_dl_boosted(&p->dl) || flags != ENQUEUE_REPLENISH);
1567 		return;
1568 	}
1569 
1570 	/*
1571 	 * Check if a constrained deadline task was activated
1572 	 * after the deadline but before the next period.
1573 	 * If that is the case, the task will be throttled and
1574 	 * the replenishment timer will be set to the next period.
1575 	 */
1576 	if (!p->dl.dl_throttled && !dl_is_implicit(&p->dl))
1577 		dl_check_constrained_dl(&p->dl);
1578 
1579 	if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & ENQUEUE_RESTORE) {
1580 		add_rq_bw(&p->dl, &rq->dl);
1581 		add_running_bw(&p->dl, &rq->dl);
1582 	}
1583 
1584 	/*
1585 	 * If p is throttled, we do not enqueue it. In fact, if it exhausted
1586 	 * its budget it needs a replenishment and, since it now is on
1587 	 * its rq, the bandwidth timer callback (which clearly has not
1588 	 * run yet) will take care of this.
1589 	 * However, the active utilization does not depend on the fact
1590 	 * that the task is on the runqueue or not (but depends on the
1591 	 * task's state - in GRUB parlance, "inactive" vs "active contending").
1592 	 * In other words, even if a task is throttled its utilization must
1593 	 * be counted in the active utilization; hence, we need to call
1594 	 * add_running_bw().
1595 	 */
1596 	if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH)) {
1597 		if (flags & ENQUEUE_WAKEUP)
1598 			task_contending(&p->dl, flags);
1599 
1600 		return;
1601 	}
1602 
1603 	enqueue_dl_entity(&p->dl, flags);
1604 
1605 	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1606 		enqueue_pushable_dl_task(rq, p);
1607 }
1608 
__dequeue_task_dl(struct rq * rq,struct task_struct * p,int flags)1609 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1610 {
1611 	dequeue_dl_entity(&p->dl);
1612 	dequeue_pushable_dl_task(rq, p);
1613 }
1614 
dequeue_task_dl(struct rq * rq,struct task_struct * p,int flags)1615 static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1616 {
1617 	update_curr_dl(rq);
1618 	__dequeue_task_dl(rq, p, flags);
1619 
1620 	if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & DEQUEUE_SAVE) {
1621 		sub_running_bw(&p->dl, &rq->dl);
1622 		sub_rq_bw(&p->dl, &rq->dl);
1623 	}
1624 
1625 	/*
1626 	 * This check allows to start the inactive timer (or to immediately
1627 	 * decrease the active utilization, if needed) in two cases:
1628 	 * when the task blocks and when it is terminating
1629 	 * (p->state == TASK_DEAD). We can handle the two cases in the same
1630 	 * way, because from GRUB's point of view the same thing is happening
1631 	 * (the task moves from "active contending" to "active non contending"
1632 	 * or "inactive")
1633 	 */
1634 	if (flags & DEQUEUE_SLEEP)
1635 		task_non_contending(p);
1636 }
1637 
1638 /*
1639  * Yield task semantic for -deadline tasks is:
1640  *
1641  *   get off from the CPU until our next instance, with
1642  *   a new runtime. This is of little use now, since we
1643  *   don't have a bandwidth reclaiming mechanism. Anyway,
1644  *   bandwidth reclaiming is planned for the future, and
1645  *   yield_task_dl will indicate that some spare budget
1646  *   is available for other task instances to use it.
1647  */
yield_task_dl(struct rq * rq)1648 static void yield_task_dl(struct rq *rq)
1649 {
1650 	/*
1651 	 * We make the task go to sleep until its current deadline by
1652 	 * forcing its runtime to zero. This way, update_curr_dl() stops
1653 	 * it and the bandwidth timer will wake it up and will give it
1654 	 * new scheduling parameters (thanks to dl_yielded=1).
1655 	 */
1656 	rq->curr->dl.dl_yielded = 1;
1657 
1658 	update_rq_clock(rq);
1659 	update_curr_dl(rq);
1660 	/*
1661 	 * Tell update_rq_clock() that we've just updated,
1662 	 * so we don't do microscopic update in schedule()
1663 	 * and double the fastpath cost.
1664 	 */
1665 	rq_clock_skip_update(rq);
1666 }
1667 
1668 #ifdef CONFIG_SMP
1669 
1670 static int find_later_rq(struct task_struct *task);
1671 
1672 static int
select_task_rq_dl(struct task_struct * p,int cpu,int sd_flag,int flags)1673 select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags)
1674 {
1675 	struct task_struct *curr;
1676 	bool select_rq;
1677 	struct rq *rq;
1678 
1679 	if (sd_flag != SD_BALANCE_WAKE)
1680 		goto out;
1681 
1682 	rq = cpu_rq(cpu);
1683 
1684 	rcu_read_lock();
1685 	curr = READ_ONCE(rq->curr); /* unlocked access */
1686 
1687 	/*
1688 	 * If we are dealing with a -deadline task, we must
1689 	 * decide where to wake it up.
1690 	 * If it has a later deadline and the current task
1691 	 * on this rq can't move (provided the waking task
1692 	 * can!) we prefer to send it somewhere else. On the
1693 	 * other hand, if it has a shorter deadline, we
1694 	 * try to make it stay here, it might be important.
1695 	 */
1696 	select_rq = unlikely(dl_task(curr)) &&
1697 		    (curr->nr_cpus_allowed < 2 ||
1698 		     !dl_entity_preempt(&p->dl, &curr->dl)) &&
1699 		    p->nr_cpus_allowed > 1;
1700 
1701 	/*
1702 	 * Take the capacity of the CPU into account to
1703 	 * ensure it fits the requirement of the task.
1704 	 */
1705 	if (static_branch_unlikely(&sched_asym_cpucapacity))
1706 		select_rq |= !dl_task_fits_capacity(p, cpu);
1707 
1708 	if (select_rq) {
1709 		int target = find_later_rq(p);
1710 
1711 		if (target != -1 &&
1712 				(dl_time_before(p->dl.deadline,
1713 					cpu_rq(target)->dl.earliest_dl.curr) ||
1714 				(cpu_rq(target)->dl.dl_nr_running == 0)))
1715 			cpu = target;
1716 	}
1717 	rcu_read_unlock();
1718 
1719 out:
1720 	return cpu;
1721 }
1722 
migrate_task_rq_dl(struct task_struct * p,int new_cpu __maybe_unused)1723 static void migrate_task_rq_dl(struct task_struct *p, int new_cpu __maybe_unused)
1724 {
1725 	struct rq *rq;
1726 
1727 	if (p->state != TASK_WAKING)
1728 		return;
1729 
1730 	rq = task_rq(p);
1731 	/*
1732 	 * Since p->state == TASK_WAKING, set_task_cpu() has been called
1733 	 * from try_to_wake_up(). Hence, p->pi_lock is locked, but
1734 	 * rq->lock is not... So, lock it
1735 	 */
1736 	raw_spin_lock(&rq->lock);
1737 	if (p->dl.dl_non_contending) {
1738 		sub_running_bw(&p->dl, &rq->dl);
1739 		p->dl.dl_non_contending = 0;
1740 		/*
1741 		 * If the timer handler is currently running and the
1742 		 * timer cannot be cancelled, inactive_task_timer()
1743 		 * will see that dl_not_contending is not set, and
1744 		 * will not touch the rq's active utilization,
1745 		 * so we are still safe.
1746 		 */
1747 		if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
1748 			put_task_struct(p);
1749 	}
1750 	sub_rq_bw(&p->dl, &rq->dl);
1751 	raw_spin_unlock(&rq->lock);
1752 }
1753 
check_preempt_equal_dl(struct rq * rq,struct task_struct * p)1754 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
1755 {
1756 	/*
1757 	 * Current can't be migrated, useless to reschedule,
1758 	 * let's hope p can move out.
1759 	 */
1760 	if (rq->curr->nr_cpus_allowed == 1 ||
1761 	    !cpudl_find(&rq->rd->cpudl, rq->curr, NULL))
1762 		return;
1763 
1764 	/*
1765 	 * p is migratable, so let's not schedule it and
1766 	 * see if it is pushed or pulled somewhere else.
1767 	 */
1768 	if (p->nr_cpus_allowed != 1 &&
1769 	    cpudl_find(&rq->rd->cpudl, p, NULL))
1770 		return;
1771 
1772 	resched_curr(rq);
1773 }
1774 
balance_dl(struct rq * rq,struct task_struct * p,struct rq_flags * rf)1775 static int balance_dl(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1776 {
1777 	if (!on_dl_rq(&p->dl) && need_pull_dl_task(rq, p)) {
1778 		/*
1779 		 * This is OK, because current is on_cpu, which avoids it being
1780 		 * picked for load-balance and preemption/IRQs are still
1781 		 * disabled avoiding further scheduler activity on it and we've
1782 		 * not yet started the picking loop.
1783 		 */
1784 		rq_unpin_lock(rq, rf);
1785 		pull_dl_task(rq);
1786 		rq_repin_lock(rq, rf);
1787 	}
1788 
1789 	return sched_stop_runnable(rq) || sched_dl_runnable(rq);
1790 }
1791 #endif /* CONFIG_SMP */
1792 
1793 /*
1794  * Only called when both the current and waking task are -deadline
1795  * tasks.
1796  */
check_preempt_curr_dl(struct rq * rq,struct task_struct * p,int flags)1797 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
1798 				  int flags)
1799 {
1800 	if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
1801 		resched_curr(rq);
1802 		return;
1803 	}
1804 
1805 #ifdef CONFIG_SMP
1806 	/*
1807 	 * In the unlikely case current and p have the same deadline
1808 	 * let us try to decide what's the best thing to do...
1809 	 */
1810 	if ((p->dl.deadline == rq->curr->dl.deadline) &&
1811 	    !test_tsk_need_resched(rq->curr))
1812 		check_preempt_equal_dl(rq, p);
1813 #endif /* CONFIG_SMP */
1814 }
1815 
1816 #ifdef CONFIG_SCHED_HRTICK
start_hrtick_dl(struct rq * rq,struct task_struct * p)1817 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1818 {
1819 	hrtick_start(rq, p->dl.runtime);
1820 }
1821 #else /* !CONFIG_SCHED_HRTICK */
start_hrtick_dl(struct rq * rq,struct task_struct * p)1822 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1823 {
1824 }
1825 #endif
1826 
set_next_task_dl(struct rq * rq,struct task_struct * p,bool first)1827 static void set_next_task_dl(struct rq *rq, struct task_struct *p, bool first)
1828 {
1829 	p->se.exec_start = rq_clock_task(rq);
1830 
1831 	/* You can't push away the running task */
1832 	dequeue_pushable_dl_task(rq, p);
1833 
1834 	if (!first)
1835 		return;
1836 
1837 	if (hrtick_enabled(rq))
1838 		start_hrtick_dl(rq, p);
1839 
1840 	if (rq->curr->sched_class != &dl_sched_class)
1841 		update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1842 
1843 	deadline_queue_push_tasks(rq);
1844 }
1845 
pick_next_dl_entity(struct rq * rq,struct dl_rq * dl_rq)1846 static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq,
1847 						   struct dl_rq *dl_rq)
1848 {
1849 	struct rb_node *left = rb_first_cached(&dl_rq->root);
1850 
1851 	if (!left)
1852 		return NULL;
1853 
1854 	return rb_entry(left, struct sched_dl_entity, rb_node);
1855 }
1856 
pick_next_task_dl(struct rq * rq)1857 static struct task_struct *pick_next_task_dl(struct rq *rq)
1858 {
1859 	struct sched_dl_entity *dl_se;
1860 	struct dl_rq *dl_rq = &rq->dl;
1861 	struct task_struct *p;
1862 
1863 	if (!sched_dl_runnable(rq))
1864 		return NULL;
1865 
1866 	dl_se = pick_next_dl_entity(rq, dl_rq);
1867 	BUG_ON(!dl_se);
1868 	p = dl_task_of(dl_se);
1869 	set_next_task_dl(rq, p, true);
1870 	return p;
1871 }
1872 
put_prev_task_dl(struct rq * rq,struct task_struct * p)1873 static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
1874 {
1875 	update_curr_dl(rq);
1876 
1877 	update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1878 	if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
1879 		enqueue_pushable_dl_task(rq, p);
1880 }
1881 
1882 /*
1883  * scheduler tick hitting a task of our scheduling class.
1884  *
1885  * NOTE: This function can be called remotely by the tick offload that
1886  * goes along full dynticks. Therefore no local assumption can be made
1887  * and everything must be accessed through the @rq and @curr passed in
1888  * parameters.
1889  */
task_tick_dl(struct rq * rq,struct task_struct * p,int queued)1890 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
1891 {
1892 	update_curr_dl(rq);
1893 
1894 	update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1895 	/*
1896 	 * Even when we have runtime, update_curr_dl() might have resulted in us
1897 	 * not being the leftmost task anymore. In that case NEED_RESCHED will
1898 	 * be set and schedule() will start a new hrtick for the next task.
1899 	 */
1900 	if (hrtick_enabled(rq) && queued && p->dl.runtime > 0 &&
1901 	    is_leftmost(p, &rq->dl))
1902 		start_hrtick_dl(rq, p);
1903 }
1904 
task_fork_dl(struct task_struct * p)1905 static void task_fork_dl(struct task_struct *p)
1906 {
1907 	/*
1908 	 * SCHED_DEADLINE tasks cannot fork and this is achieved through
1909 	 * sched_fork()
1910 	 */
1911 }
1912 
1913 #ifdef CONFIG_SMP
1914 
1915 /* Only try algorithms three times */
1916 #define DL_MAX_TRIES 3
1917 
pick_dl_task(struct rq * rq,struct task_struct * p,int cpu)1918 static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
1919 {
1920 	if (!task_running(rq, p) &&
1921 	    cpumask_test_cpu(cpu, p->cpus_ptr))
1922 		return 1;
1923 	return 0;
1924 }
1925 
1926 /*
1927  * Return the earliest pushable rq's task, which is suitable to be executed
1928  * on the CPU, NULL otherwise:
1929  */
pick_earliest_pushable_dl_task(struct rq * rq,int cpu)1930 static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
1931 {
1932 	struct rb_node *next_node = rq->dl.pushable_dl_tasks_root.rb_leftmost;
1933 	struct task_struct *p = NULL;
1934 
1935 	if (!has_pushable_dl_tasks(rq))
1936 		return NULL;
1937 
1938 next_node:
1939 	if (next_node) {
1940 		p = rb_entry(next_node, struct task_struct, pushable_dl_tasks);
1941 
1942 		if (pick_dl_task(rq, p, cpu))
1943 			return p;
1944 
1945 		next_node = rb_next(next_node);
1946 		goto next_node;
1947 	}
1948 
1949 	return NULL;
1950 }
1951 
1952 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
1953 
find_later_rq(struct task_struct * task)1954 static int find_later_rq(struct task_struct *task)
1955 {
1956 	struct sched_domain *sd;
1957 	struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
1958 	int this_cpu = smp_processor_id();
1959 	int cpu = task_cpu(task);
1960 
1961 	/* Make sure the mask is initialized first */
1962 	if (unlikely(!later_mask))
1963 		return -1;
1964 
1965 	if (task->nr_cpus_allowed == 1)
1966 		return -1;
1967 
1968 	/*
1969 	 * We have to consider system topology and task affinity
1970 	 * first, then we can look for a suitable CPU.
1971 	 */
1972 	if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask))
1973 		return -1;
1974 
1975 	/*
1976 	 * If we are here, some targets have been found, including
1977 	 * the most suitable which is, among the runqueues where the
1978 	 * current tasks have later deadlines than the task's one, the
1979 	 * rq with the latest possible one.
1980 	 *
1981 	 * Now we check how well this matches with task's
1982 	 * affinity and system topology.
1983 	 *
1984 	 * The last CPU where the task run is our first
1985 	 * guess, since it is most likely cache-hot there.
1986 	 */
1987 	if (cpumask_test_cpu(cpu, later_mask))
1988 		return cpu;
1989 	/*
1990 	 * Check if this_cpu is to be skipped (i.e., it is
1991 	 * not in the mask) or not.
1992 	 */
1993 	if (!cpumask_test_cpu(this_cpu, later_mask))
1994 		this_cpu = -1;
1995 
1996 	rcu_read_lock();
1997 	for_each_domain(cpu, sd) {
1998 		if (sd->flags & SD_WAKE_AFFINE) {
1999 			int best_cpu;
2000 
2001 			/*
2002 			 * If possible, preempting this_cpu is
2003 			 * cheaper than migrating.
2004 			 */
2005 			if (this_cpu != -1 &&
2006 			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
2007 				rcu_read_unlock();
2008 				return this_cpu;
2009 			}
2010 
2011 			best_cpu = cpumask_first_and(later_mask,
2012 							sched_domain_span(sd));
2013 			/*
2014 			 * Last chance: if a CPU being in both later_mask
2015 			 * and current sd span is valid, that becomes our
2016 			 * choice. Of course, the latest possible CPU is
2017 			 * already under consideration through later_mask.
2018 			 */
2019 			if (best_cpu < nr_cpu_ids) {
2020 				rcu_read_unlock();
2021 				return best_cpu;
2022 			}
2023 		}
2024 	}
2025 	rcu_read_unlock();
2026 
2027 	/*
2028 	 * At this point, all our guesses failed, we just return
2029 	 * 'something', and let the caller sort the things out.
2030 	 */
2031 	if (this_cpu != -1)
2032 		return this_cpu;
2033 
2034 	cpu = cpumask_any(later_mask);
2035 	if (cpu < nr_cpu_ids)
2036 		return cpu;
2037 
2038 	return -1;
2039 }
2040 
2041 /* Locks the rq it finds */
find_lock_later_rq(struct task_struct * task,struct rq * rq)2042 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
2043 {
2044 	struct rq *later_rq = NULL;
2045 	int tries;
2046 	int cpu;
2047 
2048 	for (tries = 0; tries < DL_MAX_TRIES; tries++) {
2049 		cpu = find_later_rq(task);
2050 
2051 		if ((cpu == -1) || (cpu == rq->cpu))
2052 			break;
2053 
2054 		later_rq = cpu_rq(cpu);
2055 
2056 		if (later_rq->dl.dl_nr_running &&
2057 		    !dl_time_before(task->dl.deadline,
2058 					later_rq->dl.earliest_dl.curr)) {
2059 			/*
2060 			 * Target rq has tasks of equal or earlier deadline,
2061 			 * retrying does not release any lock and is unlikely
2062 			 * to yield a different result.
2063 			 */
2064 			later_rq = NULL;
2065 			break;
2066 		}
2067 
2068 		/* Retry if something changed. */
2069 		if (double_lock_balance(rq, later_rq)) {
2070 			if (unlikely(task_rq(task) != rq ||
2071 				     !cpumask_test_cpu(later_rq->cpu, task->cpus_ptr) ||
2072 				     task_running(rq, task) ||
2073 				     !dl_task(task) ||
2074 				     !task_on_rq_queued(task))) {
2075 				double_unlock_balance(rq, later_rq);
2076 				later_rq = NULL;
2077 				break;
2078 			}
2079 		}
2080 
2081 		/*
2082 		 * If the rq we found has no -deadline task, or
2083 		 * its earliest one has a later deadline than our
2084 		 * task, the rq is a good one.
2085 		 */
2086 		if (!later_rq->dl.dl_nr_running ||
2087 		    dl_time_before(task->dl.deadline,
2088 				   later_rq->dl.earliest_dl.curr))
2089 			break;
2090 
2091 		/* Otherwise we try again. */
2092 		double_unlock_balance(rq, later_rq);
2093 		later_rq = NULL;
2094 	}
2095 
2096 	return later_rq;
2097 }
2098 
pick_next_pushable_dl_task(struct rq * rq)2099 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
2100 {
2101 	struct task_struct *p;
2102 
2103 	if (!has_pushable_dl_tasks(rq))
2104 		return NULL;
2105 
2106 	p = rb_entry(rq->dl.pushable_dl_tasks_root.rb_leftmost,
2107 		     struct task_struct, pushable_dl_tasks);
2108 
2109 	BUG_ON(rq->cpu != task_cpu(p));
2110 	BUG_ON(task_current(rq, p));
2111 	BUG_ON(p->nr_cpus_allowed <= 1);
2112 
2113 	BUG_ON(!task_on_rq_queued(p));
2114 	BUG_ON(!dl_task(p));
2115 
2116 	return p;
2117 }
2118 
2119 /*
2120  * See if the non running -deadline tasks on this rq
2121  * can be sent to some other CPU where they can preempt
2122  * and start executing.
2123  */
push_dl_task(struct rq * rq)2124 static int push_dl_task(struct rq *rq)
2125 {
2126 	struct task_struct *next_task;
2127 	struct rq *later_rq;
2128 	int ret = 0;
2129 
2130 	if (!rq->dl.overloaded)
2131 		return 0;
2132 
2133 	next_task = pick_next_pushable_dl_task(rq);
2134 	if (!next_task)
2135 		return 0;
2136 
2137 retry:
2138 	if (WARN_ON(next_task == rq->curr))
2139 		return 0;
2140 
2141 	/*
2142 	 * If next_task preempts rq->curr, and rq->curr
2143 	 * can move away, it makes sense to just reschedule
2144 	 * without going further in pushing next_task.
2145 	 */
2146 	if (dl_task(rq->curr) &&
2147 	    dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
2148 	    rq->curr->nr_cpus_allowed > 1) {
2149 		resched_curr(rq);
2150 		return 0;
2151 	}
2152 
2153 	/* We might release rq lock */
2154 	get_task_struct(next_task);
2155 
2156 	/* Will lock the rq it'll find */
2157 	later_rq = find_lock_later_rq(next_task, rq);
2158 	if (!later_rq) {
2159 		struct task_struct *task;
2160 
2161 		/*
2162 		 * We must check all this again, since
2163 		 * find_lock_later_rq releases rq->lock and it is
2164 		 * then possible that next_task has migrated.
2165 		 */
2166 		task = pick_next_pushable_dl_task(rq);
2167 		if (task == next_task) {
2168 			/*
2169 			 * The task is still there. We don't try
2170 			 * again, some other CPU will pull it when ready.
2171 			 */
2172 			goto out;
2173 		}
2174 
2175 		if (!task)
2176 			/* No more tasks */
2177 			goto out;
2178 
2179 		put_task_struct(next_task);
2180 		next_task = task;
2181 		goto retry;
2182 	}
2183 
2184 	deactivate_task(rq, next_task, 0);
2185 	set_task_cpu(next_task, later_rq->cpu);
2186 
2187 	/*
2188 	 * Update the later_rq clock here, because the clock is used
2189 	 * by the cpufreq_update_util() inside __add_running_bw().
2190 	 */
2191 	update_rq_clock(later_rq);
2192 	activate_task(later_rq, next_task, ENQUEUE_NOCLOCK);
2193 	ret = 1;
2194 
2195 	resched_curr(later_rq);
2196 
2197 	double_unlock_balance(rq, later_rq);
2198 
2199 out:
2200 	put_task_struct(next_task);
2201 
2202 	return ret;
2203 }
2204 
push_dl_tasks(struct rq * rq)2205 static void push_dl_tasks(struct rq *rq)
2206 {
2207 	/* push_dl_task() will return true if it moved a -deadline task */
2208 	while (push_dl_task(rq))
2209 		;
2210 }
2211 
pull_dl_task(struct rq * this_rq)2212 static void pull_dl_task(struct rq *this_rq)
2213 {
2214 	int this_cpu = this_rq->cpu, cpu;
2215 	struct task_struct *p;
2216 	bool resched = false;
2217 	struct rq *src_rq;
2218 	u64 dmin = LONG_MAX;
2219 
2220 	if (likely(!dl_overloaded(this_rq)))
2221 		return;
2222 
2223 	/*
2224 	 * Match the barrier from dl_set_overloaded; this guarantees that if we
2225 	 * see overloaded we must also see the dlo_mask bit.
2226 	 */
2227 	smp_rmb();
2228 
2229 	for_each_cpu(cpu, this_rq->rd->dlo_mask) {
2230 		if (this_cpu == cpu)
2231 			continue;
2232 
2233 		src_rq = cpu_rq(cpu);
2234 
2235 		/*
2236 		 * It looks racy, abd it is! However, as in sched_rt.c,
2237 		 * we are fine with this.
2238 		 */
2239 		if (this_rq->dl.dl_nr_running &&
2240 		    dl_time_before(this_rq->dl.earliest_dl.curr,
2241 				   src_rq->dl.earliest_dl.next))
2242 			continue;
2243 
2244 		/* Might drop this_rq->lock */
2245 		double_lock_balance(this_rq, src_rq);
2246 
2247 		/*
2248 		 * If there are no more pullable tasks on the
2249 		 * rq, we're done with it.
2250 		 */
2251 		if (src_rq->dl.dl_nr_running <= 1)
2252 			goto skip;
2253 
2254 		p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
2255 
2256 		/*
2257 		 * We found a task to be pulled if:
2258 		 *  - it preempts our current (if there's one),
2259 		 *  - it will preempt the last one we pulled (if any).
2260 		 */
2261 		if (p && dl_time_before(p->dl.deadline, dmin) &&
2262 		    (!this_rq->dl.dl_nr_running ||
2263 		     dl_time_before(p->dl.deadline,
2264 				    this_rq->dl.earliest_dl.curr))) {
2265 			WARN_ON(p == src_rq->curr);
2266 			WARN_ON(!task_on_rq_queued(p));
2267 
2268 			/*
2269 			 * Then we pull iff p has actually an earlier
2270 			 * deadline than the current task of its runqueue.
2271 			 */
2272 			if (dl_time_before(p->dl.deadline,
2273 					   src_rq->curr->dl.deadline))
2274 				goto skip;
2275 
2276 			resched = true;
2277 
2278 			deactivate_task(src_rq, p, 0);
2279 			set_task_cpu(p, this_cpu);
2280 			activate_task(this_rq, p, 0);
2281 			dmin = p->dl.deadline;
2282 
2283 			/* Is there any other task even earlier? */
2284 		}
2285 skip:
2286 		double_unlock_balance(this_rq, src_rq);
2287 	}
2288 
2289 	if (resched)
2290 		resched_curr(this_rq);
2291 }
2292 
2293 /*
2294  * Since the task is not running and a reschedule is not going to happen
2295  * anytime soon on its runqueue, we try pushing it away now.
2296  */
task_woken_dl(struct rq * rq,struct task_struct * p)2297 static void task_woken_dl(struct rq *rq, struct task_struct *p)
2298 {
2299 	if (!task_running(rq, p) &&
2300 	    !test_tsk_need_resched(rq->curr) &&
2301 	    p->nr_cpus_allowed > 1 &&
2302 	    dl_task(rq->curr) &&
2303 	    (rq->curr->nr_cpus_allowed < 2 ||
2304 	     !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
2305 		push_dl_tasks(rq);
2306 	}
2307 }
2308 
set_cpus_allowed_dl(struct task_struct * p,const struct cpumask * new_mask)2309 static void set_cpus_allowed_dl(struct task_struct *p,
2310 				const struct cpumask *new_mask)
2311 {
2312 	struct root_domain *src_rd;
2313 	struct rq *rq;
2314 
2315 	BUG_ON(!dl_task(p));
2316 
2317 	rq = task_rq(p);
2318 	src_rd = rq->rd;
2319 	/*
2320 	 * Migrating a SCHED_DEADLINE task between exclusive
2321 	 * cpusets (different root_domains) entails a bandwidth
2322 	 * update. We already made space for us in the destination
2323 	 * domain (see cpuset_can_attach()).
2324 	 */
2325 	if (!cpumask_intersects(src_rd->span, new_mask)) {
2326 		struct dl_bw *src_dl_b;
2327 
2328 		src_dl_b = dl_bw_of(cpu_of(rq));
2329 		/*
2330 		 * We now free resources of the root_domain we are migrating
2331 		 * off. In the worst case, sched_setattr() may temporary fail
2332 		 * until we complete the update.
2333 		 */
2334 		raw_spin_lock(&src_dl_b->lock);
2335 		__dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
2336 		raw_spin_unlock(&src_dl_b->lock);
2337 	}
2338 
2339 	set_cpus_allowed_common(p, new_mask);
2340 }
2341 
2342 /* Assumes rq->lock is held */
rq_online_dl(struct rq * rq)2343 static void rq_online_dl(struct rq *rq)
2344 {
2345 	if (rq->dl.overloaded)
2346 		dl_set_overload(rq);
2347 
2348 	cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
2349 	if (rq->dl.dl_nr_running > 0)
2350 		cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr);
2351 }
2352 
2353 /* Assumes rq->lock is held */
rq_offline_dl(struct rq * rq)2354 static void rq_offline_dl(struct rq *rq)
2355 {
2356 	if (rq->dl.overloaded)
2357 		dl_clear_overload(rq);
2358 
2359 	cpudl_clear(&rq->rd->cpudl, rq->cpu);
2360 	cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
2361 }
2362 
init_sched_dl_class(void)2363 void __init init_sched_dl_class(void)
2364 {
2365 	unsigned int i;
2366 
2367 	for_each_possible_cpu(i)
2368 		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
2369 					GFP_KERNEL, cpu_to_node(i));
2370 }
2371 
dl_add_task_root_domain(struct task_struct * p)2372 void dl_add_task_root_domain(struct task_struct *p)
2373 {
2374 	struct rq_flags rf;
2375 	struct rq *rq;
2376 	struct dl_bw *dl_b;
2377 
2378 	rq = task_rq_lock(p, &rf);
2379 	if (!dl_task(p))
2380 		goto unlock;
2381 
2382 	dl_b = &rq->rd->dl_bw;
2383 	raw_spin_lock(&dl_b->lock);
2384 
2385 	__dl_add(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
2386 
2387 	raw_spin_unlock(&dl_b->lock);
2388 
2389 unlock:
2390 	task_rq_unlock(rq, p, &rf);
2391 }
2392 
dl_clear_root_domain(struct root_domain * rd)2393 void dl_clear_root_domain(struct root_domain *rd)
2394 {
2395 	unsigned long flags;
2396 
2397 	raw_spin_lock_irqsave(&rd->dl_bw.lock, flags);
2398 	rd->dl_bw.total_bw = 0;
2399 	raw_spin_unlock_irqrestore(&rd->dl_bw.lock, flags);
2400 }
2401 
2402 #endif /* CONFIG_SMP */
2403 
switched_from_dl(struct rq * rq,struct task_struct * p)2404 static void switched_from_dl(struct rq *rq, struct task_struct *p)
2405 {
2406 	/*
2407 	 * task_non_contending() can start the "inactive timer" (if the 0-lag
2408 	 * time is in the future). If the task switches back to dl before
2409 	 * the "inactive timer" fires, it can continue to consume its current
2410 	 * runtime using its current deadline. If it stays outside of
2411 	 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer()
2412 	 * will reset the task parameters.
2413 	 */
2414 	if (task_on_rq_queued(p) && p->dl.dl_runtime)
2415 		task_non_contending(p);
2416 
2417 	if (!task_on_rq_queued(p)) {
2418 		/*
2419 		 * Inactive timer is armed. However, p is leaving DEADLINE and
2420 		 * might migrate away from this rq while continuing to run on
2421 		 * some other class. We need to remove its contribution from
2422 		 * this rq running_bw now, or sub_rq_bw (below) will complain.
2423 		 */
2424 		if (p->dl.dl_non_contending)
2425 			sub_running_bw(&p->dl, &rq->dl);
2426 		sub_rq_bw(&p->dl, &rq->dl);
2427 	}
2428 
2429 	/*
2430 	 * We cannot use inactive_task_timer() to invoke sub_running_bw()
2431 	 * at the 0-lag time, because the task could have been migrated
2432 	 * while SCHED_OTHER in the meanwhile.
2433 	 */
2434 	if (p->dl.dl_non_contending)
2435 		p->dl.dl_non_contending = 0;
2436 
2437 	/*
2438 	 * Since this might be the only -deadline task on the rq,
2439 	 * this is the right place to try to pull some other one
2440 	 * from an overloaded CPU, if any.
2441 	 */
2442 	if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
2443 		return;
2444 
2445 	deadline_queue_pull_task(rq);
2446 }
2447 
2448 /*
2449  * When switching to -deadline, we may overload the rq, then
2450  * we try to push someone off, if possible.
2451  */
switched_to_dl(struct rq * rq,struct task_struct * p)2452 static void switched_to_dl(struct rq *rq, struct task_struct *p)
2453 {
2454 	if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
2455 		put_task_struct(p);
2456 
2457 	/* If p is not queued we will update its parameters at next wakeup. */
2458 	if (!task_on_rq_queued(p)) {
2459 		add_rq_bw(&p->dl, &rq->dl);
2460 
2461 		return;
2462 	}
2463 
2464 	if (rq->curr != p) {
2465 #ifdef CONFIG_SMP
2466 		if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
2467 			deadline_queue_push_tasks(rq);
2468 #endif
2469 		if (dl_task(rq->curr))
2470 			check_preempt_curr_dl(rq, p, 0);
2471 		else
2472 			resched_curr(rq);
2473 	}
2474 }
2475 
2476 /*
2477  * If the scheduling parameters of a -deadline task changed,
2478  * a push or pull operation might be needed.
2479  */
prio_changed_dl(struct rq * rq,struct task_struct * p,int oldprio)2480 static void prio_changed_dl(struct rq *rq, struct task_struct *p,
2481 			    int oldprio)
2482 {
2483 	if (task_on_rq_queued(p) || rq->curr == p) {
2484 #ifdef CONFIG_SMP
2485 		/*
2486 		 * This might be too much, but unfortunately
2487 		 * we don't have the old deadline value, and
2488 		 * we can't argue if the task is increasing
2489 		 * or lowering its prio, so...
2490 		 */
2491 		if (!rq->dl.overloaded)
2492 			deadline_queue_pull_task(rq);
2493 
2494 		/*
2495 		 * If we now have a earlier deadline task than p,
2496 		 * then reschedule, provided p is still on this
2497 		 * runqueue.
2498 		 */
2499 		if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
2500 			resched_curr(rq);
2501 #else
2502 		/*
2503 		 * Again, we don't know if p has a earlier
2504 		 * or later deadline, so let's blindly set a
2505 		 * (maybe not needed) rescheduling point.
2506 		 */
2507 		resched_curr(rq);
2508 #endif /* CONFIG_SMP */
2509 	}
2510 }
2511 
2512 const struct sched_class dl_sched_class
2513 	__section("__dl_sched_class") = {
2514 	.enqueue_task		= enqueue_task_dl,
2515 	.dequeue_task		= dequeue_task_dl,
2516 	.yield_task		= yield_task_dl,
2517 
2518 	.check_preempt_curr	= check_preempt_curr_dl,
2519 
2520 	.pick_next_task		= pick_next_task_dl,
2521 	.put_prev_task		= put_prev_task_dl,
2522 	.set_next_task		= set_next_task_dl,
2523 
2524 #ifdef CONFIG_SMP
2525 	.balance		= balance_dl,
2526 	.select_task_rq		= select_task_rq_dl,
2527 	.migrate_task_rq	= migrate_task_rq_dl,
2528 	.set_cpus_allowed       = set_cpus_allowed_dl,
2529 	.rq_online              = rq_online_dl,
2530 	.rq_offline             = rq_offline_dl,
2531 	.task_woken		= task_woken_dl,
2532 #endif
2533 
2534 	.task_tick		= task_tick_dl,
2535 	.task_fork              = task_fork_dl,
2536 
2537 	.prio_changed           = prio_changed_dl,
2538 	.switched_from		= switched_from_dl,
2539 	.switched_to		= switched_to_dl,
2540 
2541 	.update_curr		= update_curr_dl,
2542 };
2543 
sched_dl_global_validate(void)2544 int sched_dl_global_validate(void)
2545 {
2546 	u64 runtime = global_rt_runtime();
2547 	u64 period = global_rt_period();
2548 	u64 new_bw = to_ratio(period, runtime);
2549 	struct dl_bw *dl_b;
2550 	int cpu, ret = 0;
2551 	unsigned long flags;
2552 
2553 	/*
2554 	 * Here we want to check the bandwidth not being set to some
2555 	 * value smaller than the currently allocated bandwidth in
2556 	 * any of the root_domains.
2557 	 *
2558 	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
2559 	 * cycling on root_domains... Discussion on different/better
2560 	 * solutions is welcome!
2561 	 */
2562 	for_each_possible_cpu(cpu) {
2563 		rcu_read_lock_sched();
2564 		dl_b = dl_bw_of(cpu);
2565 
2566 		raw_spin_lock_irqsave(&dl_b->lock, flags);
2567 		if (new_bw < dl_b->total_bw)
2568 			ret = -EBUSY;
2569 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2570 
2571 		rcu_read_unlock_sched();
2572 
2573 		if (ret)
2574 			break;
2575 	}
2576 
2577 	return ret;
2578 }
2579 
init_dl_rq_bw_ratio(struct dl_rq * dl_rq)2580 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq)
2581 {
2582 	if (global_rt_runtime() == RUNTIME_INF) {
2583 		dl_rq->bw_ratio = 1 << RATIO_SHIFT;
2584 		dl_rq->extra_bw = 1 << BW_SHIFT;
2585 	} else {
2586 		dl_rq->bw_ratio = to_ratio(global_rt_runtime(),
2587 			  global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT);
2588 		dl_rq->extra_bw = to_ratio(global_rt_period(),
2589 						    global_rt_runtime());
2590 	}
2591 }
2592 
sched_dl_do_global(void)2593 void sched_dl_do_global(void)
2594 {
2595 	u64 new_bw = -1;
2596 	struct dl_bw *dl_b;
2597 	int cpu;
2598 	unsigned long flags;
2599 
2600 	def_dl_bandwidth.dl_period = global_rt_period();
2601 	def_dl_bandwidth.dl_runtime = global_rt_runtime();
2602 
2603 	if (global_rt_runtime() != RUNTIME_INF)
2604 		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
2605 
2606 	/*
2607 	 * FIXME: As above...
2608 	 */
2609 	for_each_possible_cpu(cpu) {
2610 		rcu_read_lock_sched();
2611 		dl_b = dl_bw_of(cpu);
2612 
2613 		raw_spin_lock_irqsave(&dl_b->lock, flags);
2614 		dl_b->bw = new_bw;
2615 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2616 
2617 		rcu_read_unlock_sched();
2618 		init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl);
2619 	}
2620 }
2621 
2622 /*
2623  * We must be sure that accepting a new task (or allowing changing the
2624  * parameters of an existing one) is consistent with the bandwidth
2625  * constraints. If yes, this function also accordingly updates the currently
2626  * allocated bandwidth to reflect the new situation.
2627  *
2628  * This function is called while holding p's rq->lock.
2629  */
sched_dl_overflow(struct task_struct * p,int policy,const struct sched_attr * attr)2630 int sched_dl_overflow(struct task_struct *p, int policy,
2631 		      const struct sched_attr *attr)
2632 {
2633 	u64 period = attr->sched_period ?: attr->sched_deadline;
2634 	u64 runtime = attr->sched_runtime;
2635 	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2636 	int cpus, err = -1, cpu = task_cpu(p);
2637 	struct dl_bw *dl_b = dl_bw_of(cpu);
2638 	unsigned long cap;
2639 
2640 	if (attr->sched_flags & SCHED_FLAG_SUGOV)
2641 		return 0;
2642 
2643 	/* !deadline task may carry old deadline bandwidth */
2644 	if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2645 		return 0;
2646 
2647 	/*
2648 	 * Either if a task, enters, leave, or stays -deadline but changes
2649 	 * its parameters, we may need to update accordingly the total
2650 	 * allocated bandwidth of the container.
2651 	 */
2652 	raw_spin_lock(&dl_b->lock);
2653 	cpus = dl_bw_cpus(cpu);
2654 	cap = dl_bw_capacity(cpu);
2655 
2656 	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2657 	    !__dl_overflow(dl_b, cap, 0, new_bw)) {
2658 		if (hrtimer_active(&p->dl.inactive_timer))
2659 			__dl_sub(dl_b, p->dl.dl_bw, cpus);
2660 		__dl_add(dl_b, new_bw, cpus);
2661 		err = 0;
2662 	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2663 		   !__dl_overflow(dl_b, cap, p->dl.dl_bw, new_bw)) {
2664 		/*
2665 		 * XXX this is slightly incorrect: when the task
2666 		 * utilization decreases, we should delay the total
2667 		 * utilization change until the task's 0-lag point.
2668 		 * But this would require to set the task's "inactive
2669 		 * timer" when the task is not inactive.
2670 		 */
2671 		__dl_sub(dl_b, p->dl.dl_bw, cpus);
2672 		__dl_add(dl_b, new_bw, cpus);
2673 		dl_change_utilization(p, new_bw);
2674 		err = 0;
2675 	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2676 		/*
2677 		 * Do not decrease the total deadline utilization here,
2678 		 * switched_from_dl() will take care to do it at the correct
2679 		 * (0-lag) time.
2680 		 */
2681 		err = 0;
2682 	}
2683 	raw_spin_unlock(&dl_b->lock);
2684 
2685 	return err;
2686 }
2687 
2688 /*
2689  * This function initializes the sched_dl_entity of a newly becoming
2690  * SCHED_DEADLINE task.
2691  *
2692  * Only the static values are considered here, the actual runtime and the
2693  * absolute deadline will be properly calculated when the task is enqueued
2694  * for the first time with its new policy.
2695  */
__setparam_dl(struct task_struct * p,const struct sched_attr * attr)2696 void __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
2697 {
2698 	struct sched_dl_entity *dl_se = &p->dl;
2699 
2700 	dl_se->dl_runtime = attr->sched_runtime;
2701 	dl_se->dl_deadline = attr->sched_deadline;
2702 	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
2703 	dl_se->flags = attr->sched_flags;
2704 	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
2705 	dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
2706 }
2707 
__getparam_dl(struct task_struct * p,struct sched_attr * attr)2708 void __getparam_dl(struct task_struct *p, struct sched_attr *attr)
2709 {
2710 	struct sched_dl_entity *dl_se = &p->dl;
2711 
2712 	attr->sched_priority = p->rt_priority;
2713 	attr->sched_runtime = dl_se->dl_runtime;
2714 	attr->sched_deadline = dl_se->dl_deadline;
2715 	attr->sched_period = dl_se->dl_period;
2716 	attr->sched_flags = dl_se->flags;
2717 }
2718 
2719 /*
2720  * Default limits for DL period; on the top end we guard against small util
2721  * tasks still getting rediculous long effective runtimes, on the bottom end we
2722  * guard against timer DoS.
2723  */
2724 unsigned int sysctl_sched_dl_period_max = 1 << 22; /* ~4 seconds */
2725 unsigned int sysctl_sched_dl_period_min = 100;     /* 100 us */
2726 
2727 /*
2728  * This function validates the new parameters of a -deadline task.
2729  * We ask for the deadline not being zero, and greater or equal
2730  * than the runtime, as well as the period of being zero or
2731  * greater than deadline. Furthermore, we have to be sure that
2732  * user parameters are above the internal resolution of 1us (we
2733  * check sched_runtime only since it is always the smaller one) and
2734  * below 2^63 ns (we have to check both sched_deadline and
2735  * sched_period, as the latter can be zero).
2736  */
__checkparam_dl(const struct sched_attr * attr)2737 bool __checkparam_dl(const struct sched_attr *attr)
2738 {
2739 	u64 period, max, min;
2740 
2741 	/* special dl tasks don't actually use any parameter */
2742 	if (attr->sched_flags & SCHED_FLAG_SUGOV)
2743 		return true;
2744 
2745 	/* deadline != 0 */
2746 	if (attr->sched_deadline == 0)
2747 		return false;
2748 
2749 	/*
2750 	 * Since we truncate DL_SCALE bits, make sure we're at least
2751 	 * that big.
2752 	 */
2753 	if (attr->sched_runtime < (1ULL << DL_SCALE))
2754 		return false;
2755 
2756 	/*
2757 	 * Since we use the MSB for wrap-around and sign issues, make
2758 	 * sure it's not set (mind that period can be equal to zero).
2759 	 */
2760 	if (attr->sched_deadline & (1ULL << 63) ||
2761 	    attr->sched_period & (1ULL << 63))
2762 		return false;
2763 
2764 	period = attr->sched_period;
2765 	if (!period)
2766 		period = attr->sched_deadline;
2767 
2768 	/* runtime <= deadline <= period (if period != 0) */
2769 	if (period < attr->sched_deadline ||
2770 	    attr->sched_deadline < attr->sched_runtime)
2771 		return false;
2772 
2773 	max = (u64)READ_ONCE(sysctl_sched_dl_period_max) * NSEC_PER_USEC;
2774 	min = (u64)READ_ONCE(sysctl_sched_dl_period_min) * NSEC_PER_USEC;
2775 
2776 	if (period < min || period > max)
2777 		return false;
2778 
2779 	return true;
2780 }
2781 
2782 /*
2783  * This function clears the sched_dl_entity static params.
2784  */
__dl_clear_params(struct task_struct * p)2785 void __dl_clear_params(struct task_struct *p)
2786 {
2787 	struct sched_dl_entity *dl_se = &p->dl;
2788 
2789 	dl_se->dl_runtime		= 0;
2790 	dl_se->dl_deadline		= 0;
2791 	dl_se->dl_period		= 0;
2792 	dl_se->flags			= 0;
2793 	dl_se->dl_bw			= 0;
2794 	dl_se->dl_density		= 0;
2795 
2796 	dl_se->dl_throttled		= 0;
2797 	dl_se->dl_yielded		= 0;
2798 	dl_se->dl_non_contending	= 0;
2799 	dl_se->dl_overrun		= 0;
2800 
2801 #ifdef CONFIG_RT_MUTEXES
2802 	dl_se->pi_se			= dl_se;
2803 #endif
2804 }
2805 
dl_param_changed(struct task_struct * p,const struct sched_attr * attr)2806 bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
2807 {
2808 	struct sched_dl_entity *dl_se = &p->dl;
2809 
2810 	if (dl_se->dl_runtime != attr->sched_runtime ||
2811 	    dl_se->dl_deadline != attr->sched_deadline ||
2812 	    dl_se->dl_period != attr->sched_period ||
2813 	    dl_se->flags != attr->sched_flags)
2814 		return true;
2815 
2816 	return false;
2817 }
2818 
2819 #ifdef CONFIG_SMP
dl_task_can_attach(struct task_struct * p,const struct cpumask * cs_cpus_allowed)2820 int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed)
2821 {
2822 	unsigned long flags, cap;
2823 	unsigned int dest_cpu;
2824 	struct dl_bw *dl_b;
2825 	bool overflow;
2826 	int ret;
2827 
2828 	dest_cpu = cpumask_any_and(cpu_active_mask, cs_cpus_allowed);
2829 
2830 	rcu_read_lock_sched();
2831 	dl_b = dl_bw_of(dest_cpu);
2832 	raw_spin_lock_irqsave(&dl_b->lock, flags);
2833 	cap = dl_bw_capacity(dest_cpu);
2834 	overflow = __dl_overflow(dl_b, cap, 0, p->dl.dl_bw);
2835 	if (overflow) {
2836 		ret = -EBUSY;
2837 	} else {
2838 		/*
2839 		 * We reserve space for this task in the destination
2840 		 * root_domain, as we can't fail after this point.
2841 		 * We will free resources in the source root_domain
2842 		 * later on (see set_cpus_allowed_dl()).
2843 		 */
2844 		int cpus = dl_bw_cpus(dest_cpu);
2845 
2846 		__dl_add(dl_b, p->dl.dl_bw, cpus);
2847 		ret = 0;
2848 	}
2849 	raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2850 	rcu_read_unlock_sched();
2851 
2852 	return ret;
2853 }
2854 
dl_cpuset_cpumask_can_shrink(const struct cpumask * cur,const struct cpumask * trial)2855 int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur,
2856 				 const struct cpumask *trial)
2857 {
2858 	int ret = 1, trial_cpus;
2859 	struct dl_bw *cur_dl_b;
2860 	unsigned long flags;
2861 
2862 	rcu_read_lock_sched();
2863 	cur_dl_b = dl_bw_of(cpumask_any(cur));
2864 	trial_cpus = cpumask_weight(trial);
2865 
2866 	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
2867 	if (cur_dl_b->bw != -1 &&
2868 	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
2869 		ret = 0;
2870 	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
2871 	rcu_read_unlock_sched();
2872 
2873 	return ret;
2874 }
2875 
dl_cpu_busy(unsigned int cpu)2876 bool dl_cpu_busy(unsigned int cpu)
2877 {
2878 	unsigned long flags, cap;
2879 	struct dl_bw *dl_b;
2880 	bool overflow;
2881 
2882 	rcu_read_lock_sched();
2883 	dl_b = dl_bw_of(cpu);
2884 	raw_spin_lock_irqsave(&dl_b->lock, flags);
2885 	cap = dl_bw_capacity(cpu);
2886 	overflow = __dl_overflow(dl_b, cap, 0, 0);
2887 	raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2888 	rcu_read_unlock_sched();
2889 
2890 	return overflow;
2891 }
2892 #endif
2893 
2894 #ifdef CONFIG_SCHED_DEBUG
print_dl_stats(struct seq_file * m,int cpu)2895 void print_dl_stats(struct seq_file *m, int cpu)
2896 {
2897 	print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
2898 }
2899 #endif /* CONFIG_SCHED_DEBUG */
2900