1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Scheduler internal types and methods:
4  */
5 #include <linux/sched.h>
6 
7 #include <linux/sched/autogroup.h>
8 #include <linux/sched/clock.h>
9 #include <linux/sched/coredump.h>
10 #include <linux/sched/cpufreq.h>
11 #include <linux/sched/cputime.h>
12 #include <linux/sched/deadline.h>
13 #include <linux/sched/debug.h>
14 #include <linux/sched/hotplug.h>
15 #include <linux/sched/idle.h>
16 #include <linux/sched/init.h>
17 #include <linux/sched/isolation.h>
18 #include <linux/sched/jobctl.h>
19 #include <linux/sched/loadavg.h>
20 #include <linux/sched/mm.h>
21 #include <linux/sched/nohz.h>
22 #include <linux/sched/numa_balancing.h>
23 #include <linux/sched/prio.h>
24 #include <linux/sched/rt.h>
25 #include <linux/sched/signal.h>
26 #include <linux/sched/stat.h>
27 #include <linux/sched/sysctl.h>
28 #include <linux/sched/task.h>
29 #include <linux/sched/task_stack.h>
30 #include <linux/sched/topology.h>
31 #include <linux/sched/user.h>
32 #include <linux/sched/wake_q.h>
33 #include <linux/sched/xacct.h>
34 
35 #include <uapi/linux/sched/types.h>
36 
37 #include <linux/binfmts.h>
38 #include <linux/blkdev.h>
39 #include <linux/compat.h>
40 #include <linux/context_tracking.h>
41 #include <linux/cpufreq.h>
42 #include <linux/cpuidle.h>
43 #include <linux/cpuset.h>
44 #include <linux/ctype.h>
45 #include <linux/debugfs.h>
46 #include <linux/delayacct.h>
47 #include <linux/init_task.h>
48 #include <linux/kprobes.h>
49 #include <linux/kthread.h>
50 #include <linux/membarrier.h>
51 #include <linux/migrate.h>
52 #include <linux/mmu_context.h>
53 #include <linux/nmi.h>
54 #include <linux/proc_fs.h>
55 #include <linux/prefetch.h>
56 #include <linux/profile.h>
57 #include <linux/rcupdate_wait.h>
58 #include <linux/security.h>
59 #include <linux/stackprotector.h>
60 #include <linux/stop_machine.h>
61 #include <linux/suspend.h>
62 #include <linux/swait.h>
63 #include <linux/syscalls.h>
64 #include <linux/task_work.h>
65 #include <linux/tsacct_kern.h>
66 
67 #include <asm/tlb.h>
68 
69 #ifdef CONFIG_PARAVIRT
70 # include <asm/paravirt.h>
71 #endif
72 
73 #include "cpupri.h"
74 #include "cpudeadline.h"
75 
76 #ifdef CONFIG_SCHED_DEBUG
77 # define SCHED_WARN_ON(x)	WARN_ONCE(x, #x)
78 #else
79 # define SCHED_WARN_ON(x)	({ (void)(x), 0; })
80 #endif
81 
82 struct rq;
83 struct cpuidle_state;
84 
85 /* task_struct::on_rq states: */
86 #define TASK_ON_RQ_QUEUED	1
87 #define TASK_ON_RQ_MIGRATING	2
88 
89 extern __read_mostly int scheduler_running;
90 
91 extern unsigned long calc_load_update;
92 extern atomic_long_t calc_load_tasks;
93 
94 extern void calc_global_load_tick(struct rq *this_rq);
95 extern long calc_load_fold_active(struct rq *this_rq, long adjust);
96 
97 #ifdef CONFIG_SMP
98 extern void cpu_load_update_active(struct rq *this_rq);
99 #else
cpu_load_update_active(struct rq * this_rq)100 static inline void cpu_load_update_active(struct rq *this_rq) { }
101 #endif
102 
103 /*
104  * Helpers for converting nanosecond timing to jiffy resolution
105  */
106 #define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
107 
108 /*
109  * Increase resolution of nice-level calculations for 64-bit architectures.
110  * The extra resolution improves shares distribution and load balancing of
111  * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
112  * hierarchies, especially on larger systems. This is not a user-visible change
113  * and does not change the user-interface for setting shares/weights.
114  *
115  * We increase resolution only if we have enough bits to allow this increased
116  * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
117  * are pretty high and the returns do not justify the increased costs.
118  *
119  * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
120  * increase coverage and consistency always enable it on 64-bit platforms.
121  */
122 #ifdef CONFIG_64BIT
123 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
124 # define scale_load(w)		((w) << SCHED_FIXEDPOINT_SHIFT)
125 # define scale_load_down(w)	((w) >> SCHED_FIXEDPOINT_SHIFT)
126 #else
127 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT)
128 # define scale_load(w)		(w)
129 # define scale_load_down(w)	(w)
130 #endif
131 
132 /*
133  * Task weight (visible to users) and its load (invisible to users) have
134  * independent resolution, but they should be well calibrated. We use
135  * scale_load() and scale_load_down(w) to convert between them. The
136  * following must be true:
137  *
138  *  scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
139  *
140  */
141 #define NICE_0_LOAD		(1L << NICE_0_LOAD_SHIFT)
142 
143 /*
144  * Single value that decides SCHED_DEADLINE internal math precision.
145  * 10 -> just above 1us
146  * 9  -> just above 0.5us
147  */
148 #define DL_SCALE		10
149 
150 /*
151  * Single value that denotes runtime == period, ie unlimited time.
152  */
153 #define RUNTIME_INF		((u64)~0ULL)
154 
idle_policy(int policy)155 static inline int idle_policy(int policy)
156 {
157 	return policy == SCHED_IDLE;
158 }
fair_policy(int policy)159 static inline int fair_policy(int policy)
160 {
161 	return policy == SCHED_NORMAL || policy == SCHED_BATCH;
162 }
163 
rt_policy(int policy)164 static inline int rt_policy(int policy)
165 {
166 	return policy == SCHED_FIFO || policy == SCHED_RR;
167 }
168 
dl_policy(int policy)169 static inline int dl_policy(int policy)
170 {
171 	return policy == SCHED_DEADLINE;
172 }
valid_policy(int policy)173 static inline bool valid_policy(int policy)
174 {
175 	return idle_policy(policy) || fair_policy(policy) ||
176 		rt_policy(policy) || dl_policy(policy);
177 }
178 
task_has_rt_policy(struct task_struct * p)179 static inline int task_has_rt_policy(struct task_struct *p)
180 {
181 	return rt_policy(p->policy);
182 }
183 
task_has_dl_policy(struct task_struct * p)184 static inline int task_has_dl_policy(struct task_struct *p)
185 {
186 	return dl_policy(p->policy);
187 }
188 
189 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
190 
191 /*
192  * !! For sched_setattr_nocheck() (kernel) only !!
193  *
194  * This is actually gross. :(
195  *
196  * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
197  * tasks, but still be able to sleep. We need this on platforms that cannot
198  * atomically change clock frequency. Remove once fast switching will be
199  * available on such platforms.
200  *
201  * SUGOV stands for SchedUtil GOVernor.
202  */
203 #define SCHED_FLAG_SUGOV	0x10000000
204 
dl_entity_is_special(struct sched_dl_entity * dl_se)205 static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se)
206 {
207 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
208 	return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
209 #else
210 	return false;
211 #endif
212 }
213 
214 /*
215  * Tells if entity @a should preempt entity @b.
216  */
217 static inline bool
dl_entity_preempt(struct sched_dl_entity * a,struct sched_dl_entity * b)218 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
219 {
220 	return dl_entity_is_special(a) ||
221 	       dl_time_before(a->deadline, b->deadline);
222 }
223 
224 /*
225  * This is the priority-queue data structure of the RT scheduling class:
226  */
227 struct rt_prio_array {
228 	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
229 	struct list_head queue[MAX_RT_PRIO];
230 };
231 
232 struct rt_bandwidth {
233 	/* nests inside the rq lock: */
234 	raw_spinlock_t		rt_runtime_lock;
235 	ktime_t			rt_period;
236 	u64			rt_runtime;
237 	struct hrtimer		rt_period_timer;
238 	unsigned int		rt_period_active;
239 };
240 
241 void __dl_clear_params(struct task_struct *p);
242 
243 /*
244  * To keep the bandwidth of -deadline tasks and groups under control
245  * we need some place where:
246  *  - store the maximum -deadline bandwidth of the system (the group);
247  *  - cache the fraction of that bandwidth that is currently allocated.
248  *
249  * This is all done in the data structure below. It is similar to the
250  * one used for RT-throttling (rt_bandwidth), with the main difference
251  * that, since here we are only interested in admission control, we
252  * do not decrease any runtime while the group "executes", neither we
253  * need a timer to replenish it.
254  *
255  * With respect to SMP, the bandwidth is given on a per-CPU basis,
256  * meaning that:
257  *  - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
258  *  - dl_total_bw array contains, in the i-eth element, the currently
259  *    allocated bandwidth on the i-eth CPU.
260  * Moreover, groups consume bandwidth on each CPU, while tasks only
261  * consume bandwidth on the CPU they're running on.
262  * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
263  * that will be shown the next time the proc or cgroup controls will
264  * be red. It on its turn can be changed by writing on its own
265  * control.
266  */
267 struct dl_bandwidth {
268 	raw_spinlock_t		dl_runtime_lock;
269 	u64			dl_runtime;
270 	u64			dl_period;
271 };
272 
dl_bandwidth_enabled(void)273 static inline int dl_bandwidth_enabled(void)
274 {
275 	return sysctl_sched_rt_runtime >= 0;
276 }
277 
278 struct dl_bw {
279 	raw_spinlock_t		lock;
280 	u64			bw;
281 	u64			total_bw;
282 };
283 
284 static inline void __dl_update(struct dl_bw *dl_b, s64 bw);
285 
286 static inline
__dl_sub(struct dl_bw * dl_b,u64 tsk_bw,int cpus)287 void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
288 {
289 	dl_b->total_bw -= tsk_bw;
290 	__dl_update(dl_b, (s32)tsk_bw / cpus);
291 }
292 
293 static inline
__dl_add(struct dl_bw * dl_b,u64 tsk_bw,int cpus)294 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
295 {
296 	dl_b->total_bw += tsk_bw;
297 	__dl_update(dl_b, -((s32)tsk_bw / cpus));
298 }
299 
300 static inline
__dl_overflow(struct dl_bw * dl_b,int cpus,u64 old_bw,u64 new_bw)301 bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
302 {
303 	return dl_b->bw != -1 &&
304 	       dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
305 }
306 
307 extern void dl_change_utilization(struct task_struct *p, u64 new_bw);
308 extern void init_dl_bw(struct dl_bw *dl_b);
309 extern int  sched_dl_global_validate(void);
310 extern void sched_dl_do_global(void);
311 extern int  sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
312 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
313 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
314 extern bool __checkparam_dl(const struct sched_attr *attr);
315 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
316 extern int  dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
317 extern int  dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
318 extern bool dl_cpu_busy(unsigned int cpu);
319 
320 #ifdef CONFIG_CGROUP_SCHED
321 
322 #include <linux/cgroup.h>
323 
324 struct cfs_rq;
325 struct rt_rq;
326 
327 extern struct list_head task_groups;
328 
329 struct cfs_bandwidth {
330 #ifdef CONFIG_CFS_BANDWIDTH
331 	raw_spinlock_t		lock;
332 	ktime_t			period;
333 	u64			quota;
334 	u64			runtime;
335 	s64			hierarchical_quota;
336 	u64			runtime_expires;
337 	int			expires_seq;
338 
339 	short			idle;
340 	short			period_active;
341 	struct hrtimer		period_timer;
342 	struct hrtimer		slack_timer;
343 	struct list_head	throttled_cfs_rq;
344 
345 	/* Statistics: */
346 	int			nr_periods;
347 	int			nr_throttled;
348 	u64			throttled_time;
349 
350 	bool                    distribute_running;
351 #endif
352 };
353 
354 /* Task group related information */
355 struct task_group {
356 	struct cgroup_subsys_state css;
357 
358 #ifdef CONFIG_FAIR_GROUP_SCHED
359 	/* schedulable entities of this group on each CPU */
360 	struct sched_entity	**se;
361 	/* runqueue "owned" by this group on each CPU */
362 	struct cfs_rq		**cfs_rq;
363 	unsigned long		shares;
364 
365 #ifdef	CONFIG_SMP
366 	/*
367 	 * load_avg can be heavily contended at clock tick time, so put
368 	 * it in its own cacheline separated from the fields above which
369 	 * will also be accessed at each tick.
370 	 */
371 	atomic_long_t		load_avg ____cacheline_aligned;
372 #endif
373 #endif
374 
375 #ifdef CONFIG_RT_GROUP_SCHED
376 	struct sched_rt_entity	**rt_se;
377 	struct rt_rq		**rt_rq;
378 
379 	struct rt_bandwidth	rt_bandwidth;
380 #endif
381 
382 	struct rcu_head		rcu;
383 	struct list_head	list;
384 
385 	struct task_group	*parent;
386 	struct list_head	siblings;
387 	struct list_head	children;
388 
389 #ifdef CONFIG_SCHED_AUTOGROUP
390 	struct autogroup	*autogroup;
391 #endif
392 
393 	struct cfs_bandwidth	cfs_bandwidth;
394 };
395 
396 #ifdef CONFIG_FAIR_GROUP_SCHED
397 #define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
398 
399 /*
400  * A weight of 0 or 1 can cause arithmetics problems.
401  * A weight of a cfs_rq is the sum of weights of which entities
402  * are queued on this cfs_rq, so a weight of a entity should not be
403  * too large, so as the shares value of a task group.
404  * (The default weight is 1024 - so there's no practical
405  *  limitation from this.)
406  */
407 #define MIN_SHARES		(1UL <<  1)
408 #define MAX_SHARES		(1UL << 18)
409 #endif
410 
411 typedef int (*tg_visitor)(struct task_group *, void *);
412 
413 extern int walk_tg_tree_from(struct task_group *from,
414 			     tg_visitor down, tg_visitor up, void *data);
415 
416 /*
417  * Iterate the full tree, calling @down when first entering a node and @up when
418  * leaving it for the final time.
419  *
420  * Caller must hold rcu_lock or sufficient equivalent.
421  */
walk_tg_tree(tg_visitor down,tg_visitor up,void * data)422 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
423 {
424 	return walk_tg_tree_from(&root_task_group, down, up, data);
425 }
426 
427 extern int tg_nop(struct task_group *tg, void *data);
428 
429 extern void free_fair_sched_group(struct task_group *tg);
430 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
431 extern void online_fair_sched_group(struct task_group *tg);
432 extern void unregister_fair_sched_group(struct task_group *tg);
433 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
434 			struct sched_entity *se, int cpu,
435 			struct sched_entity *parent);
436 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
437 
438 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
439 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
440 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
441 
442 extern void free_rt_sched_group(struct task_group *tg);
443 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
444 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
445 		struct sched_rt_entity *rt_se, int cpu,
446 		struct sched_rt_entity *parent);
447 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
448 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
449 extern long sched_group_rt_runtime(struct task_group *tg);
450 extern long sched_group_rt_period(struct task_group *tg);
451 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
452 
453 extern struct task_group *sched_create_group(struct task_group *parent);
454 extern void sched_online_group(struct task_group *tg,
455 			       struct task_group *parent);
456 extern void sched_destroy_group(struct task_group *tg);
457 extern void sched_offline_group(struct task_group *tg);
458 
459 extern void sched_move_task(struct task_struct *tsk);
460 
461 #ifdef CONFIG_FAIR_GROUP_SCHED
462 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
463 
464 #ifdef CONFIG_SMP
465 extern void set_task_rq_fair(struct sched_entity *se,
466 			     struct cfs_rq *prev, struct cfs_rq *next);
467 #else /* !CONFIG_SMP */
set_task_rq_fair(struct sched_entity * se,struct cfs_rq * prev,struct cfs_rq * next)468 static inline void set_task_rq_fair(struct sched_entity *se,
469 			     struct cfs_rq *prev, struct cfs_rq *next) { }
470 #endif /* CONFIG_SMP */
471 #endif /* CONFIG_FAIR_GROUP_SCHED */
472 
473 #else /* CONFIG_CGROUP_SCHED */
474 
475 struct cfs_bandwidth { };
476 
477 #endif	/* CONFIG_CGROUP_SCHED */
478 
479 /* CFS-related fields in a runqueue */
480 struct cfs_rq {
481 	struct load_weight	load;
482 	unsigned long		runnable_weight;
483 	unsigned int		nr_running;
484 	unsigned int		h_nr_running;
485 
486 	u64			exec_clock;
487 	u64			min_vruntime;
488 #ifndef CONFIG_64BIT
489 	u64			min_vruntime_copy;
490 #endif
491 
492 	struct rb_root_cached	tasks_timeline;
493 
494 	/*
495 	 * 'curr' points to currently running entity on this cfs_rq.
496 	 * It is set to NULL otherwise (i.e when none are currently running).
497 	 */
498 	struct sched_entity	*curr;
499 	struct sched_entity	*next;
500 	struct sched_entity	*last;
501 	struct sched_entity	*skip;
502 
503 #ifdef	CONFIG_SCHED_DEBUG
504 	unsigned int		nr_spread_over;
505 #endif
506 
507 #ifdef CONFIG_SMP
508 	/*
509 	 * CFS load tracking
510 	 */
511 	struct sched_avg	avg;
512 #ifndef CONFIG_64BIT
513 	u64			load_last_update_time_copy;
514 #endif
515 	struct {
516 		raw_spinlock_t	lock ____cacheline_aligned;
517 		int		nr;
518 		unsigned long	load_avg;
519 		unsigned long	util_avg;
520 		unsigned long	runnable_sum;
521 	} removed;
522 
523 #ifdef CONFIG_FAIR_GROUP_SCHED
524 	unsigned long		tg_load_avg_contrib;
525 	long			propagate;
526 	long			prop_runnable_sum;
527 
528 	/*
529 	 *   h_load = weight * f(tg)
530 	 *
531 	 * Where f(tg) is the recursive weight fraction assigned to
532 	 * this group.
533 	 */
534 	unsigned long		h_load;
535 	u64			last_h_load_update;
536 	struct sched_entity	*h_load_next;
537 #endif /* CONFIG_FAIR_GROUP_SCHED */
538 #endif /* CONFIG_SMP */
539 
540 #ifdef CONFIG_FAIR_GROUP_SCHED
541 	struct rq		*rq;	/* CPU runqueue to which this cfs_rq is attached */
542 
543 	/*
544 	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
545 	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
546 	 * (like users, containers etc.)
547 	 *
548 	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
549 	 * This list is used during load balance.
550 	 */
551 	int			on_list;
552 	struct list_head	leaf_cfs_rq_list;
553 	struct task_group	*tg;	/* group that "owns" this runqueue */
554 
555 #ifdef CONFIG_CFS_BANDWIDTH
556 	int			runtime_enabled;
557 	int			expires_seq;
558 	u64			runtime_expires;
559 	s64			runtime_remaining;
560 
561 	u64			throttled_clock;
562 	u64			throttled_clock_task;
563 	u64			throttled_clock_task_time;
564 	int			throttled;
565 	int			throttle_count;
566 	struct list_head	throttled_list;
567 #endif /* CONFIG_CFS_BANDWIDTH */
568 #endif /* CONFIG_FAIR_GROUP_SCHED */
569 };
570 
rt_bandwidth_enabled(void)571 static inline int rt_bandwidth_enabled(void)
572 {
573 	return sysctl_sched_rt_runtime >= 0;
574 }
575 
576 /* RT IPI pull logic requires IRQ_WORK */
577 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
578 # define HAVE_RT_PUSH_IPI
579 #endif
580 
581 /* Real-Time classes' related field in a runqueue: */
582 struct rt_rq {
583 	struct rt_prio_array	active;
584 	unsigned int		rt_nr_running;
585 	unsigned int		rr_nr_running;
586 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
587 	struct {
588 		int		curr; /* highest queued rt task prio */
589 #ifdef CONFIG_SMP
590 		int		next; /* next highest */
591 #endif
592 	} highest_prio;
593 #endif
594 #ifdef CONFIG_SMP
595 	unsigned long		rt_nr_migratory;
596 	unsigned long		rt_nr_total;
597 	int			overloaded;
598 	struct plist_head	pushable_tasks;
599 
600 #endif /* CONFIG_SMP */
601 	int			rt_queued;
602 
603 	int			rt_throttled;
604 	u64			rt_time;
605 	u64			rt_runtime;
606 	/* Nests inside the rq lock: */
607 	raw_spinlock_t		rt_runtime_lock;
608 
609 #ifdef CONFIG_RT_GROUP_SCHED
610 	unsigned long		rt_nr_boosted;
611 
612 	struct rq		*rq;
613 	struct task_group	*tg;
614 #endif
615 };
616 
rt_rq_is_runnable(struct rt_rq * rt_rq)617 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
618 {
619 	return rt_rq->rt_queued && rt_rq->rt_nr_running;
620 }
621 
622 /* Deadline class' related fields in a runqueue */
623 struct dl_rq {
624 	/* runqueue is an rbtree, ordered by deadline */
625 	struct rb_root_cached	root;
626 
627 	unsigned long		dl_nr_running;
628 
629 #ifdef CONFIG_SMP
630 	/*
631 	 * Deadline values of the currently executing and the
632 	 * earliest ready task on this rq. Caching these facilitates
633 	 * the decision wether or not a ready but not running task
634 	 * should migrate somewhere else.
635 	 */
636 	struct {
637 		u64		curr;
638 		u64		next;
639 	} earliest_dl;
640 
641 	unsigned long		dl_nr_migratory;
642 	int			overloaded;
643 
644 	/*
645 	 * Tasks on this rq that can be pushed away. They are kept in
646 	 * an rb-tree, ordered by tasks' deadlines, with caching
647 	 * of the leftmost (earliest deadline) element.
648 	 */
649 	struct rb_root_cached	pushable_dl_tasks_root;
650 #else
651 	struct dl_bw		dl_bw;
652 #endif
653 	/*
654 	 * "Active utilization" for this runqueue: increased when a
655 	 * task wakes up (becomes TASK_RUNNING) and decreased when a
656 	 * task blocks
657 	 */
658 	u64			running_bw;
659 
660 	/*
661 	 * Utilization of the tasks "assigned" to this runqueue (including
662 	 * the tasks that are in runqueue and the tasks that executed on this
663 	 * CPU and blocked). Increased when a task moves to this runqueue, and
664 	 * decreased when the task moves away (migrates, changes scheduling
665 	 * policy, or terminates).
666 	 * This is needed to compute the "inactive utilization" for the
667 	 * runqueue (inactive utilization = this_bw - running_bw).
668 	 */
669 	u64			this_bw;
670 	u64			extra_bw;
671 
672 	/*
673 	 * Inverse of the fraction of CPU utilization that can be reclaimed
674 	 * by the GRUB algorithm.
675 	 */
676 	u64			bw_ratio;
677 };
678 
679 #ifdef CONFIG_FAIR_GROUP_SCHED
680 /* An entity is a task if it doesn't "own" a runqueue */
681 #define entity_is_task(se)	(!se->my_q)
682 #else
683 #define entity_is_task(se)	1
684 #endif
685 
686 #ifdef CONFIG_SMP
687 /*
688  * XXX we want to get rid of these helpers and use the full load resolution.
689  */
se_weight(struct sched_entity * se)690 static inline long se_weight(struct sched_entity *se)
691 {
692 	return scale_load_down(se->load.weight);
693 }
694 
se_runnable(struct sched_entity * se)695 static inline long se_runnable(struct sched_entity *se)
696 {
697 	return scale_load_down(se->runnable_weight);
698 }
699 
sched_asym_prefer(int a,int b)700 static inline bool sched_asym_prefer(int a, int b)
701 {
702 	return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
703 }
704 
705 /*
706  * We add the notion of a root-domain which will be used to define per-domain
707  * variables. Each exclusive cpuset essentially defines an island domain by
708  * fully partitioning the member CPUs from any other cpuset. Whenever a new
709  * exclusive cpuset is created, we also create and attach a new root-domain
710  * object.
711  *
712  */
713 struct root_domain {
714 	atomic_t		refcount;
715 	atomic_t		rto_count;
716 	struct rcu_head		rcu;
717 	cpumask_var_t		span;
718 	cpumask_var_t		online;
719 
720 	/* Indicate more than one runnable task for any CPU */
721 	bool			overload;
722 
723 	/*
724 	 * The bit corresponding to a CPU gets set here if such CPU has more
725 	 * than one runnable -deadline task (as it is below for RT tasks).
726 	 */
727 	cpumask_var_t		dlo_mask;
728 	atomic_t		dlo_count;
729 	struct dl_bw		dl_bw;
730 	struct cpudl		cpudl;
731 
732 #ifdef HAVE_RT_PUSH_IPI
733 	/*
734 	 * For IPI pull requests, loop across the rto_mask.
735 	 */
736 	struct irq_work		rto_push_work;
737 	raw_spinlock_t		rto_lock;
738 	/* These are only updated and read within rto_lock */
739 	int			rto_loop;
740 	int			rto_cpu;
741 	/* These atomics are updated outside of a lock */
742 	atomic_t		rto_loop_next;
743 	atomic_t		rto_loop_start;
744 #endif
745 	/*
746 	 * The "RT overload" flag: it gets set if a CPU has more than
747 	 * one runnable RT task.
748 	 */
749 	cpumask_var_t		rto_mask;
750 	struct cpupri		cpupri;
751 
752 	unsigned long		max_cpu_capacity;
753 };
754 
755 extern struct root_domain def_root_domain;
756 extern struct mutex sched_domains_mutex;
757 
758 extern void init_defrootdomain(void);
759 extern int sched_init_domains(const struct cpumask *cpu_map);
760 extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
761 extern void sched_get_rd(struct root_domain *rd);
762 extern void sched_put_rd(struct root_domain *rd);
763 
764 #ifdef HAVE_RT_PUSH_IPI
765 extern void rto_push_irq_work_func(struct irq_work *work);
766 #endif
767 #endif /* CONFIG_SMP */
768 
769 /*
770  * This is the main, per-CPU runqueue data structure.
771  *
772  * Locking rule: those places that want to lock multiple runqueues
773  * (such as the load balancing or the thread migration code), lock
774  * acquire operations must be ordered by ascending &runqueue.
775  */
776 struct rq {
777 	/* runqueue lock: */
778 	raw_spinlock_t		lock;
779 
780 	/*
781 	 * nr_running and cpu_load should be in the same cacheline because
782 	 * remote CPUs use both these fields when doing load calculation.
783 	 */
784 	unsigned int		nr_running;
785 #ifdef CONFIG_NUMA_BALANCING
786 	unsigned int		nr_numa_running;
787 	unsigned int		nr_preferred_running;
788 	unsigned int		numa_migrate_on;
789 #endif
790 	#define CPU_LOAD_IDX_MAX 5
791 	unsigned long		cpu_load[CPU_LOAD_IDX_MAX];
792 #ifdef CONFIG_NO_HZ_COMMON
793 #ifdef CONFIG_SMP
794 	unsigned long		last_load_update_tick;
795 	unsigned long		last_blocked_load_update_tick;
796 	unsigned int		has_blocked_load;
797 #endif /* CONFIG_SMP */
798 	unsigned int		nohz_tick_stopped;
799 	atomic_t nohz_flags;
800 #endif /* CONFIG_NO_HZ_COMMON */
801 
802 	/* capture load from *all* tasks on this CPU: */
803 	struct load_weight	load;
804 	unsigned long		nr_load_updates;
805 	u64			nr_switches;
806 
807 	struct cfs_rq		cfs;
808 	struct rt_rq		rt;
809 	struct dl_rq		dl;
810 
811 #ifdef CONFIG_FAIR_GROUP_SCHED
812 	/* list of leaf cfs_rq on this CPU: */
813 	struct list_head	leaf_cfs_rq_list;
814 	struct list_head	*tmp_alone_branch;
815 #endif /* CONFIG_FAIR_GROUP_SCHED */
816 
817 	/*
818 	 * This is part of a global counter where only the total sum
819 	 * over all CPUs matters. A task can increase this counter on
820 	 * one CPU and if it got migrated afterwards it may decrease
821 	 * it on another CPU. Always updated under the runqueue lock:
822 	 */
823 	unsigned long		nr_uninterruptible;
824 
825 	struct task_struct	*curr;
826 	struct task_struct	*idle;
827 	struct task_struct	*stop;
828 	unsigned long		next_balance;
829 	struct mm_struct	*prev_mm;
830 
831 	unsigned int		clock_update_flags;
832 	u64			clock;
833 	u64			clock_task;
834 
835 	atomic_t		nr_iowait;
836 
837 #ifdef CONFIG_SMP
838 	struct root_domain	*rd;
839 	struct sched_domain	*sd;
840 
841 	unsigned long		cpu_capacity;
842 	unsigned long		cpu_capacity_orig;
843 
844 	struct callback_head	*balance_callback;
845 
846 	unsigned char		idle_balance;
847 
848 	/* For active balancing */
849 	int			active_balance;
850 	int			push_cpu;
851 	struct cpu_stop_work	active_balance_work;
852 
853 	/* CPU of this runqueue: */
854 	int			cpu;
855 	int			online;
856 
857 	struct list_head cfs_tasks;
858 
859 	struct sched_avg	avg_rt;
860 	struct sched_avg	avg_dl;
861 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
862 #define HAVE_SCHED_AVG_IRQ
863 	struct sched_avg	avg_irq;
864 #endif
865 	u64			idle_stamp;
866 	u64			avg_idle;
867 
868 	/* This is used to determine avg_idle's max value */
869 	u64			max_idle_balance_cost;
870 #endif
871 
872 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
873 	u64			prev_irq_time;
874 #endif
875 #ifdef CONFIG_PARAVIRT
876 	u64			prev_steal_time;
877 #endif
878 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
879 	u64			prev_steal_time_rq;
880 #endif
881 
882 	/* calc_load related fields */
883 	unsigned long		calc_load_update;
884 	long			calc_load_active;
885 
886 #ifdef CONFIG_SCHED_HRTICK
887 #ifdef CONFIG_SMP
888 	int			hrtick_csd_pending;
889 	call_single_data_t	hrtick_csd;
890 #endif
891 	struct hrtimer		hrtick_timer;
892 #endif
893 
894 #ifdef CONFIG_SCHEDSTATS
895 	/* latency stats */
896 	struct sched_info	rq_sched_info;
897 	unsigned long long	rq_cpu_time;
898 	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
899 
900 	/* sys_sched_yield() stats */
901 	unsigned int		yld_count;
902 
903 	/* schedule() stats */
904 	unsigned int		sched_count;
905 	unsigned int		sched_goidle;
906 
907 	/* try_to_wake_up() stats */
908 	unsigned int		ttwu_count;
909 	unsigned int		ttwu_local;
910 #endif
911 
912 #ifdef CONFIG_SMP
913 	struct llist_head	wake_list;
914 #endif
915 
916 #ifdef CONFIG_CPU_IDLE
917 	/* Must be inspected within a rcu lock section */
918 	struct cpuidle_state	*idle_state;
919 #endif
920 };
921 
cpu_of(struct rq * rq)922 static inline int cpu_of(struct rq *rq)
923 {
924 #ifdef CONFIG_SMP
925 	return rq->cpu;
926 #else
927 	return 0;
928 #endif
929 }
930 
931 
932 #ifdef CONFIG_SCHED_SMT
933 
934 extern struct static_key_false sched_smt_present;
935 
936 extern void __update_idle_core(struct rq *rq);
937 
update_idle_core(struct rq * rq)938 static inline void update_idle_core(struct rq *rq)
939 {
940 	if (static_branch_unlikely(&sched_smt_present))
941 		__update_idle_core(rq);
942 }
943 
944 #else
update_idle_core(struct rq * rq)945 static inline void update_idle_core(struct rq *rq) { }
946 #endif
947 
948 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
949 
950 #define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
951 #define this_rq()		this_cpu_ptr(&runqueues)
952 #define task_rq(p)		cpu_rq(task_cpu(p))
953 #define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
954 #define raw_rq()		raw_cpu_ptr(&runqueues)
955 
__rq_clock_broken(struct rq * rq)956 static inline u64 __rq_clock_broken(struct rq *rq)
957 {
958 	return READ_ONCE(rq->clock);
959 }
960 
961 /*
962  * rq::clock_update_flags bits
963  *
964  * %RQCF_REQ_SKIP - will request skipping of clock update on the next
965  *  call to __schedule(). This is an optimisation to avoid
966  *  neighbouring rq clock updates.
967  *
968  * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
969  *  in effect and calls to update_rq_clock() are being ignored.
970  *
971  * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
972  *  made to update_rq_clock() since the last time rq::lock was pinned.
973  *
974  * If inside of __schedule(), clock_update_flags will have been
975  * shifted left (a left shift is a cheap operation for the fast path
976  * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
977  *
978  *	if (rq-clock_update_flags >= RQCF_UPDATED)
979  *
980  * to check if %RQCF_UPADTED is set. It'll never be shifted more than
981  * one position though, because the next rq_unpin_lock() will shift it
982  * back.
983  */
984 #define RQCF_REQ_SKIP		0x01
985 #define RQCF_ACT_SKIP		0x02
986 #define RQCF_UPDATED		0x04
987 
assert_clock_updated(struct rq * rq)988 static inline void assert_clock_updated(struct rq *rq)
989 {
990 	/*
991 	 * The only reason for not seeing a clock update since the
992 	 * last rq_pin_lock() is if we're currently skipping updates.
993 	 */
994 	SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
995 }
996 
rq_clock(struct rq * rq)997 static inline u64 rq_clock(struct rq *rq)
998 {
999 	lockdep_assert_held(&rq->lock);
1000 	assert_clock_updated(rq);
1001 
1002 	return rq->clock;
1003 }
1004 
rq_clock_task(struct rq * rq)1005 static inline u64 rq_clock_task(struct rq *rq)
1006 {
1007 	lockdep_assert_held(&rq->lock);
1008 	assert_clock_updated(rq);
1009 
1010 	return rq->clock_task;
1011 }
1012 
rq_clock_skip_update(struct rq * rq)1013 static inline void rq_clock_skip_update(struct rq *rq)
1014 {
1015 	lockdep_assert_held(&rq->lock);
1016 	rq->clock_update_flags |= RQCF_REQ_SKIP;
1017 }
1018 
1019 /*
1020  * See rt task throttling, which is the only time a skip
1021  * request is cancelled.
1022  */
rq_clock_cancel_skipupdate(struct rq * rq)1023 static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1024 {
1025 	lockdep_assert_held(&rq->lock);
1026 	rq->clock_update_flags &= ~RQCF_REQ_SKIP;
1027 }
1028 
1029 struct rq_flags {
1030 	unsigned long flags;
1031 	struct pin_cookie cookie;
1032 #ifdef CONFIG_SCHED_DEBUG
1033 	/*
1034 	 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1035 	 * current pin context is stashed here in case it needs to be
1036 	 * restored in rq_repin_lock().
1037 	 */
1038 	unsigned int clock_update_flags;
1039 #endif
1040 };
1041 
rq_pin_lock(struct rq * rq,struct rq_flags * rf)1042 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1043 {
1044 	rf->cookie = lockdep_pin_lock(&rq->lock);
1045 
1046 #ifdef CONFIG_SCHED_DEBUG
1047 	rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1048 	rf->clock_update_flags = 0;
1049 #endif
1050 }
1051 
rq_unpin_lock(struct rq * rq,struct rq_flags * rf)1052 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1053 {
1054 #ifdef CONFIG_SCHED_DEBUG
1055 	if (rq->clock_update_flags > RQCF_ACT_SKIP)
1056 		rf->clock_update_flags = RQCF_UPDATED;
1057 #endif
1058 
1059 	lockdep_unpin_lock(&rq->lock, rf->cookie);
1060 }
1061 
rq_repin_lock(struct rq * rq,struct rq_flags * rf)1062 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1063 {
1064 	lockdep_repin_lock(&rq->lock, rf->cookie);
1065 
1066 #ifdef CONFIG_SCHED_DEBUG
1067 	/*
1068 	 * Restore the value we stashed in @rf for this pin context.
1069 	 */
1070 	rq->clock_update_flags |= rf->clock_update_flags;
1071 #endif
1072 }
1073 
1074 #ifdef CONFIG_NUMA
1075 enum numa_topology_type {
1076 	NUMA_DIRECT,
1077 	NUMA_GLUELESS_MESH,
1078 	NUMA_BACKPLANE,
1079 };
1080 extern enum numa_topology_type sched_numa_topology_type;
1081 extern int sched_max_numa_distance;
1082 extern bool find_numa_distance(int distance);
1083 #endif
1084 
1085 #ifdef CONFIG_NUMA
1086 extern void sched_init_numa(void);
1087 extern void sched_domains_numa_masks_set(unsigned int cpu);
1088 extern void sched_domains_numa_masks_clear(unsigned int cpu);
1089 #else
sched_init_numa(void)1090 static inline void sched_init_numa(void) { }
sched_domains_numa_masks_set(unsigned int cpu)1091 static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
sched_domains_numa_masks_clear(unsigned int cpu)1092 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
1093 #endif
1094 
1095 #ifdef CONFIG_NUMA_BALANCING
1096 /* The regions in numa_faults array from task_struct */
1097 enum numa_faults_stats {
1098 	NUMA_MEM = 0,
1099 	NUMA_CPU,
1100 	NUMA_MEMBUF,
1101 	NUMA_CPUBUF
1102 };
1103 extern void sched_setnuma(struct task_struct *p, int node);
1104 extern int migrate_task_to(struct task_struct *p, int cpu);
1105 extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1106 			int cpu, int scpu);
1107 extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1108 #else
1109 static inline void
init_numa_balancing(unsigned long clone_flags,struct task_struct * p)1110 init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1111 {
1112 }
1113 #endif /* CONFIG_NUMA_BALANCING */
1114 
1115 #ifdef CONFIG_SMP
1116 
1117 static inline void
queue_balance_callback(struct rq * rq,struct callback_head * head,void (* func)(struct rq * rq))1118 queue_balance_callback(struct rq *rq,
1119 		       struct callback_head *head,
1120 		       void (*func)(struct rq *rq))
1121 {
1122 	lockdep_assert_held(&rq->lock);
1123 
1124 	if (unlikely(head->next))
1125 		return;
1126 
1127 	head->func = (void (*)(struct callback_head *))func;
1128 	head->next = rq->balance_callback;
1129 	rq->balance_callback = head;
1130 }
1131 
1132 extern void sched_ttwu_pending(void);
1133 
1134 #define rcu_dereference_check_sched_domain(p) \
1135 	rcu_dereference_check((p), \
1136 			      lockdep_is_held(&sched_domains_mutex))
1137 
1138 /*
1139  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1140  * See detach_destroy_domains: synchronize_sched for details.
1141  *
1142  * The domain tree of any CPU may only be accessed from within
1143  * preempt-disabled sections.
1144  */
1145 #define for_each_domain(cpu, __sd) \
1146 	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1147 			__sd; __sd = __sd->parent)
1148 
1149 #define for_each_lower_domain(sd) for (; sd; sd = sd->child)
1150 
1151 /**
1152  * highest_flag_domain - Return highest sched_domain containing flag.
1153  * @cpu:	The CPU whose highest level of sched domain is to
1154  *		be returned.
1155  * @flag:	The flag to check for the highest sched_domain
1156  *		for the given CPU.
1157  *
1158  * Returns the highest sched_domain of a CPU which contains the given flag.
1159  */
highest_flag_domain(int cpu,int flag)1160 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1161 {
1162 	struct sched_domain *sd, *hsd = NULL;
1163 
1164 	for_each_domain(cpu, sd) {
1165 		if (!(sd->flags & flag))
1166 			break;
1167 		hsd = sd;
1168 	}
1169 
1170 	return hsd;
1171 }
1172 
lowest_flag_domain(int cpu,int flag)1173 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1174 {
1175 	struct sched_domain *sd;
1176 
1177 	for_each_domain(cpu, sd) {
1178 		if (sd->flags & flag)
1179 			break;
1180 	}
1181 
1182 	return sd;
1183 }
1184 
1185 DECLARE_PER_CPU(struct sched_domain *, sd_llc);
1186 DECLARE_PER_CPU(int, sd_llc_size);
1187 DECLARE_PER_CPU(int, sd_llc_id);
1188 DECLARE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
1189 DECLARE_PER_CPU(struct sched_domain *, sd_numa);
1190 DECLARE_PER_CPU(struct sched_domain *, sd_asym);
1191 
1192 struct sched_group_capacity {
1193 	atomic_t		ref;
1194 	/*
1195 	 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
1196 	 * for a single CPU.
1197 	 */
1198 	unsigned long		capacity;
1199 	unsigned long		min_capacity;		/* Min per-CPU capacity in group */
1200 	unsigned long		next_update;
1201 	int			imbalance;		/* XXX unrelated to capacity but shared group state */
1202 
1203 #ifdef CONFIG_SCHED_DEBUG
1204 	int			id;
1205 #endif
1206 
1207 	unsigned long		cpumask[0];		/* Balance mask */
1208 };
1209 
1210 struct sched_group {
1211 	struct sched_group	*next;			/* Must be a circular list */
1212 	atomic_t		ref;
1213 
1214 	unsigned int		group_weight;
1215 	struct sched_group_capacity *sgc;
1216 	int			asym_prefer_cpu;	/* CPU of highest priority in group */
1217 
1218 	/*
1219 	 * The CPUs this group covers.
1220 	 *
1221 	 * NOTE: this field is variable length. (Allocated dynamically
1222 	 * by attaching extra space to the end of the structure,
1223 	 * depending on how many CPUs the kernel has booted up with)
1224 	 */
1225 	unsigned long		cpumask[0];
1226 };
1227 
sched_group_span(struct sched_group * sg)1228 static inline struct cpumask *sched_group_span(struct sched_group *sg)
1229 {
1230 	return to_cpumask(sg->cpumask);
1231 }
1232 
1233 /*
1234  * See build_balance_mask().
1235  */
group_balance_mask(struct sched_group * sg)1236 static inline struct cpumask *group_balance_mask(struct sched_group *sg)
1237 {
1238 	return to_cpumask(sg->sgc->cpumask);
1239 }
1240 
1241 /**
1242  * group_first_cpu - Returns the first CPU in the cpumask of a sched_group.
1243  * @group: The group whose first CPU is to be returned.
1244  */
group_first_cpu(struct sched_group * group)1245 static inline unsigned int group_first_cpu(struct sched_group *group)
1246 {
1247 	return cpumask_first(sched_group_span(group));
1248 }
1249 
1250 extern int group_balance_cpu(struct sched_group *sg);
1251 
1252 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
1253 void register_sched_domain_sysctl(void);
1254 void dirty_sched_domain_sysctl(int cpu);
1255 void unregister_sched_domain_sysctl(void);
1256 #else
register_sched_domain_sysctl(void)1257 static inline void register_sched_domain_sysctl(void)
1258 {
1259 }
dirty_sched_domain_sysctl(int cpu)1260 static inline void dirty_sched_domain_sysctl(int cpu)
1261 {
1262 }
unregister_sched_domain_sysctl(void)1263 static inline void unregister_sched_domain_sysctl(void)
1264 {
1265 }
1266 #endif
1267 
1268 #else
1269 
sched_ttwu_pending(void)1270 static inline void sched_ttwu_pending(void) { }
1271 
1272 #endif /* CONFIG_SMP */
1273 
1274 #include "stats.h"
1275 #include "autogroup.h"
1276 
1277 #ifdef CONFIG_CGROUP_SCHED
1278 
1279 /*
1280  * Return the group to which this tasks belongs.
1281  *
1282  * We cannot use task_css() and friends because the cgroup subsystem
1283  * changes that value before the cgroup_subsys::attach() method is called,
1284  * therefore we cannot pin it and might observe the wrong value.
1285  *
1286  * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1287  * core changes this before calling sched_move_task().
1288  *
1289  * Instead we use a 'copy' which is updated from sched_move_task() while
1290  * holding both task_struct::pi_lock and rq::lock.
1291  */
task_group(struct task_struct * p)1292 static inline struct task_group *task_group(struct task_struct *p)
1293 {
1294 	return p->sched_task_group;
1295 }
1296 
1297 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
set_task_rq(struct task_struct * p,unsigned int cpu)1298 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
1299 {
1300 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
1301 	struct task_group *tg = task_group(p);
1302 #endif
1303 
1304 #ifdef CONFIG_FAIR_GROUP_SCHED
1305 	set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
1306 	p->se.cfs_rq = tg->cfs_rq[cpu];
1307 	p->se.parent = tg->se[cpu];
1308 #endif
1309 
1310 #ifdef CONFIG_RT_GROUP_SCHED
1311 	p->rt.rt_rq  = tg->rt_rq[cpu];
1312 	p->rt.parent = tg->rt_se[cpu];
1313 #endif
1314 }
1315 
1316 #else /* CONFIG_CGROUP_SCHED */
1317 
set_task_rq(struct task_struct * p,unsigned int cpu)1318 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
task_group(struct task_struct * p)1319 static inline struct task_group *task_group(struct task_struct *p)
1320 {
1321 	return NULL;
1322 }
1323 
1324 #endif /* CONFIG_CGROUP_SCHED */
1325 
__set_task_cpu(struct task_struct * p,unsigned int cpu)1326 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1327 {
1328 	set_task_rq(p, cpu);
1329 #ifdef CONFIG_SMP
1330 	/*
1331 	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1332 	 * successfuly executed on another CPU. We must ensure that updates of
1333 	 * per-task data have been completed by this moment.
1334 	 */
1335 	smp_wmb();
1336 #ifdef CONFIG_THREAD_INFO_IN_TASK
1337 	p->cpu = cpu;
1338 #else
1339 	task_thread_info(p)->cpu = cpu;
1340 #endif
1341 	p->wake_cpu = cpu;
1342 #endif
1343 }
1344 
1345 /*
1346  * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1347  */
1348 #ifdef CONFIG_SCHED_DEBUG
1349 # include <linux/static_key.h>
1350 # define const_debug __read_mostly
1351 #else
1352 # define const_debug const
1353 #endif
1354 
1355 #define SCHED_FEAT(name, enabled)	\
1356 	__SCHED_FEAT_##name ,
1357 
1358 enum {
1359 #include "features.h"
1360 	__SCHED_FEAT_NR,
1361 };
1362 
1363 #undef SCHED_FEAT
1364 
1365 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
1366 
1367 /*
1368  * To support run-time toggling of sched features, all the translation units
1369  * (but core.c) reference the sysctl_sched_features defined in core.c.
1370  */
1371 extern const_debug unsigned int sysctl_sched_features;
1372 
1373 #define SCHED_FEAT(name, enabled)					\
1374 static __always_inline bool static_branch_##name(struct static_key *key) \
1375 {									\
1376 	return static_key_##enabled(key);				\
1377 }
1378 
1379 #include "features.h"
1380 #undef SCHED_FEAT
1381 
1382 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
1383 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1384 
1385 #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
1386 
1387 /*
1388  * Each translation unit has its own copy of sysctl_sched_features to allow
1389  * constants propagation at compile time and compiler optimization based on
1390  * features default.
1391  */
1392 #define SCHED_FEAT(name, enabled)	\
1393 	(1UL << __SCHED_FEAT_##name) * enabled |
1394 static const_debug __maybe_unused unsigned int sysctl_sched_features =
1395 #include "features.h"
1396 	0;
1397 #undef SCHED_FEAT
1398 
1399 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1400 
1401 #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
1402 
1403 extern struct static_key_false sched_numa_balancing;
1404 extern struct static_key_false sched_schedstats;
1405 
global_rt_period(void)1406 static inline u64 global_rt_period(void)
1407 {
1408 	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1409 }
1410 
global_rt_runtime(void)1411 static inline u64 global_rt_runtime(void)
1412 {
1413 	if (sysctl_sched_rt_runtime < 0)
1414 		return RUNTIME_INF;
1415 
1416 	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1417 }
1418 
task_current(struct rq * rq,struct task_struct * p)1419 static inline int task_current(struct rq *rq, struct task_struct *p)
1420 {
1421 	return rq->curr == p;
1422 }
1423 
task_running(struct rq * rq,struct task_struct * p)1424 static inline int task_running(struct rq *rq, struct task_struct *p)
1425 {
1426 #ifdef CONFIG_SMP
1427 	return p->on_cpu;
1428 #else
1429 	return task_current(rq, p);
1430 #endif
1431 }
1432 
task_on_rq_queued(struct task_struct * p)1433 static inline int task_on_rq_queued(struct task_struct *p)
1434 {
1435 	return p->on_rq == TASK_ON_RQ_QUEUED;
1436 }
1437 
task_on_rq_migrating(struct task_struct * p)1438 static inline int task_on_rq_migrating(struct task_struct *p)
1439 {
1440 	return p->on_rq == TASK_ON_RQ_MIGRATING;
1441 }
1442 
1443 /*
1444  * wake flags
1445  */
1446 #define WF_SYNC			0x01		/* Waker goes to sleep after wakeup */
1447 #define WF_FORK			0x02		/* Child wakeup after fork */
1448 #define WF_MIGRATED		0x4		/* Internal use, task got migrated */
1449 
1450 /*
1451  * To aid in avoiding the subversion of "niceness" due to uneven distribution
1452  * of tasks with abnormal "nice" values across CPUs the contribution that
1453  * each task makes to its run queue's load is weighted according to its
1454  * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1455  * scaled version of the new time slice allocation that they receive on time
1456  * slice expiry etc.
1457  */
1458 
1459 #define WEIGHT_IDLEPRIO		3
1460 #define WMULT_IDLEPRIO		1431655765
1461 
1462 extern const int		sched_prio_to_weight[40];
1463 extern const u32		sched_prio_to_wmult[40];
1464 
1465 /*
1466  * {de,en}queue flags:
1467  *
1468  * DEQUEUE_SLEEP  - task is no longer runnable
1469  * ENQUEUE_WAKEUP - task just became runnable
1470  *
1471  * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
1472  *                are in a known state which allows modification. Such pairs
1473  *                should preserve as much state as possible.
1474  *
1475  * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
1476  *        in the runqueue.
1477  *
1478  * ENQUEUE_HEAD      - place at front of runqueue (tail if not specified)
1479  * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
1480  * ENQUEUE_MIGRATED  - the task was migrated during wakeup
1481  *
1482  */
1483 
1484 #define DEQUEUE_SLEEP		0x01
1485 #define DEQUEUE_SAVE		0x02 /* Matches ENQUEUE_RESTORE */
1486 #define DEQUEUE_MOVE		0x04 /* Matches ENQUEUE_MOVE */
1487 #define DEQUEUE_NOCLOCK		0x08 /* Matches ENQUEUE_NOCLOCK */
1488 
1489 #define ENQUEUE_WAKEUP		0x01
1490 #define ENQUEUE_RESTORE		0x02
1491 #define ENQUEUE_MOVE		0x04
1492 #define ENQUEUE_NOCLOCK		0x08
1493 
1494 #define ENQUEUE_HEAD		0x10
1495 #define ENQUEUE_REPLENISH	0x20
1496 #ifdef CONFIG_SMP
1497 #define ENQUEUE_MIGRATED	0x40
1498 #else
1499 #define ENQUEUE_MIGRATED	0x00
1500 #endif
1501 
1502 #define RETRY_TASK		((void *)-1UL)
1503 
1504 struct sched_class {
1505 	const struct sched_class *next;
1506 
1507 	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1508 	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1509 	void (*yield_task)   (struct rq *rq);
1510 	bool (*yield_to_task)(struct rq *rq, struct task_struct *p, bool preempt);
1511 
1512 	void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags);
1513 
1514 	/*
1515 	 * It is the responsibility of the pick_next_task() method that will
1516 	 * return the next task to call put_prev_task() on the @prev task or
1517 	 * something equivalent.
1518 	 *
1519 	 * May return RETRY_TASK when it finds a higher prio class has runnable
1520 	 * tasks.
1521 	 */
1522 	struct task_struct * (*pick_next_task)(struct rq *rq,
1523 					       struct task_struct *prev,
1524 					       struct rq_flags *rf);
1525 	void (*put_prev_task)(struct rq *rq, struct task_struct *p);
1526 
1527 #ifdef CONFIG_SMP
1528 	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
1529 	void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
1530 
1531 	void (*task_woken)(struct rq *this_rq, struct task_struct *task);
1532 
1533 	void (*set_cpus_allowed)(struct task_struct *p,
1534 				 const struct cpumask *newmask);
1535 
1536 	void (*rq_online)(struct rq *rq);
1537 	void (*rq_offline)(struct rq *rq);
1538 #endif
1539 
1540 	void (*set_curr_task)(struct rq *rq);
1541 	void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
1542 	void (*task_fork)(struct task_struct *p);
1543 	void (*task_dead)(struct task_struct *p);
1544 
1545 	/*
1546 	 * The switched_from() call is allowed to drop rq->lock, therefore we
1547 	 * cannot assume the switched_from/switched_to pair is serliazed by
1548 	 * rq->lock. They are however serialized by p->pi_lock.
1549 	 */
1550 	void (*switched_from)(struct rq *this_rq, struct task_struct *task);
1551 	void (*switched_to)  (struct rq *this_rq, struct task_struct *task);
1552 	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1553 			      int oldprio);
1554 
1555 	unsigned int (*get_rr_interval)(struct rq *rq,
1556 					struct task_struct *task);
1557 
1558 	void (*update_curr)(struct rq *rq);
1559 
1560 #define TASK_SET_GROUP		0
1561 #define TASK_MOVE_GROUP		1
1562 
1563 #ifdef CONFIG_FAIR_GROUP_SCHED
1564 	void (*task_change_group)(struct task_struct *p, int type);
1565 #endif
1566 };
1567 
put_prev_task(struct rq * rq,struct task_struct * prev)1568 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1569 {
1570 	prev->sched_class->put_prev_task(rq, prev);
1571 }
1572 
set_curr_task(struct rq * rq,struct task_struct * curr)1573 static inline void set_curr_task(struct rq *rq, struct task_struct *curr)
1574 {
1575 	curr->sched_class->set_curr_task(rq);
1576 }
1577 
1578 #ifdef CONFIG_SMP
1579 #define sched_class_highest (&stop_sched_class)
1580 #else
1581 #define sched_class_highest (&dl_sched_class)
1582 #endif
1583 #define for_each_class(class) \
1584    for (class = sched_class_highest; class; class = class->next)
1585 
1586 extern const struct sched_class stop_sched_class;
1587 extern const struct sched_class dl_sched_class;
1588 extern const struct sched_class rt_sched_class;
1589 extern const struct sched_class fair_sched_class;
1590 extern const struct sched_class idle_sched_class;
1591 
1592 
1593 #ifdef CONFIG_SMP
1594 
1595 extern void update_group_capacity(struct sched_domain *sd, int cpu);
1596 
1597 extern void trigger_load_balance(struct rq *rq);
1598 
1599 extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
1600 
1601 #endif
1602 
1603 #ifdef CONFIG_CPU_IDLE
idle_set_state(struct rq * rq,struct cpuidle_state * idle_state)1604 static inline void idle_set_state(struct rq *rq,
1605 				  struct cpuidle_state *idle_state)
1606 {
1607 	rq->idle_state = idle_state;
1608 }
1609 
idle_get_state(struct rq * rq)1610 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1611 {
1612 	SCHED_WARN_ON(!rcu_read_lock_held());
1613 
1614 	return rq->idle_state;
1615 }
1616 #else
idle_set_state(struct rq * rq,struct cpuidle_state * idle_state)1617 static inline void idle_set_state(struct rq *rq,
1618 				  struct cpuidle_state *idle_state)
1619 {
1620 }
1621 
idle_get_state(struct rq * rq)1622 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1623 {
1624 	return NULL;
1625 }
1626 #endif
1627 
1628 extern void schedule_idle(void);
1629 
1630 extern void sysrq_sched_debug_show(void);
1631 extern void sched_init_granularity(void);
1632 extern void update_max_interval(void);
1633 
1634 extern void init_sched_dl_class(void);
1635 extern void init_sched_rt_class(void);
1636 extern void init_sched_fair_class(void);
1637 
1638 extern void reweight_task(struct task_struct *p, int prio);
1639 
1640 extern void resched_curr(struct rq *rq);
1641 extern void resched_cpu(int cpu);
1642 
1643 extern struct rt_bandwidth def_rt_bandwidth;
1644 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1645 
1646 extern struct dl_bandwidth def_dl_bandwidth;
1647 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
1648 extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1649 extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
1650 extern void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
1651 
1652 #define BW_SHIFT		20
1653 #define BW_UNIT			(1 << BW_SHIFT)
1654 #define RATIO_SHIFT		8
1655 unsigned long to_ratio(u64 period, u64 runtime);
1656 
1657 extern void init_entity_runnable_average(struct sched_entity *se);
1658 extern void post_init_entity_util_avg(struct sched_entity *se);
1659 
1660 #ifdef CONFIG_NO_HZ_FULL
1661 extern bool sched_can_stop_tick(struct rq *rq);
1662 extern int __init sched_tick_offload_init(void);
1663 
1664 /*
1665  * Tick may be needed by tasks in the runqueue depending on their policy and
1666  * requirements. If tick is needed, lets send the target an IPI to kick it out of
1667  * nohz mode if necessary.
1668  */
sched_update_tick_dependency(struct rq * rq)1669 static inline void sched_update_tick_dependency(struct rq *rq)
1670 {
1671 	int cpu;
1672 
1673 	if (!tick_nohz_full_enabled())
1674 		return;
1675 
1676 	cpu = cpu_of(rq);
1677 
1678 	if (!tick_nohz_full_cpu(cpu))
1679 		return;
1680 
1681 	if (sched_can_stop_tick(rq))
1682 		tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
1683 	else
1684 		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
1685 }
1686 #else
sched_tick_offload_init(void)1687 static inline int sched_tick_offload_init(void) { return 0; }
sched_update_tick_dependency(struct rq * rq)1688 static inline void sched_update_tick_dependency(struct rq *rq) { }
1689 #endif
1690 
add_nr_running(struct rq * rq,unsigned count)1691 static inline void add_nr_running(struct rq *rq, unsigned count)
1692 {
1693 	unsigned prev_nr = rq->nr_running;
1694 
1695 	rq->nr_running = prev_nr + count;
1696 
1697 	if (prev_nr < 2 && rq->nr_running >= 2) {
1698 #ifdef CONFIG_SMP
1699 		if (!rq->rd->overload)
1700 			rq->rd->overload = true;
1701 #endif
1702 	}
1703 
1704 	sched_update_tick_dependency(rq);
1705 }
1706 
sub_nr_running(struct rq * rq,unsigned count)1707 static inline void sub_nr_running(struct rq *rq, unsigned count)
1708 {
1709 	rq->nr_running -= count;
1710 	/* Check if we still need preemption */
1711 	sched_update_tick_dependency(rq);
1712 }
1713 
1714 extern void update_rq_clock(struct rq *rq);
1715 
1716 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1717 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1718 
1719 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1720 
1721 extern const_debug unsigned int sysctl_sched_nr_migrate;
1722 extern const_debug unsigned int sysctl_sched_migration_cost;
1723 
1724 #ifdef CONFIG_SCHED_HRTICK
1725 
1726 /*
1727  * Use hrtick when:
1728  *  - enabled by features
1729  *  - hrtimer is actually high res
1730  */
hrtick_enabled(struct rq * rq)1731 static inline int hrtick_enabled(struct rq *rq)
1732 {
1733 	if (!sched_feat(HRTICK))
1734 		return 0;
1735 	if (!cpu_active(cpu_of(rq)))
1736 		return 0;
1737 	return hrtimer_is_hres_active(&rq->hrtick_timer);
1738 }
1739 
1740 void hrtick_start(struct rq *rq, u64 delay);
1741 
1742 #else
1743 
hrtick_enabled(struct rq * rq)1744 static inline int hrtick_enabled(struct rq *rq)
1745 {
1746 	return 0;
1747 }
1748 
1749 #endif /* CONFIG_SCHED_HRTICK */
1750 
1751 #ifndef arch_scale_freq_capacity
1752 static __always_inline
arch_scale_freq_capacity(int cpu)1753 unsigned long arch_scale_freq_capacity(int cpu)
1754 {
1755 	return SCHED_CAPACITY_SCALE;
1756 }
1757 #endif
1758 
1759 #ifdef CONFIG_SMP
1760 #ifndef arch_scale_cpu_capacity
1761 static __always_inline
arch_scale_cpu_capacity(struct sched_domain * sd,int cpu)1762 unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1763 {
1764 	if (sd && (sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
1765 		return sd->smt_gain / sd->span_weight;
1766 
1767 	return SCHED_CAPACITY_SCALE;
1768 }
1769 #endif
1770 #else
1771 #ifndef arch_scale_cpu_capacity
1772 static __always_inline
arch_scale_cpu_capacity(void __always_unused * sd,int cpu)1773 unsigned long arch_scale_cpu_capacity(void __always_unused *sd, int cpu)
1774 {
1775 	return SCHED_CAPACITY_SCALE;
1776 }
1777 #endif
1778 #endif
1779 
1780 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1781 	__acquires(rq->lock);
1782 
1783 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1784 	__acquires(p->pi_lock)
1785 	__acquires(rq->lock);
1786 
__task_rq_unlock(struct rq * rq,struct rq_flags * rf)1787 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1788 	__releases(rq->lock)
1789 {
1790 	rq_unpin_lock(rq, rf);
1791 	raw_spin_unlock(&rq->lock);
1792 }
1793 
1794 static inline void
task_rq_unlock(struct rq * rq,struct task_struct * p,struct rq_flags * rf)1795 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1796 	__releases(rq->lock)
1797 	__releases(p->pi_lock)
1798 {
1799 	rq_unpin_lock(rq, rf);
1800 	raw_spin_unlock(&rq->lock);
1801 	raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1802 }
1803 
1804 static inline void
rq_lock_irqsave(struct rq * rq,struct rq_flags * rf)1805 rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1806 	__acquires(rq->lock)
1807 {
1808 	raw_spin_lock_irqsave(&rq->lock, rf->flags);
1809 	rq_pin_lock(rq, rf);
1810 }
1811 
1812 static inline void
rq_lock_irq(struct rq * rq,struct rq_flags * rf)1813 rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1814 	__acquires(rq->lock)
1815 {
1816 	raw_spin_lock_irq(&rq->lock);
1817 	rq_pin_lock(rq, rf);
1818 }
1819 
1820 static inline void
rq_lock(struct rq * rq,struct rq_flags * rf)1821 rq_lock(struct rq *rq, struct rq_flags *rf)
1822 	__acquires(rq->lock)
1823 {
1824 	raw_spin_lock(&rq->lock);
1825 	rq_pin_lock(rq, rf);
1826 }
1827 
1828 static inline void
rq_relock(struct rq * rq,struct rq_flags * rf)1829 rq_relock(struct rq *rq, struct rq_flags *rf)
1830 	__acquires(rq->lock)
1831 {
1832 	raw_spin_lock(&rq->lock);
1833 	rq_repin_lock(rq, rf);
1834 }
1835 
1836 static inline void
rq_unlock_irqrestore(struct rq * rq,struct rq_flags * rf)1837 rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1838 	__releases(rq->lock)
1839 {
1840 	rq_unpin_lock(rq, rf);
1841 	raw_spin_unlock_irqrestore(&rq->lock, rf->flags);
1842 }
1843 
1844 static inline void
rq_unlock_irq(struct rq * rq,struct rq_flags * rf)1845 rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1846 	__releases(rq->lock)
1847 {
1848 	rq_unpin_lock(rq, rf);
1849 	raw_spin_unlock_irq(&rq->lock);
1850 }
1851 
1852 static inline void
rq_unlock(struct rq * rq,struct rq_flags * rf)1853 rq_unlock(struct rq *rq, struct rq_flags *rf)
1854 	__releases(rq->lock)
1855 {
1856 	rq_unpin_lock(rq, rf);
1857 	raw_spin_unlock(&rq->lock);
1858 }
1859 
1860 #ifdef CONFIG_SMP
1861 #ifdef CONFIG_PREEMPT
1862 
1863 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1864 
1865 /*
1866  * fair double_lock_balance: Safely acquires both rq->locks in a fair
1867  * way at the expense of forcing extra atomic operations in all
1868  * invocations.  This assures that the double_lock is acquired using the
1869  * same underlying policy as the spinlock_t on this architecture, which
1870  * reduces latency compared to the unfair variant below.  However, it
1871  * also adds more overhead and therefore may reduce throughput.
1872  */
_double_lock_balance(struct rq * this_rq,struct rq * busiest)1873 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1874 	__releases(this_rq->lock)
1875 	__acquires(busiest->lock)
1876 	__acquires(this_rq->lock)
1877 {
1878 	raw_spin_unlock(&this_rq->lock);
1879 	double_rq_lock(this_rq, busiest);
1880 
1881 	return 1;
1882 }
1883 
1884 #else
1885 /*
1886  * Unfair double_lock_balance: Optimizes throughput at the expense of
1887  * latency by eliminating extra atomic operations when the locks are
1888  * already in proper order on entry.  This favors lower CPU-ids and will
1889  * grant the double lock to lower CPUs over higher ids under contention,
1890  * regardless of entry order into the function.
1891  */
_double_lock_balance(struct rq * this_rq,struct rq * busiest)1892 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1893 	__releases(this_rq->lock)
1894 	__acquires(busiest->lock)
1895 	__acquires(this_rq->lock)
1896 {
1897 	int ret = 0;
1898 
1899 	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1900 		if (busiest < this_rq) {
1901 			raw_spin_unlock(&this_rq->lock);
1902 			raw_spin_lock(&busiest->lock);
1903 			raw_spin_lock_nested(&this_rq->lock,
1904 					      SINGLE_DEPTH_NESTING);
1905 			ret = 1;
1906 		} else
1907 			raw_spin_lock_nested(&busiest->lock,
1908 					      SINGLE_DEPTH_NESTING);
1909 	}
1910 	return ret;
1911 }
1912 
1913 #endif /* CONFIG_PREEMPT */
1914 
1915 /*
1916  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1917  */
double_lock_balance(struct rq * this_rq,struct rq * busiest)1918 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1919 {
1920 	if (unlikely(!irqs_disabled())) {
1921 		/* printk() doesn't work well under rq->lock */
1922 		raw_spin_unlock(&this_rq->lock);
1923 		BUG_ON(1);
1924 	}
1925 
1926 	return _double_lock_balance(this_rq, busiest);
1927 }
1928 
double_unlock_balance(struct rq * this_rq,struct rq * busiest)1929 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1930 	__releases(busiest->lock)
1931 {
1932 	raw_spin_unlock(&busiest->lock);
1933 	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1934 }
1935 
double_lock(spinlock_t * l1,spinlock_t * l2)1936 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1937 {
1938 	if (l1 > l2)
1939 		swap(l1, l2);
1940 
1941 	spin_lock(l1);
1942 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1943 }
1944 
double_lock_irq(spinlock_t * l1,spinlock_t * l2)1945 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
1946 {
1947 	if (l1 > l2)
1948 		swap(l1, l2);
1949 
1950 	spin_lock_irq(l1);
1951 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1952 }
1953 
double_raw_lock(raw_spinlock_t * l1,raw_spinlock_t * l2)1954 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1955 {
1956 	if (l1 > l2)
1957 		swap(l1, l2);
1958 
1959 	raw_spin_lock(l1);
1960 	raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1961 }
1962 
1963 /*
1964  * double_rq_lock - safely lock two runqueues
1965  *
1966  * Note this does not disable interrupts like task_rq_lock,
1967  * you need to do so manually before calling.
1968  */
double_rq_lock(struct rq * rq1,struct rq * rq2)1969 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1970 	__acquires(rq1->lock)
1971 	__acquires(rq2->lock)
1972 {
1973 	BUG_ON(!irqs_disabled());
1974 	if (rq1 == rq2) {
1975 		raw_spin_lock(&rq1->lock);
1976 		__acquire(rq2->lock);	/* Fake it out ;) */
1977 	} else {
1978 		if (rq1 < rq2) {
1979 			raw_spin_lock(&rq1->lock);
1980 			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1981 		} else {
1982 			raw_spin_lock(&rq2->lock);
1983 			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1984 		}
1985 	}
1986 }
1987 
1988 /*
1989  * double_rq_unlock - safely unlock two runqueues
1990  *
1991  * Note this does not restore interrupts like task_rq_unlock,
1992  * you need to do so manually after calling.
1993  */
double_rq_unlock(struct rq * rq1,struct rq * rq2)1994 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1995 	__releases(rq1->lock)
1996 	__releases(rq2->lock)
1997 {
1998 	raw_spin_unlock(&rq1->lock);
1999 	if (rq1 != rq2)
2000 		raw_spin_unlock(&rq2->lock);
2001 	else
2002 		__release(rq2->lock);
2003 }
2004 
2005 extern void set_rq_online (struct rq *rq);
2006 extern void set_rq_offline(struct rq *rq);
2007 extern bool sched_smp_initialized;
2008 
2009 #else /* CONFIG_SMP */
2010 
2011 /*
2012  * double_rq_lock - safely lock two runqueues
2013  *
2014  * Note this does not disable interrupts like task_rq_lock,
2015  * you need to do so manually before calling.
2016  */
double_rq_lock(struct rq * rq1,struct rq * rq2)2017 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2018 	__acquires(rq1->lock)
2019 	__acquires(rq2->lock)
2020 {
2021 	BUG_ON(!irqs_disabled());
2022 	BUG_ON(rq1 != rq2);
2023 	raw_spin_lock(&rq1->lock);
2024 	__acquire(rq2->lock);	/* Fake it out ;) */
2025 }
2026 
2027 /*
2028  * double_rq_unlock - safely unlock two runqueues
2029  *
2030  * Note this does not restore interrupts like task_rq_unlock,
2031  * you need to do so manually after calling.
2032  */
double_rq_unlock(struct rq * rq1,struct rq * rq2)2033 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2034 	__releases(rq1->lock)
2035 	__releases(rq2->lock)
2036 {
2037 	BUG_ON(rq1 != rq2);
2038 	raw_spin_unlock(&rq1->lock);
2039 	__release(rq2->lock);
2040 }
2041 
2042 #endif
2043 
2044 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
2045 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
2046 
2047 #ifdef	CONFIG_SCHED_DEBUG
2048 extern bool sched_debug_enabled;
2049 
2050 extern void print_cfs_stats(struct seq_file *m, int cpu);
2051 extern void print_rt_stats(struct seq_file *m, int cpu);
2052 extern void print_dl_stats(struct seq_file *m, int cpu);
2053 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
2054 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2055 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
2056 #ifdef CONFIG_NUMA_BALANCING
2057 extern void
2058 show_numa_stats(struct task_struct *p, struct seq_file *m);
2059 extern void
2060 print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
2061 	unsigned long tpf, unsigned long gsf, unsigned long gpf);
2062 #endif /* CONFIG_NUMA_BALANCING */
2063 #endif /* CONFIG_SCHED_DEBUG */
2064 
2065 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
2066 extern void init_rt_rq(struct rt_rq *rt_rq);
2067 extern void init_dl_rq(struct dl_rq *dl_rq);
2068 
2069 extern void cfs_bandwidth_usage_inc(void);
2070 extern void cfs_bandwidth_usage_dec(void);
2071 
2072 #ifdef CONFIG_NO_HZ_COMMON
2073 #define NOHZ_BALANCE_KICK_BIT	0
2074 #define NOHZ_STATS_KICK_BIT	1
2075 
2076 #define NOHZ_BALANCE_KICK	BIT(NOHZ_BALANCE_KICK_BIT)
2077 #define NOHZ_STATS_KICK		BIT(NOHZ_STATS_KICK_BIT)
2078 
2079 #define NOHZ_KICK_MASK	(NOHZ_BALANCE_KICK | NOHZ_STATS_KICK)
2080 
2081 #define nohz_flags(cpu)	(&cpu_rq(cpu)->nohz_flags)
2082 
2083 extern void nohz_balance_exit_idle(struct rq *rq);
2084 #else
nohz_balance_exit_idle(struct rq * rq)2085 static inline void nohz_balance_exit_idle(struct rq *rq) { }
2086 #endif
2087 
2088 
2089 #ifdef CONFIG_SMP
2090 static inline
__dl_update(struct dl_bw * dl_b,s64 bw)2091 void __dl_update(struct dl_bw *dl_b, s64 bw)
2092 {
2093 	struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
2094 	int i;
2095 
2096 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2097 			 "sched RCU must be held");
2098 	for_each_cpu_and(i, rd->span, cpu_active_mask) {
2099 		struct rq *rq = cpu_rq(i);
2100 
2101 		rq->dl.extra_bw += bw;
2102 	}
2103 }
2104 #else
2105 static inline
__dl_update(struct dl_bw * dl_b,s64 bw)2106 void __dl_update(struct dl_bw *dl_b, s64 bw)
2107 {
2108 	struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
2109 
2110 	dl->extra_bw += bw;
2111 }
2112 #endif
2113 
2114 
2115 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2116 struct irqtime {
2117 	u64			total;
2118 	u64			tick_delta;
2119 	u64			irq_start_time;
2120 	struct u64_stats_sync	sync;
2121 };
2122 
2123 DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
2124 
2125 /*
2126  * Returns the irqtime minus the softirq time computed by ksoftirqd.
2127  * Otherwise ksoftirqd's sum_exec_runtime is substracted its own runtime
2128  * and never move forward.
2129  */
irq_time_read(int cpu)2130 static inline u64 irq_time_read(int cpu)
2131 {
2132 	struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2133 	unsigned int seq;
2134 	u64 total;
2135 
2136 	do {
2137 		seq = __u64_stats_fetch_begin(&irqtime->sync);
2138 		total = irqtime->total;
2139 	} while (__u64_stats_fetch_retry(&irqtime->sync, seq));
2140 
2141 	return total;
2142 }
2143 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2144 
2145 #ifdef CONFIG_CPU_FREQ
2146 DECLARE_PER_CPU(struct update_util_data *, cpufreq_update_util_data);
2147 
2148 /**
2149  * cpufreq_update_util - Take a note about CPU utilization changes.
2150  * @rq: Runqueue to carry out the update for.
2151  * @flags: Update reason flags.
2152  *
2153  * This function is called by the scheduler on the CPU whose utilization is
2154  * being updated.
2155  *
2156  * It can only be called from RCU-sched read-side critical sections.
2157  *
2158  * The way cpufreq is currently arranged requires it to evaluate the CPU
2159  * performance state (frequency/voltage) on a regular basis to prevent it from
2160  * being stuck in a completely inadequate performance level for too long.
2161  * That is not guaranteed to happen if the updates are only triggered from CFS
2162  * and DL, though, because they may not be coming in if only RT tasks are
2163  * active all the time (or there are RT tasks only).
2164  *
2165  * As a workaround for that issue, this function is called periodically by the
2166  * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
2167  * but that really is a band-aid.  Going forward it should be replaced with
2168  * solutions targeted more specifically at RT tasks.
2169  */
cpufreq_update_util(struct rq * rq,unsigned int flags)2170 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
2171 {
2172 	struct update_util_data *data;
2173 
2174 	data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
2175 						  cpu_of(rq)));
2176 	if (data)
2177 		data->func(data, rq_clock(rq), flags);
2178 }
2179 #else
cpufreq_update_util(struct rq * rq,unsigned int flags)2180 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
2181 #endif /* CONFIG_CPU_FREQ */
2182 
2183 #ifdef arch_scale_freq_capacity
2184 # ifndef arch_scale_freq_invariant
2185 #  define arch_scale_freq_invariant()	true
2186 # endif
2187 #else
2188 # define arch_scale_freq_invariant()	false
2189 #endif
2190 
2191 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
cpu_bw_dl(struct rq * rq)2192 static inline unsigned long cpu_bw_dl(struct rq *rq)
2193 {
2194 	return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
2195 }
2196 
cpu_util_dl(struct rq * rq)2197 static inline unsigned long cpu_util_dl(struct rq *rq)
2198 {
2199 	return READ_ONCE(rq->avg_dl.util_avg);
2200 }
2201 
cpu_util_cfs(struct rq * rq)2202 static inline unsigned long cpu_util_cfs(struct rq *rq)
2203 {
2204 	unsigned long util = READ_ONCE(rq->cfs.avg.util_avg);
2205 
2206 	if (sched_feat(UTIL_EST)) {
2207 		util = max_t(unsigned long, util,
2208 			     READ_ONCE(rq->cfs.avg.util_est.enqueued));
2209 	}
2210 
2211 	return util;
2212 }
2213 
cpu_util_rt(struct rq * rq)2214 static inline unsigned long cpu_util_rt(struct rq *rq)
2215 {
2216 	return READ_ONCE(rq->avg_rt.util_avg);
2217 }
2218 #endif
2219 
2220 #ifdef HAVE_SCHED_AVG_IRQ
cpu_util_irq(struct rq * rq)2221 static inline unsigned long cpu_util_irq(struct rq *rq)
2222 {
2223 	return rq->avg_irq.util_avg;
2224 }
2225 
2226 static inline
scale_irq_capacity(unsigned long util,unsigned long irq,unsigned long max)2227 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2228 {
2229 	util *= (max - irq);
2230 	util /= max;
2231 
2232 	return util;
2233 
2234 }
2235 #else
cpu_util_irq(struct rq * rq)2236 static inline unsigned long cpu_util_irq(struct rq *rq)
2237 {
2238 	return 0;
2239 }
2240 
2241 static inline
scale_irq_capacity(unsigned long util,unsigned long irq,unsigned long max)2242 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2243 {
2244 	return util;
2245 }
2246 #endif
2247