1 /*
2 * Copyright (C) 2009 Nokia Corporation
3 * Author: Tomi Valkeinen <tomi.valkeinen@ti.com>
4 *
5 * Some code and ideas taken from drivers/video/omap/ driver
6 * by Imre Deak.
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License version 2 as published by
10 * the Free Software Foundation.
11 *
12 * This program is distributed in the hope that it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * more details.
16 *
17 * You should have received a copy of the GNU General Public License along with
18 * this program. If not, see <http://www.gnu.org/licenses/>.
19 */
20
21 #define DSS_SUBSYS_NAME "DISPC"
22
23 #include <linux/kernel.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/vmalloc.h>
26 #include <linux/export.h>
27 #include <linux/clk.h>
28 #include <linux/io.h>
29 #include <linux/jiffies.h>
30 #include <linux/seq_file.h>
31 #include <linux/delay.h>
32 #include <linux/workqueue.h>
33 #include <linux/hardirq.h>
34 #include <linux/platform_device.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/sizes.h>
37 #include <linux/mfd/syscon.h>
38 #include <linux/regmap.h>
39 #include <linux/of.h>
40 #include <linux/of_device.h>
41 #include <linux/component.h>
42 #include <linux/sys_soc.h>
43 #include <drm/drm_fourcc.h>
44 #include <drm/drm_blend.h>
45
46 #include "omapdss.h"
47 #include "dss.h"
48 #include "dispc.h"
49
50 struct dispc_device;
51
52 /* DISPC */
53 #define DISPC_SZ_REGS SZ_4K
54
55 enum omap_burst_size {
56 BURST_SIZE_X2 = 0,
57 BURST_SIZE_X4 = 1,
58 BURST_SIZE_X8 = 2,
59 };
60
61 #define REG_GET(dispc, idx, start, end) \
62 FLD_GET(dispc_read_reg(dispc, idx), start, end)
63
64 #define REG_FLD_MOD(dispc, idx, val, start, end) \
65 dispc_write_reg(dispc, idx, \
66 FLD_MOD(dispc_read_reg(dispc, idx), val, start, end))
67
68 /* DISPC has feature id */
69 enum dispc_feature_id {
70 FEAT_LCDENABLEPOL,
71 FEAT_LCDENABLESIGNAL,
72 FEAT_PCKFREEENABLE,
73 FEAT_FUNCGATED,
74 FEAT_MGR_LCD2,
75 FEAT_MGR_LCD3,
76 FEAT_LINEBUFFERSPLIT,
77 FEAT_ROWREPEATENABLE,
78 FEAT_RESIZECONF,
79 /* Independent core clk divider */
80 FEAT_CORE_CLK_DIV,
81 FEAT_HANDLE_UV_SEPARATE,
82 FEAT_ATTR2,
83 FEAT_CPR,
84 FEAT_PRELOAD,
85 FEAT_FIR_COEF_V,
86 FEAT_ALPHA_FIXED_ZORDER,
87 FEAT_ALPHA_FREE_ZORDER,
88 FEAT_FIFO_MERGE,
89 /* An unknown HW bug causing the normal FIFO thresholds not to work */
90 FEAT_OMAP3_DSI_FIFO_BUG,
91 FEAT_BURST_2D,
92 FEAT_MFLAG,
93 };
94
95 struct dispc_features {
96 u8 sw_start;
97 u8 fp_start;
98 u8 bp_start;
99 u16 sw_max;
100 u16 vp_max;
101 u16 hp_max;
102 u8 mgr_width_start;
103 u8 mgr_height_start;
104 u16 mgr_width_max;
105 u16 mgr_height_max;
106 unsigned long max_lcd_pclk;
107 unsigned long max_tv_pclk;
108 unsigned int max_downscale;
109 unsigned int max_line_width;
110 unsigned int min_pcd;
111 int (*calc_scaling)(struct dispc_device *dispc,
112 unsigned long pclk, unsigned long lclk,
113 const struct videomode *vm,
114 u16 width, u16 height, u16 out_width, u16 out_height,
115 u32 fourcc, bool *five_taps,
116 int *x_predecim, int *y_predecim, int *decim_x, int *decim_y,
117 u16 pos_x, unsigned long *core_clk, bool mem_to_mem);
118 unsigned long (*calc_core_clk) (unsigned long pclk,
119 u16 width, u16 height, u16 out_width, u16 out_height,
120 bool mem_to_mem);
121 u8 num_fifos;
122 const enum dispc_feature_id *features;
123 unsigned int num_features;
124 const struct dss_reg_field *reg_fields;
125 const unsigned int num_reg_fields;
126 const enum omap_overlay_caps *overlay_caps;
127 const u32 **supported_color_modes;
128 unsigned int num_mgrs;
129 unsigned int num_ovls;
130 unsigned int buffer_size_unit;
131 unsigned int burst_size_unit;
132
133 /* swap GFX & WB fifos */
134 bool gfx_fifo_workaround:1;
135
136 /* no DISPC_IRQ_FRAMEDONETV on this SoC */
137 bool no_framedone_tv:1;
138
139 /* revert to the OMAP4 mechanism of DISPC Smart Standby operation */
140 bool mstandby_workaround:1;
141
142 bool set_max_preload:1;
143
144 /* PIXEL_INC is not added to the last pixel of a line */
145 bool last_pixel_inc_missing:1;
146
147 /* POL_FREQ has ALIGN bit */
148 bool supports_sync_align:1;
149
150 bool has_writeback:1;
151
152 bool supports_double_pixel:1;
153
154 /*
155 * Field order for VENC is different than HDMI. We should handle this in
156 * some intelligent manner, but as the SoCs have either HDMI or VENC,
157 * never both, we can just use this flag for now.
158 */
159 bool reverse_ilace_field_order:1;
160
161 bool has_gamma_table:1;
162
163 bool has_gamma_i734_bug:1;
164 };
165
166 #define DISPC_MAX_NR_FIFOS 5
167 #define DISPC_MAX_CHANNEL_GAMMA 4
168
169 struct dispc_device {
170 struct platform_device *pdev;
171 void __iomem *base;
172 struct dss_device *dss;
173
174 struct dss_debugfs_entry *debugfs;
175
176 int irq;
177 irq_handler_t user_handler;
178 void *user_data;
179
180 unsigned long core_clk_rate;
181 unsigned long tv_pclk_rate;
182
183 u32 fifo_size[DISPC_MAX_NR_FIFOS];
184 /* maps which plane is using a fifo. fifo-id -> plane-id */
185 int fifo_assignment[DISPC_MAX_NR_FIFOS];
186
187 bool ctx_valid;
188 u32 ctx[DISPC_SZ_REGS / sizeof(u32)];
189
190 u32 *gamma_table[DISPC_MAX_CHANNEL_GAMMA];
191
192 const struct dispc_features *feat;
193
194 bool is_enabled;
195
196 struct regmap *syscon_pol;
197 u32 syscon_pol_offset;
198
199 /* DISPC_CONTROL & DISPC_CONFIG lock*/
200 spinlock_t control_lock;
201 };
202
203 enum omap_color_component {
204 /* used for all color formats for OMAP3 and earlier
205 * and for RGB and Y color component on OMAP4
206 */
207 DISPC_COLOR_COMPONENT_RGB_Y = 1 << 0,
208 /* used for UV component for
209 * DRM_FORMAT_YUYV, DRM_FORMAT_UYVY, DRM_FORMAT_NV12
210 * color formats on OMAP4
211 */
212 DISPC_COLOR_COMPONENT_UV = 1 << 1,
213 };
214
215 enum mgr_reg_fields {
216 DISPC_MGR_FLD_ENABLE,
217 DISPC_MGR_FLD_STNTFT,
218 DISPC_MGR_FLD_GO,
219 DISPC_MGR_FLD_TFTDATALINES,
220 DISPC_MGR_FLD_STALLMODE,
221 DISPC_MGR_FLD_TCKENABLE,
222 DISPC_MGR_FLD_TCKSELECTION,
223 DISPC_MGR_FLD_CPR,
224 DISPC_MGR_FLD_FIFOHANDCHECK,
225 /* used to maintain a count of the above fields */
226 DISPC_MGR_FLD_NUM,
227 };
228
229 /* DISPC register field id */
230 enum dispc_feat_reg_field {
231 FEAT_REG_FIRHINC,
232 FEAT_REG_FIRVINC,
233 FEAT_REG_FIFOHIGHTHRESHOLD,
234 FEAT_REG_FIFOLOWTHRESHOLD,
235 FEAT_REG_FIFOSIZE,
236 FEAT_REG_HORIZONTALACCU,
237 FEAT_REG_VERTICALACCU,
238 };
239
240 struct dispc_reg_field {
241 u16 reg;
242 u8 high;
243 u8 low;
244 };
245
246 struct dispc_gamma_desc {
247 u32 len;
248 u32 bits;
249 u16 reg;
250 bool has_index;
251 };
252
253 static const struct {
254 const char *name;
255 u32 vsync_irq;
256 u32 framedone_irq;
257 u32 sync_lost_irq;
258 struct dispc_gamma_desc gamma;
259 struct dispc_reg_field reg_desc[DISPC_MGR_FLD_NUM];
260 } mgr_desc[] = {
261 [OMAP_DSS_CHANNEL_LCD] = {
262 .name = "LCD",
263 .vsync_irq = DISPC_IRQ_VSYNC,
264 .framedone_irq = DISPC_IRQ_FRAMEDONE,
265 .sync_lost_irq = DISPC_IRQ_SYNC_LOST,
266 .gamma = {
267 .len = 256,
268 .bits = 8,
269 .reg = DISPC_GAMMA_TABLE0,
270 .has_index = true,
271 },
272 .reg_desc = {
273 [DISPC_MGR_FLD_ENABLE] = { DISPC_CONTROL, 0, 0 },
274 [DISPC_MGR_FLD_STNTFT] = { DISPC_CONTROL, 3, 3 },
275 [DISPC_MGR_FLD_GO] = { DISPC_CONTROL, 5, 5 },
276 [DISPC_MGR_FLD_TFTDATALINES] = { DISPC_CONTROL, 9, 8 },
277 [DISPC_MGR_FLD_STALLMODE] = { DISPC_CONTROL, 11, 11 },
278 [DISPC_MGR_FLD_TCKENABLE] = { DISPC_CONFIG, 10, 10 },
279 [DISPC_MGR_FLD_TCKSELECTION] = { DISPC_CONFIG, 11, 11 },
280 [DISPC_MGR_FLD_CPR] = { DISPC_CONFIG, 15, 15 },
281 [DISPC_MGR_FLD_FIFOHANDCHECK] = { DISPC_CONFIG, 16, 16 },
282 },
283 },
284 [OMAP_DSS_CHANNEL_DIGIT] = {
285 .name = "DIGIT",
286 .vsync_irq = DISPC_IRQ_EVSYNC_ODD | DISPC_IRQ_EVSYNC_EVEN,
287 .framedone_irq = DISPC_IRQ_FRAMEDONETV,
288 .sync_lost_irq = DISPC_IRQ_SYNC_LOST_DIGIT,
289 .gamma = {
290 .len = 1024,
291 .bits = 10,
292 .reg = DISPC_GAMMA_TABLE2,
293 .has_index = false,
294 },
295 .reg_desc = {
296 [DISPC_MGR_FLD_ENABLE] = { DISPC_CONTROL, 1, 1 },
297 [DISPC_MGR_FLD_STNTFT] = { },
298 [DISPC_MGR_FLD_GO] = { DISPC_CONTROL, 6, 6 },
299 [DISPC_MGR_FLD_TFTDATALINES] = { },
300 [DISPC_MGR_FLD_STALLMODE] = { },
301 [DISPC_MGR_FLD_TCKENABLE] = { DISPC_CONFIG, 12, 12 },
302 [DISPC_MGR_FLD_TCKSELECTION] = { DISPC_CONFIG, 13, 13 },
303 [DISPC_MGR_FLD_CPR] = { },
304 [DISPC_MGR_FLD_FIFOHANDCHECK] = { DISPC_CONFIG, 16, 16 },
305 },
306 },
307 [OMAP_DSS_CHANNEL_LCD2] = {
308 .name = "LCD2",
309 .vsync_irq = DISPC_IRQ_VSYNC2,
310 .framedone_irq = DISPC_IRQ_FRAMEDONE2,
311 .sync_lost_irq = DISPC_IRQ_SYNC_LOST2,
312 .gamma = {
313 .len = 256,
314 .bits = 8,
315 .reg = DISPC_GAMMA_TABLE1,
316 .has_index = true,
317 },
318 .reg_desc = {
319 [DISPC_MGR_FLD_ENABLE] = { DISPC_CONTROL2, 0, 0 },
320 [DISPC_MGR_FLD_STNTFT] = { DISPC_CONTROL2, 3, 3 },
321 [DISPC_MGR_FLD_GO] = { DISPC_CONTROL2, 5, 5 },
322 [DISPC_MGR_FLD_TFTDATALINES] = { DISPC_CONTROL2, 9, 8 },
323 [DISPC_MGR_FLD_STALLMODE] = { DISPC_CONTROL2, 11, 11 },
324 [DISPC_MGR_FLD_TCKENABLE] = { DISPC_CONFIG2, 10, 10 },
325 [DISPC_MGR_FLD_TCKSELECTION] = { DISPC_CONFIG2, 11, 11 },
326 [DISPC_MGR_FLD_CPR] = { DISPC_CONFIG2, 15, 15 },
327 [DISPC_MGR_FLD_FIFOHANDCHECK] = { DISPC_CONFIG2, 16, 16 },
328 },
329 },
330 [OMAP_DSS_CHANNEL_LCD3] = {
331 .name = "LCD3",
332 .vsync_irq = DISPC_IRQ_VSYNC3,
333 .framedone_irq = DISPC_IRQ_FRAMEDONE3,
334 .sync_lost_irq = DISPC_IRQ_SYNC_LOST3,
335 .gamma = {
336 .len = 256,
337 .bits = 8,
338 .reg = DISPC_GAMMA_TABLE3,
339 .has_index = true,
340 },
341 .reg_desc = {
342 [DISPC_MGR_FLD_ENABLE] = { DISPC_CONTROL3, 0, 0 },
343 [DISPC_MGR_FLD_STNTFT] = { DISPC_CONTROL3, 3, 3 },
344 [DISPC_MGR_FLD_GO] = { DISPC_CONTROL3, 5, 5 },
345 [DISPC_MGR_FLD_TFTDATALINES] = { DISPC_CONTROL3, 9, 8 },
346 [DISPC_MGR_FLD_STALLMODE] = { DISPC_CONTROL3, 11, 11 },
347 [DISPC_MGR_FLD_TCKENABLE] = { DISPC_CONFIG3, 10, 10 },
348 [DISPC_MGR_FLD_TCKSELECTION] = { DISPC_CONFIG3, 11, 11 },
349 [DISPC_MGR_FLD_CPR] = { DISPC_CONFIG3, 15, 15 },
350 [DISPC_MGR_FLD_FIFOHANDCHECK] = { DISPC_CONFIG3, 16, 16 },
351 },
352 },
353 };
354
355 static unsigned long dispc_fclk_rate(struct dispc_device *dispc);
356 static unsigned long dispc_core_clk_rate(struct dispc_device *dispc);
357 static unsigned long dispc_mgr_lclk_rate(struct dispc_device *dispc,
358 enum omap_channel channel);
359 static unsigned long dispc_mgr_pclk_rate(struct dispc_device *dispc,
360 enum omap_channel channel);
361
362 static unsigned long dispc_plane_pclk_rate(struct dispc_device *dispc,
363 enum omap_plane_id plane);
364 static unsigned long dispc_plane_lclk_rate(struct dispc_device *dispc,
365 enum omap_plane_id plane);
366
367 static void dispc_clear_irqstatus(struct dispc_device *dispc, u32 mask);
368
dispc_write_reg(struct dispc_device * dispc,u16 idx,u32 val)369 static inline void dispc_write_reg(struct dispc_device *dispc, u16 idx, u32 val)
370 {
371 __raw_writel(val, dispc->base + idx);
372 }
373
dispc_read_reg(struct dispc_device * dispc,u16 idx)374 static inline u32 dispc_read_reg(struct dispc_device *dispc, u16 idx)
375 {
376 return __raw_readl(dispc->base + idx);
377 }
378
mgr_fld_read(struct dispc_device * dispc,enum omap_channel channel,enum mgr_reg_fields regfld)379 static u32 mgr_fld_read(struct dispc_device *dispc, enum omap_channel channel,
380 enum mgr_reg_fields regfld)
381 {
382 const struct dispc_reg_field rfld = mgr_desc[channel].reg_desc[regfld];
383
384 return REG_GET(dispc, rfld.reg, rfld.high, rfld.low);
385 }
386
mgr_fld_write(struct dispc_device * dispc,enum omap_channel channel,enum mgr_reg_fields regfld,int val)387 static void mgr_fld_write(struct dispc_device *dispc, enum omap_channel channel,
388 enum mgr_reg_fields regfld, int val)
389 {
390 const struct dispc_reg_field rfld = mgr_desc[channel].reg_desc[regfld];
391 const bool need_lock = rfld.reg == DISPC_CONTROL || rfld.reg == DISPC_CONFIG;
392 unsigned long flags;
393
394 if (need_lock) {
395 spin_lock_irqsave(&dispc->control_lock, flags);
396 REG_FLD_MOD(dispc, rfld.reg, val, rfld.high, rfld.low);
397 spin_unlock_irqrestore(&dispc->control_lock, flags);
398 } else {
399 REG_FLD_MOD(dispc, rfld.reg, val, rfld.high, rfld.low);
400 }
401 }
402
dispc_get_num_ovls(struct dispc_device * dispc)403 static int dispc_get_num_ovls(struct dispc_device *dispc)
404 {
405 return dispc->feat->num_ovls;
406 }
407
dispc_get_num_mgrs(struct dispc_device * dispc)408 static int dispc_get_num_mgrs(struct dispc_device *dispc)
409 {
410 return dispc->feat->num_mgrs;
411 }
412
dispc_get_reg_field(struct dispc_device * dispc,enum dispc_feat_reg_field id,u8 * start,u8 * end)413 static void dispc_get_reg_field(struct dispc_device *dispc,
414 enum dispc_feat_reg_field id,
415 u8 *start, u8 *end)
416 {
417 if (id >= dispc->feat->num_reg_fields)
418 BUG();
419
420 *start = dispc->feat->reg_fields[id].start;
421 *end = dispc->feat->reg_fields[id].end;
422 }
423
dispc_has_feature(struct dispc_device * dispc,enum dispc_feature_id id)424 static bool dispc_has_feature(struct dispc_device *dispc,
425 enum dispc_feature_id id)
426 {
427 unsigned int i;
428
429 for (i = 0; i < dispc->feat->num_features; i++) {
430 if (dispc->feat->features[i] == id)
431 return true;
432 }
433
434 return false;
435 }
436
437 #define SR(dispc, reg) \
438 dispc->ctx[DISPC_##reg / sizeof(u32)] = dispc_read_reg(dispc, DISPC_##reg)
439 #define RR(dispc, reg) \
440 dispc_write_reg(dispc, DISPC_##reg, dispc->ctx[DISPC_##reg / sizeof(u32)])
441
dispc_save_context(struct dispc_device * dispc)442 static void dispc_save_context(struct dispc_device *dispc)
443 {
444 int i, j;
445
446 DSSDBG("dispc_save_context\n");
447
448 SR(dispc, IRQENABLE);
449 SR(dispc, CONTROL);
450 SR(dispc, CONFIG);
451 SR(dispc, LINE_NUMBER);
452 if (dispc_has_feature(dispc, FEAT_ALPHA_FIXED_ZORDER) ||
453 dispc_has_feature(dispc, FEAT_ALPHA_FREE_ZORDER))
454 SR(dispc, GLOBAL_ALPHA);
455 if (dispc_has_feature(dispc, FEAT_MGR_LCD2)) {
456 SR(dispc, CONTROL2);
457 SR(dispc, CONFIG2);
458 }
459 if (dispc_has_feature(dispc, FEAT_MGR_LCD3)) {
460 SR(dispc, CONTROL3);
461 SR(dispc, CONFIG3);
462 }
463
464 for (i = 0; i < dispc_get_num_mgrs(dispc); i++) {
465 SR(dispc, DEFAULT_COLOR(i));
466 SR(dispc, TRANS_COLOR(i));
467 SR(dispc, SIZE_MGR(i));
468 if (i == OMAP_DSS_CHANNEL_DIGIT)
469 continue;
470 SR(dispc, TIMING_H(i));
471 SR(dispc, TIMING_V(i));
472 SR(dispc, POL_FREQ(i));
473 SR(dispc, DIVISORo(i));
474
475 SR(dispc, DATA_CYCLE1(i));
476 SR(dispc, DATA_CYCLE2(i));
477 SR(dispc, DATA_CYCLE3(i));
478
479 if (dispc_has_feature(dispc, FEAT_CPR)) {
480 SR(dispc, CPR_COEF_R(i));
481 SR(dispc, CPR_COEF_G(i));
482 SR(dispc, CPR_COEF_B(i));
483 }
484 }
485
486 for (i = 0; i < dispc_get_num_ovls(dispc); i++) {
487 SR(dispc, OVL_BA0(i));
488 SR(dispc, OVL_BA1(i));
489 SR(dispc, OVL_POSITION(i));
490 SR(dispc, OVL_SIZE(i));
491 SR(dispc, OVL_ATTRIBUTES(i));
492 SR(dispc, OVL_FIFO_THRESHOLD(i));
493 SR(dispc, OVL_ROW_INC(i));
494 SR(dispc, OVL_PIXEL_INC(i));
495 if (dispc_has_feature(dispc, FEAT_PRELOAD))
496 SR(dispc, OVL_PRELOAD(i));
497 if (i == OMAP_DSS_GFX) {
498 SR(dispc, OVL_WINDOW_SKIP(i));
499 SR(dispc, OVL_TABLE_BA(i));
500 continue;
501 }
502 SR(dispc, OVL_FIR(i));
503 SR(dispc, OVL_PICTURE_SIZE(i));
504 SR(dispc, OVL_ACCU0(i));
505 SR(dispc, OVL_ACCU1(i));
506
507 for (j = 0; j < 8; j++)
508 SR(dispc, OVL_FIR_COEF_H(i, j));
509
510 for (j = 0; j < 8; j++)
511 SR(dispc, OVL_FIR_COEF_HV(i, j));
512
513 for (j = 0; j < 5; j++)
514 SR(dispc, OVL_CONV_COEF(i, j));
515
516 if (dispc_has_feature(dispc, FEAT_FIR_COEF_V)) {
517 for (j = 0; j < 8; j++)
518 SR(dispc, OVL_FIR_COEF_V(i, j));
519 }
520
521 if (dispc_has_feature(dispc, FEAT_HANDLE_UV_SEPARATE)) {
522 SR(dispc, OVL_BA0_UV(i));
523 SR(dispc, OVL_BA1_UV(i));
524 SR(dispc, OVL_FIR2(i));
525 SR(dispc, OVL_ACCU2_0(i));
526 SR(dispc, OVL_ACCU2_1(i));
527
528 for (j = 0; j < 8; j++)
529 SR(dispc, OVL_FIR_COEF_H2(i, j));
530
531 for (j = 0; j < 8; j++)
532 SR(dispc, OVL_FIR_COEF_HV2(i, j));
533
534 for (j = 0; j < 8; j++)
535 SR(dispc, OVL_FIR_COEF_V2(i, j));
536 }
537 if (dispc_has_feature(dispc, FEAT_ATTR2))
538 SR(dispc, OVL_ATTRIBUTES2(i));
539 }
540
541 if (dispc_has_feature(dispc, FEAT_CORE_CLK_DIV))
542 SR(dispc, DIVISOR);
543
544 dispc->ctx_valid = true;
545
546 DSSDBG("context saved\n");
547 }
548
dispc_restore_context(struct dispc_device * dispc)549 static void dispc_restore_context(struct dispc_device *dispc)
550 {
551 int i, j;
552
553 DSSDBG("dispc_restore_context\n");
554
555 if (!dispc->ctx_valid)
556 return;
557
558 /*RR(dispc, IRQENABLE);*/
559 /*RR(dispc, CONTROL);*/
560 RR(dispc, CONFIG);
561 RR(dispc, LINE_NUMBER);
562 if (dispc_has_feature(dispc, FEAT_ALPHA_FIXED_ZORDER) ||
563 dispc_has_feature(dispc, FEAT_ALPHA_FREE_ZORDER))
564 RR(dispc, GLOBAL_ALPHA);
565 if (dispc_has_feature(dispc, FEAT_MGR_LCD2))
566 RR(dispc, CONFIG2);
567 if (dispc_has_feature(dispc, FEAT_MGR_LCD3))
568 RR(dispc, CONFIG3);
569
570 for (i = 0; i < dispc_get_num_mgrs(dispc); i++) {
571 RR(dispc, DEFAULT_COLOR(i));
572 RR(dispc, TRANS_COLOR(i));
573 RR(dispc, SIZE_MGR(i));
574 if (i == OMAP_DSS_CHANNEL_DIGIT)
575 continue;
576 RR(dispc, TIMING_H(i));
577 RR(dispc, TIMING_V(i));
578 RR(dispc, POL_FREQ(i));
579 RR(dispc, DIVISORo(i));
580
581 RR(dispc, DATA_CYCLE1(i));
582 RR(dispc, DATA_CYCLE2(i));
583 RR(dispc, DATA_CYCLE3(i));
584
585 if (dispc_has_feature(dispc, FEAT_CPR)) {
586 RR(dispc, CPR_COEF_R(i));
587 RR(dispc, CPR_COEF_G(i));
588 RR(dispc, CPR_COEF_B(i));
589 }
590 }
591
592 for (i = 0; i < dispc_get_num_ovls(dispc); i++) {
593 RR(dispc, OVL_BA0(i));
594 RR(dispc, OVL_BA1(i));
595 RR(dispc, OVL_POSITION(i));
596 RR(dispc, OVL_SIZE(i));
597 RR(dispc, OVL_ATTRIBUTES(i));
598 RR(dispc, OVL_FIFO_THRESHOLD(i));
599 RR(dispc, OVL_ROW_INC(i));
600 RR(dispc, OVL_PIXEL_INC(i));
601 if (dispc_has_feature(dispc, FEAT_PRELOAD))
602 RR(dispc, OVL_PRELOAD(i));
603 if (i == OMAP_DSS_GFX) {
604 RR(dispc, OVL_WINDOW_SKIP(i));
605 RR(dispc, OVL_TABLE_BA(i));
606 continue;
607 }
608 RR(dispc, OVL_FIR(i));
609 RR(dispc, OVL_PICTURE_SIZE(i));
610 RR(dispc, OVL_ACCU0(i));
611 RR(dispc, OVL_ACCU1(i));
612
613 for (j = 0; j < 8; j++)
614 RR(dispc, OVL_FIR_COEF_H(i, j));
615
616 for (j = 0; j < 8; j++)
617 RR(dispc, OVL_FIR_COEF_HV(i, j));
618
619 for (j = 0; j < 5; j++)
620 RR(dispc, OVL_CONV_COEF(i, j));
621
622 if (dispc_has_feature(dispc, FEAT_FIR_COEF_V)) {
623 for (j = 0; j < 8; j++)
624 RR(dispc, OVL_FIR_COEF_V(i, j));
625 }
626
627 if (dispc_has_feature(dispc, FEAT_HANDLE_UV_SEPARATE)) {
628 RR(dispc, OVL_BA0_UV(i));
629 RR(dispc, OVL_BA1_UV(i));
630 RR(dispc, OVL_FIR2(i));
631 RR(dispc, OVL_ACCU2_0(i));
632 RR(dispc, OVL_ACCU2_1(i));
633
634 for (j = 0; j < 8; j++)
635 RR(dispc, OVL_FIR_COEF_H2(i, j));
636
637 for (j = 0; j < 8; j++)
638 RR(dispc, OVL_FIR_COEF_HV2(i, j));
639
640 for (j = 0; j < 8; j++)
641 RR(dispc, OVL_FIR_COEF_V2(i, j));
642 }
643 if (dispc_has_feature(dispc, FEAT_ATTR2))
644 RR(dispc, OVL_ATTRIBUTES2(i));
645 }
646
647 if (dispc_has_feature(dispc, FEAT_CORE_CLK_DIV))
648 RR(dispc, DIVISOR);
649
650 /* enable last, because LCD & DIGIT enable are here */
651 RR(dispc, CONTROL);
652 if (dispc_has_feature(dispc, FEAT_MGR_LCD2))
653 RR(dispc, CONTROL2);
654 if (dispc_has_feature(dispc, FEAT_MGR_LCD3))
655 RR(dispc, CONTROL3);
656 /* clear spurious SYNC_LOST_DIGIT interrupts */
657 dispc_clear_irqstatus(dispc, DISPC_IRQ_SYNC_LOST_DIGIT);
658
659 /*
660 * enable last so IRQs won't trigger before
661 * the context is fully restored
662 */
663 RR(dispc, IRQENABLE);
664
665 DSSDBG("context restored\n");
666 }
667
668 #undef SR
669 #undef RR
670
dispc_runtime_get(struct dispc_device * dispc)671 int dispc_runtime_get(struct dispc_device *dispc)
672 {
673 int r;
674
675 DSSDBG("dispc_runtime_get\n");
676
677 r = pm_runtime_get_sync(&dispc->pdev->dev);
678 WARN_ON(r < 0);
679 return r < 0 ? r : 0;
680 }
681
dispc_runtime_put(struct dispc_device * dispc)682 void dispc_runtime_put(struct dispc_device *dispc)
683 {
684 int r;
685
686 DSSDBG("dispc_runtime_put\n");
687
688 r = pm_runtime_put_sync(&dispc->pdev->dev);
689 WARN_ON(r < 0 && r != -ENOSYS);
690 }
691
dispc_mgr_get_vsync_irq(struct dispc_device * dispc,enum omap_channel channel)692 static u32 dispc_mgr_get_vsync_irq(struct dispc_device *dispc,
693 enum omap_channel channel)
694 {
695 return mgr_desc[channel].vsync_irq;
696 }
697
dispc_mgr_get_framedone_irq(struct dispc_device * dispc,enum omap_channel channel)698 static u32 dispc_mgr_get_framedone_irq(struct dispc_device *dispc,
699 enum omap_channel channel)
700 {
701 if (channel == OMAP_DSS_CHANNEL_DIGIT && dispc->feat->no_framedone_tv)
702 return 0;
703
704 return mgr_desc[channel].framedone_irq;
705 }
706
dispc_mgr_get_sync_lost_irq(struct dispc_device * dispc,enum omap_channel channel)707 static u32 dispc_mgr_get_sync_lost_irq(struct dispc_device *dispc,
708 enum omap_channel channel)
709 {
710 return mgr_desc[channel].sync_lost_irq;
711 }
712
dispc_wb_get_framedone_irq(struct dispc_device * dispc)713 static u32 dispc_wb_get_framedone_irq(struct dispc_device *dispc)
714 {
715 return DISPC_IRQ_FRAMEDONEWB;
716 }
717
dispc_mgr_enable(struct dispc_device * dispc,enum omap_channel channel,bool enable)718 static void dispc_mgr_enable(struct dispc_device *dispc,
719 enum omap_channel channel, bool enable)
720 {
721 mgr_fld_write(dispc, channel, DISPC_MGR_FLD_ENABLE, enable);
722 /* flush posted write */
723 mgr_fld_read(dispc, channel, DISPC_MGR_FLD_ENABLE);
724 }
725
dispc_mgr_is_enabled(struct dispc_device * dispc,enum omap_channel channel)726 static bool dispc_mgr_is_enabled(struct dispc_device *dispc,
727 enum omap_channel channel)
728 {
729 return !!mgr_fld_read(dispc, channel, DISPC_MGR_FLD_ENABLE);
730 }
731
dispc_mgr_go_busy(struct dispc_device * dispc,enum omap_channel channel)732 static bool dispc_mgr_go_busy(struct dispc_device *dispc,
733 enum omap_channel channel)
734 {
735 return mgr_fld_read(dispc, channel, DISPC_MGR_FLD_GO) == 1;
736 }
737
dispc_mgr_go(struct dispc_device * dispc,enum omap_channel channel)738 static void dispc_mgr_go(struct dispc_device *dispc, enum omap_channel channel)
739 {
740 WARN_ON(!dispc_mgr_is_enabled(dispc, channel));
741 WARN_ON(dispc_mgr_go_busy(dispc, channel));
742
743 DSSDBG("GO %s\n", mgr_desc[channel].name);
744
745 mgr_fld_write(dispc, channel, DISPC_MGR_FLD_GO, 1);
746 }
747
dispc_wb_go_busy(struct dispc_device * dispc)748 static bool dispc_wb_go_busy(struct dispc_device *dispc)
749 {
750 return REG_GET(dispc, DISPC_CONTROL2, 6, 6) == 1;
751 }
752
dispc_wb_go(struct dispc_device * dispc)753 static void dispc_wb_go(struct dispc_device *dispc)
754 {
755 enum omap_plane_id plane = OMAP_DSS_WB;
756 bool enable, go;
757
758 enable = REG_GET(dispc, DISPC_OVL_ATTRIBUTES(plane), 0, 0) == 1;
759
760 if (!enable)
761 return;
762
763 go = REG_GET(dispc, DISPC_CONTROL2, 6, 6) == 1;
764 if (go) {
765 DSSERR("GO bit not down for WB\n");
766 return;
767 }
768
769 REG_FLD_MOD(dispc, DISPC_CONTROL2, 1, 6, 6);
770 }
771
dispc_ovl_write_firh_reg(struct dispc_device * dispc,enum omap_plane_id plane,int reg,u32 value)772 static void dispc_ovl_write_firh_reg(struct dispc_device *dispc,
773 enum omap_plane_id plane, int reg,
774 u32 value)
775 {
776 dispc_write_reg(dispc, DISPC_OVL_FIR_COEF_H(plane, reg), value);
777 }
778
dispc_ovl_write_firhv_reg(struct dispc_device * dispc,enum omap_plane_id plane,int reg,u32 value)779 static void dispc_ovl_write_firhv_reg(struct dispc_device *dispc,
780 enum omap_plane_id plane, int reg,
781 u32 value)
782 {
783 dispc_write_reg(dispc, DISPC_OVL_FIR_COEF_HV(plane, reg), value);
784 }
785
dispc_ovl_write_firv_reg(struct dispc_device * dispc,enum omap_plane_id plane,int reg,u32 value)786 static void dispc_ovl_write_firv_reg(struct dispc_device *dispc,
787 enum omap_plane_id plane, int reg,
788 u32 value)
789 {
790 dispc_write_reg(dispc, DISPC_OVL_FIR_COEF_V(plane, reg), value);
791 }
792
dispc_ovl_write_firh2_reg(struct dispc_device * dispc,enum omap_plane_id plane,int reg,u32 value)793 static void dispc_ovl_write_firh2_reg(struct dispc_device *dispc,
794 enum omap_plane_id plane, int reg,
795 u32 value)
796 {
797 BUG_ON(plane == OMAP_DSS_GFX);
798
799 dispc_write_reg(dispc, DISPC_OVL_FIR_COEF_H2(plane, reg), value);
800 }
801
dispc_ovl_write_firhv2_reg(struct dispc_device * dispc,enum omap_plane_id plane,int reg,u32 value)802 static void dispc_ovl_write_firhv2_reg(struct dispc_device *dispc,
803 enum omap_plane_id plane, int reg,
804 u32 value)
805 {
806 BUG_ON(plane == OMAP_DSS_GFX);
807
808 dispc_write_reg(dispc, DISPC_OVL_FIR_COEF_HV2(plane, reg), value);
809 }
810
dispc_ovl_write_firv2_reg(struct dispc_device * dispc,enum omap_plane_id plane,int reg,u32 value)811 static void dispc_ovl_write_firv2_reg(struct dispc_device *dispc,
812 enum omap_plane_id plane, int reg,
813 u32 value)
814 {
815 BUG_ON(plane == OMAP_DSS_GFX);
816
817 dispc_write_reg(dispc, DISPC_OVL_FIR_COEF_V2(plane, reg), value);
818 }
819
dispc_ovl_set_scale_coef(struct dispc_device * dispc,enum omap_plane_id plane,int fir_hinc,int fir_vinc,int five_taps,enum omap_color_component color_comp)820 static void dispc_ovl_set_scale_coef(struct dispc_device *dispc,
821 enum omap_plane_id plane, int fir_hinc,
822 int fir_vinc, int five_taps,
823 enum omap_color_component color_comp)
824 {
825 const struct dispc_coef *h_coef, *v_coef;
826 int i;
827
828 h_coef = dispc_ovl_get_scale_coef(fir_hinc, true);
829 v_coef = dispc_ovl_get_scale_coef(fir_vinc, five_taps);
830
831 if (!h_coef || !v_coef) {
832 dev_err(&dispc->pdev->dev, "%s: failed to find scale coefs\n",
833 __func__);
834 return;
835 }
836
837 for (i = 0; i < 8; i++) {
838 u32 h, hv;
839
840 h = FLD_VAL(h_coef[i].hc0_vc00, 7, 0)
841 | FLD_VAL(h_coef[i].hc1_vc0, 15, 8)
842 | FLD_VAL(h_coef[i].hc2_vc1, 23, 16)
843 | FLD_VAL(h_coef[i].hc3_vc2, 31, 24);
844 hv = FLD_VAL(h_coef[i].hc4_vc22, 7, 0)
845 | FLD_VAL(v_coef[i].hc1_vc0, 15, 8)
846 | FLD_VAL(v_coef[i].hc2_vc1, 23, 16)
847 | FLD_VAL(v_coef[i].hc3_vc2, 31, 24);
848
849 if (color_comp == DISPC_COLOR_COMPONENT_RGB_Y) {
850 dispc_ovl_write_firh_reg(dispc, plane, i, h);
851 dispc_ovl_write_firhv_reg(dispc, plane, i, hv);
852 } else {
853 dispc_ovl_write_firh2_reg(dispc, plane, i, h);
854 dispc_ovl_write_firhv2_reg(dispc, plane, i, hv);
855 }
856
857 }
858
859 if (five_taps) {
860 for (i = 0; i < 8; i++) {
861 u32 v;
862 v = FLD_VAL(v_coef[i].hc0_vc00, 7, 0)
863 | FLD_VAL(v_coef[i].hc4_vc22, 15, 8);
864 if (color_comp == DISPC_COLOR_COMPONENT_RGB_Y)
865 dispc_ovl_write_firv_reg(dispc, plane, i, v);
866 else
867 dispc_ovl_write_firv2_reg(dispc, plane, i, v);
868 }
869 }
870 }
871
872 struct csc_coef_yuv2rgb {
873 int ry, rcb, rcr, gy, gcb, gcr, by, bcb, bcr;
874 bool full_range;
875 };
876
877 struct csc_coef_rgb2yuv {
878 int yr, yg, yb, cbr, cbg, cbb, crr, crg, crb;
879 bool full_range;
880 };
881
dispc_ovl_write_color_conv_coef(struct dispc_device * dispc,enum omap_plane_id plane,const struct csc_coef_yuv2rgb * ct)882 static void dispc_ovl_write_color_conv_coef(struct dispc_device *dispc,
883 enum omap_plane_id plane,
884 const struct csc_coef_yuv2rgb *ct)
885 {
886 #define CVAL(x, y) (FLD_VAL(x, 26, 16) | FLD_VAL(y, 10, 0))
887
888 dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 0), CVAL(ct->rcr, ct->ry));
889 dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 1), CVAL(ct->gy, ct->rcb));
890 dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 2), CVAL(ct->gcb, ct->gcr));
891 dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 3), CVAL(ct->bcr, ct->by));
892 dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 4), CVAL(0, ct->bcb));
893
894 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), ct->full_range, 11, 11);
895
896 #undef CVAL
897 }
898
dispc_wb_write_color_conv_coef(struct dispc_device * dispc,const struct csc_coef_rgb2yuv * ct)899 static void dispc_wb_write_color_conv_coef(struct dispc_device *dispc,
900 const struct csc_coef_rgb2yuv *ct)
901 {
902 const enum omap_plane_id plane = OMAP_DSS_WB;
903
904 #define CVAL(x, y) (FLD_VAL(x, 26, 16) | FLD_VAL(y, 10, 0))
905
906 dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 0), CVAL(ct->yg, ct->yr));
907 dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 1), CVAL(ct->crr, ct->yb));
908 dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 2), CVAL(ct->crb, ct->crg));
909 dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 3), CVAL(ct->cbg, ct->cbr));
910 dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 4), CVAL(0, ct->cbb));
911
912 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), ct->full_range, 11, 11);
913
914 #undef CVAL
915 }
916
dispc_setup_color_conv_coef(struct dispc_device * dispc)917 static void dispc_setup_color_conv_coef(struct dispc_device *dispc)
918 {
919 int i;
920 int num_ovl = dispc_get_num_ovls(dispc);
921
922 /* YUV -> RGB, ITU-R BT.601, limited range */
923 const struct csc_coef_yuv2rgb coefs_yuv2rgb_bt601_lim = {
924 298, 0, 409, /* ry, rcb, rcr */
925 298, -100, -208, /* gy, gcb, gcr */
926 298, 516, 0, /* by, bcb, bcr */
927 false, /* limited range */
928 };
929
930 /* RGB -> YUV, ITU-R BT.601, limited range */
931 const struct csc_coef_rgb2yuv coefs_rgb2yuv_bt601_lim = {
932 66, 129, 25, /* yr, yg, yb */
933 -38, -74, 112, /* cbr, cbg, cbb */
934 112, -94, -18, /* crr, crg, crb */
935 false, /* limited range */
936 };
937
938 for (i = 1; i < num_ovl; i++)
939 dispc_ovl_write_color_conv_coef(dispc, i, &coefs_yuv2rgb_bt601_lim);
940
941 if (dispc->feat->has_writeback)
942 dispc_wb_write_color_conv_coef(dispc, &coefs_rgb2yuv_bt601_lim);
943 }
944
dispc_ovl_set_ba0(struct dispc_device * dispc,enum omap_plane_id plane,u32 paddr)945 static void dispc_ovl_set_ba0(struct dispc_device *dispc,
946 enum omap_plane_id plane, u32 paddr)
947 {
948 dispc_write_reg(dispc, DISPC_OVL_BA0(plane), paddr);
949 }
950
dispc_ovl_set_ba1(struct dispc_device * dispc,enum omap_plane_id plane,u32 paddr)951 static void dispc_ovl_set_ba1(struct dispc_device *dispc,
952 enum omap_plane_id plane, u32 paddr)
953 {
954 dispc_write_reg(dispc, DISPC_OVL_BA1(plane), paddr);
955 }
956
dispc_ovl_set_ba0_uv(struct dispc_device * dispc,enum omap_plane_id plane,u32 paddr)957 static void dispc_ovl_set_ba0_uv(struct dispc_device *dispc,
958 enum omap_plane_id plane, u32 paddr)
959 {
960 dispc_write_reg(dispc, DISPC_OVL_BA0_UV(plane), paddr);
961 }
962
dispc_ovl_set_ba1_uv(struct dispc_device * dispc,enum omap_plane_id plane,u32 paddr)963 static void dispc_ovl_set_ba1_uv(struct dispc_device *dispc,
964 enum omap_plane_id plane, u32 paddr)
965 {
966 dispc_write_reg(dispc, DISPC_OVL_BA1_UV(plane), paddr);
967 }
968
dispc_ovl_set_pos(struct dispc_device * dispc,enum omap_plane_id plane,enum omap_overlay_caps caps,int x,int y)969 static void dispc_ovl_set_pos(struct dispc_device *dispc,
970 enum omap_plane_id plane,
971 enum omap_overlay_caps caps, int x, int y)
972 {
973 u32 val;
974
975 if ((caps & OMAP_DSS_OVL_CAP_POS) == 0)
976 return;
977
978 val = FLD_VAL(y, 26, 16) | FLD_VAL(x, 10, 0);
979
980 dispc_write_reg(dispc, DISPC_OVL_POSITION(plane), val);
981 }
982
dispc_ovl_set_input_size(struct dispc_device * dispc,enum omap_plane_id plane,int width,int height)983 static void dispc_ovl_set_input_size(struct dispc_device *dispc,
984 enum omap_plane_id plane, int width,
985 int height)
986 {
987 u32 val = FLD_VAL(height - 1, 26, 16) | FLD_VAL(width - 1, 10, 0);
988
989 if (plane == OMAP_DSS_GFX || plane == OMAP_DSS_WB)
990 dispc_write_reg(dispc, DISPC_OVL_SIZE(plane), val);
991 else
992 dispc_write_reg(dispc, DISPC_OVL_PICTURE_SIZE(plane), val);
993 }
994
dispc_ovl_set_output_size(struct dispc_device * dispc,enum omap_plane_id plane,int width,int height)995 static void dispc_ovl_set_output_size(struct dispc_device *dispc,
996 enum omap_plane_id plane, int width,
997 int height)
998 {
999 u32 val;
1000
1001 BUG_ON(plane == OMAP_DSS_GFX);
1002
1003 val = FLD_VAL(height - 1, 26, 16) | FLD_VAL(width - 1, 10, 0);
1004
1005 if (plane == OMAP_DSS_WB)
1006 dispc_write_reg(dispc, DISPC_OVL_PICTURE_SIZE(plane), val);
1007 else
1008 dispc_write_reg(dispc, DISPC_OVL_SIZE(plane), val);
1009 }
1010
dispc_ovl_set_zorder(struct dispc_device * dispc,enum omap_plane_id plane,enum omap_overlay_caps caps,u8 zorder)1011 static void dispc_ovl_set_zorder(struct dispc_device *dispc,
1012 enum omap_plane_id plane,
1013 enum omap_overlay_caps caps, u8 zorder)
1014 {
1015 if ((caps & OMAP_DSS_OVL_CAP_ZORDER) == 0)
1016 return;
1017
1018 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), zorder, 27, 26);
1019 }
1020
dispc_ovl_enable_zorder_planes(struct dispc_device * dispc)1021 static void dispc_ovl_enable_zorder_planes(struct dispc_device *dispc)
1022 {
1023 int i;
1024
1025 if (!dispc_has_feature(dispc, FEAT_ALPHA_FREE_ZORDER))
1026 return;
1027
1028 for (i = 0; i < dispc_get_num_ovls(dispc); i++)
1029 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(i), 1, 25, 25);
1030 }
1031
dispc_ovl_set_pre_mult_alpha(struct dispc_device * dispc,enum omap_plane_id plane,enum omap_overlay_caps caps,bool enable)1032 static void dispc_ovl_set_pre_mult_alpha(struct dispc_device *dispc,
1033 enum omap_plane_id plane,
1034 enum omap_overlay_caps caps,
1035 bool enable)
1036 {
1037 if ((caps & OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA) == 0)
1038 return;
1039
1040 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), enable ? 1 : 0, 28, 28);
1041 }
1042
dispc_ovl_setup_global_alpha(struct dispc_device * dispc,enum omap_plane_id plane,enum omap_overlay_caps caps,u8 global_alpha)1043 static void dispc_ovl_setup_global_alpha(struct dispc_device *dispc,
1044 enum omap_plane_id plane,
1045 enum omap_overlay_caps caps,
1046 u8 global_alpha)
1047 {
1048 static const unsigned int shifts[] = { 0, 8, 16, 24, };
1049 int shift;
1050
1051 if ((caps & OMAP_DSS_OVL_CAP_GLOBAL_ALPHA) == 0)
1052 return;
1053
1054 shift = shifts[plane];
1055 REG_FLD_MOD(dispc, DISPC_GLOBAL_ALPHA, global_alpha, shift + 7, shift);
1056 }
1057
dispc_ovl_set_pix_inc(struct dispc_device * dispc,enum omap_plane_id plane,s32 inc)1058 static void dispc_ovl_set_pix_inc(struct dispc_device *dispc,
1059 enum omap_plane_id plane, s32 inc)
1060 {
1061 dispc_write_reg(dispc, DISPC_OVL_PIXEL_INC(plane), inc);
1062 }
1063
dispc_ovl_set_row_inc(struct dispc_device * dispc,enum omap_plane_id plane,s32 inc)1064 static void dispc_ovl_set_row_inc(struct dispc_device *dispc,
1065 enum omap_plane_id plane, s32 inc)
1066 {
1067 dispc_write_reg(dispc, DISPC_OVL_ROW_INC(plane), inc);
1068 }
1069
dispc_ovl_set_color_mode(struct dispc_device * dispc,enum omap_plane_id plane,u32 fourcc)1070 static void dispc_ovl_set_color_mode(struct dispc_device *dispc,
1071 enum omap_plane_id plane, u32 fourcc)
1072 {
1073 u32 m = 0;
1074 if (plane != OMAP_DSS_GFX) {
1075 switch (fourcc) {
1076 case DRM_FORMAT_NV12:
1077 m = 0x0; break;
1078 case DRM_FORMAT_XRGB4444:
1079 m = 0x1; break;
1080 case DRM_FORMAT_RGBA4444:
1081 m = 0x2; break;
1082 case DRM_FORMAT_RGBX4444:
1083 m = 0x4; break;
1084 case DRM_FORMAT_ARGB4444:
1085 m = 0x5; break;
1086 case DRM_FORMAT_RGB565:
1087 m = 0x6; break;
1088 case DRM_FORMAT_ARGB1555:
1089 m = 0x7; break;
1090 case DRM_FORMAT_XRGB8888:
1091 m = 0x8; break;
1092 case DRM_FORMAT_RGB888:
1093 m = 0x9; break;
1094 case DRM_FORMAT_YUYV:
1095 m = 0xa; break;
1096 case DRM_FORMAT_UYVY:
1097 m = 0xb; break;
1098 case DRM_FORMAT_ARGB8888:
1099 m = 0xc; break;
1100 case DRM_FORMAT_RGBA8888:
1101 m = 0xd; break;
1102 case DRM_FORMAT_RGBX8888:
1103 m = 0xe; break;
1104 case DRM_FORMAT_XRGB1555:
1105 m = 0xf; break;
1106 default:
1107 BUG(); return;
1108 }
1109 } else {
1110 switch (fourcc) {
1111 case DRM_FORMAT_RGBX4444:
1112 m = 0x4; break;
1113 case DRM_FORMAT_ARGB4444:
1114 m = 0x5; break;
1115 case DRM_FORMAT_RGB565:
1116 m = 0x6; break;
1117 case DRM_FORMAT_ARGB1555:
1118 m = 0x7; break;
1119 case DRM_FORMAT_XRGB8888:
1120 m = 0x8; break;
1121 case DRM_FORMAT_RGB888:
1122 m = 0x9; break;
1123 case DRM_FORMAT_XRGB4444:
1124 m = 0xa; break;
1125 case DRM_FORMAT_RGBA4444:
1126 m = 0xb; break;
1127 case DRM_FORMAT_ARGB8888:
1128 m = 0xc; break;
1129 case DRM_FORMAT_RGBA8888:
1130 m = 0xd; break;
1131 case DRM_FORMAT_RGBX8888:
1132 m = 0xe; break;
1133 case DRM_FORMAT_XRGB1555:
1134 m = 0xf; break;
1135 default:
1136 BUG(); return;
1137 }
1138 }
1139
1140 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), m, 4, 1);
1141 }
1142
format_is_yuv(u32 fourcc)1143 static bool format_is_yuv(u32 fourcc)
1144 {
1145 switch (fourcc) {
1146 case DRM_FORMAT_YUYV:
1147 case DRM_FORMAT_UYVY:
1148 case DRM_FORMAT_NV12:
1149 return true;
1150 default:
1151 return false;
1152 }
1153 }
1154
dispc_ovl_configure_burst_type(struct dispc_device * dispc,enum omap_plane_id plane,enum omap_dss_rotation_type rotation)1155 static void dispc_ovl_configure_burst_type(struct dispc_device *dispc,
1156 enum omap_plane_id plane,
1157 enum omap_dss_rotation_type rotation)
1158 {
1159 if (dispc_has_feature(dispc, FEAT_BURST_2D) == 0)
1160 return;
1161
1162 if (rotation == OMAP_DSS_ROT_TILER)
1163 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), 1, 29, 29);
1164 else
1165 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), 0, 29, 29);
1166 }
1167
dispc_ovl_set_channel_out(struct dispc_device * dispc,enum omap_plane_id plane,enum omap_channel channel)1168 static void dispc_ovl_set_channel_out(struct dispc_device *dispc,
1169 enum omap_plane_id plane,
1170 enum omap_channel channel)
1171 {
1172 int shift;
1173 u32 val;
1174 int chan = 0, chan2 = 0;
1175
1176 switch (plane) {
1177 case OMAP_DSS_GFX:
1178 shift = 8;
1179 break;
1180 case OMAP_DSS_VIDEO1:
1181 case OMAP_DSS_VIDEO2:
1182 case OMAP_DSS_VIDEO3:
1183 shift = 16;
1184 break;
1185 default:
1186 BUG();
1187 return;
1188 }
1189
1190 val = dispc_read_reg(dispc, DISPC_OVL_ATTRIBUTES(plane));
1191 if (dispc_has_feature(dispc, FEAT_MGR_LCD2)) {
1192 switch (channel) {
1193 case OMAP_DSS_CHANNEL_LCD:
1194 chan = 0;
1195 chan2 = 0;
1196 break;
1197 case OMAP_DSS_CHANNEL_DIGIT:
1198 chan = 1;
1199 chan2 = 0;
1200 break;
1201 case OMAP_DSS_CHANNEL_LCD2:
1202 chan = 0;
1203 chan2 = 1;
1204 break;
1205 case OMAP_DSS_CHANNEL_LCD3:
1206 if (dispc_has_feature(dispc, FEAT_MGR_LCD3)) {
1207 chan = 0;
1208 chan2 = 2;
1209 } else {
1210 BUG();
1211 return;
1212 }
1213 break;
1214 case OMAP_DSS_CHANNEL_WB:
1215 chan = 0;
1216 chan2 = 3;
1217 break;
1218 default:
1219 BUG();
1220 return;
1221 }
1222
1223 val = FLD_MOD(val, chan, shift, shift);
1224 val = FLD_MOD(val, chan2, 31, 30);
1225 } else {
1226 val = FLD_MOD(val, channel, shift, shift);
1227 }
1228 dispc_write_reg(dispc, DISPC_OVL_ATTRIBUTES(plane), val);
1229 }
1230
dispc_ovl_get_channel_out(struct dispc_device * dispc,enum omap_plane_id plane)1231 static enum omap_channel dispc_ovl_get_channel_out(struct dispc_device *dispc,
1232 enum omap_plane_id plane)
1233 {
1234 int shift;
1235 u32 val;
1236
1237 switch (plane) {
1238 case OMAP_DSS_GFX:
1239 shift = 8;
1240 break;
1241 case OMAP_DSS_VIDEO1:
1242 case OMAP_DSS_VIDEO2:
1243 case OMAP_DSS_VIDEO3:
1244 shift = 16;
1245 break;
1246 default:
1247 BUG();
1248 return 0;
1249 }
1250
1251 val = dispc_read_reg(dispc, DISPC_OVL_ATTRIBUTES(plane));
1252
1253 if (FLD_GET(val, shift, shift) == 1)
1254 return OMAP_DSS_CHANNEL_DIGIT;
1255
1256 if (!dispc_has_feature(dispc, FEAT_MGR_LCD2))
1257 return OMAP_DSS_CHANNEL_LCD;
1258
1259 switch (FLD_GET(val, 31, 30)) {
1260 case 0:
1261 default:
1262 return OMAP_DSS_CHANNEL_LCD;
1263 case 1:
1264 return OMAP_DSS_CHANNEL_LCD2;
1265 case 2:
1266 return OMAP_DSS_CHANNEL_LCD3;
1267 case 3:
1268 return OMAP_DSS_CHANNEL_WB;
1269 }
1270 }
1271
dispc_ovl_set_burst_size(struct dispc_device * dispc,enum omap_plane_id plane,enum omap_burst_size burst_size)1272 static void dispc_ovl_set_burst_size(struct dispc_device *dispc,
1273 enum omap_plane_id plane,
1274 enum omap_burst_size burst_size)
1275 {
1276 static const unsigned int shifts[] = { 6, 14, 14, 14, 14, };
1277 int shift;
1278
1279 shift = shifts[plane];
1280 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), burst_size,
1281 shift + 1, shift);
1282 }
1283
dispc_configure_burst_sizes(struct dispc_device * dispc)1284 static void dispc_configure_burst_sizes(struct dispc_device *dispc)
1285 {
1286 int i;
1287 const int burst_size = BURST_SIZE_X8;
1288
1289 /* Configure burst size always to maximum size */
1290 for (i = 0; i < dispc_get_num_ovls(dispc); ++i)
1291 dispc_ovl_set_burst_size(dispc, i, burst_size);
1292 if (dispc->feat->has_writeback)
1293 dispc_ovl_set_burst_size(dispc, OMAP_DSS_WB, burst_size);
1294 }
1295
dispc_ovl_get_burst_size(struct dispc_device * dispc,enum omap_plane_id plane)1296 static u32 dispc_ovl_get_burst_size(struct dispc_device *dispc,
1297 enum omap_plane_id plane)
1298 {
1299 /* burst multiplier is always x8 (see dispc_configure_burst_sizes()) */
1300 return dispc->feat->burst_size_unit * 8;
1301 }
1302
dispc_ovl_color_mode_supported(struct dispc_device * dispc,enum omap_plane_id plane,u32 fourcc)1303 static bool dispc_ovl_color_mode_supported(struct dispc_device *dispc,
1304 enum omap_plane_id plane, u32 fourcc)
1305 {
1306 const u32 *modes;
1307 unsigned int i;
1308
1309 modes = dispc->feat->supported_color_modes[plane];
1310
1311 for (i = 0; modes[i]; ++i) {
1312 if (modes[i] == fourcc)
1313 return true;
1314 }
1315
1316 return false;
1317 }
1318
dispc_ovl_get_color_modes(struct dispc_device * dispc,enum omap_plane_id plane)1319 static const u32 *dispc_ovl_get_color_modes(struct dispc_device *dispc,
1320 enum omap_plane_id plane)
1321 {
1322 return dispc->feat->supported_color_modes[plane];
1323 }
1324
dispc_mgr_enable_cpr(struct dispc_device * dispc,enum omap_channel channel,bool enable)1325 static void dispc_mgr_enable_cpr(struct dispc_device *dispc,
1326 enum omap_channel channel, bool enable)
1327 {
1328 if (channel == OMAP_DSS_CHANNEL_DIGIT)
1329 return;
1330
1331 mgr_fld_write(dispc, channel, DISPC_MGR_FLD_CPR, enable);
1332 }
1333
dispc_mgr_set_cpr_coef(struct dispc_device * dispc,enum omap_channel channel,const struct omap_dss_cpr_coefs * coefs)1334 static void dispc_mgr_set_cpr_coef(struct dispc_device *dispc,
1335 enum omap_channel channel,
1336 const struct omap_dss_cpr_coefs *coefs)
1337 {
1338 u32 coef_r, coef_g, coef_b;
1339
1340 if (!dss_mgr_is_lcd(channel))
1341 return;
1342
1343 coef_r = FLD_VAL(coefs->rr, 31, 22) | FLD_VAL(coefs->rg, 20, 11) |
1344 FLD_VAL(coefs->rb, 9, 0);
1345 coef_g = FLD_VAL(coefs->gr, 31, 22) | FLD_VAL(coefs->gg, 20, 11) |
1346 FLD_VAL(coefs->gb, 9, 0);
1347 coef_b = FLD_VAL(coefs->br, 31, 22) | FLD_VAL(coefs->bg, 20, 11) |
1348 FLD_VAL(coefs->bb, 9, 0);
1349
1350 dispc_write_reg(dispc, DISPC_CPR_COEF_R(channel), coef_r);
1351 dispc_write_reg(dispc, DISPC_CPR_COEF_G(channel), coef_g);
1352 dispc_write_reg(dispc, DISPC_CPR_COEF_B(channel), coef_b);
1353 }
1354
dispc_ovl_set_vid_color_conv(struct dispc_device * dispc,enum omap_plane_id plane,bool enable)1355 static void dispc_ovl_set_vid_color_conv(struct dispc_device *dispc,
1356 enum omap_plane_id plane, bool enable)
1357 {
1358 u32 val;
1359
1360 BUG_ON(plane == OMAP_DSS_GFX);
1361
1362 val = dispc_read_reg(dispc, DISPC_OVL_ATTRIBUTES(plane));
1363 val = FLD_MOD(val, enable, 9, 9);
1364 dispc_write_reg(dispc, DISPC_OVL_ATTRIBUTES(plane), val);
1365 }
1366
dispc_ovl_enable_replication(struct dispc_device * dispc,enum omap_plane_id plane,enum omap_overlay_caps caps,bool enable)1367 static void dispc_ovl_enable_replication(struct dispc_device *dispc,
1368 enum omap_plane_id plane,
1369 enum omap_overlay_caps caps,
1370 bool enable)
1371 {
1372 static const unsigned int shifts[] = { 5, 10, 10, 10 };
1373 int shift;
1374
1375 if ((caps & OMAP_DSS_OVL_CAP_REPLICATION) == 0)
1376 return;
1377
1378 shift = shifts[plane];
1379 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), enable, shift, shift);
1380 }
1381
dispc_mgr_set_size(struct dispc_device * dispc,enum omap_channel channel,u16 width,u16 height)1382 static void dispc_mgr_set_size(struct dispc_device *dispc,
1383 enum omap_channel channel, u16 width, u16 height)
1384 {
1385 u32 val;
1386
1387 val = FLD_VAL(height - 1, dispc->feat->mgr_height_start, 16) |
1388 FLD_VAL(width - 1, dispc->feat->mgr_width_start, 0);
1389
1390 dispc_write_reg(dispc, DISPC_SIZE_MGR(channel), val);
1391 }
1392
dispc_init_fifos(struct dispc_device * dispc)1393 static void dispc_init_fifos(struct dispc_device *dispc)
1394 {
1395 u32 size;
1396 int fifo;
1397 u8 start, end;
1398 u32 unit;
1399 int i;
1400
1401 unit = dispc->feat->buffer_size_unit;
1402
1403 dispc_get_reg_field(dispc, FEAT_REG_FIFOSIZE, &start, &end);
1404
1405 for (fifo = 0; fifo < dispc->feat->num_fifos; ++fifo) {
1406 size = REG_GET(dispc, DISPC_OVL_FIFO_SIZE_STATUS(fifo),
1407 start, end);
1408 size *= unit;
1409 dispc->fifo_size[fifo] = size;
1410
1411 /*
1412 * By default fifos are mapped directly to overlays, fifo 0 to
1413 * ovl 0, fifo 1 to ovl 1, etc.
1414 */
1415 dispc->fifo_assignment[fifo] = fifo;
1416 }
1417
1418 /*
1419 * The GFX fifo on OMAP4 is smaller than the other fifos. The small fifo
1420 * causes problems with certain use cases, like using the tiler in 2D
1421 * mode. The below hack swaps the fifos of GFX and WB planes, thus
1422 * giving GFX plane a larger fifo. WB but should work fine with a
1423 * smaller fifo.
1424 */
1425 if (dispc->feat->gfx_fifo_workaround) {
1426 u32 v;
1427
1428 v = dispc_read_reg(dispc, DISPC_GLOBAL_BUFFER);
1429
1430 v = FLD_MOD(v, 4, 2, 0); /* GFX BUF top to WB */
1431 v = FLD_MOD(v, 4, 5, 3); /* GFX BUF bottom to WB */
1432 v = FLD_MOD(v, 0, 26, 24); /* WB BUF top to GFX */
1433 v = FLD_MOD(v, 0, 29, 27); /* WB BUF bottom to GFX */
1434
1435 dispc_write_reg(dispc, DISPC_GLOBAL_BUFFER, v);
1436
1437 dispc->fifo_assignment[OMAP_DSS_GFX] = OMAP_DSS_WB;
1438 dispc->fifo_assignment[OMAP_DSS_WB] = OMAP_DSS_GFX;
1439 }
1440
1441 /*
1442 * Setup default fifo thresholds.
1443 */
1444 for (i = 0; i < dispc_get_num_ovls(dispc); ++i) {
1445 u32 low, high;
1446 const bool use_fifomerge = false;
1447 const bool manual_update = false;
1448
1449 dispc_ovl_compute_fifo_thresholds(dispc, i, &low, &high,
1450 use_fifomerge, manual_update);
1451
1452 dispc_ovl_set_fifo_threshold(dispc, i, low, high);
1453 }
1454
1455 if (dispc->feat->has_writeback) {
1456 u32 low, high;
1457 const bool use_fifomerge = false;
1458 const bool manual_update = false;
1459
1460 dispc_ovl_compute_fifo_thresholds(dispc, OMAP_DSS_WB,
1461 &low, &high, use_fifomerge,
1462 manual_update);
1463
1464 dispc_ovl_set_fifo_threshold(dispc, OMAP_DSS_WB, low, high);
1465 }
1466 }
1467
dispc_ovl_get_fifo_size(struct dispc_device * dispc,enum omap_plane_id plane)1468 static u32 dispc_ovl_get_fifo_size(struct dispc_device *dispc,
1469 enum omap_plane_id plane)
1470 {
1471 int fifo;
1472 u32 size = 0;
1473
1474 for (fifo = 0; fifo < dispc->feat->num_fifos; ++fifo) {
1475 if (dispc->fifo_assignment[fifo] == plane)
1476 size += dispc->fifo_size[fifo];
1477 }
1478
1479 return size;
1480 }
1481
dispc_ovl_set_fifo_threshold(struct dispc_device * dispc,enum omap_plane_id plane,u32 low,u32 high)1482 void dispc_ovl_set_fifo_threshold(struct dispc_device *dispc,
1483 enum omap_plane_id plane,
1484 u32 low, u32 high)
1485 {
1486 u8 hi_start, hi_end, lo_start, lo_end;
1487 u32 unit;
1488
1489 unit = dispc->feat->buffer_size_unit;
1490
1491 WARN_ON(low % unit != 0);
1492 WARN_ON(high % unit != 0);
1493
1494 low /= unit;
1495 high /= unit;
1496
1497 dispc_get_reg_field(dispc, FEAT_REG_FIFOHIGHTHRESHOLD,
1498 &hi_start, &hi_end);
1499 dispc_get_reg_field(dispc, FEAT_REG_FIFOLOWTHRESHOLD,
1500 &lo_start, &lo_end);
1501
1502 DSSDBG("fifo(%d) threshold (bytes), old %u/%u, new %u/%u\n",
1503 plane,
1504 REG_GET(dispc, DISPC_OVL_FIFO_THRESHOLD(plane),
1505 lo_start, lo_end) * unit,
1506 REG_GET(dispc, DISPC_OVL_FIFO_THRESHOLD(plane),
1507 hi_start, hi_end) * unit,
1508 low * unit, high * unit);
1509
1510 dispc_write_reg(dispc, DISPC_OVL_FIFO_THRESHOLD(plane),
1511 FLD_VAL(high, hi_start, hi_end) |
1512 FLD_VAL(low, lo_start, lo_end));
1513
1514 /*
1515 * configure the preload to the pipeline's high threhold, if HT it's too
1516 * large for the preload field, set the threshold to the maximum value
1517 * that can be held by the preload register
1518 */
1519 if (dispc_has_feature(dispc, FEAT_PRELOAD) &&
1520 dispc->feat->set_max_preload && plane != OMAP_DSS_WB)
1521 dispc_write_reg(dispc, DISPC_OVL_PRELOAD(plane),
1522 min(high, 0xfffu));
1523 }
1524
dispc_enable_fifomerge(struct dispc_device * dispc,bool enable)1525 void dispc_enable_fifomerge(struct dispc_device *dispc, bool enable)
1526 {
1527 if (!dispc_has_feature(dispc, FEAT_FIFO_MERGE)) {
1528 WARN_ON(enable);
1529 return;
1530 }
1531
1532 DSSDBG("FIFO merge %s\n", enable ? "enabled" : "disabled");
1533 REG_FLD_MOD(dispc, DISPC_CONFIG, enable ? 1 : 0, 14, 14);
1534 }
1535
dispc_ovl_compute_fifo_thresholds(struct dispc_device * dispc,enum omap_plane_id plane,u32 * fifo_low,u32 * fifo_high,bool use_fifomerge,bool manual_update)1536 void dispc_ovl_compute_fifo_thresholds(struct dispc_device *dispc,
1537 enum omap_plane_id plane,
1538 u32 *fifo_low, u32 *fifo_high,
1539 bool use_fifomerge, bool manual_update)
1540 {
1541 /*
1542 * All sizes are in bytes. Both the buffer and burst are made of
1543 * buffer_units, and the fifo thresholds must be buffer_unit aligned.
1544 */
1545 unsigned int buf_unit = dispc->feat->buffer_size_unit;
1546 unsigned int ovl_fifo_size, total_fifo_size, burst_size;
1547 int i;
1548
1549 burst_size = dispc_ovl_get_burst_size(dispc, plane);
1550 ovl_fifo_size = dispc_ovl_get_fifo_size(dispc, plane);
1551
1552 if (use_fifomerge) {
1553 total_fifo_size = 0;
1554 for (i = 0; i < dispc_get_num_ovls(dispc); ++i)
1555 total_fifo_size += dispc_ovl_get_fifo_size(dispc, i);
1556 } else {
1557 total_fifo_size = ovl_fifo_size;
1558 }
1559
1560 /*
1561 * We use the same low threshold for both fifomerge and non-fifomerge
1562 * cases, but for fifomerge we calculate the high threshold using the
1563 * combined fifo size
1564 */
1565
1566 if (manual_update && dispc_has_feature(dispc, FEAT_OMAP3_DSI_FIFO_BUG)) {
1567 *fifo_low = ovl_fifo_size - burst_size * 2;
1568 *fifo_high = total_fifo_size - burst_size;
1569 } else if (plane == OMAP_DSS_WB) {
1570 /*
1571 * Most optimal configuration for writeback is to push out data
1572 * to the interconnect the moment writeback pushes enough pixels
1573 * in the FIFO to form a burst
1574 */
1575 *fifo_low = 0;
1576 *fifo_high = burst_size;
1577 } else {
1578 *fifo_low = ovl_fifo_size - burst_size;
1579 *fifo_high = total_fifo_size - buf_unit;
1580 }
1581 }
1582
dispc_ovl_set_mflag(struct dispc_device * dispc,enum omap_plane_id plane,bool enable)1583 static void dispc_ovl_set_mflag(struct dispc_device *dispc,
1584 enum omap_plane_id plane, bool enable)
1585 {
1586 int bit;
1587
1588 if (plane == OMAP_DSS_GFX)
1589 bit = 14;
1590 else
1591 bit = 23;
1592
1593 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), enable, bit, bit);
1594 }
1595
dispc_ovl_set_mflag_threshold(struct dispc_device * dispc,enum omap_plane_id plane,int low,int high)1596 static void dispc_ovl_set_mflag_threshold(struct dispc_device *dispc,
1597 enum omap_plane_id plane,
1598 int low, int high)
1599 {
1600 dispc_write_reg(dispc, DISPC_OVL_MFLAG_THRESHOLD(plane),
1601 FLD_VAL(high, 31, 16) | FLD_VAL(low, 15, 0));
1602 }
1603
dispc_init_mflag(struct dispc_device * dispc)1604 static void dispc_init_mflag(struct dispc_device *dispc)
1605 {
1606 int i;
1607
1608 /*
1609 * HACK: NV12 color format and MFLAG seem to have problems working
1610 * together: using two displays, and having an NV12 overlay on one of
1611 * the displays will cause underflows/synclosts when MFLAG_CTRL=2.
1612 * Changing MFLAG thresholds and PRELOAD to certain values seem to
1613 * remove the errors, but there doesn't seem to be a clear logic on
1614 * which values work and which not.
1615 *
1616 * As a work-around, set force MFLAG to always on.
1617 */
1618 dispc_write_reg(dispc, DISPC_GLOBAL_MFLAG_ATTRIBUTE,
1619 (1 << 0) | /* MFLAG_CTRL = force always on */
1620 (0 << 2)); /* MFLAG_START = disable */
1621
1622 for (i = 0; i < dispc_get_num_ovls(dispc); ++i) {
1623 u32 size = dispc_ovl_get_fifo_size(dispc, i);
1624 u32 unit = dispc->feat->buffer_size_unit;
1625 u32 low, high;
1626
1627 dispc_ovl_set_mflag(dispc, i, true);
1628
1629 /*
1630 * Simulation team suggests below thesholds:
1631 * HT = fifosize * 5 / 8;
1632 * LT = fifosize * 4 / 8;
1633 */
1634
1635 low = size * 4 / 8 / unit;
1636 high = size * 5 / 8 / unit;
1637
1638 dispc_ovl_set_mflag_threshold(dispc, i, low, high);
1639 }
1640
1641 if (dispc->feat->has_writeback) {
1642 u32 size = dispc_ovl_get_fifo_size(dispc, OMAP_DSS_WB);
1643 u32 unit = dispc->feat->buffer_size_unit;
1644 u32 low, high;
1645
1646 dispc_ovl_set_mflag(dispc, OMAP_DSS_WB, true);
1647
1648 /*
1649 * Simulation team suggests below thesholds:
1650 * HT = fifosize * 5 / 8;
1651 * LT = fifosize * 4 / 8;
1652 */
1653
1654 low = size * 4 / 8 / unit;
1655 high = size * 5 / 8 / unit;
1656
1657 dispc_ovl_set_mflag_threshold(dispc, OMAP_DSS_WB, low, high);
1658 }
1659 }
1660
dispc_ovl_set_fir(struct dispc_device * dispc,enum omap_plane_id plane,int hinc,int vinc,enum omap_color_component color_comp)1661 static void dispc_ovl_set_fir(struct dispc_device *dispc,
1662 enum omap_plane_id plane,
1663 int hinc, int vinc,
1664 enum omap_color_component color_comp)
1665 {
1666 u32 val;
1667
1668 if (color_comp == DISPC_COLOR_COMPONENT_RGB_Y) {
1669 u8 hinc_start, hinc_end, vinc_start, vinc_end;
1670
1671 dispc_get_reg_field(dispc, FEAT_REG_FIRHINC,
1672 &hinc_start, &hinc_end);
1673 dispc_get_reg_field(dispc, FEAT_REG_FIRVINC,
1674 &vinc_start, &vinc_end);
1675 val = FLD_VAL(vinc, vinc_start, vinc_end) |
1676 FLD_VAL(hinc, hinc_start, hinc_end);
1677
1678 dispc_write_reg(dispc, DISPC_OVL_FIR(plane), val);
1679 } else {
1680 val = FLD_VAL(vinc, 28, 16) | FLD_VAL(hinc, 12, 0);
1681 dispc_write_reg(dispc, DISPC_OVL_FIR2(plane), val);
1682 }
1683 }
1684
dispc_ovl_set_vid_accu0(struct dispc_device * dispc,enum omap_plane_id plane,int haccu,int vaccu)1685 static void dispc_ovl_set_vid_accu0(struct dispc_device *dispc,
1686 enum omap_plane_id plane, int haccu,
1687 int vaccu)
1688 {
1689 u32 val;
1690 u8 hor_start, hor_end, vert_start, vert_end;
1691
1692 dispc_get_reg_field(dispc, FEAT_REG_HORIZONTALACCU,
1693 &hor_start, &hor_end);
1694 dispc_get_reg_field(dispc, FEAT_REG_VERTICALACCU,
1695 &vert_start, &vert_end);
1696
1697 val = FLD_VAL(vaccu, vert_start, vert_end) |
1698 FLD_VAL(haccu, hor_start, hor_end);
1699
1700 dispc_write_reg(dispc, DISPC_OVL_ACCU0(plane), val);
1701 }
1702
dispc_ovl_set_vid_accu1(struct dispc_device * dispc,enum omap_plane_id plane,int haccu,int vaccu)1703 static void dispc_ovl_set_vid_accu1(struct dispc_device *dispc,
1704 enum omap_plane_id plane, int haccu,
1705 int vaccu)
1706 {
1707 u32 val;
1708 u8 hor_start, hor_end, vert_start, vert_end;
1709
1710 dispc_get_reg_field(dispc, FEAT_REG_HORIZONTALACCU,
1711 &hor_start, &hor_end);
1712 dispc_get_reg_field(dispc, FEAT_REG_VERTICALACCU,
1713 &vert_start, &vert_end);
1714
1715 val = FLD_VAL(vaccu, vert_start, vert_end) |
1716 FLD_VAL(haccu, hor_start, hor_end);
1717
1718 dispc_write_reg(dispc, DISPC_OVL_ACCU1(plane), val);
1719 }
1720
dispc_ovl_set_vid_accu2_0(struct dispc_device * dispc,enum omap_plane_id plane,int haccu,int vaccu)1721 static void dispc_ovl_set_vid_accu2_0(struct dispc_device *dispc,
1722 enum omap_plane_id plane, int haccu,
1723 int vaccu)
1724 {
1725 u32 val;
1726
1727 val = FLD_VAL(vaccu, 26, 16) | FLD_VAL(haccu, 10, 0);
1728 dispc_write_reg(dispc, DISPC_OVL_ACCU2_0(plane), val);
1729 }
1730
dispc_ovl_set_vid_accu2_1(struct dispc_device * dispc,enum omap_plane_id plane,int haccu,int vaccu)1731 static void dispc_ovl_set_vid_accu2_1(struct dispc_device *dispc,
1732 enum omap_plane_id plane, int haccu,
1733 int vaccu)
1734 {
1735 u32 val;
1736
1737 val = FLD_VAL(vaccu, 26, 16) | FLD_VAL(haccu, 10, 0);
1738 dispc_write_reg(dispc, DISPC_OVL_ACCU2_1(plane), val);
1739 }
1740
dispc_ovl_set_scale_param(struct dispc_device * dispc,enum omap_plane_id plane,u16 orig_width,u16 orig_height,u16 out_width,u16 out_height,bool five_taps,u8 rotation,enum omap_color_component color_comp)1741 static void dispc_ovl_set_scale_param(struct dispc_device *dispc,
1742 enum omap_plane_id plane,
1743 u16 orig_width, u16 orig_height,
1744 u16 out_width, u16 out_height,
1745 bool five_taps, u8 rotation,
1746 enum omap_color_component color_comp)
1747 {
1748 int fir_hinc, fir_vinc;
1749
1750 fir_hinc = 1024 * orig_width / out_width;
1751 fir_vinc = 1024 * orig_height / out_height;
1752
1753 dispc_ovl_set_scale_coef(dispc, plane, fir_hinc, fir_vinc, five_taps,
1754 color_comp);
1755 dispc_ovl_set_fir(dispc, plane, fir_hinc, fir_vinc, color_comp);
1756 }
1757
dispc_ovl_set_accu_uv(struct dispc_device * dispc,enum omap_plane_id plane,u16 orig_width,u16 orig_height,u16 out_width,u16 out_height,bool ilace,u32 fourcc,u8 rotation)1758 static void dispc_ovl_set_accu_uv(struct dispc_device *dispc,
1759 enum omap_plane_id plane,
1760 u16 orig_width, u16 orig_height,
1761 u16 out_width, u16 out_height,
1762 bool ilace, u32 fourcc, u8 rotation)
1763 {
1764 int h_accu2_0, h_accu2_1;
1765 int v_accu2_0, v_accu2_1;
1766 int chroma_hinc, chroma_vinc;
1767 int idx;
1768
1769 struct accu {
1770 s8 h0_m, h0_n;
1771 s8 h1_m, h1_n;
1772 s8 v0_m, v0_n;
1773 s8 v1_m, v1_n;
1774 };
1775
1776 const struct accu *accu_table;
1777 const struct accu *accu_val;
1778
1779 static const struct accu accu_nv12[4] = {
1780 { 0, 1, 0, 1 , -1, 2, 0, 1 },
1781 { 1, 2, -3, 4 , 0, 1, 0, 1 },
1782 { -1, 1, 0, 1 , -1, 2, 0, 1 },
1783 { -1, 2, -1, 2 , -1, 1, 0, 1 },
1784 };
1785
1786 static const struct accu accu_nv12_ilace[4] = {
1787 { 0, 1, 0, 1 , -3, 4, -1, 4 },
1788 { -1, 4, -3, 4 , 0, 1, 0, 1 },
1789 { -1, 1, 0, 1 , -1, 4, -3, 4 },
1790 { -3, 4, -3, 4 , -1, 1, 0, 1 },
1791 };
1792
1793 static const struct accu accu_yuv[4] = {
1794 { 0, 1, 0, 1, 0, 1, 0, 1 },
1795 { 0, 1, 0, 1, 0, 1, 0, 1 },
1796 { -1, 1, 0, 1, 0, 1, 0, 1 },
1797 { 0, 1, 0, 1, -1, 1, 0, 1 },
1798 };
1799
1800 /* Note: DSS HW rotates clockwise, DRM_MODE_ROTATE_* counter-clockwise */
1801 switch (rotation & DRM_MODE_ROTATE_MASK) {
1802 default:
1803 case DRM_MODE_ROTATE_0:
1804 idx = 0;
1805 break;
1806 case DRM_MODE_ROTATE_90:
1807 idx = 3;
1808 break;
1809 case DRM_MODE_ROTATE_180:
1810 idx = 2;
1811 break;
1812 case DRM_MODE_ROTATE_270:
1813 idx = 1;
1814 break;
1815 }
1816
1817 switch (fourcc) {
1818 case DRM_FORMAT_NV12:
1819 if (ilace)
1820 accu_table = accu_nv12_ilace;
1821 else
1822 accu_table = accu_nv12;
1823 break;
1824 case DRM_FORMAT_YUYV:
1825 case DRM_FORMAT_UYVY:
1826 accu_table = accu_yuv;
1827 break;
1828 default:
1829 BUG();
1830 return;
1831 }
1832
1833 accu_val = &accu_table[idx];
1834
1835 chroma_hinc = 1024 * orig_width / out_width;
1836 chroma_vinc = 1024 * orig_height / out_height;
1837
1838 h_accu2_0 = (accu_val->h0_m * chroma_hinc / accu_val->h0_n) % 1024;
1839 h_accu2_1 = (accu_val->h1_m * chroma_hinc / accu_val->h1_n) % 1024;
1840 v_accu2_0 = (accu_val->v0_m * chroma_vinc / accu_val->v0_n) % 1024;
1841 v_accu2_1 = (accu_val->v1_m * chroma_vinc / accu_val->v1_n) % 1024;
1842
1843 dispc_ovl_set_vid_accu2_0(dispc, plane, h_accu2_0, v_accu2_0);
1844 dispc_ovl_set_vid_accu2_1(dispc, plane, h_accu2_1, v_accu2_1);
1845 }
1846
dispc_ovl_set_scaling_common(struct dispc_device * dispc,enum omap_plane_id plane,u16 orig_width,u16 orig_height,u16 out_width,u16 out_height,bool ilace,bool five_taps,bool fieldmode,u32 fourcc,u8 rotation)1847 static void dispc_ovl_set_scaling_common(struct dispc_device *dispc,
1848 enum omap_plane_id plane,
1849 u16 orig_width, u16 orig_height,
1850 u16 out_width, u16 out_height,
1851 bool ilace, bool five_taps,
1852 bool fieldmode, u32 fourcc,
1853 u8 rotation)
1854 {
1855 int accu0 = 0;
1856 int accu1 = 0;
1857 u32 l;
1858
1859 dispc_ovl_set_scale_param(dispc, plane, orig_width, orig_height,
1860 out_width, out_height, five_taps,
1861 rotation, DISPC_COLOR_COMPONENT_RGB_Y);
1862 l = dispc_read_reg(dispc, DISPC_OVL_ATTRIBUTES(plane));
1863
1864 /* RESIZEENABLE and VERTICALTAPS */
1865 l &= ~((0x3 << 5) | (0x1 << 21));
1866 l |= (orig_width != out_width) ? (1 << 5) : 0;
1867 l |= (orig_height != out_height) ? (1 << 6) : 0;
1868 l |= five_taps ? (1 << 21) : 0;
1869
1870 /* VRESIZECONF and HRESIZECONF */
1871 if (dispc_has_feature(dispc, FEAT_RESIZECONF)) {
1872 l &= ~(0x3 << 7);
1873 l |= (orig_width <= out_width) ? 0 : (1 << 7);
1874 l |= (orig_height <= out_height) ? 0 : (1 << 8);
1875 }
1876
1877 /* LINEBUFFERSPLIT */
1878 if (dispc_has_feature(dispc, FEAT_LINEBUFFERSPLIT)) {
1879 l &= ~(0x1 << 22);
1880 l |= five_taps ? (1 << 22) : 0;
1881 }
1882
1883 dispc_write_reg(dispc, DISPC_OVL_ATTRIBUTES(plane), l);
1884
1885 /*
1886 * field 0 = even field = bottom field
1887 * field 1 = odd field = top field
1888 */
1889 if (ilace && !fieldmode) {
1890 accu1 = 0;
1891 accu0 = ((1024 * orig_height / out_height) / 2) & 0x3ff;
1892 if (accu0 >= 1024/2) {
1893 accu1 = 1024/2;
1894 accu0 -= accu1;
1895 }
1896 }
1897
1898 dispc_ovl_set_vid_accu0(dispc, plane, 0, accu0);
1899 dispc_ovl_set_vid_accu1(dispc, plane, 0, accu1);
1900 }
1901
dispc_ovl_set_scaling_uv(struct dispc_device * dispc,enum omap_plane_id plane,u16 orig_width,u16 orig_height,u16 out_width,u16 out_height,bool ilace,bool five_taps,bool fieldmode,u32 fourcc,u8 rotation)1902 static void dispc_ovl_set_scaling_uv(struct dispc_device *dispc,
1903 enum omap_plane_id plane,
1904 u16 orig_width, u16 orig_height,
1905 u16 out_width, u16 out_height,
1906 bool ilace, bool five_taps,
1907 bool fieldmode, u32 fourcc,
1908 u8 rotation)
1909 {
1910 int scale_x = out_width != orig_width;
1911 int scale_y = out_height != orig_height;
1912 bool chroma_upscale = plane != OMAP_DSS_WB;
1913
1914 if (!dispc_has_feature(dispc, FEAT_HANDLE_UV_SEPARATE))
1915 return;
1916
1917 if (!format_is_yuv(fourcc)) {
1918 /* reset chroma resampling for RGB formats */
1919 if (plane != OMAP_DSS_WB)
1920 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES2(plane),
1921 0, 8, 8);
1922 return;
1923 }
1924
1925 dispc_ovl_set_accu_uv(dispc, plane, orig_width, orig_height, out_width,
1926 out_height, ilace, fourcc, rotation);
1927
1928 switch (fourcc) {
1929 case DRM_FORMAT_NV12:
1930 if (chroma_upscale) {
1931 /* UV is subsampled by 2 horizontally and vertically */
1932 orig_height >>= 1;
1933 orig_width >>= 1;
1934 } else {
1935 /* UV is downsampled by 2 horizontally and vertically */
1936 orig_height <<= 1;
1937 orig_width <<= 1;
1938 }
1939
1940 break;
1941 case DRM_FORMAT_YUYV:
1942 case DRM_FORMAT_UYVY:
1943 /* For YUV422 with 90/270 rotation, we don't upsample chroma */
1944 if (!drm_rotation_90_or_270(rotation)) {
1945 if (chroma_upscale)
1946 /* UV is subsampled by 2 horizontally */
1947 orig_width >>= 1;
1948 else
1949 /* UV is downsampled by 2 horizontally */
1950 orig_width <<= 1;
1951 }
1952
1953 /* must use FIR for YUV422 if rotated */
1954 if ((rotation & DRM_MODE_ROTATE_MASK) != DRM_MODE_ROTATE_0)
1955 scale_x = scale_y = true;
1956
1957 break;
1958 default:
1959 BUG();
1960 return;
1961 }
1962
1963 if (out_width != orig_width)
1964 scale_x = true;
1965 if (out_height != orig_height)
1966 scale_y = true;
1967
1968 dispc_ovl_set_scale_param(dispc, plane, orig_width, orig_height,
1969 out_width, out_height, five_taps,
1970 rotation, DISPC_COLOR_COMPONENT_UV);
1971
1972 if (plane != OMAP_DSS_WB)
1973 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES2(plane),
1974 (scale_x || scale_y) ? 1 : 0, 8, 8);
1975
1976 /* set H scaling */
1977 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), scale_x ? 1 : 0, 5, 5);
1978 /* set V scaling */
1979 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), scale_y ? 1 : 0, 6, 6);
1980 }
1981
dispc_ovl_set_scaling(struct dispc_device * dispc,enum omap_plane_id plane,u16 orig_width,u16 orig_height,u16 out_width,u16 out_height,bool ilace,bool five_taps,bool fieldmode,u32 fourcc,u8 rotation)1982 static void dispc_ovl_set_scaling(struct dispc_device *dispc,
1983 enum omap_plane_id plane,
1984 u16 orig_width, u16 orig_height,
1985 u16 out_width, u16 out_height,
1986 bool ilace, bool five_taps,
1987 bool fieldmode, u32 fourcc,
1988 u8 rotation)
1989 {
1990 BUG_ON(plane == OMAP_DSS_GFX);
1991
1992 dispc_ovl_set_scaling_common(dispc, plane, orig_width, orig_height,
1993 out_width, out_height, ilace, five_taps,
1994 fieldmode, fourcc, rotation);
1995
1996 dispc_ovl_set_scaling_uv(dispc, plane, orig_width, orig_height,
1997 out_width, out_height, ilace, five_taps,
1998 fieldmode, fourcc, rotation);
1999 }
2000
dispc_ovl_set_rotation_attrs(struct dispc_device * dispc,enum omap_plane_id plane,u8 rotation,enum omap_dss_rotation_type rotation_type,u32 fourcc)2001 static void dispc_ovl_set_rotation_attrs(struct dispc_device *dispc,
2002 enum omap_plane_id plane, u8 rotation,
2003 enum omap_dss_rotation_type rotation_type,
2004 u32 fourcc)
2005 {
2006 bool row_repeat = false;
2007 int vidrot = 0;
2008
2009 /* Note: DSS HW rotates clockwise, DRM_MODE_ROTATE_* counter-clockwise */
2010 if (fourcc == DRM_FORMAT_YUYV || fourcc == DRM_FORMAT_UYVY) {
2011
2012 if (rotation & DRM_MODE_REFLECT_X) {
2013 switch (rotation & DRM_MODE_ROTATE_MASK) {
2014 case DRM_MODE_ROTATE_0:
2015 vidrot = 2;
2016 break;
2017 case DRM_MODE_ROTATE_90:
2018 vidrot = 1;
2019 break;
2020 case DRM_MODE_ROTATE_180:
2021 vidrot = 0;
2022 break;
2023 case DRM_MODE_ROTATE_270:
2024 vidrot = 3;
2025 break;
2026 }
2027 } else {
2028 switch (rotation & DRM_MODE_ROTATE_MASK) {
2029 case DRM_MODE_ROTATE_0:
2030 vidrot = 0;
2031 break;
2032 case DRM_MODE_ROTATE_90:
2033 vidrot = 3;
2034 break;
2035 case DRM_MODE_ROTATE_180:
2036 vidrot = 2;
2037 break;
2038 case DRM_MODE_ROTATE_270:
2039 vidrot = 1;
2040 break;
2041 }
2042 }
2043
2044 if (drm_rotation_90_or_270(rotation))
2045 row_repeat = true;
2046 else
2047 row_repeat = false;
2048 }
2049
2050 /*
2051 * OMAP4/5 Errata i631:
2052 * NV12 in 1D mode must use ROTATION=1. Otherwise DSS will fetch extra
2053 * rows beyond the framebuffer, which may cause OCP error.
2054 */
2055 if (fourcc == DRM_FORMAT_NV12 && rotation_type != OMAP_DSS_ROT_TILER)
2056 vidrot = 1;
2057
2058 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), vidrot, 13, 12);
2059 if (dispc_has_feature(dispc, FEAT_ROWREPEATENABLE))
2060 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane),
2061 row_repeat ? 1 : 0, 18, 18);
2062
2063 if (dispc_ovl_color_mode_supported(dispc, plane, DRM_FORMAT_NV12)) {
2064 bool doublestride =
2065 fourcc == DRM_FORMAT_NV12 &&
2066 rotation_type == OMAP_DSS_ROT_TILER &&
2067 !drm_rotation_90_or_270(rotation);
2068
2069 /* DOUBLESTRIDE */
2070 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane),
2071 doublestride, 22, 22);
2072 }
2073 }
2074
color_mode_to_bpp(u32 fourcc)2075 static int color_mode_to_bpp(u32 fourcc)
2076 {
2077 switch (fourcc) {
2078 case DRM_FORMAT_NV12:
2079 return 8;
2080 case DRM_FORMAT_RGBX4444:
2081 case DRM_FORMAT_RGB565:
2082 case DRM_FORMAT_ARGB4444:
2083 case DRM_FORMAT_YUYV:
2084 case DRM_FORMAT_UYVY:
2085 case DRM_FORMAT_RGBA4444:
2086 case DRM_FORMAT_XRGB4444:
2087 case DRM_FORMAT_ARGB1555:
2088 case DRM_FORMAT_XRGB1555:
2089 return 16;
2090 case DRM_FORMAT_RGB888:
2091 return 24;
2092 case DRM_FORMAT_XRGB8888:
2093 case DRM_FORMAT_ARGB8888:
2094 case DRM_FORMAT_RGBA8888:
2095 case DRM_FORMAT_RGBX8888:
2096 return 32;
2097 default:
2098 BUG();
2099 return 0;
2100 }
2101 }
2102
pixinc(int pixels,u8 ps)2103 static s32 pixinc(int pixels, u8 ps)
2104 {
2105 if (pixels == 1)
2106 return 1;
2107 else if (pixels > 1)
2108 return 1 + (pixels - 1) * ps;
2109 else if (pixels < 0)
2110 return 1 - (-pixels + 1) * ps;
2111 else
2112 BUG();
2113 return 0;
2114 }
2115
calc_offset(u16 screen_width,u16 width,u32 fourcc,bool fieldmode,unsigned int field_offset,unsigned int * offset0,unsigned int * offset1,s32 * row_inc,s32 * pix_inc,int x_predecim,int y_predecim,enum omap_dss_rotation_type rotation_type,u8 rotation)2116 static void calc_offset(u16 screen_width, u16 width,
2117 u32 fourcc, bool fieldmode, unsigned int field_offset,
2118 unsigned int *offset0, unsigned int *offset1,
2119 s32 *row_inc, s32 *pix_inc, int x_predecim, int y_predecim,
2120 enum omap_dss_rotation_type rotation_type, u8 rotation)
2121 {
2122 u8 ps;
2123
2124 ps = color_mode_to_bpp(fourcc) / 8;
2125
2126 DSSDBG("scrw %d, width %d\n", screen_width, width);
2127
2128 if (rotation_type == OMAP_DSS_ROT_TILER &&
2129 (fourcc == DRM_FORMAT_UYVY || fourcc == DRM_FORMAT_YUYV) &&
2130 drm_rotation_90_or_270(rotation)) {
2131 /*
2132 * HACK: ROW_INC needs to be calculated with TILER units.
2133 * We get such 'screen_width' that multiplying it with the
2134 * YUV422 pixel size gives the correct TILER container width.
2135 * However, 'width' is in pixels and multiplying it with YUV422
2136 * pixel size gives incorrect result. We thus multiply it here
2137 * with 2 to match the 32 bit TILER unit size.
2138 */
2139 width *= 2;
2140 }
2141
2142 /*
2143 * field 0 = even field = bottom field
2144 * field 1 = odd field = top field
2145 */
2146 *offset0 = field_offset * screen_width * ps;
2147 *offset1 = 0;
2148
2149 *row_inc = pixinc(1 + (y_predecim * screen_width - width * x_predecim) +
2150 (fieldmode ? screen_width : 0), ps);
2151 if (fourcc == DRM_FORMAT_YUYV || fourcc == DRM_FORMAT_UYVY)
2152 *pix_inc = pixinc(x_predecim, 2 * ps);
2153 else
2154 *pix_inc = pixinc(x_predecim, ps);
2155 }
2156
2157 /*
2158 * This function is used to avoid synclosts in OMAP3, because of some
2159 * undocumented horizontal position and timing related limitations.
2160 */
check_horiz_timing_omap3(unsigned long pclk,unsigned long lclk,const struct videomode * vm,u16 pos_x,u16 width,u16 height,u16 out_width,u16 out_height,bool five_taps)2161 static int check_horiz_timing_omap3(unsigned long pclk, unsigned long lclk,
2162 const struct videomode *vm, u16 pos_x,
2163 u16 width, u16 height, u16 out_width, u16 out_height,
2164 bool five_taps)
2165 {
2166 const int ds = DIV_ROUND_UP(height, out_height);
2167 unsigned long nonactive;
2168 static const u8 limits[3] = { 8, 10, 20 };
2169 u64 val, blank;
2170 int i;
2171
2172 nonactive = vm->hactive + vm->hfront_porch + vm->hsync_len +
2173 vm->hback_porch - out_width;
2174
2175 i = 0;
2176 if (out_height < height)
2177 i++;
2178 if (out_width < width)
2179 i++;
2180 blank = div_u64((u64)(vm->hback_porch + vm->hsync_len + vm->hfront_porch) *
2181 lclk, pclk);
2182 DSSDBG("blanking period + ppl = %llu (limit = %u)\n", blank, limits[i]);
2183 if (blank <= limits[i])
2184 return -EINVAL;
2185
2186 /* FIXME add checks for 3-tap filter once the limitations are known */
2187 if (!five_taps)
2188 return 0;
2189
2190 /*
2191 * Pixel data should be prepared before visible display point starts.
2192 * So, atleast DS-2 lines must have already been fetched by DISPC
2193 * during nonactive - pos_x period.
2194 */
2195 val = div_u64((u64)(nonactive - pos_x) * lclk, pclk);
2196 DSSDBG("(nonactive - pos_x) * pcd = %llu max(0, DS - 2) * width = %d\n",
2197 val, max(0, ds - 2) * width);
2198 if (val < max(0, ds - 2) * width)
2199 return -EINVAL;
2200
2201 /*
2202 * All lines need to be refilled during the nonactive period of which
2203 * only one line can be loaded during the active period. So, atleast
2204 * DS - 1 lines should be loaded during nonactive period.
2205 */
2206 val = div_u64((u64)nonactive * lclk, pclk);
2207 DSSDBG("nonactive * pcd = %llu, max(0, DS - 1) * width = %d\n",
2208 val, max(0, ds - 1) * width);
2209 if (val < max(0, ds - 1) * width)
2210 return -EINVAL;
2211
2212 return 0;
2213 }
2214
calc_core_clk_five_taps(unsigned long pclk,const struct videomode * vm,u16 width,u16 height,u16 out_width,u16 out_height,u32 fourcc)2215 static unsigned long calc_core_clk_five_taps(unsigned long pclk,
2216 const struct videomode *vm, u16 width,
2217 u16 height, u16 out_width, u16 out_height,
2218 u32 fourcc)
2219 {
2220 u32 core_clk = 0;
2221 u64 tmp;
2222
2223 if (height <= out_height && width <= out_width)
2224 return (unsigned long) pclk;
2225
2226 if (height > out_height) {
2227 unsigned int ppl = vm->hactive;
2228
2229 tmp = (u64)pclk * height * out_width;
2230 do_div(tmp, 2 * out_height * ppl);
2231 core_clk = tmp;
2232
2233 if (height > 2 * out_height) {
2234 if (ppl == out_width)
2235 return 0;
2236
2237 tmp = (u64)pclk * (height - 2 * out_height) * out_width;
2238 do_div(tmp, 2 * out_height * (ppl - out_width));
2239 core_clk = max_t(u32, core_clk, tmp);
2240 }
2241 }
2242
2243 if (width > out_width) {
2244 tmp = (u64)pclk * width;
2245 do_div(tmp, out_width);
2246 core_clk = max_t(u32, core_clk, tmp);
2247
2248 if (fourcc == DRM_FORMAT_XRGB8888)
2249 core_clk <<= 1;
2250 }
2251
2252 return core_clk;
2253 }
2254
calc_core_clk_24xx(unsigned long pclk,u16 width,u16 height,u16 out_width,u16 out_height,bool mem_to_mem)2255 static unsigned long calc_core_clk_24xx(unsigned long pclk, u16 width,
2256 u16 height, u16 out_width, u16 out_height, bool mem_to_mem)
2257 {
2258 if (height > out_height && width > out_width)
2259 return pclk * 4;
2260 else
2261 return pclk * 2;
2262 }
2263
calc_core_clk_34xx(unsigned long pclk,u16 width,u16 height,u16 out_width,u16 out_height,bool mem_to_mem)2264 static unsigned long calc_core_clk_34xx(unsigned long pclk, u16 width,
2265 u16 height, u16 out_width, u16 out_height, bool mem_to_mem)
2266 {
2267 unsigned int hf, vf;
2268
2269 /*
2270 * FIXME how to determine the 'A' factor
2271 * for the no downscaling case ?
2272 */
2273
2274 if (width > 3 * out_width)
2275 hf = 4;
2276 else if (width > 2 * out_width)
2277 hf = 3;
2278 else if (width > out_width)
2279 hf = 2;
2280 else
2281 hf = 1;
2282 if (height > out_height)
2283 vf = 2;
2284 else
2285 vf = 1;
2286
2287 return pclk * vf * hf;
2288 }
2289
calc_core_clk_44xx(unsigned long pclk,u16 width,u16 height,u16 out_width,u16 out_height,bool mem_to_mem)2290 static unsigned long calc_core_clk_44xx(unsigned long pclk, u16 width,
2291 u16 height, u16 out_width, u16 out_height, bool mem_to_mem)
2292 {
2293 /*
2294 * If the overlay/writeback is in mem to mem mode, there are no
2295 * downscaling limitations with respect to pixel clock, return 1 as
2296 * required core clock to represent that we have sufficient enough
2297 * core clock to do maximum downscaling
2298 */
2299 if (mem_to_mem)
2300 return 1;
2301
2302 if (width > out_width)
2303 return DIV_ROUND_UP(pclk, out_width) * width;
2304 else
2305 return pclk;
2306 }
2307
dispc_ovl_calc_scaling_24xx(struct dispc_device * dispc,unsigned long pclk,unsigned long lclk,const struct videomode * vm,u16 width,u16 height,u16 out_width,u16 out_height,u32 fourcc,bool * five_taps,int * x_predecim,int * y_predecim,int * decim_x,int * decim_y,u16 pos_x,unsigned long * core_clk,bool mem_to_mem)2308 static int dispc_ovl_calc_scaling_24xx(struct dispc_device *dispc,
2309 unsigned long pclk, unsigned long lclk,
2310 const struct videomode *vm,
2311 u16 width, u16 height,
2312 u16 out_width, u16 out_height,
2313 u32 fourcc, bool *five_taps,
2314 int *x_predecim, int *y_predecim,
2315 int *decim_x, int *decim_y,
2316 u16 pos_x, unsigned long *core_clk,
2317 bool mem_to_mem)
2318 {
2319 int error;
2320 u16 in_width, in_height;
2321 int min_factor = min(*decim_x, *decim_y);
2322 const int maxsinglelinewidth = dispc->feat->max_line_width;
2323
2324 *five_taps = false;
2325
2326 do {
2327 in_height = height / *decim_y;
2328 in_width = width / *decim_x;
2329 *core_clk = dispc->feat->calc_core_clk(pclk, in_width,
2330 in_height, out_width, out_height, mem_to_mem);
2331 error = (in_width > maxsinglelinewidth || !*core_clk ||
2332 *core_clk > dispc_core_clk_rate(dispc));
2333 if (error) {
2334 if (*decim_x == *decim_y) {
2335 *decim_x = min_factor;
2336 ++*decim_y;
2337 } else {
2338 swap(*decim_x, *decim_y);
2339 if (*decim_x < *decim_y)
2340 ++*decim_x;
2341 }
2342 }
2343 } while (*decim_x <= *x_predecim && *decim_y <= *y_predecim && error);
2344
2345 if (error) {
2346 DSSERR("failed to find scaling settings\n");
2347 return -EINVAL;
2348 }
2349
2350 if (in_width > maxsinglelinewidth) {
2351 DSSERR("Cannot scale max input width exceeded\n");
2352 return -EINVAL;
2353 }
2354 return 0;
2355 }
2356
dispc_ovl_calc_scaling_34xx(struct dispc_device * dispc,unsigned long pclk,unsigned long lclk,const struct videomode * vm,u16 width,u16 height,u16 out_width,u16 out_height,u32 fourcc,bool * five_taps,int * x_predecim,int * y_predecim,int * decim_x,int * decim_y,u16 pos_x,unsigned long * core_clk,bool mem_to_mem)2357 static int dispc_ovl_calc_scaling_34xx(struct dispc_device *dispc,
2358 unsigned long pclk, unsigned long lclk,
2359 const struct videomode *vm,
2360 u16 width, u16 height,
2361 u16 out_width, u16 out_height,
2362 u32 fourcc, bool *five_taps,
2363 int *x_predecim, int *y_predecim,
2364 int *decim_x, int *decim_y,
2365 u16 pos_x, unsigned long *core_clk,
2366 bool mem_to_mem)
2367 {
2368 int error;
2369 u16 in_width, in_height;
2370 const int maxsinglelinewidth = dispc->feat->max_line_width;
2371
2372 do {
2373 in_height = height / *decim_y;
2374 in_width = width / *decim_x;
2375 *five_taps = in_height > out_height;
2376
2377 if (in_width > maxsinglelinewidth)
2378 if (in_height > out_height &&
2379 in_height < out_height * 2)
2380 *five_taps = false;
2381 again:
2382 if (*five_taps)
2383 *core_clk = calc_core_clk_five_taps(pclk, vm,
2384 in_width, in_height, out_width,
2385 out_height, fourcc);
2386 else
2387 *core_clk = dispc->feat->calc_core_clk(pclk, in_width,
2388 in_height, out_width, out_height,
2389 mem_to_mem);
2390
2391 error = check_horiz_timing_omap3(pclk, lclk, vm,
2392 pos_x, in_width, in_height, out_width,
2393 out_height, *five_taps);
2394 if (error && *five_taps) {
2395 *five_taps = false;
2396 goto again;
2397 }
2398
2399 error = (error || in_width > maxsinglelinewidth * 2 ||
2400 (in_width > maxsinglelinewidth && *five_taps) ||
2401 !*core_clk || *core_clk > dispc_core_clk_rate(dispc));
2402
2403 if (!error) {
2404 /* verify that we're inside the limits of scaler */
2405 if (in_width / 4 > out_width)
2406 error = 1;
2407
2408 if (*five_taps) {
2409 if (in_height / 4 > out_height)
2410 error = 1;
2411 } else {
2412 if (in_height / 2 > out_height)
2413 error = 1;
2414 }
2415 }
2416
2417 if (error)
2418 ++*decim_y;
2419 } while (*decim_x <= *x_predecim && *decim_y <= *y_predecim && error);
2420
2421 if (error) {
2422 DSSERR("failed to find scaling settings\n");
2423 return -EINVAL;
2424 }
2425
2426 if (check_horiz_timing_omap3(pclk, lclk, vm, pos_x, in_width,
2427 in_height, out_width, out_height, *five_taps)) {
2428 DSSERR("horizontal timing too tight\n");
2429 return -EINVAL;
2430 }
2431
2432 if (in_width > (maxsinglelinewidth * 2)) {
2433 DSSERR("Cannot setup scaling\n");
2434 DSSERR("width exceeds maximum width possible\n");
2435 return -EINVAL;
2436 }
2437
2438 if (in_width > maxsinglelinewidth && *five_taps) {
2439 DSSERR("cannot setup scaling with five taps\n");
2440 return -EINVAL;
2441 }
2442 return 0;
2443 }
2444
dispc_ovl_calc_scaling_44xx(struct dispc_device * dispc,unsigned long pclk,unsigned long lclk,const struct videomode * vm,u16 width,u16 height,u16 out_width,u16 out_height,u32 fourcc,bool * five_taps,int * x_predecim,int * y_predecim,int * decim_x,int * decim_y,u16 pos_x,unsigned long * core_clk,bool mem_to_mem)2445 static int dispc_ovl_calc_scaling_44xx(struct dispc_device *dispc,
2446 unsigned long pclk, unsigned long lclk,
2447 const struct videomode *vm,
2448 u16 width, u16 height,
2449 u16 out_width, u16 out_height,
2450 u32 fourcc, bool *five_taps,
2451 int *x_predecim, int *y_predecim,
2452 int *decim_x, int *decim_y,
2453 u16 pos_x, unsigned long *core_clk,
2454 bool mem_to_mem)
2455 {
2456 u16 in_width, in_width_max;
2457 int decim_x_min = *decim_x;
2458 u16 in_height = height / *decim_y;
2459 const int maxsinglelinewidth = dispc->feat->max_line_width;
2460 const int maxdownscale = dispc->feat->max_downscale;
2461
2462 if (mem_to_mem) {
2463 in_width_max = out_width * maxdownscale;
2464 } else {
2465 in_width_max = dispc_core_clk_rate(dispc)
2466 / DIV_ROUND_UP(pclk, out_width);
2467 }
2468
2469 *decim_x = DIV_ROUND_UP(width, in_width_max);
2470
2471 *decim_x = *decim_x > decim_x_min ? *decim_x : decim_x_min;
2472 if (*decim_x > *x_predecim)
2473 return -EINVAL;
2474
2475 do {
2476 in_width = width / *decim_x;
2477 } while (*decim_x <= *x_predecim &&
2478 in_width > maxsinglelinewidth && ++*decim_x);
2479
2480 if (in_width > maxsinglelinewidth) {
2481 DSSERR("Cannot scale width exceeds max line width\n");
2482 return -EINVAL;
2483 }
2484
2485 if (*decim_x > 4 && fourcc != DRM_FORMAT_NV12) {
2486 /*
2487 * Let's disable all scaling that requires horizontal
2488 * decimation with higher factor than 4, until we have
2489 * better estimates of what we can and can not
2490 * do. However, NV12 color format appears to work Ok
2491 * with all decimation factors.
2492 *
2493 * When decimating horizontally by more that 4 the dss
2494 * is not able to fetch the data in burst mode. When
2495 * this happens it is hard to tell if there enough
2496 * bandwidth. Despite what theory says this appears to
2497 * be true also for 16-bit color formats.
2498 */
2499 DSSERR("Not enough bandwidth, too much downscaling (x-decimation factor %d > 4)\n", *decim_x);
2500
2501 return -EINVAL;
2502 }
2503
2504 *core_clk = dispc->feat->calc_core_clk(pclk, in_width, in_height,
2505 out_width, out_height, mem_to_mem);
2506 return 0;
2507 }
2508
2509 #define DIV_FRAC(dividend, divisor) \
2510 ((dividend) * 100 / (divisor) - ((dividend) / (divisor) * 100))
2511
dispc_ovl_calc_scaling(struct dispc_device * dispc,enum omap_plane_id plane,unsigned long pclk,unsigned long lclk,enum omap_overlay_caps caps,const struct videomode * vm,u16 width,u16 height,u16 out_width,u16 out_height,u32 fourcc,bool * five_taps,int * x_predecim,int * y_predecim,u16 pos_x,enum omap_dss_rotation_type rotation_type,bool mem_to_mem)2512 static int dispc_ovl_calc_scaling(struct dispc_device *dispc,
2513 enum omap_plane_id plane,
2514 unsigned long pclk, unsigned long lclk,
2515 enum omap_overlay_caps caps,
2516 const struct videomode *vm,
2517 u16 width, u16 height,
2518 u16 out_width, u16 out_height,
2519 u32 fourcc, bool *five_taps,
2520 int *x_predecim, int *y_predecim, u16 pos_x,
2521 enum omap_dss_rotation_type rotation_type,
2522 bool mem_to_mem)
2523 {
2524 int maxhdownscale = dispc->feat->max_downscale;
2525 int maxvdownscale = dispc->feat->max_downscale;
2526 const int max_decim_limit = 16;
2527 unsigned long core_clk = 0;
2528 int decim_x, decim_y, ret;
2529
2530 if (width == out_width && height == out_height)
2531 return 0;
2532
2533 if (plane == OMAP_DSS_WB) {
2534 switch (fourcc) {
2535 case DRM_FORMAT_NV12:
2536 maxhdownscale = maxvdownscale = 2;
2537 break;
2538 case DRM_FORMAT_YUYV:
2539 case DRM_FORMAT_UYVY:
2540 maxhdownscale = 2;
2541 maxvdownscale = 4;
2542 break;
2543 default:
2544 break;
2545 }
2546 }
2547 if (!mem_to_mem && (pclk == 0 || vm->pixelclock == 0)) {
2548 DSSERR("cannot calculate scaling settings: pclk is zero\n");
2549 return -EINVAL;
2550 }
2551
2552 if ((caps & OMAP_DSS_OVL_CAP_SCALE) == 0)
2553 return -EINVAL;
2554
2555 if (mem_to_mem) {
2556 *x_predecim = *y_predecim = 1;
2557 } else {
2558 *x_predecim = max_decim_limit;
2559 *y_predecim = (rotation_type == OMAP_DSS_ROT_TILER &&
2560 dispc_has_feature(dispc, FEAT_BURST_2D)) ?
2561 2 : max_decim_limit;
2562 }
2563
2564 decim_x = DIV_ROUND_UP(DIV_ROUND_UP(width, out_width), maxhdownscale);
2565 decim_y = DIV_ROUND_UP(DIV_ROUND_UP(height, out_height), maxvdownscale);
2566
2567 if (decim_x > *x_predecim || out_width > width * 8)
2568 return -EINVAL;
2569
2570 if (decim_y > *y_predecim || out_height > height * 8)
2571 return -EINVAL;
2572
2573 ret = dispc->feat->calc_scaling(dispc, pclk, lclk, vm, width, height,
2574 out_width, out_height, fourcc,
2575 five_taps, x_predecim, y_predecim,
2576 &decim_x, &decim_y, pos_x, &core_clk,
2577 mem_to_mem);
2578 if (ret)
2579 return ret;
2580
2581 DSSDBG("%dx%d -> %dx%d (%d.%02d x %d.%02d), decim %dx%d %dx%d (%d.%02d x %d.%02d), taps %d, req clk %lu, cur clk %lu\n",
2582 width, height,
2583 out_width, out_height,
2584 out_width / width, DIV_FRAC(out_width, width),
2585 out_height / height, DIV_FRAC(out_height, height),
2586
2587 decim_x, decim_y,
2588 width / decim_x, height / decim_y,
2589 out_width / (width / decim_x), DIV_FRAC(out_width, width / decim_x),
2590 out_height / (height / decim_y), DIV_FRAC(out_height, height / decim_y),
2591
2592 *five_taps ? 5 : 3,
2593 core_clk, dispc_core_clk_rate(dispc));
2594
2595 if (!core_clk || core_clk > dispc_core_clk_rate(dispc)) {
2596 DSSERR("failed to set up scaling, "
2597 "required core clk rate = %lu Hz, "
2598 "current core clk rate = %lu Hz\n",
2599 core_clk, dispc_core_clk_rate(dispc));
2600 return -EINVAL;
2601 }
2602
2603 *x_predecim = decim_x;
2604 *y_predecim = decim_y;
2605 return 0;
2606 }
2607
dispc_ovl_setup_common(struct dispc_device * dispc,enum omap_plane_id plane,enum omap_overlay_caps caps,u32 paddr,u32 p_uv_addr,u16 screen_width,int pos_x,int pos_y,u16 width,u16 height,u16 out_width,u16 out_height,u32 fourcc,u8 rotation,u8 zorder,u8 pre_mult_alpha,u8 global_alpha,enum omap_dss_rotation_type rotation_type,bool replication,const struct videomode * vm,bool mem_to_mem)2608 static int dispc_ovl_setup_common(struct dispc_device *dispc,
2609 enum omap_plane_id plane,
2610 enum omap_overlay_caps caps,
2611 u32 paddr, u32 p_uv_addr,
2612 u16 screen_width, int pos_x, int pos_y,
2613 u16 width, u16 height,
2614 u16 out_width, u16 out_height,
2615 u32 fourcc, u8 rotation, u8 zorder,
2616 u8 pre_mult_alpha, u8 global_alpha,
2617 enum omap_dss_rotation_type rotation_type,
2618 bool replication, const struct videomode *vm,
2619 bool mem_to_mem)
2620 {
2621 bool five_taps = true;
2622 bool fieldmode = false;
2623 int r, cconv = 0;
2624 unsigned int offset0, offset1;
2625 s32 row_inc;
2626 s32 pix_inc;
2627 u16 frame_width, frame_height;
2628 unsigned int field_offset = 0;
2629 u16 in_height = height;
2630 u16 in_width = width;
2631 int x_predecim = 1, y_predecim = 1;
2632 bool ilace = !!(vm->flags & DISPLAY_FLAGS_INTERLACED);
2633 unsigned long pclk = dispc_plane_pclk_rate(dispc, plane);
2634 unsigned long lclk = dispc_plane_lclk_rate(dispc, plane);
2635
2636 /* when setting up WB, dispc_plane_pclk_rate() returns 0 */
2637 if (plane == OMAP_DSS_WB)
2638 pclk = vm->pixelclock;
2639
2640 if (paddr == 0 && rotation_type != OMAP_DSS_ROT_TILER)
2641 return -EINVAL;
2642
2643 if (format_is_yuv(fourcc) && (in_width & 1)) {
2644 DSSERR("input width %d is not even for YUV format\n", in_width);
2645 return -EINVAL;
2646 }
2647
2648 out_width = out_width == 0 ? width : out_width;
2649 out_height = out_height == 0 ? height : out_height;
2650
2651 if (plane != OMAP_DSS_WB) {
2652 if (ilace && height == out_height)
2653 fieldmode = true;
2654
2655 if (ilace) {
2656 if (fieldmode)
2657 in_height /= 2;
2658 pos_y /= 2;
2659 out_height /= 2;
2660
2661 DSSDBG("adjusting for ilace: height %d, pos_y %d, out_height %d\n",
2662 in_height, pos_y, out_height);
2663 }
2664 }
2665
2666 if (!dispc_ovl_color_mode_supported(dispc, plane, fourcc))
2667 return -EINVAL;
2668
2669 r = dispc_ovl_calc_scaling(dispc, plane, pclk, lclk, caps, vm, in_width,
2670 in_height, out_width, out_height, fourcc,
2671 &five_taps, &x_predecim, &y_predecim, pos_x,
2672 rotation_type, mem_to_mem);
2673 if (r)
2674 return r;
2675
2676 in_width = in_width / x_predecim;
2677 in_height = in_height / y_predecim;
2678
2679 if (x_predecim > 1 || y_predecim > 1)
2680 DSSDBG("predecimation %d x %x, new input size %d x %d\n",
2681 x_predecim, y_predecim, in_width, in_height);
2682
2683 if (format_is_yuv(fourcc) && (in_width & 1)) {
2684 DSSDBG("predecimated input width is not even for YUV format\n");
2685 DSSDBG("adjusting input width %d -> %d\n",
2686 in_width, in_width & ~1);
2687
2688 in_width &= ~1;
2689 }
2690
2691 if (format_is_yuv(fourcc))
2692 cconv = 1;
2693
2694 if (ilace && !fieldmode) {
2695 /*
2696 * when downscaling the bottom field may have to start several
2697 * source lines below the top field. Unfortunately ACCUI
2698 * registers will only hold the fractional part of the offset
2699 * so the integer part must be added to the base address of the
2700 * bottom field.
2701 */
2702 if (!in_height || in_height == out_height)
2703 field_offset = 0;
2704 else
2705 field_offset = in_height / out_height / 2;
2706 }
2707
2708 /* Fields are independent but interleaved in memory. */
2709 if (fieldmode)
2710 field_offset = 1;
2711
2712 offset0 = 0;
2713 offset1 = 0;
2714 row_inc = 0;
2715 pix_inc = 0;
2716
2717 if (plane == OMAP_DSS_WB) {
2718 frame_width = out_width;
2719 frame_height = out_height;
2720 } else {
2721 frame_width = in_width;
2722 frame_height = height;
2723 }
2724
2725 calc_offset(screen_width, frame_width,
2726 fourcc, fieldmode, field_offset,
2727 &offset0, &offset1, &row_inc, &pix_inc,
2728 x_predecim, y_predecim,
2729 rotation_type, rotation);
2730
2731 DSSDBG("offset0 %u, offset1 %u, row_inc %d, pix_inc %d\n",
2732 offset0, offset1, row_inc, pix_inc);
2733
2734 dispc_ovl_set_color_mode(dispc, plane, fourcc);
2735
2736 dispc_ovl_configure_burst_type(dispc, plane, rotation_type);
2737
2738 if (dispc->feat->reverse_ilace_field_order)
2739 swap(offset0, offset1);
2740
2741 dispc_ovl_set_ba0(dispc, plane, paddr + offset0);
2742 dispc_ovl_set_ba1(dispc, plane, paddr + offset1);
2743
2744 if (fourcc == DRM_FORMAT_NV12) {
2745 dispc_ovl_set_ba0_uv(dispc, plane, p_uv_addr + offset0);
2746 dispc_ovl_set_ba1_uv(dispc, plane, p_uv_addr + offset1);
2747 }
2748
2749 if (dispc->feat->last_pixel_inc_missing)
2750 row_inc += pix_inc - 1;
2751
2752 dispc_ovl_set_row_inc(dispc, plane, row_inc);
2753 dispc_ovl_set_pix_inc(dispc, plane, pix_inc);
2754
2755 DSSDBG("%d,%d %dx%d -> %dx%d\n", pos_x, pos_y, in_width,
2756 in_height, out_width, out_height);
2757
2758 dispc_ovl_set_pos(dispc, plane, caps, pos_x, pos_y);
2759
2760 dispc_ovl_set_input_size(dispc, plane, in_width, in_height);
2761
2762 if (caps & OMAP_DSS_OVL_CAP_SCALE) {
2763 dispc_ovl_set_scaling(dispc, plane, in_width, in_height,
2764 out_width, out_height, ilace, five_taps,
2765 fieldmode, fourcc, rotation);
2766 dispc_ovl_set_output_size(dispc, plane, out_width, out_height);
2767 dispc_ovl_set_vid_color_conv(dispc, plane, cconv);
2768 }
2769
2770 dispc_ovl_set_rotation_attrs(dispc, plane, rotation, rotation_type,
2771 fourcc);
2772
2773 dispc_ovl_set_zorder(dispc, plane, caps, zorder);
2774 dispc_ovl_set_pre_mult_alpha(dispc, plane, caps, pre_mult_alpha);
2775 dispc_ovl_setup_global_alpha(dispc, plane, caps, global_alpha);
2776
2777 dispc_ovl_enable_replication(dispc, plane, caps, replication);
2778
2779 return 0;
2780 }
2781
dispc_ovl_setup(struct dispc_device * dispc,enum omap_plane_id plane,const struct omap_overlay_info * oi,const struct videomode * vm,bool mem_to_mem,enum omap_channel channel)2782 static int dispc_ovl_setup(struct dispc_device *dispc,
2783 enum omap_plane_id plane,
2784 const struct omap_overlay_info *oi,
2785 const struct videomode *vm, bool mem_to_mem,
2786 enum omap_channel channel)
2787 {
2788 int r;
2789 enum omap_overlay_caps caps = dispc->feat->overlay_caps[plane];
2790 const bool replication = true;
2791
2792 DSSDBG("dispc_ovl_setup %d, pa %pad, pa_uv %pad, sw %d, %d,%d, %dx%d ->"
2793 " %dx%d, cmode %x, rot %d, chan %d repl %d\n",
2794 plane, &oi->paddr, &oi->p_uv_addr, oi->screen_width, oi->pos_x,
2795 oi->pos_y, oi->width, oi->height, oi->out_width, oi->out_height,
2796 oi->fourcc, oi->rotation, channel, replication);
2797
2798 dispc_ovl_set_channel_out(dispc, plane, channel);
2799
2800 r = dispc_ovl_setup_common(dispc, plane, caps, oi->paddr, oi->p_uv_addr,
2801 oi->screen_width, oi->pos_x, oi->pos_y, oi->width, oi->height,
2802 oi->out_width, oi->out_height, oi->fourcc, oi->rotation,
2803 oi->zorder, oi->pre_mult_alpha, oi->global_alpha,
2804 oi->rotation_type, replication, vm, mem_to_mem);
2805
2806 return r;
2807 }
2808
dispc_wb_setup(struct dispc_device * dispc,const struct omap_dss_writeback_info * wi,bool mem_to_mem,const struct videomode * vm,enum dss_writeback_channel channel_in)2809 static int dispc_wb_setup(struct dispc_device *dispc,
2810 const struct omap_dss_writeback_info *wi,
2811 bool mem_to_mem, const struct videomode *vm,
2812 enum dss_writeback_channel channel_in)
2813 {
2814 int r;
2815 u32 l;
2816 enum omap_plane_id plane = OMAP_DSS_WB;
2817 const int pos_x = 0, pos_y = 0;
2818 const u8 zorder = 0, global_alpha = 0;
2819 const bool replication = true;
2820 bool truncation;
2821 int in_width = vm->hactive;
2822 int in_height = vm->vactive;
2823 enum omap_overlay_caps caps =
2824 OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA;
2825
2826 if (vm->flags & DISPLAY_FLAGS_INTERLACED)
2827 in_height /= 2;
2828
2829 DSSDBG("dispc_wb_setup, pa %x, pa_uv %x, %d,%d -> %dx%d, cmode %x, "
2830 "rot %d\n", wi->paddr, wi->p_uv_addr, in_width,
2831 in_height, wi->width, wi->height, wi->fourcc, wi->rotation);
2832
2833 r = dispc_ovl_setup_common(dispc, plane, caps, wi->paddr, wi->p_uv_addr,
2834 wi->buf_width, pos_x, pos_y, in_width, in_height, wi->width,
2835 wi->height, wi->fourcc, wi->rotation, zorder,
2836 wi->pre_mult_alpha, global_alpha, wi->rotation_type,
2837 replication, vm, mem_to_mem);
2838 if (r)
2839 return r;
2840
2841 switch (wi->fourcc) {
2842 case DRM_FORMAT_RGB565:
2843 case DRM_FORMAT_RGB888:
2844 case DRM_FORMAT_ARGB4444:
2845 case DRM_FORMAT_RGBA4444:
2846 case DRM_FORMAT_RGBX4444:
2847 case DRM_FORMAT_ARGB1555:
2848 case DRM_FORMAT_XRGB1555:
2849 case DRM_FORMAT_XRGB4444:
2850 truncation = true;
2851 break;
2852 default:
2853 truncation = false;
2854 break;
2855 }
2856
2857 /* setup extra DISPC_WB_ATTRIBUTES */
2858 l = dispc_read_reg(dispc, DISPC_OVL_ATTRIBUTES(plane));
2859 l = FLD_MOD(l, truncation, 10, 10); /* TRUNCATIONENABLE */
2860 l = FLD_MOD(l, channel_in, 18, 16); /* CHANNELIN */
2861 l = FLD_MOD(l, mem_to_mem, 19, 19); /* WRITEBACKMODE */
2862 if (mem_to_mem)
2863 l = FLD_MOD(l, 1, 26, 24); /* CAPTUREMODE */
2864 else
2865 l = FLD_MOD(l, 0, 26, 24); /* CAPTUREMODE */
2866 dispc_write_reg(dispc, DISPC_OVL_ATTRIBUTES(plane), l);
2867
2868 if (mem_to_mem) {
2869 /* WBDELAYCOUNT */
2870 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES2(plane), 0, 7, 0);
2871 } else {
2872 u32 wbdelay;
2873
2874 if (channel_in == DSS_WB_TV_MGR)
2875 wbdelay = vm->vsync_len + vm->vback_porch;
2876 else
2877 wbdelay = vm->vfront_porch + vm->vsync_len +
2878 vm->vback_porch;
2879
2880 if (vm->flags & DISPLAY_FLAGS_INTERLACED)
2881 wbdelay /= 2;
2882
2883 wbdelay = min(wbdelay, 255u);
2884
2885 /* WBDELAYCOUNT */
2886 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES2(plane), wbdelay, 7, 0);
2887 }
2888
2889 return 0;
2890 }
2891
dispc_has_writeback(struct dispc_device * dispc)2892 static bool dispc_has_writeback(struct dispc_device *dispc)
2893 {
2894 return dispc->feat->has_writeback;
2895 }
2896
dispc_ovl_enable(struct dispc_device * dispc,enum omap_plane_id plane,bool enable)2897 static int dispc_ovl_enable(struct dispc_device *dispc,
2898 enum omap_plane_id plane, bool enable)
2899 {
2900 DSSDBG("dispc_enable_plane %d, %d\n", plane, enable);
2901
2902 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), enable ? 1 : 0, 0, 0);
2903
2904 return 0;
2905 }
2906
2907 static enum omap_dss_output_id
dispc_mgr_get_supported_outputs(struct dispc_device * dispc,enum omap_channel channel)2908 dispc_mgr_get_supported_outputs(struct dispc_device *dispc,
2909 enum omap_channel channel)
2910 {
2911 return dss_get_supported_outputs(dispc->dss, channel);
2912 }
2913
dispc_lcd_enable_signal_polarity(struct dispc_device * dispc,bool act_high)2914 static void dispc_lcd_enable_signal_polarity(struct dispc_device *dispc,
2915 bool act_high)
2916 {
2917 if (!dispc_has_feature(dispc, FEAT_LCDENABLEPOL))
2918 return;
2919
2920 REG_FLD_MOD(dispc, DISPC_CONTROL, act_high ? 1 : 0, 29, 29);
2921 }
2922
dispc_lcd_enable_signal(struct dispc_device * dispc,bool enable)2923 void dispc_lcd_enable_signal(struct dispc_device *dispc, bool enable)
2924 {
2925 if (!dispc_has_feature(dispc, FEAT_LCDENABLESIGNAL))
2926 return;
2927
2928 REG_FLD_MOD(dispc, DISPC_CONTROL, enable ? 1 : 0, 28, 28);
2929 }
2930
dispc_pck_free_enable(struct dispc_device * dispc,bool enable)2931 void dispc_pck_free_enable(struct dispc_device *dispc, bool enable)
2932 {
2933 if (!dispc_has_feature(dispc, FEAT_PCKFREEENABLE))
2934 return;
2935
2936 REG_FLD_MOD(dispc, DISPC_CONTROL, enable ? 1 : 0, 27, 27);
2937 }
2938
dispc_mgr_enable_fifohandcheck(struct dispc_device * dispc,enum omap_channel channel,bool enable)2939 static void dispc_mgr_enable_fifohandcheck(struct dispc_device *dispc,
2940 enum omap_channel channel,
2941 bool enable)
2942 {
2943 mgr_fld_write(dispc, channel, DISPC_MGR_FLD_FIFOHANDCHECK, enable);
2944 }
2945
2946
dispc_mgr_set_lcd_type_tft(struct dispc_device * dispc,enum omap_channel channel)2947 static void dispc_mgr_set_lcd_type_tft(struct dispc_device *dispc,
2948 enum omap_channel channel)
2949 {
2950 mgr_fld_write(dispc, channel, DISPC_MGR_FLD_STNTFT, 1);
2951 }
2952
dispc_set_loadmode(struct dispc_device * dispc,enum omap_dss_load_mode mode)2953 static void dispc_set_loadmode(struct dispc_device *dispc,
2954 enum omap_dss_load_mode mode)
2955 {
2956 REG_FLD_MOD(dispc, DISPC_CONFIG, mode, 2, 1);
2957 }
2958
2959
dispc_mgr_set_default_color(struct dispc_device * dispc,enum omap_channel channel,u32 color)2960 static void dispc_mgr_set_default_color(struct dispc_device *dispc,
2961 enum omap_channel channel, u32 color)
2962 {
2963 dispc_write_reg(dispc, DISPC_DEFAULT_COLOR(channel), color);
2964 }
2965
dispc_mgr_set_trans_key(struct dispc_device * dispc,enum omap_channel ch,enum omap_dss_trans_key_type type,u32 trans_key)2966 static void dispc_mgr_set_trans_key(struct dispc_device *dispc,
2967 enum omap_channel ch,
2968 enum omap_dss_trans_key_type type,
2969 u32 trans_key)
2970 {
2971 mgr_fld_write(dispc, ch, DISPC_MGR_FLD_TCKSELECTION, type);
2972
2973 dispc_write_reg(dispc, DISPC_TRANS_COLOR(ch), trans_key);
2974 }
2975
dispc_mgr_enable_trans_key(struct dispc_device * dispc,enum omap_channel ch,bool enable)2976 static void dispc_mgr_enable_trans_key(struct dispc_device *dispc,
2977 enum omap_channel ch, bool enable)
2978 {
2979 mgr_fld_write(dispc, ch, DISPC_MGR_FLD_TCKENABLE, enable);
2980 }
2981
dispc_mgr_enable_alpha_fixed_zorder(struct dispc_device * dispc,enum omap_channel ch,bool enable)2982 static void dispc_mgr_enable_alpha_fixed_zorder(struct dispc_device *dispc,
2983 enum omap_channel ch,
2984 bool enable)
2985 {
2986 if (!dispc_has_feature(dispc, FEAT_ALPHA_FIXED_ZORDER))
2987 return;
2988
2989 if (ch == OMAP_DSS_CHANNEL_LCD)
2990 REG_FLD_MOD(dispc, DISPC_CONFIG, enable, 18, 18);
2991 else if (ch == OMAP_DSS_CHANNEL_DIGIT)
2992 REG_FLD_MOD(dispc, DISPC_CONFIG, enable, 19, 19);
2993 }
2994
dispc_mgr_setup(struct dispc_device * dispc,enum omap_channel channel,const struct omap_overlay_manager_info * info)2995 static void dispc_mgr_setup(struct dispc_device *dispc,
2996 enum omap_channel channel,
2997 const struct omap_overlay_manager_info *info)
2998 {
2999 dispc_mgr_set_default_color(dispc, channel, info->default_color);
3000 dispc_mgr_set_trans_key(dispc, channel, info->trans_key_type,
3001 info->trans_key);
3002 dispc_mgr_enable_trans_key(dispc, channel, info->trans_enabled);
3003 dispc_mgr_enable_alpha_fixed_zorder(dispc, channel,
3004 info->partial_alpha_enabled);
3005 if (dispc_has_feature(dispc, FEAT_CPR)) {
3006 dispc_mgr_enable_cpr(dispc, channel, info->cpr_enable);
3007 dispc_mgr_set_cpr_coef(dispc, channel, &info->cpr_coefs);
3008 }
3009 }
3010
dispc_mgr_set_tft_data_lines(struct dispc_device * dispc,enum omap_channel channel,u8 data_lines)3011 static void dispc_mgr_set_tft_data_lines(struct dispc_device *dispc,
3012 enum omap_channel channel,
3013 u8 data_lines)
3014 {
3015 int code;
3016
3017 switch (data_lines) {
3018 case 12:
3019 code = 0;
3020 break;
3021 case 16:
3022 code = 1;
3023 break;
3024 case 18:
3025 code = 2;
3026 break;
3027 case 24:
3028 code = 3;
3029 break;
3030 default:
3031 BUG();
3032 return;
3033 }
3034
3035 mgr_fld_write(dispc, channel, DISPC_MGR_FLD_TFTDATALINES, code);
3036 }
3037
dispc_mgr_set_io_pad_mode(struct dispc_device * dispc,enum dss_io_pad_mode mode)3038 static void dispc_mgr_set_io_pad_mode(struct dispc_device *dispc,
3039 enum dss_io_pad_mode mode)
3040 {
3041 u32 l;
3042 int gpout0, gpout1;
3043
3044 switch (mode) {
3045 case DSS_IO_PAD_MODE_RESET:
3046 gpout0 = 0;
3047 gpout1 = 0;
3048 break;
3049 case DSS_IO_PAD_MODE_RFBI:
3050 gpout0 = 1;
3051 gpout1 = 0;
3052 break;
3053 case DSS_IO_PAD_MODE_BYPASS:
3054 gpout0 = 1;
3055 gpout1 = 1;
3056 break;
3057 default:
3058 BUG();
3059 return;
3060 }
3061
3062 l = dispc_read_reg(dispc, DISPC_CONTROL);
3063 l = FLD_MOD(l, gpout0, 15, 15);
3064 l = FLD_MOD(l, gpout1, 16, 16);
3065 dispc_write_reg(dispc, DISPC_CONTROL, l);
3066 }
3067
dispc_mgr_enable_stallmode(struct dispc_device * dispc,enum omap_channel channel,bool enable)3068 static void dispc_mgr_enable_stallmode(struct dispc_device *dispc,
3069 enum omap_channel channel, bool enable)
3070 {
3071 mgr_fld_write(dispc, channel, DISPC_MGR_FLD_STALLMODE, enable);
3072 }
3073
dispc_mgr_set_lcd_config(struct dispc_device * dispc,enum omap_channel channel,const struct dss_lcd_mgr_config * config)3074 static void dispc_mgr_set_lcd_config(struct dispc_device *dispc,
3075 enum omap_channel channel,
3076 const struct dss_lcd_mgr_config *config)
3077 {
3078 dispc_mgr_set_io_pad_mode(dispc, config->io_pad_mode);
3079
3080 dispc_mgr_enable_stallmode(dispc, channel, config->stallmode);
3081 dispc_mgr_enable_fifohandcheck(dispc, channel, config->fifohandcheck);
3082
3083 dispc_mgr_set_clock_div(dispc, channel, &config->clock_info);
3084
3085 dispc_mgr_set_tft_data_lines(dispc, channel, config->video_port_width);
3086
3087 dispc_lcd_enable_signal_polarity(dispc, config->lcden_sig_polarity);
3088
3089 dispc_mgr_set_lcd_type_tft(dispc, channel);
3090 }
3091
_dispc_mgr_size_ok(struct dispc_device * dispc,u16 width,u16 height)3092 static bool _dispc_mgr_size_ok(struct dispc_device *dispc,
3093 u16 width, u16 height)
3094 {
3095 return width <= dispc->feat->mgr_width_max &&
3096 height <= dispc->feat->mgr_height_max;
3097 }
3098
_dispc_lcd_timings_ok(struct dispc_device * dispc,int hsync_len,int hfp,int hbp,int vsw,int vfp,int vbp)3099 static bool _dispc_lcd_timings_ok(struct dispc_device *dispc,
3100 int hsync_len, int hfp, int hbp,
3101 int vsw, int vfp, int vbp)
3102 {
3103 if (hsync_len < 1 || hsync_len > dispc->feat->sw_max ||
3104 hfp < 1 || hfp > dispc->feat->hp_max ||
3105 hbp < 1 || hbp > dispc->feat->hp_max ||
3106 vsw < 1 || vsw > dispc->feat->sw_max ||
3107 vfp < 0 || vfp > dispc->feat->vp_max ||
3108 vbp < 0 || vbp > dispc->feat->vp_max)
3109 return false;
3110 return true;
3111 }
3112
_dispc_mgr_pclk_ok(struct dispc_device * dispc,enum omap_channel channel,unsigned long pclk)3113 static bool _dispc_mgr_pclk_ok(struct dispc_device *dispc,
3114 enum omap_channel channel,
3115 unsigned long pclk)
3116 {
3117 if (dss_mgr_is_lcd(channel))
3118 return pclk <= dispc->feat->max_lcd_pclk;
3119 else
3120 return pclk <= dispc->feat->max_tv_pclk;
3121 }
3122
dispc_mgr_timings_ok(struct dispc_device * dispc,enum omap_channel channel,const struct videomode * vm)3123 bool dispc_mgr_timings_ok(struct dispc_device *dispc, enum omap_channel channel,
3124 const struct videomode *vm)
3125 {
3126 if (!_dispc_mgr_size_ok(dispc, vm->hactive, vm->vactive))
3127 return false;
3128
3129 if (!_dispc_mgr_pclk_ok(dispc, channel, vm->pixelclock))
3130 return false;
3131
3132 if (dss_mgr_is_lcd(channel)) {
3133 /* TODO: OMAP4+ supports interlace for LCD outputs */
3134 if (vm->flags & DISPLAY_FLAGS_INTERLACED)
3135 return false;
3136
3137 if (!_dispc_lcd_timings_ok(dispc, vm->hsync_len,
3138 vm->hfront_porch, vm->hback_porch,
3139 vm->vsync_len, vm->vfront_porch,
3140 vm->vback_porch))
3141 return false;
3142 }
3143
3144 return true;
3145 }
3146
_dispc_mgr_set_lcd_timings(struct dispc_device * dispc,enum omap_channel channel,const struct videomode * vm)3147 static void _dispc_mgr_set_lcd_timings(struct dispc_device *dispc,
3148 enum omap_channel channel,
3149 const struct videomode *vm)
3150 {
3151 u32 timing_h, timing_v, l;
3152 bool onoff, rf, ipc, vs, hs, de;
3153
3154 timing_h = FLD_VAL(vm->hsync_len - 1, dispc->feat->sw_start, 0) |
3155 FLD_VAL(vm->hfront_porch - 1, dispc->feat->fp_start, 8) |
3156 FLD_VAL(vm->hback_porch - 1, dispc->feat->bp_start, 20);
3157 timing_v = FLD_VAL(vm->vsync_len - 1, dispc->feat->sw_start, 0) |
3158 FLD_VAL(vm->vfront_porch, dispc->feat->fp_start, 8) |
3159 FLD_VAL(vm->vback_porch, dispc->feat->bp_start, 20);
3160
3161 dispc_write_reg(dispc, DISPC_TIMING_H(channel), timing_h);
3162 dispc_write_reg(dispc, DISPC_TIMING_V(channel), timing_v);
3163
3164 if (vm->flags & DISPLAY_FLAGS_VSYNC_HIGH)
3165 vs = false;
3166 else
3167 vs = true;
3168
3169 if (vm->flags & DISPLAY_FLAGS_HSYNC_HIGH)
3170 hs = false;
3171 else
3172 hs = true;
3173
3174 if (vm->flags & DISPLAY_FLAGS_DE_HIGH)
3175 de = false;
3176 else
3177 de = true;
3178
3179 if (vm->flags & DISPLAY_FLAGS_PIXDATA_POSEDGE)
3180 ipc = false;
3181 else
3182 ipc = true;
3183
3184 /* always use the 'rf' setting */
3185 onoff = true;
3186
3187 if (vm->flags & DISPLAY_FLAGS_SYNC_POSEDGE)
3188 rf = true;
3189 else
3190 rf = false;
3191
3192 l = FLD_VAL(onoff, 17, 17) |
3193 FLD_VAL(rf, 16, 16) |
3194 FLD_VAL(de, 15, 15) |
3195 FLD_VAL(ipc, 14, 14) |
3196 FLD_VAL(hs, 13, 13) |
3197 FLD_VAL(vs, 12, 12);
3198
3199 /* always set ALIGN bit when available */
3200 if (dispc->feat->supports_sync_align)
3201 l |= (1 << 18);
3202
3203 dispc_write_reg(dispc, DISPC_POL_FREQ(channel), l);
3204
3205 if (dispc->syscon_pol) {
3206 const int shifts[] = {
3207 [OMAP_DSS_CHANNEL_LCD] = 0,
3208 [OMAP_DSS_CHANNEL_LCD2] = 1,
3209 [OMAP_DSS_CHANNEL_LCD3] = 2,
3210 };
3211
3212 u32 mask, val;
3213
3214 mask = (1 << 0) | (1 << 3) | (1 << 6);
3215 val = (rf << 0) | (ipc << 3) | (onoff << 6);
3216
3217 mask <<= 16 + shifts[channel];
3218 val <<= 16 + shifts[channel];
3219
3220 regmap_update_bits(dispc->syscon_pol, dispc->syscon_pol_offset,
3221 mask, val);
3222 }
3223 }
3224
vm_flag_to_int(enum display_flags flags,enum display_flags high,enum display_flags low)3225 static int vm_flag_to_int(enum display_flags flags, enum display_flags high,
3226 enum display_flags low)
3227 {
3228 if (flags & high)
3229 return 1;
3230 if (flags & low)
3231 return -1;
3232 return 0;
3233 }
3234
3235 /* change name to mode? */
dispc_mgr_set_timings(struct dispc_device * dispc,enum omap_channel channel,const struct videomode * vm)3236 static void dispc_mgr_set_timings(struct dispc_device *dispc,
3237 enum omap_channel channel,
3238 const struct videomode *vm)
3239 {
3240 unsigned int xtot, ytot;
3241 unsigned long ht, vt;
3242 struct videomode t = *vm;
3243
3244 DSSDBG("channel %d xres %u yres %u\n", channel, t.hactive, t.vactive);
3245
3246 if (!dispc_mgr_timings_ok(dispc, channel, &t)) {
3247 BUG();
3248 return;
3249 }
3250
3251 if (dss_mgr_is_lcd(channel)) {
3252 _dispc_mgr_set_lcd_timings(dispc, channel, &t);
3253
3254 xtot = t.hactive + t.hfront_porch + t.hsync_len + t.hback_porch;
3255 ytot = t.vactive + t.vfront_porch + t.vsync_len + t.vback_porch;
3256
3257 ht = vm->pixelclock / xtot;
3258 vt = vm->pixelclock / xtot / ytot;
3259
3260 DSSDBG("pck %lu\n", vm->pixelclock);
3261 DSSDBG("hsync_len %d hfp %d hbp %d vsw %d vfp %d vbp %d\n",
3262 t.hsync_len, t.hfront_porch, t.hback_porch,
3263 t.vsync_len, t.vfront_porch, t.vback_porch);
3264 DSSDBG("vsync_level %d hsync_level %d data_pclk_edge %d de_level %d sync_pclk_edge %d\n",
3265 vm_flag_to_int(t.flags, DISPLAY_FLAGS_VSYNC_HIGH, DISPLAY_FLAGS_VSYNC_LOW),
3266 vm_flag_to_int(t.flags, DISPLAY_FLAGS_HSYNC_HIGH, DISPLAY_FLAGS_HSYNC_LOW),
3267 vm_flag_to_int(t.flags, DISPLAY_FLAGS_PIXDATA_POSEDGE, DISPLAY_FLAGS_PIXDATA_NEGEDGE),
3268 vm_flag_to_int(t.flags, DISPLAY_FLAGS_DE_HIGH, DISPLAY_FLAGS_DE_LOW),
3269 vm_flag_to_int(t.flags, DISPLAY_FLAGS_SYNC_POSEDGE, DISPLAY_FLAGS_SYNC_NEGEDGE));
3270
3271 DSSDBG("hsync %luHz, vsync %luHz\n", ht, vt);
3272 } else {
3273 if (t.flags & DISPLAY_FLAGS_INTERLACED)
3274 t.vactive /= 2;
3275
3276 if (dispc->feat->supports_double_pixel)
3277 REG_FLD_MOD(dispc, DISPC_CONTROL,
3278 !!(t.flags & DISPLAY_FLAGS_DOUBLECLK),
3279 19, 17);
3280 }
3281
3282 dispc_mgr_set_size(dispc, channel, t.hactive, t.vactive);
3283 }
3284
dispc_mgr_set_lcd_divisor(struct dispc_device * dispc,enum omap_channel channel,u16 lck_div,u16 pck_div)3285 static void dispc_mgr_set_lcd_divisor(struct dispc_device *dispc,
3286 enum omap_channel channel, u16 lck_div,
3287 u16 pck_div)
3288 {
3289 BUG_ON(lck_div < 1);
3290 BUG_ON(pck_div < 1);
3291
3292 dispc_write_reg(dispc, DISPC_DIVISORo(channel),
3293 FLD_VAL(lck_div, 23, 16) | FLD_VAL(pck_div, 7, 0));
3294
3295 if (!dispc_has_feature(dispc, FEAT_CORE_CLK_DIV) &&
3296 channel == OMAP_DSS_CHANNEL_LCD)
3297 dispc->core_clk_rate = dispc_fclk_rate(dispc) / lck_div;
3298 }
3299
dispc_mgr_get_lcd_divisor(struct dispc_device * dispc,enum omap_channel channel,int * lck_div,int * pck_div)3300 static void dispc_mgr_get_lcd_divisor(struct dispc_device *dispc,
3301 enum omap_channel channel, int *lck_div,
3302 int *pck_div)
3303 {
3304 u32 l;
3305 l = dispc_read_reg(dispc, DISPC_DIVISORo(channel));
3306 *lck_div = FLD_GET(l, 23, 16);
3307 *pck_div = FLD_GET(l, 7, 0);
3308 }
3309
dispc_fclk_rate(struct dispc_device * dispc)3310 static unsigned long dispc_fclk_rate(struct dispc_device *dispc)
3311 {
3312 unsigned long r;
3313 enum dss_clk_source src;
3314
3315 src = dss_get_dispc_clk_source(dispc->dss);
3316
3317 if (src == DSS_CLK_SRC_FCK) {
3318 r = dss_get_dispc_clk_rate(dispc->dss);
3319 } else {
3320 struct dss_pll *pll;
3321 unsigned int clkout_idx;
3322
3323 pll = dss_pll_find_by_src(dispc->dss, src);
3324 clkout_idx = dss_pll_get_clkout_idx_for_src(src);
3325
3326 r = pll->cinfo.clkout[clkout_idx];
3327 }
3328
3329 return r;
3330 }
3331
dispc_mgr_lclk_rate(struct dispc_device * dispc,enum omap_channel channel)3332 static unsigned long dispc_mgr_lclk_rate(struct dispc_device *dispc,
3333 enum omap_channel channel)
3334 {
3335 int lcd;
3336 unsigned long r;
3337 enum dss_clk_source src;
3338
3339 /* for TV, LCLK rate is the FCLK rate */
3340 if (!dss_mgr_is_lcd(channel))
3341 return dispc_fclk_rate(dispc);
3342
3343 src = dss_get_lcd_clk_source(dispc->dss, channel);
3344
3345 if (src == DSS_CLK_SRC_FCK) {
3346 r = dss_get_dispc_clk_rate(dispc->dss);
3347 } else {
3348 struct dss_pll *pll;
3349 unsigned int clkout_idx;
3350
3351 pll = dss_pll_find_by_src(dispc->dss, src);
3352 clkout_idx = dss_pll_get_clkout_idx_for_src(src);
3353
3354 r = pll->cinfo.clkout[clkout_idx];
3355 }
3356
3357 lcd = REG_GET(dispc, DISPC_DIVISORo(channel), 23, 16);
3358
3359 return r / lcd;
3360 }
3361
dispc_mgr_pclk_rate(struct dispc_device * dispc,enum omap_channel channel)3362 static unsigned long dispc_mgr_pclk_rate(struct dispc_device *dispc,
3363 enum omap_channel channel)
3364 {
3365 unsigned long r;
3366
3367 if (dss_mgr_is_lcd(channel)) {
3368 int pcd;
3369 u32 l;
3370
3371 l = dispc_read_reg(dispc, DISPC_DIVISORo(channel));
3372
3373 pcd = FLD_GET(l, 7, 0);
3374
3375 r = dispc_mgr_lclk_rate(dispc, channel);
3376
3377 return r / pcd;
3378 } else {
3379 return dispc->tv_pclk_rate;
3380 }
3381 }
3382
dispc_set_tv_pclk(struct dispc_device * dispc,unsigned long pclk)3383 void dispc_set_tv_pclk(struct dispc_device *dispc, unsigned long pclk)
3384 {
3385 dispc->tv_pclk_rate = pclk;
3386 }
3387
dispc_core_clk_rate(struct dispc_device * dispc)3388 static unsigned long dispc_core_clk_rate(struct dispc_device *dispc)
3389 {
3390 return dispc->core_clk_rate;
3391 }
3392
dispc_plane_pclk_rate(struct dispc_device * dispc,enum omap_plane_id plane)3393 static unsigned long dispc_plane_pclk_rate(struct dispc_device *dispc,
3394 enum omap_plane_id plane)
3395 {
3396 enum omap_channel channel;
3397
3398 if (plane == OMAP_DSS_WB)
3399 return 0;
3400
3401 channel = dispc_ovl_get_channel_out(dispc, plane);
3402
3403 return dispc_mgr_pclk_rate(dispc, channel);
3404 }
3405
dispc_plane_lclk_rate(struct dispc_device * dispc,enum omap_plane_id plane)3406 static unsigned long dispc_plane_lclk_rate(struct dispc_device *dispc,
3407 enum omap_plane_id plane)
3408 {
3409 enum omap_channel channel;
3410
3411 if (plane == OMAP_DSS_WB)
3412 return 0;
3413
3414 channel = dispc_ovl_get_channel_out(dispc, plane);
3415
3416 return dispc_mgr_lclk_rate(dispc, channel);
3417 }
3418
dispc_dump_clocks_channel(struct dispc_device * dispc,struct seq_file * s,enum omap_channel channel)3419 static void dispc_dump_clocks_channel(struct dispc_device *dispc,
3420 struct seq_file *s,
3421 enum omap_channel channel)
3422 {
3423 int lcd, pcd;
3424 enum dss_clk_source lcd_clk_src;
3425
3426 seq_printf(s, "- %s -\n", mgr_desc[channel].name);
3427
3428 lcd_clk_src = dss_get_lcd_clk_source(dispc->dss, channel);
3429
3430 seq_printf(s, "%s clk source = %s\n", mgr_desc[channel].name,
3431 dss_get_clk_source_name(lcd_clk_src));
3432
3433 dispc_mgr_get_lcd_divisor(dispc, channel, &lcd, &pcd);
3434
3435 seq_printf(s, "lck\t\t%-16lulck div\t%u\n",
3436 dispc_mgr_lclk_rate(dispc, channel), lcd);
3437 seq_printf(s, "pck\t\t%-16lupck div\t%u\n",
3438 dispc_mgr_pclk_rate(dispc, channel), pcd);
3439 }
3440
dispc_dump_clocks(struct dispc_device * dispc,struct seq_file * s)3441 void dispc_dump_clocks(struct dispc_device *dispc, struct seq_file *s)
3442 {
3443 enum dss_clk_source dispc_clk_src;
3444 int lcd;
3445 u32 l;
3446
3447 if (dispc_runtime_get(dispc))
3448 return;
3449
3450 seq_printf(s, "- DISPC -\n");
3451
3452 dispc_clk_src = dss_get_dispc_clk_source(dispc->dss);
3453 seq_printf(s, "dispc fclk source = %s\n",
3454 dss_get_clk_source_name(dispc_clk_src));
3455
3456 seq_printf(s, "fck\t\t%-16lu\n", dispc_fclk_rate(dispc));
3457
3458 if (dispc_has_feature(dispc, FEAT_CORE_CLK_DIV)) {
3459 seq_printf(s, "- DISPC-CORE-CLK -\n");
3460 l = dispc_read_reg(dispc, DISPC_DIVISOR);
3461 lcd = FLD_GET(l, 23, 16);
3462
3463 seq_printf(s, "lck\t\t%-16lulck div\t%u\n",
3464 (dispc_fclk_rate(dispc)/lcd), lcd);
3465 }
3466
3467 dispc_dump_clocks_channel(dispc, s, OMAP_DSS_CHANNEL_LCD);
3468
3469 if (dispc_has_feature(dispc, FEAT_MGR_LCD2))
3470 dispc_dump_clocks_channel(dispc, s, OMAP_DSS_CHANNEL_LCD2);
3471 if (dispc_has_feature(dispc, FEAT_MGR_LCD3))
3472 dispc_dump_clocks_channel(dispc, s, OMAP_DSS_CHANNEL_LCD3);
3473
3474 dispc_runtime_put(dispc);
3475 }
3476
dispc_dump_regs(struct seq_file * s,void * p)3477 static int dispc_dump_regs(struct seq_file *s, void *p)
3478 {
3479 struct dispc_device *dispc = s->private;
3480 int i, j;
3481 const char *mgr_names[] = {
3482 [OMAP_DSS_CHANNEL_LCD] = "LCD",
3483 [OMAP_DSS_CHANNEL_DIGIT] = "TV",
3484 [OMAP_DSS_CHANNEL_LCD2] = "LCD2",
3485 [OMAP_DSS_CHANNEL_LCD3] = "LCD3",
3486 };
3487 const char *ovl_names[] = {
3488 [OMAP_DSS_GFX] = "GFX",
3489 [OMAP_DSS_VIDEO1] = "VID1",
3490 [OMAP_DSS_VIDEO2] = "VID2",
3491 [OMAP_DSS_VIDEO3] = "VID3",
3492 [OMAP_DSS_WB] = "WB",
3493 };
3494 const char **p_names;
3495
3496 #define DUMPREG(dispc, r) \
3497 seq_printf(s, "%-50s %08x\n", #r, dispc_read_reg(dispc, r))
3498
3499 if (dispc_runtime_get(dispc))
3500 return 0;
3501
3502 /* DISPC common registers */
3503 DUMPREG(dispc, DISPC_REVISION);
3504 DUMPREG(dispc, DISPC_SYSCONFIG);
3505 DUMPREG(dispc, DISPC_SYSSTATUS);
3506 DUMPREG(dispc, DISPC_IRQSTATUS);
3507 DUMPREG(dispc, DISPC_IRQENABLE);
3508 DUMPREG(dispc, DISPC_CONTROL);
3509 DUMPREG(dispc, DISPC_CONFIG);
3510 DUMPREG(dispc, DISPC_CAPABLE);
3511 DUMPREG(dispc, DISPC_LINE_STATUS);
3512 DUMPREG(dispc, DISPC_LINE_NUMBER);
3513 if (dispc_has_feature(dispc, FEAT_ALPHA_FIXED_ZORDER) ||
3514 dispc_has_feature(dispc, FEAT_ALPHA_FREE_ZORDER))
3515 DUMPREG(dispc, DISPC_GLOBAL_ALPHA);
3516 if (dispc_has_feature(dispc, FEAT_MGR_LCD2)) {
3517 DUMPREG(dispc, DISPC_CONTROL2);
3518 DUMPREG(dispc, DISPC_CONFIG2);
3519 }
3520 if (dispc_has_feature(dispc, FEAT_MGR_LCD3)) {
3521 DUMPREG(dispc, DISPC_CONTROL3);
3522 DUMPREG(dispc, DISPC_CONFIG3);
3523 }
3524 if (dispc_has_feature(dispc, FEAT_MFLAG))
3525 DUMPREG(dispc, DISPC_GLOBAL_MFLAG_ATTRIBUTE);
3526
3527 #undef DUMPREG
3528
3529 #define DISPC_REG(i, name) name(i)
3530 #define DUMPREG(dispc, i, r) seq_printf(s, "%s(%s)%*s %08x\n", #r, p_names[i], \
3531 (int)(48 - strlen(#r) - strlen(p_names[i])), " ", \
3532 dispc_read_reg(dispc, DISPC_REG(i, r)))
3533
3534 p_names = mgr_names;
3535
3536 /* DISPC channel specific registers */
3537 for (i = 0; i < dispc_get_num_mgrs(dispc); i++) {
3538 DUMPREG(dispc, i, DISPC_DEFAULT_COLOR);
3539 DUMPREG(dispc, i, DISPC_TRANS_COLOR);
3540 DUMPREG(dispc, i, DISPC_SIZE_MGR);
3541
3542 if (i == OMAP_DSS_CHANNEL_DIGIT)
3543 continue;
3544
3545 DUMPREG(dispc, i, DISPC_TIMING_H);
3546 DUMPREG(dispc, i, DISPC_TIMING_V);
3547 DUMPREG(dispc, i, DISPC_POL_FREQ);
3548 DUMPREG(dispc, i, DISPC_DIVISORo);
3549
3550 DUMPREG(dispc, i, DISPC_DATA_CYCLE1);
3551 DUMPREG(dispc, i, DISPC_DATA_CYCLE2);
3552 DUMPREG(dispc, i, DISPC_DATA_CYCLE3);
3553
3554 if (dispc_has_feature(dispc, FEAT_CPR)) {
3555 DUMPREG(dispc, i, DISPC_CPR_COEF_R);
3556 DUMPREG(dispc, i, DISPC_CPR_COEF_G);
3557 DUMPREG(dispc, i, DISPC_CPR_COEF_B);
3558 }
3559 }
3560
3561 p_names = ovl_names;
3562
3563 for (i = 0; i < dispc_get_num_ovls(dispc); i++) {
3564 DUMPREG(dispc, i, DISPC_OVL_BA0);
3565 DUMPREG(dispc, i, DISPC_OVL_BA1);
3566 DUMPREG(dispc, i, DISPC_OVL_POSITION);
3567 DUMPREG(dispc, i, DISPC_OVL_SIZE);
3568 DUMPREG(dispc, i, DISPC_OVL_ATTRIBUTES);
3569 DUMPREG(dispc, i, DISPC_OVL_FIFO_THRESHOLD);
3570 DUMPREG(dispc, i, DISPC_OVL_FIFO_SIZE_STATUS);
3571 DUMPREG(dispc, i, DISPC_OVL_ROW_INC);
3572 DUMPREG(dispc, i, DISPC_OVL_PIXEL_INC);
3573
3574 if (dispc_has_feature(dispc, FEAT_PRELOAD))
3575 DUMPREG(dispc, i, DISPC_OVL_PRELOAD);
3576 if (dispc_has_feature(dispc, FEAT_MFLAG))
3577 DUMPREG(dispc, i, DISPC_OVL_MFLAG_THRESHOLD);
3578
3579 if (i == OMAP_DSS_GFX) {
3580 DUMPREG(dispc, i, DISPC_OVL_WINDOW_SKIP);
3581 DUMPREG(dispc, i, DISPC_OVL_TABLE_BA);
3582 continue;
3583 }
3584
3585 DUMPREG(dispc, i, DISPC_OVL_FIR);
3586 DUMPREG(dispc, i, DISPC_OVL_PICTURE_SIZE);
3587 DUMPREG(dispc, i, DISPC_OVL_ACCU0);
3588 DUMPREG(dispc, i, DISPC_OVL_ACCU1);
3589 if (dispc_has_feature(dispc, FEAT_HANDLE_UV_SEPARATE)) {
3590 DUMPREG(dispc, i, DISPC_OVL_BA0_UV);
3591 DUMPREG(dispc, i, DISPC_OVL_BA1_UV);
3592 DUMPREG(dispc, i, DISPC_OVL_FIR2);
3593 DUMPREG(dispc, i, DISPC_OVL_ACCU2_0);
3594 DUMPREG(dispc, i, DISPC_OVL_ACCU2_1);
3595 }
3596 if (dispc_has_feature(dispc, FEAT_ATTR2))
3597 DUMPREG(dispc, i, DISPC_OVL_ATTRIBUTES2);
3598 }
3599
3600 if (dispc->feat->has_writeback) {
3601 i = OMAP_DSS_WB;
3602 DUMPREG(dispc, i, DISPC_OVL_BA0);
3603 DUMPREG(dispc, i, DISPC_OVL_BA1);
3604 DUMPREG(dispc, i, DISPC_OVL_SIZE);
3605 DUMPREG(dispc, i, DISPC_OVL_ATTRIBUTES);
3606 DUMPREG(dispc, i, DISPC_OVL_FIFO_THRESHOLD);
3607 DUMPREG(dispc, i, DISPC_OVL_FIFO_SIZE_STATUS);
3608 DUMPREG(dispc, i, DISPC_OVL_ROW_INC);
3609 DUMPREG(dispc, i, DISPC_OVL_PIXEL_INC);
3610
3611 if (dispc_has_feature(dispc, FEAT_MFLAG))
3612 DUMPREG(dispc, i, DISPC_OVL_MFLAG_THRESHOLD);
3613
3614 DUMPREG(dispc, i, DISPC_OVL_FIR);
3615 DUMPREG(dispc, i, DISPC_OVL_PICTURE_SIZE);
3616 DUMPREG(dispc, i, DISPC_OVL_ACCU0);
3617 DUMPREG(dispc, i, DISPC_OVL_ACCU1);
3618 if (dispc_has_feature(dispc, FEAT_HANDLE_UV_SEPARATE)) {
3619 DUMPREG(dispc, i, DISPC_OVL_BA0_UV);
3620 DUMPREG(dispc, i, DISPC_OVL_BA1_UV);
3621 DUMPREG(dispc, i, DISPC_OVL_FIR2);
3622 DUMPREG(dispc, i, DISPC_OVL_ACCU2_0);
3623 DUMPREG(dispc, i, DISPC_OVL_ACCU2_1);
3624 }
3625 if (dispc_has_feature(dispc, FEAT_ATTR2))
3626 DUMPREG(dispc, i, DISPC_OVL_ATTRIBUTES2);
3627 }
3628
3629 #undef DISPC_REG
3630 #undef DUMPREG
3631
3632 #define DISPC_REG(plane, name, i) name(plane, i)
3633 #define DUMPREG(dispc, plane, name, i) \
3634 seq_printf(s, "%s_%d(%s)%*s %08x\n", #name, i, p_names[plane], \
3635 (int)(46 - strlen(#name) - strlen(p_names[plane])), " ", \
3636 dispc_read_reg(dispc, DISPC_REG(plane, name, i)))
3637
3638 /* Video pipeline coefficient registers */
3639
3640 /* start from OMAP_DSS_VIDEO1 */
3641 for (i = 1; i < dispc_get_num_ovls(dispc); i++) {
3642 for (j = 0; j < 8; j++)
3643 DUMPREG(dispc, i, DISPC_OVL_FIR_COEF_H, j);
3644
3645 for (j = 0; j < 8; j++)
3646 DUMPREG(dispc, i, DISPC_OVL_FIR_COEF_HV, j);
3647
3648 for (j = 0; j < 5; j++)
3649 DUMPREG(dispc, i, DISPC_OVL_CONV_COEF, j);
3650
3651 if (dispc_has_feature(dispc, FEAT_FIR_COEF_V)) {
3652 for (j = 0; j < 8; j++)
3653 DUMPREG(dispc, i, DISPC_OVL_FIR_COEF_V, j);
3654 }
3655
3656 if (dispc_has_feature(dispc, FEAT_HANDLE_UV_SEPARATE)) {
3657 for (j = 0; j < 8; j++)
3658 DUMPREG(dispc, i, DISPC_OVL_FIR_COEF_H2, j);
3659
3660 for (j = 0; j < 8; j++)
3661 DUMPREG(dispc, i, DISPC_OVL_FIR_COEF_HV2, j);
3662
3663 for (j = 0; j < 8; j++)
3664 DUMPREG(dispc, i, DISPC_OVL_FIR_COEF_V2, j);
3665 }
3666 }
3667
3668 dispc_runtime_put(dispc);
3669
3670 #undef DISPC_REG
3671 #undef DUMPREG
3672
3673 return 0;
3674 }
3675
3676 /* calculate clock rates using dividers in cinfo */
dispc_calc_clock_rates(struct dispc_device * dispc,unsigned long dispc_fclk_rate,struct dispc_clock_info * cinfo)3677 int dispc_calc_clock_rates(struct dispc_device *dispc,
3678 unsigned long dispc_fclk_rate,
3679 struct dispc_clock_info *cinfo)
3680 {
3681 if (cinfo->lck_div > 255 || cinfo->lck_div == 0)
3682 return -EINVAL;
3683 if (cinfo->pck_div < 1 || cinfo->pck_div > 255)
3684 return -EINVAL;
3685
3686 cinfo->lck = dispc_fclk_rate / cinfo->lck_div;
3687 cinfo->pck = cinfo->lck / cinfo->pck_div;
3688
3689 return 0;
3690 }
3691
dispc_div_calc(struct dispc_device * dispc,unsigned long dispc_freq,unsigned long pck_min,unsigned long pck_max,dispc_div_calc_func func,void * data)3692 bool dispc_div_calc(struct dispc_device *dispc, unsigned long dispc_freq,
3693 unsigned long pck_min, unsigned long pck_max,
3694 dispc_div_calc_func func, void *data)
3695 {
3696 int lckd, lckd_start, lckd_stop;
3697 int pckd, pckd_start, pckd_stop;
3698 unsigned long pck, lck;
3699 unsigned long lck_max;
3700 unsigned long pckd_hw_min, pckd_hw_max;
3701 unsigned int min_fck_per_pck;
3702 unsigned long fck;
3703
3704 #ifdef CONFIG_OMAP2_DSS_MIN_FCK_PER_PCK
3705 min_fck_per_pck = CONFIG_OMAP2_DSS_MIN_FCK_PER_PCK;
3706 #else
3707 min_fck_per_pck = 0;
3708 #endif
3709
3710 pckd_hw_min = dispc->feat->min_pcd;
3711 pckd_hw_max = 255;
3712
3713 lck_max = dss_get_max_fck_rate(dispc->dss);
3714
3715 pck_min = pck_min ? pck_min : 1;
3716 pck_max = pck_max ? pck_max : ULONG_MAX;
3717
3718 lckd_start = max(DIV_ROUND_UP(dispc_freq, lck_max), 1ul);
3719 lckd_stop = min(dispc_freq / pck_min, 255ul);
3720
3721 for (lckd = lckd_start; lckd <= lckd_stop; ++lckd) {
3722 lck = dispc_freq / lckd;
3723
3724 pckd_start = max(DIV_ROUND_UP(lck, pck_max), pckd_hw_min);
3725 pckd_stop = min(lck / pck_min, pckd_hw_max);
3726
3727 for (pckd = pckd_start; pckd <= pckd_stop; ++pckd) {
3728 pck = lck / pckd;
3729
3730 /*
3731 * For OMAP2/3 the DISPC fclk is the same as LCD's logic
3732 * clock, which means we're configuring DISPC fclk here
3733 * also. Thus we need to use the calculated lck. For
3734 * OMAP4+ the DISPC fclk is a separate clock.
3735 */
3736 if (dispc_has_feature(dispc, FEAT_CORE_CLK_DIV))
3737 fck = dispc_core_clk_rate(dispc);
3738 else
3739 fck = lck;
3740
3741 if (fck < pck * min_fck_per_pck)
3742 continue;
3743
3744 if (func(lckd, pckd, lck, pck, data))
3745 return true;
3746 }
3747 }
3748
3749 return false;
3750 }
3751
dispc_mgr_set_clock_div(struct dispc_device * dispc,enum omap_channel channel,const struct dispc_clock_info * cinfo)3752 void dispc_mgr_set_clock_div(struct dispc_device *dispc,
3753 enum omap_channel channel,
3754 const struct dispc_clock_info *cinfo)
3755 {
3756 DSSDBG("lck = %lu (%u)\n", cinfo->lck, cinfo->lck_div);
3757 DSSDBG("pck = %lu (%u)\n", cinfo->pck, cinfo->pck_div);
3758
3759 dispc_mgr_set_lcd_divisor(dispc, channel, cinfo->lck_div,
3760 cinfo->pck_div);
3761 }
3762
dispc_mgr_get_clock_div(struct dispc_device * dispc,enum omap_channel channel,struct dispc_clock_info * cinfo)3763 int dispc_mgr_get_clock_div(struct dispc_device *dispc,
3764 enum omap_channel channel,
3765 struct dispc_clock_info *cinfo)
3766 {
3767 unsigned long fck;
3768
3769 fck = dispc_fclk_rate(dispc);
3770
3771 cinfo->lck_div = REG_GET(dispc, DISPC_DIVISORo(channel), 23, 16);
3772 cinfo->pck_div = REG_GET(dispc, DISPC_DIVISORo(channel), 7, 0);
3773
3774 cinfo->lck = fck / cinfo->lck_div;
3775 cinfo->pck = cinfo->lck / cinfo->pck_div;
3776
3777 return 0;
3778 }
3779
dispc_read_irqstatus(struct dispc_device * dispc)3780 static u32 dispc_read_irqstatus(struct dispc_device *dispc)
3781 {
3782 return dispc_read_reg(dispc, DISPC_IRQSTATUS);
3783 }
3784
dispc_clear_irqstatus(struct dispc_device * dispc,u32 mask)3785 static void dispc_clear_irqstatus(struct dispc_device *dispc, u32 mask)
3786 {
3787 dispc_write_reg(dispc, DISPC_IRQSTATUS, mask);
3788 }
3789
dispc_write_irqenable(struct dispc_device * dispc,u32 mask)3790 static void dispc_write_irqenable(struct dispc_device *dispc, u32 mask)
3791 {
3792 u32 old_mask = dispc_read_reg(dispc, DISPC_IRQENABLE);
3793
3794 /* clear the irqstatus for newly enabled irqs */
3795 dispc_clear_irqstatus(dispc, (mask ^ old_mask) & mask);
3796
3797 dispc_write_reg(dispc, DISPC_IRQENABLE, mask);
3798
3799 /* flush posted write */
3800 dispc_read_reg(dispc, DISPC_IRQENABLE);
3801 }
3802
dispc_enable_sidle(struct dispc_device * dispc)3803 void dispc_enable_sidle(struct dispc_device *dispc)
3804 {
3805 /* SIDLEMODE: smart idle */
3806 REG_FLD_MOD(dispc, DISPC_SYSCONFIG, 2, 4, 3);
3807 }
3808
dispc_disable_sidle(struct dispc_device * dispc)3809 void dispc_disable_sidle(struct dispc_device *dispc)
3810 {
3811 REG_FLD_MOD(dispc, DISPC_SYSCONFIG, 1, 4, 3); /* SIDLEMODE: no idle */
3812 }
3813
dispc_mgr_gamma_size(struct dispc_device * dispc,enum omap_channel channel)3814 static u32 dispc_mgr_gamma_size(struct dispc_device *dispc,
3815 enum omap_channel channel)
3816 {
3817 const struct dispc_gamma_desc *gdesc = &mgr_desc[channel].gamma;
3818
3819 if (!dispc->feat->has_gamma_table)
3820 return 0;
3821
3822 return gdesc->len;
3823 }
3824
dispc_mgr_write_gamma_table(struct dispc_device * dispc,enum omap_channel channel)3825 static void dispc_mgr_write_gamma_table(struct dispc_device *dispc,
3826 enum omap_channel channel)
3827 {
3828 const struct dispc_gamma_desc *gdesc = &mgr_desc[channel].gamma;
3829 u32 *table = dispc->gamma_table[channel];
3830 unsigned int i;
3831
3832 DSSDBG("%s: channel %d\n", __func__, channel);
3833
3834 for (i = 0; i < gdesc->len; ++i) {
3835 u32 v = table[i];
3836
3837 if (gdesc->has_index)
3838 v |= i << 24;
3839 else if (i == 0)
3840 v |= 1 << 31;
3841
3842 dispc_write_reg(dispc, gdesc->reg, v);
3843 }
3844 }
3845
dispc_restore_gamma_tables(struct dispc_device * dispc)3846 static void dispc_restore_gamma_tables(struct dispc_device *dispc)
3847 {
3848 DSSDBG("%s()\n", __func__);
3849
3850 if (!dispc->feat->has_gamma_table)
3851 return;
3852
3853 dispc_mgr_write_gamma_table(dispc, OMAP_DSS_CHANNEL_LCD);
3854
3855 dispc_mgr_write_gamma_table(dispc, OMAP_DSS_CHANNEL_DIGIT);
3856
3857 if (dispc_has_feature(dispc, FEAT_MGR_LCD2))
3858 dispc_mgr_write_gamma_table(dispc, OMAP_DSS_CHANNEL_LCD2);
3859
3860 if (dispc_has_feature(dispc, FEAT_MGR_LCD3))
3861 dispc_mgr_write_gamma_table(dispc, OMAP_DSS_CHANNEL_LCD3);
3862 }
3863
3864 static const struct drm_color_lut dispc_mgr_gamma_default_lut[] = {
3865 { .red = 0, .green = 0, .blue = 0, },
3866 { .red = U16_MAX, .green = U16_MAX, .blue = U16_MAX, },
3867 };
3868
dispc_mgr_set_gamma(struct dispc_device * dispc,enum omap_channel channel,const struct drm_color_lut * lut,unsigned int length)3869 static void dispc_mgr_set_gamma(struct dispc_device *dispc,
3870 enum omap_channel channel,
3871 const struct drm_color_lut *lut,
3872 unsigned int length)
3873 {
3874 const struct dispc_gamma_desc *gdesc = &mgr_desc[channel].gamma;
3875 u32 *table = dispc->gamma_table[channel];
3876 uint i;
3877
3878 DSSDBG("%s: channel %d, lut len %u, hw len %u\n", __func__,
3879 channel, length, gdesc->len);
3880
3881 if (!dispc->feat->has_gamma_table)
3882 return;
3883
3884 if (lut == NULL || length < 2) {
3885 lut = dispc_mgr_gamma_default_lut;
3886 length = ARRAY_SIZE(dispc_mgr_gamma_default_lut);
3887 }
3888
3889 for (i = 0; i < length - 1; ++i) {
3890 uint first = i * (gdesc->len - 1) / (length - 1);
3891 uint last = (i + 1) * (gdesc->len - 1) / (length - 1);
3892 uint w = last - first;
3893 u16 r, g, b;
3894 uint j;
3895
3896 if (w == 0)
3897 continue;
3898
3899 for (j = 0; j <= w; j++) {
3900 r = (lut[i].red * (w - j) + lut[i+1].red * j) / w;
3901 g = (lut[i].green * (w - j) + lut[i+1].green * j) / w;
3902 b = (lut[i].blue * (w - j) + lut[i+1].blue * j) / w;
3903
3904 r >>= 16 - gdesc->bits;
3905 g >>= 16 - gdesc->bits;
3906 b >>= 16 - gdesc->bits;
3907
3908 table[first + j] = (r << (gdesc->bits * 2)) |
3909 (g << gdesc->bits) | b;
3910 }
3911 }
3912
3913 if (dispc->is_enabled)
3914 dispc_mgr_write_gamma_table(dispc, channel);
3915 }
3916
dispc_init_gamma_tables(struct dispc_device * dispc)3917 static int dispc_init_gamma_tables(struct dispc_device *dispc)
3918 {
3919 int channel;
3920
3921 if (!dispc->feat->has_gamma_table)
3922 return 0;
3923
3924 for (channel = 0; channel < ARRAY_SIZE(dispc->gamma_table); channel++) {
3925 const struct dispc_gamma_desc *gdesc = &mgr_desc[channel].gamma;
3926 u32 *gt;
3927
3928 if (channel == OMAP_DSS_CHANNEL_LCD2 &&
3929 !dispc_has_feature(dispc, FEAT_MGR_LCD2))
3930 continue;
3931
3932 if (channel == OMAP_DSS_CHANNEL_LCD3 &&
3933 !dispc_has_feature(dispc, FEAT_MGR_LCD3))
3934 continue;
3935
3936 gt = devm_kmalloc_array(&dispc->pdev->dev, gdesc->len,
3937 sizeof(u32), GFP_KERNEL);
3938 if (!gt)
3939 return -ENOMEM;
3940
3941 dispc->gamma_table[channel] = gt;
3942
3943 dispc_mgr_set_gamma(dispc, channel, NULL, 0);
3944 }
3945 return 0;
3946 }
3947
_omap_dispc_initial_config(struct dispc_device * dispc)3948 static void _omap_dispc_initial_config(struct dispc_device *dispc)
3949 {
3950 u32 l;
3951
3952 /* Exclusively enable DISPC_CORE_CLK and set divider to 1 */
3953 if (dispc_has_feature(dispc, FEAT_CORE_CLK_DIV)) {
3954 l = dispc_read_reg(dispc, DISPC_DIVISOR);
3955 /* Use DISPC_DIVISOR.LCD, instead of DISPC_DIVISOR1.LCD */
3956 l = FLD_MOD(l, 1, 0, 0);
3957 l = FLD_MOD(l, 1, 23, 16);
3958 dispc_write_reg(dispc, DISPC_DIVISOR, l);
3959
3960 dispc->core_clk_rate = dispc_fclk_rate(dispc);
3961 }
3962
3963 /* Use gamma table mode, instead of palette mode */
3964 if (dispc->feat->has_gamma_table)
3965 REG_FLD_MOD(dispc, DISPC_CONFIG, 1, 3, 3);
3966
3967 /* For older DSS versions (FEAT_FUNCGATED) this enables
3968 * func-clock auto-gating. For newer versions
3969 * (dispc->feat->has_gamma_table) this enables tv-out gamma tables.
3970 */
3971 if (dispc_has_feature(dispc, FEAT_FUNCGATED) ||
3972 dispc->feat->has_gamma_table)
3973 REG_FLD_MOD(dispc, DISPC_CONFIG, 1, 9, 9);
3974
3975 dispc_setup_color_conv_coef(dispc);
3976
3977 dispc_set_loadmode(dispc, OMAP_DSS_LOAD_FRAME_ONLY);
3978
3979 dispc_init_fifos(dispc);
3980
3981 dispc_configure_burst_sizes(dispc);
3982
3983 dispc_ovl_enable_zorder_planes(dispc);
3984
3985 if (dispc->feat->mstandby_workaround)
3986 REG_FLD_MOD(dispc, DISPC_MSTANDBY_CTRL, 1, 0, 0);
3987
3988 if (dispc_has_feature(dispc, FEAT_MFLAG))
3989 dispc_init_mflag(dispc);
3990 }
3991
3992 static const enum dispc_feature_id omap2_dispc_features_list[] = {
3993 FEAT_LCDENABLEPOL,
3994 FEAT_LCDENABLESIGNAL,
3995 FEAT_PCKFREEENABLE,
3996 FEAT_FUNCGATED,
3997 FEAT_ROWREPEATENABLE,
3998 FEAT_RESIZECONF,
3999 };
4000
4001 static const enum dispc_feature_id omap3_dispc_features_list[] = {
4002 FEAT_LCDENABLEPOL,
4003 FEAT_LCDENABLESIGNAL,
4004 FEAT_PCKFREEENABLE,
4005 FEAT_FUNCGATED,
4006 FEAT_LINEBUFFERSPLIT,
4007 FEAT_ROWREPEATENABLE,
4008 FEAT_RESIZECONF,
4009 FEAT_CPR,
4010 FEAT_PRELOAD,
4011 FEAT_FIR_COEF_V,
4012 FEAT_ALPHA_FIXED_ZORDER,
4013 FEAT_FIFO_MERGE,
4014 FEAT_OMAP3_DSI_FIFO_BUG,
4015 };
4016
4017 static const enum dispc_feature_id am43xx_dispc_features_list[] = {
4018 FEAT_LCDENABLEPOL,
4019 FEAT_LCDENABLESIGNAL,
4020 FEAT_PCKFREEENABLE,
4021 FEAT_FUNCGATED,
4022 FEAT_LINEBUFFERSPLIT,
4023 FEAT_ROWREPEATENABLE,
4024 FEAT_RESIZECONF,
4025 FEAT_CPR,
4026 FEAT_PRELOAD,
4027 FEAT_FIR_COEF_V,
4028 FEAT_ALPHA_FIXED_ZORDER,
4029 FEAT_FIFO_MERGE,
4030 };
4031
4032 static const enum dispc_feature_id omap4_dispc_features_list[] = {
4033 FEAT_MGR_LCD2,
4034 FEAT_CORE_CLK_DIV,
4035 FEAT_HANDLE_UV_SEPARATE,
4036 FEAT_ATTR2,
4037 FEAT_CPR,
4038 FEAT_PRELOAD,
4039 FEAT_FIR_COEF_V,
4040 FEAT_ALPHA_FREE_ZORDER,
4041 FEAT_FIFO_MERGE,
4042 FEAT_BURST_2D,
4043 };
4044
4045 static const enum dispc_feature_id omap5_dispc_features_list[] = {
4046 FEAT_MGR_LCD2,
4047 FEAT_MGR_LCD3,
4048 FEAT_CORE_CLK_DIV,
4049 FEAT_HANDLE_UV_SEPARATE,
4050 FEAT_ATTR2,
4051 FEAT_CPR,
4052 FEAT_PRELOAD,
4053 FEAT_FIR_COEF_V,
4054 FEAT_ALPHA_FREE_ZORDER,
4055 FEAT_FIFO_MERGE,
4056 FEAT_BURST_2D,
4057 FEAT_MFLAG,
4058 };
4059
4060 static const struct dss_reg_field omap2_dispc_reg_fields[] = {
4061 [FEAT_REG_FIRHINC] = { 11, 0 },
4062 [FEAT_REG_FIRVINC] = { 27, 16 },
4063 [FEAT_REG_FIFOLOWTHRESHOLD] = { 8, 0 },
4064 [FEAT_REG_FIFOHIGHTHRESHOLD] = { 24, 16 },
4065 [FEAT_REG_FIFOSIZE] = { 8, 0 },
4066 [FEAT_REG_HORIZONTALACCU] = { 9, 0 },
4067 [FEAT_REG_VERTICALACCU] = { 25, 16 },
4068 };
4069
4070 static const struct dss_reg_field omap3_dispc_reg_fields[] = {
4071 [FEAT_REG_FIRHINC] = { 12, 0 },
4072 [FEAT_REG_FIRVINC] = { 28, 16 },
4073 [FEAT_REG_FIFOLOWTHRESHOLD] = { 11, 0 },
4074 [FEAT_REG_FIFOHIGHTHRESHOLD] = { 27, 16 },
4075 [FEAT_REG_FIFOSIZE] = { 10, 0 },
4076 [FEAT_REG_HORIZONTALACCU] = { 9, 0 },
4077 [FEAT_REG_VERTICALACCU] = { 25, 16 },
4078 };
4079
4080 static const struct dss_reg_field omap4_dispc_reg_fields[] = {
4081 [FEAT_REG_FIRHINC] = { 12, 0 },
4082 [FEAT_REG_FIRVINC] = { 28, 16 },
4083 [FEAT_REG_FIFOLOWTHRESHOLD] = { 15, 0 },
4084 [FEAT_REG_FIFOHIGHTHRESHOLD] = { 31, 16 },
4085 [FEAT_REG_FIFOSIZE] = { 15, 0 },
4086 [FEAT_REG_HORIZONTALACCU] = { 10, 0 },
4087 [FEAT_REG_VERTICALACCU] = { 26, 16 },
4088 };
4089
4090 static const enum omap_overlay_caps omap2_dispc_overlay_caps[] = {
4091 /* OMAP_DSS_GFX */
4092 OMAP_DSS_OVL_CAP_POS | OMAP_DSS_OVL_CAP_REPLICATION,
4093
4094 /* OMAP_DSS_VIDEO1 */
4095 OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_POS |
4096 OMAP_DSS_OVL_CAP_REPLICATION,
4097
4098 /* OMAP_DSS_VIDEO2 */
4099 OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_POS |
4100 OMAP_DSS_OVL_CAP_REPLICATION,
4101 };
4102
4103 static const enum omap_overlay_caps omap3430_dispc_overlay_caps[] = {
4104 /* OMAP_DSS_GFX */
4105 OMAP_DSS_OVL_CAP_GLOBAL_ALPHA | OMAP_DSS_OVL_CAP_POS |
4106 OMAP_DSS_OVL_CAP_REPLICATION,
4107
4108 /* OMAP_DSS_VIDEO1 */
4109 OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_POS |
4110 OMAP_DSS_OVL_CAP_REPLICATION,
4111
4112 /* OMAP_DSS_VIDEO2 */
4113 OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_GLOBAL_ALPHA |
4114 OMAP_DSS_OVL_CAP_POS | OMAP_DSS_OVL_CAP_REPLICATION,
4115 };
4116
4117 static const enum omap_overlay_caps omap3630_dispc_overlay_caps[] = {
4118 /* OMAP_DSS_GFX */
4119 OMAP_DSS_OVL_CAP_GLOBAL_ALPHA | OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA |
4120 OMAP_DSS_OVL_CAP_POS | OMAP_DSS_OVL_CAP_REPLICATION,
4121
4122 /* OMAP_DSS_VIDEO1 */
4123 OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_POS |
4124 OMAP_DSS_OVL_CAP_REPLICATION,
4125
4126 /* OMAP_DSS_VIDEO2 */
4127 OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_GLOBAL_ALPHA |
4128 OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA | OMAP_DSS_OVL_CAP_POS |
4129 OMAP_DSS_OVL_CAP_REPLICATION,
4130 };
4131
4132 static const enum omap_overlay_caps omap4_dispc_overlay_caps[] = {
4133 /* OMAP_DSS_GFX */
4134 OMAP_DSS_OVL_CAP_GLOBAL_ALPHA | OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA |
4135 OMAP_DSS_OVL_CAP_ZORDER | OMAP_DSS_OVL_CAP_POS |
4136 OMAP_DSS_OVL_CAP_REPLICATION,
4137
4138 /* OMAP_DSS_VIDEO1 */
4139 OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_GLOBAL_ALPHA |
4140 OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA | OMAP_DSS_OVL_CAP_ZORDER |
4141 OMAP_DSS_OVL_CAP_POS | OMAP_DSS_OVL_CAP_REPLICATION,
4142
4143 /* OMAP_DSS_VIDEO2 */
4144 OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_GLOBAL_ALPHA |
4145 OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA | OMAP_DSS_OVL_CAP_ZORDER |
4146 OMAP_DSS_OVL_CAP_POS | OMAP_DSS_OVL_CAP_REPLICATION,
4147
4148 /* OMAP_DSS_VIDEO3 */
4149 OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_GLOBAL_ALPHA |
4150 OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA | OMAP_DSS_OVL_CAP_ZORDER |
4151 OMAP_DSS_OVL_CAP_POS | OMAP_DSS_OVL_CAP_REPLICATION,
4152 };
4153
4154 #define COLOR_ARRAY(arr...) (const u32[]) { arr, 0 }
4155
4156 static const u32 *omap2_dispc_supported_color_modes[] = {
4157
4158 /* OMAP_DSS_GFX */
4159 COLOR_ARRAY(
4160 DRM_FORMAT_RGBX4444, DRM_FORMAT_RGB565,
4161 DRM_FORMAT_XRGB8888, DRM_FORMAT_RGB888),
4162
4163 /* OMAP_DSS_VIDEO1 */
4164 COLOR_ARRAY(
4165 DRM_FORMAT_RGB565, DRM_FORMAT_XRGB8888,
4166 DRM_FORMAT_RGB888, DRM_FORMAT_YUYV,
4167 DRM_FORMAT_UYVY),
4168
4169 /* OMAP_DSS_VIDEO2 */
4170 COLOR_ARRAY(
4171 DRM_FORMAT_RGB565, DRM_FORMAT_XRGB8888,
4172 DRM_FORMAT_RGB888, DRM_FORMAT_YUYV,
4173 DRM_FORMAT_UYVY),
4174 };
4175
4176 static const u32 *omap3_dispc_supported_color_modes[] = {
4177 /* OMAP_DSS_GFX */
4178 COLOR_ARRAY(
4179 DRM_FORMAT_RGBX4444, DRM_FORMAT_ARGB4444,
4180 DRM_FORMAT_RGB565, DRM_FORMAT_XRGB8888,
4181 DRM_FORMAT_RGB888, DRM_FORMAT_ARGB8888,
4182 DRM_FORMAT_RGBA8888, DRM_FORMAT_RGBX8888),
4183
4184 /* OMAP_DSS_VIDEO1 */
4185 COLOR_ARRAY(
4186 DRM_FORMAT_XRGB8888, DRM_FORMAT_RGB888,
4187 DRM_FORMAT_RGBX4444, DRM_FORMAT_RGB565,
4188 DRM_FORMAT_YUYV, DRM_FORMAT_UYVY),
4189
4190 /* OMAP_DSS_VIDEO2 */
4191 COLOR_ARRAY(
4192 DRM_FORMAT_RGBX4444, DRM_FORMAT_ARGB4444,
4193 DRM_FORMAT_RGB565, DRM_FORMAT_XRGB8888,
4194 DRM_FORMAT_RGB888, DRM_FORMAT_YUYV,
4195 DRM_FORMAT_UYVY, DRM_FORMAT_ARGB8888,
4196 DRM_FORMAT_RGBA8888, DRM_FORMAT_RGBX8888),
4197 };
4198
4199 static const u32 *omap4_dispc_supported_color_modes[] = {
4200 /* OMAP_DSS_GFX */
4201 COLOR_ARRAY(
4202 DRM_FORMAT_RGBX4444, DRM_FORMAT_ARGB4444,
4203 DRM_FORMAT_RGB565, DRM_FORMAT_XRGB8888,
4204 DRM_FORMAT_RGB888, DRM_FORMAT_ARGB8888,
4205 DRM_FORMAT_RGBA8888, DRM_FORMAT_RGBX8888,
4206 DRM_FORMAT_ARGB1555, DRM_FORMAT_XRGB4444,
4207 DRM_FORMAT_RGBA4444, DRM_FORMAT_XRGB1555),
4208
4209 /* OMAP_DSS_VIDEO1 */
4210 COLOR_ARRAY(
4211 DRM_FORMAT_RGB565, DRM_FORMAT_RGBX4444,
4212 DRM_FORMAT_YUYV, DRM_FORMAT_ARGB1555,
4213 DRM_FORMAT_RGBA8888, DRM_FORMAT_NV12,
4214 DRM_FORMAT_RGBA4444, DRM_FORMAT_XRGB8888,
4215 DRM_FORMAT_RGB888, DRM_FORMAT_UYVY,
4216 DRM_FORMAT_ARGB4444, DRM_FORMAT_XRGB1555,
4217 DRM_FORMAT_ARGB8888, DRM_FORMAT_XRGB4444,
4218 DRM_FORMAT_RGBX8888),
4219
4220 /* OMAP_DSS_VIDEO2 */
4221 COLOR_ARRAY(
4222 DRM_FORMAT_RGB565, DRM_FORMAT_RGBX4444,
4223 DRM_FORMAT_YUYV, DRM_FORMAT_ARGB1555,
4224 DRM_FORMAT_RGBA8888, DRM_FORMAT_NV12,
4225 DRM_FORMAT_RGBA4444, DRM_FORMAT_XRGB8888,
4226 DRM_FORMAT_RGB888, DRM_FORMAT_UYVY,
4227 DRM_FORMAT_ARGB4444, DRM_FORMAT_XRGB1555,
4228 DRM_FORMAT_ARGB8888, DRM_FORMAT_XRGB4444,
4229 DRM_FORMAT_RGBX8888),
4230
4231 /* OMAP_DSS_VIDEO3 */
4232 COLOR_ARRAY(
4233 DRM_FORMAT_RGB565, DRM_FORMAT_RGBX4444,
4234 DRM_FORMAT_YUYV, DRM_FORMAT_ARGB1555,
4235 DRM_FORMAT_RGBA8888, DRM_FORMAT_NV12,
4236 DRM_FORMAT_RGBA4444, DRM_FORMAT_XRGB8888,
4237 DRM_FORMAT_RGB888, DRM_FORMAT_UYVY,
4238 DRM_FORMAT_ARGB4444, DRM_FORMAT_XRGB1555,
4239 DRM_FORMAT_ARGB8888, DRM_FORMAT_XRGB4444,
4240 DRM_FORMAT_RGBX8888),
4241
4242 /* OMAP_DSS_WB */
4243 COLOR_ARRAY(
4244 DRM_FORMAT_RGB565, DRM_FORMAT_RGBX4444,
4245 DRM_FORMAT_YUYV, DRM_FORMAT_ARGB1555,
4246 DRM_FORMAT_RGBA8888, DRM_FORMAT_NV12,
4247 DRM_FORMAT_RGBA4444, DRM_FORMAT_XRGB8888,
4248 DRM_FORMAT_RGB888, DRM_FORMAT_UYVY,
4249 DRM_FORMAT_ARGB4444, DRM_FORMAT_XRGB1555,
4250 DRM_FORMAT_ARGB8888, DRM_FORMAT_XRGB4444,
4251 DRM_FORMAT_RGBX8888),
4252 };
4253
4254 static const struct dispc_features omap24xx_dispc_feats = {
4255 .sw_start = 5,
4256 .fp_start = 15,
4257 .bp_start = 27,
4258 .sw_max = 64,
4259 .vp_max = 255,
4260 .hp_max = 256,
4261 .mgr_width_start = 10,
4262 .mgr_height_start = 26,
4263 .mgr_width_max = 2048,
4264 .mgr_height_max = 2048,
4265 .max_lcd_pclk = 66500000,
4266 .max_downscale = 2,
4267 /*
4268 * Assume the line width buffer to be 768 pixels as OMAP2 DISPC scaler
4269 * cannot scale an image width larger than 768.
4270 */
4271 .max_line_width = 768,
4272 .min_pcd = 2,
4273 .calc_scaling = dispc_ovl_calc_scaling_24xx,
4274 .calc_core_clk = calc_core_clk_24xx,
4275 .num_fifos = 3,
4276 .features = omap2_dispc_features_list,
4277 .num_features = ARRAY_SIZE(omap2_dispc_features_list),
4278 .reg_fields = omap2_dispc_reg_fields,
4279 .num_reg_fields = ARRAY_SIZE(omap2_dispc_reg_fields),
4280 .overlay_caps = omap2_dispc_overlay_caps,
4281 .supported_color_modes = omap2_dispc_supported_color_modes,
4282 .num_mgrs = 2,
4283 .num_ovls = 3,
4284 .buffer_size_unit = 1,
4285 .burst_size_unit = 8,
4286 .no_framedone_tv = true,
4287 .set_max_preload = false,
4288 .last_pixel_inc_missing = true,
4289 };
4290
4291 static const struct dispc_features omap34xx_rev1_0_dispc_feats = {
4292 .sw_start = 5,
4293 .fp_start = 15,
4294 .bp_start = 27,
4295 .sw_max = 64,
4296 .vp_max = 255,
4297 .hp_max = 256,
4298 .mgr_width_start = 10,
4299 .mgr_height_start = 26,
4300 .mgr_width_max = 2048,
4301 .mgr_height_max = 2048,
4302 .max_lcd_pclk = 173000000,
4303 .max_tv_pclk = 59000000,
4304 .max_downscale = 4,
4305 .max_line_width = 1024,
4306 .min_pcd = 1,
4307 .calc_scaling = dispc_ovl_calc_scaling_34xx,
4308 .calc_core_clk = calc_core_clk_34xx,
4309 .num_fifos = 3,
4310 .features = omap3_dispc_features_list,
4311 .num_features = ARRAY_SIZE(omap3_dispc_features_list),
4312 .reg_fields = omap3_dispc_reg_fields,
4313 .num_reg_fields = ARRAY_SIZE(omap3_dispc_reg_fields),
4314 .overlay_caps = omap3430_dispc_overlay_caps,
4315 .supported_color_modes = omap3_dispc_supported_color_modes,
4316 .num_mgrs = 2,
4317 .num_ovls = 3,
4318 .buffer_size_unit = 1,
4319 .burst_size_unit = 8,
4320 .no_framedone_tv = true,
4321 .set_max_preload = false,
4322 .last_pixel_inc_missing = true,
4323 };
4324
4325 static const struct dispc_features omap34xx_rev3_0_dispc_feats = {
4326 .sw_start = 7,
4327 .fp_start = 19,
4328 .bp_start = 31,
4329 .sw_max = 256,
4330 .vp_max = 4095,
4331 .hp_max = 4096,
4332 .mgr_width_start = 10,
4333 .mgr_height_start = 26,
4334 .mgr_width_max = 2048,
4335 .mgr_height_max = 2048,
4336 .max_lcd_pclk = 173000000,
4337 .max_tv_pclk = 59000000,
4338 .max_downscale = 4,
4339 .max_line_width = 1024,
4340 .min_pcd = 1,
4341 .calc_scaling = dispc_ovl_calc_scaling_34xx,
4342 .calc_core_clk = calc_core_clk_34xx,
4343 .num_fifos = 3,
4344 .features = omap3_dispc_features_list,
4345 .num_features = ARRAY_SIZE(omap3_dispc_features_list),
4346 .reg_fields = omap3_dispc_reg_fields,
4347 .num_reg_fields = ARRAY_SIZE(omap3_dispc_reg_fields),
4348 .overlay_caps = omap3430_dispc_overlay_caps,
4349 .supported_color_modes = omap3_dispc_supported_color_modes,
4350 .num_mgrs = 2,
4351 .num_ovls = 3,
4352 .buffer_size_unit = 1,
4353 .burst_size_unit = 8,
4354 .no_framedone_tv = true,
4355 .set_max_preload = false,
4356 .last_pixel_inc_missing = true,
4357 };
4358
4359 static const struct dispc_features omap36xx_dispc_feats = {
4360 .sw_start = 7,
4361 .fp_start = 19,
4362 .bp_start = 31,
4363 .sw_max = 256,
4364 .vp_max = 4095,
4365 .hp_max = 4096,
4366 .mgr_width_start = 10,
4367 .mgr_height_start = 26,
4368 .mgr_width_max = 2048,
4369 .mgr_height_max = 2048,
4370 .max_lcd_pclk = 173000000,
4371 .max_tv_pclk = 59000000,
4372 .max_downscale = 4,
4373 .max_line_width = 1024,
4374 .min_pcd = 1,
4375 .calc_scaling = dispc_ovl_calc_scaling_34xx,
4376 .calc_core_clk = calc_core_clk_34xx,
4377 .num_fifos = 3,
4378 .features = omap3_dispc_features_list,
4379 .num_features = ARRAY_SIZE(omap3_dispc_features_list),
4380 .reg_fields = omap3_dispc_reg_fields,
4381 .num_reg_fields = ARRAY_SIZE(omap3_dispc_reg_fields),
4382 .overlay_caps = omap3630_dispc_overlay_caps,
4383 .supported_color_modes = omap3_dispc_supported_color_modes,
4384 .num_mgrs = 2,
4385 .num_ovls = 3,
4386 .buffer_size_unit = 1,
4387 .burst_size_unit = 8,
4388 .no_framedone_tv = true,
4389 .set_max_preload = false,
4390 .last_pixel_inc_missing = true,
4391 };
4392
4393 static const struct dispc_features am43xx_dispc_feats = {
4394 .sw_start = 7,
4395 .fp_start = 19,
4396 .bp_start = 31,
4397 .sw_max = 256,
4398 .vp_max = 4095,
4399 .hp_max = 4096,
4400 .mgr_width_start = 10,
4401 .mgr_height_start = 26,
4402 .mgr_width_max = 2048,
4403 .mgr_height_max = 2048,
4404 .max_lcd_pclk = 173000000,
4405 .max_tv_pclk = 59000000,
4406 .max_downscale = 4,
4407 .max_line_width = 1024,
4408 .min_pcd = 1,
4409 .calc_scaling = dispc_ovl_calc_scaling_34xx,
4410 .calc_core_clk = calc_core_clk_34xx,
4411 .num_fifos = 3,
4412 .features = am43xx_dispc_features_list,
4413 .num_features = ARRAY_SIZE(am43xx_dispc_features_list),
4414 .reg_fields = omap3_dispc_reg_fields,
4415 .num_reg_fields = ARRAY_SIZE(omap3_dispc_reg_fields),
4416 .overlay_caps = omap3430_dispc_overlay_caps,
4417 .supported_color_modes = omap3_dispc_supported_color_modes,
4418 .num_mgrs = 1,
4419 .num_ovls = 3,
4420 .buffer_size_unit = 1,
4421 .burst_size_unit = 8,
4422 .no_framedone_tv = true,
4423 .set_max_preload = false,
4424 .last_pixel_inc_missing = true,
4425 };
4426
4427 static const struct dispc_features omap44xx_dispc_feats = {
4428 .sw_start = 7,
4429 .fp_start = 19,
4430 .bp_start = 31,
4431 .sw_max = 256,
4432 .vp_max = 4095,
4433 .hp_max = 4096,
4434 .mgr_width_start = 10,
4435 .mgr_height_start = 26,
4436 .mgr_width_max = 2048,
4437 .mgr_height_max = 2048,
4438 .max_lcd_pclk = 170000000,
4439 .max_tv_pclk = 185625000,
4440 .max_downscale = 4,
4441 .max_line_width = 2048,
4442 .min_pcd = 1,
4443 .calc_scaling = dispc_ovl_calc_scaling_44xx,
4444 .calc_core_clk = calc_core_clk_44xx,
4445 .num_fifos = 5,
4446 .features = omap4_dispc_features_list,
4447 .num_features = ARRAY_SIZE(omap4_dispc_features_list),
4448 .reg_fields = omap4_dispc_reg_fields,
4449 .num_reg_fields = ARRAY_SIZE(omap4_dispc_reg_fields),
4450 .overlay_caps = omap4_dispc_overlay_caps,
4451 .supported_color_modes = omap4_dispc_supported_color_modes,
4452 .num_mgrs = 3,
4453 .num_ovls = 4,
4454 .buffer_size_unit = 16,
4455 .burst_size_unit = 16,
4456 .gfx_fifo_workaround = true,
4457 .set_max_preload = true,
4458 .supports_sync_align = true,
4459 .has_writeback = true,
4460 .supports_double_pixel = true,
4461 .reverse_ilace_field_order = true,
4462 .has_gamma_table = true,
4463 .has_gamma_i734_bug = true,
4464 };
4465
4466 static const struct dispc_features omap54xx_dispc_feats = {
4467 .sw_start = 7,
4468 .fp_start = 19,
4469 .bp_start = 31,
4470 .sw_max = 256,
4471 .vp_max = 4095,
4472 .hp_max = 4096,
4473 .mgr_width_start = 11,
4474 .mgr_height_start = 27,
4475 .mgr_width_max = 4096,
4476 .mgr_height_max = 4096,
4477 .max_lcd_pclk = 170000000,
4478 .max_tv_pclk = 186000000,
4479 .max_downscale = 4,
4480 .max_line_width = 2048,
4481 .min_pcd = 1,
4482 .calc_scaling = dispc_ovl_calc_scaling_44xx,
4483 .calc_core_clk = calc_core_clk_44xx,
4484 .num_fifos = 5,
4485 .features = omap5_dispc_features_list,
4486 .num_features = ARRAY_SIZE(omap5_dispc_features_list),
4487 .reg_fields = omap4_dispc_reg_fields,
4488 .num_reg_fields = ARRAY_SIZE(omap4_dispc_reg_fields),
4489 .overlay_caps = omap4_dispc_overlay_caps,
4490 .supported_color_modes = omap4_dispc_supported_color_modes,
4491 .num_mgrs = 4,
4492 .num_ovls = 4,
4493 .buffer_size_unit = 16,
4494 .burst_size_unit = 16,
4495 .gfx_fifo_workaround = true,
4496 .mstandby_workaround = true,
4497 .set_max_preload = true,
4498 .supports_sync_align = true,
4499 .has_writeback = true,
4500 .supports_double_pixel = true,
4501 .reverse_ilace_field_order = true,
4502 .has_gamma_table = true,
4503 .has_gamma_i734_bug = true,
4504 };
4505
dispc_irq_handler(int irq,void * arg)4506 static irqreturn_t dispc_irq_handler(int irq, void *arg)
4507 {
4508 struct dispc_device *dispc = arg;
4509
4510 if (!dispc->is_enabled)
4511 return IRQ_NONE;
4512
4513 return dispc->user_handler(irq, dispc->user_data);
4514 }
4515
dispc_request_irq(struct dispc_device * dispc,irq_handler_t handler,void * dev_id)4516 static int dispc_request_irq(struct dispc_device *dispc, irq_handler_t handler,
4517 void *dev_id)
4518 {
4519 int r;
4520
4521 if (dispc->user_handler != NULL)
4522 return -EBUSY;
4523
4524 dispc->user_handler = handler;
4525 dispc->user_data = dev_id;
4526
4527 /* ensure the dispc_irq_handler sees the values above */
4528 smp_wmb();
4529
4530 r = devm_request_irq(&dispc->pdev->dev, dispc->irq, dispc_irq_handler,
4531 IRQF_SHARED, "OMAP DISPC", dispc);
4532 if (r) {
4533 dispc->user_handler = NULL;
4534 dispc->user_data = NULL;
4535 }
4536
4537 return r;
4538 }
4539
dispc_free_irq(struct dispc_device * dispc,void * dev_id)4540 static void dispc_free_irq(struct dispc_device *dispc, void *dev_id)
4541 {
4542 devm_free_irq(&dispc->pdev->dev, dispc->irq, dispc);
4543
4544 dispc->user_handler = NULL;
4545 dispc->user_data = NULL;
4546 }
4547
dispc_get_memory_bandwidth_limit(struct dispc_device * dispc)4548 static u32 dispc_get_memory_bandwidth_limit(struct dispc_device *dispc)
4549 {
4550 u32 limit = 0;
4551
4552 /* Optional maximum memory bandwidth */
4553 of_property_read_u32(dispc->pdev->dev.of_node, "max-memory-bandwidth",
4554 &limit);
4555
4556 return limit;
4557 }
4558
4559 /*
4560 * Workaround for errata i734 in DSS dispc
4561 * - LCD1 Gamma Correction Is Not Working When GFX Pipe Is Disabled
4562 *
4563 * For gamma tables to work on LCD1 the GFX plane has to be used at
4564 * least once after DSS HW has come out of reset. The workaround
4565 * sets up a minimal LCD setup with GFX plane and waits for one
4566 * vertical sync irq before disabling the setup and continuing with
4567 * the context restore. The physical outputs are gated during the
4568 * operation. This workaround requires that gamma table's LOADMODE
4569 * is set to 0x2 in DISPC_CONTROL1 register.
4570 *
4571 * For details see:
4572 * OMAP543x Multimedia Device Silicon Revision 2.0 Silicon Errata
4573 * Literature Number: SWPZ037E
4574 * Or some other relevant errata document for the DSS IP version.
4575 */
4576
4577 static const struct dispc_errata_i734_data {
4578 struct videomode vm;
4579 struct omap_overlay_info ovli;
4580 struct omap_overlay_manager_info mgri;
4581 struct dss_lcd_mgr_config lcd_conf;
4582 } i734 = {
4583 .vm = {
4584 .hactive = 8, .vactive = 1,
4585 .pixelclock = 16000000,
4586 .hsync_len = 8, .hfront_porch = 4, .hback_porch = 4,
4587 .vsync_len = 1, .vfront_porch = 1, .vback_porch = 1,
4588
4589 .flags = DISPLAY_FLAGS_HSYNC_LOW | DISPLAY_FLAGS_VSYNC_LOW |
4590 DISPLAY_FLAGS_DE_HIGH | DISPLAY_FLAGS_SYNC_POSEDGE |
4591 DISPLAY_FLAGS_PIXDATA_POSEDGE,
4592 },
4593 .ovli = {
4594 .screen_width = 1,
4595 .width = 1, .height = 1,
4596 .fourcc = DRM_FORMAT_XRGB8888,
4597 .rotation = DRM_MODE_ROTATE_0,
4598 .rotation_type = OMAP_DSS_ROT_NONE,
4599 .pos_x = 0, .pos_y = 0,
4600 .out_width = 0, .out_height = 0,
4601 .global_alpha = 0xff,
4602 .pre_mult_alpha = 0,
4603 .zorder = 0,
4604 },
4605 .mgri = {
4606 .default_color = 0,
4607 .trans_enabled = false,
4608 .partial_alpha_enabled = false,
4609 .cpr_enable = false,
4610 },
4611 .lcd_conf = {
4612 .io_pad_mode = DSS_IO_PAD_MODE_BYPASS,
4613 .stallmode = false,
4614 .fifohandcheck = false,
4615 .clock_info = {
4616 .lck_div = 1,
4617 .pck_div = 2,
4618 },
4619 .video_port_width = 24,
4620 .lcden_sig_polarity = 0,
4621 },
4622 };
4623
4624 static struct i734_buf {
4625 size_t size;
4626 dma_addr_t paddr;
4627 void *vaddr;
4628 } i734_buf;
4629
dispc_errata_i734_wa_init(struct dispc_device * dispc)4630 static int dispc_errata_i734_wa_init(struct dispc_device *dispc)
4631 {
4632 if (!dispc->feat->has_gamma_i734_bug)
4633 return 0;
4634
4635 i734_buf.size = i734.ovli.width * i734.ovli.height *
4636 color_mode_to_bpp(i734.ovli.fourcc) / 8;
4637
4638 i734_buf.vaddr = dma_alloc_writecombine(&dispc->pdev->dev,
4639 i734_buf.size, &i734_buf.paddr,
4640 GFP_KERNEL);
4641 if (!i734_buf.vaddr) {
4642 dev_err(&dispc->pdev->dev, "%s: dma_alloc_writecombine failed\n",
4643 __func__);
4644 return -ENOMEM;
4645 }
4646
4647 return 0;
4648 }
4649
dispc_errata_i734_wa_fini(struct dispc_device * dispc)4650 static void dispc_errata_i734_wa_fini(struct dispc_device *dispc)
4651 {
4652 if (!dispc->feat->has_gamma_i734_bug)
4653 return;
4654
4655 dma_free_writecombine(&dispc->pdev->dev, i734_buf.size, i734_buf.vaddr,
4656 i734_buf.paddr);
4657 }
4658
dispc_errata_i734_wa(struct dispc_device * dispc)4659 static void dispc_errata_i734_wa(struct dispc_device *dispc)
4660 {
4661 u32 framedone_irq = dispc_mgr_get_framedone_irq(dispc,
4662 OMAP_DSS_CHANNEL_LCD);
4663 struct omap_overlay_info ovli;
4664 struct dss_lcd_mgr_config lcd_conf;
4665 u32 gatestate;
4666 unsigned int count;
4667
4668 if (!dispc->feat->has_gamma_i734_bug)
4669 return;
4670
4671 gatestate = REG_GET(dispc, DISPC_CONFIG, 8, 4);
4672
4673 ovli = i734.ovli;
4674 ovli.paddr = i734_buf.paddr;
4675 lcd_conf = i734.lcd_conf;
4676
4677 /* Gate all LCD1 outputs */
4678 REG_FLD_MOD(dispc, DISPC_CONFIG, 0x1f, 8, 4);
4679
4680 /* Setup and enable GFX plane */
4681 dispc_ovl_setup(dispc, OMAP_DSS_GFX, &ovli, &i734.vm, false,
4682 OMAP_DSS_CHANNEL_LCD);
4683 dispc_ovl_enable(dispc, OMAP_DSS_GFX, true);
4684
4685 /* Set up and enable display manager for LCD1 */
4686 dispc_mgr_setup(dispc, OMAP_DSS_CHANNEL_LCD, &i734.mgri);
4687 dispc_calc_clock_rates(dispc, dss_get_dispc_clk_rate(dispc->dss),
4688 &lcd_conf.clock_info);
4689 dispc_mgr_set_lcd_config(dispc, OMAP_DSS_CHANNEL_LCD, &lcd_conf);
4690 dispc_mgr_set_timings(dispc, OMAP_DSS_CHANNEL_LCD, &i734.vm);
4691
4692 dispc_clear_irqstatus(dispc, framedone_irq);
4693
4694 /* Enable and shut the channel to produce just one frame */
4695 dispc_mgr_enable(dispc, OMAP_DSS_CHANNEL_LCD, true);
4696 dispc_mgr_enable(dispc, OMAP_DSS_CHANNEL_LCD, false);
4697
4698 /* Busy wait for framedone. We can't fiddle with irq handlers
4699 * in PM resume. Typically the loop runs less than 5 times and
4700 * waits less than a micro second.
4701 */
4702 count = 0;
4703 while (!(dispc_read_irqstatus(dispc) & framedone_irq)) {
4704 if (count++ > 10000) {
4705 dev_err(&dispc->pdev->dev, "%s: framedone timeout\n",
4706 __func__);
4707 break;
4708 }
4709 }
4710 dispc_ovl_enable(dispc, OMAP_DSS_GFX, false);
4711
4712 /* Clear all irq bits before continuing */
4713 dispc_clear_irqstatus(dispc, 0xffffffff);
4714
4715 /* Restore the original state to LCD1 output gates */
4716 REG_FLD_MOD(dispc, DISPC_CONFIG, gatestate, 8, 4);
4717 }
4718
4719 static const struct dispc_ops dispc_ops = {
4720 .read_irqstatus = dispc_read_irqstatus,
4721 .clear_irqstatus = dispc_clear_irqstatus,
4722 .write_irqenable = dispc_write_irqenable,
4723
4724 .request_irq = dispc_request_irq,
4725 .free_irq = dispc_free_irq,
4726
4727 .runtime_get = dispc_runtime_get,
4728 .runtime_put = dispc_runtime_put,
4729
4730 .get_num_ovls = dispc_get_num_ovls,
4731 .get_num_mgrs = dispc_get_num_mgrs,
4732
4733 .get_memory_bandwidth_limit = dispc_get_memory_bandwidth_limit,
4734
4735 .mgr_enable = dispc_mgr_enable,
4736 .mgr_is_enabled = dispc_mgr_is_enabled,
4737 .mgr_get_vsync_irq = dispc_mgr_get_vsync_irq,
4738 .mgr_get_framedone_irq = dispc_mgr_get_framedone_irq,
4739 .mgr_get_sync_lost_irq = dispc_mgr_get_sync_lost_irq,
4740 .mgr_go_busy = dispc_mgr_go_busy,
4741 .mgr_go = dispc_mgr_go,
4742 .mgr_set_lcd_config = dispc_mgr_set_lcd_config,
4743 .mgr_set_timings = dispc_mgr_set_timings,
4744 .mgr_setup = dispc_mgr_setup,
4745 .mgr_get_supported_outputs = dispc_mgr_get_supported_outputs,
4746 .mgr_gamma_size = dispc_mgr_gamma_size,
4747 .mgr_set_gamma = dispc_mgr_set_gamma,
4748
4749 .ovl_enable = dispc_ovl_enable,
4750 .ovl_setup = dispc_ovl_setup,
4751 .ovl_get_color_modes = dispc_ovl_get_color_modes,
4752
4753 .wb_get_framedone_irq = dispc_wb_get_framedone_irq,
4754 .wb_setup = dispc_wb_setup,
4755 .has_writeback = dispc_has_writeback,
4756 .wb_go_busy = dispc_wb_go_busy,
4757 .wb_go = dispc_wb_go,
4758 };
4759
4760 /* DISPC HW IP initialisation */
4761 static const struct of_device_id dispc_of_match[] = {
4762 { .compatible = "ti,omap2-dispc", .data = &omap24xx_dispc_feats },
4763 { .compatible = "ti,omap3-dispc", .data = &omap36xx_dispc_feats },
4764 { .compatible = "ti,omap4-dispc", .data = &omap44xx_dispc_feats },
4765 { .compatible = "ti,omap5-dispc", .data = &omap54xx_dispc_feats },
4766 { .compatible = "ti,dra7-dispc", .data = &omap54xx_dispc_feats },
4767 {},
4768 };
4769
4770 static const struct soc_device_attribute dispc_soc_devices[] = {
4771 { .machine = "OMAP3[45]*",
4772 .revision = "ES[12].?", .data = &omap34xx_rev1_0_dispc_feats },
4773 { .machine = "OMAP3[45]*", .data = &omap34xx_rev3_0_dispc_feats },
4774 { .machine = "AM35*", .data = &omap34xx_rev3_0_dispc_feats },
4775 { .machine = "AM43*", .data = &am43xx_dispc_feats },
4776 { /* sentinel */ }
4777 };
4778
dispc_bind(struct device * dev,struct device * master,void * data)4779 static int dispc_bind(struct device *dev, struct device *master, void *data)
4780 {
4781 struct platform_device *pdev = to_platform_device(dev);
4782 const struct soc_device_attribute *soc;
4783 struct dss_device *dss = dss_get_device(master);
4784 struct dispc_device *dispc;
4785 u32 rev;
4786 int r = 0;
4787 struct resource *dispc_mem;
4788 struct device_node *np = pdev->dev.of_node;
4789
4790 dispc = kzalloc(sizeof(*dispc), GFP_KERNEL);
4791 if (!dispc)
4792 return -ENOMEM;
4793
4794 dispc->pdev = pdev;
4795 platform_set_drvdata(pdev, dispc);
4796 dispc->dss = dss;
4797
4798 spin_lock_init(&dispc->control_lock);
4799
4800 /*
4801 * The OMAP3-based models can't be told apart using the compatible
4802 * string, use SoC device matching.
4803 */
4804 soc = soc_device_match(dispc_soc_devices);
4805 if (soc)
4806 dispc->feat = soc->data;
4807 else
4808 dispc->feat = of_match_device(dispc_of_match, &pdev->dev)->data;
4809
4810 r = dispc_errata_i734_wa_init(dispc);
4811 if (r)
4812 goto err_free;
4813
4814 dispc_mem = platform_get_resource(dispc->pdev, IORESOURCE_MEM, 0);
4815 dispc->base = devm_ioremap_resource(&pdev->dev, dispc_mem);
4816 if (IS_ERR(dispc->base)) {
4817 r = PTR_ERR(dispc->base);
4818 goto err_free;
4819 }
4820
4821 dispc->irq = platform_get_irq(dispc->pdev, 0);
4822 if (dispc->irq < 0) {
4823 DSSERR("platform_get_irq failed\n");
4824 r = -ENODEV;
4825 goto err_free;
4826 }
4827
4828 if (np && of_property_read_bool(np, "syscon-pol")) {
4829 dispc->syscon_pol = syscon_regmap_lookup_by_phandle(np, "syscon-pol");
4830 if (IS_ERR(dispc->syscon_pol)) {
4831 dev_err(&pdev->dev, "failed to get syscon-pol regmap\n");
4832 r = PTR_ERR(dispc->syscon_pol);
4833 goto err_free;
4834 }
4835
4836 if (of_property_read_u32_index(np, "syscon-pol", 1,
4837 &dispc->syscon_pol_offset)) {
4838 dev_err(&pdev->dev, "failed to get syscon-pol offset\n");
4839 r = -EINVAL;
4840 goto err_free;
4841 }
4842 }
4843
4844 r = dispc_init_gamma_tables(dispc);
4845 if (r)
4846 goto err_free;
4847
4848 pm_runtime_enable(&pdev->dev);
4849
4850 r = dispc_runtime_get(dispc);
4851 if (r)
4852 goto err_runtime_get;
4853
4854 _omap_dispc_initial_config(dispc);
4855
4856 rev = dispc_read_reg(dispc, DISPC_REVISION);
4857 dev_dbg(&pdev->dev, "OMAP DISPC rev %d.%d\n",
4858 FLD_GET(rev, 7, 4), FLD_GET(rev, 3, 0));
4859
4860 dispc_runtime_put(dispc);
4861
4862 dss->dispc = dispc;
4863 dss->dispc_ops = &dispc_ops;
4864
4865 dispc->debugfs = dss_debugfs_create_file(dss, "dispc", dispc_dump_regs,
4866 dispc);
4867
4868 return 0;
4869
4870 err_runtime_get:
4871 pm_runtime_disable(&pdev->dev);
4872 err_free:
4873 kfree(dispc);
4874 return r;
4875 }
4876
dispc_unbind(struct device * dev,struct device * master,void * data)4877 static void dispc_unbind(struct device *dev, struct device *master, void *data)
4878 {
4879 struct dispc_device *dispc = dev_get_drvdata(dev);
4880 struct dss_device *dss = dispc->dss;
4881
4882 dss_debugfs_remove_file(dispc->debugfs);
4883
4884 dss->dispc = NULL;
4885 dss->dispc_ops = NULL;
4886
4887 pm_runtime_disable(dev);
4888
4889 dispc_errata_i734_wa_fini(dispc);
4890
4891 kfree(dispc);
4892 }
4893
4894 static const struct component_ops dispc_component_ops = {
4895 .bind = dispc_bind,
4896 .unbind = dispc_unbind,
4897 };
4898
dispc_probe(struct platform_device * pdev)4899 static int dispc_probe(struct platform_device *pdev)
4900 {
4901 return component_add(&pdev->dev, &dispc_component_ops);
4902 }
4903
dispc_remove(struct platform_device * pdev)4904 static int dispc_remove(struct platform_device *pdev)
4905 {
4906 component_del(&pdev->dev, &dispc_component_ops);
4907 return 0;
4908 }
4909
dispc_runtime_suspend(struct device * dev)4910 static int dispc_runtime_suspend(struct device *dev)
4911 {
4912 struct dispc_device *dispc = dev_get_drvdata(dev);
4913
4914 dispc->is_enabled = false;
4915 /* ensure the dispc_irq_handler sees the is_enabled value */
4916 smp_wmb();
4917 /* wait for current handler to finish before turning the DISPC off */
4918 synchronize_irq(dispc->irq);
4919
4920 dispc_save_context(dispc);
4921
4922 return 0;
4923 }
4924
dispc_runtime_resume(struct device * dev)4925 static int dispc_runtime_resume(struct device *dev)
4926 {
4927 struct dispc_device *dispc = dev_get_drvdata(dev);
4928
4929 /*
4930 * The reset value for load mode is 0 (OMAP_DSS_LOAD_CLUT_AND_FRAME)
4931 * but we always initialize it to 2 (OMAP_DSS_LOAD_FRAME_ONLY) in
4932 * _omap_dispc_initial_config(). We can thus use it to detect if
4933 * we have lost register context.
4934 */
4935 if (REG_GET(dispc, DISPC_CONFIG, 2, 1) != OMAP_DSS_LOAD_FRAME_ONLY) {
4936 _omap_dispc_initial_config(dispc);
4937
4938 dispc_errata_i734_wa(dispc);
4939
4940 dispc_restore_context(dispc);
4941
4942 dispc_restore_gamma_tables(dispc);
4943 }
4944
4945 dispc->is_enabled = true;
4946 /* ensure the dispc_irq_handler sees the is_enabled value */
4947 smp_wmb();
4948
4949 return 0;
4950 }
4951
4952 static const struct dev_pm_ops dispc_pm_ops = {
4953 .runtime_suspend = dispc_runtime_suspend,
4954 .runtime_resume = dispc_runtime_resume,
4955 };
4956
4957 struct platform_driver omap_dispchw_driver = {
4958 .probe = dispc_probe,
4959 .remove = dispc_remove,
4960 .driver = {
4961 .name = "omapdss_dispc",
4962 .pm = &dispc_pm_ops,
4963 .of_match_table = dispc_of_match,
4964 .suppress_bind_attrs = true,
4965 },
4966 };
4967