1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * fs/f2fs/f2fs.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10 
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/vmalloc.h>
22 #include <linux/bio.h>
23 #include <linux/blkdev.h>
24 #include <linux/quotaops.h>
25 #include <linux/part_stat.h>
26 #include <crypto/hash.h>
27 
28 #include <linux/fscrypt.h>
29 #include <linux/fsverity.h>
30 
31 #ifdef CONFIG_F2FS_CHECK_FS
32 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
33 #else
34 #define f2fs_bug_on(sbi, condition)					\
35 	do {								\
36 		if (unlikely(condition)) {				\
37 			WARN_ON(1);					\
38 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
39 		}							\
40 	} while (0)
41 #endif
42 
43 enum {
44 	FAULT_KMALLOC,
45 	FAULT_KVMALLOC,
46 	FAULT_PAGE_ALLOC,
47 	FAULT_PAGE_GET,
48 	FAULT_ALLOC_BIO,
49 	FAULT_ALLOC_NID,
50 	FAULT_ORPHAN,
51 	FAULT_BLOCK,
52 	FAULT_DIR_DEPTH,
53 	FAULT_EVICT_INODE,
54 	FAULT_TRUNCATE,
55 	FAULT_READ_IO,
56 	FAULT_CHECKPOINT,
57 	FAULT_DISCARD,
58 	FAULT_WRITE_IO,
59 	FAULT_MAX,
60 };
61 
62 #ifdef CONFIG_F2FS_FAULT_INJECTION
63 #define F2FS_ALL_FAULT_TYPE		((1 << FAULT_MAX) - 1)
64 
65 struct f2fs_fault_info {
66 	atomic_t inject_ops;
67 	unsigned int inject_rate;
68 	unsigned int inject_type;
69 };
70 
71 extern const char *f2fs_fault_name[FAULT_MAX];
72 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
73 #endif
74 
75 /*
76  * For mount options
77  */
78 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
79 #define F2FS_MOUNT_DISCARD		0x00000004
80 #define F2FS_MOUNT_NOHEAP		0x00000008
81 #define F2FS_MOUNT_XATTR_USER		0x00000010
82 #define F2FS_MOUNT_POSIX_ACL		0x00000020
83 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
84 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
85 #define F2FS_MOUNT_INLINE_DATA		0x00000100
86 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
87 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
88 #define F2FS_MOUNT_NOBARRIER		0x00000800
89 #define F2FS_MOUNT_FASTBOOT		0x00001000
90 #define F2FS_MOUNT_EXTENT_CACHE		0x00002000
91 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
92 #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
93 #define F2FS_MOUNT_USRQUOTA		0x00080000
94 #define F2FS_MOUNT_GRPQUOTA		0x00100000
95 #define F2FS_MOUNT_PRJQUOTA		0x00200000
96 #define F2FS_MOUNT_QUOTA		0x00400000
97 #define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00800000
98 #define F2FS_MOUNT_RESERVE_ROOT		0x01000000
99 #define F2FS_MOUNT_DISABLE_CHECKPOINT	0x02000000
100 #define F2FS_MOUNT_NORECOVERY		0x04000000
101 #define F2FS_MOUNT_ATGC			0x08000000
102 
103 #define F2FS_OPTION(sbi)	((sbi)->mount_opt)
104 #define clear_opt(sbi, option)	(F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
105 #define set_opt(sbi, option)	(F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
106 #define test_opt(sbi, option)	(F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
107 
108 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
109 		typecheck(unsigned long long, b) &&			\
110 		((long long)((a) - (b)) > 0))
111 
112 typedef u32 block_t;	/*
113 			 * should not change u32, since it is the on-disk block
114 			 * address format, __le32.
115 			 */
116 typedef u32 nid_t;
117 
118 #define COMPRESS_EXT_NUM		16
119 
120 struct f2fs_mount_info {
121 	unsigned int opt;
122 	int write_io_size_bits;		/* Write IO size bits */
123 	block_t root_reserved_blocks;	/* root reserved blocks */
124 	kuid_t s_resuid;		/* reserved blocks for uid */
125 	kgid_t s_resgid;		/* reserved blocks for gid */
126 	int active_logs;		/* # of active logs */
127 	int inline_xattr_size;		/* inline xattr size */
128 #ifdef CONFIG_F2FS_FAULT_INJECTION
129 	struct f2fs_fault_info fault_info;	/* For fault injection */
130 #endif
131 #ifdef CONFIG_QUOTA
132 	/* Names of quota files with journalled quota */
133 	char *s_qf_names[MAXQUOTAS];
134 	int s_jquota_fmt;			/* Format of quota to use */
135 #endif
136 	/* For which write hints are passed down to block layer */
137 	int whint_mode;
138 	int alloc_mode;			/* segment allocation policy */
139 	int fsync_mode;			/* fsync policy */
140 	int fs_mode;			/* fs mode: LFS or ADAPTIVE */
141 	int bggc_mode;			/* bggc mode: off, on or sync */
142 	struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */
143 	block_t unusable_cap_perc;	/* percentage for cap */
144 	block_t unusable_cap;		/* Amount of space allowed to be
145 					 * unusable when disabling checkpoint
146 					 */
147 
148 	/* For compression */
149 	unsigned char compress_algorithm;	/* algorithm type */
150 	unsigned compress_log_size;		/* cluster log size */
151 	unsigned char compress_ext_cnt;		/* extension count */
152 	unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN];	/* extensions */
153 };
154 
155 #define F2FS_FEATURE_ENCRYPT		0x0001
156 #define F2FS_FEATURE_BLKZONED		0x0002
157 #define F2FS_FEATURE_ATOMIC_WRITE	0x0004
158 #define F2FS_FEATURE_EXTRA_ATTR		0x0008
159 #define F2FS_FEATURE_PRJQUOTA		0x0010
160 #define F2FS_FEATURE_INODE_CHKSUM	0x0020
161 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x0040
162 #define F2FS_FEATURE_QUOTA_INO		0x0080
163 #define F2FS_FEATURE_INODE_CRTIME	0x0100
164 #define F2FS_FEATURE_LOST_FOUND		0x0200
165 #define F2FS_FEATURE_VERITY		0x0400
166 #define F2FS_FEATURE_SB_CHKSUM		0x0800
167 #define F2FS_FEATURE_CASEFOLD		0x1000
168 #define F2FS_FEATURE_COMPRESSION	0x2000
169 
170 #define __F2FS_HAS_FEATURE(raw_super, mask)				\
171 	((raw_super->feature & cpu_to_le32(mask)) != 0)
172 #define F2FS_HAS_FEATURE(sbi, mask)	__F2FS_HAS_FEATURE(sbi->raw_super, mask)
173 #define F2FS_SET_FEATURE(sbi, mask)					\
174 	(sbi->raw_super->feature |= cpu_to_le32(mask))
175 #define F2FS_CLEAR_FEATURE(sbi, mask)					\
176 	(sbi->raw_super->feature &= ~cpu_to_le32(mask))
177 
178 /*
179  * Default values for user and/or group using reserved blocks
180  */
181 #define	F2FS_DEF_RESUID		0
182 #define	F2FS_DEF_RESGID		0
183 
184 /*
185  * For checkpoint manager
186  */
187 enum {
188 	NAT_BITMAP,
189 	SIT_BITMAP
190 };
191 
192 #define	CP_UMOUNT	0x00000001
193 #define	CP_FASTBOOT	0x00000002
194 #define	CP_SYNC		0x00000004
195 #define	CP_RECOVERY	0x00000008
196 #define	CP_DISCARD	0x00000010
197 #define CP_TRIMMED	0x00000020
198 #define CP_PAUSE	0x00000040
199 #define CP_RESIZE 	0x00000080
200 
201 #define MAX_DISCARD_BLOCKS(sbi)		BLKS_PER_SEC(sbi)
202 #define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
203 #define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
204 #define DEF_MID_DISCARD_ISSUE_TIME	500	/* 500 ms, if device busy */
205 #define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
206 #define DEF_DISCARD_URGENT_UTIL		80	/* do more discard over 80% */
207 #define DEF_CP_INTERVAL			60	/* 60 secs */
208 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
209 #define DEF_DISABLE_INTERVAL		5	/* 5 secs */
210 #define DEF_DISABLE_QUICK_INTERVAL	1	/* 1 secs */
211 #define DEF_UMOUNT_DISCARD_TIMEOUT	5	/* 5 secs */
212 
213 struct cp_control {
214 	int reason;
215 	__u64 trim_start;
216 	__u64 trim_end;
217 	__u64 trim_minlen;
218 };
219 
220 /*
221  * indicate meta/data type
222  */
223 enum {
224 	META_CP,
225 	META_NAT,
226 	META_SIT,
227 	META_SSA,
228 	META_MAX,
229 	META_POR,
230 	DATA_GENERIC,		/* check range only */
231 	DATA_GENERIC_ENHANCE,	/* strong check on range and segment bitmap */
232 	DATA_GENERIC_ENHANCE_READ,	/*
233 					 * strong check on range and segment
234 					 * bitmap but no warning due to race
235 					 * condition of read on truncated area
236 					 * by extent_cache
237 					 */
238 	META_GENERIC,
239 };
240 
241 /* for the list of ino */
242 enum {
243 	ORPHAN_INO,		/* for orphan ino list */
244 	APPEND_INO,		/* for append ino list */
245 	UPDATE_INO,		/* for update ino list */
246 	TRANS_DIR_INO,		/* for trasactions dir ino list */
247 	FLUSH_INO,		/* for multiple device flushing */
248 	MAX_INO_ENTRY,		/* max. list */
249 };
250 
251 struct ino_entry {
252 	struct list_head list;		/* list head */
253 	nid_t ino;			/* inode number */
254 	unsigned int dirty_device;	/* dirty device bitmap */
255 };
256 
257 /* for the list of inodes to be GCed */
258 struct inode_entry {
259 	struct list_head list;	/* list head */
260 	struct inode *inode;	/* vfs inode pointer */
261 };
262 
263 struct fsync_node_entry {
264 	struct list_head list;	/* list head */
265 	struct page *page;	/* warm node page pointer */
266 	unsigned int seq_id;	/* sequence id */
267 };
268 
269 /* for the bitmap indicate blocks to be discarded */
270 struct discard_entry {
271 	struct list_head list;	/* list head */
272 	block_t start_blkaddr;	/* start blockaddr of current segment */
273 	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
274 };
275 
276 /* default discard granularity of inner discard thread, unit: block count */
277 #define DEFAULT_DISCARD_GRANULARITY		16
278 
279 /* max discard pend list number */
280 #define MAX_PLIST_NUM		512
281 #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
282 					(MAX_PLIST_NUM - 1) : ((blk_num) - 1))
283 
284 enum {
285 	D_PREP,			/* initial */
286 	D_PARTIAL,		/* partially submitted */
287 	D_SUBMIT,		/* all submitted */
288 	D_DONE,			/* finished */
289 };
290 
291 struct discard_info {
292 	block_t lstart;			/* logical start address */
293 	block_t len;			/* length */
294 	block_t start;			/* actual start address in dev */
295 };
296 
297 struct discard_cmd {
298 	struct rb_node rb_node;		/* rb node located in rb-tree */
299 	union {
300 		struct {
301 			block_t lstart;	/* logical start address */
302 			block_t len;	/* length */
303 			block_t start;	/* actual start address in dev */
304 		};
305 		struct discard_info di;	/* discard info */
306 
307 	};
308 	struct list_head list;		/* command list */
309 	struct completion wait;		/* compleation */
310 	struct block_device *bdev;	/* bdev */
311 	unsigned short ref;		/* reference count */
312 	unsigned char state;		/* state */
313 	unsigned char queued;		/* queued discard */
314 	int error;			/* bio error */
315 	spinlock_t lock;		/* for state/bio_ref updating */
316 	unsigned short bio_ref;		/* bio reference count */
317 };
318 
319 enum {
320 	DPOLICY_BG,
321 	DPOLICY_FORCE,
322 	DPOLICY_FSTRIM,
323 	DPOLICY_UMOUNT,
324 	MAX_DPOLICY,
325 };
326 
327 struct discard_policy {
328 	int type;			/* type of discard */
329 	unsigned int min_interval;	/* used for candidates exist */
330 	unsigned int mid_interval;	/* used for device busy */
331 	unsigned int max_interval;	/* used for candidates not exist */
332 	unsigned int max_requests;	/* # of discards issued per round */
333 	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
334 	bool io_aware;			/* issue discard in idle time */
335 	bool sync;			/* submit discard with REQ_SYNC flag */
336 	bool ordered;			/* issue discard by lba order */
337 	bool timeout;			/* discard timeout for put_super */
338 	unsigned int granularity;	/* discard granularity */
339 };
340 
341 struct discard_cmd_control {
342 	struct task_struct *f2fs_issue_discard;	/* discard thread */
343 	struct list_head entry_list;		/* 4KB discard entry list */
344 	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
345 	struct list_head wait_list;		/* store on-flushing entries */
346 	struct list_head fstrim_list;		/* in-flight discard from fstrim */
347 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
348 	unsigned int discard_wake;		/* to wake up discard thread */
349 	struct mutex cmd_lock;
350 	unsigned int nr_discards;		/* # of discards in the list */
351 	unsigned int max_discards;		/* max. discards to be issued */
352 	unsigned int discard_granularity;	/* discard granularity */
353 	unsigned int undiscard_blks;		/* # of undiscard blocks */
354 	unsigned int next_pos;			/* next discard position */
355 	atomic_t issued_discard;		/* # of issued discard */
356 	atomic_t queued_discard;		/* # of queued discard */
357 	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
358 	struct rb_root_cached root;		/* root of discard rb-tree */
359 	bool rbtree_check;			/* config for consistence check */
360 };
361 
362 /* for the list of fsync inodes, used only during recovery */
363 struct fsync_inode_entry {
364 	struct list_head list;	/* list head */
365 	struct inode *inode;	/* vfs inode pointer */
366 	block_t blkaddr;	/* block address locating the last fsync */
367 	block_t last_dentry;	/* block address locating the last dentry */
368 };
369 
370 #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
371 #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
372 
373 #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
374 #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
375 #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
376 #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
377 
378 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
379 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
380 
update_nats_in_cursum(struct f2fs_journal * journal,int i)381 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
382 {
383 	int before = nats_in_cursum(journal);
384 
385 	journal->n_nats = cpu_to_le16(before + i);
386 	return before;
387 }
388 
update_sits_in_cursum(struct f2fs_journal * journal,int i)389 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
390 {
391 	int before = sits_in_cursum(journal);
392 
393 	journal->n_sits = cpu_to_le16(before + i);
394 	return before;
395 }
396 
__has_cursum_space(struct f2fs_journal * journal,int size,int type)397 static inline bool __has_cursum_space(struct f2fs_journal *journal,
398 							int size, int type)
399 {
400 	if (type == NAT_JOURNAL)
401 		return size <= MAX_NAT_JENTRIES(journal);
402 	return size <= MAX_SIT_JENTRIES(journal);
403 }
404 
405 /*
406  * f2fs-specific ioctl commands
407  */
408 #define F2FS_IOCTL_MAGIC		0xf5
409 #define F2FS_IOC_START_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 1)
410 #define F2FS_IOC_COMMIT_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 2)
411 #define F2FS_IOC_START_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 3)
412 #define F2FS_IOC_RELEASE_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 4)
413 #define F2FS_IOC_ABORT_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 5)
414 #define F2FS_IOC_GARBAGE_COLLECT	_IOW(F2FS_IOCTL_MAGIC, 6, __u32)
415 #define F2FS_IOC_WRITE_CHECKPOINT	_IO(F2FS_IOCTL_MAGIC, 7)
416 #define F2FS_IOC_DEFRAGMENT		_IOWR(F2FS_IOCTL_MAGIC, 8,	\
417 						struct f2fs_defragment)
418 #define F2FS_IOC_MOVE_RANGE		_IOWR(F2FS_IOCTL_MAGIC, 9,	\
419 						struct f2fs_move_range)
420 #define F2FS_IOC_FLUSH_DEVICE		_IOW(F2FS_IOCTL_MAGIC, 10,	\
421 						struct f2fs_flush_device)
422 #define F2FS_IOC_GARBAGE_COLLECT_RANGE	_IOW(F2FS_IOCTL_MAGIC, 11,	\
423 						struct f2fs_gc_range)
424 #define F2FS_IOC_GET_FEATURES		_IOR(F2FS_IOCTL_MAGIC, 12, __u32)
425 #define F2FS_IOC_SET_PIN_FILE		_IOW(F2FS_IOCTL_MAGIC, 13, __u32)
426 #define F2FS_IOC_GET_PIN_FILE		_IOR(F2FS_IOCTL_MAGIC, 14, __u32)
427 #define F2FS_IOC_PRECACHE_EXTENTS	_IO(F2FS_IOCTL_MAGIC, 15)
428 #define F2FS_IOC_RESIZE_FS		_IOW(F2FS_IOCTL_MAGIC, 16, __u64)
429 #define F2FS_IOC_GET_COMPRESS_BLOCKS	_IOR(F2FS_IOCTL_MAGIC, 17, __u64)
430 #define F2FS_IOC_RELEASE_COMPRESS_BLOCKS				\
431 					_IOR(F2FS_IOCTL_MAGIC, 18, __u64)
432 #define F2FS_IOC_RESERVE_COMPRESS_BLOCKS				\
433 					_IOR(F2FS_IOCTL_MAGIC, 19, __u64)
434 #define F2FS_IOC_SEC_TRIM_FILE		_IOW(F2FS_IOCTL_MAGIC, 20,	\
435 						struct f2fs_sectrim_range)
436 
437 /*
438  * should be same as XFS_IOC_GOINGDOWN.
439  * Flags for going down operation used by FS_IOC_GOINGDOWN
440  */
441 #define F2FS_IOC_SHUTDOWN	_IOR('X', 125, __u32)	/* Shutdown */
442 #define F2FS_GOING_DOWN_FULLSYNC	0x0	/* going down with full sync */
443 #define F2FS_GOING_DOWN_METASYNC	0x1	/* going down with metadata */
444 #define F2FS_GOING_DOWN_NOSYNC		0x2	/* going down */
445 #define F2FS_GOING_DOWN_METAFLUSH	0x3	/* going down with meta flush */
446 #define F2FS_GOING_DOWN_NEED_FSCK	0x4	/* going down to trigger fsck */
447 
448 /*
449  * Flags used by F2FS_IOC_SEC_TRIM_FILE
450  */
451 #define F2FS_TRIM_FILE_DISCARD		0x1	/* send discard command */
452 #define F2FS_TRIM_FILE_ZEROOUT		0x2	/* zero out */
453 #define F2FS_TRIM_FILE_MASK		0x3
454 
455 struct f2fs_gc_range {
456 	u32 sync;
457 	u64 start;
458 	u64 len;
459 };
460 
461 struct f2fs_defragment {
462 	u64 start;
463 	u64 len;
464 };
465 
466 struct f2fs_move_range {
467 	u32 dst_fd;		/* destination fd */
468 	u64 pos_in;		/* start position in src_fd */
469 	u64 pos_out;		/* start position in dst_fd */
470 	u64 len;		/* size to move */
471 };
472 
473 struct f2fs_flush_device {
474 	u32 dev_num;		/* device number to flush */
475 	u32 segments;		/* # of segments to flush */
476 };
477 
478 struct f2fs_sectrim_range {
479 	u64 start;
480 	u64 len;
481 	u64 flags;
482 };
483 
484 /* for inline stuff */
485 #define DEF_INLINE_RESERVED_SIZE	1
486 static inline int get_extra_isize(struct inode *inode);
487 static inline int get_inline_xattr_addrs(struct inode *inode);
488 #define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
489 				(CUR_ADDRS_PER_INODE(inode) -		\
490 				get_inline_xattr_addrs(inode) -	\
491 				DEF_INLINE_RESERVED_SIZE))
492 
493 /* for inline dir */
494 #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
495 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
496 				BITS_PER_BYTE + 1))
497 #define INLINE_DENTRY_BITMAP_SIZE(inode) \
498 	DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
499 #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
500 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
501 				NR_INLINE_DENTRY(inode) + \
502 				INLINE_DENTRY_BITMAP_SIZE(inode)))
503 
504 /*
505  * For INODE and NODE manager
506  */
507 /* for directory operations */
508 
509 struct f2fs_filename {
510 	/*
511 	 * The filename the user specified.  This is NULL for some
512 	 * filesystem-internal operations, e.g. converting an inline directory
513 	 * to a non-inline one, or roll-forward recovering an encrypted dentry.
514 	 */
515 	const struct qstr *usr_fname;
516 
517 	/*
518 	 * The on-disk filename.  For encrypted directories, this is encrypted.
519 	 * This may be NULL for lookups in an encrypted dir without the key.
520 	 */
521 	struct fscrypt_str disk_name;
522 
523 	/* The dirhash of this filename */
524 	f2fs_hash_t hash;
525 
526 #ifdef CONFIG_FS_ENCRYPTION
527 	/*
528 	 * For lookups in encrypted directories: either the buffer backing
529 	 * disk_name, or a buffer that holds the decoded no-key name.
530 	 */
531 	struct fscrypt_str crypto_buf;
532 #endif
533 #ifdef CONFIG_UNICODE
534 	/*
535 	 * For casefolded directories: the casefolded name, but it's left NULL
536 	 * if the original name is not valid Unicode or if the filesystem is
537 	 * doing an internal operation where usr_fname is also NULL.  In these
538 	 * cases we fall back to treating the name as an opaque byte sequence.
539 	 */
540 	struct fscrypt_str cf_name;
541 #endif
542 };
543 
544 struct f2fs_dentry_ptr {
545 	struct inode *inode;
546 	void *bitmap;
547 	struct f2fs_dir_entry *dentry;
548 	__u8 (*filename)[F2FS_SLOT_LEN];
549 	int max;
550 	int nr_bitmap;
551 };
552 
make_dentry_ptr_block(struct inode * inode,struct f2fs_dentry_ptr * d,struct f2fs_dentry_block * t)553 static inline void make_dentry_ptr_block(struct inode *inode,
554 		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
555 {
556 	d->inode = inode;
557 	d->max = NR_DENTRY_IN_BLOCK;
558 	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
559 	d->bitmap = t->dentry_bitmap;
560 	d->dentry = t->dentry;
561 	d->filename = t->filename;
562 }
563 
make_dentry_ptr_inline(struct inode * inode,struct f2fs_dentry_ptr * d,void * t)564 static inline void make_dentry_ptr_inline(struct inode *inode,
565 					struct f2fs_dentry_ptr *d, void *t)
566 {
567 	int entry_cnt = NR_INLINE_DENTRY(inode);
568 	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
569 	int reserved_size = INLINE_RESERVED_SIZE(inode);
570 
571 	d->inode = inode;
572 	d->max = entry_cnt;
573 	d->nr_bitmap = bitmap_size;
574 	d->bitmap = t;
575 	d->dentry = t + bitmap_size + reserved_size;
576 	d->filename = t + bitmap_size + reserved_size +
577 					SIZE_OF_DIR_ENTRY * entry_cnt;
578 }
579 
580 /*
581  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
582  * as its node offset to distinguish from index node blocks.
583  * But some bits are used to mark the node block.
584  */
585 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
586 				>> OFFSET_BIT_SHIFT)
587 enum {
588 	ALLOC_NODE,			/* allocate a new node page if needed */
589 	LOOKUP_NODE,			/* look up a node without readahead */
590 	LOOKUP_NODE_RA,			/*
591 					 * look up a node with readahead called
592 					 * by get_data_block.
593 					 */
594 };
595 
596 #define DEFAULT_RETRY_IO_COUNT	8	/* maximum retry read IO count */
597 
598 /* congestion wait timeout value, default: 20ms */
599 #define	DEFAULT_IO_TIMEOUT	(msecs_to_jiffies(20))
600 
601 /* maximum retry quota flush count */
602 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT		8
603 
604 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
605 
606 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
607 
608 /* for in-memory extent cache entry */
609 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
610 
611 /* number of extent info in extent cache we try to shrink */
612 #define EXTENT_CACHE_SHRINK_NUMBER	128
613 
614 struct rb_entry {
615 	struct rb_node rb_node;		/* rb node located in rb-tree */
616 	union {
617 		struct {
618 			unsigned int ofs;	/* start offset of the entry */
619 			unsigned int len;	/* length of the entry */
620 		};
621 		unsigned long long key;		/* 64-bits key */
622 	} __packed;
623 };
624 
625 struct extent_info {
626 	unsigned int fofs;		/* start offset in a file */
627 	unsigned int len;		/* length of the extent */
628 	u32 blk;			/* start block address of the extent */
629 };
630 
631 struct extent_node {
632 	struct rb_node rb_node;		/* rb node located in rb-tree */
633 	struct extent_info ei;		/* extent info */
634 	struct list_head list;		/* node in global extent list of sbi */
635 	struct extent_tree *et;		/* extent tree pointer */
636 };
637 
638 struct extent_tree {
639 	nid_t ino;			/* inode number */
640 	struct rb_root_cached root;	/* root of extent info rb-tree */
641 	struct extent_node *cached_en;	/* recently accessed extent node */
642 	struct extent_info largest;	/* largested extent info */
643 	struct list_head list;		/* to be used by sbi->zombie_list */
644 	rwlock_t lock;			/* protect extent info rb-tree */
645 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
646 	bool largest_updated;		/* largest extent updated */
647 };
648 
649 /*
650  * This structure is taken from ext4_map_blocks.
651  *
652  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
653  */
654 #define F2FS_MAP_NEW		(1 << BH_New)
655 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
656 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
657 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
658 				F2FS_MAP_UNWRITTEN)
659 
660 struct f2fs_map_blocks {
661 	block_t m_pblk;
662 	block_t m_lblk;
663 	unsigned int m_len;
664 	unsigned int m_flags;
665 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
666 	pgoff_t *m_next_extent;		/* point to next possible extent */
667 	int m_seg_type;
668 	bool m_may_create;		/* indicate it is from write path */
669 };
670 
671 /* for flag in get_data_block */
672 enum {
673 	F2FS_GET_BLOCK_DEFAULT,
674 	F2FS_GET_BLOCK_FIEMAP,
675 	F2FS_GET_BLOCK_BMAP,
676 	F2FS_GET_BLOCK_DIO,
677 	F2FS_GET_BLOCK_PRE_DIO,
678 	F2FS_GET_BLOCK_PRE_AIO,
679 	F2FS_GET_BLOCK_PRECACHE,
680 };
681 
682 /*
683  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
684  */
685 #define FADVISE_COLD_BIT	0x01
686 #define FADVISE_LOST_PINO_BIT	0x02
687 #define FADVISE_ENCRYPT_BIT	0x04
688 #define FADVISE_ENC_NAME_BIT	0x08
689 #define FADVISE_KEEP_SIZE_BIT	0x10
690 #define FADVISE_HOT_BIT		0x20
691 #define FADVISE_VERITY_BIT	0x40
692 
693 #define FADVISE_MODIFIABLE_BITS	(FADVISE_COLD_BIT | FADVISE_HOT_BIT)
694 
695 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
696 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
697 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
698 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
699 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
700 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
701 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
702 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
703 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
704 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
705 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
706 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
707 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
708 #define file_is_hot(inode)	is_file(inode, FADVISE_HOT_BIT)
709 #define file_set_hot(inode)	set_file(inode, FADVISE_HOT_BIT)
710 #define file_clear_hot(inode)	clear_file(inode, FADVISE_HOT_BIT)
711 #define file_is_verity(inode)	is_file(inode, FADVISE_VERITY_BIT)
712 #define file_set_verity(inode)	set_file(inode, FADVISE_VERITY_BIT)
713 
714 #define DEF_DIR_LEVEL		0
715 
716 enum {
717 	GC_FAILURE_PIN,
718 	GC_FAILURE_ATOMIC,
719 	MAX_GC_FAILURE
720 };
721 
722 /* used for f2fs_inode_info->flags */
723 enum {
724 	FI_NEW_INODE,		/* indicate newly allocated inode */
725 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
726 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
727 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
728 	FI_INC_LINK,		/* need to increment i_nlink */
729 	FI_ACL_MODE,		/* indicate acl mode */
730 	FI_NO_ALLOC,		/* should not allocate any blocks */
731 	FI_FREE_NID,		/* free allocated nide */
732 	FI_NO_EXTENT,		/* not to use the extent cache */
733 	FI_INLINE_XATTR,	/* used for inline xattr */
734 	FI_INLINE_DATA,		/* used for inline data*/
735 	FI_INLINE_DENTRY,	/* used for inline dentry */
736 	FI_APPEND_WRITE,	/* inode has appended data */
737 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
738 	FI_NEED_IPU,		/* used for ipu per file */
739 	FI_ATOMIC_FILE,		/* indicate atomic file */
740 	FI_ATOMIC_COMMIT,	/* indicate the state of atomical committing */
741 	FI_VOLATILE_FILE,	/* indicate volatile file */
742 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
743 	FI_DROP_CACHE,		/* drop dirty page cache */
744 	FI_DATA_EXIST,		/* indicate data exists */
745 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
746 	FI_DO_DEFRAG,		/* indicate defragment is running */
747 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
748 	FI_NO_PREALLOC,		/* indicate skipped preallocated blocks */
749 	FI_HOT_DATA,		/* indicate file is hot */
750 	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
751 	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
752 	FI_PIN_FILE,		/* indicate file should not be gced */
753 	FI_ATOMIC_REVOKE_REQUEST, /* request to drop atomic data */
754 	FI_VERITY_IN_PROGRESS,	/* building fs-verity Merkle tree */
755 	FI_COMPRESSED_FILE,	/* indicate file's data can be compressed */
756 	FI_MMAP_FILE,		/* indicate file was mmapped */
757 	FI_MAX,			/* max flag, never be used */
758 };
759 
760 struct f2fs_inode_info {
761 	struct inode vfs_inode;		/* serve a vfs inode */
762 	unsigned long i_flags;		/* keep an inode flags for ioctl */
763 	unsigned char i_advise;		/* use to give file attribute hints */
764 	unsigned char i_dir_level;	/* use for dentry level for large dir */
765 	unsigned int i_current_depth;	/* only for directory depth */
766 	/* for gc failure statistic */
767 	unsigned int i_gc_failures[MAX_GC_FAILURE];
768 	unsigned int i_pino;		/* parent inode number */
769 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
770 
771 	/* Use below internally in f2fs*/
772 	unsigned long flags[BITS_TO_LONGS(FI_MAX)];	/* use to pass per-file flags */
773 	struct rw_semaphore i_sem;	/* protect fi info */
774 	atomic_t dirty_pages;		/* # of dirty pages */
775 	f2fs_hash_t chash;		/* hash value of given file name */
776 	unsigned int clevel;		/* maximum level of given file name */
777 	struct task_struct *task;	/* lookup and create consistency */
778 	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
779 	nid_t i_xattr_nid;		/* node id that contains xattrs */
780 	loff_t	last_disk_size;		/* lastly written file size */
781 	spinlock_t i_size_lock;		/* protect last_disk_size */
782 
783 #ifdef CONFIG_QUOTA
784 	struct dquot *i_dquot[MAXQUOTAS];
785 
786 	/* quota space reservation, managed internally by quota code */
787 	qsize_t i_reserved_quota;
788 #endif
789 	struct list_head dirty_list;	/* dirty list for dirs and files */
790 	struct list_head gdirty_list;	/* linked in global dirty list */
791 	struct list_head inmem_ilist;	/* list for inmem inodes */
792 	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
793 	struct task_struct *inmem_task;	/* store inmemory task */
794 	struct mutex inmem_lock;	/* lock for inmemory pages */
795 	pgoff_t ra_offset;		/* ongoing readahead offset */
796 	struct extent_tree *extent_tree;	/* cached extent_tree entry */
797 
798 	/* avoid racing between foreground op and gc */
799 	struct rw_semaphore i_gc_rwsem[2];
800 	struct rw_semaphore i_mmap_sem;
801 	struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
802 
803 	int i_extra_isize;		/* size of extra space located in i_addr */
804 	kprojid_t i_projid;		/* id for project quota */
805 	int i_inline_xattr_size;	/* inline xattr size */
806 	struct timespec64 i_crtime;	/* inode creation time */
807 	struct timespec64 i_disk_time[4];/* inode disk times */
808 
809 	/* for file compress */
810 	atomic_t i_compr_blocks;		/* # of compressed blocks */
811 	unsigned char i_compress_algorithm;	/* algorithm type */
812 	unsigned char i_log_cluster_size;	/* log of cluster size */
813 	unsigned int i_cluster_size;		/* cluster size */
814 };
815 
get_extent_info(struct extent_info * ext,struct f2fs_extent * i_ext)816 static inline void get_extent_info(struct extent_info *ext,
817 					struct f2fs_extent *i_ext)
818 {
819 	ext->fofs = le32_to_cpu(i_ext->fofs);
820 	ext->blk = le32_to_cpu(i_ext->blk);
821 	ext->len = le32_to_cpu(i_ext->len);
822 }
823 
set_raw_extent(struct extent_info * ext,struct f2fs_extent * i_ext)824 static inline void set_raw_extent(struct extent_info *ext,
825 					struct f2fs_extent *i_ext)
826 {
827 	i_ext->fofs = cpu_to_le32(ext->fofs);
828 	i_ext->blk = cpu_to_le32(ext->blk);
829 	i_ext->len = cpu_to_le32(ext->len);
830 }
831 
set_extent_info(struct extent_info * ei,unsigned int fofs,u32 blk,unsigned int len)832 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
833 						u32 blk, unsigned int len)
834 {
835 	ei->fofs = fofs;
836 	ei->blk = blk;
837 	ei->len = len;
838 }
839 
__is_discard_mergeable(struct discard_info * back,struct discard_info * front,unsigned int max_len)840 static inline bool __is_discard_mergeable(struct discard_info *back,
841 			struct discard_info *front, unsigned int max_len)
842 {
843 	return (back->lstart + back->len == front->lstart) &&
844 		(back->len + front->len <= max_len);
845 }
846 
__is_discard_back_mergeable(struct discard_info * cur,struct discard_info * back,unsigned int max_len)847 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
848 			struct discard_info *back, unsigned int max_len)
849 {
850 	return __is_discard_mergeable(back, cur, max_len);
851 }
852 
__is_discard_front_mergeable(struct discard_info * cur,struct discard_info * front,unsigned int max_len)853 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
854 			struct discard_info *front, unsigned int max_len)
855 {
856 	return __is_discard_mergeable(cur, front, max_len);
857 }
858 
__is_extent_mergeable(struct extent_info * back,struct extent_info * front)859 static inline bool __is_extent_mergeable(struct extent_info *back,
860 						struct extent_info *front)
861 {
862 	return (back->fofs + back->len == front->fofs &&
863 			back->blk + back->len == front->blk);
864 }
865 
__is_back_mergeable(struct extent_info * cur,struct extent_info * back)866 static inline bool __is_back_mergeable(struct extent_info *cur,
867 						struct extent_info *back)
868 {
869 	return __is_extent_mergeable(back, cur);
870 }
871 
__is_front_mergeable(struct extent_info * cur,struct extent_info * front)872 static inline bool __is_front_mergeable(struct extent_info *cur,
873 						struct extent_info *front)
874 {
875 	return __is_extent_mergeable(cur, front);
876 }
877 
878 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
__try_update_largest_extent(struct extent_tree * et,struct extent_node * en)879 static inline void __try_update_largest_extent(struct extent_tree *et,
880 						struct extent_node *en)
881 {
882 	if (en->ei.len > et->largest.len) {
883 		et->largest = en->ei;
884 		et->largest_updated = true;
885 	}
886 }
887 
888 /*
889  * For free nid management
890  */
891 enum nid_state {
892 	FREE_NID,		/* newly added to free nid list */
893 	PREALLOC_NID,		/* it is preallocated */
894 	MAX_NID_STATE,
895 };
896 
897 struct f2fs_nm_info {
898 	block_t nat_blkaddr;		/* base disk address of NAT */
899 	nid_t max_nid;			/* maximum possible node ids */
900 	nid_t available_nids;		/* # of available node ids */
901 	nid_t next_scan_nid;		/* the next nid to be scanned */
902 	unsigned int ram_thresh;	/* control the memory footprint */
903 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
904 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
905 
906 	/* NAT cache management */
907 	struct radix_tree_root nat_root;/* root of the nat entry cache */
908 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
909 	struct rw_semaphore nat_tree_lock;	/* protect nat_tree_lock */
910 	struct list_head nat_entries;	/* cached nat entry list (clean) */
911 	spinlock_t nat_list_lock;	/* protect clean nat entry list */
912 	unsigned int nat_cnt;		/* the # of cached nat entries */
913 	unsigned int dirty_nat_cnt;	/* total num of nat entries in set */
914 	unsigned int nat_blocks;	/* # of nat blocks */
915 
916 	/* free node ids management */
917 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
918 	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
919 	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
920 	spinlock_t nid_list_lock;	/* protect nid lists ops */
921 	struct mutex build_lock;	/* lock for build free nids */
922 	unsigned char **free_nid_bitmap;
923 	unsigned char *nat_block_bitmap;
924 	unsigned short *free_nid_count;	/* free nid count of NAT block */
925 
926 	/* for checkpoint */
927 	char *nat_bitmap;		/* NAT bitmap pointer */
928 
929 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
930 	unsigned char *nat_bits;	/* NAT bits blocks */
931 	unsigned char *full_nat_bits;	/* full NAT pages */
932 	unsigned char *empty_nat_bits;	/* empty NAT pages */
933 #ifdef CONFIG_F2FS_CHECK_FS
934 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
935 #endif
936 	int bitmap_size;		/* bitmap size */
937 };
938 
939 /*
940  * this structure is used as one of function parameters.
941  * all the information are dedicated to a given direct node block determined
942  * by the data offset in a file.
943  */
944 struct dnode_of_data {
945 	struct inode *inode;		/* vfs inode pointer */
946 	struct page *inode_page;	/* its inode page, NULL is possible */
947 	struct page *node_page;		/* cached direct node page */
948 	nid_t nid;			/* node id of the direct node block */
949 	unsigned int ofs_in_node;	/* data offset in the node page */
950 	bool inode_page_locked;		/* inode page is locked or not */
951 	bool node_changed;		/* is node block changed */
952 	char cur_level;			/* level of hole node page */
953 	char max_level;			/* level of current page located */
954 	block_t	data_blkaddr;		/* block address of the node block */
955 };
956 
set_new_dnode(struct dnode_of_data * dn,struct inode * inode,struct page * ipage,struct page * npage,nid_t nid)957 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
958 		struct page *ipage, struct page *npage, nid_t nid)
959 {
960 	memset(dn, 0, sizeof(*dn));
961 	dn->inode = inode;
962 	dn->inode_page = ipage;
963 	dn->node_page = npage;
964 	dn->nid = nid;
965 }
966 
967 /*
968  * For SIT manager
969  *
970  * By default, there are 6 active log areas across the whole main area.
971  * When considering hot and cold data separation to reduce cleaning overhead,
972  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
973  * respectively.
974  * In the current design, you should not change the numbers intentionally.
975  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
976  * logs individually according to the underlying devices. (default: 6)
977  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
978  * data and 8 for node logs.
979  */
980 #define	NR_CURSEG_DATA_TYPE	(3)
981 #define NR_CURSEG_NODE_TYPE	(3)
982 #define NR_CURSEG_INMEM_TYPE	(2)
983 #define NR_CURSEG_PERSIST_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
984 #define NR_CURSEG_TYPE		(NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE)
985 
986 enum {
987 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
988 	CURSEG_WARM_DATA,	/* data blocks */
989 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
990 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
991 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
992 	CURSEG_COLD_NODE,	/* indirect node blocks */
993 	NR_PERSISTENT_LOG,	/* number of persistent log */
994 	CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG,
995 				/* pinned file that needs consecutive block address */
996 	CURSEG_ALL_DATA_ATGC,	/* SSR alloctor in hot/warm/cold data area */
997 	NO_CHECK_TYPE,		/* number of persistent & inmem log */
998 };
999 
1000 struct flush_cmd {
1001 	struct completion wait;
1002 	struct llist_node llnode;
1003 	nid_t ino;
1004 	int ret;
1005 };
1006 
1007 struct flush_cmd_control {
1008 	struct task_struct *f2fs_issue_flush;	/* flush thread */
1009 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
1010 	atomic_t issued_flush;			/* # of issued flushes */
1011 	atomic_t queued_flush;			/* # of queued flushes */
1012 	struct llist_head issue_list;		/* list for command issue */
1013 	struct llist_node *dispatch_list;	/* list for command dispatch */
1014 };
1015 
1016 struct f2fs_sm_info {
1017 	struct sit_info *sit_info;		/* whole segment information */
1018 	struct free_segmap_info *free_info;	/* free segment information */
1019 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
1020 	struct curseg_info *curseg_array;	/* active segment information */
1021 
1022 	struct rw_semaphore curseg_lock;	/* for preventing curseg change */
1023 
1024 	block_t seg0_blkaddr;		/* block address of 0'th segment */
1025 	block_t main_blkaddr;		/* start block address of main area */
1026 	block_t ssa_blkaddr;		/* start block address of SSA area */
1027 
1028 	unsigned int segment_count;	/* total # of segments */
1029 	unsigned int main_segments;	/* # of segments in main area */
1030 	unsigned int reserved_segments;	/* # of reserved segments */
1031 	unsigned int ovp_segments;	/* # of overprovision segments */
1032 
1033 	/* a threshold to reclaim prefree segments */
1034 	unsigned int rec_prefree_segments;
1035 
1036 	/* for batched trimming */
1037 	unsigned int trim_sections;		/* # of sections to trim */
1038 
1039 	struct list_head sit_entry_set;	/* sit entry set list */
1040 
1041 	unsigned int ipu_policy;	/* in-place-update policy */
1042 	unsigned int min_ipu_util;	/* in-place-update threshold */
1043 	unsigned int min_fsync_blocks;	/* threshold for fsync */
1044 	unsigned int min_seq_blocks;	/* threshold for sequential blocks */
1045 	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
1046 	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
1047 
1048 	/* for flush command control */
1049 	struct flush_cmd_control *fcc_info;
1050 
1051 	/* for discard command control */
1052 	struct discard_cmd_control *dcc_info;
1053 };
1054 
1055 /*
1056  * For superblock
1057  */
1058 /*
1059  * COUNT_TYPE for monitoring
1060  *
1061  * f2fs monitors the number of several block types such as on-writeback,
1062  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
1063  */
1064 #define WB_DATA_TYPE(p)	(__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
1065 enum count_type {
1066 	F2FS_DIRTY_DENTS,
1067 	F2FS_DIRTY_DATA,
1068 	F2FS_DIRTY_QDATA,
1069 	F2FS_DIRTY_NODES,
1070 	F2FS_DIRTY_META,
1071 	F2FS_INMEM_PAGES,
1072 	F2FS_DIRTY_IMETA,
1073 	F2FS_WB_CP_DATA,
1074 	F2FS_WB_DATA,
1075 	F2FS_RD_DATA,
1076 	F2FS_RD_NODE,
1077 	F2FS_RD_META,
1078 	F2FS_DIO_WRITE,
1079 	F2FS_DIO_READ,
1080 	NR_COUNT_TYPE,
1081 };
1082 
1083 /*
1084  * The below are the page types of bios used in submit_bio().
1085  * The available types are:
1086  * DATA			User data pages. It operates as async mode.
1087  * NODE			Node pages. It operates as async mode.
1088  * META			FS metadata pages such as SIT, NAT, CP.
1089  * NR_PAGE_TYPE		The number of page types.
1090  * META_FLUSH		Make sure the previous pages are written
1091  *			with waiting the bio's completion
1092  * ...			Only can be used with META.
1093  */
1094 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
1095 enum page_type {
1096 	DATA,
1097 	NODE,
1098 	META,
1099 	NR_PAGE_TYPE,
1100 	META_FLUSH,
1101 	INMEM,		/* the below types are used by tracepoints only. */
1102 	INMEM_DROP,
1103 	INMEM_INVALIDATE,
1104 	INMEM_REVOKE,
1105 	IPU,
1106 	OPU,
1107 };
1108 
1109 enum temp_type {
1110 	HOT = 0,	/* must be zero for meta bio */
1111 	WARM,
1112 	COLD,
1113 	NR_TEMP_TYPE,
1114 };
1115 
1116 enum need_lock_type {
1117 	LOCK_REQ = 0,
1118 	LOCK_DONE,
1119 	LOCK_RETRY,
1120 };
1121 
1122 enum cp_reason_type {
1123 	CP_NO_NEEDED,
1124 	CP_NON_REGULAR,
1125 	CP_COMPRESSED,
1126 	CP_HARDLINK,
1127 	CP_SB_NEED_CP,
1128 	CP_WRONG_PINO,
1129 	CP_NO_SPC_ROLL,
1130 	CP_NODE_NEED_CP,
1131 	CP_FASTBOOT_MODE,
1132 	CP_SPEC_LOG_NUM,
1133 	CP_RECOVER_DIR,
1134 };
1135 
1136 enum iostat_type {
1137 	/* WRITE IO */
1138 	APP_DIRECT_IO,			/* app direct write IOs */
1139 	APP_BUFFERED_IO,		/* app buffered write IOs */
1140 	APP_WRITE_IO,			/* app write IOs */
1141 	APP_MAPPED_IO,			/* app mapped IOs */
1142 	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
1143 	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
1144 	FS_META_IO,			/* meta IOs from kworker/reclaimer */
1145 	FS_GC_DATA_IO,			/* data IOs from forground gc */
1146 	FS_GC_NODE_IO,			/* node IOs from forground gc */
1147 	FS_CP_DATA_IO,			/* data IOs from checkpoint */
1148 	FS_CP_NODE_IO,			/* node IOs from checkpoint */
1149 	FS_CP_META_IO,			/* meta IOs from checkpoint */
1150 
1151 	/* READ IO */
1152 	APP_DIRECT_READ_IO,		/* app direct read IOs */
1153 	APP_BUFFERED_READ_IO,		/* app buffered read IOs */
1154 	APP_READ_IO,			/* app read IOs */
1155 	APP_MAPPED_READ_IO,		/* app mapped read IOs */
1156 	FS_DATA_READ_IO,		/* data read IOs */
1157 	FS_GDATA_READ_IO,		/* data read IOs from background gc */
1158 	FS_CDATA_READ_IO,		/* compressed data read IOs */
1159 	FS_NODE_READ_IO,		/* node read IOs */
1160 	FS_META_READ_IO,		/* meta read IOs */
1161 
1162 	/* other */
1163 	FS_DISCARD,			/* discard */
1164 	NR_IO_TYPE,
1165 };
1166 
1167 struct f2fs_io_info {
1168 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
1169 	nid_t ino;		/* inode number */
1170 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
1171 	enum temp_type temp;	/* contains HOT/WARM/COLD */
1172 	int op;			/* contains REQ_OP_ */
1173 	int op_flags;		/* req_flag_bits */
1174 	block_t new_blkaddr;	/* new block address to be written */
1175 	block_t old_blkaddr;	/* old block address before Cow */
1176 	struct page *page;	/* page to be written */
1177 	struct page *encrypted_page;	/* encrypted page */
1178 	struct page *compressed_page;	/* compressed page */
1179 	struct list_head list;		/* serialize IOs */
1180 	bool submitted;		/* indicate IO submission */
1181 	int need_lock;		/* indicate we need to lock cp_rwsem */
1182 	bool in_list;		/* indicate fio is in io_list */
1183 	bool is_por;		/* indicate IO is from recovery or not */
1184 	bool retry;		/* need to reallocate block address */
1185 	int compr_blocks;	/* # of compressed block addresses */
1186 	bool encrypted;		/* indicate file is encrypted */
1187 	enum iostat_type io_type;	/* io type */
1188 	struct writeback_control *io_wbc; /* writeback control */
1189 	struct bio **bio;		/* bio for ipu */
1190 	sector_t *last_block;		/* last block number in bio */
1191 	unsigned char version;		/* version of the node */
1192 };
1193 
1194 struct bio_entry {
1195 	struct bio *bio;
1196 	struct list_head list;
1197 };
1198 
1199 #define is_read_io(rw) ((rw) == READ)
1200 struct f2fs_bio_info {
1201 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
1202 	struct bio *bio;		/* bios to merge */
1203 	sector_t last_block_in_bio;	/* last block number */
1204 	struct f2fs_io_info fio;	/* store buffered io info. */
1205 	struct rw_semaphore io_rwsem;	/* blocking op for bio */
1206 	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
1207 	struct list_head io_list;	/* track fios */
1208 	struct list_head bio_list;	/* bio entry list head */
1209 	struct rw_semaphore bio_list_lock;	/* lock to protect bio entry list */
1210 };
1211 
1212 #define FDEV(i)				(sbi->devs[i])
1213 #define RDEV(i)				(raw_super->devs[i])
1214 struct f2fs_dev_info {
1215 	struct block_device *bdev;
1216 	char path[MAX_PATH_LEN];
1217 	unsigned int total_segments;
1218 	block_t start_blk;
1219 	block_t end_blk;
1220 #ifdef CONFIG_BLK_DEV_ZONED
1221 	unsigned int nr_blkz;		/* Total number of zones */
1222 	unsigned long *blkz_seq;	/* Bitmap indicating sequential zones */
1223 	block_t *zone_capacity_blocks;  /* Array of zone capacity in blks */
1224 #endif
1225 };
1226 
1227 enum inode_type {
1228 	DIR_INODE,			/* for dirty dir inode */
1229 	FILE_INODE,			/* for dirty regular/symlink inode */
1230 	DIRTY_META,			/* for all dirtied inode metadata */
1231 	ATOMIC_FILE,			/* for all atomic files */
1232 	NR_INODE_TYPE,
1233 };
1234 
1235 /* for inner inode cache management */
1236 struct inode_management {
1237 	struct radix_tree_root ino_root;	/* ino entry array */
1238 	spinlock_t ino_lock;			/* for ino entry lock */
1239 	struct list_head ino_list;		/* inode list head */
1240 	unsigned long ino_num;			/* number of entries */
1241 };
1242 
1243 /* for GC_AT */
1244 struct atgc_management {
1245 	bool atgc_enabled;			/* ATGC is enabled or not */
1246 	struct rb_root_cached root;		/* root of victim rb-tree */
1247 	struct list_head victim_list;		/* linked with all victim entries */
1248 	unsigned int victim_count;		/* victim count in rb-tree */
1249 	unsigned int candidate_ratio;		/* candidate ratio */
1250 	unsigned int max_candidate_count;	/* max candidate count */
1251 	unsigned int age_weight;		/* age weight, vblock_weight = 100 - age_weight */
1252 	unsigned long long age_threshold;	/* age threshold */
1253 };
1254 
1255 /* For s_flag in struct f2fs_sb_info */
1256 enum {
1257 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1258 	SBI_IS_CLOSE,				/* specify unmounting */
1259 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1260 	SBI_POR_DOING,				/* recovery is doing or not */
1261 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1262 	SBI_NEED_CP,				/* need to checkpoint */
1263 	SBI_IS_SHUTDOWN,			/* shutdown by ioctl */
1264 	SBI_IS_RECOVERED,			/* recovered orphan/data */
1265 	SBI_CP_DISABLED,			/* CP was disabled last mount */
1266 	SBI_CP_DISABLED_QUICK,			/* CP was disabled quickly */
1267 	SBI_QUOTA_NEED_FLUSH,			/* need to flush quota info in CP */
1268 	SBI_QUOTA_SKIP_FLUSH,			/* skip flushing quota in current CP */
1269 	SBI_QUOTA_NEED_REPAIR,			/* quota file may be corrupted */
1270 	SBI_IS_RESIZEFS,			/* resizefs is in process */
1271 };
1272 
1273 enum {
1274 	CP_TIME,
1275 	REQ_TIME,
1276 	DISCARD_TIME,
1277 	GC_TIME,
1278 	DISABLE_TIME,
1279 	UMOUNT_DISCARD_TIMEOUT,
1280 	MAX_TIME,
1281 };
1282 
1283 enum {
1284 	GC_NORMAL,
1285 	GC_IDLE_CB,
1286 	GC_IDLE_GREEDY,
1287 	GC_IDLE_AT,
1288 	GC_URGENT_HIGH,
1289 	GC_URGENT_LOW,
1290 };
1291 
1292 enum {
1293 	BGGC_MODE_ON,		/* background gc is on */
1294 	BGGC_MODE_OFF,		/* background gc is off */
1295 	BGGC_MODE_SYNC,		/*
1296 				 * background gc is on, migrating blocks
1297 				 * like foreground gc
1298 				 */
1299 };
1300 
1301 enum {
1302 	FS_MODE_ADAPTIVE,	/* use both lfs/ssr allocation */
1303 	FS_MODE_LFS,		/* use lfs allocation only */
1304 };
1305 
1306 enum {
1307 	WHINT_MODE_OFF,		/* not pass down write hints */
1308 	WHINT_MODE_USER,	/* try to pass down hints given by users */
1309 	WHINT_MODE_FS,		/* pass down hints with F2FS policy */
1310 };
1311 
1312 enum {
1313 	ALLOC_MODE_DEFAULT,	/* stay default */
1314 	ALLOC_MODE_REUSE,	/* reuse segments as much as possible */
1315 };
1316 
1317 enum fsync_mode {
1318 	FSYNC_MODE_POSIX,	/* fsync follows posix semantics */
1319 	FSYNC_MODE_STRICT,	/* fsync behaves in line with ext4 */
1320 	FSYNC_MODE_NOBARRIER,	/* fsync behaves nobarrier based on posix */
1321 };
1322 
1323 /*
1324  * this value is set in page as a private data which indicate that
1325  * the page is atomically written, and it is in inmem_pages list.
1326  */
1327 #define ATOMIC_WRITTEN_PAGE		((unsigned long)-1)
1328 #define DUMMY_WRITTEN_PAGE		((unsigned long)-2)
1329 
1330 #define IS_ATOMIC_WRITTEN_PAGE(page)			\
1331 		(page_private(page) == ATOMIC_WRITTEN_PAGE)
1332 #define IS_DUMMY_WRITTEN_PAGE(page)			\
1333 		(page_private(page) == DUMMY_WRITTEN_PAGE)
1334 
1335 #ifdef CONFIG_F2FS_IO_TRACE
1336 #define IS_IO_TRACED_PAGE(page)			\
1337 		(page_private(page) > 0 &&		\
1338 		 page_private(page) < (unsigned long)PID_MAX_LIMIT)
1339 #else
1340 #define IS_IO_TRACED_PAGE(page) (0)
1341 #endif
1342 
1343 /* For compression */
1344 enum compress_algorithm_type {
1345 	COMPRESS_LZO,
1346 	COMPRESS_LZ4,
1347 	COMPRESS_ZSTD,
1348 	COMPRESS_LZORLE,
1349 	COMPRESS_MAX,
1350 };
1351 
1352 #define COMPRESS_DATA_RESERVED_SIZE		5
1353 struct compress_data {
1354 	__le32 clen;			/* compressed data size */
1355 	__le32 reserved[COMPRESS_DATA_RESERVED_SIZE];	/* reserved */
1356 	u8 cdata[];			/* compressed data */
1357 };
1358 
1359 #define COMPRESS_HEADER_SIZE	(sizeof(struct compress_data))
1360 
1361 #define F2FS_COMPRESSED_PAGE_MAGIC	0xF5F2C000
1362 
1363 /* compress context */
1364 struct compress_ctx {
1365 	struct inode *inode;		/* inode the context belong to */
1366 	pgoff_t cluster_idx;		/* cluster index number */
1367 	unsigned int cluster_size;	/* page count in cluster */
1368 	unsigned int log_cluster_size;	/* log of cluster size */
1369 	struct page **rpages;		/* pages store raw data in cluster */
1370 	unsigned int nr_rpages;		/* total page number in rpages */
1371 	struct page **cpages;		/* pages store compressed data in cluster */
1372 	unsigned int nr_cpages;		/* total page number in cpages */
1373 	void *rbuf;			/* virtual mapped address on rpages */
1374 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1375 	size_t rlen;			/* valid data length in rbuf */
1376 	size_t clen;			/* valid data length in cbuf */
1377 	void *private;			/* payload buffer for specified compression algorithm */
1378 	void *private2;			/* extra payload buffer */
1379 };
1380 
1381 /* compress context for write IO path */
1382 struct compress_io_ctx {
1383 	u32 magic;			/* magic number to indicate page is compressed */
1384 	struct inode *inode;		/* inode the context belong to */
1385 	struct page **rpages;		/* pages store raw data in cluster */
1386 	unsigned int nr_rpages;		/* total page number in rpages */
1387 	atomic_t pending_pages;		/* in-flight compressed page count */
1388 };
1389 
1390 /* decompress io context for read IO path */
1391 struct decompress_io_ctx {
1392 	u32 magic;			/* magic number to indicate page is compressed */
1393 	struct inode *inode;		/* inode the context belong to */
1394 	pgoff_t cluster_idx;		/* cluster index number */
1395 	unsigned int cluster_size;	/* page count in cluster */
1396 	unsigned int log_cluster_size;	/* log of cluster size */
1397 	struct page **rpages;		/* pages store raw data in cluster */
1398 	unsigned int nr_rpages;		/* total page number in rpages */
1399 	struct page **cpages;		/* pages store compressed data in cluster */
1400 	unsigned int nr_cpages;		/* total page number in cpages */
1401 	struct page **tpages;		/* temp pages to pad holes in cluster */
1402 	void *rbuf;			/* virtual mapped address on rpages */
1403 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1404 	size_t rlen;			/* valid data length in rbuf */
1405 	size_t clen;			/* valid data length in cbuf */
1406 	atomic_t pending_pages;		/* in-flight compressed page count */
1407 	bool failed;			/* indicate IO error during decompression */
1408 	void *private;			/* payload buffer for specified decompression algorithm */
1409 	void *private2;			/* extra payload buffer */
1410 };
1411 
1412 #define NULL_CLUSTER			((unsigned int)(~0))
1413 #define MIN_COMPRESS_LOG_SIZE		2
1414 #define MAX_COMPRESS_LOG_SIZE		8
1415 #define MAX_COMPRESS_WINDOW_SIZE(log_size)	((PAGE_SIZE) << (log_size))
1416 
1417 struct f2fs_sb_info {
1418 	struct super_block *sb;			/* pointer to VFS super block */
1419 	struct proc_dir_entry *s_proc;		/* proc entry */
1420 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1421 	struct rw_semaphore sb_lock;		/* lock for raw super block */
1422 	int valid_super_block;			/* valid super block no */
1423 	unsigned long s_flag;				/* flags for sbi */
1424 	struct mutex writepages;		/* mutex for writepages() */
1425 
1426 #ifdef CONFIG_BLK_DEV_ZONED
1427 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1428 	unsigned int log_blocks_per_blkz;	/* log2 F2FS blocks per zone */
1429 #endif
1430 
1431 	/* for node-related operations */
1432 	struct f2fs_nm_info *nm_info;		/* node manager */
1433 	struct inode *node_inode;		/* cache node blocks */
1434 
1435 	/* for segment-related operations */
1436 	struct f2fs_sm_info *sm_info;		/* segment manager */
1437 
1438 	/* for bio operations */
1439 	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1440 	/* keep migration IO order for LFS mode */
1441 	struct rw_semaphore io_order_lock;
1442 	mempool_t *write_io_dummy;		/* Dummy pages */
1443 
1444 	/* for checkpoint */
1445 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1446 	int cur_cp_pack;			/* remain current cp pack */
1447 	spinlock_t cp_lock;			/* for flag in ckpt */
1448 	struct inode *meta_inode;		/* cache meta blocks */
1449 	struct mutex cp_mutex;			/* checkpoint procedure lock */
1450 	struct rw_semaphore cp_rwsem;		/* blocking FS operations */
1451 	struct rw_semaphore node_write;		/* locking node writes */
1452 	struct rw_semaphore node_change;	/* locking node change */
1453 	wait_queue_head_t cp_wait;
1454 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1455 	long interval_time[MAX_TIME];		/* to store thresholds */
1456 
1457 	struct inode_management im[MAX_INO_ENTRY];	/* manage inode cache */
1458 
1459 	spinlock_t fsync_node_lock;		/* for node entry lock */
1460 	struct list_head fsync_node_list;	/* node list head */
1461 	unsigned int fsync_seg_id;		/* sequence id */
1462 	unsigned int fsync_node_num;		/* number of node entries */
1463 
1464 	/* for orphan inode, use 0'th array */
1465 	unsigned int max_orphans;		/* max orphan inodes */
1466 
1467 	/* for inode management */
1468 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1469 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1470 	struct mutex flush_lock;		/* for flush exclusion */
1471 
1472 	/* for extent tree cache */
1473 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1474 	struct mutex extent_tree_lock;	/* locking extent radix tree */
1475 	struct list_head extent_list;		/* lru list for shrinker */
1476 	spinlock_t extent_lock;			/* locking extent lru list */
1477 	atomic_t total_ext_tree;		/* extent tree count */
1478 	struct list_head zombie_list;		/* extent zombie tree list */
1479 	atomic_t total_zombie_tree;		/* extent zombie tree count */
1480 	atomic_t total_ext_node;		/* extent info count */
1481 
1482 	/* basic filesystem units */
1483 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1484 	unsigned int log_blocksize;		/* log2 block size */
1485 	unsigned int blocksize;			/* block size */
1486 	unsigned int root_ino_num;		/* root inode number*/
1487 	unsigned int node_ino_num;		/* node inode number*/
1488 	unsigned int meta_ino_num;		/* meta inode number*/
1489 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1490 	unsigned int blocks_per_seg;		/* blocks per segment */
1491 	unsigned int segs_per_sec;		/* segments per section */
1492 	unsigned int secs_per_zone;		/* sections per zone */
1493 	unsigned int total_sections;		/* total section count */
1494 	unsigned int total_node_count;		/* total node block count */
1495 	unsigned int total_valid_node_count;	/* valid node block count */
1496 	loff_t max_file_blocks;			/* max block index of file */
1497 	int dir_level;				/* directory level */
1498 	int readdir_ra;				/* readahead inode in readdir */
1499 
1500 	block_t user_block_count;		/* # of user blocks */
1501 	block_t total_valid_block_count;	/* # of valid blocks */
1502 	block_t discard_blks;			/* discard command candidats */
1503 	block_t last_valid_block_count;		/* for recovery */
1504 	block_t reserved_blocks;		/* configurable reserved blocks */
1505 	block_t current_reserved_blocks;	/* current reserved blocks */
1506 
1507 	/* Additional tracking for no checkpoint mode */
1508 	block_t unusable_block_count;		/* # of blocks saved by last cp */
1509 
1510 	unsigned int nquota_files;		/* # of quota sysfile */
1511 	struct rw_semaphore quota_sem;		/* blocking cp for flags */
1512 
1513 	/* # of pages, see count_type */
1514 	atomic_t nr_pages[NR_COUNT_TYPE];
1515 	/* # of allocated blocks */
1516 	struct percpu_counter alloc_valid_block_count;
1517 
1518 	/* writeback control */
1519 	atomic_t wb_sync_req[META];	/* count # of WB_SYNC threads */
1520 
1521 	/* valid inode count */
1522 	struct percpu_counter total_valid_inode_count;
1523 
1524 	struct f2fs_mount_info mount_opt;	/* mount options */
1525 
1526 	/* for cleaning operations */
1527 	struct rw_semaphore gc_lock;		/*
1528 						 * semaphore for GC, avoid
1529 						 * race between GC and GC or CP
1530 						 */
1531 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1532 	struct atgc_management am;		/* atgc management */
1533 	unsigned int cur_victim_sec;		/* current victim section num */
1534 	unsigned int gc_mode;			/* current GC state */
1535 	unsigned int next_victim_seg[2];	/* next segment in victim section */
1536 
1537 	/* for skip statistic */
1538 	unsigned int atomic_files;		/* # of opened atomic file */
1539 	unsigned long long skipped_atomic_files[2];	/* FG_GC and BG_GC */
1540 	unsigned long long skipped_gc_rwsem;		/* FG_GC only */
1541 
1542 	/* threshold for gc trials on pinned files */
1543 	u64 gc_pin_file_threshold;
1544 	struct rw_semaphore pin_sem;
1545 
1546 	/* maximum # of trials to find a victim segment for SSR and GC */
1547 	unsigned int max_victim_search;
1548 	/* migration granularity of garbage collection, unit: segment */
1549 	unsigned int migration_granularity;
1550 
1551 	/*
1552 	 * for stat information.
1553 	 * one is for the LFS mode, and the other is for the SSR mode.
1554 	 */
1555 #ifdef CONFIG_F2FS_STAT_FS
1556 	struct f2fs_stat_info *stat_info;	/* FS status information */
1557 	atomic_t meta_count[META_MAX];		/* # of meta blocks */
1558 	unsigned int segment_count[2];		/* # of allocated segments */
1559 	unsigned int block_count[2];		/* # of allocated blocks */
1560 	atomic_t inplace_count;		/* # of inplace update */
1561 	atomic64_t total_hit_ext;		/* # of lookup extent cache */
1562 	atomic64_t read_hit_rbtree;		/* # of hit rbtree extent node */
1563 	atomic64_t read_hit_largest;		/* # of hit largest extent node */
1564 	atomic64_t read_hit_cached;		/* # of hit cached extent node */
1565 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1566 	atomic_t inline_inode;			/* # of inline_data inodes */
1567 	atomic_t inline_dir;			/* # of inline_dentry inodes */
1568 	atomic_t compr_inode;			/* # of compressed inodes */
1569 	atomic64_t compr_blocks;		/* # of compressed blocks */
1570 	atomic_t vw_cnt;			/* # of volatile writes */
1571 	atomic_t max_aw_cnt;			/* max # of atomic writes */
1572 	atomic_t max_vw_cnt;			/* max # of volatile writes */
1573 	unsigned int io_skip_bggc;		/* skip background gc for in-flight IO */
1574 	unsigned int other_skip_bggc;		/* skip background gc for other reasons */
1575 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1576 #endif
1577 	spinlock_t stat_lock;			/* lock for stat operations */
1578 
1579 	/* For app/fs IO statistics */
1580 	spinlock_t iostat_lock;
1581 	unsigned long long rw_iostat[NR_IO_TYPE];
1582 	unsigned long long prev_rw_iostat[NR_IO_TYPE];
1583 	bool iostat_enable;
1584 	unsigned long iostat_next_period;
1585 	unsigned int iostat_period_ms;
1586 
1587 	/* to attach REQ_META|REQ_FUA flags */
1588 	unsigned int data_io_flag;
1589 	unsigned int node_io_flag;
1590 
1591 	/* For sysfs suppport */
1592 	struct kobject s_kobj;
1593 	struct completion s_kobj_unregister;
1594 
1595 	/* For shrinker support */
1596 	struct list_head s_list;
1597 	int s_ndevs;				/* number of devices */
1598 	struct f2fs_dev_info *devs;		/* for device list */
1599 	unsigned int dirty_device;		/* for checkpoint data flush */
1600 	spinlock_t dev_lock;			/* protect dirty_device */
1601 	struct mutex umount_mutex;
1602 	unsigned int shrinker_run_no;
1603 
1604 	/* For write statistics */
1605 	u64 sectors_written_start;
1606 	u64 kbytes_written;
1607 
1608 	/* Reference to checksum algorithm driver via cryptoapi */
1609 	struct crypto_shash *s_chksum_driver;
1610 
1611 	/* Precomputed FS UUID checksum for seeding other checksums */
1612 	__u32 s_chksum_seed;
1613 
1614 	struct workqueue_struct *post_read_wq;	/* post read workqueue */
1615 
1616 	struct kmem_cache *inline_xattr_slab;	/* inline xattr entry */
1617 	unsigned int inline_xattr_slab_size;	/* default inline xattr slab size */
1618 
1619 #ifdef CONFIG_F2FS_FS_COMPRESSION
1620 	struct kmem_cache *page_array_slab;	/* page array entry */
1621 	unsigned int page_array_slab_size;	/* default page array slab size */
1622 #endif
1623 };
1624 
1625 struct f2fs_private_dio {
1626 	struct inode *inode;
1627 	void *orig_private;
1628 	bio_end_io_t *orig_end_io;
1629 	bool write;
1630 };
1631 
1632 #ifdef CONFIG_F2FS_FAULT_INJECTION
1633 #define f2fs_show_injection_info(sbi, type)					\
1634 	printk_ratelimited("%sF2FS-fs (%s) : inject %s in %s of %pS\n",	\
1635 		KERN_INFO, sbi->sb->s_id,				\
1636 		f2fs_fault_name[type],					\
1637 		__func__, __builtin_return_address(0))
time_to_inject(struct f2fs_sb_info * sbi,int type)1638 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1639 {
1640 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1641 
1642 	if (!ffi->inject_rate)
1643 		return false;
1644 
1645 	if (!IS_FAULT_SET(ffi, type))
1646 		return false;
1647 
1648 	atomic_inc(&ffi->inject_ops);
1649 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1650 		atomic_set(&ffi->inject_ops, 0);
1651 		return true;
1652 	}
1653 	return false;
1654 }
1655 #else
1656 #define f2fs_show_injection_info(sbi, type) do { } while (0)
time_to_inject(struct f2fs_sb_info * sbi,int type)1657 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1658 {
1659 	return false;
1660 }
1661 #endif
1662 
1663 /*
1664  * Test if the mounted volume is a multi-device volume.
1665  *   - For a single regular disk volume, sbi->s_ndevs is 0.
1666  *   - For a single zoned disk volume, sbi->s_ndevs is 1.
1667  *   - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1668  */
f2fs_is_multi_device(struct f2fs_sb_info * sbi)1669 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1670 {
1671 	return sbi->s_ndevs > 1;
1672 }
1673 
1674 /* For write statistics. Suppose sector size is 512 bytes,
1675  * and the return value is in kbytes. s is of struct f2fs_sb_info.
1676  */
1677 #define BD_PART_WRITTEN(s)						 \
1678 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[STAT_WRITE]) -   \
1679 		(s)->sectors_written_start) >> 1)
1680 
f2fs_update_time(struct f2fs_sb_info * sbi,int type)1681 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1682 {
1683 	unsigned long now = jiffies;
1684 
1685 	sbi->last_time[type] = now;
1686 
1687 	/* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1688 	if (type == REQ_TIME) {
1689 		sbi->last_time[DISCARD_TIME] = now;
1690 		sbi->last_time[GC_TIME] = now;
1691 	}
1692 }
1693 
f2fs_time_over(struct f2fs_sb_info * sbi,int type)1694 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1695 {
1696 	unsigned long interval = sbi->interval_time[type] * HZ;
1697 
1698 	return time_after(jiffies, sbi->last_time[type] + interval);
1699 }
1700 
f2fs_time_to_wait(struct f2fs_sb_info * sbi,int type)1701 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1702 						int type)
1703 {
1704 	unsigned long interval = sbi->interval_time[type] * HZ;
1705 	unsigned int wait_ms = 0;
1706 	long delta;
1707 
1708 	delta = (sbi->last_time[type] + interval) - jiffies;
1709 	if (delta > 0)
1710 		wait_ms = jiffies_to_msecs(delta);
1711 
1712 	return wait_ms;
1713 }
1714 
1715 /*
1716  * Inline functions
1717  */
__f2fs_crc32(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1718 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1719 			      const void *address, unsigned int length)
1720 {
1721 	struct {
1722 		struct shash_desc shash;
1723 		char ctx[4];
1724 	} desc;
1725 	int err;
1726 
1727 	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1728 
1729 	desc.shash.tfm = sbi->s_chksum_driver;
1730 	*(u32 *)desc.ctx = crc;
1731 
1732 	err = crypto_shash_update(&desc.shash, address, length);
1733 	BUG_ON(err);
1734 
1735 	return *(u32 *)desc.ctx;
1736 }
1737 
f2fs_crc32(struct f2fs_sb_info * sbi,const void * address,unsigned int length)1738 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1739 			   unsigned int length)
1740 {
1741 	return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1742 }
1743 
f2fs_crc_valid(struct f2fs_sb_info * sbi,__u32 blk_crc,void * buf,size_t buf_size)1744 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1745 				  void *buf, size_t buf_size)
1746 {
1747 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1748 }
1749 
f2fs_chksum(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1750 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1751 			      const void *address, unsigned int length)
1752 {
1753 	return __f2fs_crc32(sbi, crc, address, length);
1754 }
1755 
F2FS_I(struct inode * inode)1756 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1757 {
1758 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1759 }
1760 
F2FS_SB(struct super_block * sb)1761 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1762 {
1763 	return sb->s_fs_info;
1764 }
1765 
F2FS_I_SB(struct inode * inode)1766 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1767 {
1768 	return F2FS_SB(inode->i_sb);
1769 }
1770 
F2FS_M_SB(struct address_space * mapping)1771 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1772 {
1773 	return F2FS_I_SB(mapping->host);
1774 }
1775 
F2FS_P_SB(struct page * page)1776 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1777 {
1778 	return F2FS_M_SB(page_file_mapping(page));
1779 }
1780 
F2FS_RAW_SUPER(struct f2fs_sb_info * sbi)1781 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1782 {
1783 	return (struct f2fs_super_block *)(sbi->raw_super);
1784 }
1785 
F2FS_CKPT(struct f2fs_sb_info * sbi)1786 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1787 {
1788 	return (struct f2fs_checkpoint *)(sbi->ckpt);
1789 }
1790 
F2FS_NODE(struct page * page)1791 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1792 {
1793 	return (struct f2fs_node *)page_address(page);
1794 }
1795 
F2FS_INODE(struct page * page)1796 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1797 {
1798 	return &((struct f2fs_node *)page_address(page))->i;
1799 }
1800 
NM_I(struct f2fs_sb_info * sbi)1801 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1802 {
1803 	return (struct f2fs_nm_info *)(sbi->nm_info);
1804 }
1805 
SM_I(struct f2fs_sb_info * sbi)1806 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1807 {
1808 	return (struct f2fs_sm_info *)(sbi->sm_info);
1809 }
1810 
SIT_I(struct f2fs_sb_info * sbi)1811 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1812 {
1813 	return (struct sit_info *)(SM_I(sbi)->sit_info);
1814 }
1815 
FREE_I(struct f2fs_sb_info * sbi)1816 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1817 {
1818 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1819 }
1820 
DIRTY_I(struct f2fs_sb_info * sbi)1821 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1822 {
1823 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1824 }
1825 
META_MAPPING(struct f2fs_sb_info * sbi)1826 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1827 {
1828 	return sbi->meta_inode->i_mapping;
1829 }
1830 
NODE_MAPPING(struct f2fs_sb_info * sbi)1831 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1832 {
1833 	return sbi->node_inode->i_mapping;
1834 }
1835 
is_sbi_flag_set(struct f2fs_sb_info * sbi,unsigned int type)1836 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1837 {
1838 	return test_bit(type, &sbi->s_flag);
1839 }
1840 
set_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)1841 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1842 {
1843 	set_bit(type, &sbi->s_flag);
1844 }
1845 
clear_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)1846 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1847 {
1848 	clear_bit(type, &sbi->s_flag);
1849 }
1850 
cur_cp_version(struct f2fs_checkpoint * cp)1851 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1852 {
1853 	return le64_to_cpu(cp->checkpoint_ver);
1854 }
1855 
f2fs_qf_ino(struct super_block * sb,int type)1856 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
1857 {
1858 	if (type < F2FS_MAX_QUOTAS)
1859 		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
1860 	return 0;
1861 }
1862 
cur_cp_crc(struct f2fs_checkpoint * cp)1863 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1864 {
1865 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1866 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1867 }
1868 
__is_set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)1869 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1870 {
1871 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1872 
1873 	return ckpt_flags & f;
1874 }
1875 
is_set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)1876 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1877 {
1878 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1879 }
1880 
__set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)1881 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1882 {
1883 	unsigned int ckpt_flags;
1884 
1885 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1886 	ckpt_flags |= f;
1887 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1888 }
1889 
set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)1890 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1891 {
1892 	unsigned long flags;
1893 
1894 	spin_lock_irqsave(&sbi->cp_lock, flags);
1895 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
1896 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1897 }
1898 
__clear_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)1899 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1900 {
1901 	unsigned int ckpt_flags;
1902 
1903 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1904 	ckpt_flags &= (~f);
1905 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1906 }
1907 
clear_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)1908 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1909 {
1910 	unsigned long flags;
1911 
1912 	spin_lock_irqsave(&sbi->cp_lock, flags);
1913 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
1914 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1915 }
1916 
disable_nat_bits(struct f2fs_sb_info * sbi,bool lock)1917 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1918 {
1919 	unsigned long flags;
1920 	unsigned char *nat_bits;
1921 
1922 	/*
1923 	 * In order to re-enable nat_bits we need to call fsck.f2fs by
1924 	 * set_sbi_flag(sbi, SBI_NEED_FSCK). But it may give huge cost,
1925 	 * so let's rely on regular fsck or unclean shutdown.
1926 	 */
1927 
1928 	if (lock)
1929 		spin_lock_irqsave(&sbi->cp_lock, flags);
1930 	__clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1931 	nat_bits = NM_I(sbi)->nat_bits;
1932 	NM_I(sbi)->nat_bits = NULL;
1933 	if (lock)
1934 		spin_unlock_irqrestore(&sbi->cp_lock, flags);
1935 
1936 	kvfree(nat_bits);
1937 }
1938 
enabled_nat_bits(struct f2fs_sb_info * sbi,struct cp_control * cpc)1939 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1940 					struct cp_control *cpc)
1941 {
1942 	bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1943 
1944 	return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1945 }
1946 
f2fs_lock_op(struct f2fs_sb_info * sbi)1947 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1948 {
1949 	down_read(&sbi->cp_rwsem);
1950 }
1951 
f2fs_trylock_op(struct f2fs_sb_info * sbi)1952 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
1953 {
1954 	return down_read_trylock(&sbi->cp_rwsem);
1955 }
1956 
f2fs_unlock_op(struct f2fs_sb_info * sbi)1957 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1958 {
1959 	up_read(&sbi->cp_rwsem);
1960 }
1961 
f2fs_lock_all(struct f2fs_sb_info * sbi)1962 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1963 {
1964 	down_write(&sbi->cp_rwsem);
1965 }
1966 
f2fs_unlock_all(struct f2fs_sb_info * sbi)1967 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1968 {
1969 	up_write(&sbi->cp_rwsem);
1970 }
1971 
__get_cp_reason(struct f2fs_sb_info * sbi)1972 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1973 {
1974 	int reason = CP_SYNC;
1975 
1976 	if (test_opt(sbi, FASTBOOT))
1977 		reason = CP_FASTBOOT;
1978 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1979 		reason = CP_UMOUNT;
1980 	return reason;
1981 }
1982 
__remain_node_summaries(int reason)1983 static inline bool __remain_node_summaries(int reason)
1984 {
1985 	return (reason & (CP_UMOUNT | CP_FASTBOOT));
1986 }
1987 
__exist_node_summaries(struct f2fs_sb_info * sbi)1988 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1989 {
1990 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1991 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1992 }
1993 
1994 /*
1995  * Check whether the inode has blocks or not
1996  */
F2FS_HAS_BLOCKS(struct inode * inode)1997 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1998 {
1999 	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
2000 
2001 	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
2002 }
2003 
f2fs_has_xattr_block(unsigned int ofs)2004 static inline bool f2fs_has_xattr_block(unsigned int ofs)
2005 {
2006 	return ofs == XATTR_NODE_OFFSET;
2007 }
2008 
__allow_reserved_blocks(struct f2fs_sb_info * sbi,struct inode * inode,bool cap)2009 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
2010 					struct inode *inode, bool cap)
2011 {
2012 	if (!inode)
2013 		return true;
2014 	if (!test_opt(sbi, RESERVE_ROOT))
2015 		return false;
2016 	if (IS_NOQUOTA(inode))
2017 		return true;
2018 	if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
2019 		return true;
2020 	if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
2021 					in_group_p(F2FS_OPTION(sbi).s_resgid))
2022 		return true;
2023 	if (cap && capable(CAP_SYS_RESOURCE))
2024 		return true;
2025 	return false;
2026 }
2027 
2028 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
inc_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,blkcnt_t * count)2029 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
2030 				 struct inode *inode, blkcnt_t *count)
2031 {
2032 	blkcnt_t diff = 0, release = 0;
2033 	block_t avail_user_block_count;
2034 	int ret;
2035 
2036 	ret = dquot_reserve_block(inode, *count);
2037 	if (ret)
2038 		return ret;
2039 
2040 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2041 		f2fs_show_injection_info(sbi, FAULT_BLOCK);
2042 		release = *count;
2043 		goto release_quota;
2044 	}
2045 
2046 	/*
2047 	 * let's increase this in prior to actual block count change in order
2048 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
2049 	 */
2050 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
2051 
2052 	spin_lock(&sbi->stat_lock);
2053 	sbi->total_valid_block_count += (block_t)(*count);
2054 	avail_user_block_count = sbi->user_block_count -
2055 					sbi->current_reserved_blocks;
2056 
2057 	if (!__allow_reserved_blocks(sbi, inode, true))
2058 		avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
2059 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2060 		if (avail_user_block_count > sbi->unusable_block_count)
2061 			avail_user_block_count -= sbi->unusable_block_count;
2062 		else
2063 			avail_user_block_count = 0;
2064 	}
2065 	if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
2066 		diff = sbi->total_valid_block_count - avail_user_block_count;
2067 		if (diff > *count)
2068 			diff = *count;
2069 		*count -= diff;
2070 		release = diff;
2071 		sbi->total_valid_block_count -= diff;
2072 		if (!*count) {
2073 			spin_unlock(&sbi->stat_lock);
2074 			goto enospc;
2075 		}
2076 	}
2077 	spin_unlock(&sbi->stat_lock);
2078 
2079 	if (unlikely(release)) {
2080 		percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2081 		dquot_release_reservation_block(inode, release);
2082 	}
2083 	f2fs_i_blocks_write(inode, *count, true, true);
2084 	return 0;
2085 
2086 enospc:
2087 	percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2088 release_quota:
2089 	dquot_release_reservation_block(inode, release);
2090 	return -ENOSPC;
2091 }
2092 
2093 __printf(2, 3)
2094 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...);
2095 
2096 #define f2fs_err(sbi, fmt, ...)						\
2097 	f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__)
2098 #define f2fs_warn(sbi, fmt, ...)					\
2099 	f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__)
2100 #define f2fs_notice(sbi, fmt, ...)					\
2101 	f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__)
2102 #define f2fs_info(sbi, fmt, ...)					\
2103 	f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__)
2104 #define f2fs_debug(sbi, fmt, ...)					\
2105 	f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__)
2106 
dec_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,block_t count)2107 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2108 						struct inode *inode,
2109 						block_t count)
2110 {
2111 	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2112 
2113 	spin_lock(&sbi->stat_lock);
2114 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
2115 	sbi->total_valid_block_count -= (block_t)count;
2116 	if (sbi->reserved_blocks &&
2117 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2118 		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2119 					sbi->current_reserved_blocks + count);
2120 	spin_unlock(&sbi->stat_lock);
2121 	if (unlikely(inode->i_blocks < sectors)) {
2122 		f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2123 			  inode->i_ino,
2124 			  (unsigned long long)inode->i_blocks,
2125 			  (unsigned long long)sectors);
2126 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2127 		return;
2128 	}
2129 	f2fs_i_blocks_write(inode, count, false, true);
2130 }
2131 
inc_page_count(struct f2fs_sb_info * sbi,int count_type)2132 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2133 {
2134 	atomic_inc(&sbi->nr_pages[count_type]);
2135 
2136 	if (count_type == F2FS_DIRTY_DENTS ||
2137 			count_type == F2FS_DIRTY_NODES ||
2138 			count_type == F2FS_DIRTY_META ||
2139 			count_type == F2FS_DIRTY_QDATA ||
2140 			count_type == F2FS_DIRTY_IMETA)
2141 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2142 }
2143 
inode_inc_dirty_pages(struct inode * inode)2144 static inline void inode_inc_dirty_pages(struct inode *inode)
2145 {
2146 	atomic_inc(&F2FS_I(inode)->dirty_pages);
2147 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2148 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2149 	if (IS_NOQUOTA(inode))
2150 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2151 }
2152 
dec_page_count(struct f2fs_sb_info * sbi,int count_type)2153 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2154 {
2155 	atomic_dec(&sbi->nr_pages[count_type]);
2156 }
2157 
inode_dec_dirty_pages(struct inode * inode)2158 static inline void inode_dec_dirty_pages(struct inode *inode)
2159 {
2160 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2161 			!S_ISLNK(inode->i_mode))
2162 		return;
2163 
2164 	atomic_dec(&F2FS_I(inode)->dirty_pages);
2165 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2166 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2167 	if (IS_NOQUOTA(inode))
2168 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2169 }
2170 
get_pages(struct f2fs_sb_info * sbi,int count_type)2171 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2172 {
2173 	return atomic_read(&sbi->nr_pages[count_type]);
2174 }
2175 
get_dirty_pages(struct inode * inode)2176 static inline int get_dirty_pages(struct inode *inode)
2177 {
2178 	return atomic_read(&F2FS_I(inode)->dirty_pages);
2179 }
2180 
get_blocktype_secs(struct f2fs_sb_info * sbi,int block_type)2181 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2182 {
2183 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
2184 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
2185 						sbi->log_blocks_per_seg;
2186 
2187 	return segs / sbi->segs_per_sec;
2188 }
2189 
valid_user_blocks(struct f2fs_sb_info * sbi)2190 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2191 {
2192 	return sbi->total_valid_block_count;
2193 }
2194 
discard_blocks(struct f2fs_sb_info * sbi)2195 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2196 {
2197 	return sbi->discard_blks;
2198 }
2199 
__bitmap_size(struct f2fs_sb_info * sbi,int flag)2200 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2201 {
2202 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2203 
2204 	/* return NAT or SIT bitmap */
2205 	if (flag == NAT_BITMAP)
2206 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2207 	else if (flag == SIT_BITMAP)
2208 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2209 
2210 	return 0;
2211 }
2212 
__cp_payload(struct f2fs_sb_info * sbi)2213 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2214 {
2215 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2216 }
2217 
__bitmap_ptr(struct f2fs_sb_info * sbi,int flag)2218 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2219 {
2220 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2221 	int offset;
2222 
2223 	if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2224 		offset = (flag == SIT_BITMAP) ?
2225 			le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2226 		/*
2227 		 * if large_nat_bitmap feature is enabled, leave checksum
2228 		 * protection for all nat/sit bitmaps.
2229 		 */
2230 		return &ckpt->sit_nat_version_bitmap + offset + sizeof(__le32);
2231 	}
2232 
2233 	if (__cp_payload(sbi) > 0) {
2234 		if (flag == NAT_BITMAP)
2235 			return &ckpt->sit_nat_version_bitmap;
2236 		else
2237 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
2238 	} else {
2239 		offset = (flag == NAT_BITMAP) ?
2240 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2241 		return &ckpt->sit_nat_version_bitmap + offset;
2242 	}
2243 }
2244 
__start_cp_addr(struct f2fs_sb_info * sbi)2245 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2246 {
2247 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2248 
2249 	if (sbi->cur_cp_pack == 2)
2250 		start_addr += sbi->blocks_per_seg;
2251 	return start_addr;
2252 }
2253 
__start_cp_next_addr(struct f2fs_sb_info * sbi)2254 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2255 {
2256 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2257 
2258 	if (sbi->cur_cp_pack == 1)
2259 		start_addr += sbi->blocks_per_seg;
2260 	return start_addr;
2261 }
2262 
__set_cp_next_pack(struct f2fs_sb_info * sbi)2263 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2264 {
2265 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2266 }
2267 
__start_sum_addr(struct f2fs_sb_info * sbi)2268 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2269 {
2270 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2271 }
2272 
inc_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2273 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2274 					struct inode *inode, bool is_inode)
2275 {
2276 	block_t	valid_block_count;
2277 	unsigned int valid_node_count, user_block_count;
2278 	int err;
2279 
2280 	if (is_inode) {
2281 		if (inode) {
2282 			err = dquot_alloc_inode(inode);
2283 			if (err)
2284 				return err;
2285 		}
2286 	} else {
2287 		err = dquot_reserve_block(inode, 1);
2288 		if (err)
2289 			return err;
2290 	}
2291 
2292 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2293 		f2fs_show_injection_info(sbi, FAULT_BLOCK);
2294 		goto enospc;
2295 	}
2296 
2297 	spin_lock(&sbi->stat_lock);
2298 
2299 	valid_block_count = sbi->total_valid_block_count +
2300 					sbi->current_reserved_blocks + 1;
2301 
2302 	if (!__allow_reserved_blocks(sbi, inode, false))
2303 		valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
2304 	user_block_count = sbi->user_block_count;
2305 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2306 		user_block_count -= sbi->unusable_block_count;
2307 
2308 	if (unlikely(valid_block_count > user_block_count)) {
2309 		spin_unlock(&sbi->stat_lock);
2310 		goto enospc;
2311 	}
2312 
2313 	valid_node_count = sbi->total_valid_node_count + 1;
2314 	if (unlikely(valid_node_count > sbi->total_node_count)) {
2315 		spin_unlock(&sbi->stat_lock);
2316 		goto enospc;
2317 	}
2318 
2319 	sbi->total_valid_node_count++;
2320 	sbi->total_valid_block_count++;
2321 	spin_unlock(&sbi->stat_lock);
2322 
2323 	if (inode) {
2324 		if (is_inode)
2325 			f2fs_mark_inode_dirty_sync(inode, true);
2326 		else
2327 			f2fs_i_blocks_write(inode, 1, true, true);
2328 	}
2329 
2330 	percpu_counter_inc(&sbi->alloc_valid_block_count);
2331 	return 0;
2332 
2333 enospc:
2334 	if (is_inode) {
2335 		if (inode)
2336 			dquot_free_inode(inode);
2337 	} else {
2338 		dquot_release_reservation_block(inode, 1);
2339 	}
2340 	return -ENOSPC;
2341 }
2342 
dec_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2343 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2344 					struct inode *inode, bool is_inode)
2345 {
2346 	spin_lock(&sbi->stat_lock);
2347 
2348 	f2fs_bug_on(sbi, !sbi->total_valid_block_count);
2349 	f2fs_bug_on(sbi, !sbi->total_valid_node_count);
2350 
2351 	sbi->total_valid_node_count--;
2352 	sbi->total_valid_block_count--;
2353 	if (sbi->reserved_blocks &&
2354 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2355 		sbi->current_reserved_blocks++;
2356 
2357 	spin_unlock(&sbi->stat_lock);
2358 
2359 	if (is_inode) {
2360 		dquot_free_inode(inode);
2361 	} else {
2362 		if (unlikely(inode->i_blocks == 0)) {
2363 			f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2364 				  inode->i_ino,
2365 				  (unsigned long long)inode->i_blocks);
2366 			set_sbi_flag(sbi, SBI_NEED_FSCK);
2367 			return;
2368 		}
2369 		f2fs_i_blocks_write(inode, 1, false, true);
2370 	}
2371 }
2372 
valid_node_count(struct f2fs_sb_info * sbi)2373 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2374 {
2375 	return sbi->total_valid_node_count;
2376 }
2377 
inc_valid_inode_count(struct f2fs_sb_info * sbi)2378 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2379 {
2380 	percpu_counter_inc(&sbi->total_valid_inode_count);
2381 }
2382 
dec_valid_inode_count(struct f2fs_sb_info * sbi)2383 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2384 {
2385 	percpu_counter_dec(&sbi->total_valid_inode_count);
2386 }
2387 
valid_inode_count(struct f2fs_sb_info * sbi)2388 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2389 {
2390 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2391 }
2392 
f2fs_grab_cache_page(struct address_space * mapping,pgoff_t index,bool for_write)2393 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2394 						pgoff_t index, bool for_write)
2395 {
2396 	struct page *page;
2397 
2398 	if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2399 		if (!for_write)
2400 			page = find_get_page_flags(mapping, index,
2401 							FGP_LOCK | FGP_ACCESSED);
2402 		else
2403 			page = find_lock_page(mapping, index);
2404 		if (page)
2405 			return page;
2406 
2407 		if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
2408 			f2fs_show_injection_info(F2FS_M_SB(mapping),
2409 							FAULT_PAGE_ALLOC);
2410 			return NULL;
2411 		}
2412 	}
2413 
2414 	if (!for_write)
2415 		return grab_cache_page(mapping, index);
2416 	return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
2417 }
2418 
f2fs_pagecache_get_page(struct address_space * mapping,pgoff_t index,int fgp_flags,gfp_t gfp_mask)2419 static inline struct page *f2fs_pagecache_get_page(
2420 				struct address_space *mapping, pgoff_t index,
2421 				int fgp_flags, gfp_t gfp_mask)
2422 {
2423 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
2424 		f2fs_show_injection_info(F2FS_M_SB(mapping), FAULT_PAGE_GET);
2425 		return NULL;
2426 	}
2427 
2428 	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2429 }
2430 
f2fs_copy_page(struct page * src,struct page * dst)2431 static inline void f2fs_copy_page(struct page *src, struct page *dst)
2432 {
2433 	char *src_kaddr = kmap(src);
2434 	char *dst_kaddr = kmap(dst);
2435 
2436 	memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
2437 	kunmap(dst);
2438 	kunmap(src);
2439 }
2440 
f2fs_put_page(struct page * page,int unlock)2441 static inline void f2fs_put_page(struct page *page, int unlock)
2442 {
2443 	if (!page)
2444 		return;
2445 
2446 	if (unlock) {
2447 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2448 		unlock_page(page);
2449 	}
2450 	put_page(page);
2451 }
2452 
f2fs_put_dnode(struct dnode_of_data * dn)2453 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2454 {
2455 	if (dn->node_page)
2456 		f2fs_put_page(dn->node_page, 1);
2457 	if (dn->inode_page && dn->node_page != dn->inode_page)
2458 		f2fs_put_page(dn->inode_page, 0);
2459 	dn->node_page = NULL;
2460 	dn->inode_page = NULL;
2461 }
2462 
f2fs_kmem_cache_create(const char * name,size_t size)2463 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2464 					size_t size)
2465 {
2466 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2467 }
2468 
f2fs_kmem_cache_alloc(struct kmem_cache * cachep,gfp_t flags)2469 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2470 						gfp_t flags)
2471 {
2472 	void *entry;
2473 
2474 	entry = kmem_cache_alloc(cachep, flags);
2475 	if (!entry)
2476 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2477 	return entry;
2478 }
2479 
is_idle(struct f2fs_sb_info * sbi,int type)2480 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2481 {
2482 	if (sbi->gc_mode == GC_URGENT_HIGH)
2483 		return true;
2484 
2485 	if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2486 		get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2487 		get_pages(sbi, F2FS_WB_CP_DATA) ||
2488 		get_pages(sbi, F2FS_DIO_READ) ||
2489 		get_pages(sbi, F2FS_DIO_WRITE))
2490 		return false;
2491 
2492 	if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2493 			atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2494 		return false;
2495 
2496 	if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2497 			atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2498 		return false;
2499 
2500 	if (sbi->gc_mode == GC_URGENT_LOW &&
2501 			(type == DISCARD_TIME || type == GC_TIME))
2502 		return true;
2503 
2504 	return f2fs_time_over(sbi, type);
2505 }
2506 
f2fs_radix_tree_insert(struct radix_tree_root * root,unsigned long index,void * item)2507 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2508 				unsigned long index, void *item)
2509 {
2510 	while (radix_tree_insert(root, index, item))
2511 		cond_resched();
2512 }
2513 
2514 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
2515 
IS_INODE(struct page * page)2516 static inline bool IS_INODE(struct page *page)
2517 {
2518 	struct f2fs_node *p = F2FS_NODE(page);
2519 
2520 	return RAW_IS_INODE(p);
2521 }
2522 
offset_in_addr(struct f2fs_inode * i)2523 static inline int offset_in_addr(struct f2fs_inode *i)
2524 {
2525 	return (i->i_inline & F2FS_EXTRA_ATTR) ?
2526 			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2527 }
2528 
blkaddr_in_node(struct f2fs_node * node)2529 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2530 {
2531 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2532 }
2533 
2534 static inline int f2fs_has_extra_attr(struct inode *inode);
data_blkaddr(struct inode * inode,struct page * node_page,unsigned int offset)2535 static inline block_t data_blkaddr(struct inode *inode,
2536 			struct page *node_page, unsigned int offset)
2537 {
2538 	struct f2fs_node *raw_node;
2539 	__le32 *addr_array;
2540 	int base = 0;
2541 	bool is_inode = IS_INODE(node_page);
2542 
2543 	raw_node = F2FS_NODE(node_page);
2544 
2545 	if (is_inode) {
2546 		if (!inode)
2547 			/* from GC path only */
2548 			base = offset_in_addr(&raw_node->i);
2549 		else if (f2fs_has_extra_attr(inode))
2550 			base = get_extra_isize(inode);
2551 	}
2552 
2553 	addr_array = blkaddr_in_node(raw_node);
2554 	return le32_to_cpu(addr_array[base + offset]);
2555 }
2556 
f2fs_data_blkaddr(struct dnode_of_data * dn)2557 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
2558 {
2559 	return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
2560 }
2561 
f2fs_test_bit(unsigned int nr,char * addr)2562 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2563 {
2564 	int mask;
2565 
2566 	addr += (nr >> 3);
2567 	mask = 1 << (7 - (nr & 0x07));
2568 	return mask & *addr;
2569 }
2570 
f2fs_set_bit(unsigned int nr,char * addr)2571 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2572 {
2573 	int mask;
2574 
2575 	addr += (nr >> 3);
2576 	mask = 1 << (7 - (nr & 0x07));
2577 	*addr |= mask;
2578 }
2579 
f2fs_clear_bit(unsigned int nr,char * addr)2580 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2581 {
2582 	int mask;
2583 
2584 	addr += (nr >> 3);
2585 	mask = 1 << (7 - (nr & 0x07));
2586 	*addr &= ~mask;
2587 }
2588 
f2fs_test_and_set_bit(unsigned int nr,char * addr)2589 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2590 {
2591 	int mask;
2592 	int ret;
2593 
2594 	addr += (nr >> 3);
2595 	mask = 1 << (7 - (nr & 0x07));
2596 	ret = mask & *addr;
2597 	*addr |= mask;
2598 	return ret;
2599 }
2600 
f2fs_test_and_clear_bit(unsigned int nr,char * addr)2601 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2602 {
2603 	int mask;
2604 	int ret;
2605 
2606 	addr += (nr >> 3);
2607 	mask = 1 << (7 - (nr & 0x07));
2608 	ret = mask & *addr;
2609 	*addr &= ~mask;
2610 	return ret;
2611 }
2612 
f2fs_change_bit(unsigned int nr,char * addr)2613 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2614 {
2615 	int mask;
2616 
2617 	addr += (nr >> 3);
2618 	mask = 1 << (7 - (nr & 0x07));
2619 	*addr ^= mask;
2620 }
2621 
2622 /*
2623  * On-disk inode flags (f2fs_inode::i_flags)
2624  */
2625 #define F2FS_COMPR_FL			0x00000004 /* Compress file */
2626 #define F2FS_SYNC_FL			0x00000008 /* Synchronous updates */
2627 #define F2FS_IMMUTABLE_FL		0x00000010 /* Immutable file */
2628 #define F2FS_APPEND_FL			0x00000020 /* writes to file may only append */
2629 #define F2FS_NODUMP_FL			0x00000040 /* do not dump file */
2630 #define F2FS_NOATIME_FL			0x00000080 /* do not update atime */
2631 #define F2FS_NOCOMP_FL			0x00000400 /* Don't compress */
2632 #define F2FS_INDEX_FL			0x00001000 /* hash-indexed directory */
2633 #define F2FS_DIRSYNC_FL			0x00010000 /* dirsync behaviour (directories only) */
2634 #define F2FS_PROJINHERIT_FL		0x20000000 /* Create with parents projid */
2635 #define F2FS_CASEFOLD_FL		0x40000000 /* Casefolded file */
2636 
2637 /* Flags that should be inherited by new inodes from their parent. */
2638 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
2639 			   F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2640 			   F2FS_CASEFOLD_FL | F2FS_COMPR_FL | F2FS_NOCOMP_FL)
2641 
2642 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2643 #define F2FS_REG_FLMASK		(~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2644 				F2FS_CASEFOLD_FL))
2645 
2646 /* Flags that are appropriate for non-directories/regular files. */
2647 #define F2FS_OTHER_FLMASK	(F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2648 
f2fs_mask_flags(umode_t mode,__u32 flags)2649 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2650 {
2651 	if (S_ISDIR(mode))
2652 		return flags;
2653 	else if (S_ISREG(mode))
2654 		return flags & F2FS_REG_FLMASK;
2655 	else
2656 		return flags & F2FS_OTHER_FLMASK;
2657 }
2658 
__mark_inode_dirty_flag(struct inode * inode,int flag,bool set)2659 static inline void __mark_inode_dirty_flag(struct inode *inode,
2660 						int flag, bool set)
2661 {
2662 	switch (flag) {
2663 	case FI_INLINE_XATTR:
2664 	case FI_INLINE_DATA:
2665 	case FI_INLINE_DENTRY:
2666 	case FI_NEW_INODE:
2667 		if (set)
2668 			return;
2669 		fallthrough;
2670 	case FI_DATA_EXIST:
2671 	case FI_INLINE_DOTS:
2672 	case FI_PIN_FILE:
2673 		f2fs_mark_inode_dirty_sync(inode, true);
2674 	}
2675 }
2676 
set_inode_flag(struct inode * inode,int flag)2677 static inline void set_inode_flag(struct inode *inode, int flag)
2678 {
2679 	set_bit(flag, F2FS_I(inode)->flags);
2680 	__mark_inode_dirty_flag(inode, flag, true);
2681 }
2682 
is_inode_flag_set(struct inode * inode,int flag)2683 static inline int is_inode_flag_set(struct inode *inode, int flag)
2684 {
2685 	return test_bit(flag, F2FS_I(inode)->flags);
2686 }
2687 
clear_inode_flag(struct inode * inode,int flag)2688 static inline void clear_inode_flag(struct inode *inode, int flag)
2689 {
2690 	clear_bit(flag, F2FS_I(inode)->flags);
2691 	__mark_inode_dirty_flag(inode, flag, false);
2692 }
2693 
f2fs_verity_in_progress(struct inode * inode)2694 static inline bool f2fs_verity_in_progress(struct inode *inode)
2695 {
2696 	return IS_ENABLED(CONFIG_FS_VERITY) &&
2697 	       is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
2698 }
2699 
set_acl_inode(struct inode * inode,umode_t mode)2700 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2701 {
2702 	F2FS_I(inode)->i_acl_mode = mode;
2703 	set_inode_flag(inode, FI_ACL_MODE);
2704 	f2fs_mark_inode_dirty_sync(inode, false);
2705 }
2706 
f2fs_i_links_write(struct inode * inode,bool inc)2707 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2708 {
2709 	if (inc)
2710 		inc_nlink(inode);
2711 	else
2712 		drop_nlink(inode);
2713 	f2fs_mark_inode_dirty_sync(inode, true);
2714 }
2715 
f2fs_i_blocks_write(struct inode * inode,block_t diff,bool add,bool claim)2716 static inline void f2fs_i_blocks_write(struct inode *inode,
2717 					block_t diff, bool add, bool claim)
2718 {
2719 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2720 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2721 
2722 	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
2723 	if (add) {
2724 		if (claim)
2725 			dquot_claim_block(inode, diff);
2726 		else
2727 			dquot_alloc_block_nofail(inode, diff);
2728 	} else {
2729 		dquot_free_block(inode, diff);
2730 	}
2731 
2732 	f2fs_mark_inode_dirty_sync(inode, true);
2733 	if (clean || recover)
2734 		set_inode_flag(inode, FI_AUTO_RECOVER);
2735 }
2736 
f2fs_i_size_write(struct inode * inode,loff_t i_size)2737 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2738 {
2739 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2740 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2741 
2742 	if (i_size_read(inode) == i_size)
2743 		return;
2744 
2745 	i_size_write(inode, i_size);
2746 	f2fs_mark_inode_dirty_sync(inode, true);
2747 	if (clean || recover)
2748 		set_inode_flag(inode, FI_AUTO_RECOVER);
2749 }
2750 
f2fs_i_depth_write(struct inode * inode,unsigned int depth)2751 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2752 {
2753 	F2FS_I(inode)->i_current_depth = depth;
2754 	f2fs_mark_inode_dirty_sync(inode, true);
2755 }
2756 
f2fs_i_gc_failures_write(struct inode * inode,unsigned int count)2757 static inline void f2fs_i_gc_failures_write(struct inode *inode,
2758 					unsigned int count)
2759 {
2760 	F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
2761 	f2fs_mark_inode_dirty_sync(inode, true);
2762 }
2763 
f2fs_i_xnid_write(struct inode * inode,nid_t xnid)2764 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2765 {
2766 	F2FS_I(inode)->i_xattr_nid = xnid;
2767 	f2fs_mark_inode_dirty_sync(inode, true);
2768 }
2769 
f2fs_i_pino_write(struct inode * inode,nid_t pino)2770 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2771 {
2772 	F2FS_I(inode)->i_pino = pino;
2773 	f2fs_mark_inode_dirty_sync(inode, true);
2774 }
2775 
get_inline_info(struct inode * inode,struct f2fs_inode * ri)2776 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2777 {
2778 	struct f2fs_inode_info *fi = F2FS_I(inode);
2779 
2780 	if (ri->i_inline & F2FS_INLINE_XATTR)
2781 		set_bit(FI_INLINE_XATTR, fi->flags);
2782 	if (ri->i_inline & F2FS_INLINE_DATA)
2783 		set_bit(FI_INLINE_DATA, fi->flags);
2784 	if (ri->i_inline & F2FS_INLINE_DENTRY)
2785 		set_bit(FI_INLINE_DENTRY, fi->flags);
2786 	if (ri->i_inline & F2FS_DATA_EXIST)
2787 		set_bit(FI_DATA_EXIST, fi->flags);
2788 	if (ri->i_inline & F2FS_INLINE_DOTS)
2789 		set_bit(FI_INLINE_DOTS, fi->flags);
2790 	if (ri->i_inline & F2FS_EXTRA_ATTR)
2791 		set_bit(FI_EXTRA_ATTR, fi->flags);
2792 	if (ri->i_inline & F2FS_PIN_FILE)
2793 		set_bit(FI_PIN_FILE, fi->flags);
2794 }
2795 
set_raw_inline(struct inode * inode,struct f2fs_inode * ri)2796 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2797 {
2798 	ri->i_inline = 0;
2799 
2800 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2801 		ri->i_inline |= F2FS_INLINE_XATTR;
2802 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
2803 		ri->i_inline |= F2FS_INLINE_DATA;
2804 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2805 		ri->i_inline |= F2FS_INLINE_DENTRY;
2806 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
2807 		ri->i_inline |= F2FS_DATA_EXIST;
2808 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2809 		ri->i_inline |= F2FS_INLINE_DOTS;
2810 	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2811 		ri->i_inline |= F2FS_EXTRA_ATTR;
2812 	if (is_inode_flag_set(inode, FI_PIN_FILE))
2813 		ri->i_inline |= F2FS_PIN_FILE;
2814 }
2815 
f2fs_has_extra_attr(struct inode * inode)2816 static inline int f2fs_has_extra_attr(struct inode *inode)
2817 {
2818 	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2819 }
2820 
f2fs_has_inline_xattr(struct inode * inode)2821 static inline int f2fs_has_inline_xattr(struct inode *inode)
2822 {
2823 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
2824 }
2825 
f2fs_compressed_file(struct inode * inode)2826 static inline int f2fs_compressed_file(struct inode *inode)
2827 {
2828 	return S_ISREG(inode->i_mode) &&
2829 		is_inode_flag_set(inode, FI_COMPRESSED_FILE);
2830 }
2831 
addrs_per_inode(struct inode * inode)2832 static inline unsigned int addrs_per_inode(struct inode *inode)
2833 {
2834 	unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
2835 				get_inline_xattr_addrs(inode);
2836 
2837 	if (!f2fs_compressed_file(inode))
2838 		return addrs;
2839 	return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
2840 }
2841 
addrs_per_block(struct inode * inode)2842 static inline unsigned int addrs_per_block(struct inode *inode)
2843 {
2844 	if (!f2fs_compressed_file(inode))
2845 		return DEF_ADDRS_PER_BLOCK;
2846 	return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size);
2847 }
2848 
inline_xattr_addr(struct inode * inode,struct page * page)2849 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
2850 {
2851 	struct f2fs_inode *ri = F2FS_INODE(page);
2852 
2853 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
2854 					get_inline_xattr_addrs(inode)]);
2855 }
2856 
inline_xattr_size(struct inode * inode)2857 static inline int inline_xattr_size(struct inode *inode)
2858 {
2859 	if (f2fs_has_inline_xattr(inode))
2860 		return get_inline_xattr_addrs(inode) * sizeof(__le32);
2861 	return 0;
2862 }
2863 
f2fs_has_inline_data(struct inode * inode)2864 static inline int f2fs_has_inline_data(struct inode *inode)
2865 {
2866 	return is_inode_flag_set(inode, FI_INLINE_DATA);
2867 }
2868 
f2fs_exist_data(struct inode * inode)2869 static inline int f2fs_exist_data(struct inode *inode)
2870 {
2871 	return is_inode_flag_set(inode, FI_DATA_EXIST);
2872 }
2873 
f2fs_has_inline_dots(struct inode * inode)2874 static inline int f2fs_has_inline_dots(struct inode *inode)
2875 {
2876 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
2877 }
2878 
f2fs_is_mmap_file(struct inode * inode)2879 static inline int f2fs_is_mmap_file(struct inode *inode)
2880 {
2881 	return is_inode_flag_set(inode, FI_MMAP_FILE);
2882 }
2883 
f2fs_is_pinned_file(struct inode * inode)2884 static inline bool f2fs_is_pinned_file(struct inode *inode)
2885 {
2886 	return is_inode_flag_set(inode, FI_PIN_FILE);
2887 }
2888 
f2fs_is_atomic_file(struct inode * inode)2889 static inline bool f2fs_is_atomic_file(struct inode *inode)
2890 {
2891 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
2892 }
2893 
f2fs_is_commit_atomic_write(struct inode * inode)2894 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
2895 {
2896 	return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
2897 }
2898 
f2fs_is_volatile_file(struct inode * inode)2899 static inline bool f2fs_is_volatile_file(struct inode *inode)
2900 {
2901 	return is_inode_flag_set(inode, FI_VOLATILE_FILE);
2902 }
2903 
f2fs_is_first_block_written(struct inode * inode)2904 static inline bool f2fs_is_first_block_written(struct inode *inode)
2905 {
2906 	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
2907 }
2908 
f2fs_is_drop_cache(struct inode * inode)2909 static inline bool f2fs_is_drop_cache(struct inode *inode)
2910 {
2911 	return is_inode_flag_set(inode, FI_DROP_CACHE);
2912 }
2913 
inline_data_addr(struct inode * inode,struct page * page)2914 static inline void *inline_data_addr(struct inode *inode, struct page *page)
2915 {
2916 	struct f2fs_inode *ri = F2FS_INODE(page);
2917 	int extra_size = get_extra_isize(inode);
2918 
2919 	return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
2920 }
2921 
f2fs_has_inline_dentry(struct inode * inode)2922 static inline int f2fs_has_inline_dentry(struct inode *inode)
2923 {
2924 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
2925 }
2926 
is_file(struct inode * inode,int type)2927 static inline int is_file(struct inode *inode, int type)
2928 {
2929 	return F2FS_I(inode)->i_advise & type;
2930 }
2931 
set_file(struct inode * inode,int type)2932 static inline void set_file(struct inode *inode, int type)
2933 {
2934 	F2FS_I(inode)->i_advise |= type;
2935 	f2fs_mark_inode_dirty_sync(inode, true);
2936 }
2937 
clear_file(struct inode * inode,int type)2938 static inline void clear_file(struct inode *inode, int type)
2939 {
2940 	F2FS_I(inode)->i_advise &= ~type;
2941 	f2fs_mark_inode_dirty_sync(inode, true);
2942 }
2943 
f2fs_is_time_consistent(struct inode * inode)2944 static inline bool f2fs_is_time_consistent(struct inode *inode)
2945 {
2946 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
2947 		return false;
2948 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
2949 		return false;
2950 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
2951 		return false;
2952 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3,
2953 						&F2FS_I(inode)->i_crtime))
2954 		return false;
2955 	return true;
2956 }
2957 
f2fs_skip_inode_update(struct inode * inode,int dsync)2958 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2959 {
2960 	bool ret;
2961 
2962 	if (dsync) {
2963 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2964 
2965 		spin_lock(&sbi->inode_lock[DIRTY_META]);
2966 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
2967 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
2968 		return ret;
2969 	}
2970 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2971 			file_keep_isize(inode) ||
2972 			i_size_read(inode) & ~PAGE_MASK)
2973 		return false;
2974 
2975 	if (!f2fs_is_time_consistent(inode))
2976 		return false;
2977 
2978 	spin_lock(&F2FS_I(inode)->i_size_lock);
2979 	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
2980 	spin_unlock(&F2FS_I(inode)->i_size_lock);
2981 
2982 	return ret;
2983 }
2984 
f2fs_readonly(struct super_block * sb)2985 static inline bool f2fs_readonly(struct super_block *sb)
2986 {
2987 	return sb_rdonly(sb);
2988 }
2989 
f2fs_cp_error(struct f2fs_sb_info * sbi)2990 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
2991 {
2992 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
2993 }
2994 
is_dot_dotdot(const u8 * name,size_t len)2995 static inline bool is_dot_dotdot(const u8 *name, size_t len)
2996 {
2997 	if (len == 1 && name[0] == '.')
2998 		return true;
2999 
3000 	if (len == 2 && name[0] == '.' && name[1] == '.')
3001 		return true;
3002 
3003 	return false;
3004 }
3005 
f2fs_may_extent_tree(struct inode * inode)3006 static inline bool f2fs_may_extent_tree(struct inode *inode)
3007 {
3008 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3009 
3010 	if (!test_opt(sbi, EXTENT_CACHE) ||
3011 			is_inode_flag_set(inode, FI_NO_EXTENT) ||
3012 			is_inode_flag_set(inode, FI_COMPRESSED_FILE))
3013 		return false;
3014 
3015 	/*
3016 	 * for recovered files during mount do not create extents
3017 	 * if shrinker is not registered.
3018 	 */
3019 	if (list_empty(&sbi->s_list))
3020 		return false;
3021 
3022 	return S_ISREG(inode->i_mode);
3023 }
3024 
f2fs_kmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3025 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
3026 					size_t size, gfp_t flags)
3027 {
3028 	if (time_to_inject(sbi, FAULT_KMALLOC)) {
3029 		f2fs_show_injection_info(sbi, FAULT_KMALLOC);
3030 		return NULL;
3031 	}
3032 
3033 	return kmalloc(size, flags);
3034 }
3035 
f2fs_kzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3036 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
3037 					size_t size, gfp_t flags)
3038 {
3039 	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
3040 }
3041 
f2fs_kvmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3042 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
3043 					size_t size, gfp_t flags)
3044 {
3045 	if (time_to_inject(sbi, FAULT_KVMALLOC)) {
3046 		f2fs_show_injection_info(sbi, FAULT_KVMALLOC);
3047 		return NULL;
3048 	}
3049 
3050 	return kvmalloc(size, flags);
3051 }
3052 
f2fs_kvzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3053 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
3054 					size_t size, gfp_t flags)
3055 {
3056 	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
3057 }
3058 
get_extra_isize(struct inode * inode)3059 static inline int get_extra_isize(struct inode *inode)
3060 {
3061 	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
3062 }
3063 
get_inline_xattr_addrs(struct inode * inode)3064 static inline int get_inline_xattr_addrs(struct inode *inode)
3065 {
3066 	return F2FS_I(inode)->i_inline_xattr_size;
3067 }
3068 
3069 #define f2fs_get_inode_mode(i) \
3070 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
3071 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
3072 
3073 #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
3074 	(offsetof(struct f2fs_inode, i_extra_end) -	\
3075 	offsetof(struct f2fs_inode, i_extra_isize))	\
3076 
3077 #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
3078 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
3079 		((offsetof(typeof(*(f2fs_inode)), field) +	\
3080 		sizeof((f2fs_inode)->field))			\
3081 		<= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize)))	\
3082 
3083 #define DEFAULT_IOSTAT_PERIOD_MS	3000
3084 #define MIN_IOSTAT_PERIOD_MS		100
3085 /* maximum period of iostat tracing is 1 day */
3086 #define MAX_IOSTAT_PERIOD_MS		8640000
3087 
f2fs_reset_iostat(struct f2fs_sb_info * sbi)3088 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi)
3089 {
3090 	int i;
3091 
3092 	spin_lock(&sbi->iostat_lock);
3093 	for (i = 0; i < NR_IO_TYPE; i++) {
3094 		sbi->rw_iostat[i] = 0;
3095 		sbi->prev_rw_iostat[i] = 0;
3096 	}
3097 	spin_unlock(&sbi->iostat_lock);
3098 }
3099 
3100 extern void f2fs_record_iostat(struct f2fs_sb_info *sbi);
3101 
f2fs_update_iostat(struct f2fs_sb_info * sbi,enum iostat_type type,unsigned long long io_bytes)3102 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi,
3103 			enum iostat_type type, unsigned long long io_bytes)
3104 {
3105 	if (!sbi->iostat_enable)
3106 		return;
3107 	spin_lock(&sbi->iostat_lock);
3108 	sbi->rw_iostat[type] += io_bytes;
3109 
3110 	if (type == APP_WRITE_IO || type == APP_DIRECT_IO)
3111 		sbi->rw_iostat[APP_BUFFERED_IO] =
3112 			sbi->rw_iostat[APP_WRITE_IO] -
3113 			sbi->rw_iostat[APP_DIRECT_IO];
3114 
3115 	if (type == APP_READ_IO || type == APP_DIRECT_READ_IO)
3116 		sbi->rw_iostat[APP_BUFFERED_READ_IO] =
3117 			sbi->rw_iostat[APP_READ_IO] -
3118 			sbi->rw_iostat[APP_DIRECT_READ_IO];
3119 	spin_unlock(&sbi->iostat_lock);
3120 
3121 	f2fs_record_iostat(sbi);
3122 }
3123 
3124 #define __is_large_section(sbi)		((sbi)->segs_per_sec > 1)
3125 
3126 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3127 
3128 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3129 					block_t blkaddr, int type);
verify_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr,int type)3130 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3131 					block_t blkaddr, int type)
3132 {
3133 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
3134 		f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3135 			 blkaddr, type);
3136 		f2fs_bug_on(sbi, 1);
3137 	}
3138 }
3139 
__is_valid_data_blkaddr(block_t blkaddr)3140 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3141 {
3142 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3143 			blkaddr == COMPRESS_ADDR)
3144 		return false;
3145 	return true;
3146 }
3147 
f2fs_set_page_private(struct page * page,unsigned long data)3148 static inline void f2fs_set_page_private(struct page *page,
3149 						unsigned long data)
3150 {
3151 	if (PagePrivate(page))
3152 		return;
3153 
3154 	attach_page_private(page, (void *)data);
3155 }
3156 
f2fs_clear_page_private(struct page * page)3157 static inline void f2fs_clear_page_private(struct page *page)
3158 {
3159 	detach_page_private(page);
3160 }
3161 
3162 /*
3163  * file.c
3164  */
3165 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3166 void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
3167 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3168 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3169 int f2fs_truncate(struct inode *inode);
3170 int f2fs_getattr(const struct path *path, struct kstat *stat,
3171 			u32 request_mask, unsigned int flags);
3172 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
3173 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3174 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3175 int f2fs_precache_extents(struct inode *inode);
3176 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3177 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3178 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3179 int f2fs_pin_file_control(struct inode *inode, bool inc);
3180 
3181 /*
3182  * inode.c
3183  */
3184 void f2fs_set_inode_flags(struct inode *inode);
3185 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3186 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3187 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3188 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3189 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3190 void f2fs_update_inode(struct inode *inode, struct page *node_page);
3191 void f2fs_update_inode_page(struct inode *inode);
3192 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3193 void f2fs_evict_inode(struct inode *inode);
3194 void f2fs_handle_failed_inode(struct inode *inode);
3195 
3196 /*
3197  * namei.c
3198  */
3199 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3200 							bool hot, bool set);
3201 struct dentry *f2fs_get_parent(struct dentry *child);
3202 
3203 /*
3204  * dir.c
3205  */
3206 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
3207 int f2fs_init_casefolded_name(const struct inode *dir,
3208 			      struct f2fs_filename *fname);
3209 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3210 			int lookup, struct f2fs_filename *fname);
3211 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3212 			struct f2fs_filename *fname);
3213 void f2fs_free_filename(struct f2fs_filename *fname);
3214 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3215 			const struct f2fs_filename *fname, int *max_slots);
3216 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3217 			unsigned int start_pos, struct fscrypt_str *fstr);
3218 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3219 			struct f2fs_dentry_ptr *d);
3220 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3221 			const struct f2fs_filename *fname, struct page *dpage);
3222 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3223 			unsigned int current_depth);
3224 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3225 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3226 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3227 					 const struct f2fs_filename *fname,
3228 					 struct page **res_page);
3229 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3230 			const struct qstr *child, struct page **res_page);
3231 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3232 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3233 			struct page **page);
3234 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3235 			struct page *page, struct inode *inode);
3236 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3237 			  const struct f2fs_filename *fname);
3238 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3239 			const struct fscrypt_str *name, f2fs_hash_t name_hash,
3240 			unsigned int bit_pos);
3241 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3242 			struct inode *inode, nid_t ino, umode_t mode);
3243 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3244 			struct inode *inode, nid_t ino, umode_t mode);
3245 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3246 			struct inode *inode, nid_t ino, umode_t mode);
3247 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3248 			struct inode *dir, struct inode *inode);
3249 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
3250 bool f2fs_empty_dir(struct inode *dir);
3251 
f2fs_add_link(struct dentry * dentry,struct inode * inode)3252 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3253 {
3254 	return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3255 				inode, inode->i_ino, inode->i_mode);
3256 }
3257 
3258 /*
3259  * super.c
3260  */
3261 int f2fs_inode_dirtied(struct inode *inode, bool sync);
3262 void f2fs_inode_synced(struct inode *inode);
3263 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3264 int f2fs_quota_sync(struct super_block *sb, int type);
3265 void f2fs_quota_off_umount(struct super_block *sb);
3266 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3267 int f2fs_sync_fs(struct super_block *sb, int sync);
3268 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3269 
3270 /*
3271  * hash.c
3272  */
3273 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3274 
3275 /*
3276  * node.c
3277  */
3278 struct dnode_of_data;
3279 struct node_info;
3280 
3281 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3282 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3283 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3284 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3285 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3286 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3287 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3288 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3289 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3290 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3291 						struct node_info *ni);
3292 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3293 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3294 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3295 int f2fs_truncate_xattr_node(struct inode *inode);
3296 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3297 					unsigned int seq_id);
3298 int f2fs_remove_inode_page(struct inode *inode);
3299 struct page *f2fs_new_inode_page(struct inode *inode);
3300 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3301 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3302 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3303 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3304 int f2fs_move_node_page(struct page *node_page, int gc_type);
3305 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3306 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3307 			struct writeback_control *wbc, bool atomic,
3308 			unsigned int *seq_id);
3309 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3310 			struct writeback_control *wbc,
3311 			bool do_balance, enum iostat_type io_type);
3312 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3313 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3314 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3315 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3316 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3317 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3318 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3319 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3320 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3321 			unsigned int segno, struct f2fs_summary_block *sum);
3322 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3323 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3324 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3325 int __init f2fs_create_node_manager_caches(void);
3326 void f2fs_destroy_node_manager_caches(void);
3327 
3328 /*
3329  * segment.c
3330  */
3331 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3332 void f2fs_register_inmem_page(struct inode *inode, struct page *page);
3333 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure);
3334 void f2fs_drop_inmem_pages(struct inode *inode);
3335 void f2fs_drop_inmem_page(struct inode *inode, struct page *page);
3336 int f2fs_commit_inmem_pages(struct inode *inode);
3337 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3338 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3339 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3340 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3341 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3342 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3343 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3344 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3345 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3346 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3347 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3348 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3349 					struct cp_control *cpc);
3350 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3351 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3352 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3353 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3354 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3355 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi);
3356 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi);
3357 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi);
3358 void f2fs_get_new_segment(struct f2fs_sb_info *sbi,
3359 			unsigned int *newseg, bool new_sec, int dir);
3360 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3361 					unsigned int start, unsigned int end);
3362 void f2fs_allocate_new_segment(struct f2fs_sb_info *sbi, int type);
3363 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3364 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3365 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3366 					struct cp_control *cpc);
3367 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3368 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3369 					block_t blk_addr);
3370 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3371 						enum iostat_type io_type);
3372 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3373 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3374 			struct f2fs_io_info *fio);
3375 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3376 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3377 			block_t old_blkaddr, block_t new_blkaddr,
3378 			bool recover_curseg, bool recover_newaddr,
3379 			bool from_gc);
3380 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3381 			block_t old_addr, block_t new_addr,
3382 			unsigned char version, bool recover_curseg,
3383 			bool recover_newaddr);
3384 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3385 			block_t old_blkaddr, block_t *new_blkaddr,
3386 			struct f2fs_summary *sum, int type,
3387 			struct f2fs_io_info *fio);
3388 void f2fs_wait_on_page_writeback(struct page *page,
3389 			enum page_type type, bool ordered, bool locked);
3390 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3391 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3392 								block_t len);
3393 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3394 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3395 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3396 			unsigned int val, int alloc);
3397 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3398 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi);
3399 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi);
3400 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3401 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3402 int __init f2fs_create_segment_manager_caches(void);
3403 void f2fs_destroy_segment_manager_caches(void);
3404 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3405 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3406 			enum page_type type, enum temp_type temp);
3407 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
3408 			unsigned int segno);
3409 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
3410 			unsigned int segno);
3411 
3412 /*
3413  * checkpoint.c
3414  */
3415 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
3416 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3417 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3418 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index);
3419 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3420 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3421 					block_t blkaddr, int type);
3422 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3423 			int type, bool sync);
3424 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
3425 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3426 			long nr_to_write, enum iostat_type io_type);
3427 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3428 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3429 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3430 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3431 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3432 					unsigned int devidx, int type);
3433 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3434 					unsigned int devidx, int type);
3435 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
3436 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3437 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3438 void f2fs_add_orphan_inode(struct inode *inode);
3439 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3440 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3441 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3442 void f2fs_update_dirty_page(struct inode *inode, struct page *page);
3443 void f2fs_remove_dirty_inode(struct inode *inode);
3444 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
3445 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3446 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3447 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3448 int __init f2fs_create_checkpoint_caches(void);
3449 void f2fs_destroy_checkpoint_caches(void);
3450 
3451 /*
3452  * data.c
3453  */
3454 int __init f2fs_init_bioset(void);
3455 void f2fs_destroy_bioset(void);
3456 struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi, int npages, bool noio);
3457 int f2fs_init_bio_entry_cache(void);
3458 void f2fs_destroy_bio_entry_cache(void);
3459 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
3460 				struct bio *bio, enum page_type type);
3461 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3462 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3463 				struct inode *inode, struct page *page,
3464 				nid_t ino, enum page_type type);
3465 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3466 					struct bio **bio, struct page *page);
3467 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3468 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3469 int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3470 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3471 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3472 			block_t blk_addr, struct bio *bio);
3473 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3474 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3475 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3476 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3477 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3478 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
3479 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
3480 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3481 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3482 			int op_flags, bool for_write);
3483 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index);
3484 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3485 			bool for_write);
3486 struct page *f2fs_get_new_data_page(struct inode *inode,
3487 			struct page *ipage, pgoff_t index, bool new_i_size);
3488 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3489 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock);
3490 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
3491 			int create, int flag);
3492 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3493 			u64 start, u64 len);
3494 int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3495 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3496 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3497 int f2fs_write_single_data_page(struct page *page, int *submitted,
3498 				struct bio **bio, sector_t *last_block,
3499 				struct writeback_control *wbc,
3500 				enum iostat_type io_type,
3501 				int compr_blocks);
3502 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3503 			unsigned int length);
3504 int f2fs_release_page(struct page *page, gfp_t wait);
3505 #ifdef CONFIG_MIGRATION
3506 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
3507 			struct page *page, enum migrate_mode mode);
3508 #endif
3509 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3510 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3511 int f2fs_init_post_read_processing(void);
3512 void f2fs_destroy_post_read_processing(void);
3513 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
3514 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
3515 
3516 /*
3517  * gc.c
3518  */
3519 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3520 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3521 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3522 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background,
3523 			unsigned int segno);
3524 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3525 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count);
3526 int __init f2fs_create_garbage_collection_cache(void);
3527 void f2fs_destroy_garbage_collection_cache(void);
3528 
3529 /*
3530  * recovery.c
3531  */
3532 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3533 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3534 
3535 /*
3536  * debug.c
3537  */
3538 #ifdef CONFIG_F2FS_STAT_FS
3539 struct f2fs_stat_info {
3540 	struct list_head stat_list;
3541 	struct f2fs_sb_info *sbi;
3542 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3543 	int main_area_segs, main_area_sections, main_area_zones;
3544 	unsigned long long hit_largest, hit_cached, hit_rbtree;
3545 	unsigned long long hit_total, total_ext;
3546 	int ext_tree, zombie_tree, ext_node;
3547 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3548 	int ndirty_data, ndirty_qdata;
3549 	int inmem_pages;
3550 	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3551 	int nats, dirty_nats, sits, dirty_sits;
3552 	int free_nids, avail_nids, alloc_nids;
3553 	int total_count, utilization;
3554 	int bg_gc, nr_wb_cp_data, nr_wb_data;
3555 	int nr_rd_data, nr_rd_node, nr_rd_meta;
3556 	int nr_dio_read, nr_dio_write;
3557 	unsigned int io_skip_bggc, other_skip_bggc;
3558 	int nr_flushing, nr_flushed, flush_list_empty;
3559 	int nr_discarding, nr_discarded;
3560 	int nr_discard_cmd;
3561 	unsigned int undiscard_blks;
3562 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3563 	int compr_inode;
3564 	unsigned long long compr_blocks;
3565 	int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
3566 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3567 	unsigned int bimodal, avg_vblocks;
3568 	int util_free, util_valid, util_invalid;
3569 	int rsvd_segs, overp_segs;
3570 	int dirty_count, node_pages, meta_pages;
3571 	int prefree_count, call_count, cp_count, bg_cp_count;
3572 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
3573 	int bg_node_segs, bg_data_segs;
3574 	int tot_blks, data_blks, node_blks;
3575 	int bg_data_blks, bg_node_blks;
3576 	unsigned long long skipped_atomic_files[2];
3577 	int curseg[NR_CURSEG_TYPE];
3578 	int cursec[NR_CURSEG_TYPE];
3579 	int curzone[NR_CURSEG_TYPE];
3580 	unsigned int dirty_seg[NR_CURSEG_TYPE];
3581 	unsigned int full_seg[NR_CURSEG_TYPE];
3582 	unsigned int valid_blks[NR_CURSEG_TYPE];
3583 
3584 	unsigned int meta_count[META_MAX];
3585 	unsigned int segment_count[2];
3586 	unsigned int block_count[2];
3587 	unsigned int inplace_count;
3588 	unsigned long long base_mem, cache_mem, page_mem;
3589 };
3590 
F2FS_STAT(struct f2fs_sb_info * sbi)3591 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3592 {
3593 	return (struct f2fs_stat_info *)sbi->stat_info;
3594 }
3595 
3596 #define stat_inc_cp_count(si)		((si)->cp_count++)
3597 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
3598 #define stat_inc_call_count(si)		((si)->call_count++)
3599 #define stat_inc_bggc_count(si)		((si)->bg_gc++)
3600 #define stat_io_skip_bggc_count(sbi)	((sbi)->io_skip_bggc++)
3601 #define stat_other_skip_bggc_count(sbi)	((sbi)->other_skip_bggc++)
3602 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
3603 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
3604 #define stat_inc_total_hit(sbi)		(atomic64_inc(&(sbi)->total_hit_ext))
3605 #define stat_inc_rbtree_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_rbtree))
3606 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
3607 #define stat_inc_cached_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_cached))
3608 #define stat_inc_inline_xattr(inode)					\
3609 	do {								\
3610 		if (f2fs_has_inline_xattr(inode))			\
3611 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
3612 	} while (0)
3613 #define stat_dec_inline_xattr(inode)					\
3614 	do {								\
3615 		if (f2fs_has_inline_xattr(inode))			\
3616 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
3617 	} while (0)
3618 #define stat_inc_inline_inode(inode)					\
3619 	do {								\
3620 		if (f2fs_has_inline_data(inode))			\
3621 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
3622 	} while (0)
3623 #define stat_dec_inline_inode(inode)					\
3624 	do {								\
3625 		if (f2fs_has_inline_data(inode))			\
3626 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
3627 	} while (0)
3628 #define stat_inc_inline_dir(inode)					\
3629 	do {								\
3630 		if (f2fs_has_inline_dentry(inode))			\
3631 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
3632 	} while (0)
3633 #define stat_dec_inline_dir(inode)					\
3634 	do {								\
3635 		if (f2fs_has_inline_dentry(inode))			\
3636 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
3637 	} while (0)
3638 #define stat_inc_compr_inode(inode)					\
3639 	do {								\
3640 		if (f2fs_compressed_file(inode))			\
3641 			(atomic_inc(&F2FS_I_SB(inode)->compr_inode));	\
3642 	} while (0)
3643 #define stat_dec_compr_inode(inode)					\
3644 	do {								\
3645 		if (f2fs_compressed_file(inode))			\
3646 			(atomic_dec(&F2FS_I_SB(inode)->compr_inode));	\
3647 	} while (0)
3648 #define stat_add_compr_blocks(inode, blocks)				\
3649 		(atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
3650 #define stat_sub_compr_blocks(inode, blocks)				\
3651 		(atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
3652 #define stat_inc_meta_count(sbi, blkaddr)				\
3653 	do {								\
3654 		if (blkaddr < SIT_I(sbi)->sit_base_addr)		\
3655 			atomic_inc(&(sbi)->meta_count[META_CP]);	\
3656 		else if (blkaddr < NM_I(sbi)->nat_blkaddr)		\
3657 			atomic_inc(&(sbi)->meta_count[META_SIT]);	\
3658 		else if (blkaddr < SM_I(sbi)->ssa_blkaddr)		\
3659 			atomic_inc(&(sbi)->meta_count[META_NAT]);	\
3660 		else if (blkaddr < SM_I(sbi)->main_blkaddr)		\
3661 			atomic_inc(&(sbi)->meta_count[META_SSA]);	\
3662 	} while (0)
3663 #define stat_inc_seg_type(sbi, curseg)					\
3664 		((sbi)->segment_count[(curseg)->alloc_type]++)
3665 #define stat_inc_block_count(sbi, curseg)				\
3666 		((sbi)->block_count[(curseg)->alloc_type]++)
3667 #define stat_inc_inplace_blocks(sbi)					\
3668 		(atomic_inc(&(sbi)->inplace_count))
3669 #define stat_update_max_atomic_write(inode)				\
3670 	do {								\
3671 		int cur = F2FS_I_SB(inode)->atomic_files;	\
3672 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
3673 		if (cur > max)						\
3674 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
3675 	} while (0)
3676 #define stat_inc_volatile_write(inode)					\
3677 		(atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
3678 #define stat_dec_volatile_write(inode)					\
3679 		(atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
3680 #define stat_update_max_volatile_write(inode)				\
3681 	do {								\
3682 		int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt);	\
3683 		int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt);	\
3684 		if (cur > max)						\
3685 			atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur);	\
3686 	} while (0)
3687 #define stat_inc_seg_count(sbi, type, gc_type)				\
3688 	do {								\
3689 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3690 		si->tot_segs++;						\
3691 		if ((type) == SUM_TYPE_DATA) {				\
3692 			si->data_segs++;				\
3693 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
3694 		} else {						\
3695 			si->node_segs++;				\
3696 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
3697 		}							\
3698 	} while (0)
3699 
3700 #define stat_inc_tot_blk_count(si, blks)				\
3701 	((si)->tot_blks += (blks))
3702 
3703 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
3704 	do {								\
3705 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3706 		stat_inc_tot_blk_count(si, blks);			\
3707 		si->data_blks += (blks);				\
3708 		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3709 	} while (0)
3710 
3711 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
3712 	do {								\
3713 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3714 		stat_inc_tot_blk_count(si, blks);			\
3715 		si->node_blks += (blks);				\
3716 		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3717 	} while (0)
3718 
3719 int f2fs_build_stats(struct f2fs_sb_info *sbi);
3720 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
3721 void __init f2fs_create_root_stats(void);
3722 void f2fs_destroy_root_stats(void);
3723 void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
3724 #else
3725 #define stat_inc_cp_count(si)				do { } while (0)
3726 #define stat_inc_bg_cp_count(si)			do { } while (0)
3727 #define stat_inc_call_count(si)				do { } while (0)
3728 #define stat_inc_bggc_count(si)				do { } while (0)
3729 #define stat_io_skip_bggc_count(sbi)			do { } while (0)
3730 #define stat_other_skip_bggc_count(sbi)			do { } while (0)
3731 #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
3732 #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
3733 #define stat_inc_total_hit(sbi)				do { } while (0)
3734 #define stat_inc_rbtree_node_hit(sbi)			do { } while (0)
3735 #define stat_inc_largest_node_hit(sbi)			do { } while (0)
3736 #define stat_inc_cached_node_hit(sbi)			do { } while (0)
3737 #define stat_inc_inline_xattr(inode)			do { } while (0)
3738 #define stat_dec_inline_xattr(inode)			do { } while (0)
3739 #define stat_inc_inline_inode(inode)			do { } while (0)
3740 #define stat_dec_inline_inode(inode)			do { } while (0)
3741 #define stat_inc_inline_dir(inode)			do { } while (0)
3742 #define stat_dec_inline_dir(inode)			do { } while (0)
3743 #define stat_inc_compr_inode(inode)			do { } while (0)
3744 #define stat_dec_compr_inode(inode)			do { } while (0)
3745 #define stat_add_compr_blocks(inode, blocks)		do { } while (0)
3746 #define stat_sub_compr_blocks(inode, blocks)		do { } while (0)
3747 #define stat_inc_atomic_write(inode)			do { } while (0)
3748 #define stat_dec_atomic_write(inode)			do { } while (0)
3749 #define stat_update_max_atomic_write(inode)		do { } while (0)
3750 #define stat_inc_volatile_write(inode)			do { } while (0)
3751 #define stat_dec_volatile_write(inode)			do { } while (0)
3752 #define stat_update_max_volatile_write(inode)		do { } while (0)
3753 #define stat_inc_meta_count(sbi, blkaddr)		do { } while (0)
3754 #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
3755 #define stat_inc_block_count(sbi, curseg)		do { } while (0)
3756 #define stat_inc_inplace_blocks(sbi)			do { } while (0)
3757 #define stat_inc_seg_count(sbi, type, gc_type)		do { } while (0)
3758 #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
3759 #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
3760 #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
3761 
f2fs_build_stats(struct f2fs_sb_info * sbi)3762 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_stats(struct f2fs_sb_info * sbi)3763 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
f2fs_create_root_stats(void)3764 static inline void __init f2fs_create_root_stats(void) { }
f2fs_destroy_root_stats(void)3765 static inline void f2fs_destroy_root_stats(void) { }
f2fs_update_sit_info(struct f2fs_sb_info * sbi)3766 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
3767 #endif
3768 
3769 extern const struct file_operations f2fs_dir_operations;
3770 #ifdef CONFIG_UNICODE
3771 extern const struct dentry_operations f2fs_dentry_ops;
3772 #endif
3773 extern const struct file_operations f2fs_file_operations;
3774 extern const struct inode_operations f2fs_file_inode_operations;
3775 extern const struct address_space_operations f2fs_dblock_aops;
3776 extern const struct address_space_operations f2fs_node_aops;
3777 extern const struct address_space_operations f2fs_meta_aops;
3778 extern const struct inode_operations f2fs_dir_inode_operations;
3779 extern const struct inode_operations f2fs_symlink_inode_operations;
3780 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
3781 extern const struct inode_operations f2fs_special_inode_operations;
3782 extern struct kmem_cache *f2fs_inode_entry_slab;
3783 
3784 /*
3785  * inline.c
3786  */
3787 bool f2fs_may_inline_data(struct inode *inode);
3788 bool f2fs_may_inline_dentry(struct inode *inode);
3789 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
3790 void f2fs_truncate_inline_inode(struct inode *inode,
3791 						struct page *ipage, u64 from);
3792 int f2fs_read_inline_data(struct inode *inode, struct page *page);
3793 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
3794 int f2fs_convert_inline_inode(struct inode *inode);
3795 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
3796 int f2fs_write_inline_data(struct inode *inode, struct page *page);
3797 int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
3798 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
3799 					const struct f2fs_filename *fname,
3800 					struct page **res_page);
3801 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
3802 			struct page *ipage);
3803 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
3804 			struct inode *inode, nid_t ino, umode_t mode);
3805 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
3806 				struct page *page, struct inode *dir,
3807 				struct inode *inode);
3808 bool f2fs_empty_inline_dir(struct inode *dir);
3809 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
3810 			struct fscrypt_str *fstr);
3811 int f2fs_inline_data_fiemap(struct inode *inode,
3812 			struct fiemap_extent_info *fieinfo,
3813 			__u64 start, __u64 len);
3814 
3815 /*
3816  * shrinker.c
3817  */
3818 unsigned long f2fs_shrink_count(struct shrinker *shrink,
3819 			struct shrink_control *sc);
3820 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
3821 			struct shrink_control *sc);
3822 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
3823 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
3824 
3825 /*
3826  * extent_cache.c
3827  */
3828 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
3829 				struct rb_entry *cached_re, unsigned int ofs);
3830 struct rb_node **f2fs_lookup_rb_tree_ext(struct f2fs_sb_info *sbi,
3831 				struct rb_root_cached *root,
3832 				struct rb_node **parent,
3833 				unsigned long long key, bool *left_most);
3834 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
3835 				struct rb_root_cached *root,
3836 				struct rb_node **parent,
3837 				unsigned int ofs, bool *leftmost);
3838 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
3839 		struct rb_entry *cached_re, unsigned int ofs,
3840 		struct rb_entry **prev_entry, struct rb_entry **next_entry,
3841 		struct rb_node ***insert_p, struct rb_node **insert_parent,
3842 		bool force, bool *leftmost);
3843 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
3844 				struct rb_root_cached *root, bool check_key);
3845 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
3846 void f2fs_init_extent_tree(struct inode *inode, struct page *ipage);
3847 void f2fs_drop_extent_tree(struct inode *inode);
3848 unsigned int f2fs_destroy_extent_node(struct inode *inode);
3849 void f2fs_destroy_extent_tree(struct inode *inode);
3850 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
3851 			struct extent_info *ei);
3852 void f2fs_update_extent_cache(struct dnode_of_data *dn);
3853 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
3854 			pgoff_t fofs, block_t blkaddr, unsigned int len);
3855 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
3856 int __init f2fs_create_extent_cache(void);
3857 void f2fs_destroy_extent_cache(void);
3858 
3859 /*
3860  * sysfs.c
3861  */
3862 int __init f2fs_init_sysfs(void);
3863 void f2fs_exit_sysfs(void);
3864 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
3865 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
3866 
3867 /* verity.c */
3868 extern const struct fsverity_operations f2fs_verityops;
3869 
3870 /*
3871  * crypto support
3872  */
f2fs_encrypted_file(struct inode * inode)3873 static inline bool f2fs_encrypted_file(struct inode *inode)
3874 {
3875 	return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
3876 }
3877 
f2fs_set_encrypted_inode(struct inode * inode)3878 static inline void f2fs_set_encrypted_inode(struct inode *inode)
3879 {
3880 #ifdef CONFIG_FS_ENCRYPTION
3881 	file_set_encrypt(inode);
3882 	f2fs_set_inode_flags(inode);
3883 #endif
3884 }
3885 
3886 /*
3887  * Returns true if the reads of the inode's data need to undergo some
3888  * postprocessing step, like decryption or authenticity verification.
3889  */
f2fs_post_read_required(struct inode * inode)3890 static inline bool f2fs_post_read_required(struct inode *inode)
3891 {
3892 	return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
3893 		f2fs_compressed_file(inode);
3894 }
3895 
3896 /*
3897  * compress.c
3898  */
3899 #ifdef CONFIG_F2FS_FS_COMPRESSION
3900 bool f2fs_is_compressed_page(struct page *page);
3901 struct page *f2fs_compress_control_page(struct page *page);
3902 int f2fs_prepare_compress_overwrite(struct inode *inode,
3903 			struct page **pagep, pgoff_t index, void **fsdata);
3904 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
3905 					pgoff_t index, unsigned copied);
3906 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
3907 void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
3908 bool f2fs_is_compress_backend_ready(struct inode *inode);
3909 int f2fs_init_compress_mempool(void);
3910 void f2fs_destroy_compress_mempool(void);
3911 void f2fs_decompress_pages(struct bio *bio, struct page *page, bool verity);
3912 bool f2fs_cluster_is_empty(struct compress_ctx *cc);
3913 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
3914 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page);
3915 int f2fs_write_multi_pages(struct compress_ctx *cc,
3916 						int *submitted,
3917 						struct writeback_control *wbc,
3918 						enum iostat_type io_type);
3919 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
3920 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
3921 				unsigned nr_pages, sector_t *last_block_in_bio,
3922 				bool is_readahead, bool for_write);
3923 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
3924 void f2fs_free_dic(struct decompress_io_ctx *dic);
3925 void f2fs_decompress_end_io(struct page **rpages,
3926 			unsigned int cluster_size, bool err, bool verity);
3927 int f2fs_init_compress_ctx(struct compress_ctx *cc);
3928 void f2fs_destroy_compress_ctx(struct compress_ctx *cc);
3929 void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
3930 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi);
3931 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi);
3932 int __init f2fs_init_compress_cache(void);
3933 void f2fs_destroy_compress_cache(void);
3934 #else
f2fs_is_compressed_page(struct page * page)3935 static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
f2fs_is_compress_backend_ready(struct inode * inode)3936 static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
3937 {
3938 	if (!f2fs_compressed_file(inode))
3939 		return true;
3940 	/* not support compression */
3941 	return false;
3942 }
f2fs_compress_control_page(struct page * page)3943 static inline struct page *f2fs_compress_control_page(struct page *page)
3944 {
3945 	WARN_ON_ONCE(1);
3946 	return ERR_PTR(-EINVAL);
3947 }
f2fs_init_compress_mempool(void)3948 static inline int f2fs_init_compress_mempool(void) { return 0; }
f2fs_destroy_compress_mempool(void)3949 static inline void f2fs_destroy_compress_mempool(void) { }
f2fs_init_page_array_cache(struct f2fs_sb_info * sbi)3950 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_page_array_cache(struct f2fs_sb_info * sbi)3951 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { }
f2fs_init_compress_cache(void)3952 static inline int __init f2fs_init_compress_cache(void) { return 0; }
f2fs_destroy_compress_cache(void)3953 static inline void f2fs_destroy_compress_cache(void) { }
3954 #endif
3955 
set_compress_context(struct inode * inode)3956 static inline void set_compress_context(struct inode *inode)
3957 {
3958 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3959 
3960 	F2FS_I(inode)->i_compress_algorithm =
3961 			F2FS_OPTION(sbi).compress_algorithm;
3962 	F2FS_I(inode)->i_log_cluster_size =
3963 			F2FS_OPTION(sbi).compress_log_size;
3964 	F2FS_I(inode)->i_cluster_size =
3965 			1 << F2FS_I(inode)->i_log_cluster_size;
3966 	F2FS_I(inode)->i_flags |= F2FS_COMPR_FL;
3967 	set_inode_flag(inode, FI_COMPRESSED_FILE);
3968 	stat_inc_compr_inode(inode);
3969 	f2fs_mark_inode_dirty_sync(inode, true);
3970 }
3971 
f2fs_disable_compressed_file(struct inode * inode)3972 static inline bool f2fs_disable_compressed_file(struct inode *inode)
3973 {
3974 	struct f2fs_inode_info *fi = F2FS_I(inode);
3975 
3976 	if (!f2fs_compressed_file(inode))
3977 		return true;
3978 	if (S_ISREG(inode->i_mode) &&
3979 		(get_dirty_pages(inode) || atomic_read(&fi->i_compr_blocks)))
3980 		return false;
3981 
3982 	fi->i_flags &= ~F2FS_COMPR_FL;
3983 	stat_dec_compr_inode(inode);
3984 	clear_inode_flag(inode, FI_COMPRESSED_FILE);
3985 	f2fs_mark_inode_dirty_sync(inode, true);
3986 	return true;
3987 }
3988 
3989 #define F2FS_FEATURE_FUNCS(name, flagname) \
3990 static inline int f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
3991 { \
3992 	return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
3993 }
3994 
3995 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
3996 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
3997 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
3998 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
3999 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
4000 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
4001 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
4002 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
4003 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
4004 F2FS_FEATURE_FUNCS(verity, VERITY);
4005 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
4006 F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
4007 F2FS_FEATURE_FUNCS(compression, COMPRESSION);
4008 
4009 #ifdef CONFIG_BLK_DEV_ZONED
f2fs_blkz_is_seq(struct f2fs_sb_info * sbi,int devi,block_t blkaddr)4010 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
4011 				    block_t blkaddr)
4012 {
4013 	unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
4014 
4015 	return test_bit(zno, FDEV(devi).blkz_seq);
4016 }
4017 #endif
4018 
f2fs_hw_should_discard(struct f2fs_sb_info * sbi)4019 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
4020 {
4021 	return f2fs_sb_has_blkzoned(sbi);
4022 }
4023 
f2fs_bdev_support_discard(struct block_device * bdev)4024 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
4025 {
4026 	return blk_queue_discard(bdev_get_queue(bdev)) ||
4027 	       bdev_is_zoned(bdev);
4028 }
4029 
f2fs_hw_support_discard(struct f2fs_sb_info * sbi)4030 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
4031 {
4032 	int i;
4033 
4034 	if (!f2fs_is_multi_device(sbi))
4035 		return f2fs_bdev_support_discard(sbi->sb->s_bdev);
4036 
4037 	for (i = 0; i < sbi->s_ndevs; i++)
4038 		if (f2fs_bdev_support_discard(FDEV(i).bdev))
4039 			return true;
4040 	return false;
4041 }
4042 
f2fs_realtime_discard_enable(struct f2fs_sb_info * sbi)4043 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
4044 {
4045 	return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
4046 					f2fs_hw_should_discard(sbi);
4047 }
4048 
f2fs_hw_is_readonly(struct f2fs_sb_info * sbi)4049 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
4050 {
4051 	int i;
4052 
4053 	if (!f2fs_is_multi_device(sbi))
4054 		return bdev_read_only(sbi->sb->s_bdev);
4055 
4056 	for (i = 0; i < sbi->s_ndevs; i++)
4057 		if (bdev_read_only(FDEV(i).bdev))
4058 			return true;
4059 	return false;
4060 }
4061 
f2fs_lfs_mode(struct f2fs_sb_info * sbi)4062 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
4063 {
4064 	return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
4065 }
4066 
f2fs_may_compress(struct inode * inode)4067 static inline bool f2fs_may_compress(struct inode *inode)
4068 {
4069 	if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
4070 				f2fs_is_atomic_file(inode) ||
4071 				f2fs_is_volatile_file(inode))
4072 		return false;
4073 	return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
4074 }
4075 
f2fs_i_compr_blocks_update(struct inode * inode,u64 blocks,bool add)4076 static inline void f2fs_i_compr_blocks_update(struct inode *inode,
4077 						u64 blocks, bool add)
4078 {
4079 	int diff = F2FS_I(inode)->i_cluster_size - blocks;
4080 	struct f2fs_inode_info *fi = F2FS_I(inode);
4081 
4082 	/* don't update i_compr_blocks if saved blocks were released */
4083 	if (!add && !atomic_read(&fi->i_compr_blocks))
4084 		return;
4085 
4086 	if (add) {
4087 		atomic_add(diff, &fi->i_compr_blocks);
4088 		stat_add_compr_blocks(inode, diff);
4089 	} else {
4090 		atomic_sub(diff, &fi->i_compr_blocks);
4091 		stat_sub_compr_blocks(inode, diff);
4092 	}
4093 	f2fs_mark_inode_dirty_sync(inode, true);
4094 }
4095 
block_unaligned_IO(struct inode * inode,struct kiocb * iocb,struct iov_iter * iter)4096 static inline int block_unaligned_IO(struct inode *inode,
4097 				struct kiocb *iocb, struct iov_iter *iter)
4098 {
4099 	unsigned int i_blkbits = READ_ONCE(inode->i_blkbits);
4100 	unsigned int blocksize_mask = (1 << i_blkbits) - 1;
4101 	loff_t offset = iocb->ki_pos;
4102 	unsigned long align = offset | iov_iter_alignment(iter);
4103 
4104 	return align & blocksize_mask;
4105 }
4106 
allow_outplace_dio(struct inode * inode,struct kiocb * iocb,struct iov_iter * iter)4107 static inline int allow_outplace_dio(struct inode *inode,
4108 				struct kiocb *iocb, struct iov_iter *iter)
4109 {
4110 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4111 	int rw = iov_iter_rw(iter);
4112 
4113 	return (f2fs_lfs_mode(sbi) && (rw == WRITE) &&
4114 				!block_unaligned_IO(inode, iocb, iter));
4115 }
4116 
f2fs_force_buffered_io(struct inode * inode,struct kiocb * iocb,struct iov_iter * iter)4117 static inline bool f2fs_force_buffered_io(struct inode *inode,
4118 				struct kiocb *iocb, struct iov_iter *iter)
4119 {
4120 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4121 	int rw = iov_iter_rw(iter);
4122 
4123 	if (f2fs_post_read_required(inode))
4124 		return true;
4125 	if (f2fs_is_multi_device(sbi))
4126 		return true;
4127 	/*
4128 	 * for blkzoned device, fallback direct IO to buffered IO, so
4129 	 * all IOs can be serialized by log-structured write.
4130 	 */
4131 	if (f2fs_sb_has_blkzoned(sbi))
4132 		return true;
4133 	if (f2fs_lfs_mode(sbi) && (rw == WRITE)) {
4134 		if (block_unaligned_IO(inode, iocb, iter))
4135 			return true;
4136 		if (F2FS_IO_ALIGNED(sbi))
4137 			return true;
4138 	}
4139 	if (is_sbi_flag_set(F2FS_I_SB(inode), SBI_CP_DISABLED) &&
4140 					!IS_SWAPFILE(inode))
4141 		return true;
4142 
4143 	return false;
4144 }
4145 
4146 #ifdef CONFIG_F2FS_FAULT_INJECTION
4147 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
4148 							unsigned int type);
4149 #else
4150 #define f2fs_build_fault_attr(sbi, rate, type)		do { } while (0)
4151 #endif
4152 
is_journalled_quota(struct f2fs_sb_info * sbi)4153 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4154 {
4155 #ifdef CONFIG_QUOTA
4156 	if (f2fs_sb_has_quota_ino(sbi))
4157 		return true;
4158 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4159 		F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4160 		F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4161 		return true;
4162 #endif
4163 	return false;
4164 }
4165 
4166 #define EFSBADCRC	EBADMSG		/* Bad CRC detected */
4167 #define EFSCORRUPTED	EUCLEAN		/* Filesystem is corrupted */
4168 
4169 #endif /* _LINUX_F2FS_H */
4170