1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11 #include "dm-ima.h"
12
13 #include <linux/init.h>
14 #include <linux/module.h>
15 #include <linux/mutex.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/signal.h>
18 #include <linux/blkpg.h>
19 #include <linux/bio.h>
20 #include <linux/mempool.h>
21 #include <linux/dax.h>
22 #include <linux/slab.h>
23 #include <linux/idr.h>
24 #include <linux/uio.h>
25 #include <linux/hdreg.h>
26 #include <linux/delay.h>
27 #include <linux/wait.h>
28 #include <linux/pr.h>
29 #include <linux/refcount.h>
30 #include <linux/part_stat.h>
31 #include <linux/blk-crypto.h>
32 #include <linux/blk-crypto-profile.h>
33
34 #define DM_MSG_PREFIX "core"
35
36 /*
37 * Cookies are numeric values sent with CHANGE and REMOVE
38 * uevents while resuming, removing or renaming the device.
39 */
40 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
41 #define DM_COOKIE_LENGTH 24
42
43 /*
44 * For REQ_POLLED fs bio, this flag is set if we link mapped underlying
45 * dm_io into one list, and reuse bio->bi_private as the list head. Before
46 * ending this fs bio, we will recover its ->bi_private.
47 */
48 #define REQ_DM_POLL_LIST REQ_DRV
49
50 static const char *_name = DM_NAME;
51
52 static unsigned int major = 0;
53 static unsigned int _major = 0;
54
55 static DEFINE_IDR(_minor_idr);
56
57 static DEFINE_SPINLOCK(_minor_lock);
58
59 static void do_deferred_remove(struct work_struct *w);
60
61 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
62
63 static struct workqueue_struct *deferred_remove_workqueue;
64
65 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
66 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
67
dm_issue_global_event(void)68 void dm_issue_global_event(void)
69 {
70 atomic_inc(&dm_global_event_nr);
71 wake_up(&dm_global_eventq);
72 }
73
74 DEFINE_STATIC_KEY_FALSE(stats_enabled);
75 DEFINE_STATIC_KEY_FALSE(swap_bios_enabled);
76 DEFINE_STATIC_KEY_FALSE(zoned_enabled);
77
78 /*
79 * One of these is allocated (on-stack) per original bio.
80 */
81 struct clone_info {
82 struct dm_table *map;
83 struct bio *bio;
84 struct dm_io *io;
85 sector_t sector;
86 unsigned sector_count;
87 bool is_abnormal_io:1;
88 bool submit_as_polled:1;
89 };
90
clone_to_tio(struct bio * clone)91 static inline struct dm_target_io *clone_to_tio(struct bio *clone)
92 {
93 return container_of(clone, struct dm_target_io, clone);
94 }
95
dm_per_bio_data(struct bio * bio,size_t data_size)96 void *dm_per_bio_data(struct bio *bio, size_t data_size)
97 {
98 if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO))
99 return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
100 return (char *)bio - DM_IO_BIO_OFFSET - data_size;
101 }
102 EXPORT_SYMBOL_GPL(dm_per_bio_data);
103
dm_bio_from_per_bio_data(void * data,size_t data_size)104 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
105 {
106 struct dm_io *io = (struct dm_io *)((char *)data + data_size);
107 if (io->magic == DM_IO_MAGIC)
108 return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
109 BUG_ON(io->magic != DM_TIO_MAGIC);
110 return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
111 }
112 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
113
dm_bio_get_target_bio_nr(const struct bio * bio)114 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
115 {
116 return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
117 }
118 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
119
120 #define MINOR_ALLOCED ((void *)-1)
121
122 #define DM_NUMA_NODE NUMA_NO_NODE
123 static int dm_numa_node = DM_NUMA_NODE;
124
125 #define DEFAULT_SWAP_BIOS (8 * 1048576 / PAGE_SIZE)
126 static int swap_bios = DEFAULT_SWAP_BIOS;
get_swap_bios(void)127 static int get_swap_bios(void)
128 {
129 int latch = READ_ONCE(swap_bios);
130 if (unlikely(latch <= 0))
131 latch = DEFAULT_SWAP_BIOS;
132 return latch;
133 }
134
135 struct table_device {
136 struct list_head list;
137 refcount_t count;
138 struct dm_dev dm_dev;
139 };
140
141 /*
142 * Bio-based DM's mempools' reserved IOs set by the user.
143 */
144 #define RESERVED_BIO_BASED_IOS 16
145 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
146
__dm_get_module_param_int(int * module_param,int min,int max)147 static int __dm_get_module_param_int(int *module_param, int min, int max)
148 {
149 int param = READ_ONCE(*module_param);
150 int modified_param = 0;
151 bool modified = true;
152
153 if (param < min)
154 modified_param = min;
155 else if (param > max)
156 modified_param = max;
157 else
158 modified = false;
159
160 if (modified) {
161 (void)cmpxchg(module_param, param, modified_param);
162 param = modified_param;
163 }
164
165 return param;
166 }
167
__dm_get_module_param(unsigned * module_param,unsigned def,unsigned max)168 unsigned __dm_get_module_param(unsigned *module_param,
169 unsigned def, unsigned max)
170 {
171 unsigned param = READ_ONCE(*module_param);
172 unsigned modified_param = 0;
173
174 if (!param)
175 modified_param = def;
176 else if (param > max)
177 modified_param = max;
178
179 if (modified_param) {
180 (void)cmpxchg(module_param, param, modified_param);
181 param = modified_param;
182 }
183
184 return param;
185 }
186
dm_get_reserved_bio_based_ios(void)187 unsigned dm_get_reserved_bio_based_ios(void)
188 {
189 return __dm_get_module_param(&reserved_bio_based_ios,
190 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
191 }
192 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
193
dm_get_numa_node(void)194 static unsigned dm_get_numa_node(void)
195 {
196 return __dm_get_module_param_int(&dm_numa_node,
197 DM_NUMA_NODE, num_online_nodes() - 1);
198 }
199
local_init(void)200 static int __init local_init(void)
201 {
202 int r;
203
204 r = dm_uevent_init();
205 if (r)
206 return r;
207
208 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
209 if (!deferred_remove_workqueue) {
210 r = -ENOMEM;
211 goto out_uevent_exit;
212 }
213
214 _major = major;
215 r = register_blkdev(_major, _name);
216 if (r < 0)
217 goto out_free_workqueue;
218
219 if (!_major)
220 _major = r;
221
222 return 0;
223
224 out_free_workqueue:
225 destroy_workqueue(deferred_remove_workqueue);
226 out_uevent_exit:
227 dm_uevent_exit();
228
229 return r;
230 }
231
local_exit(void)232 static void local_exit(void)
233 {
234 flush_scheduled_work();
235 destroy_workqueue(deferred_remove_workqueue);
236
237 unregister_blkdev(_major, _name);
238 dm_uevent_exit();
239
240 _major = 0;
241
242 DMINFO("cleaned up");
243 }
244
245 static int (*_inits[])(void) __initdata = {
246 local_init,
247 dm_target_init,
248 dm_linear_init,
249 dm_stripe_init,
250 dm_io_init,
251 dm_kcopyd_init,
252 dm_interface_init,
253 dm_statistics_init,
254 };
255
256 static void (*_exits[])(void) = {
257 local_exit,
258 dm_target_exit,
259 dm_linear_exit,
260 dm_stripe_exit,
261 dm_io_exit,
262 dm_kcopyd_exit,
263 dm_interface_exit,
264 dm_statistics_exit,
265 };
266
dm_init(void)267 static int __init dm_init(void)
268 {
269 const int count = ARRAY_SIZE(_inits);
270 int r, i;
271
272 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE))
273 DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled."
274 " Duplicate IMA measurements will not be recorded in the IMA log.");
275 #endif
276
277 for (i = 0; i < count; i++) {
278 r = _inits[i]();
279 if (r)
280 goto bad;
281 }
282
283 return 0;
284 bad:
285 while (i--)
286 _exits[i]();
287
288 return r;
289 }
290
dm_exit(void)291 static void __exit dm_exit(void)
292 {
293 int i = ARRAY_SIZE(_exits);
294
295 while (i--)
296 _exits[i]();
297
298 /*
299 * Should be empty by this point.
300 */
301 idr_destroy(&_minor_idr);
302 }
303
304 /*
305 * Block device functions
306 */
dm_deleting_md(struct mapped_device * md)307 int dm_deleting_md(struct mapped_device *md)
308 {
309 return test_bit(DMF_DELETING, &md->flags);
310 }
311
dm_blk_open(struct block_device * bdev,fmode_t mode)312 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
313 {
314 struct mapped_device *md;
315
316 spin_lock(&_minor_lock);
317
318 md = bdev->bd_disk->private_data;
319 if (!md)
320 goto out;
321
322 if (test_bit(DMF_FREEING, &md->flags) ||
323 dm_deleting_md(md)) {
324 md = NULL;
325 goto out;
326 }
327
328 dm_get(md);
329 atomic_inc(&md->open_count);
330 out:
331 spin_unlock(&_minor_lock);
332
333 return md ? 0 : -ENXIO;
334 }
335
dm_blk_close(struct gendisk * disk,fmode_t mode)336 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
337 {
338 struct mapped_device *md;
339
340 spin_lock(&_minor_lock);
341
342 md = disk->private_data;
343 if (WARN_ON(!md))
344 goto out;
345
346 if (atomic_dec_and_test(&md->open_count) &&
347 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
348 queue_work(deferred_remove_workqueue, &deferred_remove_work);
349
350 dm_put(md);
351 out:
352 spin_unlock(&_minor_lock);
353 }
354
dm_open_count(struct mapped_device * md)355 int dm_open_count(struct mapped_device *md)
356 {
357 return atomic_read(&md->open_count);
358 }
359
360 /*
361 * Guarantees nothing is using the device before it's deleted.
362 */
dm_lock_for_deletion(struct mapped_device * md,bool mark_deferred,bool only_deferred)363 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
364 {
365 int r = 0;
366
367 spin_lock(&_minor_lock);
368
369 if (dm_open_count(md)) {
370 r = -EBUSY;
371 if (mark_deferred)
372 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
373 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
374 r = -EEXIST;
375 else
376 set_bit(DMF_DELETING, &md->flags);
377
378 spin_unlock(&_minor_lock);
379
380 return r;
381 }
382
dm_cancel_deferred_remove(struct mapped_device * md)383 int dm_cancel_deferred_remove(struct mapped_device *md)
384 {
385 int r = 0;
386
387 spin_lock(&_minor_lock);
388
389 if (test_bit(DMF_DELETING, &md->flags))
390 r = -EBUSY;
391 else
392 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
393
394 spin_unlock(&_minor_lock);
395
396 return r;
397 }
398
do_deferred_remove(struct work_struct * w)399 static void do_deferred_remove(struct work_struct *w)
400 {
401 dm_deferred_remove();
402 }
403
dm_blk_getgeo(struct block_device * bdev,struct hd_geometry * geo)404 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
405 {
406 struct mapped_device *md = bdev->bd_disk->private_data;
407
408 return dm_get_geometry(md, geo);
409 }
410
dm_prepare_ioctl(struct mapped_device * md,int * srcu_idx,struct block_device ** bdev)411 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
412 struct block_device **bdev)
413 {
414 struct dm_target *ti;
415 struct dm_table *map;
416 int r;
417
418 retry:
419 r = -ENOTTY;
420 map = dm_get_live_table(md, srcu_idx);
421 if (!map || !dm_table_get_size(map))
422 return r;
423
424 /* We only support devices that have a single target */
425 if (map->num_targets != 1)
426 return r;
427
428 ti = dm_table_get_target(map, 0);
429 if (!ti->type->prepare_ioctl)
430 return r;
431
432 if (dm_suspended_md(md))
433 return -EAGAIN;
434
435 r = ti->type->prepare_ioctl(ti, bdev);
436 if (r == -ENOTCONN && !fatal_signal_pending(current)) {
437 dm_put_live_table(md, *srcu_idx);
438 msleep(10);
439 goto retry;
440 }
441
442 return r;
443 }
444
dm_unprepare_ioctl(struct mapped_device * md,int srcu_idx)445 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
446 {
447 dm_put_live_table(md, srcu_idx);
448 }
449
dm_blk_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)450 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
451 unsigned int cmd, unsigned long arg)
452 {
453 struct mapped_device *md = bdev->bd_disk->private_data;
454 int r, srcu_idx;
455
456 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
457 if (r < 0)
458 goto out;
459
460 if (r > 0) {
461 /*
462 * Target determined this ioctl is being issued against a
463 * subset of the parent bdev; require extra privileges.
464 */
465 if (!capable(CAP_SYS_RAWIO)) {
466 DMDEBUG_LIMIT(
467 "%s: sending ioctl %x to DM device without required privilege.",
468 current->comm, cmd);
469 r = -ENOIOCTLCMD;
470 goto out;
471 }
472 }
473
474 if (!bdev->bd_disk->fops->ioctl)
475 r = -ENOTTY;
476 else
477 r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
478 out:
479 dm_unprepare_ioctl(md, srcu_idx);
480 return r;
481 }
482
dm_start_time_ns_from_clone(struct bio * bio)483 u64 dm_start_time_ns_from_clone(struct bio *bio)
484 {
485 return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time);
486 }
487 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
488
bio_is_flush_with_data(struct bio * bio)489 static bool bio_is_flush_with_data(struct bio *bio)
490 {
491 return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size);
492 }
493
dm_io_acct(struct dm_io * io,bool end)494 static void dm_io_acct(struct dm_io *io, bool end)
495 {
496 struct dm_stats_aux *stats_aux = &io->stats_aux;
497 unsigned long start_time = io->start_time;
498 struct mapped_device *md = io->md;
499 struct bio *bio = io->orig_bio;
500 unsigned int sectors;
501
502 /*
503 * If REQ_PREFLUSH set, don't account payload, it will be
504 * submitted (and accounted) after this flush completes.
505 */
506 if (bio_is_flush_with_data(bio))
507 sectors = 0;
508 else if (likely(!(dm_io_flagged(io, DM_IO_WAS_SPLIT))))
509 sectors = bio_sectors(bio);
510 else
511 sectors = io->sectors;
512
513 if (!end)
514 bdev_start_io_acct(bio->bi_bdev, sectors, bio_op(bio),
515 start_time);
516 else
517 bdev_end_io_acct(bio->bi_bdev, bio_op(bio), start_time);
518
519 if (static_branch_unlikely(&stats_enabled) &&
520 unlikely(dm_stats_used(&md->stats))) {
521 sector_t sector;
522
523 if (likely(!dm_io_flagged(io, DM_IO_WAS_SPLIT)))
524 sector = bio->bi_iter.bi_sector;
525 else
526 sector = bio_end_sector(bio) - io->sector_offset;
527
528 dm_stats_account_io(&md->stats, bio_data_dir(bio),
529 sector, sectors,
530 end, start_time, stats_aux);
531 }
532 }
533
__dm_start_io_acct(struct dm_io * io)534 static void __dm_start_io_acct(struct dm_io *io)
535 {
536 dm_io_acct(io, false);
537 }
538
dm_start_io_acct(struct dm_io * io,struct bio * clone)539 static void dm_start_io_acct(struct dm_io *io, struct bio *clone)
540 {
541 /*
542 * Ensure IO accounting is only ever started once.
543 */
544 if (dm_io_flagged(io, DM_IO_ACCOUNTED))
545 return;
546
547 /* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */
548 if (!clone || likely(dm_tio_is_normal(clone_to_tio(clone)))) {
549 dm_io_set_flag(io, DM_IO_ACCOUNTED);
550 } else {
551 unsigned long flags;
552 /* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */
553 spin_lock_irqsave(&io->lock, flags);
554 if (dm_io_flagged(io, DM_IO_ACCOUNTED)) {
555 spin_unlock_irqrestore(&io->lock, flags);
556 return;
557 }
558 dm_io_set_flag(io, DM_IO_ACCOUNTED);
559 spin_unlock_irqrestore(&io->lock, flags);
560 }
561
562 __dm_start_io_acct(io);
563 }
564
dm_end_io_acct(struct dm_io * io)565 static void dm_end_io_acct(struct dm_io *io)
566 {
567 dm_io_acct(io, true);
568 }
569
alloc_io(struct mapped_device * md,struct bio * bio)570 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
571 {
572 struct dm_io *io;
573 struct dm_target_io *tio;
574 struct bio *clone;
575
576 clone = bio_alloc_clone(NULL, bio, GFP_NOIO, &md->mempools->io_bs);
577 tio = clone_to_tio(clone);
578 tio->flags = 0;
579 dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO);
580 tio->io = NULL;
581
582 io = container_of(tio, struct dm_io, tio);
583 io->magic = DM_IO_MAGIC;
584 io->status = BLK_STS_OK;
585
586 /* one ref is for submission, the other is for completion */
587 atomic_set(&io->io_count, 2);
588 this_cpu_inc(*md->pending_io);
589 io->orig_bio = bio;
590 io->md = md;
591 spin_lock_init(&io->lock);
592 io->start_time = jiffies;
593 io->flags = 0;
594
595 if (static_branch_unlikely(&stats_enabled))
596 dm_stats_record_start(&md->stats, &io->stats_aux);
597
598 return io;
599 }
600
free_io(struct dm_io * io)601 static void free_io(struct dm_io *io)
602 {
603 bio_put(&io->tio.clone);
604 }
605
alloc_tio(struct clone_info * ci,struct dm_target * ti,unsigned target_bio_nr,unsigned * len,gfp_t gfp_mask)606 static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti,
607 unsigned target_bio_nr, unsigned *len, gfp_t gfp_mask)
608 {
609 struct mapped_device *md = ci->io->md;
610 struct dm_target_io *tio;
611 struct bio *clone;
612
613 if (!ci->io->tio.io) {
614 /* the dm_target_io embedded in ci->io is available */
615 tio = &ci->io->tio;
616 /* alloc_io() already initialized embedded clone */
617 clone = &tio->clone;
618 } else {
619 clone = bio_alloc_clone(NULL, ci->bio, gfp_mask,
620 &md->mempools->bs);
621 if (!clone)
622 return NULL;
623
624 /* REQ_DM_POLL_LIST shouldn't be inherited */
625 clone->bi_opf &= ~REQ_DM_POLL_LIST;
626
627 tio = clone_to_tio(clone);
628 tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */
629 }
630
631 tio->magic = DM_TIO_MAGIC;
632 tio->io = ci->io;
633 tio->ti = ti;
634 tio->target_bio_nr = target_bio_nr;
635 tio->len_ptr = len;
636 tio->old_sector = 0;
637
638 /* Set default bdev, but target must bio_set_dev() before issuing IO */
639 clone->bi_bdev = md->disk->part0;
640 if (unlikely(ti->needs_bio_set_dev))
641 bio_set_dev(clone, md->disk->part0);
642
643 if (len) {
644 clone->bi_iter.bi_size = to_bytes(*len);
645 if (bio_integrity(clone))
646 bio_integrity_trim(clone);
647 }
648
649 return clone;
650 }
651
free_tio(struct bio * clone)652 static void free_tio(struct bio *clone)
653 {
654 if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO))
655 return;
656 bio_put(clone);
657 }
658
659 /*
660 * Add the bio to the list of deferred io.
661 */
queue_io(struct mapped_device * md,struct bio * bio)662 static void queue_io(struct mapped_device *md, struct bio *bio)
663 {
664 unsigned long flags;
665
666 spin_lock_irqsave(&md->deferred_lock, flags);
667 bio_list_add(&md->deferred, bio);
668 spin_unlock_irqrestore(&md->deferred_lock, flags);
669 queue_work(md->wq, &md->work);
670 }
671
672 /*
673 * Everyone (including functions in this file), should use this
674 * function to access the md->map field, and make sure they call
675 * dm_put_live_table() when finished.
676 */
dm_get_live_table(struct mapped_device * md,int * srcu_idx)677 struct dm_table *dm_get_live_table(struct mapped_device *md,
678 int *srcu_idx) __acquires(md->io_barrier)
679 {
680 *srcu_idx = srcu_read_lock(&md->io_barrier);
681
682 return srcu_dereference(md->map, &md->io_barrier);
683 }
684
dm_put_live_table(struct mapped_device * md,int srcu_idx)685 void dm_put_live_table(struct mapped_device *md,
686 int srcu_idx) __releases(md->io_barrier)
687 {
688 srcu_read_unlock(&md->io_barrier, srcu_idx);
689 }
690
dm_sync_table(struct mapped_device * md)691 void dm_sync_table(struct mapped_device *md)
692 {
693 synchronize_srcu(&md->io_barrier);
694 synchronize_rcu_expedited();
695 }
696
697 /*
698 * A fast alternative to dm_get_live_table/dm_put_live_table.
699 * The caller must not block between these two functions.
700 */
dm_get_live_table_fast(struct mapped_device * md)701 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
702 {
703 rcu_read_lock();
704 return rcu_dereference(md->map);
705 }
706
dm_put_live_table_fast(struct mapped_device * md)707 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
708 {
709 rcu_read_unlock();
710 }
711
dm_get_live_table_bio(struct mapped_device * md,int * srcu_idx,blk_opf_t bio_opf)712 static inline struct dm_table *dm_get_live_table_bio(struct mapped_device *md,
713 int *srcu_idx, blk_opf_t bio_opf)
714 {
715 if (bio_opf & REQ_NOWAIT)
716 return dm_get_live_table_fast(md);
717 else
718 return dm_get_live_table(md, srcu_idx);
719 }
720
dm_put_live_table_bio(struct mapped_device * md,int srcu_idx,blk_opf_t bio_opf)721 static inline void dm_put_live_table_bio(struct mapped_device *md, int srcu_idx,
722 blk_opf_t bio_opf)
723 {
724 if (bio_opf & REQ_NOWAIT)
725 dm_put_live_table_fast(md);
726 else
727 dm_put_live_table(md, srcu_idx);
728 }
729
730 static char *_dm_claim_ptr = "I belong to device-mapper";
731
732 /*
733 * Open a table device so we can use it as a map destination.
734 */
open_table_device(struct table_device * td,dev_t dev,struct mapped_device * md)735 static int open_table_device(struct table_device *td, dev_t dev,
736 struct mapped_device *md)
737 {
738 struct block_device *bdev;
739 u64 part_off;
740 int r;
741
742 BUG_ON(td->dm_dev.bdev);
743
744 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
745 if (IS_ERR(bdev))
746 return PTR_ERR(bdev);
747
748 r = bd_link_disk_holder(bdev, dm_disk(md));
749 if (r) {
750 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
751 return r;
752 }
753
754 td->dm_dev.bdev = bdev;
755 td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off, NULL, NULL);
756 return 0;
757 }
758
759 /*
760 * Close a table device that we've been using.
761 */
close_table_device(struct table_device * td,struct mapped_device * md)762 static void close_table_device(struct table_device *td, struct mapped_device *md)
763 {
764 if (!td->dm_dev.bdev)
765 return;
766
767 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
768 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
769 put_dax(td->dm_dev.dax_dev);
770 td->dm_dev.bdev = NULL;
771 td->dm_dev.dax_dev = NULL;
772 }
773
find_table_device(struct list_head * l,dev_t dev,fmode_t mode)774 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
775 fmode_t mode)
776 {
777 struct table_device *td;
778
779 list_for_each_entry(td, l, list)
780 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
781 return td;
782
783 return NULL;
784 }
785
dm_get_table_device(struct mapped_device * md,dev_t dev,fmode_t mode,struct dm_dev ** result)786 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
787 struct dm_dev **result)
788 {
789 int r;
790 struct table_device *td;
791
792 mutex_lock(&md->table_devices_lock);
793 td = find_table_device(&md->table_devices, dev, mode);
794 if (!td) {
795 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
796 if (!td) {
797 mutex_unlock(&md->table_devices_lock);
798 return -ENOMEM;
799 }
800
801 td->dm_dev.mode = mode;
802 td->dm_dev.bdev = NULL;
803
804 if ((r = open_table_device(td, dev, md))) {
805 mutex_unlock(&md->table_devices_lock);
806 kfree(td);
807 return r;
808 }
809
810 format_dev_t(td->dm_dev.name, dev);
811
812 refcount_set(&td->count, 1);
813 list_add(&td->list, &md->table_devices);
814 } else {
815 refcount_inc(&td->count);
816 }
817 mutex_unlock(&md->table_devices_lock);
818
819 *result = &td->dm_dev;
820 return 0;
821 }
822
dm_put_table_device(struct mapped_device * md,struct dm_dev * d)823 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
824 {
825 struct table_device *td = container_of(d, struct table_device, dm_dev);
826
827 mutex_lock(&md->table_devices_lock);
828 if (refcount_dec_and_test(&td->count)) {
829 close_table_device(td, md);
830 list_del(&td->list);
831 kfree(td);
832 }
833 mutex_unlock(&md->table_devices_lock);
834 }
835
free_table_devices(struct list_head * devices)836 static void free_table_devices(struct list_head *devices)
837 {
838 struct list_head *tmp, *next;
839
840 list_for_each_safe(tmp, next, devices) {
841 struct table_device *td = list_entry(tmp, struct table_device, list);
842
843 DMWARN("dm_destroy: %s still exists with %d references",
844 td->dm_dev.name, refcount_read(&td->count));
845 kfree(td);
846 }
847 }
848
849 /*
850 * Get the geometry associated with a dm device
851 */
dm_get_geometry(struct mapped_device * md,struct hd_geometry * geo)852 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
853 {
854 *geo = md->geometry;
855
856 return 0;
857 }
858
859 /*
860 * Set the geometry of a device.
861 */
dm_set_geometry(struct mapped_device * md,struct hd_geometry * geo)862 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
863 {
864 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
865
866 if (geo->start > sz) {
867 DMERR("Start sector is beyond the geometry limits.");
868 return -EINVAL;
869 }
870
871 md->geometry = *geo;
872
873 return 0;
874 }
875
__noflush_suspending(struct mapped_device * md)876 static int __noflush_suspending(struct mapped_device *md)
877 {
878 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
879 }
880
dm_requeue_add_io(struct dm_io * io,bool first_stage)881 static void dm_requeue_add_io(struct dm_io *io, bool first_stage)
882 {
883 struct mapped_device *md = io->md;
884
885 if (first_stage) {
886 struct dm_io *next = md->requeue_list;
887
888 md->requeue_list = io;
889 io->next = next;
890 } else {
891 bio_list_add_head(&md->deferred, io->orig_bio);
892 }
893 }
894
dm_kick_requeue(struct mapped_device * md,bool first_stage)895 static void dm_kick_requeue(struct mapped_device *md, bool first_stage)
896 {
897 if (first_stage)
898 queue_work(md->wq, &md->requeue_work);
899 else
900 queue_work(md->wq, &md->work);
901 }
902
903 /*
904 * Return true if the dm_io's original bio is requeued.
905 * io->status is updated with error if requeue disallowed.
906 */
dm_handle_requeue(struct dm_io * io,bool first_stage)907 static bool dm_handle_requeue(struct dm_io *io, bool first_stage)
908 {
909 struct bio *bio = io->orig_bio;
910 bool handle_requeue = (io->status == BLK_STS_DM_REQUEUE);
911 bool handle_polled_eagain = ((io->status == BLK_STS_AGAIN) &&
912 (bio->bi_opf & REQ_POLLED));
913 struct mapped_device *md = io->md;
914 bool requeued = false;
915
916 if (handle_requeue || handle_polled_eagain) {
917 unsigned long flags;
918
919 if (bio->bi_opf & REQ_POLLED) {
920 /*
921 * Upper layer won't help us poll split bio
922 * (io->orig_bio may only reflect a subset of the
923 * pre-split original) so clear REQ_POLLED.
924 */
925 bio_clear_polled(bio);
926 }
927
928 /*
929 * Target requested pushing back the I/O or
930 * polled IO hit BLK_STS_AGAIN.
931 */
932 spin_lock_irqsave(&md->deferred_lock, flags);
933 if ((__noflush_suspending(md) &&
934 !WARN_ON_ONCE(dm_is_zone_write(md, bio))) ||
935 handle_polled_eagain || first_stage) {
936 dm_requeue_add_io(io, first_stage);
937 requeued = true;
938 } else {
939 /*
940 * noflush suspend was interrupted or this is
941 * a write to a zoned target.
942 */
943 io->status = BLK_STS_IOERR;
944 }
945 spin_unlock_irqrestore(&md->deferred_lock, flags);
946 }
947
948 if (requeued)
949 dm_kick_requeue(md, first_stage);
950
951 return requeued;
952 }
953
__dm_io_complete(struct dm_io * io,bool first_stage)954 static void __dm_io_complete(struct dm_io *io, bool first_stage)
955 {
956 struct bio *bio = io->orig_bio;
957 struct mapped_device *md = io->md;
958 blk_status_t io_error;
959 bool requeued;
960
961 requeued = dm_handle_requeue(io, first_stage);
962 if (requeued && first_stage)
963 return;
964
965 io_error = io->status;
966 if (dm_io_flagged(io, DM_IO_ACCOUNTED))
967 dm_end_io_acct(io);
968 else if (!io_error) {
969 /*
970 * Must handle target that DM_MAPIO_SUBMITTED only to
971 * then bio_endio() rather than dm_submit_bio_remap()
972 */
973 __dm_start_io_acct(io);
974 dm_end_io_acct(io);
975 }
976 free_io(io);
977 smp_wmb();
978 this_cpu_dec(*md->pending_io);
979
980 /* nudge anyone waiting on suspend queue */
981 if (unlikely(wq_has_sleeper(&md->wait)))
982 wake_up(&md->wait);
983
984 /* Return early if the original bio was requeued */
985 if (requeued)
986 return;
987
988 if (bio_is_flush_with_data(bio)) {
989 /*
990 * Preflush done for flush with data, reissue
991 * without REQ_PREFLUSH.
992 */
993 bio->bi_opf &= ~REQ_PREFLUSH;
994 queue_io(md, bio);
995 } else {
996 /* done with normal IO or empty flush */
997 if (io_error)
998 bio->bi_status = io_error;
999 bio_endio(bio);
1000 }
1001 }
1002
dm_wq_requeue_work(struct work_struct * work)1003 static void dm_wq_requeue_work(struct work_struct *work)
1004 {
1005 struct mapped_device *md = container_of(work, struct mapped_device,
1006 requeue_work);
1007 unsigned long flags;
1008 struct dm_io *io;
1009
1010 /* reuse deferred lock to simplify dm_handle_requeue */
1011 spin_lock_irqsave(&md->deferred_lock, flags);
1012 io = md->requeue_list;
1013 md->requeue_list = NULL;
1014 spin_unlock_irqrestore(&md->deferred_lock, flags);
1015
1016 while (io) {
1017 struct dm_io *next = io->next;
1018
1019 dm_io_rewind(io, &md->disk->bio_split);
1020
1021 io->next = NULL;
1022 __dm_io_complete(io, false);
1023 io = next;
1024 }
1025 }
1026
1027 /*
1028 * Two staged requeue:
1029 *
1030 * 1) io->orig_bio points to the real original bio, and the part mapped to
1031 * this io must be requeued, instead of other parts of the original bio.
1032 *
1033 * 2) io->orig_bio points to new cloned bio which matches the requeued dm_io.
1034 */
dm_io_complete(struct dm_io * io)1035 static void dm_io_complete(struct dm_io *io)
1036 {
1037 bool first_requeue;
1038
1039 /*
1040 * Only dm_io that has been split needs two stage requeue, otherwise
1041 * we may run into long bio clone chain during suspend and OOM could
1042 * be triggered.
1043 *
1044 * Also flush data dm_io won't be marked as DM_IO_WAS_SPLIT, so they
1045 * also aren't handled via the first stage requeue.
1046 */
1047 if (dm_io_flagged(io, DM_IO_WAS_SPLIT))
1048 first_requeue = true;
1049 else
1050 first_requeue = false;
1051
1052 __dm_io_complete(io, first_requeue);
1053 }
1054
1055 /*
1056 * Decrements the number of outstanding ios that a bio has been
1057 * cloned into, completing the original io if necc.
1058 */
__dm_io_dec_pending(struct dm_io * io)1059 static inline void __dm_io_dec_pending(struct dm_io *io)
1060 {
1061 if (atomic_dec_and_test(&io->io_count))
1062 dm_io_complete(io);
1063 }
1064
dm_io_set_error(struct dm_io * io,blk_status_t error)1065 static void dm_io_set_error(struct dm_io *io, blk_status_t error)
1066 {
1067 unsigned long flags;
1068
1069 /* Push-back supersedes any I/O errors */
1070 spin_lock_irqsave(&io->lock, flags);
1071 if (!(io->status == BLK_STS_DM_REQUEUE &&
1072 __noflush_suspending(io->md))) {
1073 io->status = error;
1074 }
1075 spin_unlock_irqrestore(&io->lock, flags);
1076 }
1077
dm_io_dec_pending(struct dm_io * io,blk_status_t error)1078 static void dm_io_dec_pending(struct dm_io *io, blk_status_t error)
1079 {
1080 if (unlikely(error))
1081 dm_io_set_error(io, error);
1082
1083 __dm_io_dec_pending(io);
1084 }
1085
disable_discard(struct mapped_device * md)1086 void disable_discard(struct mapped_device *md)
1087 {
1088 struct queue_limits *limits = dm_get_queue_limits(md);
1089
1090 /* device doesn't really support DISCARD, disable it */
1091 limits->max_discard_sectors = 0;
1092 }
1093
disable_write_zeroes(struct mapped_device * md)1094 void disable_write_zeroes(struct mapped_device *md)
1095 {
1096 struct queue_limits *limits = dm_get_queue_limits(md);
1097
1098 /* device doesn't really support WRITE ZEROES, disable it */
1099 limits->max_write_zeroes_sectors = 0;
1100 }
1101
swap_bios_limit(struct dm_target * ti,struct bio * bio)1102 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
1103 {
1104 return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
1105 }
1106
clone_endio(struct bio * bio)1107 static void clone_endio(struct bio *bio)
1108 {
1109 blk_status_t error = bio->bi_status;
1110 struct dm_target_io *tio = clone_to_tio(bio);
1111 struct dm_target *ti = tio->ti;
1112 dm_endio_fn endio = ti->type->end_io;
1113 struct dm_io *io = tio->io;
1114 struct mapped_device *md = io->md;
1115
1116 if (unlikely(error == BLK_STS_TARGET)) {
1117 if (bio_op(bio) == REQ_OP_DISCARD &&
1118 !bdev_max_discard_sectors(bio->bi_bdev))
1119 disable_discard(md);
1120 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1121 !bdev_write_zeroes_sectors(bio->bi_bdev))
1122 disable_write_zeroes(md);
1123 }
1124
1125 if (static_branch_unlikely(&zoned_enabled) &&
1126 unlikely(bdev_is_zoned(bio->bi_bdev)))
1127 dm_zone_endio(io, bio);
1128
1129 if (endio) {
1130 int r = endio(ti, bio, &error);
1131 switch (r) {
1132 case DM_ENDIO_REQUEUE:
1133 if (static_branch_unlikely(&zoned_enabled)) {
1134 /*
1135 * Requeuing writes to a sequential zone of a zoned
1136 * target will break the sequential write pattern:
1137 * fail such IO.
1138 */
1139 if (WARN_ON_ONCE(dm_is_zone_write(md, bio)))
1140 error = BLK_STS_IOERR;
1141 else
1142 error = BLK_STS_DM_REQUEUE;
1143 } else
1144 error = BLK_STS_DM_REQUEUE;
1145 fallthrough;
1146 case DM_ENDIO_DONE:
1147 break;
1148 case DM_ENDIO_INCOMPLETE:
1149 /* The target will handle the io */
1150 return;
1151 default:
1152 DMCRIT("unimplemented target endio return value: %d", r);
1153 BUG();
1154 }
1155 }
1156
1157 if (static_branch_unlikely(&swap_bios_enabled) &&
1158 unlikely(swap_bios_limit(ti, bio)))
1159 up(&md->swap_bios_semaphore);
1160
1161 free_tio(bio);
1162 dm_io_dec_pending(io, error);
1163 }
1164
1165 /*
1166 * Return maximum size of I/O possible at the supplied sector up to the current
1167 * target boundary.
1168 */
max_io_len_target_boundary(struct dm_target * ti,sector_t target_offset)1169 static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1170 sector_t target_offset)
1171 {
1172 return ti->len - target_offset;
1173 }
1174
max_io_len(struct dm_target * ti,sector_t sector)1175 static sector_t max_io_len(struct dm_target *ti, sector_t sector)
1176 {
1177 sector_t target_offset = dm_target_offset(ti, sector);
1178 sector_t len = max_io_len_target_boundary(ti, target_offset);
1179
1180 /*
1181 * Does the target need to split IO even further?
1182 * - varied (per target) IO splitting is a tenet of DM; this
1183 * explains why stacked chunk_sectors based splitting via
1184 * bio_split_to_limits() isn't possible here.
1185 */
1186 if (!ti->max_io_len)
1187 return len;
1188 return min_t(sector_t, len,
1189 min(queue_max_sectors(ti->table->md->queue),
1190 blk_chunk_sectors_left(target_offset, ti->max_io_len)));
1191 }
1192
dm_set_target_max_io_len(struct dm_target * ti,sector_t len)1193 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1194 {
1195 if (len > UINT_MAX) {
1196 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1197 (unsigned long long)len, UINT_MAX);
1198 ti->error = "Maximum size of target IO is too large";
1199 return -EINVAL;
1200 }
1201
1202 ti->max_io_len = (uint32_t) len;
1203
1204 return 0;
1205 }
1206 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1207
dm_dax_get_live_target(struct mapped_device * md,sector_t sector,int * srcu_idx)1208 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1209 sector_t sector, int *srcu_idx)
1210 __acquires(md->io_barrier)
1211 {
1212 struct dm_table *map;
1213 struct dm_target *ti;
1214
1215 map = dm_get_live_table(md, srcu_idx);
1216 if (!map)
1217 return NULL;
1218
1219 ti = dm_table_find_target(map, sector);
1220 if (!ti)
1221 return NULL;
1222
1223 return ti;
1224 }
1225
dm_dax_direct_access(struct dax_device * dax_dev,pgoff_t pgoff,long nr_pages,enum dax_access_mode mode,void ** kaddr,pfn_t * pfn)1226 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1227 long nr_pages, enum dax_access_mode mode, void **kaddr,
1228 pfn_t *pfn)
1229 {
1230 struct mapped_device *md = dax_get_private(dax_dev);
1231 sector_t sector = pgoff * PAGE_SECTORS;
1232 struct dm_target *ti;
1233 long len, ret = -EIO;
1234 int srcu_idx;
1235
1236 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1237
1238 if (!ti)
1239 goto out;
1240 if (!ti->type->direct_access)
1241 goto out;
1242 len = max_io_len(ti, sector) / PAGE_SECTORS;
1243 if (len < 1)
1244 goto out;
1245 nr_pages = min(len, nr_pages);
1246 ret = ti->type->direct_access(ti, pgoff, nr_pages, mode, kaddr, pfn);
1247
1248 out:
1249 dm_put_live_table(md, srcu_idx);
1250
1251 return ret;
1252 }
1253
dm_dax_zero_page_range(struct dax_device * dax_dev,pgoff_t pgoff,size_t nr_pages)1254 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1255 size_t nr_pages)
1256 {
1257 struct mapped_device *md = dax_get_private(dax_dev);
1258 sector_t sector = pgoff * PAGE_SECTORS;
1259 struct dm_target *ti;
1260 int ret = -EIO;
1261 int srcu_idx;
1262
1263 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1264
1265 if (!ti)
1266 goto out;
1267 if (WARN_ON(!ti->type->dax_zero_page_range)) {
1268 /*
1269 * ->zero_page_range() is mandatory dax operation. If we are
1270 * here, something is wrong.
1271 */
1272 goto out;
1273 }
1274 ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1275 out:
1276 dm_put_live_table(md, srcu_idx);
1277
1278 return ret;
1279 }
1280
dm_dax_recovery_write(struct dax_device * dax_dev,pgoff_t pgoff,void * addr,size_t bytes,struct iov_iter * i)1281 static size_t dm_dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff,
1282 void *addr, size_t bytes, struct iov_iter *i)
1283 {
1284 struct mapped_device *md = dax_get_private(dax_dev);
1285 sector_t sector = pgoff * PAGE_SECTORS;
1286 struct dm_target *ti;
1287 int srcu_idx;
1288 long ret = 0;
1289
1290 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1291 if (!ti || !ti->type->dax_recovery_write)
1292 goto out;
1293
1294 ret = ti->type->dax_recovery_write(ti, pgoff, addr, bytes, i);
1295 out:
1296 dm_put_live_table(md, srcu_idx);
1297 return ret;
1298 }
1299
1300 /*
1301 * A target may call dm_accept_partial_bio only from the map routine. It is
1302 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1303 * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by
1304 * __send_duplicate_bios().
1305 *
1306 * dm_accept_partial_bio informs the dm that the target only wants to process
1307 * additional n_sectors sectors of the bio and the rest of the data should be
1308 * sent in a next bio.
1309 *
1310 * A diagram that explains the arithmetics:
1311 * +--------------------+---------------+-------+
1312 * | 1 | 2 | 3 |
1313 * +--------------------+---------------+-------+
1314 *
1315 * <-------------- *tio->len_ptr --------------->
1316 * <----- bio_sectors ----->
1317 * <-- n_sectors -->
1318 *
1319 * Region 1 was already iterated over with bio_advance or similar function.
1320 * (it may be empty if the target doesn't use bio_advance)
1321 * Region 2 is the remaining bio size that the target wants to process.
1322 * (it may be empty if region 1 is non-empty, although there is no reason
1323 * to make it empty)
1324 * The target requires that region 3 is to be sent in the next bio.
1325 *
1326 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1327 * the partially processed part (the sum of regions 1+2) must be the same for all
1328 * copies of the bio.
1329 */
dm_accept_partial_bio(struct bio * bio,unsigned n_sectors)1330 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1331 {
1332 struct dm_target_io *tio = clone_to_tio(bio);
1333 struct dm_io *io = tio->io;
1334 unsigned bio_sectors = bio_sectors(bio);
1335
1336 BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO));
1337 BUG_ON(op_is_zone_mgmt(bio_op(bio)));
1338 BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND);
1339 BUG_ON(bio_sectors > *tio->len_ptr);
1340 BUG_ON(n_sectors > bio_sectors);
1341
1342 *tio->len_ptr -= bio_sectors - n_sectors;
1343 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1344
1345 /*
1346 * __split_and_process_bio() may have already saved mapped part
1347 * for accounting but it is being reduced so update accordingly.
1348 */
1349 dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1350 io->sectors = n_sectors;
1351 io->sector_offset = bio_sectors(io->orig_bio);
1352 }
1353 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1354
1355 /*
1356 * @clone: clone bio that DM core passed to target's .map function
1357 * @tgt_clone: clone of @clone bio that target needs submitted
1358 *
1359 * Targets should use this interface to submit bios they take
1360 * ownership of when returning DM_MAPIO_SUBMITTED.
1361 *
1362 * Target should also enable ti->accounts_remapped_io
1363 */
dm_submit_bio_remap(struct bio * clone,struct bio * tgt_clone)1364 void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone)
1365 {
1366 struct dm_target_io *tio = clone_to_tio(clone);
1367 struct dm_io *io = tio->io;
1368
1369 /* establish bio that will get submitted */
1370 if (!tgt_clone)
1371 tgt_clone = clone;
1372
1373 /*
1374 * Account io->origin_bio to DM dev on behalf of target
1375 * that took ownership of IO with DM_MAPIO_SUBMITTED.
1376 */
1377 dm_start_io_acct(io, clone);
1378
1379 trace_block_bio_remap(tgt_clone, disk_devt(io->md->disk),
1380 tio->old_sector);
1381 submit_bio_noacct(tgt_clone);
1382 }
1383 EXPORT_SYMBOL_GPL(dm_submit_bio_remap);
1384
__set_swap_bios_limit(struct mapped_device * md,int latch)1385 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1386 {
1387 mutex_lock(&md->swap_bios_lock);
1388 while (latch < md->swap_bios) {
1389 cond_resched();
1390 down(&md->swap_bios_semaphore);
1391 md->swap_bios--;
1392 }
1393 while (latch > md->swap_bios) {
1394 cond_resched();
1395 up(&md->swap_bios_semaphore);
1396 md->swap_bios++;
1397 }
1398 mutex_unlock(&md->swap_bios_lock);
1399 }
1400
__map_bio(struct bio * clone)1401 static void __map_bio(struct bio *clone)
1402 {
1403 struct dm_target_io *tio = clone_to_tio(clone);
1404 struct dm_target *ti = tio->ti;
1405 struct dm_io *io = tio->io;
1406 struct mapped_device *md = io->md;
1407 int r;
1408
1409 clone->bi_end_io = clone_endio;
1410
1411 /*
1412 * Map the clone.
1413 */
1414 tio->old_sector = clone->bi_iter.bi_sector;
1415
1416 if (static_branch_unlikely(&swap_bios_enabled) &&
1417 unlikely(swap_bios_limit(ti, clone))) {
1418 int latch = get_swap_bios();
1419 if (unlikely(latch != md->swap_bios))
1420 __set_swap_bios_limit(md, latch);
1421 down(&md->swap_bios_semaphore);
1422 }
1423
1424 if (static_branch_unlikely(&zoned_enabled)) {
1425 /*
1426 * Check if the IO needs a special mapping due to zone append
1427 * emulation on zoned target. In this case, dm_zone_map_bio()
1428 * calls the target map operation.
1429 */
1430 if (unlikely(dm_emulate_zone_append(md)))
1431 r = dm_zone_map_bio(tio);
1432 else
1433 r = ti->type->map(ti, clone);
1434 } else
1435 r = ti->type->map(ti, clone);
1436
1437 switch (r) {
1438 case DM_MAPIO_SUBMITTED:
1439 /* target has assumed ownership of this io */
1440 if (!ti->accounts_remapped_io)
1441 dm_start_io_acct(io, clone);
1442 break;
1443 case DM_MAPIO_REMAPPED:
1444 dm_submit_bio_remap(clone, NULL);
1445 break;
1446 case DM_MAPIO_KILL:
1447 case DM_MAPIO_REQUEUE:
1448 if (static_branch_unlikely(&swap_bios_enabled) &&
1449 unlikely(swap_bios_limit(ti, clone)))
1450 up(&md->swap_bios_semaphore);
1451 free_tio(clone);
1452 if (r == DM_MAPIO_KILL)
1453 dm_io_dec_pending(io, BLK_STS_IOERR);
1454 else
1455 dm_io_dec_pending(io, BLK_STS_DM_REQUEUE);
1456 break;
1457 default:
1458 DMCRIT("unimplemented target map return value: %d", r);
1459 BUG();
1460 }
1461 }
1462
setup_split_accounting(struct clone_info * ci,unsigned len)1463 static void setup_split_accounting(struct clone_info *ci, unsigned len)
1464 {
1465 struct dm_io *io = ci->io;
1466
1467 if (ci->sector_count > len) {
1468 /*
1469 * Split needed, save the mapped part for accounting.
1470 * NOTE: dm_accept_partial_bio() will update accordingly.
1471 */
1472 dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1473 io->sectors = len;
1474 io->sector_offset = bio_sectors(ci->bio);
1475 }
1476 }
1477
alloc_multiple_bios(struct bio_list * blist,struct clone_info * ci,struct dm_target * ti,unsigned num_bios)1478 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1479 struct dm_target *ti, unsigned num_bios)
1480 {
1481 struct bio *bio;
1482 int try;
1483
1484 for (try = 0; try < 2; try++) {
1485 int bio_nr;
1486
1487 if (try)
1488 mutex_lock(&ci->io->md->table_devices_lock);
1489 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1490 bio = alloc_tio(ci, ti, bio_nr, NULL,
1491 try ? GFP_NOIO : GFP_NOWAIT);
1492 if (!bio)
1493 break;
1494
1495 bio_list_add(blist, bio);
1496 }
1497 if (try)
1498 mutex_unlock(&ci->io->md->table_devices_lock);
1499 if (bio_nr == num_bios)
1500 return;
1501
1502 while ((bio = bio_list_pop(blist)))
1503 free_tio(bio);
1504 }
1505 }
1506
__send_duplicate_bios(struct clone_info * ci,struct dm_target * ti,unsigned int num_bios,unsigned * len)1507 static int __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1508 unsigned int num_bios, unsigned *len)
1509 {
1510 struct bio_list blist = BIO_EMPTY_LIST;
1511 struct bio *clone;
1512 unsigned int ret = 0;
1513
1514 switch (num_bios) {
1515 case 0:
1516 break;
1517 case 1:
1518 if (len)
1519 setup_split_accounting(ci, *len);
1520 clone = alloc_tio(ci, ti, 0, len, GFP_NOIO);
1521 __map_bio(clone);
1522 ret = 1;
1523 break;
1524 default:
1525 /* dm_accept_partial_bio() is not supported with shared tio->len_ptr */
1526 alloc_multiple_bios(&blist, ci, ti, num_bios);
1527 while ((clone = bio_list_pop(&blist))) {
1528 dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO);
1529 __map_bio(clone);
1530 ret += 1;
1531 }
1532 break;
1533 }
1534
1535 return ret;
1536 }
1537
__send_empty_flush(struct clone_info * ci)1538 static void __send_empty_flush(struct clone_info *ci)
1539 {
1540 struct dm_table *t = ci->map;
1541 struct bio flush_bio;
1542
1543 /*
1544 * Use an on-stack bio for this, it's safe since we don't
1545 * need to reference it after submit. It's just used as
1546 * the basis for the clone(s).
1547 */
1548 bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0,
1549 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC);
1550
1551 ci->bio = &flush_bio;
1552 ci->sector_count = 0;
1553 ci->io->tio.clone.bi_iter.bi_size = 0;
1554
1555 for (unsigned int i = 0; i < t->num_targets; i++) {
1556 unsigned int bios;
1557 struct dm_target *ti = dm_table_get_target(t, i);
1558
1559 atomic_add(ti->num_flush_bios, &ci->io->io_count);
1560 bios = __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1561 atomic_sub(ti->num_flush_bios - bios, &ci->io->io_count);
1562 }
1563
1564 /*
1565 * alloc_io() takes one extra reference for submission, so the
1566 * reference won't reach 0 without the following subtraction
1567 */
1568 atomic_sub(1, &ci->io->io_count);
1569
1570 bio_uninit(ci->bio);
1571 }
1572
__send_changing_extent_only(struct clone_info * ci,struct dm_target * ti,unsigned num_bios)1573 static void __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1574 unsigned num_bios)
1575 {
1576 unsigned len;
1577 unsigned int bios;
1578
1579 len = min_t(sector_t, ci->sector_count,
1580 max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector)));
1581
1582 atomic_add(num_bios, &ci->io->io_count);
1583 bios = __send_duplicate_bios(ci, ti, num_bios, &len);
1584 /*
1585 * alloc_io() takes one extra reference for submission, so the
1586 * reference won't reach 0 without the following (+1) subtraction
1587 */
1588 atomic_sub(num_bios - bios + 1, &ci->io->io_count);
1589
1590 ci->sector += len;
1591 ci->sector_count -= len;
1592 }
1593
is_abnormal_io(struct bio * bio)1594 static bool is_abnormal_io(struct bio *bio)
1595 {
1596 enum req_op op = bio_op(bio);
1597
1598 if (op != REQ_OP_READ && op != REQ_OP_WRITE && op != REQ_OP_FLUSH) {
1599 switch (op) {
1600 case REQ_OP_DISCARD:
1601 case REQ_OP_SECURE_ERASE:
1602 case REQ_OP_WRITE_ZEROES:
1603 return true;
1604 default:
1605 break;
1606 }
1607 }
1608
1609 return false;
1610 }
1611
__process_abnormal_io(struct clone_info * ci,struct dm_target * ti)1612 static blk_status_t __process_abnormal_io(struct clone_info *ci,
1613 struct dm_target *ti)
1614 {
1615 unsigned num_bios = 0;
1616
1617 switch (bio_op(ci->bio)) {
1618 case REQ_OP_DISCARD:
1619 num_bios = ti->num_discard_bios;
1620 break;
1621 case REQ_OP_SECURE_ERASE:
1622 num_bios = ti->num_secure_erase_bios;
1623 break;
1624 case REQ_OP_WRITE_ZEROES:
1625 num_bios = ti->num_write_zeroes_bios;
1626 break;
1627 default:
1628 break;
1629 }
1630
1631 /*
1632 * Even though the device advertised support for this type of
1633 * request, that does not mean every target supports it, and
1634 * reconfiguration might also have changed that since the
1635 * check was performed.
1636 */
1637 if (unlikely(!num_bios))
1638 return BLK_STS_NOTSUPP;
1639
1640 __send_changing_extent_only(ci, ti, num_bios);
1641 return BLK_STS_OK;
1642 }
1643
1644 /*
1645 * Reuse ->bi_private as dm_io list head for storing all dm_io instances
1646 * associated with this bio, and this bio's bi_private needs to be
1647 * stored in dm_io->data before the reuse.
1648 *
1649 * bio->bi_private is owned by fs or upper layer, so block layer won't
1650 * touch it after splitting. Meantime it won't be changed by anyone after
1651 * bio is submitted. So this reuse is safe.
1652 */
dm_poll_list_head(struct bio * bio)1653 static inline struct dm_io **dm_poll_list_head(struct bio *bio)
1654 {
1655 return (struct dm_io **)&bio->bi_private;
1656 }
1657
dm_queue_poll_io(struct bio * bio,struct dm_io * io)1658 static void dm_queue_poll_io(struct bio *bio, struct dm_io *io)
1659 {
1660 struct dm_io **head = dm_poll_list_head(bio);
1661
1662 if (!(bio->bi_opf & REQ_DM_POLL_LIST)) {
1663 bio->bi_opf |= REQ_DM_POLL_LIST;
1664 /*
1665 * Save .bi_private into dm_io, so that we can reuse
1666 * .bi_private as dm_io list head for storing dm_io list
1667 */
1668 io->data = bio->bi_private;
1669
1670 /* tell block layer to poll for completion */
1671 bio->bi_cookie = ~BLK_QC_T_NONE;
1672
1673 io->next = NULL;
1674 } else {
1675 /*
1676 * bio recursed due to split, reuse original poll list,
1677 * and save bio->bi_private too.
1678 */
1679 io->data = (*head)->data;
1680 io->next = *head;
1681 }
1682
1683 *head = io;
1684 }
1685
1686 /*
1687 * Select the correct strategy for processing a non-flush bio.
1688 */
__split_and_process_bio(struct clone_info * ci)1689 static blk_status_t __split_and_process_bio(struct clone_info *ci)
1690 {
1691 struct bio *clone;
1692 struct dm_target *ti;
1693 unsigned len;
1694
1695 ti = dm_table_find_target(ci->map, ci->sector);
1696 if (unlikely(!ti))
1697 return BLK_STS_IOERR;
1698
1699 if (unlikely((ci->bio->bi_opf & REQ_NOWAIT) != 0) &&
1700 unlikely(!dm_target_supports_nowait(ti->type)))
1701 return BLK_STS_NOTSUPP;
1702
1703 if (unlikely(ci->is_abnormal_io))
1704 return __process_abnormal_io(ci, ti);
1705
1706 /*
1707 * Only support bio polling for normal IO, and the target io is
1708 * exactly inside the dm_io instance (verified in dm_poll_dm_io)
1709 */
1710 ci->submit_as_polled = !!(ci->bio->bi_opf & REQ_POLLED);
1711
1712 len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1713 setup_split_accounting(ci, len);
1714 clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO);
1715 __map_bio(clone);
1716
1717 ci->sector += len;
1718 ci->sector_count -= len;
1719
1720 return BLK_STS_OK;
1721 }
1722
init_clone_info(struct clone_info * ci,struct mapped_device * md,struct dm_table * map,struct bio * bio,bool is_abnormal)1723 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1724 struct dm_table *map, struct bio *bio, bool is_abnormal)
1725 {
1726 ci->map = map;
1727 ci->io = alloc_io(md, bio);
1728 ci->bio = bio;
1729 ci->is_abnormal_io = is_abnormal;
1730 ci->submit_as_polled = false;
1731 ci->sector = bio->bi_iter.bi_sector;
1732 ci->sector_count = bio_sectors(bio);
1733
1734 /* Shouldn't happen but sector_count was being set to 0 so... */
1735 if (static_branch_unlikely(&zoned_enabled) &&
1736 WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count))
1737 ci->sector_count = 0;
1738 }
1739
1740 /*
1741 * Entry point to split a bio into clones and submit them to the targets.
1742 */
dm_split_and_process_bio(struct mapped_device * md,struct dm_table * map,struct bio * bio)1743 static void dm_split_and_process_bio(struct mapped_device *md,
1744 struct dm_table *map, struct bio *bio)
1745 {
1746 struct clone_info ci;
1747 struct dm_io *io;
1748 blk_status_t error = BLK_STS_OK;
1749 bool is_abnormal;
1750
1751 is_abnormal = is_abnormal_io(bio);
1752 if (unlikely(is_abnormal)) {
1753 /*
1754 * Use bio_split_to_limits() for abnormal IO (e.g. discard, etc)
1755 * otherwise associated queue_limits won't be imposed.
1756 */
1757 bio = bio_split_to_limits(bio);
1758 }
1759
1760 init_clone_info(&ci, md, map, bio, is_abnormal);
1761 io = ci.io;
1762
1763 if (bio->bi_opf & REQ_PREFLUSH) {
1764 __send_empty_flush(&ci);
1765 /* dm_io_complete submits any data associated with flush */
1766 goto out;
1767 }
1768
1769 error = __split_and_process_bio(&ci);
1770 if (error || !ci.sector_count)
1771 goto out;
1772 /*
1773 * Remainder must be passed to submit_bio_noacct() so it gets handled
1774 * *after* bios already submitted have been completely processed.
1775 */
1776 bio_trim(bio, io->sectors, ci.sector_count);
1777 trace_block_split(bio, bio->bi_iter.bi_sector);
1778 bio_inc_remaining(bio);
1779 submit_bio_noacct(bio);
1780 out:
1781 /*
1782 * Drop the extra reference count for non-POLLED bio, and hold one
1783 * reference for POLLED bio, which will be released in dm_poll_bio
1784 *
1785 * Add every dm_io instance into the dm_io list head which is stored
1786 * in bio->bi_private, so that dm_poll_bio can poll them all.
1787 */
1788 if (error || !ci.submit_as_polled) {
1789 /*
1790 * In case of submission failure, the extra reference for
1791 * submitting io isn't consumed yet
1792 */
1793 if (error)
1794 atomic_dec(&io->io_count);
1795 dm_io_dec_pending(io, error);
1796 } else
1797 dm_queue_poll_io(bio, io);
1798 }
1799
dm_submit_bio(struct bio * bio)1800 static void dm_submit_bio(struct bio *bio)
1801 {
1802 struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
1803 int srcu_idx;
1804 struct dm_table *map;
1805 blk_opf_t bio_opf = bio->bi_opf;
1806
1807 map = dm_get_live_table_bio(md, &srcu_idx, bio_opf);
1808
1809 /* If suspended, or map not yet available, queue this IO for later */
1810 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) ||
1811 unlikely(!map)) {
1812 if (bio->bi_opf & REQ_NOWAIT)
1813 bio_wouldblock_error(bio);
1814 else if (bio->bi_opf & REQ_RAHEAD)
1815 bio_io_error(bio);
1816 else
1817 queue_io(md, bio);
1818 goto out;
1819 }
1820
1821 dm_split_and_process_bio(md, map, bio);
1822 out:
1823 dm_put_live_table_bio(md, srcu_idx, bio_opf);
1824 }
1825
dm_poll_dm_io(struct dm_io * io,struct io_comp_batch * iob,unsigned int flags)1826 static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob,
1827 unsigned int flags)
1828 {
1829 WARN_ON_ONCE(!dm_tio_is_normal(&io->tio));
1830
1831 /* don't poll if the mapped io is done */
1832 if (atomic_read(&io->io_count) > 1)
1833 bio_poll(&io->tio.clone, iob, flags);
1834
1835 /* bio_poll holds the last reference */
1836 return atomic_read(&io->io_count) == 1;
1837 }
1838
dm_poll_bio(struct bio * bio,struct io_comp_batch * iob,unsigned int flags)1839 static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob,
1840 unsigned int flags)
1841 {
1842 struct dm_io **head = dm_poll_list_head(bio);
1843 struct dm_io *list = *head;
1844 struct dm_io *tmp = NULL;
1845 struct dm_io *curr, *next;
1846
1847 /* Only poll normal bio which was marked as REQ_DM_POLL_LIST */
1848 if (!(bio->bi_opf & REQ_DM_POLL_LIST))
1849 return 0;
1850
1851 WARN_ON_ONCE(!list);
1852
1853 /*
1854 * Restore .bi_private before possibly completing dm_io.
1855 *
1856 * bio_poll() is only possible once @bio has been completely
1857 * submitted via submit_bio_noacct()'s depth-first submission.
1858 * So there is no dm_queue_poll_io() race associated with
1859 * clearing REQ_DM_POLL_LIST here.
1860 */
1861 bio->bi_opf &= ~REQ_DM_POLL_LIST;
1862 bio->bi_private = list->data;
1863
1864 for (curr = list, next = curr->next; curr; curr = next, next =
1865 curr ? curr->next : NULL) {
1866 if (dm_poll_dm_io(curr, iob, flags)) {
1867 /*
1868 * clone_endio() has already occurred, so no
1869 * error handling is needed here.
1870 */
1871 __dm_io_dec_pending(curr);
1872 } else {
1873 curr->next = tmp;
1874 tmp = curr;
1875 }
1876 }
1877
1878 /* Not done? */
1879 if (tmp) {
1880 bio->bi_opf |= REQ_DM_POLL_LIST;
1881 /* Reset bio->bi_private to dm_io list head */
1882 *head = tmp;
1883 return 0;
1884 }
1885 return 1;
1886 }
1887
1888 /*-----------------------------------------------------------------
1889 * An IDR is used to keep track of allocated minor numbers.
1890 *---------------------------------------------------------------*/
free_minor(int minor)1891 static void free_minor(int minor)
1892 {
1893 spin_lock(&_minor_lock);
1894 idr_remove(&_minor_idr, minor);
1895 spin_unlock(&_minor_lock);
1896 }
1897
1898 /*
1899 * See if the device with a specific minor # is free.
1900 */
specific_minor(int minor)1901 static int specific_minor(int minor)
1902 {
1903 int r;
1904
1905 if (minor >= (1 << MINORBITS))
1906 return -EINVAL;
1907
1908 idr_preload(GFP_KERNEL);
1909 spin_lock(&_minor_lock);
1910
1911 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1912
1913 spin_unlock(&_minor_lock);
1914 idr_preload_end();
1915 if (r < 0)
1916 return r == -ENOSPC ? -EBUSY : r;
1917 return 0;
1918 }
1919
next_free_minor(int * minor)1920 static int next_free_minor(int *minor)
1921 {
1922 int r;
1923
1924 idr_preload(GFP_KERNEL);
1925 spin_lock(&_minor_lock);
1926
1927 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1928
1929 spin_unlock(&_minor_lock);
1930 idr_preload_end();
1931 if (r < 0)
1932 return r;
1933 *minor = r;
1934 return 0;
1935 }
1936
1937 static const struct block_device_operations dm_blk_dops;
1938 static const struct block_device_operations dm_rq_blk_dops;
1939 static const struct dax_operations dm_dax_ops;
1940
1941 static void dm_wq_work(struct work_struct *work);
1942
1943 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
dm_queue_destroy_crypto_profile(struct request_queue * q)1944 static void dm_queue_destroy_crypto_profile(struct request_queue *q)
1945 {
1946 dm_destroy_crypto_profile(q->crypto_profile);
1947 }
1948
1949 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1950
dm_queue_destroy_crypto_profile(struct request_queue * q)1951 static inline void dm_queue_destroy_crypto_profile(struct request_queue *q)
1952 {
1953 }
1954 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1955
cleanup_mapped_device(struct mapped_device * md)1956 static void cleanup_mapped_device(struct mapped_device *md)
1957 {
1958 if (md->wq)
1959 destroy_workqueue(md->wq);
1960 dm_free_md_mempools(md->mempools);
1961
1962 if (md->dax_dev) {
1963 dax_remove_host(md->disk);
1964 kill_dax(md->dax_dev);
1965 put_dax(md->dax_dev);
1966 md->dax_dev = NULL;
1967 }
1968
1969 dm_cleanup_zoned_dev(md);
1970 if (md->disk) {
1971 spin_lock(&_minor_lock);
1972 md->disk->private_data = NULL;
1973 spin_unlock(&_minor_lock);
1974 if (dm_get_md_type(md) != DM_TYPE_NONE) {
1975 dm_sysfs_exit(md);
1976 del_gendisk(md->disk);
1977 }
1978 dm_queue_destroy_crypto_profile(md->queue);
1979 put_disk(md->disk);
1980 }
1981
1982 if (md->pending_io) {
1983 free_percpu(md->pending_io);
1984 md->pending_io = NULL;
1985 }
1986
1987 cleanup_srcu_struct(&md->io_barrier);
1988
1989 mutex_destroy(&md->suspend_lock);
1990 mutex_destroy(&md->type_lock);
1991 mutex_destroy(&md->table_devices_lock);
1992 mutex_destroy(&md->swap_bios_lock);
1993
1994 dm_mq_cleanup_mapped_device(md);
1995 }
1996
1997 /*
1998 * Allocate and initialise a blank device with a given minor.
1999 */
alloc_dev(int minor)2000 static struct mapped_device *alloc_dev(int minor)
2001 {
2002 int r, numa_node_id = dm_get_numa_node();
2003 struct mapped_device *md;
2004 void *old_md;
2005
2006 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
2007 if (!md) {
2008 DMERR("unable to allocate device, out of memory.");
2009 return NULL;
2010 }
2011
2012 if (!try_module_get(THIS_MODULE))
2013 goto bad_module_get;
2014
2015 /* get a minor number for the dev */
2016 if (minor == DM_ANY_MINOR)
2017 r = next_free_minor(&minor);
2018 else
2019 r = specific_minor(minor);
2020 if (r < 0)
2021 goto bad_minor;
2022
2023 r = init_srcu_struct(&md->io_barrier);
2024 if (r < 0)
2025 goto bad_io_barrier;
2026
2027 md->numa_node_id = numa_node_id;
2028 md->init_tio_pdu = false;
2029 md->type = DM_TYPE_NONE;
2030 mutex_init(&md->suspend_lock);
2031 mutex_init(&md->type_lock);
2032 mutex_init(&md->table_devices_lock);
2033 spin_lock_init(&md->deferred_lock);
2034 atomic_set(&md->holders, 1);
2035 atomic_set(&md->open_count, 0);
2036 atomic_set(&md->event_nr, 0);
2037 atomic_set(&md->uevent_seq, 0);
2038 INIT_LIST_HEAD(&md->uevent_list);
2039 INIT_LIST_HEAD(&md->table_devices);
2040 spin_lock_init(&md->uevent_lock);
2041
2042 /*
2043 * default to bio-based until DM table is loaded and md->type
2044 * established. If request-based table is loaded: blk-mq will
2045 * override accordingly.
2046 */
2047 md->disk = blk_alloc_disk(md->numa_node_id);
2048 if (!md->disk)
2049 goto bad;
2050 md->queue = md->disk->queue;
2051
2052 init_waitqueue_head(&md->wait);
2053 INIT_WORK(&md->work, dm_wq_work);
2054 INIT_WORK(&md->requeue_work, dm_wq_requeue_work);
2055 init_waitqueue_head(&md->eventq);
2056 init_completion(&md->kobj_holder.completion);
2057
2058 md->requeue_list = NULL;
2059 md->swap_bios = get_swap_bios();
2060 sema_init(&md->swap_bios_semaphore, md->swap_bios);
2061 mutex_init(&md->swap_bios_lock);
2062
2063 md->disk->major = _major;
2064 md->disk->first_minor = minor;
2065 md->disk->minors = 1;
2066 md->disk->flags |= GENHD_FL_NO_PART;
2067 md->disk->fops = &dm_blk_dops;
2068 md->disk->private_data = md;
2069 sprintf(md->disk->disk_name, "dm-%d", minor);
2070
2071 if (IS_ENABLED(CONFIG_FS_DAX)) {
2072 md->dax_dev = alloc_dax(md, &dm_dax_ops);
2073 if (IS_ERR(md->dax_dev)) {
2074 md->dax_dev = NULL;
2075 goto bad;
2076 }
2077 set_dax_nocache(md->dax_dev);
2078 set_dax_nomc(md->dax_dev);
2079 if (dax_add_host(md->dax_dev, md->disk))
2080 goto bad;
2081 }
2082
2083 format_dev_t(md->name, MKDEV(_major, minor));
2084
2085 md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name);
2086 if (!md->wq)
2087 goto bad;
2088
2089 md->pending_io = alloc_percpu(unsigned long);
2090 if (!md->pending_io)
2091 goto bad;
2092
2093 dm_stats_init(&md->stats);
2094
2095 /* Populate the mapping, nobody knows we exist yet */
2096 spin_lock(&_minor_lock);
2097 old_md = idr_replace(&_minor_idr, md, minor);
2098 spin_unlock(&_minor_lock);
2099
2100 BUG_ON(old_md != MINOR_ALLOCED);
2101
2102 return md;
2103
2104 bad:
2105 cleanup_mapped_device(md);
2106 bad_io_barrier:
2107 free_minor(minor);
2108 bad_minor:
2109 module_put(THIS_MODULE);
2110 bad_module_get:
2111 kvfree(md);
2112 return NULL;
2113 }
2114
2115 static void unlock_fs(struct mapped_device *md);
2116
free_dev(struct mapped_device * md)2117 static void free_dev(struct mapped_device *md)
2118 {
2119 int minor = MINOR(disk_devt(md->disk));
2120
2121 unlock_fs(md);
2122
2123 cleanup_mapped_device(md);
2124
2125 free_table_devices(&md->table_devices);
2126 dm_stats_cleanup(&md->stats);
2127 free_minor(minor);
2128
2129 module_put(THIS_MODULE);
2130 kvfree(md);
2131 }
2132
2133 /*
2134 * Bind a table to the device.
2135 */
event_callback(void * context)2136 static void event_callback(void *context)
2137 {
2138 unsigned long flags;
2139 LIST_HEAD(uevents);
2140 struct mapped_device *md = (struct mapped_device *) context;
2141
2142 spin_lock_irqsave(&md->uevent_lock, flags);
2143 list_splice_init(&md->uevent_list, &uevents);
2144 spin_unlock_irqrestore(&md->uevent_lock, flags);
2145
2146 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2147
2148 atomic_inc(&md->event_nr);
2149 wake_up(&md->eventq);
2150 dm_issue_global_event();
2151 }
2152
2153 /*
2154 * Returns old map, which caller must destroy.
2155 */
__bind(struct mapped_device * md,struct dm_table * t,struct queue_limits * limits)2156 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2157 struct queue_limits *limits)
2158 {
2159 struct dm_table *old_map;
2160 sector_t size;
2161 int ret;
2162
2163 lockdep_assert_held(&md->suspend_lock);
2164
2165 size = dm_table_get_size(t);
2166
2167 /*
2168 * Wipe any geometry if the size of the table changed.
2169 */
2170 if (size != dm_get_size(md))
2171 memset(&md->geometry, 0, sizeof(md->geometry));
2172
2173 if (!get_capacity(md->disk))
2174 set_capacity(md->disk, size);
2175 else
2176 set_capacity_and_notify(md->disk, size);
2177
2178 dm_table_event_callback(t, event_callback, md);
2179
2180 if (dm_table_request_based(t)) {
2181 /*
2182 * Leverage the fact that request-based DM targets are
2183 * immutable singletons - used to optimize dm_mq_queue_rq.
2184 */
2185 md->immutable_target = dm_table_get_immutable_target(t);
2186
2187 /*
2188 * There is no need to reload with request-based dm because the
2189 * size of front_pad doesn't change.
2190 *
2191 * Note for future: If you are to reload bioset, prep-ed
2192 * requests in the queue may refer to bio from the old bioset,
2193 * so you must walk through the queue to unprep.
2194 */
2195 if (!md->mempools) {
2196 md->mempools = t->mempools;
2197 t->mempools = NULL;
2198 }
2199 } else {
2200 /*
2201 * The md may already have mempools that need changing.
2202 * If so, reload bioset because front_pad may have changed
2203 * because a different table was loaded.
2204 */
2205 dm_free_md_mempools(md->mempools);
2206 md->mempools = t->mempools;
2207 t->mempools = NULL;
2208 }
2209
2210 ret = dm_table_set_restrictions(t, md->queue, limits);
2211 if (ret) {
2212 old_map = ERR_PTR(ret);
2213 goto out;
2214 }
2215
2216 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2217 rcu_assign_pointer(md->map, (void *)t);
2218 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2219
2220 if (old_map)
2221 dm_sync_table(md);
2222 out:
2223 return old_map;
2224 }
2225
2226 /*
2227 * Returns unbound table for the caller to free.
2228 */
__unbind(struct mapped_device * md)2229 static struct dm_table *__unbind(struct mapped_device *md)
2230 {
2231 struct dm_table *map = rcu_dereference_protected(md->map, 1);
2232
2233 if (!map)
2234 return NULL;
2235
2236 dm_table_event_callback(map, NULL, NULL);
2237 RCU_INIT_POINTER(md->map, NULL);
2238 dm_sync_table(md);
2239
2240 return map;
2241 }
2242
2243 /*
2244 * Constructor for a new device.
2245 */
dm_create(int minor,struct mapped_device ** result)2246 int dm_create(int minor, struct mapped_device **result)
2247 {
2248 struct mapped_device *md;
2249
2250 md = alloc_dev(minor);
2251 if (!md)
2252 return -ENXIO;
2253
2254 dm_ima_reset_data(md);
2255
2256 *result = md;
2257 return 0;
2258 }
2259
2260 /*
2261 * Functions to manage md->type.
2262 * All are required to hold md->type_lock.
2263 */
dm_lock_md_type(struct mapped_device * md)2264 void dm_lock_md_type(struct mapped_device *md)
2265 {
2266 mutex_lock(&md->type_lock);
2267 }
2268
dm_unlock_md_type(struct mapped_device * md)2269 void dm_unlock_md_type(struct mapped_device *md)
2270 {
2271 mutex_unlock(&md->type_lock);
2272 }
2273
dm_set_md_type(struct mapped_device * md,enum dm_queue_mode type)2274 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2275 {
2276 BUG_ON(!mutex_is_locked(&md->type_lock));
2277 md->type = type;
2278 }
2279
dm_get_md_type(struct mapped_device * md)2280 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2281 {
2282 return md->type;
2283 }
2284
dm_get_immutable_target_type(struct mapped_device * md)2285 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2286 {
2287 return md->immutable_target_type;
2288 }
2289
2290 /*
2291 * The queue_limits are only valid as long as you have a reference
2292 * count on 'md'.
2293 */
dm_get_queue_limits(struct mapped_device * md)2294 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2295 {
2296 BUG_ON(!atomic_read(&md->holders));
2297 return &md->queue->limits;
2298 }
2299 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2300
2301 /*
2302 * Setup the DM device's queue based on md's type
2303 */
dm_setup_md_queue(struct mapped_device * md,struct dm_table * t)2304 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2305 {
2306 enum dm_queue_mode type = dm_table_get_type(t);
2307 struct queue_limits limits;
2308 int r;
2309
2310 switch (type) {
2311 case DM_TYPE_REQUEST_BASED:
2312 md->disk->fops = &dm_rq_blk_dops;
2313 r = dm_mq_init_request_queue(md, t);
2314 if (r) {
2315 DMERR("Cannot initialize queue for request-based dm mapped device");
2316 return r;
2317 }
2318 break;
2319 case DM_TYPE_BIO_BASED:
2320 case DM_TYPE_DAX_BIO_BASED:
2321 break;
2322 case DM_TYPE_NONE:
2323 WARN_ON_ONCE(true);
2324 break;
2325 }
2326
2327 r = dm_calculate_queue_limits(t, &limits);
2328 if (r) {
2329 DMERR("Cannot calculate initial queue limits");
2330 return r;
2331 }
2332 r = dm_table_set_restrictions(t, md->queue, &limits);
2333 if (r)
2334 return r;
2335
2336 r = add_disk(md->disk);
2337 if (r)
2338 return r;
2339
2340 r = dm_sysfs_init(md);
2341 if (r) {
2342 del_gendisk(md->disk);
2343 return r;
2344 }
2345 md->type = type;
2346 return 0;
2347 }
2348
dm_get_md(dev_t dev)2349 struct mapped_device *dm_get_md(dev_t dev)
2350 {
2351 struct mapped_device *md;
2352 unsigned minor = MINOR(dev);
2353
2354 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2355 return NULL;
2356
2357 spin_lock(&_minor_lock);
2358
2359 md = idr_find(&_minor_idr, minor);
2360 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2361 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2362 md = NULL;
2363 goto out;
2364 }
2365 dm_get(md);
2366 out:
2367 spin_unlock(&_minor_lock);
2368
2369 return md;
2370 }
2371 EXPORT_SYMBOL_GPL(dm_get_md);
2372
dm_get_mdptr(struct mapped_device * md)2373 void *dm_get_mdptr(struct mapped_device *md)
2374 {
2375 return md->interface_ptr;
2376 }
2377
dm_set_mdptr(struct mapped_device * md,void * ptr)2378 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2379 {
2380 md->interface_ptr = ptr;
2381 }
2382
dm_get(struct mapped_device * md)2383 void dm_get(struct mapped_device *md)
2384 {
2385 atomic_inc(&md->holders);
2386 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2387 }
2388
dm_hold(struct mapped_device * md)2389 int dm_hold(struct mapped_device *md)
2390 {
2391 spin_lock(&_minor_lock);
2392 if (test_bit(DMF_FREEING, &md->flags)) {
2393 spin_unlock(&_minor_lock);
2394 return -EBUSY;
2395 }
2396 dm_get(md);
2397 spin_unlock(&_minor_lock);
2398 return 0;
2399 }
2400 EXPORT_SYMBOL_GPL(dm_hold);
2401
dm_device_name(struct mapped_device * md)2402 const char *dm_device_name(struct mapped_device *md)
2403 {
2404 return md->name;
2405 }
2406 EXPORT_SYMBOL_GPL(dm_device_name);
2407
__dm_destroy(struct mapped_device * md,bool wait)2408 static void __dm_destroy(struct mapped_device *md, bool wait)
2409 {
2410 struct dm_table *map;
2411 int srcu_idx;
2412
2413 might_sleep();
2414
2415 spin_lock(&_minor_lock);
2416 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2417 set_bit(DMF_FREEING, &md->flags);
2418 spin_unlock(&_minor_lock);
2419
2420 blk_mark_disk_dead(md->disk);
2421
2422 /*
2423 * Take suspend_lock so that presuspend and postsuspend methods
2424 * do not race with internal suspend.
2425 */
2426 mutex_lock(&md->suspend_lock);
2427 map = dm_get_live_table(md, &srcu_idx);
2428 if (!dm_suspended_md(md)) {
2429 dm_table_presuspend_targets(map);
2430 set_bit(DMF_SUSPENDED, &md->flags);
2431 set_bit(DMF_POST_SUSPENDING, &md->flags);
2432 dm_table_postsuspend_targets(map);
2433 }
2434 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2435 dm_put_live_table(md, srcu_idx);
2436 mutex_unlock(&md->suspend_lock);
2437
2438 /*
2439 * Rare, but there may be I/O requests still going to complete,
2440 * for example. Wait for all references to disappear.
2441 * No one should increment the reference count of the mapped_device,
2442 * after the mapped_device state becomes DMF_FREEING.
2443 */
2444 if (wait)
2445 while (atomic_read(&md->holders))
2446 msleep(1);
2447 else if (atomic_read(&md->holders))
2448 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2449 dm_device_name(md), atomic_read(&md->holders));
2450
2451 dm_table_destroy(__unbind(md));
2452 free_dev(md);
2453 }
2454
dm_destroy(struct mapped_device * md)2455 void dm_destroy(struct mapped_device *md)
2456 {
2457 __dm_destroy(md, true);
2458 }
2459
dm_destroy_immediate(struct mapped_device * md)2460 void dm_destroy_immediate(struct mapped_device *md)
2461 {
2462 __dm_destroy(md, false);
2463 }
2464
dm_put(struct mapped_device * md)2465 void dm_put(struct mapped_device *md)
2466 {
2467 atomic_dec(&md->holders);
2468 }
2469 EXPORT_SYMBOL_GPL(dm_put);
2470
dm_in_flight_bios(struct mapped_device * md)2471 static bool dm_in_flight_bios(struct mapped_device *md)
2472 {
2473 int cpu;
2474 unsigned long sum = 0;
2475
2476 for_each_possible_cpu(cpu)
2477 sum += *per_cpu_ptr(md->pending_io, cpu);
2478
2479 return sum != 0;
2480 }
2481
dm_wait_for_bios_completion(struct mapped_device * md,unsigned int task_state)2482 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state)
2483 {
2484 int r = 0;
2485 DEFINE_WAIT(wait);
2486
2487 while (true) {
2488 prepare_to_wait(&md->wait, &wait, task_state);
2489
2490 if (!dm_in_flight_bios(md))
2491 break;
2492
2493 if (signal_pending_state(task_state, current)) {
2494 r = -EINTR;
2495 break;
2496 }
2497
2498 io_schedule();
2499 }
2500 finish_wait(&md->wait, &wait);
2501
2502 smp_rmb();
2503
2504 return r;
2505 }
2506
dm_wait_for_completion(struct mapped_device * md,unsigned int task_state)2507 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state)
2508 {
2509 int r = 0;
2510
2511 if (!queue_is_mq(md->queue))
2512 return dm_wait_for_bios_completion(md, task_state);
2513
2514 while (true) {
2515 if (!blk_mq_queue_inflight(md->queue))
2516 break;
2517
2518 if (signal_pending_state(task_state, current)) {
2519 r = -EINTR;
2520 break;
2521 }
2522
2523 msleep(5);
2524 }
2525
2526 return r;
2527 }
2528
2529 /*
2530 * Process the deferred bios
2531 */
dm_wq_work(struct work_struct * work)2532 static void dm_wq_work(struct work_struct *work)
2533 {
2534 struct mapped_device *md = container_of(work, struct mapped_device, work);
2535 struct bio *bio;
2536
2537 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2538 spin_lock_irq(&md->deferred_lock);
2539 bio = bio_list_pop(&md->deferred);
2540 spin_unlock_irq(&md->deferred_lock);
2541
2542 if (!bio)
2543 break;
2544
2545 submit_bio_noacct(bio);
2546 }
2547 }
2548
dm_queue_flush(struct mapped_device * md)2549 static void dm_queue_flush(struct mapped_device *md)
2550 {
2551 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2552 smp_mb__after_atomic();
2553 queue_work(md->wq, &md->work);
2554 }
2555
2556 /*
2557 * Swap in a new table, returning the old one for the caller to destroy.
2558 */
dm_swap_table(struct mapped_device * md,struct dm_table * table)2559 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2560 {
2561 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2562 struct queue_limits limits;
2563 int r;
2564
2565 mutex_lock(&md->suspend_lock);
2566
2567 /* device must be suspended */
2568 if (!dm_suspended_md(md))
2569 goto out;
2570
2571 /*
2572 * If the new table has no data devices, retain the existing limits.
2573 * This helps multipath with queue_if_no_path if all paths disappear,
2574 * then new I/O is queued based on these limits, and then some paths
2575 * reappear.
2576 */
2577 if (dm_table_has_no_data_devices(table)) {
2578 live_map = dm_get_live_table_fast(md);
2579 if (live_map)
2580 limits = md->queue->limits;
2581 dm_put_live_table_fast(md);
2582 }
2583
2584 if (!live_map) {
2585 r = dm_calculate_queue_limits(table, &limits);
2586 if (r) {
2587 map = ERR_PTR(r);
2588 goto out;
2589 }
2590 }
2591
2592 map = __bind(md, table, &limits);
2593 dm_issue_global_event();
2594
2595 out:
2596 mutex_unlock(&md->suspend_lock);
2597 return map;
2598 }
2599
2600 /*
2601 * Functions to lock and unlock any filesystem running on the
2602 * device.
2603 */
lock_fs(struct mapped_device * md)2604 static int lock_fs(struct mapped_device *md)
2605 {
2606 int r;
2607
2608 WARN_ON(test_bit(DMF_FROZEN, &md->flags));
2609
2610 r = freeze_bdev(md->disk->part0);
2611 if (!r)
2612 set_bit(DMF_FROZEN, &md->flags);
2613 return r;
2614 }
2615
unlock_fs(struct mapped_device * md)2616 static void unlock_fs(struct mapped_device *md)
2617 {
2618 if (!test_bit(DMF_FROZEN, &md->flags))
2619 return;
2620 thaw_bdev(md->disk->part0);
2621 clear_bit(DMF_FROZEN, &md->flags);
2622 }
2623
2624 /*
2625 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2626 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2627 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2628 *
2629 * If __dm_suspend returns 0, the device is completely quiescent
2630 * now. There is no request-processing activity. All new requests
2631 * are being added to md->deferred list.
2632 */
__dm_suspend(struct mapped_device * md,struct dm_table * map,unsigned suspend_flags,unsigned int task_state,int dmf_suspended_flag)2633 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2634 unsigned suspend_flags, unsigned int task_state,
2635 int dmf_suspended_flag)
2636 {
2637 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2638 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2639 int r;
2640
2641 lockdep_assert_held(&md->suspend_lock);
2642
2643 /*
2644 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2645 * This flag is cleared before dm_suspend returns.
2646 */
2647 if (noflush)
2648 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2649 else
2650 DMDEBUG("%s: suspending with flush", dm_device_name(md));
2651
2652 /*
2653 * This gets reverted if there's an error later and the targets
2654 * provide the .presuspend_undo hook.
2655 */
2656 dm_table_presuspend_targets(map);
2657
2658 /*
2659 * Flush I/O to the device.
2660 * Any I/O submitted after lock_fs() may not be flushed.
2661 * noflush takes precedence over do_lockfs.
2662 * (lock_fs() flushes I/Os and waits for them to complete.)
2663 */
2664 if (!noflush && do_lockfs) {
2665 r = lock_fs(md);
2666 if (r) {
2667 dm_table_presuspend_undo_targets(map);
2668 return r;
2669 }
2670 }
2671
2672 /*
2673 * Here we must make sure that no processes are submitting requests
2674 * to target drivers i.e. no one may be executing
2675 * dm_split_and_process_bio from dm_submit_bio.
2676 *
2677 * To get all processes out of dm_split_and_process_bio in dm_submit_bio,
2678 * we take the write lock. To prevent any process from reentering
2679 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread
2680 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2681 * flush_workqueue(md->wq).
2682 */
2683 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2684 if (map)
2685 synchronize_srcu(&md->io_barrier);
2686
2687 /*
2688 * Stop md->queue before flushing md->wq in case request-based
2689 * dm defers requests to md->wq from md->queue.
2690 */
2691 if (dm_request_based(md))
2692 dm_stop_queue(md->queue);
2693
2694 flush_workqueue(md->wq);
2695
2696 /*
2697 * At this point no more requests are entering target request routines.
2698 * We call dm_wait_for_completion to wait for all existing requests
2699 * to finish.
2700 */
2701 r = dm_wait_for_completion(md, task_state);
2702 if (!r)
2703 set_bit(dmf_suspended_flag, &md->flags);
2704
2705 if (noflush)
2706 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2707 if (map)
2708 synchronize_srcu(&md->io_barrier);
2709
2710 /* were we interrupted ? */
2711 if (r < 0) {
2712 dm_queue_flush(md);
2713
2714 if (dm_request_based(md))
2715 dm_start_queue(md->queue);
2716
2717 unlock_fs(md);
2718 dm_table_presuspend_undo_targets(map);
2719 /* pushback list is already flushed, so skip flush */
2720 }
2721
2722 return r;
2723 }
2724
2725 /*
2726 * We need to be able to change a mapping table under a mounted
2727 * filesystem. For example we might want to move some data in
2728 * the background. Before the table can be swapped with
2729 * dm_bind_table, dm_suspend must be called to flush any in
2730 * flight bios and ensure that any further io gets deferred.
2731 */
2732 /*
2733 * Suspend mechanism in request-based dm.
2734 *
2735 * 1. Flush all I/Os by lock_fs() if needed.
2736 * 2. Stop dispatching any I/O by stopping the request_queue.
2737 * 3. Wait for all in-flight I/Os to be completed or requeued.
2738 *
2739 * To abort suspend, start the request_queue.
2740 */
dm_suspend(struct mapped_device * md,unsigned suspend_flags)2741 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2742 {
2743 struct dm_table *map = NULL;
2744 int r = 0;
2745
2746 retry:
2747 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2748
2749 if (dm_suspended_md(md)) {
2750 r = -EINVAL;
2751 goto out_unlock;
2752 }
2753
2754 if (dm_suspended_internally_md(md)) {
2755 /* already internally suspended, wait for internal resume */
2756 mutex_unlock(&md->suspend_lock);
2757 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2758 if (r)
2759 return r;
2760 goto retry;
2761 }
2762
2763 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2764
2765 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2766 if (r)
2767 goto out_unlock;
2768
2769 set_bit(DMF_POST_SUSPENDING, &md->flags);
2770 dm_table_postsuspend_targets(map);
2771 clear_bit(DMF_POST_SUSPENDING, &md->flags);
2772
2773 out_unlock:
2774 mutex_unlock(&md->suspend_lock);
2775 return r;
2776 }
2777
__dm_resume(struct mapped_device * md,struct dm_table * map)2778 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2779 {
2780 if (map) {
2781 int r = dm_table_resume_targets(map);
2782 if (r)
2783 return r;
2784 }
2785
2786 dm_queue_flush(md);
2787
2788 /*
2789 * Flushing deferred I/Os must be done after targets are resumed
2790 * so that mapping of targets can work correctly.
2791 * Request-based dm is queueing the deferred I/Os in its request_queue.
2792 */
2793 if (dm_request_based(md))
2794 dm_start_queue(md->queue);
2795
2796 unlock_fs(md);
2797
2798 return 0;
2799 }
2800
dm_resume(struct mapped_device * md)2801 int dm_resume(struct mapped_device *md)
2802 {
2803 int r;
2804 struct dm_table *map = NULL;
2805
2806 retry:
2807 r = -EINVAL;
2808 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2809
2810 if (!dm_suspended_md(md))
2811 goto out;
2812
2813 if (dm_suspended_internally_md(md)) {
2814 /* already internally suspended, wait for internal resume */
2815 mutex_unlock(&md->suspend_lock);
2816 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2817 if (r)
2818 return r;
2819 goto retry;
2820 }
2821
2822 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2823 if (!map || !dm_table_get_size(map))
2824 goto out;
2825
2826 r = __dm_resume(md, map);
2827 if (r)
2828 goto out;
2829
2830 clear_bit(DMF_SUSPENDED, &md->flags);
2831 out:
2832 mutex_unlock(&md->suspend_lock);
2833
2834 return r;
2835 }
2836
2837 /*
2838 * Internal suspend/resume works like userspace-driven suspend. It waits
2839 * until all bios finish and prevents issuing new bios to the target drivers.
2840 * It may be used only from the kernel.
2841 */
2842
__dm_internal_suspend(struct mapped_device * md,unsigned suspend_flags)2843 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2844 {
2845 struct dm_table *map = NULL;
2846
2847 lockdep_assert_held(&md->suspend_lock);
2848
2849 if (md->internal_suspend_count++)
2850 return; /* nested internal suspend */
2851
2852 if (dm_suspended_md(md)) {
2853 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2854 return; /* nest suspend */
2855 }
2856
2857 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2858
2859 /*
2860 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2861 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
2862 * would require changing .presuspend to return an error -- avoid this
2863 * until there is a need for more elaborate variants of internal suspend.
2864 */
2865 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2866 DMF_SUSPENDED_INTERNALLY);
2867
2868 set_bit(DMF_POST_SUSPENDING, &md->flags);
2869 dm_table_postsuspend_targets(map);
2870 clear_bit(DMF_POST_SUSPENDING, &md->flags);
2871 }
2872
__dm_internal_resume(struct mapped_device * md)2873 static void __dm_internal_resume(struct mapped_device *md)
2874 {
2875 BUG_ON(!md->internal_suspend_count);
2876
2877 if (--md->internal_suspend_count)
2878 return; /* resume from nested internal suspend */
2879
2880 if (dm_suspended_md(md))
2881 goto done; /* resume from nested suspend */
2882
2883 /*
2884 * NOTE: existing callers don't need to call dm_table_resume_targets
2885 * (which may fail -- so best to avoid it for now by passing NULL map)
2886 */
2887 (void) __dm_resume(md, NULL);
2888
2889 done:
2890 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2891 smp_mb__after_atomic();
2892 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2893 }
2894
dm_internal_suspend_noflush(struct mapped_device * md)2895 void dm_internal_suspend_noflush(struct mapped_device *md)
2896 {
2897 mutex_lock(&md->suspend_lock);
2898 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2899 mutex_unlock(&md->suspend_lock);
2900 }
2901 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2902
dm_internal_resume(struct mapped_device * md)2903 void dm_internal_resume(struct mapped_device *md)
2904 {
2905 mutex_lock(&md->suspend_lock);
2906 __dm_internal_resume(md);
2907 mutex_unlock(&md->suspend_lock);
2908 }
2909 EXPORT_SYMBOL_GPL(dm_internal_resume);
2910
2911 /*
2912 * Fast variants of internal suspend/resume hold md->suspend_lock,
2913 * which prevents interaction with userspace-driven suspend.
2914 */
2915
dm_internal_suspend_fast(struct mapped_device * md)2916 void dm_internal_suspend_fast(struct mapped_device *md)
2917 {
2918 mutex_lock(&md->suspend_lock);
2919 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2920 return;
2921
2922 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2923 synchronize_srcu(&md->io_barrier);
2924 flush_workqueue(md->wq);
2925 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2926 }
2927 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2928
dm_internal_resume_fast(struct mapped_device * md)2929 void dm_internal_resume_fast(struct mapped_device *md)
2930 {
2931 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2932 goto done;
2933
2934 dm_queue_flush(md);
2935
2936 done:
2937 mutex_unlock(&md->suspend_lock);
2938 }
2939 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2940
2941 /*-----------------------------------------------------------------
2942 * Event notification.
2943 *---------------------------------------------------------------*/
dm_kobject_uevent(struct mapped_device * md,enum kobject_action action,unsigned cookie)2944 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2945 unsigned cookie)
2946 {
2947 int r;
2948 unsigned noio_flag;
2949 char udev_cookie[DM_COOKIE_LENGTH];
2950 char *envp[] = { udev_cookie, NULL };
2951
2952 noio_flag = memalloc_noio_save();
2953
2954 if (!cookie)
2955 r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2956 else {
2957 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2958 DM_COOKIE_ENV_VAR_NAME, cookie);
2959 r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2960 action, envp);
2961 }
2962
2963 memalloc_noio_restore(noio_flag);
2964
2965 return r;
2966 }
2967
dm_next_uevent_seq(struct mapped_device * md)2968 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2969 {
2970 return atomic_add_return(1, &md->uevent_seq);
2971 }
2972
dm_get_event_nr(struct mapped_device * md)2973 uint32_t dm_get_event_nr(struct mapped_device *md)
2974 {
2975 return atomic_read(&md->event_nr);
2976 }
2977
dm_wait_event(struct mapped_device * md,int event_nr)2978 int dm_wait_event(struct mapped_device *md, int event_nr)
2979 {
2980 return wait_event_interruptible(md->eventq,
2981 (event_nr != atomic_read(&md->event_nr)));
2982 }
2983
dm_uevent_add(struct mapped_device * md,struct list_head * elist)2984 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2985 {
2986 unsigned long flags;
2987
2988 spin_lock_irqsave(&md->uevent_lock, flags);
2989 list_add(elist, &md->uevent_list);
2990 spin_unlock_irqrestore(&md->uevent_lock, flags);
2991 }
2992
2993 /*
2994 * The gendisk is only valid as long as you have a reference
2995 * count on 'md'.
2996 */
dm_disk(struct mapped_device * md)2997 struct gendisk *dm_disk(struct mapped_device *md)
2998 {
2999 return md->disk;
3000 }
3001 EXPORT_SYMBOL_GPL(dm_disk);
3002
dm_kobject(struct mapped_device * md)3003 struct kobject *dm_kobject(struct mapped_device *md)
3004 {
3005 return &md->kobj_holder.kobj;
3006 }
3007
dm_get_from_kobject(struct kobject * kobj)3008 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3009 {
3010 struct mapped_device *md;
3011
3012 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3013
3014 spin_lock(&_minor_lock);
3015 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
3016 md = NULL;
3017 goto out;
3018 }
3019 dm_get(md);
3020 out:
3021 spin_unlock(&_minor_lock);
3022
3023 return md;
3024 }
3025
dm_suspended_md(struct mapped_device * md)3026 int dm_suspended_md(struct mapped_device *md)
3027 {
3028 return test_bit(DMF_SUSPENDED, &md->flags);
3029 }
3030
dm_post_suspending_md(struct mapped_device * md)3031 static int dm_post_suspending_md(struct mapped_device *md)
3032 {
3033 return test_bit(DMF_POST_SUSPENDING, &md->flags);
3034 }
3035
dm_suspended_internally_md(struct mapped_device * md)3036 int dm_suspended_internally_md(struct mapped_device *md)
3037 {
3038 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3039 }
3040
dm_test_deferred_remove_flag(struct mapped_device * md)3041 int dm_test_deferred_remove_flag(struct mapped_device *md)
3042 {
3043 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3044 }
3045
dm_suspended(struct dm_target * ti)3046 int dm_suspended(struct dm_target *ti)
3047 {
3048 return dm_suspended_md(ti->table->md);
3049 }
3050 EXPORT_SYMBOL_GPL(dm_suspended);
3051
dm_post_suspending(struct dm_target * ti)3052 int dm_post_suspending(struct dm_target *ti)
3053 {
3054 return dm_post_suspending_md(ti->table->md);
3055 }
3056 EXPORT_SYMBOL_GPL(dm_post_suspending);
3057
dm_noflush_suspending(struct dm_target * ti)3058 int dm_noflush_suspending(struct dm_target *ti)
3059 {
3060 return __noflush_suspending(ti->table->md);
3061 }
3062 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3063
dm_free_md_mempools(struct dm_md_mempools * pools)3064 void dm_free_md_mempools(struct dm_md_mempools *pools)
3065 {
3066 if (!pools)
3067 return;
3068
3069 bioset_exit(&pools->bs);
3070 bioset_exit(&pools->io_bs);
3071
3072 kfree(pools);
3073 }
3074
3075 struct dm_pr {
3076 u64 old_key;
3077 u64 new_key;
3078 u32 flags;
3079 bool abort;
3080 bool fail_early;
3081 int ret;
3082 enum pr_type type;
3083 };
3084
dm_call_pr(struct block_device * bdev,iterate_devices_callout_fn fn,struct dm_pr * pr)3085 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3086 struct dm_pr *pr)
3087 {
3088 struct mapped_device *md = bdev->bd_disk->private_data;
3089 struct dm_table *table;
3090 struct dm_target *ti;
3091 int ret = -ENOTTY, srcu_idx;
3092
3093 table = dm_get_live_table(md, &srcu_idx);
3094 if (!table || !dm_table_get_size(table))
3095 goto out;
3096
3097 /* We only support devices that have a single target */
3098 if (table->num_targets != 1)
3099 goto out;
3100 ti = dm_table_get_target(table, 0);
3101
3102 if (dm_suspended_md(md)) {
3103 ret = -EAGAIN;
3104 goto out;
3105 }
3106
3107 ret = -EINVAL;
3108 if (!ti->type->iterate_devices)
3109 goto out;
3110
3111 ti->type->iterate_devices(ti, fn, pr);
3112 ret = 0;
3113 out:
3114 dm_put_live_table(md, srcu_idx);
3115 return ret;
3116 }
3117
3118 /*
3119 * For register / unregister we need to manually call out to every path.
3120 */
__dm_pr_register(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)3121 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3122 sector_t start, sector_t len, void *data)
3123 {
3124 struct dm_pr *pr = data;
3125 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3126 int ret;
3127
3128 if (!ops || !ops->pr_register) {
3129 pr->ret = -EOPNOTSUPP;
3130 return -1;
3131 }
3132
3133 ret = ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3134 if (!ret)
3135 return 0;
3136
3137 if (!pr->ret)
3138 pr->ret = ret;
3139
3140 if (pr->fail_early)
3141 return -1;
3142
3143 return 0;
3144 }
3145
dm_pr_register(struct block_device * bdev,u64 old_key,u64 new_key,u32 flags)3146 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3147 u32 flags)
3148 {
3149 struct dm_pr pr = {
3150 .old_key = old_key,
3151 .new_key = new_key,
3152 .flags = flags,
3153 .fail_early = true,
3154 .ret = 0,
3155 };
3156 int ret;
3157
3158 ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3159 if (ret) {
3160 /* Didn't even get to register a path */
3161 return ret;
3162 }
3163
3164 if (!pr.ret)
3165 return 0;
3166 ret = pr.ret;
3167
3168 if (!new_key)
3169 return ret;
3170
3171 /* unregister all paths if we failed to register any path */
3172 pr.old_key = new_key;
3173 pr.new_key = 0;
3174 pr.flags = 0;
3175 pr.fail_early = false;
3176 (void) dm_call_pr(bdev, __dm_pr_register, &pr);
3177 return ret;
3178 }
3179
3180
__dm_pr_reserve(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)3181 static int __dm_pr_reserve(struct dm_target *ti, struct dm_dev *dev,
3182 sector_t start, sector_t len, void *data)
3183 {
3184 struct dm_pr *pr = data;
3185 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3186
3187 if (!ops || !ops->pr_reserve) {
3188 pr->ret = -EOPNOTSUPP;
3189 return -1;
3190 }
3191
3192 pr->ret = ops->pr_reserve(dev->bdev, pr->old_key, pr->type, pr->flags);
3193 if (!pr->ret)
3194 return -1;
3195
3196 return 0;
3197 }
3198
dm_pr_reserve(struct block_device * bdev,u64 key,enum pr_type type,u32 flags)3199 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3200 u32 flags)
3201 {
3202 struct dm_pr pr = {
3203 .old_key = key,
3204 .flags = flags,
3205 .type = type,
3206 .fail_early = false,
3207 .ret = 0,
3208 };
3209 int ret;
3210
3211 ret = dm_call_pr(bdev, __dm_pr_reserve, &pr);
3212 if (ret)
3213 return ret;
3214
3215 return pr.ret;
3216 }
3217
3218 /*
3219 * If there is a non-All Registrants type of reservation, the release must be
3220 * sent down the holding path. For the cases where there is no reservation or
3221 * the path is not the holder the device will also return success, so we must
3222 * try each path to make sure we got the correct path.
3223 */
__dm_pr_release(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)3224 static int __dm_pr_release(struct dm_target *ti, struct dm_dev *dev,
3225 sector_t start, sector_t len, void *data)
3226 {
3227 struct dm_pr *pr = data;
3228 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3229
3230 if (!ops || !ops->pr_release) {
3231 pr->ret = -EOPNOTSUPP;
3232 return -1;
3233 }
3234
3235 pr->ret = ops->pr_release(dev->bdev, pr->old_key, pr->type);
3236 if (pr->ret)
3237 return -1;
3238
3239 return 0;
3240 }
3241
dm_pr_release(struct block_device * bdev,u64 key,enum pr_type type)3242 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3243 {
3244 struct dm_pr pr = {
3245 .old_key = key,
3246 .type = type,
3247 .fail_early = false,
3248 };
3249 int ret;
3250
3251 ret = dm_call_pr(bdev, __dm_pr_release, &pr);
3252 if (ret)
3253 return ret;
3254
3255 return pr.ret;
3256 }
3257
__dm_pr_preempt(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)3258 static int __dm_pr_preempt(struct dm_target *ti, struct dm_dev *dev,
3259 sector_t start, sector_t len, void *data)
3260 {
3261 struct dm_pr *pr = data;
3262 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3263
3264 if (!ops || !ops->pr_preempt) {
3265 pr->ret = -EOPNOTSUPP;
3266 return -1;
3267 }
3268
3269 pr->ret = ops->pr_preempt(dev->bdev, pr->old_key, pr->new_key, pr->type,
3270 pr->abort);
3271 if (!pr->ret)
3272 return -1;
3273
3274 return 0;
3275 }
3276
dm_pr_preempt(struct block_device * bdev,u64 old_key,u64 new_key,enum pr_type type,bool abort)3277 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3278 enum pr_type type, bool abort)
3279 {
3280 struct dm_pr pr = {
3281 .new_key = new_key,
3282 .old_key = old_key,
3283 .type = type,
3284 .fail_early = false,
3285 };
3286 int ret;
3287
3288 ret = dm_call_pr(bdev, __dm_pr_preempt, &pr);
3289 if (ret)
3290 return ret;
3291
3292 return pr.ret;
3293 }
3294
dm_pr_clear(struct block_device * bdev,u64 key)3295 static int dm_pr_clear(struct block_device *bdev, u64 key)
3296 {
3297 struct mapped_device *md = bdev->bd_disk->private_data;
3298 const struct pr_ops *ops;
3299 int r, srcu_idx;
3300
3301 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3302 if (r < 0)
3303 goto out;
3304
3305 ops = bdev->bd_disk->fops->pr_ops;
3306 if (ops && ops->pr_clear)
3307 r = ops->pr_clear(bdev, key);
3308 else
3309 r = -EOPNOTSUPP;
3310 out:
3311 dm_unprepare_ioctl(md, srcu_idx);
3312 return r;
3313 }
3314
3315 static const struct pr_ops dm_pr_ops = {
3316 .pr_register = dm_pr_register,
3317 .pr_reserve = dm_pr_reserve,
3318 .pr_release = dm_pr_release,
3319 .pr_preempt = dm_pr_preempt,
3320 .pr_clear = dm_pr_clear,
3321 };
3322
3323 static const struct block_device_operations dm_blk_dops = {
3324 .submit_bio = dm_submit_bio,
3325 .poll_bio = dm_poll_bio,
3326 .open = dm_blk_open,
3327 .release = dm_blk_close,
3328 .ioctl = dm_blk_ioctl,
3329 .getgeo = dm_blk_getgeo,
3330 .report_zones = dm_blk_report_zones,
3331 .pr_ops = &dm_pr_ops,
3332 .owner = THIS_MODULE
3333 };
3334
3335 static const struct block_device_operations dm_rq_blk_dops = {
3336 .open = dm_blk_open,
3337 .release = dm_blk_close,
3338 .ioctl = dm_blk_ioctl,
3339 .getgeo = dm_blk_getgeo,
3340 .pr_ops = &dm_pr_ops,
3341 .owner = THIS_MODULE
3342 };
3343
3344 static const struct dax_operations dm_dax_ops = {
3345 .direct_access = dm_dax_direct_access,
3346 .zero_page_range = dm_dax_zero_page_range,
3347 .recovery_write = dm_dax_recovery_write,
3348 };
3349
3350 /*
3351 * module hooks
3352 */
3353 module_init(dm_init);
3354 module_exit(dm_exit);
3355
3356 module_param(major, uint, 0);
3357 MODULE_PARM_DESC(major, "The major number of the device mapper");
3358
3359 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3360 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3361
3362 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3363 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3364
3365 module_param(swap_bios, int, S_IRUGO | S_IWUSR);
3366 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3367
3368 MODULE_DESCRIPTION(DM_NAME " driver");
3369 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3370 MODULE_LICENSE("GPL");
3371