1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * fs/f2fs/segment.h
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/blkdev.h>
9 #include <linux/backing-dev.h>
10
11 /* constant macro */
12 #define NULL_SEGNO ((unsigned int)(~0))
13 #define NULL_SECNO ((unsigned int)(~0))
14
15 #define DEF_RECLAIM_PREFREE_SEGMENTS 5 /* 5% over total segments */
16 #define DEF_MAX_RECLAIM_PREFREE_SEGMENTS 4096 /* 8GB in maximum */
17
18 #define F2FS_MIN_SEGMENTS 9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */
19 #define F2FS_MIN_META_SEGMENTS 8 /* SB + 2 (CP + SIT + NAT) + SSA */
20
21 /* L: Logical segment # in volume, R: Relative segment # in main area */
22 #define GET_L2R_SEGNO(free_i, segno) ((segno) - (free_i)->start_segno)
23 #define GET_R2L_SEGNO(free_i, segno) ((segno) + (free_i)->start_segno)
24
25 #define IS_DATASEG(t) ((t) <= CURSEG_COLD_DATA)
26 #define IS_NODESEG(t) ((t) >= CURSEG_HOT_NODE && (t) <= CURSEG_COLD_NODE)
27
sanity_check_seg_type(struct f2fs_sb_info * sbi,unsigned short seg_type)28 static inline void sanity_check_seg_type(struct f2fs_sb_info *sbi,
29 unsigned short seg_type)
30 {
31 f2fs_bug_on(sbi, seg_type >= NR_PERSISTENT_LOG);
32 }
33
34 #define IS_HOT(t) ((t) == CURSEG_HOT_NODE || (t) == CURSEG_HOT_DATA)
35 #define IS_WARM(t) ((t) == CURSEG_WARM_NODE || (t) == CURSEG_WARM_DATA)
36 #define IS_COLD(t) ((t) == CURSEG_COLD_NODE || (t) == CURSEG_COLD_DATA)
37
38 #define IS_CURSEG(sbi, seg) \
39 (((seg) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \
40 ((seg) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \
41 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \
42 ((seg) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \
43 ((seg) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \
44 ((seg) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno) || \
45 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno) || \
46 ((seg) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno))
47
48 #define IS_CURSEC(sbi, secno) \
49 (((secno) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \
50 (sbi)->segs_per_sec) || \
51 ((secno) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \
52 (sbi)->segs_per_sec) || \
53 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \
54 (sbi)->segs_per_sec) || \
55 ((secno) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \
56 (sbi)->segs_per_sec) || \
57 ((secno) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \
58 (sbi)->segs_per_sec) || \
59 ((secno) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \
60 (sbi)->segs_per_sec) || \
61 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno / \
62 (sbi)->segs_per_sec) || \
63 ((secno) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno / \
64 (sbi)->segs_per_sec))
65
66 #define MAIN_BLKADDR(sbi) \
67 (SM_I(sbi) ? SM_I(sbi)->main_blkaddr : \
68 le32_to_cpu(F2FS_RAW_SUPER(sbi)->main_blkaddr))
69 #define SEG0_BLKADDR(sbi) \
70 (SM_I(sbi) ? SM_I(sbi)->seg0_blkaddr : \
71 le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment0_blkaddr))
72
73 #define MAIN_SEGS(sbi) (SM_I(sbi)->main_segments)
74 #define MAIN_SECS(sbi) ((sbi)->total_sections)
75
76 #define TOTAL_SEGS(sbi) \
77 (SM_I(sbi) ? SM_I(sbi)->segment_count : \
78 le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count))
79 #define TOTAL_BLKS(sbi) (TOTAL_SEGS(sbi) << (sbi)->log_blocks_per_seg)
80
81 #define MAX_BLKADDR(sbi) (SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
82 #define SEGMENT_SIZE(sbi) (1ULL << ((sbi)->log_blocksize + \
83 (sbi)->log_blocks_per_seg))
84
85 #define START_BLOCK(sbi, segno) (SEG0_BLKADDR(sbi) + \
86 (GET_R2L_SEGNO(FREE_I(sbi), segno) << (sbi)->log_blocks_per_seg))
87
88 #define NEXT_FREE_BLKADDR(sbi, curseg) \
89 (START_BLOCK(sbi, (curseg)->segno) + (curseg)->next_blkoff)
90
91 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) ((blk_addr) - SEG0_BLKADDR(sbi))
92 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \
93 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> (sbi)->log_blocks_per_seg)
94 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr) \
95 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & ((sbi)->blocks_per_seg - 1))
96
97 #define GET_SEGNO(sbi, blk_addr) \
98 ((!__is_valid_data_blkaddr(blk_addr)) ? \
99 NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \
100 GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
101 #define BLKS_PER_SEC(sbi) \
102 ((sbi)->segs_per_sec * (sbi)->blocks_per_seg)
103 #define GET_SEC_FROM_SEG(sbi, segno) \
104 ((segno) / (sbi)->segs_per_sec)
105 #define GET_SEG_FROM_SEC(sbi, secno) \
106 ((secno) * (sbi)->segs_per_sec)
107 #define GET_ZONE_FROM_SEC(sbi, secno) \
108 ((secno) / (sbi)->secs_per_zone)
109 #define GET_ZONE_FROM_SEG(sbi, segno) \
110 GET_ZONE_FROM_SEC(sbi, GET_SEC_FROM_SEG(sbi, segno))
111
112 #define GET_SUM_BLOCK(sbi, segno) \
113 ((sbi)->sm_info->ssa_blkaddr + (segno))
114
115 #define GET_SUM_TYPE(footer) ((footer)->entry_type)
116 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = (type))
117
118 #define SIT_ENTRY_OFFSET(sit_i, segno) \
119 ((segno) % (sit_i)->sents_per_block)
120 #define SIT_BLOCK_OFFSET(segno) \
121 ((segno) / SIT_ENTRY_PER_BLOCK)
122 #define START_SEGNO(segno) \
123 (SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
124 #define SIT_BLK_CNT(sbi) \
125 DIV_ROUND_UP(MAIN_SEGS(sbi), SIT_ENTRY_PER_BLOCK)
126 #define f2fs_bitmap_size(nr) \
127 (BITS_TO_LONGS(nr) * sizeof(unsigned long))
128
129 #define SECTOR_FROM_BLOCK(blk_addr) \
130 (((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
131 #define SECTOR_TO_BLOCK(sectors) \
132 ((sectors) >> F2FS_LOG_SECTORS_PER_BLOCK)
133
134 /*
135 * indicate a block allocation direction: RIGHT and LEFT.
136 * RIGHT means allocating new sections towards the end of volume.
137 * LEFT means the opposite direction.
138 */
139 enum {
140 ALLOC_RIGHT = 0,
141 ALLOC_LEFT
142 };
143
144 /*
145 * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
146 * LFS writes data sequentially with cleaning operations.
147 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
148 * AT_SSR (Age Threshold based Slack Space Recycle) merges fragments into
149 * fragmented segment which has similar aging degree.
150 */
151 enum {
152 LFS = 0,
153 SSR,
154 AT_SSR,
155 };
156
157 /*
158 * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
159 * GC_CB is based on cost-benefit algorithm.
160 * GC_GREEDY is based on greedy algorithm.
161 * GC_AT is based on age-threshold algorithm.
162 */
163 enum {
164 GC_CB = 0,
165 GC_GREEDY,
166 GC_AT,
167 ALLOC_NEXT,
168 FLUSH_DEVICE,
169 MAX_GC_POLICY,
170 };
171
172 /*
173 * BG_GC means the background cleaning job.
174 * FG_GC means the on-demand cleaning job.
175 * FORCE_FG_GC means on-demand cleaning job in background.
176 */
177 enum {
178 BG_GC = 0,
179 FG_GC,
180 FORCE_FG_GC,
181 };
182
183 /* for a function parameter to select a victim segment */
184 struct victim_sel_policy {
185 int alloc_mode; /* LFS or SSR */
186 int gc_mode; /* GC_CB or GC_GREEDY */
187 unsigned long *dirty_bitmap; /* dirty segment/section bitmap */
188 unsigned int max_search; /*
189 * maximum # of segments/sections
190 * to search
191 */
192 unsigned int offset; /* last scanned bitmap offset */
193 unsigned int ofs_unit; /* bitmap search unit */
194 unsigned int min_cost; /* minimum cost */
195 unsigned long long oldest_age; /* oldest age of segments having the same min cost */
196 unsigned int min_segno; /* segment # having min. cost */
197 unsigned long long age; /* mtime of GCed section*/
198 unsigned long long age_threshold;/* age threshold */
199 };
200
201 struct seg_entry {
202 unsigned int type:6; /* segment type like CURSEG_XXX_TYPE */
203 unsigned int valid_blocks:10; /* # of valid blocks */
204 unsigned int ckpt_valid_blocks:10; /* # of valid blocks last cp */
205 unsigned int padding:6; /* padding */
206 unsigned char *cur_valid_map; /* validity bitmap of blocks */
207 #ifdef CONFIG_F2FS_CHECK_FS
208 unsigned char *cur_valid_map_mir; /* mirror of current valid bitmap */
209 #endif
210 /*
211 * # of valid blocks and the validity bitmap stored in the last
212 * checkpoint pack. This information is used by the SSR mode.
213 */
214 unsigned char *ckpt_valid_map; /* validity bitmap of blocks last cp */
215 unsigned char *discard_map;
216 unsigned long long mtime; /* modification time of the segment */
217 };
218
219 struct sec_entry {
220 unsigned int valid_blocks; /* # of valid blocks in a section */
221 };
222
223 struct segment_allocation {
224 void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
225 };
226
227 #define MAX_SKIP_GC_COUNT 16
228
229 struct inmem_pages {
230 struct list_head list;
231 struct page *page;
232 block_t old_addr; /* for revoking when fail to commit */
233 };
234
235 struct sit_info {
236 const struct segment_allocation *s_ops;
237
238 block_t sit_base_addr; /* start block address of SIT area */
239 block_t sit_blocks; /* # of blocks used by SIT area */
240 block_t written_valid_blocks; /* # of valid blocks in main area */
241 char *bitmap; /* all bitmaps pointer */
242 char *sit_bitmap; /* SIT bitmap pointer */
243 #ifdef CONFIG_F2FS_CHECK_FS
244 char *sit_bitmap_mir; /* SIT bitmap mirror */
245
246 /* bitmap of segments to be ignored by GC in case of errors */
247 unsigned long *invalid_segmap;
248 #endif
249 unsigned int bitmap_size; /* SIT bitmap size */
250
251 unsigned long *tmp_map; /* bitmap for temporal use */
252 unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */
253 unsigned int dirty_sentries; /* # of dirty sentries */
254 unsigned int sents_per_block; /* # of SIT entries per block */
255 struct rw_semaphore sentry_lock; /* to protect SIT cache */
256 struct seg_entry *sentries; /* SIT segment-level cache */
257 struct sec_entry *sec_entries; /* SIT section-level cache */
258
259 /* for cost-benefit algorithm in cleaning procedure */
260 unsigned long long elapsed_time; /* elapsed time after mount */
261 unsigned long long mounted_time; /* mount time */
262 unsigned long long min_mtime; /* min. modification time */
263 unsigned long long max_mtime; /* max. modification time */
264 unsigned long long dirty_min_mtime; /* rerange candidates in GC_AT */
265 unsigned long long dirty_max_mtime; /* rerange candidates in GC_AT */
266
267 unsigned int last_victim[MAX_GC_POLICY]; /* last victim segment # */
268 };
269
270 struct free_segmap_info {
271 unsigned int start_segno; /* start segment number logically */
272 unsigned int free_segments; /* # of free segments */
273 unsigned int free_sections; /* # of free sections */
274 spinlock_t segmap_lock; /* free segmap lock */
275 unsigned long *free_segmap; /* free segment bitmap */
276 unsigned long *free_secmap; /* free section bitmap */
277 };
278
279 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
280 enum dirty_type {
281 DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */
282 DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */
283 DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */
284 DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */
285 DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */
286 DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */
287 DIRTY, /* to count # of dirty segments */
288 PRE, /* to count # of entirely obsolete segments */
289 NR_DIRTY_TYPE
290 };
291
292 struct dirty_seglist_info {
293 const struct victim_selection *v_ops; /* victim selction operation */
294 unsigned long *dirty_segmap[NR_DIRTY_TYPE];
295 unsigned long *dirty_secmap;
296 struct mutex seglist_lock; /* lock for segment bitmaps */
297 int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */
298 unsigned long *victim_secmap; /* background GC victims */
299 };
300
301 /* victim selection function for cleaning and SSR */
302 struct victim_selection {
303 int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
304 int, int, char, unsigned long long);
305 };
306
307 /* for active log information */
308 struct curseg_info {
309 struct mutex curseg_mutex; /* lock for consistency */
310 struct f2fs_summary_block *sum_blk; /* cached summary block */
311 struct rw_semaphore journal_rwsem; /* protect journal area */
312 struct f2fs_journal *journal; /* cached journal info */
313 unsigned char alloc_type; /* current allocation type */
314 unsigned short seg_type; /* segment type like CURSEG_XXX_TYPE */
315 unsigned int segno; /* current segment number */
316 unsigned short next_blkoff; /* next block offset to write */
317 unsigned int zone; /* current zone number */
318 unsigned int next_segno; /* preallocated segment */
319 bool inited; /* indicate inmem log is inited */
320 };
321
322 struct sit_entry_set {
323 struct list_head set_list; /* link with all sit sets */
324 unsigned int start_segno; /* start segno of sits in set */
325 unsigned int entry_cnt; /* the # of sit entries in set */
326 };
327
328 /*
329 * inline functions
330 */
CURSEG_I(struct f2fs_sb_info * sbi,int type)331 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
332 {
333 return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
334 }
335
get_seg_entry(struct f2fs_sb_info * sbi,unsigned int segno)336 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
337 unsigned int segno)
338 {
339 struct sit_info *sit_i = SIT_I(sbi);
340 return &sit_i->sentries[segno];
341 }
342
get_sec_entry(struct f2fs_sb_info * sbi,unsigned int segno)343 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
344 unsigned int segno)
345 {
346 struct sit_info *sit_i = SIT_I(sbi);
347 return &sit_i->sec_entries[GET_SEC_FROM_SEG(sbi, segno)];
348 }
349
get_valid_blocks(struct f2fs_sb_info * sbi,unsigned int segno,bool use_section)350 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
351 unsigned int segno, bool use_section)
352 {
353 /*
354 * In order to get # of valid blocks in a section instantly from many
355 * segments, f2fs manages two counting structures separately.
356 */
357 if (use_section && __is_large_section(sbi))
358 return get_sec_entry(sbi, segno)->valid_blocks;
359 else
360 return get_seg_entry(sbi, segno)->valid_blocks;
361 }
362
get_ckpt_valid_blocks(struct f2fs_sb_info * sbi,unsigned int segno)363 static inline unsigned int get_ckpt_valid_blocks(struct f2fs_sb_info *sbi,
364 unsigned int segno)
365 {
366 return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
367 }
368
seg_info_from_raw_sit(struct seg_entry * se,struct f2fs_sit_entry * rs)369 static inline void seg_info_from_raw_sit(struct seg_entry *se,
370 struct f2fs_sit_entry *rs)
371 {
372 se->valid_blocks = GET_SIT_VBLOCKS(rs);
373 se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
374 memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
375 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
376 #ifdef CONFIG_F2FS_CHECK_FS
377 memcpy(se->cur_valid_map_mir, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
378 #endif
379 se->type = GET_SIT_TYPE(rs);
380 se->mtime = le64_to_cpu(rs->mtime);
381 }
382
__seg_info_to_raw_sit(struct seg_entry * se,struct f2fs_sit_entry * rs)383 static inline void __seg_info_to_raw_sit(struct seg_entry *se,
384 struct f2fs_sit_entry *rs)
385 {
386 unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
387 se->valid_blocks;
388 rs->vblocks = cpu_to_le16(raw_vblocks);
389 memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
390 rs->mtime = cpu_to_le64(se->mtime);
391 }
392
seg_info_to_sit_page(struct f2fs_sb_info * sbi,struct page * page,unsigned int start)393 static inline void seg_info_to_sit_page(struct f2fs_sb_info *sbi,
394 struct page *page, unsigned int start)
395 {
396 struct f2fs_sit_block *raw_sit;
397 struct seg_entry *se;
398 struct f2fs_sit_entry *rs;
399 unsigned int end = min(start + SIT_ENTRY_PER_BLOCK,
400 (unsigned long)MAIN_SEGS(sbi));
401 int i;
402
403 raw_sit = (struct f2fs_sit_block *)page_address(page);
404 memset(raw_sit, 0, PAGE_SIZE);
405 for (i = 0; i < end - start; i++) {
406 rs = &raw_sit->entries[i];
407 se = get_seg_entry(sbi, start + i);
408 __seg_info_to_raw_sit(se, rs);
409 }
410 }
411
seg_info_to_raw_sit(struct seg_entry * se,struct f2fs_sit_entry * rs)412 static inline void seg_info_to_raw_sit(struct seg_entry *se,
413 struct f2fs_sit_entry *rs)
414 {
415 __seg_info_to_raw_sit(se, rs);
416
417 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
418 se->ckpt_valid_blocks = se->valid_blocks;
419 }
420
find_next_inuse(struct free_segmap_info * free_i,unsigned int max,unsigned int segno)421 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
422 unsigned int max, unsigned int segno)
423 {
424 unsigned int ret;
425 spin_lock(&free_i->segmap_lock);
426 ret = find_next_bit(free_i->free_segmap, max, segno);
427 spin_unlock(&free_i->segmap_lock);
428 return ret;
429 }
430
__set_free(struct f2fs_sb_info * sbi,unsigned int segno)431 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
432 {
433 struct free_segmap_info *free_i = FREE_I(sbi);
434 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
435 unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
436 unsigned int next;
437 unsigned int usable_segs = f2fs_usable_segs_in_sec(sbi, segno);
438
439 spin_lock(&free_i->segmap_lock);
440 clear_bit(segno, free_i->free_segmap);
441 free_i->free_segments++;
442
443 next = find_next_bit(free_i->free_segmap,
444 start_segno + sbi->segs_per_sec, start_segno);
445 if (next >= start_segno + usable_segs) {
446 clear_bit(secno, free_i->free_secmap);
447 free_i->free_sections++;
448 }
449 spin_unlock(&free_i->segmap_lock);
450 }
451
__set_inuse(struct f2fs_sb_info * sbi,unsigned int segno)452 static inline void __set_inuse(struct f2fs_sb_info *sbi,
453 unsigned int segno)
454 {
455 struct free_segmap_info *free_i = FREE_I(sbi);
456 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
457
458 set_bit(segno, free_i->free_segmap);
459 free_i->free_segments--;
460 if (!test_and_set_bit(secno, free_i->free_secmap))
461 free_i->free_sections--;
462 }
463
__set_test_and_free(struct f2fs_sb_info * sbi,unsigned int segno,bool inmem)464 static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
465 unsigned int segno, bool inmem)
466 {
467 struct free_segmap_info *free_i = FREE_I(sbi);
468 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
469 unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
470 unsigned int next;
471 unsigned int usable_segs = f2fs_usable_segs_in_sec(sbi, segno);
472
473 spin_lock(&free_i->segmap_lock);
474 if (test_and_clear_bit(segno, free_i->free_segmap)) {
475 free_i->free_segments++;
476
477 if (!inmem && IS_CURSEC(sbi, secno))
478 goto skip_free;
479 next = find_next_bit(free_i->free_segmap,
480 start_segno + sbi->segs_per_sec, start_segno);
481 if (next >= start_segno + usable_segs) {
482 if (test_and_clear_bit(secno, free_i->free_secmap))
483 free_i->free_sections++;
484 }
485 }
486 skip_free:
487 spin_unlock(&free_i->segmap_lock);
488 }
489
__set_test_and_inuse(struct f2fs_sb_info * sbi,unsigned int segno)490 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
491 unsigned int segno)
492 {
493 struct free_segmap_info *free_i = FREE_I(sbi);
494 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
495
496 spin_lock(&free_i->segmap_lock);
497 if (!test_and_set_bit(segno, free_i->free_segmap)) {
498 free_i->free_segments--;
499 if (!test_and_set_bit(secno, free_i->free_secmap))
500 free_i->free_sections--;
501 }
502 spin_unlock(&free_i->segmap_lock);
503 }
504
get_sit_bitmap(struct f2fs_sb_info * sbi,void * dst_addr)505 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
506 void *dst_addr)
507 {
508 struct sit_info *sit_i = SIT_I(sbi);
509
510 #ifdef CONFIG_F2FS_CHECK_FS
511 if (memcmp(sit_i->sit_bitmap, sit_i->sit_bitmap_mir,
512 sit_i->bitmap_size))
513 f2fs_bug_on(sbi, 1);
514 #endif
515 memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
516 }
517
written_block_count(struct f2fs_sb_info * sbi)518 static inline block_t written_block_count(struct f2fs_sb_info *sbi)
519 {
520 return SIT_I(sbi)->written_valid_blocks;
521 }
522
free_segments(struct f2fs_sb_info * sbi)523 static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
524 {
525 return FREE_I(sbi)->free_segments;
526 }
527
reserved_segments(struct f2fs_sb_info * sbi)528 static inline unsigned int reserved_segments(struct f2fs_sb_info *sbi)
529 {
530 return SM_I(sbi)->reserved_segments;
531 }
532
free_sections(struct f2fs_sb_info * sbi)533 static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
534 {
535 return FREE_I(sbi)->free_sections;
536 }
537
prefree_segments(struct f2fs_sb_info * sbi)538 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
539 {
540 return DIRTY_I(sbi)->nr_dirty[PRE];
541 }
542
dirty_segments(struct f2fs_sb_info * sbi)543 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
544 {
545 return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
546 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
547 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
548 DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
549 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
550 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
551 }
552
overprovision_segments(struct f2fs_sb_info * sbi)553 static inline int overprovision_segments(struct f2fs_sb_info *sbi)
554 {
555 return SM_I(sbi)->ovp_segments;
556 }
557
reserved_sections(struct f2fs_sb_info * sbi)558 static inline int reserved_sections(struct f2fs_sb_info *sbi)
559 {
560 return GET_SEC_FROM_SEG(sbi, reserved_segments(sbi));
561 }
562
has_curseg_enough_space(struct f2fs_sb_info * sbi)563 static inline bool has_curseg_enough_space(struct f2fs_sb_info *sbi)
564 {
565 unsigned int node_blocks = get_pages(sbi, F2FS_DIRTY_NODES) +
566 get_pages(sbi, F2FS_DIRTY_DENTS);
567 unsigned int dent_blocks = get_pages(sbi, F2FS_DIRTY_DENTS);
568 unsigned int segno, left_blocks;
569 int i;
570
571 /* check current node segment */
572 for (i = CURSEG_HOT_NODE; i <= CURSEG_COLD_NODE; i++) {
573 segno = CURSEG_I(sbi, i)->segno;
574 left_blocks = f2fs_usable_blks_in_seg(sbi, segno) -
575 get_seg_entry(sbi, segno)->ckpt_valid_blocks;
576
577 if (node_blocks > left_blocks)
578 return false;
579 }
580
581 /* check current data segment */
582 segno = CURSEG_I(sbi, CURSEG_HOT_DATA)->segno;
583 left_blocks = f2fs_usable_blks_in_seg(sbi, segno) -
584 get_seg_entry(sbi, segno)->ckpt_valid_blocks;
585 if (dent_blocks > left_blocks)
586 return false;
587 return true;
588 }
589
has_not_enough_free_secs(struct f2fs_sb_info * sbi,int freed,int needed)590 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi,
591 int freed, int needed)
592 {
593 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
594 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
595 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
596
597 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
598 return false;
599
600 if (free_sections(sbi) + freed == reserved_sections(sbi) + needed &&
601 has_curseg_enough_space(sbi))
602 return false;
603 return (free_sections(sbi) + freed) <=
604 (node_secs + 2 * dent_secs + imeta_secs +
605 reserved_sections(sbi) + needed);
606 }
607
f2fs_is_checkpoint_ready(struct f2fs_sb_info * sbi)608 static inline bool f2fs_is_checkpoint_ready(struct f2fs_sb_info *sbi)
609 {
610 if (likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
611 return true;
612 if (likely(!has_not_enough_free_secs(sbi, 0, 0)))
613 return true;
614 return false;
615 }
616
excess_prefree_segs(struct f2fs_sb_info * sbi)617 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
618 {
619 return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
620 }
621
utilization(struct f2fs_sb_info * sbi)622 static inline int utilization(struct f2fs_sb_info *sbi)
623 {
624 return div_u64((u64)valid_user_blocks(sbi) * 100,
625 sbi->user_block_count);
626 }
627
628 /*
629 * Sometimes f2fs may be better to drop out-of-place update policy.
630 * And, users can control the policy through sysfs entries.
631 * There are five policies with triggering conditions as follows.
632 * F2FS_IPU_FORCE - all the time,
633 * F2FS_IPU_SSR - if SSR mode is activated,
634 * F2FS_IPU_UTIL - if FS utilization is over threashold,
635 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
636 * threashold,
637 * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
638 * storages. IPU will be triggered only if the # of dirty
639 * pages over min_fsync_blocks. (=default option)
640 * F2FS_IPU_ASYNC - do IPU given by asynchronous write requests.
641 * F2FS_IPU_NOCACHE - disable IPU bio cache.
642 * F2FS_IPUT_DISABLE - disable IPU. (=default option in LFS mode)
643 */
644 #define DEF_MIN_IPU_UTIL 70
645 #define DEF_MIN_FSYNC_BLOCKS 8
646 #define DEF_MIN_HOT_BLOCKS 16
647
648 #define SMALL_VOLUME_SEGMENTS (16 * 512) /* 16GB */
649
650 enum {
651 F2FS_IPU_FORCE,
652 F2FS_IPU_SSR,
653 F2FS_IPU_UTIL,
654 F2FS_IPU_SSR_UTIL,
655 F2FS_IPU_FSYNC,
656 F2FS_IPU_ASYNC,
657 F2FS_IPU_NOCACHE,
658 };
659
curseg_segno(struct f2fs_sb_info * sbi,int type)660 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
661 int type)
662 {
663 struct curseg_info *curseg = CURSEG_I(sbi, type);
664 return curseg->segno;
665 }
666
curseg_alloc_type(struct f2fs_sb_info * sbi,int type)667 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
668 int type)
669 {
670 struct curseg_info *curseg = CURSEG_I(sbi, type);
671 return curseg->alloc_type;
672 }
673
curseg_blkoff(struct f2fs_sb_info * sbi,int type)674 static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
675 {
676 struct curseg_info *curseg = CURSEG_I(sbi, type);
677 return curseg->next_blkoff;
678 }
679
check_seg_range(struct f2fs_sb_info * sbi,unsigned int segno)680 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
681 {
682 f2fs_bug_on(sbi, segno > TOTAL_SEGS(sbi) - 1);
683 }
684
verify_fio_blkaddr(struct f2fs_io_info * fio)685 static inline void verify_fio_blkaddr(struct f2fs_io_info *fio)
686 {
687 struct f2fs_sb_info *sbi = fio->sbi;
688
689 if (__is_valid_data_blkaddr(fio->old_blkaddr))
690 verify_blkaddr(sbi, fio->old_blkaddr, __is_meta_io(fio) ?
691 META_GENERIC : DATA_GENERIC);
692 verify_blkaddr(sbi, fio->new_blkaddr, __is_meta_io(fio) ?
693 META_GENERIC : DATA_GENERIC_ENHANCE);
694 }
695
696 /*
697 * Summary block is always treated as an invalid block
698 */
check_block_count(struct f2fs_sb_info * sbi,int segno,struct f2fs_sit_entry * raw_sit)699 static inline int check_block_count(struct f2fs_sb_info *sbi,
700 int segno, struct f2fs_sit_entry *raw_sit)
701 {
702 bool is_valid = test_bit_le(0, raw_sit->valid_map) ? true : false;
703 int valid_blocks = 0;
704 int cur_pos = 0, next_pos;
705 unsigned int usable_blks_per_seg = f2fs_usable_blks_in_seg(sbi, segno);
706
707 /* check bitmap with valid block count */
708 do {
709 if (is_valid) {
710 next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
711 usable_blks_per_seg,
712 cur_pos);
713 valid_blocks += next_pos - cur_pos;
714 } else
715 next_pos = find_next_bit_le(&raw_sit->valid_map,
716 usable_blks_per_seg,
717 cur_pos);
718 cur_pos = next_pos;
719 is_valid = !is_valid;
720 } while (cur_pos < usable_blks_per_seg);
721
722 if (unlikely(GET_SIT_VBLOCKS(raw_sit) != valid_blocks)) {
723 f2fs_err(sbi, "Mismatch valid blocks %d vs. %d",
724 GET_SIT_VBLOCKS(raw_sit), valid_blocks);
725 set_sbi_flag(sbi, SBI_NEED_FSCK);
726 return -EFSCORRUPTED;
727 }
728
729 if (usable_blks_per_seg < sbi->blocks_per_seg)
730 f2fs_bug_on(sbi, find_next_bit_le(&raw_sit->valid_map,
731 sbi->blocks_per_seg,
732 usable_blks_per_seg) != sbi->blocks_per_seg);
733
734 /* check segment usage, and check boundary of a given segment number */
735 if (unlikely(GET_SIT_VBLOCKS(raw_sit) > usable_blks_per_seg
736 || segno > TOTAL_SEGS(sbi) - 1)) {
737 f2fs_err(sbi, "Wrong valid blocks %d or segno %u",
738 GET_SIT_VBLOCKS(raw_sit), segno);
739 set_sbi_flag(sbi, SBI_NEED_FSCK);
740 return -EFSCORRUPTED;
741 }
742 return 0;
743 }
744
current_sit_addr(struct f2fs_sb_info * sbi,unsigned int start)745 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
746 unsigned int start)
747 {
748 struct sit_info *sit_i = SIT_I(sbi);
749 unsigned int offset = SIT_BLOCK_OFFSET(start);
750 block_t blk_addr = sit_i->sit_base_addr + offset;
751
752 check_seg_range(sbi, start);
753
754 #ifdef CONFIG_F2FS_CHECK_FS
755 if (f2fs_test_bit(offset, sit_i->sit_bitmap) !=
756 f2fs_test_bit(offset, sit_i->sit_bitmap_mir))
757 f2fs_bug_on(sbi, 1);
758 #endif
759
760 /* calculate sit block address */
761 if (f2fs_test_bit(offset, sit_i->sit_bitmap))
762 blk_addr += sit_i->sit_blocks;
763
764 return blk_addr;
765 }
766
next_sit_addr(struct f2fs_sb_info * sbi,pgoff_t block_addr)767 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
768 pgoff_t block_addr)
769 {
770 struct sit_info *sit_i = SIT_I(sbi);
771 block_addr -= sit_i->sit_base_addr;
772 if (block_addr < sit_i->sit_blocks)
773 block_addr += sit_i->sit_blocks;
774 else
775 block_addr -= sit_i->sit_blocks;
776
777 return block_addr + sit_i->sit_base_addr;
778 }
779
set_to_next_sit(struct sit_info * sit_i,unsigned int start)780 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
781 {
782 unsigned int block_off = SIT_BLOCK_OFFSET(start);
783
784 f2fs_change_bit(block_off, sit_i->sit_bitmap);
785 #ifdef CONFIG_F2FS_CHECK_FS
786 f2fs_change_bit(block_off, sit_i->sit_bitmap_mir);
787 #endif
788 }
789
get_mtime(struct f2fs_sb_info * sbi,bool base_time)790 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi,
791 bool base_time)
792 {
793 struct sit_info *sit_i = SIT_I(sbi);
794 time64_t diff, now = ktime_get_boottime_seconds();
795
796 if (now >= sit_i->mounted_time)
797 return sit_i->elapsed_time + now - sit_i->mounted_time;
798
799 /* system time is set to the past */
800 if (!base_time) {
801 diff = sit_i->mounted_time - now;
802 if (sit_i->elapsed_time >= diff)
803 return sit_i->elapsed_time - diff;
804 return 0;
805 }
806 return sit_i->elapsed_time;
807 }
808
set_summary(struct f2fs_summary * sum,nid_t nid,unsigned int ofs_in_node,unsigned char version)809 static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
810 unsigned int ofs_in_node, unsigned char version)
811 {
812 sum->nid = cpu_to_le32(nid);
813 sum->ofs_in_node = cpu_to_le16(ofs_in_node);
814 sum->version = version;
815 }
816
start_sum_block(struct f2fs_sb_info * sbi)817 static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
818 {
819 return __start_cp_addr(sbi) +
820 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
821 }
822
sum_blk_addr(struct f2fs_sb_info * sbi,int base,int type)823 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
824 {
825 return __start_cp_addr(sbi) +
826 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
827 - (base + 1) + type;
828 }
829
sec_usage_check(struct f2fs_sb_info * sbi,unsigned int secno)830 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
831 {
832 if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
833 return true;
834 return false;
835 }
836
837 /*
838 * It is very important to gather dirty pages and write at once, so that we can
839 * submit a big bio without interfering other data writes.
840 * By default, 512 pages for directory data,
841 * 512 pages (2MB) * 8 for nodes, and
842 * 256 pages * 8 for meta are set.
843 */
nr_pages_to_skip(struct f2fs_sb_info * sbi,int type)844 static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
845 {
846 if (sbi->sb->s_bdi->wb.dirty_exceeded)
847 return 0;
848
849 if (type == DATA)
850 return sbi->blocks_per_seg;
851 else if (type == NODE)
852 return 8 * sbi->blocks_per_seg;
853 else if (type == META)
854 return 8 * BIO_MAX_PAGES;
855 else
856 return 0;
857 }
858
859 /*
860 * When writing pages, it'd better align nr_to_write for segment size.
861 */
nr_pages_to_write(struct f2fs_sb_info * sbi,int type,struct writeback_control * wbc)862 static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
863 struct writeback_control *wbc)
864 {
865 long nr_to_write, desired;
866
867 if (wbc->sync_mode != WB_SYNC_NONE)
868 return 0;
869
870 nr_to_write = wbc->nr_to_write;
871 desired = BIO_MAX_PAGES;
872 if (type == NODE)
873 desired <<= 1;
874
875 wbc->nr_to_write = desired;
876 return desired - nr_to_write;
877 }
878
wake_up_discard_thread(struct f2fs_sb_info * sbi,bool force)879 static inline void wake_up_discard_thread(struct f2fs_sb_info *sbi, bool force)
880 {
881 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
882 bool wakeup = false;
883 int i;
884
885 if (force)
886 goto wake_up;
887
888 mutex_lock(&dcc->cmd_lock);
889 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
890 if (i + 1 < dcc->discard_granularity)
891 break;
892 if (!list_empty(&dcc->pend_list[i])) {
893 wakeup = true;
894 break;
895 }
896 }
897 mutex_unlock(&dcc->cmd_lock);
898 if (!wakeup || !is_idle(sbi, DISCARD_TIME))
899 return;
900 wake_up:
901 dcc->discard_wake = 1;
902 wake_up_interruptible_all(&dcc->discard_wait_queue);
903 }
904