1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // regmap based irq_chip
4 //
5 // Copyright 2011 Wolfson Microelectronics plc
6 //
7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8
9 #include <linux/device.h>
10 #include <linux/export.h>
11 #include <linux/interrupt.h>
12 #include <linux/irq.h>
13 #include <linux/irqdomain.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/regmap.h>
16 #include <linux/slab.h>
17
18 #include "internal.h"
19
20 struct regmap_irq_chip_data {
21 struct mutex lock;
22 struct irq_chip irq_chip;
23
24 struct regmap *map;
25 const struct regmap_irq_chip *chip;
26
27 int irq_base;
28 struct irq_domain *domain;
29
30 int irq;
31 int wake_count;
32
33 unsigned int mask_base;
34 unsigned int unmask_base;
35
36 void *status_reg_buf;
37 unsigned int *main_status_buf;
38 unsigned int *status_buf;
39 unsigned int *mask_buf;
40 unsigned int *mask_buf_def;
41 unsigned int *wake_buf;
42 unsigned int *type_buf;
43 unsigned int *type_buf_def;
44 unsigned int **virt_buf;
45 unsigned int **config_buf;
46
47 unsigned int irq_reg_stride;
48
49 unsigned int (*get_irq_reg)(struct regmap_irq_chip_data *data,
50 unsigned int base, int index);
51
52 unsigned int clear_status:1;
53 };
54
55 static inline const
irq_to_regmap_irq(struct regmap_irq_chip_data * data,int irq)56 struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
57 int irq)
58 {
59 return &data->chip->irqs[irq];
60 }
61
regmap_irq_can_bulk_read_status(struct regmap_irq_chip_data * data)62 static bool regmap_irq_can_bulk_read_status(struct regmap_irq_chip_data *data)
63 {
64 struct regmap *map = data->map;
65
66 /*
67 * While possible that a user-defined ->get_irq_reg() callback might
68 * be linear enough to support bulk reads, most of the time it won't.
69 * Therefore only allow them if the default callback is being used.
70 */
71 return data->irq_reg_stride == 1 && map->reg_stride == 1 &&
72 data->get_irq_reg == regmap_irq_get_irq_reg_linear &&
73 !map->use_single_read;
74 }
75
regmap_irq_lock(struct irq_data * data)76 static void regmap_irq_lock(struct irq_data *data)
77 {
78 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
79
80 mutex_lock(&d->lock);
81 }
82
regmap_irq_sync_unlock(struct irq_data * data)83 static void regmap_irq_sync_unlock(struct irq_data *data)
84 {
85 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
86 struct regmap *map = d->map;
87 int i, j, ret;
88 u32 reg;
89 u32 val;
90
91 if (d->chip->runtime_pm) {
92 ret = pm_runtime_get_sync(map->dev);
93 if (ret < 0)
94 dev_err(map->dev, "IRQ sync failed to resume: %d\n",
95 ret);
96 }
97
98 if (d->clear_status) {
99 for (i = 0; i < d->chip->num_regs; i++) {
100 reg = d->get_irq_reg(d, d->chip->status_base, i);
101
102 ret = regmap_read(map, reg, &val);
103 if (ret)
104 dev_err(d->map->dev,
105 "Failed to clear the interrupt status bits\n");
106 }
107
108 d->clear_status = false;
109 }
110
111 /*
112 * If there's been a change in the mask write it back to the
113 * hardware. We rely on the use of the regmap core cache to
114 * suppress pointless writes.
115 */
116 for (i = 0; i < d->chip->num_regs; i++) {
117 if (d->mask_base) {
118 reg = d->get_irq_reg(d, d->mask_base, i);
119 ret = regmap_update_bits(d->map, reg,
120 d->mask_buf_def[i], d->mask_buf[i]);
121 if (ret)
122 dev_err(d->map->dev, "Failed to sync masks in %x\n",
123 reg);
124 }
125
126 if (d->unmask_base) {
127 reg = d->get_irq_reg(d, d->unmask_base, i);
128 ret = regmap_update_bits(d->map, reg,
129 d->mask_buf_def[i], ~d->mask_buf[i]);
130 if (ret)
131 dev_err(d->map->dev, "Failed to sync masks in %x\n",
132 reg);
133 }
134
135 reg = d->get_irq_reg(d, d->chip->wake_base, i);
136 if (d->wake_buf) {
137 if (d->chip->wake_invert)
138 ret = regmap_update_bits(d->map, reg,
139 d->mask_buf_def[i],
140 ~d->wake_buf[i]);
141 else
142 ret = regmap_update_bits(d->map, reg,
143 d->mask_buf_def[i],
144 d->wake_buf[i]);
145 if (ret != 0)
146 dev_err(d->map->dev,
147 "Failed to sync wakes in %x: %d\n",
148 reg, ret);
149 }
150
151 if (!d->chip->init_ack_masked)
152 continue;
153 /*
154 * Ack all the masked interrupts unconditionally,
155 * OR if there is masked interrupt which hasn't been Acked,
156 * it'll be ignored in irq handler, then may introduce irq storm
157 */
158 if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) {
159 reg = d->get_irq_reg(d, d->chip->ack_base, i);
160
161 /* some chips ack by write 0 */
162 if (d->chip->ack_invert)
163 ret = regmap_write(map, reg, ~d->mask_buf[i]);
164 else
165 ret = regmap_write(map, reg, d->mask_buf[i]);
166 if (d->chip->clear_ack) {
167 if (d->chip->ack_invert && !ret)
168 ret = regmap_write(map, reg, UINT_MAX);
169 else if (!ret)
170 ret = regmap_write(map, reg, 0);
171 }
172 if (ret != 0)
173 dev_err(d->map->dev, "Failed to ack 0x%x: %d\n",
174 reg, ret);
175 }
176 }
177
178 /* Don't update the type bits if we're using mask bits for irq type. */
179 if (!d->chip->type_in_mask) {
180 for (i = 0; i < d->chip->num_type_reg; i++) {
181 if (!d->type_buf_def[i])
182 continue;
183 reg = d->get_irq_reg(d, d->chip->type_base, i);
184 if (d->chip->type_invert)
185 ret = regmap_update_bits(d->map, reg,
186 d->type_buf_def[i], ~d->type_buf[i]);
187 else
188 ret = regmap_update_bits(d->map, reg,
189 d->type_buf_def[i], d->type_buf[i]);
190 if (ret != 0)
191 dev_err(d->map->dev, "Failed to sync type in %x\n",
192 reg);
193 }
194 }
195
196 if (d->chip->num_virt_regs) {
197 for (i = 0; i < d->chip->num_virt_regs; i++) {
198 for (j = 0; j < d->chip->num_regs; j++) {
199 reg = d->get_irq_reg(d, d->chip->virt_reg_base[i],
200 j);
201 ret = regmap_write(map, reg, d->virt_buf[i][j]);
202 if (ret != 0)
203 dev_err(d->map->dev,
204 "Failed to write virt 0x%x: %d\n",
205 reg, ret);
206 }
207 }
208 }
209
210 for (i = 0; i < d->chip->num_config_bases; i++) {
211 for (j = 0; j < d->chip->num_config_regs; j++) {
212 reg = d->get_irq_reg(d, d->chip->config_base[i], j);
213 ret = regmap_write(map, reg, d->config_buf[i][j]);
214 if (ret)
215 dev_err(d->map->dev,
216 "Failed to write config %x: %d\n",
217 reg, ret);
218 }
219 }
220
221 if (d->chip->runtime_pm)
222 pm_runtime_put(map->dev);
223
224 /* If we've changed our wakeup count propagate it to the parent */
225 if (d->wake_count < 0)
226 for (i = d->wake_count; i < 0; i++)
227 irq_set_irq_wake(d->irq, 0);
228 else if (d->wake_count > 0)
229 for (i = 0; i < d->wake_count; i++)
230 irq_set_irq_wake(d->irq, 1);
231
232 d->wake_count = 0;
233
234 mutex_unlock(&d->lock);
235 }
236
regmap_irq_enable(struct irq_data * data)237 static void regmap_irq_enable(struct irq_data *data)
238 {
239 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
240 struct regmap *map = d->map;
241 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
242 unsigned int reg = irq_data->reg_offset / map->reg_stride;
243 unsigned int mask;
244
245 /*
246 * The type_in_mask flag means that the underlying hardware uses
247 * separate mask bits for each interrupt trigger type, but we want
248 * to have a single logical interrupt with a configurable type.
249 *
250 * If the interrupt we're enabling defines any supported types
251 * then instead of using the regular mask bits for this interrupt,
252 * use the value previously written to the type buffer at the
253 * corresponding offset in regmap_irq_set_type().
254 */
255 if (d->chip->type_in_mask && irq_data->type.types_supported)
256 mask = d->type_buf[reg] & irq_data->mask;
257 else
258 mask = irq_data->mask;
259
260 if (d->chip->clear_on_unmask)
261 d->clear_status = true;
262
263 d->mask_buf[reg] &= ~mask;
264 }
265
regmap_irq_disable(struct irq_data * data)266 static void regmap_irq_disable(struct irq_data *data)
267 {
268 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
269 struct regmap *map = d->map;
270 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
271
272 d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
273 }
274
regmap_irq_set_type(struct irq_data * data,unsigned int type)275 static int regmap_irq_set_type(struct irq_data *data, unsigned int type)
276 {
277 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
278 struct regmap *map = d->map;
279 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
280 int reg, ret;
281 const struct regmap_irq_type *t = &irq_data->type;
282
283 if ((t->types_supported & type) != type)
284 return 0;
285
286 reg = t->type_reg_offset / map->reg_stride;
287
288 if (t->type_reg_mask)
289 d->type_buf[reg] &= ~t->type_reg_mask;
290 else
291 d->type_buf[reg] &= ~(t->type_falling_val |
292 t->type_rising_val |
293 t->type_level_low_val |
294 t->type_level_high_val);
295 switch (type) {
296 case IRQ_TYPE_EDGE_FALLING:
297 d->type_buf[reg] |= t->type_falling_val;
298 break;
299
300 case IRQ_TYPE_EDGE_RISING:
301 d->type_buf[reg] |= t->type_rising_val;
302 break;
303
304 case IRQ_TYPE_EDGE_BOTH:
305 d->type_buf[reg] |= (t->type_falling_val |
306 t->type_rising_val);
307 break;
308
309 case IRQ_TYPE_LEVEL_HIGH:
310 d->type_buf[reg] |= t->type_level_high_val;
311 break;
312
313 case IRQ_TYPE_LEVEL_LOW:
314 d->type_buf[reg] |= t->type_level_low_val;
315 break;
316 default:
317 return -EINVAL;
318 }
319
320 if (d->chip->set_type_virt) {
321 ret = d->chip->set_type_virt(d->virt_buf, type, data->hwirq,
322 reg);
323 if (ret)
324 return ret;
325 }
326
327 if (d->chip->set_type_config) {
328 ret = d->chip->set_type_config(d->config_buf, type,
329 irq_data, reg);
330 if (ret)
331 return ret;
332 }
333
334 return 0;
335 }
336
regmap_irq_set_wake(struct irq_data * data,unsigned int on)337 static int regmap_irq_set_wake(struct irq_data *data, unsigned int on)
338 {
339 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
340 struct regmap *map = d->map;
341 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
342
343 if (on) {
344 if (d->wake_buf)
345 d->wake_buf[irq_data->reg_offset / map->reg_stride]
346 &= ~irq_data->mask;
347 d->wake_count++;
348 } else {
349 if (d->wake_buf)
350 d->wake_buf[irq_data->reg_offset / map->reg_stride]
351 |= irq_data->mask;
352 d->wake_count--;
353 }
354
355 return 0;
356 }
357
358 static const struct irq_chip regmap_irq_chip = {
359 .irq_bus_lock = regmap_irq_lock,
360 .irq_bus_sync_unlock = regmap_irq_sync_unlock,
361 .irq_disable = regmap_irq_disable,
362 .irq_enable = regmap_irq_enable,
363 .irq_set_type = regmap_irq_set_type,
364 .irq_set_wake = regmap_irq_set_wake,
365 };
366
read_sub_irq_data(struct regmap_irq_chip_data * data,unsigned int b)367 static inline int read_sub_irq_data(struct regmap_irq_chip_data *data,
368 unsigned int b)
369 {
370 const struct regmap_irq_chip *chip = data->chip;
371 struct regmap *map = data->map;
372 struct regmap_irq_sub_irq_map *subreg;
373 unsigned int reg;
374 int i, ret = 0;
375
376 if (!chip->sub_reg_offsets) {
377 reg = data->get_irq_reg(data, chip->status_base, b);
378 ret = regmap_read(map, reg, &data->status_buf[b]);
379 } else {
380 /*
381 * Note we can't use ->get_irq_reg() here because the offsets
382 * in 'subreg' are *not* interchangeable with indices.
383 */
384 subreg = &chip->sub_reg_offsets[b];
385 for (i = 0; i < subreg->num_regs; i++) {
386 unsigned int offset = subreg->offset[i];
387 unsigned int index = offset / map->reg_stride;
388
389 if (chip->not_fixed_stride)
390 ret = regmap_read(map,
391 chip->status_base + offset,
392 &data->status_buf[b]);
393 else
394 ret = regmap_read(map,
395 chip->status_base + offset,
396 &data->status_buf[index]);
397
398 if (ret)
399 break;
400 }
401 }
402 return ret;
403 }
404
regmap_irq_thread(int irq,void * d)405 static irqreturn_t regmap_irq_thread(int irq, void *d)
406 {
407 struct regmap_irq_chip_data *data = d;
408 const struct regmap_irq_chip *chip = data->chip;
409 struct regmap *map = data->map;
410 int ret, i;
411 bool handled = false;
412 u32 reg;
413
414 if (chip->handle_pre_irq)
415 chip->handle_pre_irq(chip->irq_drv_data);
416
417 if (chip->runtime_pm) {
418 ret = pm_runtime_get_sync(map->dev);
419 if (ret < 0) {
420 dev_err(map->dev, "IRQ thread failed to resume: %d\n",
421 ret);
422 goto exit;
423 }
424 }
425
426 /*
427 * Read only registers with active IRQs if the chip has 'main status
428 * register'. Else read in the statuses, using a single bulk read if
429 * possible in order to reduce the I/O overheads.
430 */
431
432 if (chip->num_main_regs) {
433 unsigned int max_main_bits;
434 unsigned long size;
435
436 size = chip->num_regs * sizeof(unsigned int);
437
438 max_main_bits = (chip->num_main_status_bits) ?
439 chip->num_main_status_bits : chip->num_regs;
440 /* Clear the status buf as we don't read all status regs */
441 memset(data->status_buf, 0, size);
442
443 /* We could support bulk read for main status registers
444 * but I don't expect to see devices with really many main
445 * status registers so let's only support single reads for the
446 * sake of simplicity. and add bulk reads only if needed
447 */
448 for (i = 0; i < chip->num_main_regs; i++) {
449 /*
450 * For not_fixed_stride, don't use ->get_irq_reg().
451 * It would produce an incorrect result.
452 */
453 if (data->chip->not_fixed_stride)
454 reg = chip->main_status +
455 i * map->reg_stride * data->irq_reg_stride;
456 else
457 reg = data->get_irq_reg(data,
458 chip->main_status, i);
459
460 ret = regmap_read(map, reg, &data->main_status_buf[i]);
461 if (ret) {
462 dev_err(map->dev,
463 "Failed to read IRQ status %d\n",
464 ret);
465 goto exit;
466 }
467 }
468
469 /* Read sub registers with active IRQs */
470 for (i = 0; i < chip->num_main_regs; i++) {
471 unsigned int b;
472 const unsigned long mreg = data->main_status_buf[i];
473
474 for_each_set_bit(b, &mreg, map->format.val_bytes * 8) {
475 if (i * map->format.val_bytes * 8 + b >
476 max_main_bits)
477 break;
478 ret = read_sub_irq_data(data, b);
479
480 if (ret != 0) {
481 dev_err(map->dev,
482 "Failed to read IRQ status %d\n",
483 ret);
484 goto exit;
485 }
486 }
487
488 }
489 } else if (regmap_irq_can_bulk_read_status(data)) {
490
491 u8 *buf8 = data->status_reg_buf;
492 u16 *buf16 = data->status_reg_buf;
493 u32 *buf32 = data->status_reg_buf;
494
495 BUG_ON(!data->status_reg_buf);
496
497 ret = regmap_bulk_read(map, chip->status_base,
498 data->status_reg_buf,
499 chip->num_regs);
500 if (ret != 0) {
501 dev_err(map->dev, "Failed to read IRQ status: %d\n",
502 ret);
503 goto exit;
504 }
505
506 for (i = 0; i < data->chip->num_regs; i++) {
507 switch (map->format.val_bytes) {
508 case 1:
509 data->status_buf[i] = buf8[i];
510 break;
511 case 2:
512 data->status_buf[i] = buf16[i];
513 break;
514 case 4:
515 data->status_buf[i] = buf32[i];
516 break;
517 default:
518 BUG();
519 goto exit;
520 }
521 }
522
523 } else {
524 for (i = 0; i < data->chip->num_regs; i++) {
525 unsigned int reg = data->get_irq_reg(data,
526 data->chip->status_base, i);
527 ret = regmap_read(map, reg, &data->status_buf[i]);
528
529 if (ret != 0) {
530 dev_err(map->dev,
531 "Failed to read IRQ status: %d\n",
532 ret);
533 goto exit;
534 }
535 }
536 }
537
538 if (chip->status_invert)
539 for (i = 0; i < data->chip->num_regs; i++)
540 data->status_buf[i] = ~data->status_buf[i];
541
542 /*
543 * Ignore masked IRQs and ack if we need to; we ack early so
544 * there is no race between handling and acknowledging the
545 * interrupt. We assume that typically few of the interrupts
546 * will fire simultaneously so don't worry about overhead from
547 * doing a write per register.
548 */
549 for (i = 0; i < data->chip->num_regs; i++) {
550 data->status_buf[i] &= ~data->mask_buf[i];
551
552 if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) {
553 reg = data->get_irq_reg(data, data->chip->ack_base, i);
554
555 if (chip->ack_invert)
556 ret = regmap_write(map, reg,
557 ~data->status_buf[i]);
558 else
559 ret = regmap_write(map, reg,
560 data->status_buf[i]);
561 if (chip->clear_ack) {
562 if (chip->ack_invert && !ret)
563 ret = regmap_write(map, reg, UINT_MAX);
564 else if (!ret)
565 ret = regmap_write(map, reg, 0);
566 }
567 if (ret != 0)
568 dev_err(map->dev, "Failed to ack 0x%x: %d\n",
569 reg, ret);
570 }
571 }
572
573 for (i = 0; i < chip->num_irqs; i++) {
574 if (data->status_buf[chip->irqs[i].reg_offset /
575 map->reg_stride] & chip->irqs[i].mask) {
576 handle_nested_irq(irq_find_mapping(data->domain, i));
577 handled = true;
578 }
579 }
580
581 exit:
582 if (chip->runtime_pm)
583 pm_runtime_put(map->dev);
584
585 if (chip->handle_post_irq)
586 chip->handle_post_irq(chip->irq_drv_data);
587
588 if (handled)
589 return IRQ_HANDLED;
590 else
591 return IRQ_NONE;
592 }
593
regmap_irq_map(struct irq_domain * h,unsigned int virq,irq_hw_number_t hw)594 static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
595 irq_hw_number_t hw)
596 {
597 struct regmap_irq_chip_data *data = h->host_data;
598
599 irq_set_chip_data(virq, data);
600 irq_set_chip(virq, &data->irq_chip);
601 irq_set_nested_thread(virq, 1);
602 irq_set_parent(virq, data->irq);
603 irq_set_noprobe(virq);
604
605 return 0;
606 }
607
608 static const struct irq_domain_ops regmap_domain_ops = {
609 .map = regmap_irq_map,
610 .xlate = irq_domain_xlate_onetwocell,
611 };
612
613 /**
614 * regmap_irq_get_irq_reg_linear() - Linear IRQ register mapping callback.
615 * @data: Data for the &struct regmap_irq_chip
616 * @base: Base register
617 * @index: Register index
618 *
619 * Returns the register address corresponding to the given @base and @index
620 * by the formula ``base + index * regmap_stride * irq_reg_stride``.
621 */
regmap_irq_get_irq_reg_linear(struct regmap_irq_chip_data * data,unsigned int base,int index)622 unsigned int regmap_irq_get_irq_reg_linear(struct regmap_irq_chip_data *data,
623 unsigned int base, int index)
624 {
625 const struct regmap_irq_chip *chip = data->chip;
626 struct regmap *map = data->map;
627
628 /*
629 * FIXME: This is for backward compatibility and should be removed
630 * when not_fixed_stride is dropped (it's only used by qcom-pm8008).
631 */
632 if (chip->not_fixed_stride && chip->sub_reg_offsets) {
633 struct regmap_irq_sub_irq_map *subreg;
634
635 subreg = &chip->sub_reg_offsets[0];
636 return base + subreg->offset[0];
637 }
638
639 return base + index * map->reg_stride * data->irq_reg_stride;
640 }
641 EXPORT_SYMBOL_GPL(regmap_irq_get_irq_reg_linear);
642
643 /**
644 * regmap_irq_set_type_config_simple() - Simple IRQ type configuration callback.
645 * @buf: Buffer containing configuration register values, this is a 2D array of
646 * `num_config_bases` rows, each of `num_config_regs` elements.
647 * @type: The requested IRQ type.
648 * @irq_data: The IRQ being configured.
649 * @idx: Index of the irq's config registers within each array `buf[i]`
650 *
651 * This is a &struct regmap_irq_chip->set_type_config callback suitable for
652 * chips with one config register. Register values are updated according to
653 * the &struct regmap_irq_type data associated with an IRQ.
654 */
regmap_irq_set_type_config_simple(unsigned int ** buf,unsigned int type,const struct regmap_irq * irq_data,int idx)655 int regmap_irq_set_type_config_simple(unsigned int **buf, unsigned int type,
656 const struct regmap_irq *irq_data, int idx)
657 {
658 const struct regmap_irq_type *t = &irq_data->type;
659
660 if (t->type_reg_mask)
661 buf[0][idx] &= ~t->type_reg_mask;
662 else
663 buf[0][idx] &= ~(t->type_falling_val |
664 t->type_rising_val |
665 t->type_level_low_val |
666 t->type_level_high_val);
667
668 switch (type) {
669 case IRQ_TYPE_EDGE_FALLING:
670 buf[0][idx] |= t->type_falling_val;
671 break;
672
673 case IRQ_TYPE_EDGE_RISING:
674 buf[0][idx] |= t->type_rising_val;
675 break;
676
677 case IRQ_TYPE_EDGE_BOTH:
678 buf[0][idx] |= (t->type_falling_val |
679 t->type_rising_val);
680 break;
681
682 case IRQ_TYPE_LEVEL_HIGH:
683 buf[0][idx] |= t->type_level_high_val;
684 break;
685
686 case IRQ_TYPE_LEVEL_LOW:
687 buf[0][idx] |= t->type_level_low_val;
688 break;
689
690 default:
691 return -EINVAL;
692 }
693
694 return 0;
695 }
696 EXPORT_SYMBOL_GPL(regmap_irq_set_type_config_simple);
697
698 /**
699 * regmap_add_irq_chip_fwnode() - Use standard regmap IRQ controller handling
700 *
701 * @fwnode: The firmware node where the IRQ domain should be added to.
702 * @map: The regmap for the device.
703 * @irq: The IRQ the device uses to signal interrupts.
704 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
705 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
706 * @chip: Configuration for the interrupt controller.
707 * @data: Runtime data structure for the controller, allocated on success.
708 *
709 * Returns 0 on success or an errno on failure.
710 *
711 * In order for this to be efficient the chip really should use a
712 * register cache. The chip driver is responsible for restoring the
713 * register values used by the IRQ controller over suspend and resume.
714 */
regmap_add_irq_chip_fwnode(struct fwnode_handle * fwnode,struct regmap * map,int irq,int irq_flags,int irq_base,const struct regmap_irq_chip * chip,struct regmap_irq_chip_data ** data)715 int regmap_add_irq_chip_fwnode(struct fwnode_handle *fwnode,
716 struct regmap *map, int irq,
717 int irq_flags, int irq_base,
718 const struct regmap_irq_chip *chip,
719 struct regmap_irq_chip_data **data)
720 {
721 struct regmap_irq_chip_data *d;
722 int i;
723 int ret = -ENOMEM;
724 int num_type_reg;
725 u32 reg;
726
727 if (chip->num_regs <= 0)
728 return -EINVAL;
729
730 if (chip->clear_on_unmask && (chip->ack_base || chip->use_ack))
731 return -EINVAL;
732
733 for (i = 0; i < chip->num_irqs; i++) {
734 if (chip->irqs[i].reg_offset % map->reg_stride)
735 return -EINVAL;
736 if (chip->irqs[i].reg_offset / map->reg_stride >=
737 chip->num_regs)
738 return -EINVAL;
739 }
740
741 if (chip->not_fixed_stride) {
742 dev_warn(map->dev, "not_fixed_stride is deprecated; use ->get_irq_reg() instead");
743
744 for (i = 0; i < chip->num_regs; i++)
745 if (chip->sub_reg_offsets[i].num_regs != 1)
746 return -EINVAL;
747 }
748
749 if (chip->num_type_reg)
750 dev_warn(map->dev, "type registers are deprecated; use config registers instead");
751
752 if (chip->num_virt_regs || chip->virt_reg_base || chip->set_type_virt)
753 dev_warn(map->dev, "virtual registers are deprecated; use config registers instead");
754
755 if (irq_base) {
756 irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
757 if (irq_base < 0) {
758 dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
759 irq_base);
760 return irq_base;
761 }
762 }
763
764 d = kzalloc(sizeof(*d), GFP_KERNEL);
765 if (!d)
766 return -ENOMEM;
767
768 if (chip->num_main_regs) {
769 d->main_status_buf = kcalloc(chip->num_main_regs,
770 sizeof(*d->main_status_buf),
771 GFP_KERNEL);
772
773 if (!d->main_status_buf)
774 goto err_alloc;
775 }
776
777 d->status_buf = kcalloc(chip->num_regs, sizeof(*d->status_buf),
778 GFP_KERNEL);
779 if (!d->status_buf)
780 goto err_alloc;
781
782 d->mask_buf = kcalloc(chip->num_regs, sizeof(*d->mask_buf),
783 GFP_KERNEL);
784 if (!d->mask_buf)
785 goto err_alloc;
786
787 d->mask_buf_def = kcalloc(chip->num_regs, sizeof(*d->mask_buf_def),
788 GFP_KERNEL);
789 if (!d->mask_buf_def)
790 goto err_alloc;
791
792 if (chip->wake_base) {
793 d->wake_buf = kcalloc(chip->num_regs, sizeof(*d->wake_buf),
794 GFP_KERNEL);
795 if (!d->wake_buf)
796 goto err_alloc;
797 }
798
799 num_type_reg = chip->type_in_mask ? chip->num_regs : chip->num_type_reg;
800 if (num_type_reg) {
801 d->type_buf_def = kcalloc(num_type_reg,
802 sizeof(*d->type_buf_def), GFP_KERNEL);
803 if (!d->type_buf_def)
804 goto err_alloc;
805
806 d->type_buf = kcalloc(num_type_reg, sizeof(*d->type_buf),
807 GFP_KERNEL);
808 if (!d->type_buf)
809 goto err_alloc;
810 }
811
812 if (chip->num_virt_regs) {
813 /*
814 * Create virt_buf[chip->num_extra_config_regs][chip->num_regs]
815 */
816 d->virt_buf = kcalloc(chip->num_virt_regs, sizeof(*d->virt_buf),
817 GFP_KERNEL);
818 if (!d->virt_buf)
819 goto err_alloc;
820
821 for (i = 0; i < chip->num_virt_regs; i++) {
822 d->virt_buf[i] = kcalloc(chip->num_regs,
823 sizeof(**d->virt_buf),
824 GFP_KERNEL);
825 if (!d->virt_buf[i])
826 goto err_alloc;
827 }
828 }
829
830 if (chip->num_config_bases && chip->num_config_regs) {
831 /*
832 * Create config_buf[num_config_bases][num_config_regs]
833 */
834 d->config_buf = kcalloc(chip->num_config_bases,
835 sizeof(*d->config_buf), GFP_KERNEL);
836 if (!d->config_buf)
837 goto err_alloc;
838
839 for (i = 0; i < chip->num_config_regs; i++) {
840 d->config_buf[i] = kcalloc(chip->num_config_regs,
841 sizeof(**d->config_buf),
842 GFP_KERNEL);
843 if (!d->config_buf[i])
844 goto err_alloc;
845 }
846 }
847
848 d->irq_chip = regmap_irq_chip;
849 d->irq_chip.name = chip->name;
850 d->irq = irq;
851 d->map = map;
852 d->chip = chip;
853 d->irq_base = irq_base;
854
855 if (chip->mask_base && chip->unmask_base &&
856 !chip->mask_unmask_non_inverted) {
857 /*
858 * Chips that specify both mask_base and unmask_base used to
859 * get inverted mask behavior by default, with no way to ask
860 * for the normal, non-inverted behavior. This "inverted by
861 * default" behavior is deprecated, but we have to support it
862 * until existing drivers have been fixed.
863 *
864 * Existing drivers should be updated by swapping mask_base
865 * and unmask_base and setting mask_unmask_non_inverted=true.
866 * New drivers should always set the flag.
867 */
868 dev_warn(map->dev, "mask_base and unmask_base are inverted, please fix it");
869
870 /* Might as well warn about mask_invert while we're at it... */
871 if (chip->mask_invert)
872 dev_warn(map->dev, "mask_invert=true ignored");
873
874 d->mask_base = chip->unmask_base;
875 d->unmask_base = chip->mask_base;
876 } else if (chip->mask_invert) {
877 /*
878 * Swap the roles of mask_base and unmask_base if the bits are
879 * inverted. This is deprecated, drivers should use unmask_base
880 * directly.
881 */
882 dev_warn(map->dev, "mask_invert=true is deprecated; please switch to unmask_base");
883
884 d->mask_base = chip->unmask_base;
885 d->unmask_base = chip->mask_base;
886 } else {
887 d->mask_base = chip->mask_base;
888 d->unmask_base = chip->unmask_base;
889 }
890
891 if (chip->irq_reg_stride)
892 d->irq_reg_stride = chip->irq_reg_stride;
893 else
894 d->irq_reg_stride = 1;
895
896 if (chip->get_irq_reg)
897 d->get_irq_reg = chip->get_irq_reg;
898 else
899 d->get_irq_reg = regmap_irq_get_irq_reg_linear;
900
901 if (regmap_irq_can_bulk_read_status(d)) {
902 d->status_reg_buf = kmalloc_array(chip->num_regs,
903 map->format.val_bytes,
904 GFP_KERNEL);
905 if (!d->status_reg_buf)
906 goto err_alloc;
907 }
908
909 mutex_init(&d->lock);
910
911 for (i = 0; i < chip->num_irqs; i++)
912 d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
913 |= chip->irqs[i].mask;
914
915 /* Mask all the interrupts by default */
916 for (i = 0; i < chip->num_regs; i++) {
917 d->mask_buf[i] = d->mask_buf_def[i];
918
919 if (d->mask_base) {
920 reg = d->get_irq_reg(d, d->mask_base, i);
921 ret = regmap_update_bits(d->map, reg,
922 d->mask_buf_def[i], d->mask_buf[i]);
923 if (ret) {
924 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
925 reg, ret);
926 goto err_alloc;
927 }
928 }
929
930 if (d->unmask_base) {
931 reg = d->get_irq_reg(d, d->unmask_base, i);
932 ret = regmap_update_bits(d->map, reg,
933 d->mask_buf_def[i], ~d->mask_buf[i]);
934 if (ret) {
935 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
936 reg, ret);
937 goto err_alloc;
938 }
939 }
940
941 if (!chip->init_ack_masked)
942 continue;
943
944 /* Ack masked but set interrupts */
945 reg = d->get_irq_reg(d, d->chip->status_base, i);
946 ret = regmap_read(map, reg, &d->status_buf[i]);
947 if (ret != 0) {
948 dev_err(map->dev, "Failed to read IRQ status: %d\n",
949 ret);
950 goto err_alloc;
951 }
952
953 if (chip->status_invert)
954 d->status_buf[i] = ~d->status_buf[i];
955
956 if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) {
957 reg = d->get_irq_reg(d, d->chip->ack_base, i);
958 if (chip->ack_invert)
959 ret = regmap_write(map, reg,
960 ~(d->status_buf[i] & d->mask_buf[i]));
961 else
962 ret = regmap_write(map, reg,
963 d->status_buf[i] & d->mask_buf[i]);
964 if (chip->clear_ack) {
965 if (chip->ack_invert && !ret)
966 ret = regmap_write(map, reg, UINT_MAX);
967 else if (!ret)
968 ret = regmap_write(map, reg, 0);
969 }
970 if (ret != 0) {
971 dev_err(map->dev, "Failed to ack 0x%x: %d\n",
972 reg, ret);
973 goto err_alloc;
974 }
975 }
976 }
977
978 /* Wake is disabled by default */
979 if (d->wake_buf) {
980 for (i = 0; i < chip->num_regs; i++) {
981 d->wake_buf[i] = d->mask_buf_def[i];
982 reg = d->get_irq_reg(d, d->chip->wake_base, i);
983
984 if (chip->wake_invert)
985 ret = regmap_update_bits(d->map, reg,
986 d->mask_buf_def[i],
987 0);
988 else
989 ret = regmap_update_bits(d->map, reg,
990 d->mask_buf_def[i],
991 d->wake_buf[i]);
992 if (ret != 0) {
993 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
994 reg, ret);
995 goto err_alloc;
996 }
997 }
998 }
999
1000 if (chip->num_type_reg && !chip->type_in_mask) {
1001 for (i = 0; i < chip->num_type_reg; ++i) {
1002 reg = d->get_irq_reg(d, d->chip->type_base, i);
1003
1004 ret = regmap_read(map, reg, &d->type_buf_def[i]);
1005
1006 if (d->chip->type_invert)
1007 d->type_buf_def[i] = ~d->type_buf_def[i];
1008
1009 if (ret) {
1010 dev_err(map->dev, "Failed to get type defaults at 0x%x: %d\n",
1011 reg, ret);
1012 goto err_alloc;
1013 }
1014 }
1015 }
1016
1017 if (irq_base)
1018 d->domain = irq_domain_create_legacy(fwnode, chip->num_irqs,
1019 irq_base, 0,
1020 ®map_domain_ops, d);
1021 else
1022 d->domain = irq_domain_create_linear(fwnode, chip->num_irqs,
1023 ®map_domain_ops, d);
1024 if (!d->domain) {
1025 dev_err(map->dev, "Failed to create IRQ domain\n");
1026 ret = -ENOMEM;
1027 goto err_alloc;
1028 }
1029
1030 ret = request_threaded_irq(irq, NULL, regmap_irq_thread,
1031 irq_flags | IRQF_ONESHOT,
1032 chip->name, d);
1033 if (ret != 0) {
1034 dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n",
1035 irq, chip->name, ret);
1036 goto err_domain;
1037 }
1038
1039 *data = d;
1040
1041 return 0;
1042
1043 err_domain:
1044 /* Should really dispose of the domain but... */
1045 err_alloc:
1046 kfree(d->type_buf);
1047 kfree(d->type_buf_def);
1048 kfree(d->wake_buf);
1049 kfree(d->mask_buf_def);
1050 kfree(d->mask_buf);
1051 kfree(d->status_buf);
1052 kfree(d->status_reg_buf);
1053 if (d->virt_buf) {
1054 for (i = 0; i < chip->num_virt_regs; i++)
1055 kfree(d->virt_buf[i]);
1056 kfree(d->virt_buf);
1057 }
1058 if (d->config_buf) {
1059 for (i = 0; i < chip->num_config_bases; i++)
1060 kfree(d->config_buf[i]);
1061 kfree(d->config_buf);
1062 }
1063 kfree(d);
1064 return ret;
1065 }
1066 EXPORT_SYMBOL_GPL(regmap_add_irq_chip_fwnode);
1067
1068 /**
1069 * regmap_add_irq_chip() - Use standard regmap IRQ controller handling
1070 *
1071 * @map: The regmap for the device.
1072 * @irq: The IRQ the device uses to signal interrupts.
1073 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
1074 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
1075 * @chip: Configuration for the interrupt controller.
1076 * @data: Runtime data structure for the controller, allocated on success.
1077 *
1078 * Returns 0 on success or an errno on failure.
1079 *
1080 * This is the same as regmap_add_irq_chip_fwnode, except that the firmware
1081 * node of the regmap is used.
1082 */
regmap_add_irq_chip(struct regmap * map,int irq,int irq_flags,int irq_base,const struct regmap_irq_chip * chip,struct regmap_irq_chip_data ** data)1083 int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
1084 int irq_base, const struct regmap_irq_chip *chip,
1085 struct regmap_irq_chip_data **data)
1086 {
1087 return regmap_add_irq_chip_fwnode(dev_fwnode(map->dev), map, irq,
1088 irq_flags, irq_base, chip, data);
1089 }
1090 EXPORT_SYMBOL_GPL(regmap_add_irq_chip);
1091
1092 /**
1093 * regmap_del_irq_chip() - Stop interrupt handling for a regmap IRQ chip
1094 *
1095 * @irq: Primary IRQ for the device
1096 * @d: ®map_irq_chip_data allocated by regmap_add_irq_chip()
1097 *
1098 * This function also disposes of all mapped IRQs on the chip.
1099 */
regmap_del_irq_chip(int irq,struct regmap_irq_chip_data * d)1100 void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
1101 {
1102 unsigned int virq;
1103 int i, hwirq;
1104
1105 if (!d)
1106 return;
1107
1108 free_irq(irq, d);
1109
1110 /* Dispose all virtual irq from irq domain before removing it */
1111 for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) {
1112 /* Ignore hwirq if holes in the IRQ list */
1113 if (!d->chip->irqs[hwirq].mask)
1114 continue;
1115
1116 /*
1117 * Find the virtual irq of hwirq on chip and if it is
1118 * there then dispose it
1119 */
1120 virq = irq_find_mapping(d->domain, hwirq);
1121 if (virq)
1122 irq_dispose_mapping(virq);
1123 }
1124
1125 irq_domain_remove(d->domain);
1126 kfree(d->type_buf);
1127 kfree(d->type_buf_def);
1128 kfree(d->wake_buf);
1129 kfree(d->mask_buf_def);
1130 kfree(d->mask_buf);
1131 kfree(d->status_reg_buf);
1132 kfree(d->status_buf);
1133 if (d->config_buf) {
1134 for (i = 0; i < d->chip->num_config_bases; i++)
1135 kfree(d->config_buf[i]);
1136 kfree(d->config_buf);
1137 }
1138 kfree(d);
1139 }
1140 EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
1141
devm_regmap_irq_chip_release(struct device * dev,void * res)1142 static void devm_regmap_irq_chip_release(struct device *dev, void *res)
1143 {
1144 struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res;
1145
1146 regmap_del_irq_chip(d->irq, d);
1147 }
1148
devm_regmap_irq_chip_match(struct device * dev,void * res,void * data)1149 static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data)
1150
1151 {
1152 struct regmap_irq_chip_data **r = res;
1153
1154 if (!r || !*r) {
1155 WARN_ON(!r || !*r);
1156 return 0;
1157 }
1158 return *r == data;
1159 }
1160
1161 /**
1162 * devm_regmap_add_irq_chip_fwnode() - Resource managed regmap_add_irq_chip_fwnode()
1163 *
1164 * @dev: The device pointer on which irq_chip belongs to.
1165 * @fwnode: The firmware node where the IRQ domain should be added to.
1166 * @map: The regmap for the device.
1167 * @irq: The IRQ the device uses to signal interrupts
1168 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
1169 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
1170 * @chip: Configuration for the interrupt controller.
1171 * @data: Runtime data structure for the controller, allocated on success
1172 *
1173 * Returns 0 on success or an errno on failure.
1174 *
1175 * The ®map_irq_chip_data will be automatically released when the device is
1176 * unbound.
1177 */
devm_regmap_add_irq_chip_fwnode(struct device * dev,struct fwnode_handle * fwnode,struct regmap * map,int irq,int irq_flags,int irq_base,const struct regmap_irq_chip * chip,struct regmap_irq_chip_data ** data)1178 int devm_regmap_add_irq_chip_fwnode(struct device *dev,
1179 struct fwnode_handle *fwnode,
1180 struct regmap *map, int irq,
1181 int irq_flags, int irq_base,
1182 const struct regmap_irq_chip *chip,
1183 struct regmap_irq_chip_data **data)
1184 {
1185 struct regmap_irq_chip_data **ptr, *d;
1186 int ret;
1187
1188 ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr),
1189 GFP_KERNEL);
1190 if (!ptr)
1191 return -ENOMEM;
1192
1193 ret = regmap_add_irq_chip_fwnode(fwnode, map, irq, irq_flags, irq_base,
1194 chip, &d);
1195 if (ret < 0) {
1196 devres_free(ptr);
1197 return ret;
1198 }
1199
1200 *ptr = d;
1201 devres_add(dev, ptr);
1202 *data = d;
1203 return 0;
1204 }
1205 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip_fwnode);
1206
1207 /**
1208 * devm_regmap_add_irq_chip() - Resource managed regmap_add_irq_chip()
1209 *
1210 * @dev: The device pointer on which irq_chip belongs to.
1211 * @map: The regmap for the device.
1212 * @irq: The IRQ the device uses to signal interrupts
1213 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
1214 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
1215 * @chip: Configuration for the interrupt controller.
1216 * @data: Runtime data structure for the controller, allocated on success
1217 *
1218 * Returns 0 on success or an errno on failure.
1219 *
1220 * The ®map_irq_chip_data will be automatically released when the device is
1221 * unbound.
1222 */
devm_regmap_add_irq_chip(struct device * dev,struct regmap * map,int irq,int irq_flags,int irq_base,const struct regmap_irq_chip * chip,struct regmap_irq_chip_data ** data)1223 int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq,
1224 int irq_flags, int irq_base,
1225 const struct regmap_irq_chip *chip,
1226 struct regmap_irq_chip_data **data)
1227 {
1228 return devm_regmap_add_irq_chip_fwnode(dev, dev_fwnode(map->dev), map,
1229 irq, irq_flags, irq_base, chip,
1230 data);
1231 }
1232 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip);
1233
1234 /**
1235 * devm_regmap_del_irq_chip() - Resource managed regmap_del_irq_chip()
1236 *
1237 * @dev: Device for which the resource was allocated.
1238 * @irq: Primary IRQ for the device.
1239 * @data: ®map_irq_chip_data allocated by regmap_add_irq_chip().
1240 *
1241 * A resource managed version of regmap_del_irq_chip().
1242 */
devm_regmap_del_irq_chip(struct device * dev,int irq,struct regmap_irq_chip_data * data)1243 void devm_regmap_del_irq_chip(struct device *dev, int irq,
1244 struct regmap_irq_chip_data *data)
1245 {
1246 int rc;
1247
1248 WARN_ON(irq != data->irq);
1249 rc = devres_release(dev, devm_regmap_irq_chip_release,
1250 devm_regmap_irq_chip_match, data);
1251
1252 if (rc != 0)
1253 WARN_ON(rc);
1254 }
1255 EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip);
1256
1257 /**
1258 * regmap_irq_chip_get_base() - Retrieve interrupt base for a regmap IRQ chip
1259 *
1260 * @data: regmap irq controller to operate on.
1261 *
1262 * Useful for drivers to request their own IRQs.
1263 */
regmap_irq_chip_get_base(struct regmap_irq_chip_data * data)1264 int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
1265 {
1266 WARN_ON(!data->irq_base);
1267 return data->irq_base;
1268 }
1269 EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
1270
1271 /**
1272 * regmap_irq_get_virq() - Map an interrupt on a chip to a virtual IRQ
1273 *
1274 * @data: regmap irq controller to operate on.
1275 * @irq: index of the interrupt requested in the chip IRQs.
1276 *
1277 * Useful for drivers to request their own IRQs.
1278 */
regmap_irq_get_virq(struct regmap_irq_chip_data * data,int irq)1279 int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
1280 {
1281 /* Handle holes in the IRQ list */
1282 if (!data->chip->irqs[irq].mask)
1283 return -EINVAL;
1284
1285 return irq_create_mapping(data->domain, irq);
1286 }
1287 EXPORT_SYMBOL_GPL(regmap_irq_get_virq);
1288
1289 /**
1290 * regmap_irq_get_domain() - Retrieve the irq_domain for the chip
1291 *
1292 * @data: regmap_irq controller to operate on.
1293 *
1294 * Useful for drivers to request their own IRQs and for integration
1295 * with subsystems. For ease of integration NULL is accepted as a
1296 * domain, allowing devices to just call this even if no domain is
1297 * allocated.
1298 */
regmap_irq_get_domain(struct regmap_irq_chip_data * data)1299 struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data)
1300 {
1301 if (data)
1302 return data->domain;
1303 else
1304 return NULL;
1305 }
1306 EXPORT_SYMBOL_GPL(regmap_irq_get_domain);
1307