1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * PCI Bus Services, see include/linux/pci.h for further explanation.
4 *
5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6 * David Mosberger-Tang
7 *
8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9 */
10
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/msi.h>
17 #include <linux/of.h>
18 #include <linux/pci.h>
19 #include <linux/pm.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/log2.h>
25 #include <linux/logic_pio.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/pci_hotplug.h>
31 #include <linux/vmalloc.h>
32 #include <asm/dma.h>
33 #include <linux/aer.h>
34 #include <linux/bitfield.h>
35 #include "pci.h"
36
37 DEFINE_MUTEX(pci_slot_mutex);
38
39 const char *pci_power_names[] = {
40 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
41 };
42 EXPORT_SYMBOL_GPL(pci_power_names);
43
44 #ifdef CONFIG_X86_32
45 int isa_dma_bridge_buggy;
46 EXPORT_SYMBOL(isa_dma_bridge_buggy);
47 #endif
48
49 int pci_pci_problems;
50 EXPORT_SYMBOL(pci_pci_problems);
51
52 unsigned int pci_pm_d3hot_delay;
53
54 static void pci_pme_list_scan(struct work_struct *work);
55
56 static LIST_HEAD(pci_pme_list);
57 static DEFINE_MUTEX(pci_pme_list_mutex);
58 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
59
60 struct pci_pme_device {
61 struct list_head list;
62 struct pci_dev *dev;
63 };
64
65 #define PME_TIMEOUT 1000 /* How long between PME checks */
66
67 /*
68 * Following exit from Conventional Reset, devices must be ready within 1 sec
69 * (PCIe r6.0 sec 6.6.1). A D3cold to D0 transition implies a Conventional
70 * Reset (PCIe r6.0 sec 5.8).
71 */
72 #define PCI_RESET_WAIT 1000 /* msec */
73
74 /*
75 * Devices may extend the 1 sec period through Request Retry Status
76 * completions (PCIe r6.0 sec 2.3.1). The spec does not provide an upper
77 * limit, but 60 sec ought to be enough for any device to become
78 * responsive.
79 */
80 #define PCIE_RESET_READY_POLL_MS 60000 /* msec */
81
pci_dev_d3_sleep(struct pci_dev * dev)82 static void pci_dev_d3_sleep(struct pci_dev *dev)
83 {
84 unsigned int delay_ms = max(dev->d3hot_delay, pci_pm_d3hot_delay);
85 unsigned int upper;
86
87 if (delay_ms) {
88 /* Use a 20% upper bound, 1ms minimum */
89 upper = max(DIV_ROUND_CLOSEST(delay_ms, 5), 1U);
90 usleep_range(delay_ms * USEC_PER_MSEC,
91 (delay_ms + upper) * USEC_PER_MSEC);
92 }
93 }
94
pci_reset_supported(struct pci_dev * dev)95 bool pci_reset_supported(struct pci_dev *dev)
96 {
97 return dev->reset_methods[0] != 0;
98 }
99
100 #ifdef CONFIG_PCI_DOMAINS
101 int pci_domains_supported = 1;
102 #endif
103
104 #define DEFAULT_CARDBUS_IO_SIZE (256)
105 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
106 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
107 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
108 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
109
110 #define DEFAULT_HOTPLUG_IO_SIZE (256)
111 #define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024)
112 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024)
113 /* hpiosize=nn can override this */
114 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
115 /*
116 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
117 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
118 * pci=hpmemsize=nnM overrides both
119 */
120 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
121 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
122
123 #define DEFAULT_HOTPLUG_BUS_SIZE 1
124 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
125
126
127 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
128 #ifdef CONFIG_PCIE_BUS_TUNE_OFF
129 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
130 #elif defined CONFIG_PCIE_BUS_SAFE
131 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
132 #elif defined CONFIG_PCIE_BUS_PERFORMANCE
133 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
134 #elif defined CONFIG_PCIE_BUS_PEER2PEER
135 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
136 #else
137 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
138 #endif
139
140 /*
141 * The default CLS is used if arch didn't set CLS explicitly and not
142 * all pci devices agree on the same value. Arch can override either
143 * the dfl or actual value as it sees fit. Don't forget this is
144 * measured in 32-bit words, not bytes.
145 */
146 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
147 u8 pci_cache_line_size;
148
149 /*
150 * If we set up a device for bus mastering, we need to check the latency
151 * timer as certain BIOSes forget to set it properly.
152 */
153 unsigned int pcibios_max_latency = 255;
154
155 /* If set, the PCIe ARI capability will not be used. */
156 static bool pcie_ari_disabled;
157
158 /* If set, the PCIe ATS capability will not be used. */
159 static bool pcie_ats_disabled;
160
161 /* If set, the PCI config space of each device is printed during boot. */
162 bool pci_early_dump;
163
pci_ats_disabled(void)164 bool pci_ats_disabled(void)
165 {
166 return pcie_ats_disabled;
167 }
168 EXPORT_SYMBOL_GPL(pci_ats_disabled);
169
170 /* Disable bridge_d3 for all PCIe ports */
171 static bool pci_bridge_d3_disable;
172 /* Force bridge_d3 for all PCIe ports */
173 static bool pci_bridge_d3_force;
174
pcie_port_pm_setup(char * str)175 static int __init pcie_port_pm_setup(char *str)
176 {
177 if (!strcmp(str, "off"))
178 pci_bridge_d3_disable = true;
179 else if (!strcmp(str, "force"))
180 pci_bridge_d3_force = true;
181 return 1;
182 }
183 __setup("pcie_port_pm=", pcie_port_pm_setup);
184
185 /**
186 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
187 * @bus: pointer to PCI bus structure to search
188 *
189 * Given a PCI bus, returns the highest PCI bus number present in the set
190 * including the given PCI bus and its list of child PCI buses.
191 */
pci_bus_max_busnr(struct pci_bus * bus)192 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
193 {
194 struct pci_bus *tmp;
195 unsigned char max, n;
196
197 max = bus->busn_res.end;
198 list_for_each_entry(tmp, &bus->children, node) {
199 n = pci_bus_max_busnr(tmp);
200 if (n > max)
201 max = n;
202 }
203 return max;
204 }
205 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
206
207 /**
208 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
209 * @pdev: the PCI device
210 *
211 * Returns error bits set in PCI_STATUS and clears them.
212 */
pci_status_get_and_clear_errors(struct pci_dev * pdev)213 int pci_status_get_and_clear_errors(struct pci_dev *pdev)
214 {
215 u16 status;
216 int ret;
217
218 ret = pci_read_config_word(pdev, PCI_STATUS, &status);
219 if (ret != PCIBIOS_SUCCESSFUL)
220 return -EIO;
221
222 status &= PCI_STATUS_ERROR_BITS;
223 if (status)
224 pci_write_config_word(pdev, PCI_STATUS, status);
225
226 return status;
227 }
228 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
229
230 #ifdef CONFIG_HAS_IOMEM
__pci_ioremap_resource(struct pci_dev * pdev,int bar,bool write_combine)231 static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar,
232 bool write_combine)
233 {
234 struct resource *res = &pdev->resource[bar];
235 resource_size_t start = res->start;
236 resource_size_t size = resource_size(res);
237
238 /*
239 * Make sure the BAR is actually a memory resource, not an IO resource
240 */
241 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
242 pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
243 return NULL;
244 }
245
246 if (write_combine)
247 return ioremap_wc(start, size);
248
249 return ioremap(start, size);
250 }
251
pci_ioremap_bar(struct pci_dev * pdev,int bar)252 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
253 {
254 return __pci_ioremap_resource(pdev, bar, false);
255 }
256 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
257
pci_ioremap_wc_bar(struct pci_dev * pdev,int bar)258 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
259 {
260 return __pci_ioremap_resource(pdev, bar, true);
261 }
262 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
263 #endif
264
265 /**
266 * pci_dev_str_match_path - test if a path string matches a device
267 * @dev: the PCI device to test
268 * @path: string to match the device against
269 * @endptr: pointer to the string after the match
270 *
271 * Test if a string (typically from a kernel parameter) formatted as a
272 * path of device/function addresses matches a PCI device. The string must
273 * be of the form:
274 *
275 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
276 *
277 * A path for a device can be obtained using 'lspci -t'. Using a path
278 * is more robust against bus renumbering than using only a single bus,
279 * device and function address.
280 *
281 * Returns 1 if the string matches the device, 0 if it does not and
282 * a negative error code if it fails to parse the string.
283 */
pci_dev_str_match_path(struct pci_dev * dev,const char * path,const char ** endptr)284 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
285 const char **endptr)
286 {
287 int ret;
288 unsigned int seg, bus, slot, func;
289 char *wpath, *p;
290 char end;
291
292 *endptr = strchrnul(path, ';');
293
294 wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC);
295 if (!wpath)
296 return -ENOMEM;
297
298 while (1) {
299 p = strrchr(wpath, '/');
300 if (!p)
301 break;
302 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
303 if (ret != 2) {
304 ret = -EINVAL;
305 goto free_and_exit;
306 }
307
308 if (dev->devfn != PCI_DEVFN(slot, func)) {
309 ret = 0;
310 goto free_and_exit;
311 }
312
313 /*
314 * Note: we don't need to get a reference to the upstream
315 * bridge because we hold a reference to the top level
316 * device which should hold a reference to the bridge,
317 * and so on.
318 */
319 dev = pci_upstream_bridge(dev);
320 if (!dev) {
321 ret = 0;
322 goto free_and_exit;
323 }
324
325 *p = 0;
326 }
327
328 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
329 &func, &end);
330 if (ret != 4) {
331 seg = 0;
332 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
333 if (ret != 3) {
334 ret = -EINVAL;
335 goto free_and_exit;
336 }
337 }
338
339 ret = (seg == pci_domain_nr(dev->bus) &&
340 bus == dev->bus->number &&
341 dev->devfn == PCI_DEVFN(slot, func));
342
343 free_and_exit:
344 kfree(wpath);
345 return ret;
346 }
347
348 /**
349 * pci_dev_str_match - test if a string matches a device
350 * @dev: the PCI device to test
351 * @p: string to match the device against
352 * @endptr: pointer to the string after the match
353 *
354 * Test if a string (typically from a kernel parameter) matches a specified
355 * PCI device. The string may be of one of the following formats:
356 *
357 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
358 * pci:<vendor>:<device>[:<subvendor>:<subdevice>]
359 *
360 * The first format specifies a PCI bus/device/function address which
361 * may change if new hardware is inserted, if motherboard firmware changes,
362 * or due to changes caused in kernel parameters. If the domain is
363 * left unspecified, it is taken to be 0. In order to be robust against
364 * bus renumbering issues, a path of PCI device/function numbers may be used
365 * to address the specific device. The path for a device can be determined
366 * through the use of 'lspci -t'.
367 *
368 * The second format matches devices using IDs in the configuration
369 * space which may match multiple devices in the system. A value of 0
370 * for any field will match all devices. (Note: this differs from
371 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
372 * legacy reasons and convenience so users don't have to specify
373 * FFFFFFFFs on the command line.)
374 *
375 * Returns 1 if the string matches the device, 0 if it does not and
376 * a negative error code if the string cannot be parsed.
377 */
pci_dev_str_match(struct pci_dev * dev,const char * p,const char ** endptr)378 static int pci_dev_str_match(struct pci_dev *dev, const char *p,
379 const char **endptr)
380 {
381 int ret;
382 int count;
383 unsigned short vendor, device, subsystem_vendor, subsystem_device;
384
385 if (strncmp(p, "pci:", 4) == 0) {
386 /* PCI vendor/device (subvendor/subdevice) IDs are specified */
387 p += 4;
388 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
389 &subsystem_vendor, &subsystem_device, &count);
390 if (ret != 4) {
391 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
392 if (ret != 2)
393 return -EINVAL;
394
395 subsystem_vendor = 0;
396 subsystem_device = 0;
397 }
398
399 p += count;
400
401 if ((!vendor || vendor == dev->vendor) &&
402 (!device || device == dev->device) &&
403 (!subsystem_vendor ||
404 subsystem_vendor == dev->subsystem_vendor) &&
405 (!subsystem_device ||
406 subsystem_device == dev->subsystem_device))
407 goto found;
408 } else {
409 /*
410 * PCI Bus, Device, Function IDs are specified
411 * (optionally, may include a path of devfns following it)
412 */
413 ret = pci_dev_str_match_path(dev, p, &p);
414 if (ret < 0)
415 return ret;
416 else if (ret)
417 goto found;
418 }
419
420 *endptr = p;
421 return 0;
422
423 found:
424 *endptr = p;
425 return 1;
426 }
427
__pci_find_next_cap_ttl(struct pci_bus * bus,unsigned int devfn,u8 pos,int cap,int * ttl)428 static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
429 u8 pos, int cap, int *ttl)
430 {
431 u8 id;
432 u16 ent;
433
434 pci_bus_read_config_byte(bus, devfn, pos, &pos);
435
436 while ((*ttl)--) {
437 if (pos < 0x40)
438 break;
439 pos &= ~3;
440 pci_bus_read_config_word(bus, devfn, pos, &ent);
441
442 id = ent & 0xff;
443 if (id == 0xff)
444 break;
445 if (id == cap)
446 return pos;
447 pos = (ent >> 8);
448 }
449 return 0;
450 }
451
__pci_find_next_cap(struct pci_bus * bus,unsigned int devfn,u8 pos,int cap)452 static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
453 u8 pos, int cap)
454 {
455 int ttl = PCI_FIND_CAP_TTL;
456
457 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
458 }
459
pci_find_next_capability(struct pci_dev * dev,u8 pos,int cap)460 u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
461 {
462 return __pci_find_next_cap(dev->bus, dev->devfn,
463 pos + PCI_CAP_LIST_NEXT, cap);
464 }
465 EXPORT_SYMBOL_GPL(pci_find_next_capability);
466
__pci_bus_find_cap_start(struct pci_bus * bus,unsigned int devfn,u8 hdr_type)467 static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
468 unsigned int devfn, u8 hdr_type)
469 {
470 u16 status;
471
472 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
473 if (!(status & PCI_STATUS_CAP_LIST))
474 return 0;
475
476 switch (hdr_type) {
477 case PCI_HEADER_TYPE_NORMAL:
478 case PCI_HEADER_TYPE_BRIDGE:
479 return PCI_CAPABILITY_LIST;
480 case PCI_HEADER_TYPE_CARDBUS:
481 return PCI_CB_CAPABILITY_LIST;
482 }
483
484 return 0;
485 }
486
487 /**
488 * pci_find_capability - query for devices' capabilities
489 * @dev: PCI device to query
490 * @cap: capability code
491 *
492 * Tell if a device supports a given PCI capability.
493 * Returns the address of the requested capability structure within the
494 * device's PCI configuration space or 0 in case the device does not
495 * support it. Possible values for @cap include:
496 *
497 * %PCI_CAP_ID_PM Power Management
498 * %PCI_CAP_ID_AGP Accelerated Graphics Port
499 * %PCI_CAP_ID_VPD Vital Product Data
500 * %PCI_CAP_ID_SLOTID Slot Identification
501 * %PCI_CAP_ID_MSI Message Signalled Interrupts
502 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
503 * %PCI_CAP_ID_PCIX PCI-X
504 * %PCI_CAP_ID_EXP PCI Express
505 */
pci_find_capability(struct pci_dev * dev,int cap)506 u8 pci_find_capability(struct pci_dev *dev, int cap)
507 {
508 u8 pos;
509
510 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
511 if (pos)
512 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
513
514 return pos;
515 }
516 EXPORT_SYMBOL(pci_find_capability);
517
518 /**
519 * pci_bus_find_capability - query for devices' capabilities
520 * @bus: the PCI bus to query
521 * @devfn: PCI device to query
522 * @cap: capability code
523 *
524 * Like pci_find_capability() but works for PCI devices that do not have a
525 * pci_dev structure set up yet.
526 *
527 * Returns the address of the requested capability structure within the
528 * device's PCI configuration space or 0 in case the device does not
529 * support it.
530 */
pci_bus_find_capability(struct pci_bus * bus,unsigned int devfn,int cap)531 u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
532 {
533 u8 hdr_type, pos;
534
535 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
536
537 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
538 if (pos)
539 pos = __pci_find_next_cap(bus, devfn, pos, cap);
540
541 return pos;
542 }
543 EXPORT_SYMBOL(pci_bus_find_capability);
544
545 /**
546 * pci_find_next_ext_capability - Find an extended capability
547 * @dev: PCI device to query
548 * @start: address at which to start looking (0 to start at beginning of list)
549 * @cap: capability code
550 *
551 * Returns the address of the next matching extended capability structure
552 * within the device's PCI configuration space or 0 if the device does
553 * not support it. Some capabilities can occur several times, e.g., the
554 * vendor-specific capability, and this provides a way to find them all.
555 */
pci_find_next_ext_capability(struct pci_dev * dev,u16 start,int cap)556 u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
557 {
558 u32 header;
559 int ttl;
560 u16 pos = PCI_CFG_SPACE_SIZE;
561
562 /* minimum 8 bytes per capability */
563 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
564
565 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
566 return 0;
567
568 if (start)
569 pos = start;
570
571 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
572 return 0;
573
574 /*
575 * If we have no capabilities, this is indicated by cap ID,
576 * cap version and next pointer all being 0.
577 */
578 if (header == 0)
579 return 0;
580
581 while (ttl-- > 0) {
582 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
583 return pos;
584
585 pos = PCI_EXT_CAP_NEXT(header);
586 if (pos < PCI_CFG_SPACE_SIZE)
587 break;
588
589 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
590 break;
591 }
592
593 return 0;
594 }
595 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
596
597 /**
598 * pci_find_ext_capability - Find an extended capability
599 * @dev: PCI device to query
600 * @cap: capability code
601 *
602 * Returns the address of the requested extended capability structure
603 * within the device's PCI configuration space or 0 if the device does
604 * not support it. Possible values for @cap include:
605 *
606 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
607 * %PCI_EXT_CAP_ID_VC Virtual Channel
608 * %PCI_EXT_CAP_ID_DSN Device Serial Number
609 * %PCI_EXT_CAP_ID_PWR Power Budgeting
610 */
pci_find_ext_capability(struct pci_dev * dev,int cap)611 u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
612 {
613 return pci_find_next_ext_capability(dev, 0, cap);
614 }
615 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
616
617 /**
618 * pci_get_dsn - Read and return the 8-byte Device Serial Number
619 * @dev: PCI device to query
620 *
621 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
622 * Number.
623 *
624 * Returns the DSN, or zero if the capability does not exist.
625 */
pci_get_dsn(struct pci_dev * dev)626 u64 pci_get_dsn(struct pci_dev *dev)
627 {
628 u32 dword;
629 u64 dsn;
630 int pos;
631
632 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
633 if (!pos)
634 return 0;
635
636 /*
637 * The Device Serial Number is two dwords offset 4 bytes from the
638 * capability position. The specification says that the first dword is
639 * the lower half, and the second dword is the upper half.
640 */
641 pos += 4;
642 pci_read_config_dword(dev, pos, &dword);
643 dsn = (u64)dword;
644 pci_read_config_dword(dev, pos + 4, &dword);
645 dsn |= ((u64)dword) << 32;
646
647 return dsn;
648 }
649 EXPORT_SYMBOL_GPL(pci_get_dsn);
650
__pci_find_next_ht_cap(struct pci_dev * dev,u8 pos,int ht_cap)651 static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
652 {
653 int rc, ttl = PCI_FIND_CAP_TTL;
654 u8 cap, mask;
655
656 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
657 mask = HT_3BIT_CAP_MASK;
658 else
659 mask = HT_5BIT_CAP_MASK;
660
661 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
662 PCI_CAP_ID_HT, &ttl);
663 while (pos) {
664 rc = pci_read_config_byte(dev, pos + 3, &cap);
665 if (rc != PCIBIOS_SUCCESSFUL)
666 return 0;
667
668 if ((cap & mask) == ht_cap)
669 return pos;
670
671 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
672 pos + PCI_CAP_LIST_NEXT,
673 PCI_CAP_ID_HT, &ttl);
674 }
675
676 return 0;
677 }
678
679 /**
680 * pci_find_next_ht_capability - query a device's HyperTransport capabilities
681 * @dev: PCI device to query
682 * @pos: Position from which to continue searching
683 * @ht_cap: HyperTransport capability code
684 *
685 * To be used in conjunction with pci_find_ht_capability() to search for
686 * all capabilities matching @ht_cap. @pos should always be a value returned
687 * from pci_find_ht_capability().
688 *
689 * NB. To be 100% safe against broken PCI devices, the caller should take
690 * steps to avoid an infinite loop.
691 */
pci_find_next_ht_capability(struct pci_dev * dev,u8 pos,int ht_cap)692 u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
693 {
694 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
695 }
696 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
697
698 /**
699 * pci_find_ht_capability - query a device's HyperTransport capabilities
700 * @dev: PCI device to query
701 * @ht_cap: HyperTransport capability code
702 *
703 * Tell if a device supports a given HyperTransport capability.
704 * Returns an address within the device's PCI configuration space
705 * or 0 in case the device does not support the request capability.
706 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
707 * which has a HyperTransport capability matching @ht_cap.
708 */
pci_find_ht_capability(struct pci_dev * dev,int ht_cap)709 u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
710 {
711 u8 pos;
712
713 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
714 if (pos)
715 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
716
717 return pos;
718 }
719 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
720
721 /**
722 * pci_find_vsec_capability - Find a vendor-specific extended capability
723 * @dev: PCI device to query
724 * @vendor: Vendor ID for which capability is defined
725 * @cap: Vendor-specific capability ID
726 *
727 * If @dev has Vendor ID @vendor, search for a VSEC capability with
728 * VSEC ID @cap. If found, return the capability offset in
729 * config space; otherwise return 0.
730 */
pci_find_vsec_capability(struct pci_dev * dev,u16 vendor,int cap)731 u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap)
732 {
733 u16 vsec = 0;
734 u32 header;
735
736 if (vendor != dev->vendor)
737 return 0;
738
739 while ((vsec = pci_find_next_ext_capability(dev, vsec,
740 PCI_EXT_CAP_ID_VNDR))) {
741 if (pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER,
742 &header) == PCIBIOS_SUCCESSFUL &&
743 PCI_VNDR_HEADER_ID(header) == cap)
744 return vsec;
745 }
746
747 return 0;
748 }
749 EXPORT_SYMBOL_GPL(pci_find_vsec_capability);
750
751 /**
752 * pci_find_dvsec_capability - Find DVSEC for vendor
753 * @dev: PCI device to query
754 * @vendor: Vendor ID to match for the DVSEC
755 * @dvsec: Designated Vendor-specific capability ID
756 *
757 * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability
758 * offset in config space; otherwise return 0.
759 */
pci_find_dvsec_capability(struct pci_dev * dev,u16 vendor,u16 dvsec)760 u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec)
761 {
762 int pos;
763
764 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC);
765 if (!pos)
766 return 0;
767
768 while (pos) {
769 u16 v, id;
770
771 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v);
772 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id);
773 if (vendor == v && dvsec == id)
774 return pos;
775
776 pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC);
777 }
778
779 return 0;
780 }
781 EXPORT_SYMBOL_GPL(pci_find_dvsec_capability);
782
783 /**
784 * pci_find_parent_resource - return resource region of parent bus of given
785 * region
786 * @dev: PCI device structure contains resources to be searched
787 * @res: child resource record for which parent is sought
788 *
789 * For given resource region of given device, return the resource region of
790 * parent bus the given region is contained in.
791 */
pci_find_parent_resource(const struct pci_dev * dev,struct resource * res)792 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
793 struct resource *res)
794 {
795 const struct pci_bus *bus = dev->bus;
796 struct resource *r;
797
798 pci_bus_for_each_resource(bus, r) {
799 if (!r)
800 continue;
801 if (resource_contains(r, res)) {
802
803 /*
804 * If the window is prefetchable but the BAR is
805 * not, the allocator made a mistake.
806 */
807 if (r->flags & IORESOURCE_PREFETCH &&
808 !(res->flags & IORESOURCE_PREFETCH))
809 return NULL;
810
811 /*
812 * If we're below a transparent bridge, there may
813 * be both a positively-decoded aperture and a
814 * subtractively-decoded region that contain the BAR.
815 * We want the positively-decoded one, so this depends
816 * on pci_bus_for_each_resource() giving us those
817 * first.
818 */
819 return r;
820 }
821 }
822 return NULL;
823 }
824 EXPORT_SYMBOL(pci_find_parent_resource);
825
826 /**
827 * pci_find_resource - Return matching PCI device resource
828 * @dev: PCI device to query
829 * @res: Resource to look for
830 *
831 * Goes over standard PCI resources (BARs) and checks if the given resource
832 * is partially or fully contained in any of them. In that case the
833 * matching resource is returned, %NULL otherwise.
834 */
pci_find_resource(struct pci_dev * dev,struct resource * res)835 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
836 {
837 int i;
838
839 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
840 struct resource *r = &dev->resource[i];
841
842 if (r->start && resource_contains(r, res))
843 return r;
844 }
845
846 return NULL;
847 }
848 EXPORT_SYMBOL(pci_find_resource);
849
850 /**
851 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
852 * @dev: the PCI device to operate on
853 * @pos: config space offset of status word
854 * @mask: mask of bit(s) to care about in status word
855 *
856 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
857 */
pci_wait_for_pending(struct pci_dev * dev,int pos,u16 mask)858 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
859 {
860 int i;
861
862 /* Wait for Transaction Pending bit clean */
863 for (i = 0; i < 4; i++) {
864 u16 status;
865 if (i)
866 msleep((1 << (i - 1)) * 100);
867
868 pci_read_config_word(dev, pos, &status);
869 if (!(status & mask))
870 return 1;
871 }
872
873 return 0;
874 }
875
876 static int pci_acs_enable;
877
878 /**
879 * pci_request_acs - ask for ACS to be enabled if supported
880 */
pci_request_acs(void)881 void pci_request_acs(void)
882 {
883 pci_acs_enable = 1;
884 }
885
886 static const char *disable_acs_redir_param;
887
888 /**
889 * pci_disable_acs_redir - disable ACS redirect capabilities
890 * @dev: the PCI device
891 *
892 * For only devices specified in the disable_acs_redir parameter.
893 */
pci_disable_acs_redir(struct pci_dev * dev)894 static void pci_disable_acs_redir(struct pci_dev *dev)
895 {
896 int ret = 0;
897 const char *p;
898 int pos;
899 u16 ctrl;
900
901 if (!disable_acs_redir_param)
902 return;
903
904 p = disable_acs_redir_param;
905 while (*p) {
906 ret = pci_dev_str_match(dev, p, &p);
907 if (ret < 0) {
908 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
909 disable_acs_redir_param);
910
911 break;
912 } else if (ret == 1) {
913 /* Found a match */
914 break;
915 }
916
917 if (*p != ';' && *p != ',') {
918 /* End of param or invalid format */
919 break;
920 }
921 p++;
922 }
923
924 if (ret != 1)
925 return;
926
927 if (!pci_dev_specific_disable_acs_redir(dev))
928 return;
929
930 pos = dev->acs_cap;
931 if (!pos) {
932 pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
933 return;
934 }
935
936 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
937
938 /* P2P Request & Completion Redirect */
939 ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
940
941 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
942
943 pci_info(dev, "disabled ACS redirect\n");
944 }
945
946 /**
947 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
948 * @dev: the PCI device
949 */
pci_std_enable_acs(struct pci_dev * dev)950 static void pci_std_enable_acs(struct pci_dev *dev)
951 {
952 int pos;
953 u16 cap;
954 u16 ctrl;
955
956 pos = dev->acs_cap;
957 if (!pos)
958 return;
959
960 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
961 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
962
963 /* Source Validation */
964 ctrl |= (cap & PCI_ACS_SV);
965
966 /* P2P Request Redirect */
967 ctrl |= (cap & PCI_ACS_RR);
968
969 /* P2P Completion Redirect */
970 ctrl |= (cap & PCI_ACS_CR);
971
972 /* Upstream Forwarding */
973 ctrl |= (cap & PCI_ACS_UF);
974
975 /* Enable Translation Blocking for external devices and noats */
976 if (pci_ats_disabled() || dev->external_facing || dev->untrusted)
977 ctrl |= (cap & PCI_ACS_TB);
978
979 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
980 }
981
982 /**
983 * pci_enable_acs - enable ACS if hardware support it
984 * @dev: the PCI device
985 */
pci_enable_acs(struct pci_dev * dev)986 static void pci_enable_acs(struct pci_dev *dev)
987 {
988 if (!pci_acs_enable)
989 goto disable_acs_redir;
990
991 if (!pci_dev_specific_enable_acs(dev))
992 goto disable_acs_redir;
993
994 pci_std_enable_acs(dev);
995
996 disable_acs_redir:
997 /*
998 * Note: pci_disable_acs_redir() must be called even if ACS was not
999 * enabled by the kernel because it may have been enabled by
1000 * platform firmware. So if we are told to disable it, we should
1001 * always disable it after setting the kernel's default
1002 * preferences.
1003 */
1004 pci_disable_acs_redir(dev);
1005 }
1006
1007 /**
1008 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
1009 * @dev: PCI device to have its BARs restored
1010 *
1011 * Restore the BAR values for a given device, so as to make it
1012 * accessible by its driver.
1013 */
pci_restore_bars(struct pci_dev * dev)1014 static void pci_restore_bars(struct pci_dev *dev)
1015 {
1016 int i;
1017
1018 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
1019 pci_update_resource(dev, i);
1020 }
1021
platform_pci_power_manageable(struct pci_dev * dev)1022 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
1023 {
1024 if (pci_use_mid_pm())
1025 return true;
1026
1027 return acpi_pci_power_manageable(dev);
1028 }
1029
platform_pci_set_power_state(struct pci_dev * dev,pci_power_t t)1030 static inline int platform_pci_set_power_state(struct pci_dev *dev,
1031 pci_power_t t)
1032 {
1033 if (pci_use_mid_pm())
1034 return mid_pci_set_power_state(dev, t);
1035
1036 return acpi_pci_set_power_state(dev, t);
1037 }
1038
platform_pci_get_power_state(struct pci_dev * dev)1039 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
1040 {
1041 if (pci_use_mid_pm())
1042 return mid_pci_get_power_state(dev);
1043
1044 return acpi_pci_get_power_state(dev);
1045 }
1046
platform_pci_refresh_power_state(struct pci_dev * dev)1047 static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
1048 {
1049 if (!pci_use_mid_pm())
1050 acpi_pci_refresh_power_state(dev);
1051 }
1052
platform_pci_choose_state(struct pci_dev * dev)1053 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
1054 {
1055 if (pci_use_mid_pm())
1056 return PCI_POWER_ERROR;
1057
1058 return acpi_pci_choose_state(dev);
1059 }
1060
platform_pci_set_wakeup(struct pci_dev * dev,bool enable)1061 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
1062 {
1063 if (pci_use_mid_pm())
1064 return PCI_POWER_ERROR;
1065
1066 return acpi_pci_wakeup(dev, enable);
1067 }
1068
platform_pci_need_resume(struct pci_dev * dev)1069 static inline bool platform_pci_need_resume(struct pci_dev *dev)
1070 {
1071 if (pci_use_mid_pm())
1072 return false;
1073
1074 return acpi_pci_need_resume(dev);
1075 }
1076
platform_pci_bridge_d3(struct pci_dev * dev)1077 static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
1078 {
1079 if (pci_use_mid_pm())
1080 return false;
1081
1082 return acpi_pci_bridge_d3(dev);
1083 }
1084
1085 /**
1086 * pci_update_current_state - Read power state of given device and cache it
1087 * @dev: PCI device to handle.
1088 * @state: State to cache in case the device doesn't have the PM capability
1089 *
1090 * The power state is read from the PMCSR register, which however is
1091 * inaccessible in D3cold. The platform firmware is therefore queried first
1092 * to detect accessibility of the register. In case the platform firmware
1093 * reports an incorrect state or the device isn't power manageable by the
1094 * platform at all, we try to detect D3cold by testing accessibility of the
1095 * vendor ID in config space.
1096 */
pci_update_current_state(struct pci_dev * dev,pci_power_t state)1097 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1098 {
1099 if (platform_pci_get_power_state(dev) == PCI_D3cold) {
1100 dev->current_state = PCI_D3cold;
1101 } else if (dev->pm_cap) {
1102 u16 pmcsr;
1103
1104 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1105 if (PCI_POSSIBLE_ERROR(pmcsr)) {
1106 dev->current_state = PCI_D3cold;
1107 return;
1108 }
1109 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1110 } else {
1111 dev->current_state = state;
1112 }
1113 }
1114
1115 /**
1116 * pci_refresh_power_state - Refresh the given device's power state data
1117 * @dev: Target PCI device.
1118 *
1119 * Ask the platform to refresh the devices power state information and invoke
1120 * pci_update_current_state() to update its current PCI power state.
1121 */
pci_refresh_power_state(struct pci_dev * dev)1122 void pci_refresh_power_state(struct pci_dev *dev)
1123 {
1124 platform_pci_refresh_power_state(dev);
1125 pci_update_current_state(dev, dev->current_state);
1126 }
1127
1128 /**
1129 * pci_platform_power_transition - Use platform to change device power state
1130 * @dev: PCI device to handle.
1131 * @state: State to put the device into.
1132 */
pci_platform_power_transition(struct pci_dev * dev,pci_power_t state)1133 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1134 {
1135 int error;
1136
1137 error = platform_pci_set_power_state(dev, state);
1138 if (!error)
1139 pci_update_current_state(dev, state);
1140 else if (!dev->pm_cap) /* Fall back to PCI_D0 */
1141 dev->current_state = PCI_D0;
1142
1143 return error;
1144 }
1145 EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1146
pci_resume_one(struct pci_dev * pci_dev,void * ign)1147 static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
1148 {
1149 pm_request_resume(&pci_dev->dev);
1150 return 0;
1151 }
1152
1153 /**
1154 * pci_resume_bus - Walk given bus and runtime resume devices on it
1155 * @bus: Top bus of the subtree to walk.
1156 */
pci_resume_bus(struct pci_bus * bus)1157 void pci_resume_bus(struct pci_bus *bus)
1158 {
1159 if (bus)
1160 pci_walk_bus(bus, pci_resume_one, NULL);
1161 }
1162
pci_dev_wait(struct pci_dev * dev,char * reset_type,int timeout)1163 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1164 {
1165 int delay = 1;
1166 bool retrain = false;
1167 struct pci_dev *bridge;
1168
1169 if (pci_is_pcie(dev)) {
1170 bridge = pci_upstream_bridge(dev);
1171 if (bridge)
1172 retrain = true;
1173 }
1174
1175 /*
1176 * After reset, the device should not silently discard config
1177 * requests, but it may still indicate that it needs more time by
1178 * responding to them with CRS completions. The Root Port will
1179 * generally synthesize ~0 (PCI_ERROR_RESPONSE) data to complete
1180 * the read (except when CRS SV is enabled and the read was for the
1181 * Vendor ID; in that case it synthesizes 0x0001 data).
1182 *
1183 * Wait for the device to return a non-CRS completion. Read the
1184 * Command register instead of Vendor ID so we don't have to
1185 * contend with the CRS SV value.
1186 */
1187 for (;;) {
1188 u32 id;
1189
1190 pci_read_config_dword(dev, PCI_COMMAND, &id);
1191 if (!PCI_POSSIBLE_ERROR(id))
1192 break;
1193
1194 if (delay > timeout) {
1195 pci_warn(dev, "not ready %dms after %s; giving up\n",
1196 delay - 1, reset_type);
1197 return -ENOTTY;
1198 }
1199
1200 if (delay > PCI_RESET_WAIT) {
1201 if (retrain) {
1202 retrain = false;
1203 if (pcie_failed_link_retrain(bridge)) {
1204 delay = 1;
1205 continue;
1206 }
1207 }
1208 pci_info(dev, "not ready %dms after %s; waiting\n",
1209 delay - 1, reset_type);
1210 }
1211
1212 msleep(delay);
1213 delay *= 2;
1214 }
1215
1216 if (delay > PCI_RESET_WAIT)
1217 pci_info(dev, "ready %dms after %s\n", delay - 1,
1218 reset_type);
1219
1220 return 0;
1221 }
1222
1223 /**
1224 * pci_power_up - Put the given device into D0
1225 * @dev: PCI device to power up
1226 *
1227 * On success, return 0 or 1, depending on whether or not it is necessary to
1228 * restore the device's BARs subsequently (1 is returned in that case).
1229 *
1230 * On failure, return a negative error code. Always return failure if @dev
1231 * lacks a Power Management Capability, even if the platform was able to
1232 * put the device in D0 via non-PCI means.
1233 */
pci_power_up(struct pci_dev * dev)1234 int pci_power_up(struct pci_dev *dev)
1235 {
1236 bool need_restore;
1237 pci_power_t state;
1238 u16 pmcsr;
1239
1240 platform_pci_set_power_state(dev, PCI_D0);
1241
1242 if (!dev->pm_cap) {
1243 state = platform_pci_get_power_state(dev);
1244 if (state == PCI_UNKNOWN)
1245 dev->current_state = PCI_D0;
1246 else
1247 dev->current_state = state;
1248
1249 return -EIO;
1250 }
1251
1252 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1253 if (PCI_POSSIBLE_ERROR(pmcsr)) {
1254 pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n",
1255 pci_power_name(dev->current_state));
1256 dev->current_state = PCI_D3cold;
1257 return -EIO;
1258 }
1259
1260 state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1261
1262 need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) &&
1263 !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET);
1264
1265 if (state == PCI_D0)
1266 goto end;
1267
1268 /*
1269 * Force the entire word to 0. This doesn't affect PME_Status, disables
1270 * PME_En, and sets PowerState to 0.
1271 */
1272 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, 0);
1273
1274 /* Mandatory transition delays; see PCI PM 1.2. */
1275 if (state == PCI_D3hot)
1276 pci_dev_d3_sleep(dev);
1277 else if (state == PCI_D2)
1278 udelay(PCI_PM_D2_DELAY);
1279
1280 end:
1281 dev->current_state = PCI_D0;
1282 if (need_restore)
1283 return 1;
1284
1285 return 0;
1286 }
1287
1288 /**
1289 * pci_set_full_power_state - Put a PCI device into D0 and update its state
1290 * @dev: PCI device to power up
1291 *
1292 * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register
1293 * to confirm the state change, restore its BARs if they might be lost and
1294 * reconfigure ASPM in accordance with the new power state.
1295 *
1296 * If pci_restore_state() is going to be called right after a power state change
1297 * to D0, it is more efficient to use pci_power_up() directly instead of this
1298 * function.
1299 */
pci_set_full_power_state(struct pci_dev * dev)1300 static int pci_set_full_power_state(struct pci_dev *dev)
1301 {
1302 u16 pmcsr;
1303 int ret;
1304
1305 ret = pci_power_up(dev);
1306 if (ret < 0) {
1307 if (dev->current_state == PCI_D0)
1308 return 0;
1309
1310 return ret;
1311 }
1312
1313 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1314 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1315 if (dev->current_state != PCI_D0) {
1316 pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n",
1317 pci_power_name(dev->current_state));
1318 } else if (ret > 0) {
1319 /*
1320 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1321 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1322 * from D3hot to D0 _may_ perform an internal reset, thereby
1323 * going to "D0 Uninitialized" rather than "D0 Initialized".
1324 * For example, at least some versions of the 3c905B and the
1325 * 3c556B exhibit this behaviour.
1326 *
1327 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1328 * devices in a D3hot state at boot. Consequently, we need to
1329 * restore at least the BARs so that the device will be
1330 * accessible to its driver.
1331 */
1332 pci_restore_bars(dev);
1333 }
1334
1335 return 0;
1336 }
1337
1338 /**
1339 * __pci_dev_set_current_state - Set current state of a PCI device
1340 * @dev: Device to handle
1341 * @data: pointer to state to be set
1342 */
__pci_dev_set_current_state(struct pci_dev * dev,void * data)1343 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1344 {
1345 pci_power_t state = *(pci_power_t *)data;
1346
1347 dev->current_state = state;
1348 return 0;
1349 }
1350
1351 /**
1352 * pci_bus_set_current_state - Walk given bus and set current state of devices
1353 * @bus: Top bus of the subtree to walk.
1354 * @state: state to be set
1355 */
pci_bus_set_current_state(struct pci_bus * bus,pci_power_t state)1356 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1357 {
1358 if (bus)
1359 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1360 }
1361
1362 /**
1363 * pci_set_low_power_state - Put a PCI device into a low-power state.
1364 * @dev: PCI device to handle.
1365 * @state: PCI power state (D1, D2, D3hot) to put the device into.
1366 *
1367 * Use the device's PCI_PM_CTRL register to put it into a low-power state.
1368 *
1369 * RETURN VALUE:
1370 * -EINVAL if the requested state is invalid.
1371 * -EIO if device does not support PCI PM or its PM capabilities register has a
1372 * wrong version, or device doesn't support the requested state.
1373 * 0 if device already is in the requested state.
1374 * 0 if device's power state has been successfully changed.
1375 */
pci_set_low_power_state(struct pci_dev * dev,pci_power_t state)1376 static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state)
1377 {
1378 u16 pmcsr;
1379
1380 if (!dev->pm_cap)
1381 return -EIO;
1382
1383 /*
1384 * Validate transition: We can enter D0 from any state, but if
1385 * we're already in a low-power state, we can only go deeper. E.g.,
1386 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1387 * we'd have to go from D3 to D0, then to D1.
1388 */
1389 if (dev->current_state <= PCI_D3cold && dev->current_state > state) {
1390 pci_dbg(dev, "Invalid power transition (from %s to %s)\n",
1391 pci_power_name(dev->current_state),
1392 pci_power_name(state));
1393 return -EINVAL;
1394 }
1395
1396 /* Check if this device supports the desired state */
1397 if ((state == PCI_D1 && !dev->d1_support)
1398 || (state == PCI_D2 && !dev->d2_support))
1399 return -EIO;
1400
1401 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1402 if (PCI_POSSIBLE_ERROR(pmcsr)) {
1403 pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n",
1404 pci_power_name(dev->current_state),
1405 pci_power_name(state));
1406 dev->current_state = PCI_D3cold;
1407 return -EIO;
1408 }
1409
1410 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1411 pmcsr |= state;
1412
1413 /* Enter specified state */
1414 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1415
1416 /* Mandatory power management transition delays; see PCI PM 1.2. */
1417 if (state == PCI_D3hot)
1418 pci_dev_d3_sleep(dev);
1419 else if (state == PCI_D2)
1420 udelay(PCI_PM_D2_DELAY);
1421
1422 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1423 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1424 if (dev->current_state != state)
1425 pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n",
1426 pci_power_name(dev->current_state),
1427 pci_power_name(state));
1428
1429 return 0;
1430 }
1431
1432 /**
1433 * pci_set_power_state - Set the power state of a PCI device
1434 * @dev: PCI device to handle.
1435 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1436 *
1437 * Transition a device to a new power state, using the platform firmware and/or
1438 * the device's PCI PM registers.
1439 *
1440 * RETURN VALUE:
1441 * -EINVAL if the requested state is invalid.
1442 * -EIO if device does not support PCI PM or its PM capabilities register has a
1443 * wrong version, or device doesn't support the requested state.
1444 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1445 * 0 if device already is in the requested state.
1446 * 0 if the transition is to D3 but D3 is not supported.
1447 * 0 if device's power state has been successfully changed.
1448 */
pci_set_power_state(struct pci_dev * dev,pci_power_t state)1449 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1450 {
1451 int error;
1452
1453 /* Bound the state we're entering */
1454 if (state > PCI_D3cold)
1455 state = PCI_D3cold;
1456 else if (state < PCI_D0)
1457 state = PCI_D0;
1458 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1459
1460 /*
1461 * If the device or the parent bridge do not support PCI
1462 * PM, ignore the request if we're doing anything other
1463 * than putting it into D0 (which would only happen on
1464 * boot).
1465 */
1466 return 0;
1467
1468 /* Check if we're already there */
1469 if (dev->current_state == state)
1470 return 0;
1471
1472 if (state == PCI_D0)
1473 return pci_set_full_power_state(dev);
1474
1475 /*
1476 * This device is quirked not to be put into D3, so don't put it in
1477 * D3
1478 */
1479 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1480 return 0;
1481
1482 if (state == PCI_D3cold) {
1483 /*
1484 * To put the device in D3cold, put it into D3hot in the native
1485 * way, then put it into D3cold using platform ops.
1486 */
1487 error = pci_set_low_power_state(dev, PCI_D3hot);
1488
1489 if (pci_platform_power_transition(dev, PCI_D3cold))
1490 return error;
1491
1492 /* Powering off a bridge may power off the whole hierarchy */
1493 if (dev->current_state == PCI_D3cold)
1494 pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1495 } else {
1496 error = pci_set_low_power_state(dev, state);
1497
1498 if (pci_platform_power_transition(dev, state))
1499 return error;
1500 }
1501
1502 return 0;
1503 }
1504 EXPORT_SYMBOL(pci_set_power_state);
1505
1506 #define PCI_EXP_SAVE_REGS 7
1507
_pci_find_saved_cap(struct pci_dev * pci_dev,u16 cap,bool extended)1508 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1509 u16 cap, bool extended)
1510 {
1511 struct pci_cap_saved_state *tmp;
1512
1513 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1514 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1515 return tmp;
1516 }
1517 return NULL;
1518 }
1519
pci_find_saved_cap(struct pci_dev * dev,char cap)1520 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1521 {
1522 return _pci_find_saved_cap(dev, cap, false);
1523 }
1524
pci_find_saved_ext_cap(struct pci_dev * dev,u16 cap)1525 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1526 {
1527 return _pci_find_saved_cap(dev, cap, true);
1528 }
1529
pci_save_pcie_state(struct pci_dev * dev)1530 static int pci_save_pcie_state(struct pci_dev *dev)
1531 {
1532 int i = 0;
1533 struct pci_cap_saved_state *save_state;
1534 u16 *cap;
1535
1536 if (!pci_is_pcie(dev))
1537 return 0;
1538
1539 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1540 if (!save_state) {
1541 pci_err(dev, "buffer not found in %s\n", __func__);
1542 return -ENOMEM;
1543 }
1544
1545 cap = (u16 *)&save_state->cap.data[0];
1546 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1547 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1548 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1549 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
1550 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1551 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1552 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1553
1554 return 0;
1555 }
1556
pci_bridge_reconfigure_ltr(struct pci_dev * dev)1557 void pci_bridge_reconfigure_ltr(struct pci_dev *dev)
1558 {
1559 #ifdef CONFIG_PCIEASPM
1560 struct pci_dev *bridge;
1561 u32 ctl;
1562
1563 bridge = pci_upstream_bridge(dev);
1564 if (bridge && bridge->ltr_path) {
1565 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, &ctl);
1566 if (!(ctl & PCI_EXP_DEVCTL2_LTR_EN)) {
1567 pci_dbg(bridge, "re-enabling LTR\n");
1568 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
1569 PCI_EXP_DEVCTL2_LTR_EN);
1570 }
1571 }
1572 #endif
1573 }
1574
pci_restore_pcie_state(struct pci_dev * dev)1575 static void pci_restore_pcie_state(struct pci_dev *dev)
1576 {
1577 int i = 0;
1578 struct pci_cap_saved_state *save_state;
1579 u16 *cap;
1580
1581 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1582 if (!save_state)
1583 return;
1584
1585 /*
1586 * Downstream ports reset the LTR enable bit when link goes down.
1587 * Check and re-configure the bit here before restoring device.
1588 * PCIe r5.0, sec 7.5.3.16.
1589 */
1590 pci_bridge_reconfigure_ltr(dev);
1591
1592 cap = (u16 *)&save_state->cap.data[0];
1593 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1594 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1595 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1596 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1597 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1598 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1599 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1600 }
1601
pci_save_pcix_state(struct pci_dev * dev)1602 static int pci_save_pcix_state(struct pci_dev *dev)
1603 {
1604 int pos;
1605 struct pci_cap_saved_state *save_state;
1606
1607 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1608 if (!pos)
1609 return 0;
1610
1611 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1612 if (!save_state) {
1613 pci_err(dev, "buffer not found in %s\n", __func__);
1614 return -ENOMEM;
1615 }
1616
1617 pci_read_config_word(dev, pos + PCI_X_CMD,
1618 (u16 *)save_state->cap.data);
1619
1620 return 0;
1621 }
1622
pci_restore_pcix_state(struct pci_dev * dev)1623 static void pci_restore_pcix_state(struct pci_dev *dev)
1624 {
1625 int i = 0, pos;
1626 struct pci_cap_saved_state *save_state;
1627 u16 *cap;
1628
1629 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1630 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1631 if (!save_state || !pos)
1632 return;
1633 cap = (u16 *)&save_state->cap.data[0];
1634
1635 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1636 }
1637
pci_save_ltr_state(struct pci_dev * dev)1638 static void pci_save_ltr_state(struct pci_dev *dev)
1639 {
1640 int ltr;
1641 struct pci_cap_saved_state *save_state;
1642 u32 *cap;
1643
1644 if (!pci_is_pcie(dev))
1645 return;
1646
1647 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1648 if (!ltr)
1649 return;
1650
1651 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1652 if (!save_state) {
1653 pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1654 return;
1655 }
1656
1657 /* Some broken devices only support dword access to LTR */
1658 cap = &save_state->cap.data[0];
1659 pci_read_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap);
1660 }
1661
pci_restore_ltr_state(struct pci_dev * dev)1662 static void pci_restore_ltr_state(struct pci_dev *dev)
1663 {
1664 struct pci_cap_saved_state *save_state;
1665 int ltr;
1666 u32 *cap;
1667
1668 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1669 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1670 if (!save_state || !ltr)
1671 return;
1672
1673 /* Some broken devices only support dword access to LTR */
1674 cap = &save_state->cap.data[0];
1675 pci_write_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap);
1676 }
1677
1678 /**
1679 * pci_save_state - save the PCI configuration space of a device before
1680 * suspending
1681 * @dev: PCI device that we're dealing with
1682 */
pci_save_state(struct pci_dev * dev)1683 int pci_save_state(struct pci_dev *dev)
1684 {
1685 int i;
1686 /* XXX: 100% dword access ok here? */
1687 for (i = 0; i < 16; i++) {
1688 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1689 pci_dbg(dev, "save config %#04x: %#010x\n",
1690 i * 4, dev->saved_config_space[i]);
1691 }
1692 dev->state_saved = true;
1693
1694 i = pci_save_pcie_state(dev);
1695 if (i != 0)
1696 return i;
1697
1698 i = pci_save_pcix_state(dev);
1699 if (i != 0)
1700 return i;
1701
1702 pci_save_ltr_state(dev);
1703 pci_save_dpc_state(dev);
1704 pci_save_aer_state(dev);
1705 pci_save_ptm_state(dev);
1706 return pci_save_vc_state(dev);
1707 }
1708 EXPORT_SYMBOL(pci_save_state);
1709
pci_restore_config_dword(struct pci_dev * pdev,int offset,u32 saved_val,int retry,bool force)1710 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1711 u32 saved_val, int retry, bool force)
1712 {
1713 u32 val;
1714
1715 pci_read_config_dword(pdev, offset, &val);
1716 if (!force && val == saved_val)
1717 return;
1718
1719 for (;;) {
1720 pci_dbg(pdev, "restore config %#04x: %#010x -> %#010x\n",
1721 offset, val, saved_val);
1722 pci_write_config_dword(pdev, offset, saved_val);
1723 if (retry-- <= 0)
1724 return;
1725
1726 pci_read_config_dword(pdev, offset, &val);
1727 if (val == saved_val)
1728 return;
1729
1730 mdelay(1);
1731 }
1732 }
1733
pci_restore_config_space_range(struct pci_dev * pdev,int start,int end,int retry,bool force)1734 static void pci_restore_config_space_range(struct pci_dev *pdev,
1735 int start, int end, int retry,
1736 bool force)
1737 {
1738 int index;
1739
1740 for (index = end; index >= start; index--)
1741 pci_restore_config_dword(pdev, 4 * index,
1742 pdev->saved_config_space[index],
1743 retry, force);
1744 }
1745
pci_restore_config_space(struct pci_dev * pdev)1746 static void pci_restore_config_space(struct pci_dev *pdev)
1747 {
1748 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1749 pci_restore_config_space_range(pdev, 10, 15, 0, false);
1750 /* Restore BARs before the command register. */
1751 pci_restore_config_space_range(pdev, 4, 9, 10, false);
1752 pci_restore_config_space_range(pdev, 0, 3, 0, false);
1753 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1754 pci_restore_config_space_range(pdev, 12, 15, 0, false);
1755
1756 /*
1757 * Force rewriting of prefetch registers to avoid S3 resume
1758 * issues on Intel PCI bridges that occur when these
1759 * registers are not explicitly written.
1760 */
1761 pci_restore_config_space_range(pdev, 9, 11, 0, true);
1762 pci_restore_config_space_range(pdev, 0, 8, 0, false);
1763 } else {
1764 pci_restore_config_space_range(pdev, 0, 15, 0, false);
1765 }
1766 }
1767
pci_restore_rebar_state(struct pci_dev * pdev)1768 static void pci_restore_rebar_state(struct pci_dev *pdev)
1769 {
1770 unsigned int pos, nbars, i;
1771 u32 ctrl;
1772
1773 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1774 if (!pos)
1775 return;
1776
1777 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1778 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1779 PCI_REBAR_CTRL_NBAR_SHIFT;
1780
1781 for (i = 0; i < nbars; i++, pos += 8) {
1782 struct resource *res;
1783 int bar_idx, size;
1784
1785 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1786 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1787 res = pdev->resource + bar_idx;
1788 size = pci_rebar_bytes_to_size(resource_size(res));
1789 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1790 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1791 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1792 }
1793 }
1794
1795 /**
1796 * pci_restore_state - Restore the saved state of a PCI device
1797 * @dev: PCI device that we're dealing with
1798 */
pci_restore_state(struct pci_dev * dev)1799 void pci_restore_state(struct pci_dev *dev)
1800 {
1801 if (!dev->state_saved)
1802 return;
1803
1804 /*
1805 * Restore max latencies (in the LTR capability) before enabling
1806 * LTR itself (in the PCIe capability).
1807 */
1808 pci_restore_ltr_state(dev);
1809
1810 pci_restore_pcie_state(dev);
1811 pci_restore_pasid_state(dev);
1812 pci_restore_pri_state(dev);
1813 pci_restore_ats_state(dev);
1814 pci_restore_vc_state(dev);
1815 pci_restore_rebar_state(dev);
1816 pci_restore_dpc_state(dev);
1817 pci_restore_ptm_state(dev);
1818
1819 pci_aer_clear_status(dev);
1820 pci_restore_aer_state(dev);
1821
1822 pci_restore_config_space(dev);
1823
1824 pci_restore_pcix_state(dev);
1825 pci_restore_msi_state(dev);
1826
1827 /* Restore ACS and IOV configuration state */
1828 pci_enable_acs(dev);
1829 pci_restore_iov_state(dev);
1830
1831 dev->state_saved = false;
1832 }
1833 EXPORT_SYMBOL(pci_restore_state);
1834
1835 struct pci_saved_state {
1836 u32 config_space[16];
1837 struct pci_cap_saved_data cap[];
1838 };
1839
1840 /**
1841 * pci_store_saved_state - Allocate and return an opaque struct containing
1842 * the device saved state.
1843 * @dev: PCI device that we're dealing with
1844 *
1845 * Return NULL if no state or error.
1846 */
pci_store_saved_state(struct pci_dev * dev)1847 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1848 {
1849 struct pci_saved_state *state;
1850 struct pci_cap_saved_state *tmp;
1851 struct pci_cap_saved_data *cap;
1852 size_t size;
1853
1854 if (!dev->state_saved)
1855 return NULL;
1856
1857 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1858
1859 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1860 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1861
1862 state = kzalloc(size, GFP_KERNEL);
1863 if (!state)
1864 return NULL;
1865
1866 memcpy(state->config_space, dev->saved_config_space,
1867 sizeof(state->config_space));
1868
1869 cap = state->cap;
1870 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1871 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1872 memcpy(cap, &tmp->cap, len);
1873 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1874 }
1875 /* Empty cap_save terminates list */
1876
1877 return state;
1878 }
1879 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1880
1881 /**
1882 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1883 * @dev: PCI device that we're dealing with
1884 * @state: Saved state returned from pci_store_saved_state()
1885 */
pci_load_saved_state(struct pci_dev * dev,struct pci_saved_state * state)1886 int pci_load_saved_state(struct pci_dev *dev,
1887 struct pci_saved_state *state)
1888 {
1889 struct pci_cap_saved_data *cap;
1890
1891 dev->state_saved = false;
1892
1893 if (!state)
1894 return 0;
1895
1896 memcpy(dev->saved_config_space, state->config_space,
1897 sizeof(state->config_space));
1898
1899 cap = state->cap;
1900 while (cap->size) {
1901 struct pci_cap_saved_state *tmp;
1902
1903 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1904 if (!tmp || tmp->cap.size != cap->size)
1905 return -EINVAL;
1906
1907 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1908 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1909 sizeof(struct pci_cap_saved_data) + cap->size);
1910 }
1911
1912 dev->state_saved = true;
1913 return 0;
1914 }
1915 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1916
1917 /**
1918 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1919 * and free the memory allocated for it.
1920 * @dev: PCI device that we're dealing with
1921 * @state: Pointer to saved state returned from pci_store_saved_state()
1922 */
pci_load_and_free_saved_state(struct pci_dev * dev,struct pci_saved_state ** state)1923 int pci_load_and_free_saved_state(struct pci_dev *dev,
1924 struct pci_saved_state **state)
1925 {
1926 int ret = pci_load_saved_state(dev, *state);
1927 kfree(*state);
1928 *state = NULL;
1929 return ret;
1930 }
1931 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1932
pcibios_enable_device(struct pci_dev * dev,int bars)1933 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1934 {
1935 return pci_enable_resources(dev, bars);
1936 }
1937
do_pci_enable_device(struct pci_dev * dev,int bars)1938 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1939 {
1940 int err;
1941 struct pci_dev *bridge;
1942 u16 cmd;
1943 u8 pin;
1944
1945 err = pci_set_power_state(dev, PCI_D0);
1946 if (err < 0 && err != -EIO)
1947 return err;
1948
1949 bridge = pci_upstream_bridge(dev);
1950 if (bridge)
1951 pcie_aspm_powersave_config_link(bridge);
1952
1953 err = pcibios_enable_device(dev, bars);
1954 if (err < 0)
1955 return err;
1956 pci_fixup_device(pci_fixup_enable, dev);
1957
1958 if (dev->msi_enabled || dev->msix_enabled)
1959 return 0;
1960
1961 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1962 if (pin) {
1963 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1964 if (cmd & PCI_COMMAND_INTX_DISABLE)
1965 pci_write_config_word(dev, PCI_COMMAND,
1966 cmd & ~PCI_COMMAND_INTX_DISABLE);
1967 }
1968
1969 return 0;
1970 }
1971
1972 /**
1973 * pci_reenable_device - Resume abandoned device
1974 * @dev: PCI device to be resumed
1975 *
1976 * NOTE: This function is a backend of pci_default_resume() and is not supposed
1977 * to be called by normal code, write proper resume handler and use it instead.
1978 */
pci_reenable_device(struct pci_dev * dev)1979 int pci_reenable_device(struct pci_dev *dev)
1980 {
1981 if (pci_is_enabled(dev))
1982 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1983 return 0;
1984 }
1985 EXPORT_SYMBOL(pci_reenable_device);
1986
pci_enable_bridge(struct pci_dev * dev)1987 static void pci_enable_bridge(struct pci_dev *dev)
1988 {
1989 struct pci_dev *bridge;
1990 int retval;
1991
1992 bridge = pci_upstream_bridge(dev);
1993 if (bridge)
1994 pci_enable_bridge(bridge);
1995
1996 if (pci_is_enabled(dev)) {
1997 if (!dev->is_busmaster)
1998 pci_set_master(dev);
1999 return;
2000 }
2001
2002 retval = pci_enable_device(dev);
2003 if (retval)
2004 pci_err(dev, "Error enabling bridge (%d), continuing\n",
2005 retval);
2006 pci_set_master(dev);
2007 }
2008
pci_enable_device_flags(struct pci_dev * dev,unsigned long flags)2009 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
2010 {
2011 struct pci_dev *bridge;
2012 int err;
2013 int i, bars = 0;
2014
2015 /*
2016 * Power state could be unknown at this point, either due to a fresh
2017 * boot or a device removal call. So get the current power state
2018 * so that things like MSI message writing will behave as expected
2019 * (e.g. if the device really is in D0 at enable time).
2020 */
2021 pci_update_current_state(dev, dev->current_state);
2022
2023 if (atomic_inc_return(&dev->enable_cnt) > 1)
2024 return 0; /* already enabled */
2025
2026 bridge = pci_upstream_bridge(dev);
2027 if (bridge)
2028 pci_enable_bridge(bridge);
2029
2030 /* only skip sriov related */
2031 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
2032 if (dev->resource[i].flags & flags)
2033 bars |= (1 << i);
2034 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
2035 if (dev->resource[i].flags & flags)
2036 bars |= (1 << i);
2037
2038 err = do_pci_enable_device(dev, bars);
2039 if (err < 0)
2040 atomic_dec(&dev->enable_cnt);
2041 return err;
2042 }
2043
2044 /**
2045 * pci_enable_device_io - Initialize a device for use with IO space
2046 * @dev: PCI device to be initialized
2047 *
2048 * Initialize device before it's used by a driver. Ask low-level code
2049 * to enable I/O resources. Wake up the device if it was suspended.
2050 * Beware, this function can fail.
2051 */
pci_enable_device_io(struct pci_dev * dev)2052 int pci_enable_device_io(struct pci_dev *dev)
2053 {
2054 return pci_enable_device_flags(dev, IORESOURCE_IO);
2055 }
2056 EXPORT_SYMBOL(pci_enable_device_io);
2057
2058 /**
2059 * pci_enable_device_mem - Initialize a device for use with Memory space
2060 * @dev: PCI device to be initialized
2061 *
2062 * Initialize device before it's used by a driver. Ask low-level code
2063 * to enable Memory resources. Wake up the device if it was suspended.
2064 * Beware, this function can fail.
2065 */
pci_enable_device_mem(struct pci_dev * dev)2066 int pci_enable_device_mem(struct pci_dev *dev)
2067 {
2068 return pci_enable_device_flags(dev, IORESOURCE_MEM);
2069 }
2070 EXPORT_SYMBOL(pci_enable_device_mem);
2071
2072 /**
2073 * pci_enable_device - Initialize device before it's used by a driver.
2074 * @dev: PCI device to be initialized
2075 *
2076 * Initialize device before it's used by a driver. Ask low-level code
2077 * to enable I/O and memory. Wake up the device if it was suspended.
2078 * Beware, this function can fail.
2079 *
2080 * Note we don't actually enable the device many times if we call
2081 * this function repeatedly (we just increment the count).
2082 */
pci_enable_device(struct pci_dev * dev)2083 int pci_enable_device(struct pci_dev *dev)
2084 {
2085 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
2086 }
2087 EXPORT_SYMBOL(pci_enable_device);
2088
2089 /*
2090 * Managed PCI resources. This manages device on/off, INTx/MSI/MSI-X
2091 * on/off and BAR regions. pci_dev itself records MSI/MSI-X status, so
2092 * there's no need to track it separately. pci_devres is initialized
2093 * when a device is enabled using managed PCI device enable interface.
2094 */
2095 struct pci_devres {
2096 unsigned int enabled:1;
2097 unsigned int pinned:1;
2098 unsigned int orig_intx:1;
2099 unsigned int restore_intx:1;
2100 unsigned int mwi:1;
2101 u32 region_mask;
2102 };
2103
pcim_release(struct device * gendev,void * res)2104 static void pcim_release(struct device *gendev, void *res)
2105 {
2106 struct pci_dev *dev = to_pci_dev(gendev);
2107 struct pci_devres *this = res;
2108 int i;
2109
2110 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
2111 if (this->region_mask & (1 << i))
2112 pci_release_region(dev, i);
2113
2114 if (this->mwi)
2115 pci_clear_mwi(dev);
2116
2117 if (this->restore_intx)
2118 pci_intx(dev, this->orig_intx);
2119
2120 if (this->enabled && !this->pinned)
2121 pci_disable_device(dev);
2122 }
2123
get_pci_dr(struct pci_dev * pdev)2124 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
2125 {
2126 struct pci_devres *dr, *new_dr;
2127
2128 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
2129 if (dr)
2130 return dr;
2131
2132 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
2133 if (!new_dr)
2134 return NULL;
2135 return devres_get(&pdev->dev, new_dr, NULL, NULL);
2136 }
2137
find_pci_dr(struct pci_dev * pdev)2138 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
2139 {
2140 if (pci_is_managed(pdev))
2141 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
2142 return NULL;
2143 }
2144
2145 /**
2146 * pcim_enable_device - Managed pci_enable_device()
2147 * @pdev: PCI device to be initialized
2148 *
2149 * Managed pci_enable_device().
2150 */
pcim_enable_device(struct pci_dev * pdev)2151 int pcim_enable_device(struct pci_dev *pdev)
2152 {
2153 struct pci_devres *dr;
2154 int rc;
2155
2156 dr = get_pci_dr(pdev);
2157 if (unlikely(!dr))
2158 return -ENOMEM;
2159 if (dr->enabled)
2160 return 0;
2161
2162 rc = pci_enable_device(pdev);
2163 if (!rc) {
2164 pdev->is_managed = 1;
2165 dr->enabled = 1;
2166 }
2167 return rc;
2168 }
2169 EXPORT_SYMBOL(pcim_enable_device);
2170
2171 /**
2172 * pcim_pin_device - Pin managed PCI device
2173 * @pdev: PCI device to pin
2174 *
2175 * Pin managed PCI device @pdev. Pinned device won't be disabled on
2176 * driver detach. @pdev must have been enabled with
2177 * pcim_enable_device().
2178 */
pcim_pin_device(struct pci_dev * pdev)2179 void pcim_pin_device(struct pci_dev *pdev)
2180 {
2181 struct pci_devres *dr;
2182
2183 dr = find_pci_dr(pdev);
2184 WARN_ON(!dr || !dr->enabled);
2185 if (dr)
2186 dr->pinned = 1;
2187 }
2188 EXPORT_SYMBOL(pcim_pin_device);
2189
2190 /*
2191 * pcibios_device_add - provide arch specific hooks when adding device dev
2192 * @dev: the PCI device being added
2193 *
2194 * Permits the platform to provide architecture specific functionality when
2195 * devices are added. This is the default implementation. Architecture
2196 * implementations can override this.
2197 */
pcibios_device_add(struct pci_dev * dev)2198 int __weak pcibios_device_add(struct pci_dev *dev)
2199 {
2200 return 0;
2201 }
2202
2203 /**
2204 * pcibios_release_device - provide arch specific hooks when releasing
2205 * device dev
2206 * @dev: the PCI device being released
2207 *
2208 * Permits the platform to provide architecture specific functionality when
2209 * devices are released. This is the default implementation. Architecture
2210 * implementations can override this.
2211 */
pcibios_release_device(struct pci_dev * dev)2212 void __weak pcibios_release_device(struct pci_dev *dev) {}
2213
2214 /**
2215 * pcibios_disable_device - disable arch specific PCI resources for device dev
2216 * @dev: the PCI device to disable
2217 *
2218 * Disables architecture specific PCI resources for the device. This
2219 * is the default implementation. Architecture implementations can
2220 * override this.
2221 */
pcibios_disable_device(struct pci_dev * dev)2222 void __weak pcibios_disable_device(struct pci_dev *dev) {}
2223
2224 /**
2225 * pcibios_penalize_isa_irq - penalize an ISA IRQ
2226 * @irq: ISA IRQ to penalize
2227 * @active: IRQ active or not
2228 *
2229 * Permits the platform to provide architecture-specific functionality when
2230 * penalizing ISA IRQs. This is the default implementation. Architecture
2231 * implementations can override this.
2232 */
pcibios_penalize_isa_irq(int irq,int active)2233 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
2234
do_pci_disable_device(struct pci_dev * dev)2235 static void do_pci_disable_device(struct pci_dev *dev)
2236 {
2237 u16 pci_command;
2238
2239 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2240 if (pci_command & PCI_COMMAND_MASTER) {
2241 pci_command &= ~PCI_COMMAND_MASTER;
2242 pci_write_config_word(dev, PCI_COMMAND, pci_command);
2243 }
2244
2245 pcibios_disable_device(dev);
2246 }
2247
2248 /**
2249 * pci_disable_enabled_device - Disable device without updating enable_cnt
2250 * @dev: PCI device to disable
2251 *
2252 * NOTE: This function is a backend of PCI power management routines and is
2253 * not supposed to be called drivers.
2254 */
pci_disable_enabled_device(struct pci_dev * dev)2255 void pci_disable_enabled_device(struct pci_dev *dev)
2256 {
2257 if (pci_is_enabled(dev))
2258 do_pci_disable_device(dev);
2259 }
2260
2261 /**
2262 * pci_disable_device - Disable PCI device after use
2263 * @dev: PCI device to be disabled
2264 *
2265 * Signal to the system that the PCI device is not in use by the system
2266 * anymore. This only involves disabling PCI bus-mastering, if active.
2267 *
2268 * Note we don't actually disable the device until all callers of
2269 * pci_enable_device() have called pci_disable_device().
2270 */
pci_disable_device(struct pci_dev * dev)2271 void pci_disable_device(struct pci_dev *dev)
2272 {
2273 struct pci_devres *dr;
2274
2275 dr = find_pci_dr(dev);
2276 if (dr)
2277 dr->enabled = 0;
2278
2279 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2280 "disabling already-disabled device");
2281
2282 if (atomic_dec_return(&dev->enable_cnt) != 0)
2283 return;
2284
2285 do_pci_disable_device(dev);
2286
2287 dev->is_busmaster = 0;
2288 }
2289 EXPORT_SYMBOL(pci_disable_device);
2290
2291 /**
2292 * pcibios_set_pcie_reset_state - set reset state for device dev
2293 * @dev: the PCIe device reset
2294 * @state: Reset state to enter into
2295 *
2296 * Set the PCIe reset state for the device. This is the default
2297 * implementation. Architecture implementations can override this.
2298 */
pcibios_set_pcie_reset_state(struct pci_dev * dev,enum pcie_reset_state state)2299 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2300 enum pcie_reset_state state)
2301 {
2302 return -EINVAL;
2303 }
2304
2305 /**
2306 * pci_set_pcie_reset_state - set reset state for device dev
2307 * @dev: the PCIe device reset
2308 * @state: Reset state to enter into
2309 *
2310 * Sets the PCI reset state for the device.
2311 */
pci_set_pcie_reset_state(struct pci_dev * dev,enum pcie_reset_state state)2312 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2313 {
2314 return pcibios_set_pcie_reset_state(dev, state);
2315 }
2316 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2317
2318 #ifdef CONFIG_PCIEAER
pcie_clear_device_status(struct pci_dev * dev)2319 void pcie_clear_device_status(struct pci_dev *dev)
2320 {
2321 u16 sta;
2322
2323 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2324 pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2325 }
2326 #endif
2327
2328 /**
2329 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2330 * @dev: PCIe root port or event collector.
2331 */
pcie_clear_root_pme_status(struct pci_dev * dev)2332 void pcie_clear_root_pme_status(struct pci_dev *dev)
2333 {
2334 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2335 }
2336
2337 /**
2338 * pci_check_pme_status - Check if given device has generated PME.
2339 * @dev: Device to check.
2340 *
2341 * Check the PME status of the device and if set, clear it and clear PME enable
2342 * (if set). Return 'true' if PME status and PME enable were both set or
2343 * 'false' otherwise.
2344 */
pci_check_pme_status(struct pci_dev * dev)2345 bool pci_check_pme_status(struct pci_dev *dev)
2346 {
2347 int pmcsr_pos;
2348 u16 pmcsr;
2349 bool ret = false;
2350
2351 if (!dev->pm_cap)
2352 return false;
2353
2354 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2355 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2356 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2357 return false;
2358
2359 /* Clear PME status. */
2360 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2361 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2362 /* Disable PME to avoid interrupt flood. */
2363 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2364 ret = true;
2365 }
2366
2367 pci_write_config_word(dev, pmcsr_pos, pmcsr);
2368
2369 return ret;
2370 }
2371
2372 /**
2373 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2374 * @dev: Device to handle.
2375 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2376 *
2377 * Check if @dev has generated PME and queue a resume request for it in that
2378 * case.
2379 */
pci_pme_wakeup(struct pci_dev * dev,void * pme_poll_reset)2380 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2381 {
2382 if (pme_poll_reset && dev->pme_poll)
2383 dev->pme_poll = false;
2384
2385 if (pci_check_pme_status(dev)) {
2386 pci_wakeup_event(dev);
2387 pm_request_resume(&dev->dev);
2388 }
2389 return 0;
2390 }
2391
2392 /**
2393 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2394 * @bus: Top bus of the subtree to walk.
2395 */
pci_pme_wakeup_bus(struct pci_bus * bus)2396 void pci_pme_wakeup_bus(struct pci_bus *bus)
2397 {
2398 if (bus)
2399 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2400 }
2401
2402
2403 /**
2404 * pci_pme_capable - check the capability of PCI device to generate PME#
2405 * @dev: PCI device to handle.
2406 * @state: PCI state from which device will issue PME#.
2407 */
pci_pme_capable(struct pci_dev * dev,pci_power_t state)2408 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2409 {
2410 if (!dev->pm_cap)
2411 return false;
2412
2413 return !!(dev->pme_support & (1 << state));
2414 }
2415 EXPORT_SYMBOL(pci_pme_capable);
2416
pci_pme_list_scan(struct work_struct * work)2417 static void pci_pme_list_scan(struct work_struct *work)
2418 {
2419 struct pci_pme_device *pme_dev, *n;
2420
2421 mutex_lock(&pci_pme_list_mutex);
2422 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2423 struct pci_dev *pdev = pme_dev->dev;
2424
2425 if (pdev->pme_poll) {
2426 struct pci_dev *bridge = pdev->bus->self;
2427 struct device *dev = &pdev->dev;
2428 int pm_status;
2429
2430 /*
2431 * If bridge is in low power state, the
2432 * configuration space of subordinate devices
2433 * may be not accessible
2434 */
2435 if (bridge && bridge->current_state != PCI_D0)
2436 continue;
2437
2438 /*
2439 * If the device is in a low power state it
2440 * should not be polled either.
2441 */
2442 pm_status = pm_runtime_get_if_active(dev, true);
2443 if (!pm_status)
2444 continue;
2445
2446 if (pdev->current_state != PCI_D3cold)
2447 pci_pme_wakeup(pdev, NULL);
2448
2449 if (pm_status > 0)
2450 pm_runtime_put(dev);
2451 } else {
2452 list_del(&pme_dev->list);
2453 kfree(pme_dev);
2454 }
2455 }
2456 if (!list_empty(&pci_pme_list))
2457 queue_delayed_work(system_freezable_wq, &pci_pme_work,
2458 msecs_to_jiffies(PME_TIMEOUT));
2459 mutex_unlock(&pci_pme_list_mutex);
2460 }
2461
__pci_pme_active(struct pci_dev * dev,bool enable)2462 static void __pci_pme_active(struct pci_dev *dev, bool enable)
2463 {
2464 u16 pmcsr;
2465
2466 if (!dev->pme_support)
2467 return;
2468
2469 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2470 /* Clear PME_Status by writing 1 to it and enable PME# */
2471 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2472 if (!enable)
2473 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2474
2475 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2476 }
2477
2478 /**
2479 * pci_pme_restore - Restore PME configuration after config space restore.
2480 * @dev: PCI device to update.
2481 */
pci_pme_restore(struct pci_dev * dev)2482 void pci_pme_restore(struct pci_dev *dev)
2483 {
2484 u16 pmcsr;
2485
2486 if (!dev->pme_support)
2487 return;
2488
2489 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2490 if (dev->wakeup_prepared) {
2491 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2492 pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2493 } else {
2494 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2495 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2496 }
2497 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2498 }
2499
2500 /**
2501 * pci_pme_active - enable or disable PCI device's PME# function
2502 * @dev: PCI device to handle.
2503 * @enable: 'true' to enable PME# generation; 'false' to disable it.
2504 *
2505 * The caller must verify that the device is capable of generating PME# before
2506 * calling this function with @enable equal to 'true'.
2507 */
pci_pme_active(struct pci_dev * dev,bool enable)2508 void pci_pme_active(struct pci_dev *dev, bool enable)
2509 {
2510 __pci_pme_active(dev, enable);
2511
2512 /*
2513 * PCI (as opposed to PCIe) PME requires that the device have
2514 * its PME# line hooked up correctly. Not all hardware vendors
2515 * do this, so the PME never gets delivered and the device
2516 * remains asleep. The easiest way around this is to
2517 * periodically walk the list of suspended devices and check
2518 * whether any have their PME flag set. The assumption is that
2519 * we'll wake up often enough anyway that this won't be a huge
2520 * hit, and the power savings from the devices will still be a
2521 * win.
2522 *
2523 * Although PCIe uses in-band PME message instead of PME# line
2524 * to report PME, PME does not work for some PCIe devices in
2525 * reality. For example, there are devices that set their PME
2526 * status bits, but don't really bother to send a PME message;
2527 * there are PCI Express Root Ports that don't bother to
2528 * trigger interrupts when they receive PME messages from the
2529 * devices below. So PME poll is used for PCIe devices too.
2530 */
2531
2532 if (dev->pme_poll) {
2533 struct pci_pme_device *pme_dev;
2534 if (enable) {
2535 pme_dev = kmalloc(sizeof(struct pci_pme_device),
2536 GFP_KERNEL);
2537 if (!pme_dev) {
2538 pci_warn(dev, "can't enable PME#\n");
2539 return;
2540 }
2541 pme_dev->dev = dev;
2542 mutex_lock(&pci_pme_list_mutex);
2543 list_add(&pme_dev->list, &pci_pme_list);
2544 if (list_is_singular(&pci_pme_list))
2545 queue_delayed_work(system_freezable_wq,
2546 &pci_pme_work,
2547 msecs_to_jiffies(PME_TIMEOUT));
2548 mutex_unlock(&pci_pme_list_mutex);
2549 } else {
2550 mutex_lock(&pci_pme_list_mutex);
2551 list_for_each_entry(pme_dev, &pci_pme_list, list) {
2552 if (pme_dev->dev == dev) {
2553 list_del(&pme_dev->list);
2554 kfree(pme_dev);
2555 break;
2556 }
2557 }
2558 mutex_unlock(&pci_pme_list_mutex);
2559 }
2560 }
2561
2562 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2563 }
2564 EXPORT_SYMBOL(pci_pme_active);
2565
2566 /**
2567 * __pci_enable_wake - enable PCI device as wakeup event source
2568 * @dev: PCI device affected
2569 * @state: PCI state from which device will issue wakeup events
2570 * @enable: True to enable event generation; false to disable
2571 *
2572 * This enables the device as a wakeup event source, or disables it.
2573 * When such events involves platform-specific hooks, those hooks are
2574 * called automatically by this routine.
2575 *
2576 * Devices with legacy power management (no standard PCI PM capabilities)
2577 * always require such platform hooks.
2578 *
2579 * RETURN VALUE:
2580 * 0 is returned on success
2581 * -EINVAL is returned if device is not supposed to wake up the system
2582 * Error code depending on the platform is returned if both the platform and
2583 * the native mechanism fail to enable the generation of wake-up events
2584 */
__pci_enable_wake(struct pci_dev * dev,pci_power_t state,bool enable)2585 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2586 {
2587 int ret = 0;
2588
2589 /*
2590 * Bridges that are not power-manageable directly only signal
2591 * wakeup on behalf of subordinate devices which is set up
2592 * elsewhere, so skip them. However, bridges that are
2593 * power-manageable may signal wakeup for themselves (for example,
2594 * on a hotplug event) and they need to be covered here.
2595 */
2596 if (!pci_power_manageable(dev))
2597 return 0;
2598
2599 /* Don't do the same thing twice in a row for one device. */
2600 if (!!enable == !!dev->wakeup_prepared)
2601 return 0;
2602
2603 /*
2604 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2605 * Anderson we should be doing PME# wake enable followed by ACPI wake
2606 * enable. To disable wake-up we call the platform first, for symmetry.
2607 */
2608
2609 if (enable) {
2610 int error;
2611
2612 /*
2613 * Enable PME signaling if the device can signal PME from
2614 * D3cold regardless of whether or not it can signal PME from
2615 * the current target state, because that will allow it to
2616 * signal PME when the hierarchy above it goes into D3cold and
2617 * the device itself ends up in D3cold as a result of that.
2618 */
2619 if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
2620 pci_pme_active(dev, true);
2621 else
2622 ret = 1;
2623 error = platform_pci_set_wakeup(dev, true);
2624 if (ret)
2625 ret = error;
2626 if (!ret)
2627 dev->wakeup_prepared = true;
2628 } else {
2629 platform_pci_set_wakeup(dev, false);
2630 pci_pme_active(dev, false);
2631 dev->wakeup_prepared = false;
2632 }
2633
2634 return ret;
2635 }
2636
2637 /**
2638 * pci_enable_wake - change wakeup settings for a PCI device
2639 * @pci_dev: Target device
2640 * @state: PCI state from which device will issue wakeup events
2641 * @enable: Whether or not to enable event generation
2642 *
2643 * If @enable is set, check device_may_wakeup() for the device before calling
2644 * __pci_enable_wake() for it.
2645 */
pci_enable_wake(struct pci_dev * pci_dev,pci_power_t state,bool enable)2646 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2647 {
2648 if (enable && !device_may_wakeup(&pci_dev->dev))
2649 return -EINVAL;
2650
2651 return __pci_enable_wake(pci_dev, state, enable);
2652 }
2653 EXPORT_SYMBOL(pci_enable_wake);
2654
2655 /**
2656 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2657 * @dev: PCI device to prepare
2658 * @enable: True to enable wake-up event generation; false to disable
2659 *
2660 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2661 * and this function allows them to set that up cleanly - pci_enable_wake()
2662 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2663 * ordering constraints.
2664 *
2665 * This function only returns error code if the device is not allowed to wake
2666 * up the system from sleep or it is not capable of generating PME# from both
2667 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2668 */
pci_wake_from_d3(struct pci_dev * dev,bool enable)2669 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2670 {
2671 return pci_pme_capable(dev, PCI_D3cold) ?
2672 pci_enable_wake(dev, PCI_D3cold, enable) :
2673 pci_enable_wake(dev, PCI_D3hot, enable);
2674 }
2675 EXPORT_SYMBOL(pci_wake_from_d3);
2676
2677 /**
2678 * pci_target_state - find an appropriate low power state for a given PCI dev
2679 * @dev: PCI device
2680 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2681 *
2682 * Use underlying platform code to find a supported low power state for @dev.
2683 * If the platform can't manage @dev, return the deepest state from which it
2684 * can generate wake events, based on any available PME info.
2685 */
pci_target_state(struct pci_dev * dev,bool wakeup)2686 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2687 {
2688 if (platform_pci_power_manageable(dev)) {
2689 /*
2690 * Call the platform to find the target state for the device.
2691 */
2692 pci_power_t state = platform_pci_choose_state(dev);
2693
2694 switch (state) {
2695 case PCI_POWER_ERROR:
2696 case PCI_UNKNOWN:
2697 return PCI_D3hot;
2698
2699 case PCI_D1:
2700 case PCI_D2:
2701 if (pci_no_d1d2(dev))
2702 return PCI_D3hot;
2703 }
2704
2705 return state;
2706 }
2707
2708 /*
2709 * If the device is in D3cold even though it's not power-manageable by
2710 * the platform, it may have been powered down by non-standard means.
2711 * Best to let it slumber.
2712 */
2713 if (dev->current_state == PCI_D3cold)
2714 return PCI_D3cold;
2715 else if (!dev->pm_cap)
2716 return PCI_D0;
2717
2718 if (wakeup && dev->pme_support) {
2719 pci_power_t state = PCI_D3hot;
2720
2721 /*
2722 * Find the deepest state from which the device can generate
2723 * PME#.
2724 */
2725 while (state && !(dev->pme_support & (1 << state)))
2726 state--;
2727
2728 if (state)
2729 return state;
2730 else if (dev->pme_support & 1)
2731 return PCI_D0;
2732 }
2733
2734 return PCI_D3hot;
2735 }
2736
2737 /**
2738 * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2739 * into a sleep state
2740 * @dev: Device to handle.
2741 *
2742 * Choose the power state appropriate for the device depending on whether
2743 * it can wake up the system and/or is power manageable by the platform
2744 * (PCI_D3hot is the default) and put the device into that state.
2745 */
pci_prepare_to_sleep(struct pci_dev * dev)2746 int pci_prepare_to_sleep(struct pci_dev *dev)
2747 {
2748 bool wakeup = device_may_wakeup(&dev->dev);
2749 pci_power_t target_state = pci_target_state(dev, wakeup);
2750 int error;
2751
2752 if (target_state == PCI_POWER_ERROR)
2753 return -EIO;
2754
2755 pci_enable_wake(dev, target_state, wakeup);
2756
2757 error = pci_set_power_state(dev, target_state);
2758
2759 if (error)
2760 pci_enable_wake(dev, target_state, false);
2761
2762 return error;
2763 }
2764 EXPORT_SYMBOL(pci_prepare_to_sleep);
2765
2766 /**
2767 * pci_back_from_sleep - turn PCI device on during system-wide transition
2768 * into working state
2769 * @dev: Device to handle.
2770 *
2771 * Disable device's system wake-up capability and put it into D0.
2772 */
pci_back_from_sleep(struct pci_dev * dev)2773 int pci_back_from_sleep(struct pci_dev *dev)
2774 {
2775 int ret = pci_set_power_state(dev, PCI_D0);
2776
2777 if (ret)
2778 return ret;
2779
2780 pci_enable_wake(dev, PCI_D0, false);
2781 return 0;
2782 }
2783 EXPORT_SYMBOL(pci_back_from_sleep);
2784
2785 /**
2786 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2787 * @dev: PCI device being suspended.
2788 *
2789 * Prepare @dev to generate wake-up events at run time and put it into a low
2790 * power state.
2791 */
pci_finish_runtime_suspend(struct pci_dev * dev)2792 int pci_finish_runtime_suspend(struct pci_dev *dev)
2793 {
2794 pci_power_t target_state;
2795 int error;
2796
2797 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2798 if (target_state == PCI_POWER_ERROR)
2799 return -EIO;
2800
2801 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2802
2803 error = pci_set_power_state(dev, target_state);
2804
2805 if (error)
2806 pci_enable_wake(dev, target_state, false);
2807
2808 return error;
2809 }
2810
2811 /**
2812 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2813 * @dev: Device to check.
2814 *
2815 * Return true if the device itself is capable of generating wake-up events
2816 * (through the platform or using the native PCIe PME) or if the device supports
2817 * PME and one of its upstream bridges can generate wake-up events.
2818 */
pci_dev_run_wake(struct pci_dev * dev)2819 bool pci_dev_run_wake(struct pci_dev *dev)
2820 {
2821 struct pci_bus *bus = dev->bus;
2822
2823 if (!dev->pme_support)
2824 return false;
2825
2826 /* PME-capable in principle, but not from the target power state */
2827 if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2828 return false;
2829
2830 if (device_can_wakeup(&dev->dev))
2831 return true;
2832
2833 while (bus->parent) {
2834 struct pci_dev *bridge = bus->self;
2835
2836 if (device_can_wakeup(&bridge->dev))
2837 return true;
2838
2839 bus = bus->parent;
2840 }
2841
2842 /* We have reached the root bus. */
2843 if (bus->bridge)
2844 return device_can_wakeup(bus->bridge);
2845
2846 return false;
2847 }
2848 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2849
2850 /**
2851 * pci_dev_need_resume - Check if it is necessary to resume the device.
2852 * @pci_dev: Device to check.
2853 *
2854 * Return 'true' if the device is not runtime-suspended or it has to be
2855 * reconfigured due to wakeup settings difference between system and runtime
2856 * suspend, or the current power state of it is not suitable for the upcoming
2857 * (system-wide) transition.
2858 */
pci_dev_need_resume(struct pci_dev * pci_dev)2859 bool pci_dev_need_resume(struct pci_dev *pci_dev)
2860 {
2861 struct device *dev = &pci_dev->dev;
2862 pci_power_t target_state;
2863
2864 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2865 return true;
2866
2867 target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2868
2869 /*
2870 * If the earlier platform check has not triggered, D3cold is just power
2871 * removal on top of D3hot, so no need to resume the device in that
2872 * case.
2873 */
2874 return target_state != pci_dev->current_state &&
2875 target_state != PCI_D3cold &&
2876 pci_dev->current_state != PCI_D3hot;
2877 }
2878
2879 /**
2880 * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2881 * @pci_dev: Device to check.
2882 *
2883 * If the device is suspended and it is not configured for system wakeup,
2884 * disable PME for it to prevent it from waking up the system unnecessarily.
2885 *
2886 * Note that if the device's power state is D3cold and the platform check in
2887 * pci_dev_need_resume() has not triggered, the device's configuration need not
2888 * be changed.
2889 */
pci_dev_adjust_pme(struct pci_dev * pci_dev)2890 void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2891 {
2892 struct device *dev = &pci_dev->dev;
2893
2894 spin_lock_irq(&dev->power.lock);
2895
2896 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2897 pci_dev->current_state < PCI_D3cold)
2898 __pci_pme_active(pci_dev, false);
2899
2900 spin_unlock_irq(&dev->power.lock);
2901 }
2902
2903 /**
2904 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2905 * @pci_dev: Device to handle.
2906 *
2907 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2908 * it might have been disabled during the prepare phase of system suspend if
2909 * the device was not configured for system wakeup.
2910 */
pci_dev_complete_resume(struct pci_dev * pci_dev)2911 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2912 {
2913 struct device *dev = &pci_dev->dev;
2914
2915 if (!pci_dev_run_wake(pci_dev))
2916 return;
2917
2918 spin_lock_irq(&dev->power.lock);
2919
2920 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2921 __pci_pme_active(pci_dev, true);
2922
2923 spin_unlock_irq(&dev->power.lock);
2924 }
2925
2926 /**
2927 * pci_choose_state - Choose the power state of a PCI device.
2928 * @dev: Target PCI device.
2929 * @state: Target state for the whole system.
2930 *
2931 * Returns PCI power state suitable for @dev and @state.
2932 */
pci_choose_state(struct pci_dev * dev,pm_message_t state)2933 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
2934 {
2935 if (state.event == PM_EVENT_ON)
2936 return PCI_D0;
2937
2938 return pci_target_state(dev, false);
2939 }
2940 EXPORT_SYMBOL(pci_choose_state);
2941
pci_config_pm_runtime_get(struct pci_dev * pdev)2942 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2943 {
2944 struct device *dev = &pdev->dev;
2945 struct device *parent = dev->parent;
2946
2947 if (parent)
2948 pm_runtime_get_sync(parent);
2949 pm_runtime_get_noresume(dev);
2950 /*
2951 * pdev->current_state is set to PCI_D3cold during suspending,
2952 * so wait until suspending completes
2953 */
2954 pm_runtime_barrier(dev);
2955 /*
2956 * Only need to resume devices in D3cold, because config
2957 * registers are still accessible for devices suspended but
2958 * not in D3cold.
2959 */
2960 if (pdev->current_state == PCI_D3cold)
2961 pm_runtime_resume(dev);
2962 }
2963
pci_config_pm_runtime_put(struct pci_dev * pdev)2964 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2965 {
2966 struct device *dev = &pdev->dev;
2967 struct device *parent = dev->parent;
2968
2969 pm_runtime_put(dev);
2970 if (parent)
2971 pm_runtime_put_sync(parent);
2972 }
2973
2974 static const struct dmi_system_id bridge_d3_blacklist[] = {
2975 #ifdef CONFIG_X86
2976 {
2977 /*
2978 * Gigabyte X299 root port is not marked as hotplug capable
2979 * which allows Linux to power manage it. However, this
2980 * confuses the BIOS SMI handler so don't power manage root
2981 * ports on that system.
2982 */
2983 .ident = "X299 DESIGNARE EX-CF",
2984 .matches = {
2985 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2986 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2987 },
2988 },
2989 {
2990 /*
2991 * Downstream device is not accessible after putting a root port
2992 * into D3cold and back into D0 on Elo Continental Z2 board
2993 */
2994 .ident = "Elo Continental Z2",
2995 .matches = {
2996 DMI_MATCH(DMI_BOARD_VENDOR, "Elo Touch Solutions"),
2997 DMI_MATCH(DMI_BOARD_NAME, "Geminilake"),
2998 DMI_MATCH(DMI_BOARD_VERSION, "Continental Z2"),
2999 },
3000 },
3001 #endif
3002 { }
3003 };
3004
3005 /**
3006 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
3007 * @bridge: Bridge to check
3008 *
3009 * This function checks if it is possible to move the bridge to D3.
3010 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
3011 */
pci_bridge_d3_possible(struct pci_dev * bridge)3012 bool pci_bridge_d3_possible(struct pci_dev *bridge)
3013 {
3014 if (!pci_is_pcie(bridge))
3015 return false;
3016
3017 switch (pci_pcie_type(bridge)) {
3018 case PCI_EXP_TYPE_ROOT_PORT:
3019 case PCI_EXP_TYPE_UPSTREAM:
3020 case PCI_EXP_TYPE_DOWNSTREAM:
3021 if (pci_bridge_d3_disable)
3022 return false;
3023
3024 /*
3025 * Hotplug ports handled by firmware in System Management Mode
3026 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
3027 */
3028 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
3029 return false;
3030
3031 if (pci_bridge_d3_force)
3032 return true;
3033
3034 /* Even the oldest 2010 Thunderbolt controller supports D3. */
3035 if (bridge->is_thunderbolt)
3036 return true;
3037
3038 /* Platform might know better if the bridge supports D3 */
3039 if (platform_pci_bridge_d3(bridge))
3040 return true;
3041
3042 /*
3043 * Hotplug ports handled natively by the OS were not validated
3044 * by vendors for runtime D3 at least until 2018 because there
3045 * was no OS support.
3046 */
3047 if (bridge->is_hotplug_bridge)
3048 return false;
3049
3050 if (dmi_check_system(bridge_d3_blacklist))
3051 return false;
3052
3053 /*
3054 * It should be safe to put PCIe ports from 2015 or newer
3055 * to D3.
3056 */
3057 if (dmi_get_bios_year() >= 2015)
3058 return true;
3059 break;
3060 }
3061
3062 return false;
3063 }
3064
pci_dev_check_d3cold(struct pci_dev * dev,void * data)3065 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
3066 {
3067 bool *d3cold_ok = data;
3068
3069 if (/* The device needs to be allowed to go D3cold ... */
3070 dev->no_d3cold || !dev->d3cold_allowed ||
3071
3072 /* ... and if it is wakeup capable to do so from D3cold. */
3073 (device_may_wakeup(&dev->dev) &&
3074 !pci_pme_capable(dev, PCI_D3cold)) ||
3075
3076 /* If it is a bridge it must be allowed to go to D3. */
3077 !pci_power_manageable(dev))
3078
3079 *d3cold_ok = false;
3080
3081 return !*d3cold_ok;
3082 }
3083
3084 /*
3085 * pci_bridge_d3_update - Update bridge D3 capabilities
3086 * @dev: PCI device which is changed
3087 *
3088 * Update upstream bridge PM capabilities accordingly depending on if the
3089 * device PM configuration was changed or the device is being removed. The
3090 * change is also propagated upstream.
3091 */
pci_bridge_d3_update(struct pci_dev * dev)3092 void pci_bridge_d3_update(struct pci_dev *dev)
3093 {
3094 bool remove = !device_is_registered(&dev->dev);
3095 struct pci_dev *bridge;
3096 bool d3cold_ok = true;
3097
3098 bridge = pci_upstream_bridge(dev);
3099 if (!bridge || !pci_bridge_d3_possible(bridge))
3100 return;
3101
3102 /*
3103 * If D3 is currently allowed for the bridge, removing one of its
3104 * children won't change that.
3105 */
3106 if (remove && bridge->bridge_d3)
3107 return;
3108
3109 /*
3110 * If D3 is currently allowed for the bridge and a child is added or
3111 * changed, disallowance of D3 can only be caused by that child, so
3112 * we only need to check that single device, not any of its siblings.
3113 *
3114 * If D3 is currently not allowed for the bridge, checking the device
3115 * first may allow us to skip checking its siblings.
3116 */
3117 if (!remove)
3118 pci_dev_check_d3cold(dev, &d3cold_ok);
3119
3120 /*
3121 * If D3 is currently not allowed for the bridge, this may be caused
3122 * either by the device being changed/removed or any of its siblings,
3123 * so we need to go through all children to find out if one of them
3124 * continues to block D3.
3125 */
3126 if (d3cold_ok && !bridge->bridge_d3)
3127 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
3128 &d3cold_ok);
3129
3130 if (bridge->bridge_d3 != d3cold_ok) {
3131 bridge->bridge_d3 = d3cold_ok;
3132 /* Propagate change to upstream bridges */
3133 pci_bridge_d3_update(bridge);
3134 }
3135 }
3136
3137 /**
3138 * pci_d3cold_enable - Enable D3cold for device
3139 * @dev: PCI device to handle
3140 *
3141 * This function can be used in drivers to enable D3cold from the device
3142 * they handle. It also updates upstream PCI bridge PM capabilities
3143 * accordingly.
3144 */
pci_d3cold_enable(struct pci_dev * dev)3145 void pci_d3cold_enable(struct pci_dev *dev)
3146 {
3147 if (dev->no_d3cold) {
3148 dev->no_d3cold = false;
3149 pci_bridge_d3_update(dev);
3150 }
3151 }
3152 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
3153
3154 /**
3155 * pci_d3cold_disable - Disable D3cold for device
3156 * @dev: PCI device to handle
3157 *
3158 * This function can be used in drivers to disable D3cold from the device
3159 * they handle. It also updates upstream PCI bridge PM capabilities
3160 * accordingly.
3161 */
pci_d3cold_disable(struct pci_dev * dev)3162 void pci_d3cold_disable(struct pci_dev *dev)
3163 {
3164 if (!dev->no_d3cold) {
3165 dev->no_d3cold = true;
3166 pci_bridge_d3_update(dev);
3167 }
3168 }
3169 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3170
3171 /**
3172 * pci_pm_init - Initialize PM functions of given PCI device
3173 * @dev: PCI device to handle.
3174 */
pci_pm_init(struct pci_dev * dev)3175 void pci_pm_init(struct pci_dev *dev)
3176 {
3177 int pm;
3178 u16 status;
3179 u16 pmc;
3180
3181 pm_runtime_forbid(&dev->dev);
3182 pm_runtime_set_active(&dev->dev);
3183 pm_runtime_enable(&dev->dev);
3184 device_enable_async_suspend(&dev->dev);
3185 dev->wakeup_prepared = false;
3186
3187 dev->pm_cap = 0;
3188 dev->pme_support = 0;
3189
3190 /* find PCI PM capability in list */
3191 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3192 if (!pm)
3193 return;
3194 /* Check device's ability to generate PME# */
3195 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3196
3197 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3198 pci_err(dev, "unsupported PM cap regs version (%u)\n",
3199 pmc & PCI_PM_CAP_VER_MASK);
3200 return;
3201 }
3202
3203 dev->pm_cap = pm;
3204 dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3205 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3206 dev->bridge_d3 = pci_bridge_d3_possible(dev);
3207 dev->d3cold_allowed = true;
3208
3209 dev->d1_support = false;
3210 dev->d2_support = false;
3211 if (!pci_no_d1d2(dev)) {
3212 if (pmc & PCI_PM_CAP_D1)
3213 dev->d1_support = true;
3214 if (pmc & PCI_PM_CAP_D2)
3215 dev->d2_support = true;
3216
3217 if (dev->d1_support || dev->d2_support)
3218 pci_info(dev, "supports%s%s\n",
3219 dev->d1_support ? " D1" : "",
3220 dev->d2_support ? " D2" : "");
3221 }
3222
3223 pmc &= PCI_PM_CAP_PME_MASK;
3224 if (pmc) {
3225 pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3226 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3227 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3228 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3229 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3230 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3231 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
3232 dev->pme_poll = true;
3233 /*
3234 * Make device's PM flags reflect the wake-up capability, but
3235 * let the user space enable it to wake up the system as needed.
3236 */
3237 device_set_wakeup_capable(&dev->dev, true);
3238 /* Disable the PME# generation functionality */
3239 pci_pme_active(dev, false);
3240 }
3241
3242 pci_read_config_word(dev, PCI_STATUS, &status);
3243 if (status & PCI_STATUS_IMM_READY)
3244 dev->imm_ready = 1;
3245 }
3246
pci_ea_flags(struct pci_dev * dev,u8 prop)3247 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3248 {
3249 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3250
3251 switch (prop) {
3252 case PCI_EA_P_MEM:
3253 case PCI_EA_P_VF_MEM:
3254 flags |= IORESOURCE_MEM;
3255 break;
3256 case PCI_EA_P_MEM_PREFETCH:
3257 case PCI_EA_P_VF_MEM_PREFETCH:
3258 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3259 break;
3260 case PCI_EA_P_IO:
3261 flags |= IORESOURCE_IO;
3262 break;
3263 default:
3264 return 0;
3265 }
3266
3267 return flags;
3268 }
3269
pci_ea_get_resource(struct pci_dev * dev,u8 bei,u8 prop)3270 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3271 u8 prop)
3272 {
3273 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3274 return &dev->resource[bei];
3275 #ifdef CONFIG_PCI_IOV
3276 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3277 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3278 return &dev->resource[PCI_IOV_RESOURCES +
3279 bei - PCI_EA_BEI_VF_BAR0];
3280 #endif
3281 else if (bei == PCI_EA_BEI_ROM)
3282 return &dev->resource[PCI_ROM_RESOURCE];
3283 else
3284 return NULL;
3285 }
3286
3287 /* Read an Enhanced Allocation (EA) entry */
pci_ea_read(struct pci_dev * dev,int offset)3288 static int pci_ea_read(struct pci_dev *dev, int offset)
3289 {
3290 struct resource *res;
3291 int ent_size, ent_offset = offset;
3292 resource_size_t start, end;
3293 unsigned long flags;
3294 u32 dw0, bei, base, max_offset;
3295 u8 prop;
3296 bool support_64 = (sizeof(resource_size_t) >= 8);
3297
3298 pci_read_config_dword(dev, ent_offset, &dw0);
3299 ent_offset += 4;
3300
3301 /* Entry size field indicates DWORDs after 1st */
3302 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
3303
3304 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3305 goto out;
3306
3307 bei = (dw0 & PCI_EA_BEI) >> 4;
3308 prop = (dw0 & PCI_EA_PP) >> 8;
3309
3310 /*
3311 * If the Property is in the reserved range, try the Secondary
3312 * Property instead.
3313 */
3314 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3315 prop = (dw0 & PCI_EA_SP) >> 16;
3316 if (prop > PCI_EA_P_BRIDGE_IO)
3317 goto out;
3318
3319 res = pci_ea_get_resource(dev, bei, prop);
3320 if (!res) {
3321 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3322 goto out;
3323 }
3324
3325 flags = pci_ea_flags(dev, prop);
3326 if (!flags) {
3327 pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3328 goto out;
3329 }
3330
3331 /* Read Base */
3332 pci_read_config_dword(dev, ent_offset, &base);
3333 start = (base & PCI_EA_FIELD_MASK);
3334 ent_offset += 4;
3335
3336 /* Read MaxOffset */
3337 pci_read_config_dword(dev, ent_offset, &max_offset);
3338 ent_offset += 4;
3339
3340 /* Read Base MSBs (if 64-bit entry) */
3341 if (base & PCI_EA_IS_64) {
3342 u32 base_upper;
3343
3344 pci_read_config_dword(dev, ent_offset, &base_upper);
3345 ent_offset += 4;
3346
3347 flags |= IORESOURCE_MEM_64;
3348
3349 /* entry starts above 32-bit boundary, can't use */
3350 if (!support_64 && base_upper)
3351 goto out;
3352
3353 if (support_64)
3354 start |= ((u64)base_upper << 32);
3355 }
3356
3357 end = start + (max_offset | 0x03);
3358
3359 /* Read MaxOffset MSBs (if 64-bit entry) */
3360 if (max_offset & PCI_EA_IS_64) {
3361 u32 max_offset_upper;
3362
3363 pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3364 ent_offset += 4;
3365
3366 flags |= IORESOURCE_MEM_64;
3367
3368 /* entry too big, can't use */
3369 if (!support_64 && max_offset_upper)
3370 goto out;
3371
3372 if (support_64)
3373 end += ((u64)max_offset_upper << 32);
3374 }
3375
3376 if (end < start) {
3377 pci_err(dev, "EA Entry crosses address boundary\n");
3378 goto out;
3379 }
3380
3381 if (ent_size != ent_offset - offset) {
3382 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3383 ent_size, ent_offset - offset);
3384 goto out;
3385 }
3386
3387 res->name = pci_name(dev);
3388 res->start = start;
3389 res->end = end;
3390 res->flags = flags;
3391
3392 if (bei <= PCI_EA_BEI_BAR5)
3393 pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3394 bei, res, prop);
3395 else if (bei == PCI_EA_BEI_ROM)
3396 pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3397 res, prop);
3398 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3399 pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3400 bei - PCI_EA_BEI_VF_BAR0, res, prop);
3401 else
3402 pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3403 bei, res, prop);
3404
3405 out:
3406 return offset + ent_size;
3407 }
3408
3409 /* Enhanced Allocation Initialization */
pci_ea_init(struct pci_dev * dev)3410 void pci_ea_init(struct pci_dev *dev)
3411 {
3412 int ea;
3413 u8 num_ent;
3414 int offset;
3415 int i;
3416
3417 /* find PCI EA capability in list */
3418 ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3419 if (!ea)
3420 return;
3421
3422 /* determine the number of entries */
3423 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3424 &num_ent);
3425 num_ent &= PCI_EA_NUM_ENT_MASK;
3426
3427 offset = ea + PCI_EA_FIRST_ENT;
3428
3429 /* Skip DWORD 2 for type 1 functions */
3430 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3431 offset += 4;
3432
3433 /* parse each EA entry */
3434 for (i = 0; i < num_ent; ++i)
3435 offset = pci_ea_read(dev, offset);
3436 }
3437
pci_add_saved_cap(struct pci_dev * pci_dev,struct pci_cap_saved_state * new_cap)3438 static void pci_add_saved_cap(struct pci_dev *pci_dev,
3439 struct pci_cap_saved_state *new_cap)
3440 {
3441 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3442 }
3443
3444 /**
3445 * _pci_add_cap_save_buffer - allocate buffer for saving given
3446 * capability registers
3447 * @dev: the PCI device
3448 * @cap: the capability to allocate the buffer for
3449 * @extended: Standard or Extended capability ID
3450 * @size: requested size of the buffer
3451 */
_pci_add_cap_save_buffer(struct pci_dev * dev,u16 cap,bool extended,unsigned int size)3452 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3453 bool extended, unsigned int size)
3454 {
3455 int pos;
3456 struct pci_cap_saved_state *save_state;
3457
3458 if (extended)
3459 pos = pci_find_ext_capability(dev, cap);
3460 else
3461 pos = pci_find_capability(dev, cap);
3462
3463 if (!pos)
3464 return 0;
3465
3466 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3467 if (!save_state)
3468 return -ENOMEM;
3469
3470 save_state->cap.cap_nr = cap;
3471 save_state->cap.cap_extended = extended;
3472 save_state->cap.size = size;
3473 pci_add_saved_cap(dev, save_state);
3474
3475 return 0;
3476 }
3477
pci_add_cap_save_buffer(struct pci_dev * dev,char cap,unsigned int size)3478 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3479 {
3480 return _pci_add_cap_save_buffer(dev, cap, false, size);
3481 }
3482
pci_add_ext_cap_save_buffer(struct pci_dev * dev,u16 cap,unsigned int size)3483 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3484 {
3485 return _pci_add_cap_save_buffer(dev, cap, true, size);
3486 }
3487
3488 /**
3489 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3490 * @dev: the PCI device
3491 */
pci_allocate_cap_save_buffers(struct pci_dev * dev)3492 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3493 {
3494 int error;
3495
3496 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3497 PCI_EXP_SAVE_REGS * sizeof(u16));
3498 if (error)
3499 pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3500
3501 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3502 if (error)
3503 pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3504
3505 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3506 2 * sizeof(u16));
3507 if (error)
3508 pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3509
3510 pci_allocate_vc_save_buffers(dev);
3511 }
3512
pci_free_cap_save_buffers(struct pci_dev * dev)3513 void pci_free_cap_save_buffers(struct pci_dev *dev)
3514 {
3515 struct pci_cap_saved_state *tmp;
3516 struct hlist_node *n;
3517
3518 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3519 kfree(tmp);
3520 }
3521
3522 /**
3523 * pci_configure_ari - enable or disable ARI forwarding
3524 * @dev: the PCI device
3525 *
3526 * If @dev and its upstream bridge both support ARI, enable ARI in the
3527 * bridge. Otherwise, disable ARI in the bridge.
3528 */
pci_configure_ari(struct pci_dev * dev)3529 void pci_configure_ari(struct pci_dev *dev)
3530 {
3531 u32 cap;
3532 struct pci_dev *bridge;
3533
3534 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3535 return;
3536
3537 bridge = dev->bus->self;
3538 if (!bridge)
3539 return;
3540
3541 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3542 if (!(cap & PCI_EXP_DEVCAP2_ARI))
3543 return;
3544
3545 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3546 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3547 PCI_EXP_DEVCTL2_ARI);
3548 bridge->ari_enabled = 1;
3549 } else {
3550 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3551 PCI_EXP_DEVCTL2_ARI);
3552 bridge->ari_enabled = 0;
3553 }
3554 }
3555
pci_acs_flags_enabled(struct pci_dev * pdev,u16 acs_flags)3556 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3557 {
3558 int pos;
3559 u16 cap, ctrl;
3560
3561 pos = pdev->acs_cap;
3562 if (!pos)
3563 return false;
3564
3565 /*
3566 * Except for egress control, capabilities are either required
3567 * or only required if controllable. Features missing from the
3568 * capability field can therefore be assumed as hard-wired enabled.
3569 */
3570 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3571 acs_flags &= (cap | PCI_ACS_EC);
3572
3573 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3574 return (ctrl & acs_flags) == acs_flags;
3575 }
3576
3577 /**
3578 * pci_acs_enabled - test ACS against required flags for a given device
3579 * @pdev: device to test
3580 * @acs_flags: required PCI ACS flags
3581 *
3582 * Return true if the device supports the provided flags. Automatically
3583 * filters out flags that are not implemented on multifunction devices.
3584 *
3585 * Note that this interface checks the effective ACS capabilities of the
3586 * device rather than the actual capabilities. For instance, most single
3587 * function endpoints are not required to support ACS because they have no
3588 * opportunity for peer-to-peer access. We therefore return 'true'
3589 * regardless of whether the device exposes an ACS capability. This makes
3590 * it much easier for callers of this function to ignore the actual type
3591 * or topology of the device when testing ACS support.
3592 */
pci_acs_enabled(struct pci_dev * pdev,u16 acs_flags)3593 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3594 {
3595 int ret;
3596
3597 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3598 if (ret >= 0)
3599 return ret > 0;
3600
3601 /*
3602 * Conventional PCI and PCI-X devices never support ACS, either
3603 * effectively or actually. The shared bus topology implies that
3604 * any device on the bus can receive or snoop DMA.
3605 */
3606 if (!pci_is_pcie(pdev))
3607 return false;
3608
3609 switch (pci_pcie_type(pdev)) {
3610 /*
3611 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3612 * but since their primary interface is PCI/X, we conservatively
3613 * handle them as we would a non-PCIe device.
3614 */
3615 case PCI_EXP_TYPE_PCIE_BRIDGE:
3616 /*
3617 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
3618 * applicable... must never implement an ACS Extended Capability...".
3619 * This seems arbitrary, but we take a conservative interpretation
3620 * of this statement.
3621 */
3622 case PCI_EXP_TYPE_PCI_BRIDGE:
3623 case PCI_EXP_TYPE_RC_EC:
3624 return false;
3625 /*
3626 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3627 * implement ACS in order to indicate their peer-to-peer capabilities,
3628 * regardless of whether they are single- or multi-function devices.
3629 */
3630 case PCI_EXP_TYPE_DOWNSTREAM:
3631 case PCI_EXP_TYPE_ROOT_PORT:
3632 return pci_acs_flags_enabled(pdev, acs_flags);
3633 /*
3634 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3635 * implemented by the remaining PCIe types to indicate peer-to-peer
3636 * capabilities, but only when they are part of a multifunction
3637 * device. The footnote for section 6.12 indicates the specific
3638 * PCIe types included here.
3639 */
3640 case PCI_EXP_TYPE_ENDPOINT:
3641 case PCI_EXP_TYPE_UPSTREAM:
3642 case PCI_EXP_TYPE_LEG_END:
3643 case PCI_EXP_TYPE_RC_END:
3644 if (!pdev->multifunction)
3645 break;
3646
3647 return pci_acs_flags_enabled(pdev, acs_flags);
3648 }
3649
3650 /*
3651 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3652 * to single function devices with the exception of downstream ports.
3653 */
3654 return true;
3655 }
3656
3657 /**
3658 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3659 * @start: starting downstream device
3660 * @end: ending upstream device or NULL to search to the root bus
3661 * @acs_flags: required flags
3662 *
3663 * Walk up a device tree from start to end testing PCI ACS support. If
3664 * any step along the way does not support the required flags, return false.
3665 */
pci_acs_path_enabled(struct pci_dev * start,struct pci_dev * end,u16 acs_flags)3666 bool pci_acs_path_enabled(struct pci_dev *start,
3667 struct pci_dev *end, u16 acs_flags)
3668 {
3669 struct pci_dev *pdev, *parent = start;
3670
3671 do {
3672 pdev = parent;
3673
3674 if (!pci_acs_enabled(pdev, acs_flags))
3675 return false;
3676
3677 if (pci_is_root_bus(pdev->bus))
3678 return (end == NULL);
3679
3680 parent = pdev->bus->self;
3681 } while (pdev != end);
3682
3683 return true;
3684 }
3685
3686 /**
3687 * pci_acs_init - Initialize ACS if hardware supports it
3688 * @dev: the PCI device
3689 */
pci_acs_init(struct pci_dev * dev)3690 void pci_acs_init(struct pci_dev *dev)
3691 {
3692 dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3693
3694 /*
3695 * Attempt to enable ACS regardless of capability because some Root
3696 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3697 * the standard ACS capability but still support ACS via those
3698 * quirks.
3699 */
3700 pci_enable_acs(dev);
3701 }
3702
3703 /**
3704 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3705 * @pdev: PCI device
3706 * @bar: BAR to find
3707 *
3708 * Helper to find the position of the ctrl register for a BAR.
3709 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3710 * Returns -ENOENT if no ctrl register for the BAR could be found.
3711 */
pci_rebar_find_pos(struct pci_dev * pdev,int bar)3712 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3713 {
3714 unsigned int pos, nbars, i;
3715 u32 ctrl;
3716
3717 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3718 if (!pos)
3719 return -ENOTSUPP;
3720
3721 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3722 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3723 PCI_REBAR_CTRL_NBAR_SHIFT;
3724
3725 for (i = 0; i < nbars; i++, pos += 8) {
3726 int bar_idx;
3727
3728 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3729 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3730 if (bar_idx == bar)
3731 return pos;
3732 }
3733
3734 return -ENOENT;
3735 }
3736
3737 /**
3738 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3739 * @pdev: PCI device
3740 * @bar: BAR to query
3741 *
3742 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3743 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3744 */
pci_rebar_get_possible_sizes(struct pci_dev * pdev,int bar)3745 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3746 {
3747 int pos;
3748 u32 cap;
3749
3750 pos = pci_rebar_find_pos(pdev, bar);
3751 if (pos < 0)
3752 return 0;
3753
3754 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3755 cap &= PCI_REBAR_CAP_SIZES;
3756
3757 /* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3758 if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3759 bar == 0 && cap == 0x7000)
3760 cap = 0x3f000;
3761
3762 return cap >> 4;
3763 }
3764 EXPORT_SYMBOL(pci_rebar_get_possible_sizes);
3765
3766 /**
3767 * pci_rebar_get_current_size - get the current size of a BAR
3768 * @pdev: PCI device
3769 * @bar: BAR to set size to
3770 *
3771 * Read the size of a BAR from the resizable BAR config.
3772 * Returns size if found or negative error code.
3773 */
pci_rebar_get_current_size(struct pci_dev * pdev,int bar)3774 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3775 {
3776 int pos;
3777 u32 ctrl;
3778
3779 pos = pci_rebar_find_pos(pdev, bar);
3780 if (pos < 0)
3781 return pos;
3782
3783 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3784 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3785 }
3786
3787 /**
3788 * pci_rebar_set_size - set a new size for a BAR
3789 * @pdev: PCI device
3790 * @bar: BAR to set size to
3791 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3792 *
3793 * Set the new size of a BAR as defined in the spec.
3794 * Returns zero if resizing was successful, error code otherwise.
3795 */
pci_rebar_set_size(struct pci_dev * pdev,int bar,int size)3796 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3797 {
3798 int pos;
3799 u32 ctrl;
3800
3801 pos = pci_rebar_find_pos(pdev, bar);
3802 if (pos < 0)
3803 return pos;
3804
3805 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3806 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3807 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3808 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3809 return 0;
3810 }
3811
3812 /**
3813 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3814 * @dev: the PCI device
3815 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3816 * PCI_EXP_DEVCAP2_ATOMIC_COMP32
3817 * PCI_EXP_DEVCAP2_ATOMIC_COMP64
3818 * PCI_EXP_DEVCAP2_ATOMIC_COMP128
3819 *
3820 * Return 0 if all upstream bridges support AtomicOp routing, egress
3821 * blocking is disabled on all upstream ports, and the root port supports
3822 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3823 * AtomicOp completion), or negative otherwise.
3824 */
pci_enable_atomic_ops_to_root(struct pci_dev * dev,u32 cap_mask)3825 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3826 {
3827 struct pci_bus *bus = dev->bus;
3828 struct pci_dev *bridge;
3829 u32 cap, ctl2;
3830
3831 /*
3832 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit
3833 * in Device Control 2 is reserved in VFs and the PF value applies
3834 * to all associated VFs.
3835 */
3836 if (dev->is_virtfn)
3837 return -EINVAL;
3838
3839 if (!pci_is_pcie(dev))
3840 return -EINVAL;
3841
3842 /*
3843 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3844 * AtomicOp requesters. For now, we only support endpoints as
3845 * requesters and root ports as completers. No endpoints as
3846 * completers, and no peer-to-peer.
3847 */
3848
3849 switch (pci_pcie_type(dev)) {
3850 case PCI_EXP_TYPE_ENDPOINT:
3851 case PCI_EXP_TYPE_LEG_END:
3852 case PCI_EXP_TYPE_RC_END:
3853 break;
3854 default:
3855 return -EINVAL;
3856 }
3857
3858 while (bus->parent) {
3859 bridge = bus->self;
3860
3861 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3862
3863 switch (pci_pcie_type(bridge)) {
3864 /* Ensure switch ports support AtomicOp routing */
3865 case PCI_EXP_TYPE_UPSTREAM:
3866 case PCI_EXP_TYPE_DOWNSTREAM:
3867 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3868 return -EINVAL;
3869 break;
3870
3871 /* Ensure root port supports all the sizes we care about */
3872 case PCI_EXP_TYPE_ROOT_PORT:
3873 if ((cap & cap_mask) != cap_mask)
3874 return -EINVAL;
3875 break;
3876 }
3877
3878 /* Ensure upstream ports don't block AtomicOps on egress */
3879 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3880 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3881 &ctl2);
3882 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3883 return -EINVAL;
3884 }
3885
3886 bus = bus->parent;
3887 }
3888
3889 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3890 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3891 return 0;
3892 }
3893 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3894
3895 /**
3896 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3897 * @dev: the PCI device
3898 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3899 *
3900 * Perform INTx swizzling for a device behind one level of bridge. This is
3901 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3902 * behind bridges on add-in cards. For devices with ARI enabled, the slot
3903 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3904 * the PCI Express Base Specification, Revision 2.1)
3905 */
pci_swizzle_interrupt_pin(const struct pci_dev * dev,u8 pin)3906 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3907 {
3908 int slot;
3909
3910 if (pci_ari_enabled(dev->bus))
3911 slot = 0;
3912 else
3913 slot = PCI_SLOT(dev->devfn);
3914
3915 return (((pin - 1) + slot) % 4) + 1;
3916 }
3917
pci_get_interrupt_pin(struct pci_dev * dev,struct pci_dev ** bridge)3918 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3919 {
3920 u8 pin;
3921
3922 pin = dev->pin;
3923 if (!pin)
3924 return -1;
3925
3926 while (!pci_is_root_bus(dev->bus)) {
3927 pin = pci_swizzle_interrupt_pin(dev, pin);
3928 dev = dev->bus->self;
3929 }
3930 *bridge = dev;
3931 return pin;
3932 }
3933
3934 /**
3935 * pci_common_swizzle - swizzle INTx all the way to root bridge
3936 * @dev: the PCI device
3937 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3938 *
3939 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
3940 * bridges all the way up to a PCI root bus.
3941 */
pci_common_swizzle(struct pci_dev * dev,u8 * pinp)3942 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3943 {
3944 u8 pin = *pinp;
3945
3946 while (!pci_is_root_bus(dev->bus)) {
3947 pin = pci_swizzle_interrupt_pin(dev, pin);
3948 dev = dev->bus->self;
3949 }
3950 *pinp = pin;
3951 return PCI_SLOT(dev->devfn);
3952 }
3953 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3954
3955 /**
3956 * pci_release_region - Release a PCI bar
3957 * @pdev: PCI device whose resources were previously reserved by
3958 * pci_request_region()
3959 * @bar: BAR to release
3960 *
3961 * Releases the PCI I/O and memory resources previously reserved by a
3962 * successful call to pci_request_region(). Call this function only
3963 * after all use of the PCI regions has ceased.
3964 */
pci_release_region(struct pci_dev * pdev,int bar)3965 void pci_release_region(struct pci_dev *pdev, int bar)
3966 {
3967 struct pci_devres *dr;
3968
3969 if (pci_resource_len(pdev, bar) == 0)
3970 return;
3971 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3972 release_region(pci_resource_start(pdev, bar),
3973 pci_resource_len(pdev, bar));
3974 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3975 release_mem_region(pci_resource_start(pdev, bar),
3976 pci_resource_len(pdev, bar));
3977
3978 dr = find_pci_dr(pdev);
3979 if (dr)
3980 dr->region_mask &= ~(1 << bar);
3981 }
3982 EXPORT_SYMBOL(pci_release_region);
3983
3984 /**
3985 * __pci_request_region - Reserved PCI I/O and memory resource
3986 * @pdev: PCI device whose resources are to be reserved
3987 * @bar: BAR to be reserved
3988 * @res_name: Name to be associated with resource.
3989 * @exclusive: whether the region access is exclusive or not
3990 *
3991 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3992 * being reserved by owner @res_name. Do not access any
3993 * address inside the PCI regions unless this call returns
3994 * successfully.
3995 *
3996 * If @exclusive is set, then the region is marked so that userspace
3997 * is explicitly not allowed to map the resource via /dev/mem or
3998 * sysfs MMIO access.
3999 *
4000 * Returns 0 on success, or %EBUSY on error. A warning
4001 * message is also printed on failure.
4002 */
__pci_request_region(struct pci_dev * pdev,int bar,const char * res_name,int exclusive)4003 static int __pci_request_region(struct pci_dev *pdev, int bar,
4004 const char *res_name, int exclusive)
4005 {
4006 struct pci_devres *dr;
4007
4008 if (pci_resource_len(pdev, bar) == 0)
4009 return 0;
4010
4011 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
4012 if (!request_region(pci_resource_start(pdev, bar),
4013 pci_resource_len(pdev, bar), res_name))
4014 goto err_out;
4015 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
4016 if (!__request_mem_region(pci_resource_start(pdev, bar),
4017 pci_resource_len(pdev, bar), res_name,
4018 exclusive))
4019 goto err_out;
4020 }
4021
4022 dr = find_pci_dr(pdev);
4023 if (dr)
4024 dr->region_mask |= 1 << bar;
4025
4026 return 0;
4027
4028 err_out:
4029 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
4030 &pdev->resource[bar]);
4031 return -EBUSY;
4032 }
4033
4034 /**
4035 * pci_request_region - Reserve PCI I/O and memory resource
4036 * @pdev: PCI device whose resources are to be reserved
4037 * @bar: BAR to be reserved
4038 * @res_name: Name to be associated with resource
4039 *
4040 * Mark the PCI region associated with PCI device @pdev BAR @bar as
4041 * being reserved by owner @res_name. Do not access any
4042 * address inside the PCI regions unless this call returns
4043 * successfully.
4044 *
4045 * Returns 0 on success, or %EBUSY on error. A warning
4046 * message is also printed on failure.
4047 */
pci_request_region(struct pci_dev * pdev,int bar,const char * res_name)4048 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
4049 {
4050 return __pci_request_region(pdev, bar, res_name, 0);
4051 }
4052 EXPORT_SYMBOL(pci_request_region);
4053
4054 /**
4055 * pci_release_selected_regions - Release selected PCI I/O and memory resources
4056 * @pdev: PCI device whose resources were previously reserved
4057 * @bars: Bitmask of BARs to be released
4058 *
4059 * Release selected PCI I/O and memory resources previously reserved.
4060 * Call this function only after all use of the PCI regions has ceased.
4061 */
pci_release_selected_regions(struct pci_dev * pdev,int bars)4062 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
4063 {
4064 int i;
4065
4066 for (i = 0; i < PCI_STD_NUM_BARS; i++)
4067 if (bars & (1 << i))
4068 pci_release_region(pdev, i);
4069 }
4070 EXPORT_SYMBOL(pci_release_selected_regions);
4071
__pci_request_selected_regions(struct pci_dev * pdev,int bars,const char * res_name,int excl)4072 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
4073 const char *res_name, int excl)
4074 {
4075 int i;
4076
4077 for (i = 0; i < PCI_STD_NUM_BARS; i++)
4078 if (bars & (1 << i))
4079 if (__pci_request_region(pdev, i, res_name, excl))
4080 goto err_out;
4081 return 0;
4082
4083 err_out:
4084 while (--i >= 0)
4085 if (bars & (1 << i))
4086 pci_release_region(pdev, i);
4087
4088 return -EBUSY;
4089 }
4090
4091
4092 /**
4093 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
4094 * @pdev: PCI device whose resources are to be reserved
4095 * @bars: Bitmask of BARs to be requested
4096 * @res_name: Name to be associated with resource
4097 */
pci_request_selected_regions(struct pci_dev * pdev,int bars,const char * res_name)4098 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
4099 const char *res_name)
4100 {
4101 return __pci_request_selected_regions(pdev, bars, res_name, 0);
4102 }
4103 EXPORT_SYMBOL(pci_request_selected_regions);
4104
pci_request_selected_regions_exclusive(struct pci_dev * pdev,int bars,const char * res_name)4105 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
4106 const char *res_name)
4107 {
4108 return __pci_request_selected_regions(pdev, bars, res_name,
4109 IORESOURCE_EXCLUSIVE);
4110 }
4111 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
4112
4113 /**
4114 * pci_release_regions - Release reserved PCI I/O and memory resources
4115 * @pdev: PCI device whose resources were previously reserved by
4116 * pci_request_regions()
4117 *
4118 * Releases all PCI I/O and memory resources previously reserved by a
4119 * successful call to pci_request_regions(). Call this function only
4120 * after all use of the PCI regions has ceased.
4121 */
4122
pci_release_regions(struct pci_dev * pdev)4123 void pci_release_regions(struct pci_dev *pdev)
4124 {
4125 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
4126 }
4127 EXPORT_SYMBOL(pci_release_regions);
4128
4129 /**
4130 * pci_request_regions - Reserve PCI I/O and memory resources
4131 * @pdev: PCI device whose resources are to be reserved
4132 * @res_name: Name to be associated with resource.
4133 *
4134 * Mark all PCI regions associated with PCI device @pdev as
4135 * being reserved by owner @res_name. Do not access any
4136 * address inside the PCI regions unless this call returns
4137 * successfully.
4138 *
4139 * Returns 0 on success, or %EBUSY on error. A warning
4140 * message is also printed on failure.
4141 */
pci_request_regions(struct pci_dev * pdev,const char * res_name)4142 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
4143 {
4144 return pci_request_selected_regions(pdev,
4145 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
4146 }
4147 EXPORT_SYMBOL(pci_request_regions);
4148
4149 /**
4150 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
4151 * @pdev: PCI device whose resources are to be reserved
4152 * @res_name: Name to be associated with resource.
4153 *
4154 * Mark all PCI regions associated with PCI device @pdev as being reserved
4155 * by owner @res_name. Do not access any address inside the PCI regions
4156 * unless this call returns successfully.
4157 *
4158 * pci_request_regions_exclusive() will mark the region so that /dev/mem
4159 * and the sysfs MMIO access will not be allowed.
4160 *
4161 * Returns 0 on success, or %EBUSY on error. A warning message is also
4162 * printed on failure.
4163 */
pci_request_regions_exclusive(struct pci_dev * pdev,const char * res_name)4164 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
4165 {
4166 return pci_request_selected_regions_exclusive(pdev,
4167 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
4168 }
4169 EXPORT_SYMBOL(pci_request_regions_exclusive);
4170
4171 /*
4172 * Record the PCI IO range (expressed as CPU physical address + size).
4173 * Return a negative value if an error has occurred, zero otherwise
4174 */
pci_register_io_range(struct fwnode_handle * fwnode,phys_addr_t addr,resource_size_t size)4175 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
4176 resource_size_t size)
4177 {
4178 int ret = 0;
4179 #ifdef PCI_IOBASE
4180 struct logic_pio_hwaddr *range;
4181
4182 if (!size || addr + size < addr)
4183 return -EINVAL;
4184
4185 range = kzalloc(sizeof(*range), GFP_ATOMIC);
4186 if (!range)
4187 return -ENOMEM;
4188
4189 range->fwnode = fwnode;
4190 range->size = size;
4191 range->hw_start = addr;
4192 range->flags = LOGIC_PIO_CPU_MMIO;
4193
4194 ret = logic_pio_register_range(range);
4195 if (ret)
4196 kfree(range);
4197
4198 /* Ignore duplicates due to deferred probing */
4199 if (ret == -EEXIST)
4200 ret = 0;
4201 #endif
4202
4203 return ret;
4204 }
4205
pci_pio_to_address(unsigned long pio)4206 phys_addr_t pci_pio_to_address(unsigned long pio)
4207 {
4208 #ifdef PCI_IOBASE
4209 if (pio < MMIO_UPPER_LIMIT)
4210 return logic_pio_to_hwaddr(pio);
4211 #endif
4212
4213 return (phys_addr_t) OF_BAD_ADDR;
4214 }
4215 EXPORT_SYMBOL_GPL(pci_pio_to_address);
4216
pci_address_to_pio(phys_addr_t address)4217 unsigned long __weak pci_address_to_pio(phys_addr_t address)
4218 {
4219 #ifdef PCI_IOBASE
4220 return logic_pio_trans_cpuaddr(address);
4221 #else
4222 if (address > IO_SPACE_LIMIT)
4223 return (unsigned long)-1;
4224
4225 return (unsigned long) address;
4226 #endif
4227 }
4228
4229 /**
4230 * pci_remap_iospace - Remap the memory mapped I/O space
4231 * @res: Resource describing the I/O space
4232 * @phys_addr: physical address of range to be mapped
4233 *
4234 * Remap the memory mapped I/O space described by the @res and the CPU
4235 * physical address @phys_addr into virtual address space. Only
4236 * architectures that have memory mapped IO functions defined (and the
4237 * PCI_IOBASE value defined) should call this function.
4238 */
4239 #ifndef pci_remap_iospace
pci_remap_iospace(const struct resource * res,phys_addr_t phys_addr)4240 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4241 {
4242 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4243 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4244
4245 if (!(res->flags & IORESOURCE_IO))
4246 return -EINVAL;
4247
4248 if (res->end > IO_SPACE_LIMIT)
4249 return -EINVAL;
4250
4251 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4252 pgprot_device(PAGE_KERNEL));
4253 #else
4254 /*
4255 * This architecture does not have memory mapped I/O space,
4256 * so this function should never be called
4257 */
4258 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4259 return -ENODEV;
4260 #endif
4261 }
4262 EXPORT_SYMBOL(pci_remap_iospace);
4263 #endif
4264
4265 /**
4266 * pci_unmap_iospace - Unmap the memory mapped I/O space
4267 * @res: resource to be unmapped
4268 *
4269 * Unmap the CPU virtual address @res from virtual address space. Only
4270 * architectures that have memory mapped IO functions defined (and the
4271 * PCI_IOBASE value defined) should call this function.
4272 */
pci_unmap_iospace(struct resource * res)4273 void pci_unmap_iospace(struct resource *res)
4274 {
4275 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4276 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4277
4278 vunmap_range(vaddr, vaddr + resource_size(res));
4279 #endif
4280 }
4281 EXPORT_SYMBOL(pci_unmap_iospace);
4282
devm_pci_unmap_iospace(struct device * dev,void * ptr)4283 static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4284 {
4285 struct resource **res = ptr;
4286
4287 pci_unmap_iospace(*res);
4288 }
4289
4290 /**
4291 * devm_pci_remap_iospace - Managed pci_remap_iospace()
4292 * @dev: Generic device to remap IO address for
4293 * @res: Resource describing the I/O space
4294 * @phys_addr: physical address of range to be mapped
4295 *
4296 * Managed pci_remap_iospace(). Map is automatically unmapped on driver
4297 * detach.
4298 */
devm_pci_remap_iospace(struct device * dev,const struct resource * res,phys_addr_t phys_addr)4299 int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4300 phys_addr_t phys_addr)
4301 {
4302 const struct resource **ptr;
4303 int error;
4304
4305 ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4306 if (!ptr)
4307 return -ENOMEM;
4308
4309 error = pci_remap_iospace(res, phys_addr);
4310 if (error) {
4311 devres_free(ptr);
4312 } else {
4313 *ptr = res;
4314 devres_add(dev, ptr);
4315 }
4316
4317 return error;
4318 }
4319 EXPORT_SYMBOL(devm_pci_remap_iospace);
4320
4321 /**
4322 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4323 * @dev: Generic device to remap IO address for
4324 * @offset: Resource address to map
4325 * @size: Size of map
4326 *
4327 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver
4328 * detach.
4329 */
devm_pci_remap_cfgspace(struct device * dev,resource_size_t offset,resource_size_t size)4330 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4331 resource_size_t offset,
4332 resource_size_t size)
4333 {
4334 void __iomem **ptr, *addr;
4335
4336 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4337 if (!ptr)
4338 return NULL;
4339
4340 addr = pci_remap_cfgspace(offset, size);
4341 if (addr) {
4342 *ptr = addr;
4343 devres_add(dev, ptr);
4344 } else
4345 devres_free(ptr);
4346
4347 return addr;
4348 }
4349 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4350
4351 /**
4352 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4353 * @dev: generic device to handle the resource for
4354 * @res: configuration space resource to be handled
4355 *
4356 * Checks that a resource is a valid memory region, requests the memory
4357 * region and ioremaps with pci_remap_cfgspace() API that ensures the
4358 * proper PCI configuration space memory attributes are guaranteed.
4359 *
4360 * All operations are managed and will be undone on driver detach.
4361 *
4362 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4363 * on failure. Usage example::
4364 *
4365 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4366 * base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4367 * if (IS_ERR(base))
4368 * return PTR_ERR(base);
4369 */
devm_pci_remap_cfg_resource(struct device * dev,struct resource * res)4370 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4371 struct resource *res)
4372 {
4373 resource_size_t size;
4374 const char *name;
4375 void __iomem *dest_ptr;
4376
4377 BUG_ON(!dev);
4378
4379 if (!res || resource_type(res) != IORESOURCE_MEM) {
4380 dev_err(dev, "invalid resource\n");
4381 return IOMEM_ERR_PTR(-EINVAL);
4382 }
4383
4384 size = resource_size(res);
4385
4386 if (res->name)
4387 name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev),
4388 res->name);
4389 else
4390 name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL);
4391 if (!name)
4392 return IOMEM_ERR_PTR(-ENOMEM);
4393
4394 if (!devm_request_mem_region(dev, res->start, size, name)) {
4395 dev_err(dev, "can't request region for resource %pR\n", res);
4396 return IOMEM_ERR_PTR(-EBUSY);
4397 }
4398
4399 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4400 if (!dest_ptr) {
4401 dev_err(dev, "ioremap failed for resource %pR\n", res);
4402 devm_release_mem_region(dev, res->start, size);
4403 dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4404 }
4405
4406 return dest_ptr;
4407 }
4408 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4409
__pci_set_master(struct pci_dev * dev,bool enable)4410 static void __pci_set_master(struct pci_dev *dev, bool enable)
4411 {
4412 u16 old_cmd, cmd;
4413
4414 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4415 if (enable)
4416 cmd = old_cmd | PCI_COMMAND_MASTER;
4417 else
4418 cmd = old_cmd & ~PCI_COMMAND_MASTER;
4419 if (cmd != old_cmd) {
4420 pci_dbg(dev, "%s bus mastering\n",
4421 enable ? "enabling" : "disabling");
4422 pci_write_config_word(dev, PCI_COMMAND, cmd);
4423 }
4424 dev->is_busmaster = enable;
4425 }
4426
4427 /**
4428 * pcibios_setup - process "pci=" kernel boot arguments
4429 * @str: string used to pass in "pci=" kernel boot arguments
4430 *
4431 * Process kernel boot arguments. This is the default implementation.
4432 * Architecture specific implementations can override this as necessary.
4433 */
pcibios_setup(char * str)4434 char * __weak __init pcibios_setup(char *str)
4435 {
4436 return str;
4437 }
4438
4439 /**
4440 * pcibios_set_master - enable PCI bus-mastering for device dev
4441 * @dev: the PCI device to enable
4442 *
4443 * Enables PCI bus-mastering for the device. This is the default
4444 * implementation. Architecture specific implementations can override
4445 * this if necessary.
4446 */
pcibios_set_master(struct pci_dev * dev)4447 void __weak pcibios_set_master(struct pci_dev *dev)
4448 {
4449 u8 lat;
4450
4451 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4452 if (pci_is_pcie(dev))
4453 return;
4454
4455 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4456 if (lat < 16)
4457 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4458 else if (lat > pcibios_max_latency)
4459 lat = pcibios_max_latency;
4460 else
4461 return;
4462
4463 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4464 }
4465
4466 /**
4467 * pci_set_master - enables bus-mastering for device dev
4468 * @dev: the PCI device to enable
4469 *
4470 * Enables bus-mastering on the device and calls pcibios_set_master()
4471 * to do the needed arch specific settings.
4472 */
pci_set_master(struct pci_dev * dev)4473 void pci_set_master(struct pci_dev *dev)
4474 {
4475 __pci_set_master(dev, true);
4476 pcibios_set_master(dev);
4477 }
4478 EXPORT_SYMBOL(pci_set_master);
4479
4480 /**
4481 * pci_clear_master - disables bus-mastering for device dev
4482 * @dev: the PCI device to disable
4483 */
pci_clear_master(struct pci_dev * dev)4484 void pci_clear_master(struct pci_dev *dev)
4485 {
4486 __pci_set_master(dev, false);
4487 }
4488 EXPORT_SYMBOL(pci_clear_master);
4489
4490 /**
4491 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4492 * @dev: the PCI device for which MWI is to be enabled
4493 *
4494 * Helper function for pci_set_mwi.
4495 * Originally copied from drivers/net/acenic.c.
4496 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4497 *
4498 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4499 */
pci_set_cacheline_size(struct pci_dev * dev)4500 int pci_set_cacheline_size(struct pci_dev *dev)
4501 {
4502 u8 cacheline_size;
4503
4504 if (!pci_cache_line_size)
4505 return -EINVAL;
4506
4507 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4508 equal to or multiple of the right value. */
4509 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4510 if (cacheline_size >= pci_cache_line_size &&
4511 (cacheline_size % pci_cache_line_size) == 0)
4512 return 0;
4513
4514 /* Write the correct value. */
4515 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4516 /* Read it back. */
4517 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4518 if (cacheline_size == pci_cache_line_size)
4519 return 0;
4520
4521 pci_dbg(dev, "cache line size of %d is not supported\n",
4522 pci_cache_line_size << 2);
4523
4524 return -EINVAL;
4525 }
4526 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4527
4528 /**
4529 * pci_set_mwi - enables memory-write-invalidate PCI transaction
4530 * @dev: the PCI device for which MWI is enabled
4531 *
4532 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4533 *
4534 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4535 */
pci_set_mwi(struct pci_dev * dev)4536 int pci_set_mwi(struct pci_dev *dev)
4537 {
4538 #ifdef PCI_DISABLE_MWI
4539 return 0;
4540 #else
4541 int rc;
4542 u16 cmd;
4543
4544 rc = pci_set_cacheline_size(dev);
4545 if (rc)
4546 return rc;
4547
4548 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4549 if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4550 pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4551 cmd |= PCI_COMMAND_INVALIDATE;
4552 pci_write_config_word(dev, PCI_COMMAND, cmd);
4553 }
4554 return 0;
4555 #endif
4556 }
4557 EXPORT_SYMBOL(pci_set_mwi);
4558
4559 /**
4560 * pcim_set_mwi - a device-managed pci_set_mwi()
4561 * @dev: the PCI device for which MWI is enabled
4562 *
4563 * Managed pci_set_mwi().
4564 *
4565 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4566 */
pcim_set_mwi(struct pci_dev * dev)4567 int pcim_set_mwi(struct pci_dev *dev)
4568 {
4569 struct pci_devres *dr;
4570
4571 dr = find_pci_dr(dev);
4572 if (!dr)
4573 return -ENOMEM;
4574
4575 dr->mwi = 1;
4576 return pci_set_mwi(dev);
4577 }
4578 EXPORT_SYMBOL(pcim_set_mwi);
4579
4580 /**
4581 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4582 * @dev: the PCI device for which MWI is enabled
4583 *
4584 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4585 * Callers are not required to check the return value.
4586 *
4587 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4588 */
pci_try_set_mwi(struct pci_dev * dev)4589 int pci_try_set_mwi(struct pci_dev *dev)
4590 {
4591 #ifdef PCI_DISABLE_MWI
4592 return 0;
4593 #else
4594 return pci_set_mwi(dev);
4595 #endif
4596 }
4597 EXPORT_SYMBOL(pci_try_set_mwi);
4598
4599 /**
4600 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4601 * @dev: the PCI device to disable
4602 *
4603 * Disables PCI Memory-Write-Invalidate transaction on the device
4604 */
pci_clear_mwi(struct pci_dev * dev)4605 void pci_clear_mwi(struct pci_dev *dev)
4606 {
4607 #ifndef PCI_DISABLE_MWI
4608 u16 cmd;
4609
4610 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4611 if (cmd & PCI_COMMAND_INVALIDATE) {
4612 cmd &= ~PCI_COMMAND_INVALIDATE;
4613 pci_write_config_word(dev, PCI_COMMAND, cmd);
4614 }
4615 #endif
4616 }
4617 EXPORT_SYMBOL(pci_clear_mwi);
4618
4619 /**
4620 * pci_disable_parity - disable parity checking for device
4621 * @dev: the PCI device to operate on
4622 *
4623 * Disable parity checking for device @dev
4624 */
pci_disable_parity(struct pci_dev * dev)4625 void pci_disable_parity(struct pci_dev *dev)
4626 {
4627 u16 cmd;
4628
4629 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4630 if (cmd & PCI_COMMAND_PARITY) {
4631 cmd &= ~PCI_COMMAND_PARITY;
4632 pci_write_config_word(dev, PCI_COMMAND, cmd);
4633 }
4634 }
4635
4636 /**
4637 * pci_intx - enables/disables PCI INTx for device dev
4638 * @pdev: the PCI device to operate on
4639 * @enable: boolean: whether to enable or disable PCI INTx
4640 *
4641 * Enables/disables PCI INTx for device @pdev
4642 */
pci_intx(struct pci_dev * pdev,int enable)4643 void pci_intx(struct pci_dev *pdev, int enable)
4644 {
4645 u16 pci_command, new;
4646
4647 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4648
4649 if (enable)
4650 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4651 else
4652 new = pci_command | PCI_COMMAND_INTX_DISABLE;
4653
4654 if (new != pci_command) {
4655 struct pci_devres *dr;
4656
4657 pci_write_config_word(pdev, PCI_COMMAND, new);
4658
4659 dr = find_pci_dr(pdev);
4660 if (dr && !dr->restore_intx) {
4661 dr->restore_intx = 1;
4662 dr->orig_intx = !enable;
4663 }
4664 }
4665 }
4666 EXPORT_SYMBOL_GPL(pci_intx);
4667
pci_check_and_set_intx_mask(struct pci_dev * dev,bool mask)4668 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4669 {
4670 struct pci_bus *bus = dev->bus;
4671 bool mask_updated = true;
4672 u32 cmd_status_dword;
4673 u16 origcmd, newcmd;
4674 unsigned long flags;
4675 bool irq_pending;
4676
4677 /*
4678 * We do a single dword read to retrieve both command and status.
4679 * Document assumptions that make this possible.
4680 */
4681 BUILD_BUG_ON(PCI_COMMAND % 4);
4682 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4683
4684 raw_spin_lock_irqsave(&pci_lock, flags);
4685
4686 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4687
4688 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4689
4690 /*
4691 * Check interrupt status register to see whether our device
4692 * triggered the interrupt (when masking) or the next IRQ is
4693 * already pending (when unmasking).
4694 */
4695 if (mask != irq_pending) {
4696 mask_updated = false;
4697 goto done;
4698 }
4699
4700 origcmd = cmd_status_dword;
4701 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4702 if (mask)
4703 newcmd |= PCI_COMMAND_INTX_DISABLE;
4704 if (newcmd != origcmd)
4705 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4706
4707 done:
4708 raw_spin_unlock_irqrestore(&pci_lock, flags);
4709
4710 return mask_updated;
4711 }
4712
4713 /**
4714 * pci_check_and_mask_intx - mask INTx on pending interrupt
4715 * @dev: the PCI device to operate on
4716 *
4717 * Check if the device dev has its INTx line asserted, mask it and return
4718 * true in that case. False is returned if no interrupt was pending.
4719 */
pci_check_and_mask_intx(struct pci_dev * dev)4720 bool pci_check_and_mask_intx(struct pci_dev *dev)
4721 {
4722 return pci_check_and_set_intx_mask(dev, true);
4723 }
4724 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4725
4726 /**
4727 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4728 * @dev: the PCI device to operate on
4729 *
4730 * Check if the device dev has its INTx line asserted, unmask it if not and
4731 * return true. False is returned and the mask remains active if there was
4732 * still an interrupt pending.
4733 */
pci_check_and_unmask_intx(struct pci_dev * dev)4734 bool pci_check_and_unmask_intx(struct pci_dev *dev)
4735 {
4736 return pci_check_and_set_intx_mask(dev, false);
4737 }
4738 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4739
4740 /**
4741 * pci_wait_for_pending_transaction - wait for pending transaction
4742 * @dev: the PCI device to operate on
4743 *
4744 * Return 0 if transaction is pending 1 otherwise.
4745 */
pci_wait_for_pending_transaction(struct pci_dev * dev)4746 int pci_wait_for_pending_transaction(struct pci_dev *dev)
4747 {
4748 if (!pci_is_pcie(dev))
4749 return 1;
4750
4751 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4752 PCI_EXP_DEVSTA_TRPND);
4753 }
4754 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4755
4756 /**
4757 * pcie_flr - initiate a PCIe function level reset
4758 * @dev: device to reset
4759 *
4760 * Initiate a function level reset unconditionally on @dev without
4761 * checking any flags and DEVCAP
4762 */
pcie_flr(struct pci_dev * dev)4763 int pcie_flr(struct pci_dev *dev)
4764 {
4765 if (!pci_wait_for_pending_transaction(dev))
4766 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4767
4768 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4769
4770 if (dev->imm_ready)
4771 return 0;
4772
4773 /*
4774 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4775 * 100ms, but may silently discard requests while the FLR is in
4776 * progress. Wait 100ms before trying to access the device.
4777 */
4778 msleep(100);
4779
4780 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4781 }
4782 EXPORT_SYMBOL_GPL(pcie_flr);
4783
4784 /**
4785 * pcie_reset_flr - initiate a PCIe function level reset
4786 * @dev: device to reset
4787 * @probe: if true, return 0 if device can be reset this way
4788 *
4789 * Initiate a function level reset on @dev.
4790 */
pcie_reset_flr(struct pci_dev * dev,bool probe)4791 int pcie_reset_flr(struct pci_dev *dev, bool probe)
4792 {
4793 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4794 return -ENOTTY;
4795
4796 if (!(dev->devcap & PCI_EXP_DEVCAP_FLR))
4797 return -ENOTTY;
4798
4799 if (probe)
4800 return 0;
4801
4802 return pcie_flr(dev);
4803 }
4804 EXPORT_SYMBOL_GPL(pcie_reset_flr);
4805
pci_af_flr(struct pci_dev * dev,bool probe)4806 static int pci_af_flr(struct pci_dev *dev, bool probe)
4807 {
4808 int pos;
4809 u8 cap;
4810
4811 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4812 if (!pos)
4813 return -ENOTTY;
4814
4815 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4816 return -ENOTTY;
4817
4818 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4819 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4820 return -ENOTTY;
4821
4822 if (probe)
4823 return 0;
4824
4825 /*
4826 * Wait for Transaction Pending bit to clear. A word-aligned test
4827 * is used, so we use the control offset rather than status and shift
4828 * the test bit to match.
4829 */
4830 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4831 PCI_AF_STATUS_TP << 8))
4832 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4833
4834 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4835
4836 if (dev->imm_ready)
4837 return 0;
4838
4839 /*
4840 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4841 * updated 27 July 2006; a device must complete an FLR within
4842 * 100ms, but may silently discard requests while the FLR is in
4843 * progress. Wait 100ms before trying to access the device.
4844 */
4845 msleep(100);
4846
4847 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4848 }
4849
4850 /**
4851 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4852 * @dev: Device to reset.
4853 * @probe: if true, return 0 if the device can be reset this way.
4854 *
4855 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4856 * unset, it will be reinitialized internally when going from PCI_D3hot to
4857 * PCI_D0. If that's the case and the device is not in a low-power state
4858 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4859 *
4860 * NOTE: This causes the caller to sleep for twice the device power transition
4861 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4862 * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4863 * Moreover, only devices in D0 can be reset by this function.
4864 */
pci_pm_reset(struct pci_dev * dev,bool probe)4865 static int pci_pm_reset(struct pci_dev *dev, bool probe)
4866 {
4867 u16 csr;
4868
4869 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4870 return -ENOTTY;
4871
4872 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4873 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4874 return -ENOTTY;
4875
4876 if (probe)
4877 return 0;
4878
4879 if (dev->current_state != PCI_D0)
4880 return -EINVAL;
4881
4882 csr &= ~PCI_PM_CTRL_STATE_MASK;
4883 csr |= PCI_D3hot;
4884 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4885 pci_dev_d3_sleep(dev);
4886
4887 csr &= ~PCI_PM_CTRL_STATE_MASK;
4888 csr |= PCI_D0;
4889 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4890 pci_dev_d3_sleep(dev);
4891
4892 return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4893 }
4894
4895 /**
4896 * pcie_wait_for_link_status - Wait for link status change
4897 * @pdev: Device whose link to wait for.
4898 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE.
4899 * @active: Waiting for active or inactive?
4900 *
4901 * Return 0 if successful, or -ETIMEDOUT if status has not changed within
4902 * PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
4903 */
pcie_wait_for_link_status(struct pci_dev * pdev,bool use_lt,bool active)4904 static int pcie_wait_for_link_status(struct pci_dev *pdev,
4905 bool use_lt, bool active)
4906 {
4907 u16 lnksta_mask, lnksta_match;
4908 unsigned long end_jiffies;
4909 u16 lnksta;
4910
4911 lnksta_mask = use_lt ? PCI_EXP_LNKSTA_LT : PCI_EXP_LNKSTA_DLLLA;
4912 lnksta_match = active ? lnksta_mask : 0;
4913
4914 end_jiffies = jiffies + msecs_to_jiffies(PCIE_LINK_RETRAIN_TIMEOUT_MS);
4915 do {
4916 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta);
4917 if ((lnksta & lnksta_mask) == lnksta_match)
4918 return 0;
4919 msleep(1);
4920 } while (time_before(jiffies, end_jiffies));
4921
4922 return -ETIMEDOUT;
4923 }
4924
4925 /**
4926 * pcie_retrain_link - Request a link retrain and wait for it to complete
4927 * @pdev: Device whose link to retrain.
4928 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE, for status.
4929 *
4930 * Retrain completion status is retrieved from the Link Status Register
4931 * according to @use_lt. It is not verified whether the use of the DLLLA
4932 * bit is valid.
4933 *
4934 * Return 0 if successful, or -ETIMEDOUT if training has not completed
4935 * within PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
4936 */
pcie_retrain_link(struct pci_dev * pdev,bool use_lt)4937 int pcie_retrain_link(struct pci_dev *pdev, bool use_lt)
4938 {
4939 int rc;
4940
4941 /*
4942 * Ensure the updated LNKCTL parameters are used during link
4943 * training by checking that there is no ongoing link training to
4944 * avoid LTSSM race as recommended in Implementation Note at the
4945 * end of PCIe r6.0.1 sec 7.5.3.7.
4946 */
4947 rc = pcie_wait_for_link_status(pdev, use_lt, !use_lt);
4948 if (rc)
4949 return rc;
4950
4951 pcie_capability_set_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
4952 if (pdev->clear_retrain_link) {
4953 /*
4954 * Due to an erratum in some devices the Retrain Link bit
4955 * needs to be cleared again manually to allow the link
4956 * training to succeed.
4957 */
4958 pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
4959 }
4960
4961 return pcie_wait_for_link_status(pdev, use_lt, !use_lt);
4962 }
4963
4964 /**
4965 * pcie_wait_for_link_delay - Wait until link is active or inactive
4966 * @pdev: Bridge device
4967 * @active: waiting for active or inactive?
4968 * @delay: Delay to wait after link has become active (in ms)
4969 *
4970 * Use this to wait till link becomes active or inactive.
4971 */
pcie_wait_for_link_delay(struct pci_dev * pdev,bool active,int delay)4972 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4973 int delay)
4974 {
4975 int rc;
4976
4977 /*
4978 * Some controllers might not implement link active reporting. In this
4979 * case, we wait for 1000 ms + any delay requested by the caller.
4980 */
4981 if (!pdev->link_active_reporting) {
4982 msleep(PCIE_LINK_RETRAIN_TIMEOUT_MS + delay);
4983 return true;
4984 }
4985
4986 /*
4987 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4988 * after which we should expect an link active if the reset was
4989 * successful. If so, software must wait a minimum 100ms before sending
4990 * configuration requests to devices downstream this port.
4991 *
4992 * If the link fails to activate, either the device was physically
4993 * removed or the link is permanently failed.
4994 */
4995 if (active)
4996 msleep(20);
4997 rc = pcie_wait_for_link_status(pdev, false, active);
4998 if (active) {
4999 if (rc)
5000 rc = pcie_failed_link_retrain(pdev);
5001 if (rc)
5002 return false;
5003
5004 msleep(delay);
5005 return true;
5006 }
5007
5008 if (rc)
5009 return false;
5010
5011 return true;
5012 }
5013
5014 /**
5015 * pcie_wait_for_link - Wait until link is active or inactive
5016 * @pdev: Bridge device
5017 * @active: waiting for active or inactive?
5018 *
5019 * Use this to wait till link becomes active or inactive.
5020 */
pcie_wait_for_link(struct pci_dev * pdev,bool active)5021 bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
5022 {
5023 return pcie_wait_for_link_delay(pdev, active, 100);
5024 }
5025
5026 /*
5027 * Find maximum D3cold delay required by all the devices on the bus. The
5028 * spec says 100 ms, but firmware can lower it and we allow drivers to
5029 * increase it as well.
5030 *
5031 * Called with @pci_bus_sem locked for reading.
5032 */
pci_bus_max_d3cold_delay(const struct pci_bus * bus)5033 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
5034 {
5035 const struct pci_dev *pdev;
5036 int min_delay = 100;
5037 int max_delay = 0;
5038
5039 list_for_each_entry(pdev, &bus->devices, bus_list) {
5040 if (pdev->d3cold_delay < min_delay)
5041 min_delay = pdev->d3cold_delay;
5042 if (pdev->d3cold_delay > max_delay)
5043 max_delay = pdev->d3cold_delay;
5044 }
5045
5046 return max(min_delay, max_delay);
5047 }
5048
5049 /**
5050 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
5051 * @dev: PCI bridge
5052 * @reset_type: reset type in human-readable form
5053 *
5054 * Handle necessary delays before access to the devices on the secondary
5055 * side of the bridge are permitted after D3cold to D0 transition
5056 * or Conventional Reset.
5057 *
5058 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
5059 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
5060 * 4.3.2.
5061 *
5062 * Return 0 on success or -ENOTTY if the first device on the secondary bus
5063 * failed to become accessible.
5064 */
pci_bridge_wait_for_secondary_bus(struct pci_dev * dev,char * reset_type)5065 int pci_bridge_wait_for_secondary_bus(struct pci_dev *dev, char *reset_type)
5066 {
5067 struct pci_dev *child;
5068 int delay;
5069
5070 if (pci_dev_is_disconnected(dev))
5071 return 0;
5072
5073 if (!pci_is_bridge(dev))
5074 return 0;
5075
5076 down_read(&pci_bus_sem);
5077
5078 /*
5079 * We only deal with devices that are present currently on the bus.
5080 * For any hot-added devices the access delay is handled in pciehp
5081 * board_added(). In case of ACPI hotplug the firmware is expected
5082 * to configure the devices before OS is notified.
5083 */
5084 if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
5085 up_read(&pci_bus_sem);
5086 return 0;
5087 }
5088
5089 /* Take d3cold_delay requirements into account */
5090 delay = pci_bus_max_d3cold_delay(dev->subordinate);
5091 if (!delay) {
5092 up_read(&pci_bus_sem);
5093 return 0;
5094 }
5095
5096 child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
5097 bus_list);
5098 up_read(&pci_bus_sem);
5099
5100 /*
5101 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
5102 * accessing the device after reset (that is 1000 ms + 100 ms).
5103 */
5104 if (!pci_is_pcie(dev)) {
5105 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
5106 msleep(1000 + delay);
5107 return 0;
5108 }
5109
5110 /*
5111 * For PCIe downstream and root ports that do not support speeds
5112 * greater than 5 GT/s need to wait minimum 100 ms. For higher
5113 * speeds (gen3) we need to wait first for the data link layer to
5114 * become active.
5115 *
5116 * However, 100 ms is the minimum and the PCIe spec says the
5117 * software must allow at least 1s before it can determine that the
5118 * device that did not respond is a broken device. Also device can
5119 * take longer than that to respond if it indicates so through Request
5120 * Retry Status completions.
5121 *
5122 * Therefore we wait for 100 ms and check for the device presence
5123 * until the timeout expires.
5124 */
5125 if (!pcie_downstream_port(dev))
5126 return 0;
5127
5128 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
5129 u16 status;
5130
5131 pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
5132 msleep(delay);
5133
5134 if (!pci_dev_wait(child, reset_type, PCI_RESET_WAIT - delay))
5135 return 0;
5136
5137 /*
5138 * If the port supports active link reporting we now check
5139 * whether the link is active and if not bail out early with
5140 * the assumption that the device is not present anymore.
5141 */
5142 if (!dev->link_active_reporting)
5143 return -ENOTTY;
5144
5145 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &status);
5146 if (!(status & PCI_EXP_LNKSTA_DLLLA))
5147 return -ENOTTY;
5148
5149 return pci_dev_wait(child, reset_type,
5150 PCIE_RESET_READY_POLL_MS - PCI_RESET_WAIT);
5151 }
5152
5153 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
5154 delay);
5155 if (!pcie_wait_for_link_delay(dev, true, delay)) {
5156 /* Did not train, no need to wait any further */
5157 pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
5158 return -ENOTTY;
5159 }
5160
5161 return pci_dev_wait(child, reset_type,
5162 PCIE_RESET_READY_POLL_MS - delay);
5163 }
5164
pci_reset_secondary_bus(struct pci_dev * dev)5165 void pci_reset_secondary_bus(struct pci_dev *dev)
5166 {
5167 u16 ctrl;
5168
5169 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
5170 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
5171 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
5172
5173 /*
5174 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
5175 * this to 2ms to ensure that we meet the minimum requirement.
5176 */
5177 msleep(2);
5178
5179 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
5180 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
5181 }
5182
pcibios_reset_secondary_bus(struct pci_dev * dev)5183 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
5184 {
5185 pci_reset_secondary_bus(dev);
5186 }
5187
5188 /**
5189 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
5190 * @dev: Bridge device
5191 *
5192 * Use the bridge control register to assert reset on the secondary bus.
5193 * Devices on the secondary bus are left in power-on state.
5194 */
pci_bridge_secondary_bus_reset(struct pci_dev * dev)5195 int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
5196 {
5197 pcibios_reset_secondary_bus(dev);
5198
5199 return pci_bridge_wait_for_secondary_bus(dev, "bus reset");
5200 }
5201 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
5202
pci_parent_bus_reset(struct pci_dev * dev,bool probe)5203 static int pci_parent_bus_reset(struct pci_dev *dev, bool probe)
5204 {
5205 struct pci_dev *pdev;
5206
5207 if (pci_is_root_bus(dev->bus) || dev->subordinate ||
5208 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5209 return -ENOTTY;
5210
5211 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
5212 if (pdev != dev)
5213 return -ENOTTY;
5214
5215 if (probe)
5216 return 0;
5217
5218 return pci_bridge_secondary_bus_reset(dev->bus->self);
5219 }
5220
pci_reset_hotplug_slot(struct hotplug_slot * hotplug,bool probe)5221 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe)
5222 {
5223 int rc = -ENOTTY;
5224
5225 if (!hotplug || !try_module_get(hotplug->owner))
5226 return rc;
5227
5228 if (hotplug->ops->reset_slot)
5229 rc = hotplug->ops->reset_slot(hotplug, probe);
5230
5231 module_put(hotplug->owner);
5232
5233 return rc;
5234 }
5235
pci_dev_reset_slot_function(struct pci_dev * dev,bool probe)5236 static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe)
5237 {
5238 if (dev->multifunction || dev->subordinate || !dev->slot ||
5239 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5240 return -ENOTTY;
5241
5242 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
5243 }
5244
pci_reset_bus_function(struct pci_dev * dev,bool probe)5245 static int pci_reset_bus_function(struct pci_dev *dev, bool probe)
5246 {
5247 int rc;
5248
5249 rc = pci_dev_reset_slot_function(dev, probe);
5250 if (rc != -ENOTTY)
5251 return rc;
5252 return pci_parent_bus_reset(dev, probe);
5253 }
5254
pci_dev_lock(struct pci_dev * dev)5255 void pci_dev_lock(struct pci_dev *dev)
5256 {
5257 /* block PM suspend, driver probe, etc. */
5258 device_lock(&dev->dev);
5259 pci_cfg_access_lock(dev);
5260 }
5261 EXPORT_SYMBOL_GPL(pci_dev_lock);
5262
5263 /* Return 1 on successful lock, 0 on contention */
pci_dev_trylock(struct pci_dev * dev)5264 int pci_dev_trylock(struct pci_dev *dev)
5265 {
5266 if (device_trylock(&dev->dev)) {
5267 if (pci_cfg_access_trylock(dev))
5268 return 1;
5269 device_unlock(&dev->dev);
5270 }
5271
5272 return 0;
5273 }
5274 EXPORT_SYMBOL_GPL(pci_dev_trylock);
5275
pci_dev_unlock(struct pci_dev * dev)5276 void pci_dev_unlock(struct pci_dev *dev)
5277 {
5278 pci_cfg_access_unlock(dev);
5279 device_unlock(&dev->dev);
5280 }
5281 EXPORT_SYMBOL_GPL(pci_dev_unlock);
5282
pci_dev_save_and_disable(struct pci_dev * dev)5283 static void pci_dev_save_and_disable(struct pci_dev *dev)
5284 {
5285 const struct pci_error_handlers *err_handler =
5286 dev->driver ? dev->driver->err_handler : NULL;
5287
5288 /*
5289 * dev->driver->err_handler->reset_prepare() is protected against
5290 * races with ->remove() by the device lock, which must be held by
5291 * the caller.
5292 */
5293 if (err_handler && err_handler->reset_prepare)
5294 err_handler->reset_prepare(dev);
5295
5296 /*
5297 * Wake-up device prior to save. PM registers default to D0 after
5298 * reset and a simple register restore doesn't reliably return
5299 * to a non-D0 state anyway.
5300 */
5301 pci_set_power_state(dev, PCI_D0);
5302
5303 pci_save_state(dev);
5304 /*
5305 * Disable the device by clearing the Command register, except for
5306 * INTx-disable which is set. This not only disables MMIO and I/O port
5307 * BARs, but also prevents the device from being Bus Master, preventing
5308 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
5309 * compliant devices, INTx-disable prevents legacy interrupts.
5310 */
5311 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
5312 }
5313
pci_dev_restore(struct pci_dev * dev)5314 static void pci_dev_restore(struct pci_dev *dev)
5315 {
5316 const struct pci_error_handlers *err_handler =
5317 dev->driver ? dev->driver->err_handler : NULL;
5318
5319 pci_restore_state(dev);
5320
5321 /*
5322 * dev->driver->err_handler->reset_done() is protected against
5323 * races with ->remove() by the device lock, which must be held by
5324 * the caller.
5325 */
5326 if (err_handler && err_handler->reset_done)
5327 err_handler->reset_done(dev);
5328 }
5329
5330 /* dev->reset_methods[] is a 0-terminated list of indices into this array */
5331 static const struct pci_reset_fn_method pci_reset_fn_methods[] = {
5332 { },
5333 { pci_dev_specific_reset, .name = "device_specific" },
5334 { pci_dev_acpi_reset, .name = "acpi" },
5335 { pcie_reset_flr, .name = "flr" },
5336 { pci_af_flr, .name = "af_flr" },
5337 { pci_pm_reset, .name = "pm" },
5338 { pci_reset_bus_function, .name = "bus" },
5339 };
5340
reset_method_show(struct device * dev,struct device_attribute * attr,char * buf)5341 static ssize_t reset_method_show(struct device *dev,
5342 struct device_attribute *attr, char *buf)
5343 {
5344 struct pci_dev *pdev = to_pci_dev(dev);
5345 ssize_t len = 0;
5346 int i, m;
5347
5348 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5349 m = pdev->reset_methods[i];
5350 if (!m)
5351 break;
5352
5353 len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "",
5354 pci_reset_fn_methods[m].name);
5355 }
5356
5357 if (len)
5358 len += sysfs_emit_at(buf, len, "\n");
5359
5360 return len;
5361 }
5362
reset_method_lookup(const char * name)5363 static int reset_method_lookup(const char *name)
5364 {
5365 int m;
5366
5367 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5368 if (sysfs_streq(name, pci_reset_fn_methods[m].name))
5369 return m;
5370 }
5371
5372 return 0; /* not found */
5373 }
5374
reset_method_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5375 static ssize_t reset_method_store(struct device *dev,
5376 struct device_attribute *attr,
5377 const char *buf, size_t count)
5378 {
5379 struct pci_dev *pdev = to_pci_dev(dev);
5380 char *options, *name;
5381 int m, n;
5382 u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 };
5383
5384 if (sysfs_streq(buf, "")) {
5385 pdev->reset_methods[0] = 0;
5386 pci_warn(pdev, "All device reset methods disabled by user");
5387 return count;
5388 }
5389
5390 if (sysfs_streq(buf, "default")) {
5391 pci_init_reset_methods(pdev);
5392 return count;
5393 }
5394
5395 options = kstrndup(buf, count, GFP_KERNEL);
5396 if (!options)
5397 return -ENOMEM;
5398
5399 n = 0;
5400 while ((name = strsep(&options, " ")) != NULL) {
5401 if (sysfs_streq(name, ""))
5402 continue;
5403
5404 name = strim(name);
5405
5406 m = reset_method_lookup(name);
5407 if (!m) {
5408 pci_err(pdev, "Invalid reset method '%s'", name);
5409 goto error;
5410 }
5411
5412 if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) {
5413 pci_err(pdev, "Unsupported reset method '%s'", name);
5414 goto error;
5415 }
5416
5417 if (n == PCI_NUM_RESET_METHODS - 1) {
5418 pci_err(pdev, "Too many reset methods\n");
5419 goto error;
5420 }
5421
5422 reset_methods[n++] = m;
5423 }
5424
5425 reset_methods[n] = 0;
5426
5427 /* Warn if dev-specific supported but not highest priority */
5428 if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 &&
5429 reset_methods[0] != 1)
5430 pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user");
5431 memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods));
5432 kfree(options);
5433 return count;
5434
5435 error:
5436 /* Leave previous methods unchanged */
5437 kfree(options);
5438 return -EINVAL;
5439 }
5440 static DEVICE_ATTR_RW(reset_method);
5441
5442 static struct attribute *pci_dev_reset_method_attrs[] = {
5443 &dev_attr_reset_method.attr,
5444 NULL,
5445 };
5446
pci_dev_reset_method_attr_is_visible(struct kobject * kobj,struct attribute * a,int n)5447 static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj,
5448 struct attribute *a, int n)
5449 {
5450 struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj));
5451
5452 if (!pci_reset_supported(pdev))
5453 return 0;
5454
5455 return a->mode;
5456 }
5457
5458 const struct attribute_group pci_dev_reset_method_attr_group = {
5459 .attrs = pci_dev_reset_method_attrs,
5460 .is_visible = pci_dev_reset_method_attr_is_visible,
5461 };
5462
5463 /**
5464 * __pci_reset_function_locked - reset a PCI device function while holding
5465 * the @dev mutex lock.
5466 * @dev: PCI device to reset
5467 *
5468 * Some devices allow an individual function to be reset without affecting
5469 * other functions in the same device. The PCI device must be responsive
5470 * to PCI config space in order to use this function.
5471 *
5472 * The device function is presumed to be unused and the caller is holding
5473 * the device mutex lock when this function is called.
5474 *
5475 * Resetting the device will make the contents of PCI configuration space
5476 * random, so any caller of this must be prepared to reinitialise the
5477 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5478 * etc.
5479 *
5480 * Returns 0 if the device function was successfully reset or negative if the
5481 * device doesn't support resetting a single function.
5482 */
__pci_reset_function_locked(struct pci_dev * dev)5483 int __pci_reset_function_locked(struct pci_dev *dev)
5484 {
5485 int i, m, rc;
5486
5487 might_sleep();
5488
5489 /*
5490 * A reset method returns -ENOTTY if it doesn't support this device and
5491 * we should try the next method.
5492 *
5493 * If it returns 0 (success), we're finished. If it returns any other
5494 * error, we're also finished: this indicates that further reset
5495 * mechanisms might be broken on the device.
5496 */
5497 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5498 m = dev->reset_methods[i];
5499 if (!m)
5500 return -ENOTTY;
5501
5502 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET);
5503 if (!rc)
5504 return 0;
5505 if (rc != -ENOTTY)
5506 return rc;
5507 }
5508
5509 return -ENOTTY;
5510 }
5511 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5512
5513 /**
5514 * pci_init_reset_methods - check whether device can be safely reset
5515 * and store supported reset mechanisms.
5516 * @dev: PCI device to check for reset mechanisms
5517 *
5518 * Some devices allow an individual function to be reset without affecting
5519 * other functions in the same device. The PCI device must be in D0-D3hot
5520 * state.
5521 *
5522 * Stores reset mechanisms supported by device in reset_methods byte array
5523 * which is a member of struct pci_dev.
5524 */
pci_init_reset_methods(struct pci_dev * dev)5525 void pci_init_reset_methods(struct pci_dev *dev)
5526 {
5527 int m, i, rc;
5528
5529 BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS);
5530
5531 might_sleep();
5532
5533 i = 0;
5534 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5535 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE);
5536 if (!rc)
5537 dev->reset_methods[i++] = m;
5538 else if (rc != -ENOTTY)
5539 break;
5540 }
5541
5542 dev->reset_methods[i] = 0;
5543 }
5544
5545 /**
5546 * pci_reset_function - quiesce and reset a PCI device function
5547 * @dev: PCI device to reset
5548 *
5549 * Some devices allow an individual function to be reset without affecting
5550 * other functions in the same device. The PCI device must be responsive
5551 * to PCI config space in order to use this function.
5552 *
5553 * This function does not just reset the PCI portion of a device, but
5554 * clears all the state associated with the device. This function differs
5555 * from __pci_reset_function_locked() in that it saves and restores device state
5556 * over the reset and takes the PCI device lock.
5557 *
5558 * Returns 0 if the device function was successfully reset or negative if the
5559 * device doesn't support resetting a single function.
5560 */
pci_reset_function(struct pci_dev * dev)5561 int pci_reset_function(struct pci_dev *dev)
5562 {
5563 int rc;
5564
5565 if (!pci_reset_supported(dev))
5566 return -ENOTTY;
5567
5568 pci_dev_lock(dev);
5569 pci_dev_save_and_disable(dev);
5570
5571 rc = __pci_reset_function_locked(dev);
5572
5573 pci_dev_restore(dev);
5574 pci_dev_unlock(dev);
5575
5576 return rc;
5577 }
5578 EXPORT_SYMBOL_GPL(pci_reset_function);
5579
5580 /**
5581 * pci_reset_function_locked - quiesce and reset a PCI device function
5582 * @dev: PCI device to reset
5583 *
5584 * Some devices allow an individual function to be reset without affecting
5585 * other functions in the same device. The PCI device must be responsive
5586 * to PCI config space in order to use this function.
5587 *
5588 * This function does not just reset the PCI portion of a device, but
5589 * clears all the state associated with the device. This function differs
5590 * from __pci_reset_function_locked() in that it saves and restores device state
5591 * over the reset. It also differs from pci_reset_function() in that it
5592 * requires the PCI device lock to be held.
5593 *
5594 * Returns 0 if the device function was successfully reset or negative if the
5595 * device doesn't support resetting a single function.
5596 */
pci_reset_function_locked(struct pci_dev * dev)5597 int pci_reset_function_locked(struct pci_dev *dev)
5598 {
5599 int rc;
5600
5601 if (!pci_reset_supported(dev))
5602 return -ENOTTY;
5603
5604 pci_dev_save_and_disable(dev);
5605
5606 rc = __pci_reset_function_locked(dev);
5607
5608 pci_dev_restore(dev);
5609
5610 return rc;
5611 }
5612 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5613
5614 /**
5615 * pci_try_reset_function - quiesce and reset a PCI device function
5616 * @dev: PCI device to reset
5617 *
5618 * Same as above, except return -EAGAIN if unable to lock device.
5619 */
pci_try_reset_function(struct pci_dev * dev)5620 int pci_try_reset_function(struct pci_dev *dev)
5621 {
5622 int rc;
5623
5624 if (!pci_reset_supported(dev))
5625 return -ENOTTY;
5626
5627 if (!pci_dev_trylock(dev))
5628 return -EAGAIN;
5629
5630 pci_dev_save_and_disable(dev);
5631 rc = __pci_reset_function_locked(dev);
5632 pci_dev_restore(dev);
5633 pci_dev_unlock(dev);
5634
5635 return rc;
5636 }
5637 EXPORT_SYMBOL_GPL(pci_try_reset_function);
5638
5639 /* Do any devices on or below this bus prevent a bus reset? */
pci_bus_resettable(struct pci_bus * bus)5640 static bool pci_bus_resettable(struct pci_bus *bus)
5641 {
5642 struct pci_dev *dev;
5643
5644
5645 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5646 return false;
5647
5648 list_for_each_entry(dev, &bus->devices, bus_list) {
5649 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5650 (dev->subordinate && !pci_bus_resettable(dev->subordinate)))
5651 return false;
5652 }
5653
5654 return true;
5655 }
5656
5657 /* Lock devices from the top of the tree down */
pci_bus_lock(struct pci_bus * bus)5658 static void pci_bus_lock(struct pci_bus *bus)
5659 {
5660 struct pci_dev *dev;
5661
5662 list_for_each_entry(dev, &bus->devices, bus_list) {
5663 pci_dev_lock(dev);
5664 if (dev->subordinate)
5665 pci_bus_lock(dev->subordinate);
5666 }
5667 }
5668
5669 /* Unlock devices from the bottom of the tree up */
pci_bus_unlock(struct pci_bus * bus)5670 static void pci_bus_unlock(struct pci_bus *bus)
5671 {
5672 struct pci_dev *dev;
5673
5674 list_for_each_entry(dev, &bus->devices, bus_list) {
5675 if (dev->subordinate)
5676 pci_bus_unlock(dev->subordinate);
5677 pci_dev_unlock(dev);
5678 }
5679 }
5680
5681 /* Return 1 on successful lock, 0 on contention */
pci_bus_trylock(struct pci_bus * bus)5682 static int pci_bus_trylock(struct pci_bus *bus)
5683 {
5684 struct pci_dev *dev;
5685
5686 list_for_each_entry(dev, &bus->devices, bus_list) {
5687 if (!pci_dev_trylock(dev))
5688 goto unlock;
5689 if (dev->subordinate) {
5690 if (!pci_bus_trylock(dev->subordinate)) {
5691 pci_dev_unlock(dev);
5692 goto unlock;
5693 }
5694 }
5695 }
5696 return 1;
5697
5698 unlock:
5699 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5700 if (dev->subordinate)
5701 pci_bus_unlock(dev->subordinate);
5702 pci_dev_unlock(dev);
5703 }
5704 return 0;
5705 }
5706
5707 /* Do any devices on or below this slot prevent a bus reset? */
pci_slot_resettable(struct pci_slot * slot)5708 static bool pci_slot_resettable(struct pci_slot *slot)
5709 {
5710 struct pci_dev *dev;
5711
5712 if (slot->bus->self &&
5713 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5714 return false;
5715
5716 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5717 if (!dev->slot || dev->slot != slot)
5718 continue;
5719 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5720 (dev->subordinate && !pci_bus_resettable(dev->subordinate)))
5721 return false;
5722 }
5723
5724 return true;
5725 }
5726
5727 /* Lock devices from the top of the tree down */
pci_slot_lock(struct pci_slot * slot)5728 static void pci_slot_lock(struct pci_slot *slot)
5729 {
5730 struct pci_dev *dev;
5731
5732 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5733 if (!dev->slot || dev->slot != slot)
5734 continue;
5735 pci_dev_lock(dev);
5736 if (dev->subordinate)
5737 pci_bus_lock(dev->subordinate);
5738 }
5739 }
5740
5741 /* Unlock devices from the bottom of the tree up */
pci_slot_unlock(struct pci_slot * slot)5742 static void pci_slot_unlock(struct pci_slot *slot)
5743 {
5744 struct pci_dev *dev;
5745
5746 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5747 if (!dev->slot || dev->slot != slot)
5748 continue;
5749 if (dev->subordinate)
5750 pci_bus_unlock(dev->subordinate);
5751 pci_dev_unlock(dev);
5752 }
5753 }
5754
5755 /* Return 1 on successful lock, 0 on contention */
pci_slot_trylock(struct pci_slot * slot)5756 static int pci_slot_trylock(struct pci_slot *slot)
5757 {
5758 struct pci_dev *dev;
5759
5760 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5761 if (!dev->slot || dev->slot != slot)
5762 continue;
5763 if (!pci_dev_trylock(dev))
5764 goto unlock;
5765 if (dev->subordinate) {
5766 if (!pci_bus_trylock(dev->subordinate)) {
5767 pci_dev_unlock(dev);
5768 goto unlock;
5769 }
5770 }
5771 }
5772 return 1;
5773
5774 unlock:
5775 list_for_each_entry_continue_reverse(dev,
5776 &slot->bus->devices, bus_list) {
5777 if (!dev->slot || dev->slot != slot)
5778 continue;
5779 if (dev->subordinate)
5780 pci_bus_unlock(dev->subordinate);
5781 pci_dev_unlock(dev);
5782 }
5783 return 0;
5784 }
5785
5786 /*
5787 * Save and disable devices from the top of the tree down while holding
5788 * the @dev mutex lock for the entire tree.
5789 */
pci_bus_save_and_disable_locked(struct pci_bus * bus)5790 static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5791 {
5792 struct pci_dev *dev;
5793
5794 list_for_each_entry(dev, &bus->devices, bus_list) {
5795 pci_dev_save_and_disable(dev);
5796 if (dev->subordinate)
5797 pci_bus_save_and_disable_locked(dev->subordinate);
5798 }
5799 }
5800
5801 /*
5802 * Restore devices from top of the tree down while holding @dev mutex lock
5803 * for the entire tree. Parent bridges need to be restored before we can
5804 * get to subordinate devices.
5805 */
pci_bus_restore_locked(struct pci_bus * bus)5806 static void pci_bus_restore_locked(struct pci_bus *bus)
5807 {
5808 struct pci_dev *dev;
5809
5810 list_for_each_entry(dev, &bus->devices, bus_list) {
5811 pci_dev_restore(dev);
5812 if (dev->subordinate)
5813 pci_bus_restore_locked(dev->subordinate);
5814 }
5815 }
5816
5817 /*
5818 * Save and disable devices from the top of the tree down while holding
5819 * the @dev mutex lock for the entire tree.
5820 */
pci_slot_save_and_disable_locked(struct pci_slot * slot)5821 static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5822 {
5823 struct pci_dev *dev;
5824
5825 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5826 if (!dev->slot || dev->slot != slot)
5827 continue;
5828 pci_dev_save_and_disable(dev);
5829 if (dev->subordinate)
5830 pci_bus_save_and_disable_locked(dev->subordinate);
5831 }
5832 }
5833
5834 /*
5835 * Restore devices from top of the tree down while holding @dev mutex lock
5836 * for the entire tree. Parent bridges need to be restored before we can
5837 * get to subordinate devices.
5838 */
pci_slot_restore_locked(struct pci_slot * slot)5839 static void pci_slot_restore_locked(struct pci_slot *slot)
5840 {
5841 struct pci_dev *dev;
5842
5843 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5844 if (!dev->slot || dev->slot != slot)
5845 continue;
5846 pci_dev_restore(dev);
5847 if (dev->subordinate)
5848 pci_bus_restore_locked(dev->subordinate);
5849 }
5850 }
5851
pci_slot_reset(struct pci_slot * slot,bool probe)5852 static int pci_slot_reset(struct pci_slot *slot, bool probe)
5853 {
5854 int rc;
5855
5856 if (!slot || !pci_slot_resettable(slot))
5857 return -ENOTTY;
5858
5859 if (!probe)
5860 pci_slot_lock(slot);
5861
5862 might_sleep();
5863
5864 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5865
5866 if (!probe)
5867 pci_slot_unlock(slot);
5868
5869 return rc;
5870 }
5871
5872 /**
5873 * pci_probe_reset_slot - probe whether a PCI slot can be reset
5874 * @slot: PCI slot to probe
5875 *
5876 * Return 0 if slot can be reset, negative if a slot reset is not supported.
5877 */
pci_probe_reset_slot(struct pci_slot * slot)5878 int pci_probe_reset_slot(struct pci_slot *slot)
5879 {
5880 return pci_slot_reset(slot, PCI_RESET_PROBE);
5881 }
5882 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5883
5884 /**
5885 * __pci_reset_slot - Try to reset a PCI slot
5886 * @slot: PCI slot to reset
5887 *
5888 * A PCI bus may host multiple slots, each slot may support a reset mechanism
5889 * independent of other slots. For instance, some slots may support slot power
5890 * control. In the case of a 1:1 bus to slot architecture, this function may
5891 * wrap the bus reset to avoid spurious slot related events such as hotplug.
5892 * Generally a slot reset should be attempted before a bus reset. All of the
5893 * function of the slot and any subordinate buses behind the slot are reset
5894 * through this function. PCI config space of all devices in the slot and
5895 * behind the slot is saved before and restored after reset.
5896 *
5897 * Same as above except return -EAGAIN if the slot cannot be locked
5898 */
__pci_reset_slot(struct pci_slot * slot)5899 static int __pci_reset_slot(struct pci_slot *slot)
5900 {
5901 int rc;
5902
5903 rc = pci_slot_reset(slot, PCI_RESET_PROBE);
5904 if (rc)
5905 return rc;
5906
5907 if (pci_slot_trylock(slot)) {
5908 pci_slot_save_and_disable_locked(slot);
5909 might_sleep();
5910 rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET);
5911 pci_slot_restore_locked(slot);
5912 pci_slot_unlock(slot);
5913 } else
5914 rc = -EAGAIN;
5915
5916 return rc;
5917 }
5918
pci_bus_reset(struct pci_bus * bus,bool probe)5919 static int pci_bus_reset(struct pci_bus *bus, bool probe)
5920 {
5921 int ret;
5922
5923 if (!bus->self || !pci_bus_resettable(bus))
5924 return -ENOTTY;
5925
5926 if (probe)
5927 return 0;
5928
5929 pci_bus_lock(bus);
5930
5931 might_sleep();
5932
5933 ret = pci_bridge_secondary_bus_reset(bus->self);
5934
5935 pci_bus_unlock(bus);
5936
5937 return ret;
5938 }
5939
5940 /**
5941 * pci_bus_error_reset - reset the bridge's subordinate bus
5942 * @bridge: The parent device that connects to the bus to reset
5943 *
5944 * This function will first try to reset the slots on this bus if the method is
5945 * available. If slot reset fails or is not available, this will fall back to a
5946 * secondary bus reset.
5947 */
pci_bus_error_reset(struct pci_dev * bridge)5948 int pci_bus_error_reset(struct pci_dev *bridge)
5949 {
5950 struct pci_bus *bus = bridge->subordinate;
5951 struct pci_slot *slot;
5952
5953 if (!bus)
5954 return -ENOTTY;
5955
5956 mutex_lock(&pci_slot_mutex);
5957 if (list_empty(&bus->slots))
5958 goto bus_reset;
5959
5960 list_for_each_entry(slot, &bus->slots, list)
5961 if (pci_probe_reset_slot(slot))
5962 goto bus_reset;
5963
5964 list_for_each_entry(slot, &bus->slots, list)
5965 if (pci_slot_reset(slot, PCI_RESET_DO_RESET))
5966 goto bus_reset;
5967
5968 mutex_unlock(&pci_slot_mutex);
5969 return 0;
5970 bus_reset:
5971 mutex_unlock(&pci_slot_mutex);
5972 return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET);
5973 }
5974
5975 /**
5976 * pci_probe_reset_bus - probe whether a PCI bus can be reset
5977 * @bus: PCI bus to probe
5978 *
5979 * Return 0 if bus can be reset, negative if a bus reset is not supported.
5980 */
pci_probe_reset_bus(struct pci_bus * bus)5981 int pci_probe_reset_bus(struct pci_bus *bus)
5982 {
5983 return pci_bus_reset(bus, PCI_RESET_PROBE);
5984 }
5985 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5986
5987 /**
5988 * __pci_reset_bus - Try to reset a PCI bus
5989 * @bus: top level PCI bus to reset
5990 *
5991 * Same as above except return -EAGAIN if the bus cannot be locked
5992 */
__pci_reset_bus(struct pci_bus * bus)5993 static int __pci_reset_bus(struct pci_bus *bus)
5994 {
5995 int rc;
5996
5997 rc = pci_bus_reset(bus, PCI_RESET_PROBE);
5998 if (rc)
5999 return rc;
6000
6001 if (pci_bus_trylock(bus)) {
6002 pci_bus_save_and_disable_locked(bus);
6003 might_sleep();
6004 rc = pci_bridge_secondary_bus_reset(bus->self);
6005 pci_bus_restore_locked(bus);
6006 pci_bus_unlock(bus);
6007 } else
6008 rc = -EAGAIN;
6009
6010 return rc;
6011 }
6012
6013 /**
6014 * pci_reset_bus - Try to reset a PCI bus
6015 * @pdev: top level PCI device to reset via slot/bus
6016 *
6017 * Same as above except return -EAGAIN if the bus cannot be locked
6018 */
pci_reset_bus(struct pci_dev * pdev)6019 int pci_reset_bus(struct pci_dev *pdev)
6020 {
6021 return (!pci_probe_reset_slot(pdev->slot)) ?
6022 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
6023 }
6024 EXPORT_SYMBOL_GPL(pci_reset_bus);
6025
6026 /**
6027 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
6028 * @dev: PCI device to query
6029 *
6030 * Returns mmrbc: maximum designed memory read count in bytes or
6031 * appropriate error value.
6032 */
pcix_get_max_mmrbc(struct pci_dev * dev)6033 int pcix_get_max_mmrbc(struct pci_dev *dev)
6034 {
6035 int cap;
6036 u32 stat;
6037
6038 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
6039 if (!cap)
6040 return -EINVAL;
6041
6042 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
6043 return -EINVAL;
6044
6045 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
6046 }
6047 EXPORT_SYMBOL(pcix_get_max_mmrbc);
6048
6049 /**
6050 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
6051 * @dev: PCI device to query
6052 *
6053 * Returns mmrbc: maximum memory read count in bytes or appropriate error
6054 * value.
6055 */
pcix_get_mmrbc(struct pci_dev * dev)6056 int pcix_get_mmrbc(struct pci_dev *dev)
6057 {
6058 int cap;
6059 u16 cmd;
6060
6061 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
6062 if (!cap)
6063 return -EINVAL;
6064
6065 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
6066 return -EINVAL;
6067
6068 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
6069 }
6070 EXPORT_SYMBOL(pcix_get_mmrbc);
6071
6072 /**
6073 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
6074 * @dev: PCI device to query
6075 * @mmrbc: maximum memory read count in bytes
6076 * valid values are 512, 1024, 2048, 4096
6077 *
6078 * If possible sets maximum memory read byte count, some bridges have errata
6079 * that prevent this.
6080 */
pcix_set_mmrbc(struct pci_dev * dev,int mmrbc)6081 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
6082 {
6083 int cap;
6084 u32 stat, v, o;
6085 u16 cmd;
6086
6087 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
6088 return -EINVAL;
6089
6090 v = ffs(mmrbc) - 10;
6091
6092 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
6093 if (!cap)
6094 return -EINVAL;
6095
6096 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
6097 return -EINVAL;
6098
6099 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
6100 return -E2BIG;
6101
6102 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
6103 return -EINVAL;
6104
6105 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
6106 if (o != v) {
6107 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
6108 return -EIO;
6109
6110 cmd &= ~PCI_X_CMD_MAX_READ;
6111 cmd |= v << 2;
6112 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
6113 return -EIO;
6114 }
6115 return 0;
6116 }
6117 EXPORT_SYMBOL(pcix_set_mmrbc);
6118
6119 /**
6120 * pcie_get_readrq - get PCI Express read request size
6121 * @dev: PCI device to query
6122 *
6123 * Returns maximum memory read request in bytes or appropriate error value.
6124 */
pcie_get_readrq(struct pci_dev * dev)6125 int pcie_get_readrq(struct pci_dev *dev)
6126 {
6127 u16 ctl;
6128
6129 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6130
6131 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6132 }
6133 EXPORT_SYMBOL(pcie_get_readrq);
6134
6135 /**
6136 * pcie_set_readrq - set PCI Express maximum memory read request
6137 * @dev: PCI device to query
6138 * @rq: maximum memory read count in bytes
6139 * valid values are 128, 256, 512, 1024, 2048, 4096
6140 *
6141 * If possible sets maximum memory read request in bytes
6142 */
pcie_set_readrq(struct pci_dev * dev,int rq)6143 int pcie_set_readrq(struct pci_dev *dev, int rq)
6144 {
6145 u16 v;
6146 int ret;
6147 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
6148
6149 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
6150 return -EINVAL;
6151
6152 /*
6153 * If using the "performance" PCIe config, we clamp the read rq
6154 * size to the max packet size to keep the host bridge from
6155 * generating requests larger than we can cope with.
6156 */
6157 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
6158 int mps = pcie_get_mps(dev);
6159
6160 if (mps < rq)
6161 rq = mps;
6162 }
6163
6164 v = (ffs(rq) - 8) << 12;
6165
6166 if (bridge->no_inc_mrrs) {
6167 int max_mrrs = pcie_get_readrq(dev);
6168
6169 if (rq > max_mrrs) {
6170 pci_info(dev, "can't set Max_Read_Request_Size to %d; max is %d\n", rq, max_mrrs);
6171 return -EINVAL;
6172 }
6173 }
6174
6175 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6176 PCI_EXP_DEVCTL_READRQ, v);
6177
6178 return pcibios_err_to_errno(ret);
6179 }
6180 EXPORT_SYMBOL(pcie_set_readrq);
6181
6182 /**
6183 * pcie_get_mps - get PCI Express maximum payload size
6184 * @dev: PCI device to query
6185 *
6186 * Returns maximum payload size in bytes
6187 */
pcie_get_mps(struct pci_dev * dev)6188 int pcie_get_mps(struct pci_dev *dev)
6189 {
6190 u16 ctl;
6191
6192 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6193
6194 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6195 }
6196 EXPORT_SYMBOL(pcie_get_mps);
6197
6198 /**
6199 * pcie_set_mps - set PCI Express maximum payload size
6200 * @dev: PCI device to query
6201 * @mps: maximum payload size in bytes
6202 * valid values are 128, 256, 512, 1024, 2048, 4096
6203 *
6204 * If possible sets maximum payload size
6205 */
pcie_set_mps(struct pci_dev * dev,int mps)6206 int pcie_set_mps(struct pci_dev *dev, int mps)
6207 {
6208 u16 v;
6209 int ret;
6210
6211 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
6212 return -EINVAL;
6213
6214 v = ffs(mps) - 8;
6215 if (v > dev->pcie_mpss)
6216 return -EINVAL;
6217 v <<= 5;
6218
6219 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6220 PCI_EXP_DEVCTL_PAYLOAD, v);
6221
6222 return pcibios_err_to_errno(ret);
6223 }
6224 EXPORT_SYMBOL(pcie_set_mps);
6225
6226 /**
6227 * pcie_bandwidth_available - determine minimum link settings of a PCIe
6228 * device and its bandwidth limitation
6229 * @dev: PCI device to query
6230 * @limiting_dev: storage for device causing the bandwidth limitation
6231 * @speed: storage for speed of limiting device
6232 * @width: storage for width of limiting device
6233 *
6234 * Walk up the PCI device chain and find the point where the minimum
6235 * bandwidth is available. Return the bandwidth available there and (if
6236 * limiting_dev, speed, and width pointers are supplied) information about
6237 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of
6238 * raw bandwidth.
6239 */
pcie_bandwidth_available(struct pci_dev * dev,struct pci_dev ** limiting_dev,enum pci_bus_speed * speed,enum pcie_link_width * width)6240 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
6241 enum pci_bus_speed *speed,
6242 enum pcie_link_width *width)
6243 {
6244 u16 lnksta;
6245 enum pci_bus_speed next_speed;
6246 enum pcie_link_width next_width;
6247 u32 bw, next_bw;
6248
6249 if (speed)
6250 *speed = PCI_SPEED_UNKNOWN;
6251 if (width)
6252 *width = PCIE_LNK_WIDTH_UNKNOWN;
6253
6254 bw = 0;
6255
6256 while (dev) {
6257 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
6258
6259 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
6260 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
6261 PCI_EXP_LNKSTA_NLW_SHIFT;
6262
6263 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
6264
6265 /* Check if current device limits the total bandwidth */
6266 if (!bw || next_bw <= bw) {
6267 bw = next_bw;
6268
6269 if (limiting_dev)
6270 *limiting_dev = dev;
6271 if (speed)
6272 *speed = next_speed;
6273 if (width)
6274 *width = next_width;
6275 }
6276
6277 dev = pci_upstream_bridge(dev);
6278 }
6279
6280 return bw;
6281 }
6282 EXPORT_SYMBOL(pcie_bandwidth_available);
6283
6284 /**
6285 * pcie_get_speed_cap - query for the PCI device's link speed capability
6286 * @dev: PCI device to query
6287 *
6288 * Query the PCI device speed capability. Return the maximum link speed
6289 * supported by the device.
6290 */
pcie_get_speed_cap(struct pci_dev * dev)6291 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
6292 {
6293 u32 lnkcap2, lnkcap;
6294
6295 /*
6296 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The
6297 * implementation note there recommends using the Supported Link
6298 * Speeds Vector in Link Capabilities 2 when supported.
6299 *
6300 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
6301 * should use the Supported Link Speeds field in Link Capabilities,
6302 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
6303 */
6304 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
6305
6306 /* PCIe r3.0-compliant */
6307 if (lnkcap2)
6308 return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
6309
6310 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6311 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
6312 return PCIE_SPEED_5_0GT;
6313 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
6314 return PCIE_SPEED_2_5GT;
6315
6316 return PCI_SPEED_UNKNOWN;
6317 }
6318 EXPORT_SYMBOL(pcie_get_speed_cap);
6319
6320 /**
6321 * pcie_get_width_cap - query for the PCI device's link width capability
6322 * @dev: PCI device to query
6323 *
6324 * Query the PCI device width capability. Return the maximum link width
6325 * supported by the device.
6326 */
pcie_get_width_cap(struct pci_dev * dev)6327 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
6328 {
6329 u32 lnkcap;
6330
6331 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6332 if (lnkcap)
6333 return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
6334
6335 return PCIE_LNK_WIDTH_UNKNOWN;
6336 }
6337 EXPORT_SYMBOL(pcie_get_width_cap);
6338
6339 /**
6340 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
6341 * @dev: PCI device
6342 * @speed: storage for link speed
6343 * @width: storage for link width
6344 *
6345 * Calculate a PCI device's link bandwidth by querying for its link speed
6346 * and width, multiplying them, and applying encoding overhead. The result
6347 * is in Mb/s, i.e., megabits/second of raw bandwidth.
6348 */
pcie_bandwidth_capable(struct pci_dev * dev,enum pci_bus_speed * speed,enum pcie_link_width * width)6349 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
6350 enum pcie_link_width *width)
6351 {
6352 *speed = pcie_get_speed_cap(dev);
6353 *width = pcie_get_width_cap(dev);
6354
6355 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
6356 return 0;
6357
6358 return *width * PCIE_SPEED2MBS_ENC(*speed);
6359 }
6360
6361 /**
6362 * __pcie_print_link_status - Report the PCI device's link speed and width
6363 * @dev: PCI device to query
6364 * @verbose: Print info even when enough bandwidth is available
6365 *
6366 * If the available bandwidth at the device is less than the device is
6367 * capable of, report the device's maximum possible bandwidth and the
6368 * upstream link that limits its performance. If @verbose, always print
6369 * the available bandwidth, even if the device isn't constrained.
6370 */
__pcie_print_link_status(struct pci_dev * dev,bool verbose)6371 void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
6372 {
6373 enum pcie_link_width width, width_cap;
6374 enum pci_bus_speed speed, speed_cap;
6375 struct pci_dev *limiting_dev = NULL;
6376 u32 bw_avail, bw_cap;
6377
6378 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
6379 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
6380
6381 if (bw_avail >= bw_cap && verbose)
6382 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
6383 bw_cap / 1000, bw_cap % 1000,
6384 pci_speed_string(speed_cap), width_cap);
6385 else if (bw_avail < bw_cap)
6386 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
6387 bw_avail / 1000, bw_avail % 1000,
6388 pci_speed_string(speed), width,
6389 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
6390 bw_cap / 1000, bw_cap % 1000,
6391 pci_speed_string(speed_cap), width_cap);
6392 }
6393
6394 /**
6395 * pcie_print_link_status - Report the PCI device's link speed and width
6396 * @dev: PCI device to query
6397 *
6398 * Report the available bandwidth at the device.
6399 */
pcie_print_link_status(struct pci_dev * dev)6400 void pcie_print_link_status(struct pci_dev *dev)
6401 {
6402 __pcie_print_link_status(dev, true);
6403 }
6404 EXPORT_SYMBOL(pcie_print_link_status);
6405
6406 /**
6407 * pci_select_bars - Make BAR mask from the type of resource
6408 * @dev: the PCI device for which BAR mask is made
6409 * @flags: resource type mask to be selected
6410 *
6411 * This helper routine makes bar mask from the type of resource.
6412 */
pci_select_bars(struct pci_dev * dev,unsigned long flags)6413 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
6414 {
6415 int i, bars = 0;
6416 for (i = 0; i < PCI_NUM_RESOURCES; i++)
6417 if (pci_resource_flags(dev, i) & flags)
6418 bars |= (1 << i);
6419 return bars;
6420 }
6421 EXPORT_SYMBOL(pci_select_bars);
6422
6423 /* Some architectures require additional programming to enable VGA */
6424 static arch_set_vga_state_t arch_set_vga_state;
6425
pci_register_set_vga_state(arch_set_vga_state_t func)6426 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6427 {
6428 arch_set_vga_state = func; /* NULL disables */
6429 }
6430
pci_set_vga_state_arch(struct pci_dev * dev,bool decode,unsigned int command_bits,u32 flags)6431 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6432 unsigned int command_bits, u32 flags)
6433 {
6434 if (arch_set_vga_state)
6435 return arch_set_vga_state(dev, decode, command_bits,
6436 flags);
6437 return 0;
6438 }
6439
6440 /**
6441 * pci_set_vga_state - set VGA decode state on device and parents if requested
6442 * @dev: the PCI device
6443 * @decode: true = enable decoding, false = disable decoding
6444 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6445 * @flags: traverse ancestors and change bridges
6446 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6447 */
pci_set_vga_state(struct pci_dev * dev,bool decode,unsigned int command_bits,u32 flags)6448 int pci_set_vga_state(struct pci_dev *dev, bool decode,
6449 unsigned int command_bits, u32 flags)
6450 {
6451 struct pci_bus *bus;
6452 struct pci_dev *bridge;
6453 u16 cmd;
6454 int rc;
6455
6456 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6457
6458 /* ARCH specific VGA enables */
6459 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6460 if (rc)
6461 return rc;
6462
6463 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6464 pci_read_config_word(dev, PCI_COMMAND, &cmd);
6465 if (decode)
6466 cmd |= command_bits;
6467 else
6468 cmd &= ~command_bits;
6469 pci_write_config_word(dev, PCI_COMMAND, cmd);
6470 }
6471
6472 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6473 return 0;
6474
6475 bus = dev->bus;
6476 while (bus) {
6477 bridge = bus->self;
6478 if (bridge) {
6479 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6480 &cmd);
6481 if (decode)
6482 cmd |= PCI_BRIDGE_CTL_VGA;
6483 else
6484 cmd &= ~PCI_BRIDGE_CTL_VGA;
6485 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6486 cmd);
6487 }
6488 bus = bus->parent;
6489 }
6490 return 0;
6491 }
6492
6493 #ifdef CONFIG_ACPI
pci_pr3_present(struct pci_dev * pdev)6494 bool pci_pr3_present(struct pci_dev *pdev)
6495 {
6496 struct acpi_device *adev;
6497
6498 if (acpi_disabled)
6499 return false;
6500
6501 adev = ACPI_COMPANION(&pdev->dev);
6502 if (!adev)
6503 return false;
6504
6505 return adev->power.flags.power_resources &&
6506 acpi_has_method(adev->handle, "_PR3");
6507 }
6508 EXPORT_SYMBOL_GPL(pci_pr3_present);
6509 #endif
6510
6511 /**
6512 * pci_add_dma_alias - Add a DMA devfn alias for a device
6513 * @dev: the PCI device for which alias is added
6514 * @devfn_from: alias slot and function
6515 * @nr_devfns: number of subsequent devfns to alias
6516 *
6517 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6518 * which is used to program permissible bus-devfn source addresses for DMA
6519 * requests in an IOMMU. These aliases factor into IOMMU group creation
6520 * and are useful for devices generating DMA requests beyond or different
6521 * from their logical bus-devfn. Examples include device quirks where the
6522 * device simply uses the wrong devfn, as well as non-transparent bridges
6523 * where the alias may be a proxy for devices in another domain.
6524 *
6525 * IOMMU group creation is performed during device discovery or addition,
6526 * prior to any potential DMA mapping and therefore prior to driver probing
6527 * (especially for userspace assigned devices where IOMMU group definition
6528 * cannot be left as a userspace activity). DMA aliases should therefore
6529 * be configured via quirks, such as the PCI fixup header quirk.
6530 */
pci_add_dma_alias(struct pci_dev * dev,u8 devfn_from,unsigned int nr_devfns)6531 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from,
6532 unsigned int nr_devfns)
6533 {
6534 int devfn_to;
6535
6536 nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from);
6537 devfn_to = devfn_from + nr_devfns - 1;
6538
6539 if (!dev->dma_alias_mask)
6540 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6541 if (!dev->dma_alias_mask) {
6542 pci_warn(dev, "Unable to allocate DMA alias mask\n");
6543 return;
6544 }
6545
6546 bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6547
6548 if (nr_devfns == 1)
6549 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6550 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6551 else if (nr_devfns > 1)
6552 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6553 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6554 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6555 }
6556
pci_devs_are_dma_aliases(struct pci_dev * dev1,struct pci_dev * dev2)6557 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6558 {
6559 return (dev1->dma_alias_mask &&
6560 test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6561 (dev2->dma_alias_mask &&
6562 test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6563 pci_real_dma_dev(dev1) == dev2 ||
6564 pci_real_dma_dev(dev2) == dev1;
6565 }
6566
pci_device_is_present(struct pci_dev * pdev)6567 bool pci_device_is_present(struct pci_dev *pdev)
6568 {
6569 u32 v;
6570
6571 /* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */
6572 pdev = pci_physfn(pdev);
6573 if (pci_dev_is_disconnected(pdev))
6574 return false;
6575 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6576 }
6577 EXPORT_SYMBOL_GPL(pci_device_is_present);
6578
pci_ignore_hotplug(struct pci_dev * dev)6579 void pci_ignore_hotplug(struct pci_dev *dev)
6580 {
6581 struct pci_dev *bridge = dev->bus->self;
6582
6583 dev->ignore_hotplug = 1;
6584 /* Propagate the "ignore hotplug" setting to the parent bridge. */
6585 if (bridge)
6586 bridge->ignore_hotplug = 1;
6587 }
6588 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6589
6590 /**
6591 * pci_real_dma_dev - Get PCI DMA device for PCI device
6592 * @dev: the PCI device that may have a PCI DMA alias
6593 *
6594 * Permits the platform to provide architecture-specific functionality to
6595 * devices needing to alias DMA to another PCI device on another PCI bus. If
6596 * the PCI device is on the same bus, it is recommended to use
6597 * pci_add_dma_alias(). This is the default implementation. Architecture
6598 * implementations can override this.
6599 */
pci_real_dma_dev(struct pci_dev * dev)6600 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6601 {
6602 return dev;
6603 }
6604
pcibios_default_alignment(void)6605 resource_size_t __weak pcibios_default_alignment(void)
6606 {
6607 return 0;
6608 }
6609
6610 /*
6611 * Arches that don't want to expose struct resource to userland as-is in
6612 * sysfs and /proc can implement their own pci_resource_to_user().
6613 */
pci_resource_to_user(const struct pci_dev * dev,int bar,const struct resource * rsrc,resource_size_t * start,resource_size_t * end)6614 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6615 const struct resource *rsrc,
6616 resource_size_t *start, resource_size_t *end)
6617 {
6618 *start = rsrc->start;
6619 *end = rsrc->end;
6620 }
6621
6622 static char *resource_alignment_param;
6623 static DEFINE_SPINLOCK(resource_alignment_lock);
6624
6625 /**
6626 * pci_specified_resource_alignment - get resource alignment specified by user.
6627 * @dev: the PCI device to get
6628 * @resize: whether or not to change resources' size when reassigning alignment
6629 *
6630 * RETURNS: Resource alignment if it is specified.
6631 * Zero if it is not specified.
6632 */
pci_specified_resource_alignment(struct pci_dev * dev,bool * resize)6633 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6634 bool *resize)
6635 {
6636 int align_order, count;
6637 resource_size_t align = pcibios_default_alignment();
6638 const char *p;
6639 int ret;
6640
6641 spin_lock(&resource_alignment_lock);
6642 p = resource_alignment_param;
6643 if (!p || !*p)
6644 goto out;
6645 if (pci_has_flag(PCI_PROBE_ONLY)) {
6646 align = 0;
6647 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6648 goto out;
6649 }
6650
6651 while (*p) {
6652 count = 0;
6653 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6654 p[count] == '@') {
6655 p += count + 1;
6656 if (align_order > 63) {
6657 pr_err("PCI: Invalid requested alignment (order %d)\n",
6658 align_order);
6659 align_order = PAGE_SHIFT;
6660 }
6661 } else {
6662 align_order = PAGE_SHIFT;
6663 }
6664
6665 ret = pci_dev_str_match(dev, p, &p);
6666 if (ret == 1) {
6667 *resize = true;
6668 align = 1ULL << align_order;
6669 break;
6670 } else if (ret < 0) {
6671 pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6672 p);
6673 break;
6674 }
6675
6676 if (*p != ';' && *p != ',') {
6677 /* End of param or invalid format */
6678 break;
6679 }
6680 p++;
6681 }
6682 out:
6683 spin_unlock(&resource_alignment_lock);
6684 return align;
6685 }
6686
pci_request_resource_alignment(struct pci_dev * dev,int bar,resource_size_t align,bool resize)6687 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6688 resource_size_t align, bool resize)
6689 {
6690 struct resource *r = &dev->resource[bar];
6691 resource_size_t size;
6692
6693 if (!(r->flags & IORESOURCE_MEM))
6694 return;
6695
6696 if (r->flags & IORESOURCE_PCI_FIXED) {
6697 pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6698 bar, r, (unsigned long long)align);
6699 return;
6700 }
6701
6702 size = resource_size(r);
6703 if (size >= align)
6704 return;
6705
6706 /*
6707 * Increase the alignment of the resource. There are two ways we
6708 * can do this:
6709 *
6710 * 1) Increase the size of the resource. BARs are aligned on their
6711 * size, so when we reallocate space for this resource, we'll
6712 * allocate it with the larger alignment. This also prevents
6713 * assignment of any other BARs inside the alignment region, so
6714 * if we're requesting page alignment, this means no other BARs
6715 * will share the page.
6716 *
6717 * The disadvantage is that this makes the resource larger than
6718 * the hardware BAR, which may break drivers that compute things
6719 * based on the resource size, e.g., to find registers at a
6720 * fixed offset before the end of the BAR.
6721 *
6722 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6723 * set r->start to the desired alignment. By itself this
6724 * doesn't prevent other BARs being put inside the alignment
6725 * region, but if we realign *every* resource of every device in
6726 * the system, none of them will share an alignment region.
6727 *
6728 * When the user has requested alignment for only some devices via
6729 * the "pci=resource_alignment" argument, "resize" is true and we
6730 * use the first method. Otherwise we assume we're aligning all
6731 * devices and we use the second.
6732 */
6733
6734 pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6735 bar, r, (unsigned long long)align);
6736
6737 if (resize) {
6738 r->start = 0;
6739 r->end = align - 1;
6740 } else {
6741 r->flags &= ~IORESOURCE_SIZEALIGN;
6742 r->flags |= IORESOURCE_STARTALIGN;
6743 r->start = align;
6744 r->end = r->start + size - 1;
6745 }
6746 r->flags |= IORESOURCE_UNSET;
6747 }
6748
6749 /*
6750 * This function disables memory decoding and releases memory resources
6751 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6752 * It also rounds up size to specified alignment.
6753 * Later on, the kernel will assign page-aligned memory resource back
6754 * to the device.
6755 */
pci_reassigndev_resource_alignment(struct pci_dev * dev)6756 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6757 {
6758 int i;
6759 struct resource *r;
6760 resource_size_t align;
6761 u16 command;
6762 bool resize = false;
6763
6764 /*
6765 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6766 * 3.4.1.11. Their resources are allocated from the space
6767 * described by the VF BARx register in the PF's SR-IOV capability.
6768 * We can't influence their alignment here.
6769 */
6770 if (dev->is_virtfn)
6771 return;
6772
6773 /* check if specified PCI is target device to reassign */
6774 align = pci_specified_resource_alignment(dev, &resize);
6775 if (!align)
6776 return;
6777
6778 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6779 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6780 pci_warn(dev, "Can't reassign resources to host bridge\n");
6781 return;
6782 }
6783
6784 pci_read_config_word(dev, PCI_COMMAND, &command);
6785 command &= ~PCI_COMMAND_MEMORY;
6786 pci_write_config_word(dev, PCI_COMMAND, command);
6787
6788 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6789 pci_request_resource_alignment(dev, i, align, resize);
6790
6791 /*
6792 * Need to disable bridge's resource window,
6793 * to enable the kernel to reassign new resource
6794 * window later on.
6795 */
6796 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6797 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6798 r = &dev->resource[i];
6799 if (!(r->flags & IORESOURCE_MEM))
6800 continue;
6801 r->flags |= IORESOURCE_UNSET;
6802 r->end = resource_size(r) - 1;
6803 r->start = 0;
6804 }
6805 pci_disable_bridge_window(dev);
6806 }
6807 }
6808
resource_alignment_show(const struct bus_type * bus,char * buf)6809 static ssize_t resource_alignment_show(const struct bus_type *bus, char *buf)
6810 {
6811 size_t count = 0;
6812
6813 spin_lock(&resource_alignment_lock);
6814 if (resource_alignment_param)
6815 count = sysfs_emit(buf, "%s\n", resource_alignment_param);
6816 spin_unlock(&resource_alignment_lock);
6817
6818 return count;
6819 }
6820
resource_alignment_store(const struct bus_type * bus,const char * buf,size_t count)6821 static ssize_t resource_alignment_store(const struct bus_type *bus,
6822 const char *buf, size_t count)
6823 {
6824 char *param, *old, *end;
6825
6826 if (count >= (PAGE_SIZE - 1))
6827 return -EINVAL;
6828
6829 param = kstrndup(buf, count, GFP_KERNEL);
6830 if (!param)
6831 return -ENOMEM;
6832
6833 end = strchr(param, '\n');
6834 if (end)
6835 *end = '\0';
6836
6837 spin_lock(&resource_alignment_lock);
6838 old = resource_alignment_param;
6839 if (strlen(param)) {
6840 resource_alignment_param = param;
6841 } else {
6842 kfree(param);
6843 resource_alignment_param = NULL;
6844 }
6845 spin_unlock(&resource_alignment_lock);
6846
6847 kfree(old);
6848
6849 return count;
6850 }
6851
6852 static BUS_ATTR_RW(resource_alignment);
6853
pci_resource_alignment_sysfs_init(void)6854 static int __init pci_resource_alignment_sysfs_init(void)
6855 {
6856 return bus_create_file(&pci_bus_type,
6857 &bus_attr_resource_alignment);
6858 }
6859 late_initcall(pci_resource_alignment_sysfs_init);
6860
pci_no_domains(void)6861 static void pci_no_domains(void)
6862 {
6863 #ifdef CONFIG_PCI_DOMAINS
6864 pci_domains_supported = 0;
6865 #endif
6866 }
6867
6868 #ifdef CONFIG_PCI_DOMAINS_GENERIC
6869 static DEFINE_IDA(pci_domain_nr_static_ida);
6870 static DEFINE_IDA(pci_domain_nr_dynamic_ida);
6871
of_pci_reserve_static_domain_nr(void)6872 static void of_pci_reserve_static_domain_nr(void)
6873 {
6874 struct device_node *np;
6875 int domain_nr;
6876
6877 for_each_node_by_type(np, "pci") {
6878 domain_nr = of_get_pci_domain_nr(np);
6879 if (domain_nr < 0)
6880 continue;
6881 /*
6882 * Permanently allocate domain_nr in dynamic_ida
6883 * to prevent it from dynamic allocation.
6884 */
6885 ida_alloc_range(&pci_domain_nr_dynamic_ida,
6886 domain_nr, domain_nr, GFP_KERNEL);
6887 }
6888 }
6889
of_pci_bus_find_domain_nr(struct device * parent)6890 static int of_pci_bus_find_domain_nr(struct device *parent)
6891 {
6892 static bool static_domains_reserved = false;
6893 int domain_nr;
6894
6895 /* On the first call scan device tree for static allocations. */
6896 if (!static_domains_reserved) {
6897 of_pci_reserve_static_domain_nr();
6898 static_domains_reserved = true;
6899 }
6900
6901 if (parent) {
6902 /*
6903 * If domain is in DT, allocate it in static IDA. This
6904 * prevents duplicate static allocations in case of errors
6905 * in DT.
6906 */
6907 domain_nr = of_get_pci_domain_nr(parent->of_node);
6908 if (domain_nr >= 0)
6909 return ida_alloc_range(&pci_domain_nr_static_ida,
6910 domain_nr, domain_nr,
6911 GFP_KERNEL);
6912 }
6913
6914 /*
6915 * If domain was not specified in DT, choose a free ID from dynamic
6916 * allocations. All domain numbers from DT are permanently in
6917 * dynamic allocations to prevent assigning them to other DT nodes
6918 * without static domain.
6919 */
6920 return ida_alloc(&pci_domain_nr_dynamic_ida, GFP_KERNEL);
6921 }
6922
of_pci_bus_release_domain_nr(struct pci_bus * bus,struct device * parent)6923 static void of_pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
6924 {
6925 if (bus->domain_nr < 0)
6926 return;
6927
6928 /* Release domain from IDA where it was allocated. */
6929 if (of_get_pci_domain_nr(parent->of_node) == bus->domain_nr)
6930 ida_free(&pci_domain_nr_static_ida, bus->domain_nr);
6931 else
6932 ida_free(&pci_domain_nr_dynamic_ida, bus->domain_nr);
6933 }
6934
pci_bus_find_domain_nr(struct pci_bus * bus,struct device * parent)6935 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6936 {
6937 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6938 acpi_pci_bus_find_domain_nr(bus);
6939 }
6940
pci_bus_release_domain_nr(struct pci_bus * bus,struct device * parent)6941 void pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
6942 {
6943 if (!acpi_disabled)
6944 return;
6945 of_pci_bus_release_domain_nr(bus, parent);
6946 }
6947 #endif
6948
6949 /**
6950 * pci_ext_cfg_avail - can we access extended PCI config space?
6951 *
6952 * Returns 1 if we can access PCI extended config space (offsets
6953 * greater than 0xff). This is the default implementation. Architecture
6954 * implementations can override this.
6955 */
pci_ext_cfg_avail(void)6956 int __weak pci_ext_cfg_avail(void)
6957 {
6958 return 1;
6959 }
6960
pci_fixup_cardbus(struct pci_bus * bus)6961 void __weak pci_fixup_cardbus(struct pci_bus *bus)
6962 {
6963 }
6964 EXPORT_SYMBOL(pci_fixup_cardbus);
6965
pci_setup(char * str)6966 static int __init pci_setup(char *str)
6967 {
6968 while (str) {
6969 char *k = strchr(str, ',');
6970 if (k)
6971 *k++ = 0;
6972 if (*str && (str = pcibios_setup(str)) && *str) {
6973 if (!strcmp(str, "nomsi")) {
6974 pci_no_msi();
6975 } else if (!strncmp(str, "noats", 5)) {
6976 pr_info("PCIe: ATS is disabled\n");
6977 pcie_ats_disabled = true;
6978 } else if (!strcmp(str, "noaer")) {
6979 pci_no_aer();
6980 } else if (!strcmp(str, "earlydump")) {
6981 pci_early_dump = true;
6982 } else if (!strncmp(str, "realloc=", 8)) {
6983 pci_realloc_get_opt(str + 8);
6984 } else if (!strncmp(str, "realloc", 7)) {
6985 pci_realloc_get_opt("on");
6986 } else if (!strcmp(str, "nodomains")) {
6987 pci_no_domains();
6988 } else if (!strncmp(str, "noari", 5)) {
6989 pcie_ari_disabled = true;
6990 } else if (!strncmp(str, "cbiosize=", 9)) {
6991 pci_cardbus_io_size = memparse(str + 9, &str);
6992 } else if (!strncmp(str, "cbmemsize=", 10)) {
6993 pci_cardbus_mem_size = memparse(str + 10, &str);
6994 } else if (!strncmp(str, "resource_alignment=", 19)) {
6995 resource_alignment_param = str + 19;
6996 } else if (!strncmp(str, "ecrc=", 5)) {
6997 pcie_ecrc_get_policy(str + 5);
6998 } else if (!strncmp(str, "hpiosize=", 9)) {
6999 pci_hotplug_io_size = memparse(str + 9, &str);
7000 } else if (!strncmp(str, "hpmmiosize=", 11)) {
7001 pci_hotplug_mmio_size = memparse(str + 11, &str);
7002 } else if (!strncmp(str, "hpmmioprefsize=", 15)) {
7003 pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
7004 } else if (!strncmp(str, "hpmemsize=", 10)) {
7005 pci_hotplug_mmio_size = memparse(str + 10, &str);
7006 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
7007 } else if (!strncmp(str, "hpbussize=", 10)) {
7008 pci_hotplug_bus_size =
7009 simple_strtoul(str + 10, &str, 0);
7010 if (pci_hotplug_bus_size > 0xff)
7011 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
7012 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
7013 pcie_bus_config = PCIE_BUS_TUNE_OFF;
7014 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
7015 pcie_bus_config = PCIE_BUS_SAFE;
7016 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
7017 pcie_bus_config = PCIE_BUS_PERFORMANCE;
7018 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
7019 pcie_bus_config = PCIE_BUS_PEER2PEER;
7020 } else if (!strncmp(str, "pcie_scan_all", 13)) {
7021 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
7022 } else if (!strncmp(str, "disable_acs_redir=", 18)) {
7023 disable_acs_redir_param = str + 18;
7024 } else {
7025 pr_err("PCI: Unknown option `%s'\n", str);
7026 }
7027 }
7028 str = k;
7029 }
7030 return 0;
7031 }
7032 early_param("pci", pci_setup);
7033
7034 /*
7035 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
7036 * in pci_setup(), above, to point to data in the __initdata section which
7037 * will be freed after the init sequence is complete. We can't allocate memory
7038 * in pci_setup() because some architectures do not have any memory allocation
7039 * service available during an early_param() call. So we allocate memory and
7040 * copy the variable here before the init section is freed.
7041 *
7042 */
pci_realloc_setup_params(void)7043 static int __init pci_realloc_setup_params(void)
7044 {
7045 resource_alignment_param = kstrdup(resource_alignment_param,
7046 GFP_KERNEL);
7047 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
7048
7049 return 0;
7050 }
7051 pure_initcall(pci_realloc_setup_params);
7052