1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
4 */
5 #ifndef LINUX_DMAENGINE_H
6 #define LINUX_DMAENGINE_H
7
8 #include <linux/device.h>
9 #include <linux/err.h>
10 #include <linux/uio.h>
11 #include <linux/bug.h>
12 #include <linux/scatterlist.h>
13 #include <linux/bitmap.h>
14 #include <linux/types.h>
15 #include <asm/page.h>
16
17 /**
18 * typedef dma_cookie_t - an opaque DMA cookie
19 *
20 * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
21 */
22 typedef s32 dma_cookie_t;
23 #define DMA_MIN_COOKIE 1
24
dma_submit_error(dma_cookie_t cookie)25 static inline int dma_submit_error(dma_cookie_t cookie)
26 {
27 return cookie < 0 ? cookie : 0;
28 }
29
30 /**
31 * enum dma_status - DMA transaction status
32 * @DMA_COMPLETE: transaction completed
33 * @DMA_IN_PROGRESS: transaction not yet processed
34 * @DMA_PAUSED: transaction is paused
35 * @DMA_ERROR: transaction failed
36 */
37 enum dma_status {
38 DMA_COMPLETE,
39 DMA_IN_PROGRESS,
40 DMA_PAUSED,
41 DMA_ERROR,
42 DMA_OUT_OF_ORDER,
43 };
44
45 /**
46 * enum dma_transaction_type - DMA transaction types/indexes
47 *
48 * Note: The DMA_ASYNC_TX capability is not to be set by drivers. It is
49 * automatically set as dma devices are registered.
50 */
51 enum dma_transaction_type {
52 DMA_MEMCPY,
53 DMA_XOR,
54 DMA_PQ,
55 DMA_XOR_VAL,
56 DMA_PQ_VAL,
57 DMA_MEMSET,
58 DMA_MEMSET_SG,
59 DMA_INTERRUPT,
60 DMA_PRIVATE,
61 DMA_ASYNC_TX,
62 DMA_SLAVE,
63 DMA_CYCLIC,
64 DMA_INTERLEAVE,
65 DMA_COMPLETION_NO_ORDER,
66 DMA_REPEAT,
67 DMA_LOAD_EOT,
68 /* last transaction type for creation of the capabilities mask */
69 DMA_TX_TYPE_END,
70 };
71
72 /**
73 * enum dma_transfer_direction - dma transfer mode and direction indicator
74 * @DMA_MEM_TO_MEM: Async/Memcpy mode
75 * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device
76 * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory
77 * @DMA_DEV_TO_DEV: Slave mode & From Device to Device
78 */
79 enum dma_transfer_direction {
80 DMA_MEM_TO_MEM,
81 DMA_MEM_TO_DEV,
82 DMA_DEV_TO_MEM,
83 DMA_DEV_TO_DEV,
84 DMA_TRANS_NONE,
85 };
86
87 /**
88 * Interleaved Transfer Request
89 * ----------------------------
90 * A chunk is collection of contiguous bytes to be transferred.
91 * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG).
92 * ICGs may or may not change between chunks.
93 * A FRAME is the smallest series of contiguous {chunk,icg} pairs,
94 * that when repeated an integral number of times, specifies the transfer.
95 * A transfer template is specification of a Frame, the number of times
96 * it is to be repeated and other per-transfer attributes.
97 *
98 * Practically, a client driver would have ready a template for each
99 * type of transfer it is going to need during its lifetime and
100 * set only 'src_start' and 'dst_start' before submitting the requests.
101 *
102 *
103 * | Frame-1 | Frame-2 | ~ | Frame-'numf' |
104 * |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...|
105 *
106 * == Chunk size
107 * ... ICG
108 */
109
110 /**
111 * struct data_chunk - Element of scatter-gather list that makes a frame.
112 * @size: Number of bytes to read from source.
113 * size_dst := fn(op, size_src), so doesn't mean much for destination.
114 * @icg: Number of bytes to jump after last src/dst address of this
115 * chunk and before first src/dst address for next chunk.
116 * Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false.
117 * Ignored for src(assumed 0), if src_inc is true and src_sgl is false.
118 * @dst_icg: Number of bytes to jump after last dst address of this
119 * chunk and before the first dst address for next chunk.
120 * Ignored if dst_inc is true and dst_sgl is false.
121 * @src_icg: Number of bytes to jump after last src address of this
122 * chunk and before the first src address for next chunk.
123 * Ignored if src_inc is true and src_sgl is false.
124 */
125 struct data_chunk {
126 size_t size;
127 size_t icg;
128 size_t dst_icg;
129 size_t src_icg;
130 };
131
132 /**
133 * struct dma_interleaved_template - Template to convey DMAC the transfer pattern
134 * and attributes.
135 * @src_start: Bus address of source for the first chunk.
136 * @dst_start: Bus address of destination for the first chunk.
137 * @dir: Specifies the type of Source and Destination.
138 * @src_inc: If the source address increments after reading from it.
139 * @dst_inc: If the destination address increments after writing to it.
140 * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read).
141 * Otherwise, source is read contiguously (icg ignored).
142 * Ignored if src_inc is false.
143 * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write).
144 * Otherwise, destination is filled contiguously (icg ignored).
145 * Ignored if dst_inc is false.
146 * @numf: Number of frames in this template.
147 * @frame_size: Number of chunks in a frame i.e, size of sgl[].
148 * @sgl: Array of {chunk,icg} pairs that make up a frame.
149 */
150 struct dma_interleaved_template {
151 dma_addr_t src_start;
152 dma_addr_t dst_start;
153 enum dma_transfer_direction dir;
154 bool src_inc;
155 bool dst_inc;
156 bool src_sgl;
157 bool dst_sgl;
158 size_t numf;
159 size_t frame_size;
160 struct data_chunk sgl[];
161 };
162
163 /**
164 * enum dma_ctrl_flags - DMA flags to augment operation preparation,
165 * control completion, and communicate status.
166 * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
167 * this transaction
168 * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
169 * acknowledges receipt, i.e. has a chance to establish any dependency
170 * chains
171 * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
172 * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
173 * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
174 * sources that were the result of a previous operation, in the case of a PQ
175 * operation it continues the calculation with new sources
176 * @DMA_PREP_FENCE - tell the driver that subsequent operations depend
177 * on the result of this operation
178 * @DMA_CTRL_REUSE: client can reuse the descriptor and submit again till
179 * cleared or freed
180 * @DMA_PREP_CMD: tell the driver that the data passed to DMA API is command
181 * data and the descriptor should be in different format from normal
182 * data descriptors.
183 * @DMA_PREP_REPEAT: tell the driver that the transaction shall be automatically
184 * repeated when it ends until a transaction is issued on the same channel
185 * with the DMA_PREP_LOAD_EOT flag set. This flag is only applicable to
186 * interleaved transactions and is ignored for all other transaction types.
187 * @DMA_PREP_LOAD_EOT: tell the driver that the transaction shall replace any
188 * active repeated (as indicated by DMA_PREP_REPEAT) transaction when the
189 * repeated transaction ends. Not setting this flag when the previously queued
190 * transaction is marked with DMA_PREP_REPEAT will cause the new transaction
191 * to never be processed and stay in the issued queue forever. The flag is
192 * ignored if the previous transaction is not a repeated transaction.
193 */
194 enum dma_ctrl_flags {
195 DMA_PREP_INTERRUPT = (1 << 0),
196 DMA_CTRL_ACK = (1 << 1),
197 DMA_PREP_PQ_DISABLE_P = (1 << 2),
198 DMA_PREP_PQ_DISABLE_Q = (1 << 3),
199 DMA_PREP_CONTINUE = (1 << 4),
200 DMA_PREP_FENCE = (1 << 5),
201 DMA_CTRL_REUSE = (1 << 6),
202 DMA_PREP_CMD = (1 << 7),
203 DMA_PREP_REPEAT = (1 << 8),
204 DMA_PREP_LOAD_EOT = (1 << 9),
205 };
206
207 /**
208 * enum sum_check_bits - bit position of pq_check_flags
209 */
210 enum sum_check_bits {
211 SUM_CHECK_P = 0,
212 SUM_CHECK_Q = 1,
213 };
214
215 /**
216 * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
217 * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
218 * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
219 */
220 enum sum_check_flags {
221 SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
222 SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
223 };
224
225
226 /**
227 * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
228 * See linux/cpumask.h
229 */
230 typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
231
232 /**
233 * struct dma_chan_percpu - the per-CPU part of struct dma_chan
234 * @memcpy_count: transaction counter
235 * @bytes_transferred: byte counter
236 */
237
238 /**
239 * enum dma_desc_metadata_mode - per descriptor metadata mode types supported
240 * @DESC_METADATA_CLIENT - the metadata buffer is allocated/provided by the
241 * client driver and it is attached (via the dmaengine_desc_attach_metadata()
242 * helper) to the descriptor.
243 *
244 * Client drivers interested to use this mode can follow:
245 * - DMA_MEM_TO_DEV / DEV_MEM_TO_MEM:
246 * 1. prepare the descriptor (dmaengine_prep_*)
247 * construct the metadata in the client's buffer
248 * 2. use dmaengine_desc_attach_metadata() to attach the buffer to the
249 * descriptor
250 * 3. submit the transfer
251 * - DMA_DEV_TO_MEM:
252 * 1. prepare the descriptor (dmaengine_prep_*)
253 * 2. use dmaengine_desc_attach_metadata() to attach the buffer to the
254 * descriptor
255 * 3. submit the transfer
256 * 4. when the transfer is completed, the metadata should be available in the
257 * attached buffer
258 *
259 * @DESC_METADATA_ENGINE - the metadata buffer is allocated/managed by the DMA
260 * driver. The client driver can ask for the pointer, maximum size and the
261 * currently used size of the metadata and can directly update or read it.
262 * dmaengine_desc_get_metadata_ptr() and dmaengine_desc_set_metadata_len() is
263 * provided as helper functions.
264 *
265 * Note: the metadata area for the descriptor is no longer valid after the
266 * transfer has been completed (valid up to the point when the completion
267 * callback returns if used).
268 *
269 * Client drivers interested to use this mode can follow:
270 * - DMA_MEM_TO_DEV / DEV_MEM_TO_MEM:
271 * 1. prepare the descriptor (dmaengine_prep_*)
272 * 2. use dmaengine_desc_get_metadata_ptr() to get the pointer to the engine's
273 * metadata area
274 * 3. update the metadata at the pointer
275 * 4. use dmaengine_desc_set_metadata_len() to tell the DMA engine the amount
276 * of data the client has placed into the metadata buffer
277 * 5. submit the transfer
278 * - DMA_DEV_TO_MEM:
279 * 1. prepare the descriptor (dmaengine_prep_*)
280 * 2. submit the transfer
281 * 3. on transfer completion, use dmaengine_desc_get_metadata_ptr() to get the
282 * pointer to the engine's metadata area
283 * 4. Read out the metadata from the pointer
284 *
285 * Note: the two mode is not compatible and clients must use one mode for a
286 * descriptor.
287 */
288 enum dma_desc_metadata_mode {
289 DESC_METADATA_NONE = 0,
290 DESC_METADATA_CLIENT = BIT(0),
291 DESC_METADATA_ENGINE = BIT(1),
292 };
293
294 struct dma_chan_percpu {
295 /* stats */
296 unsigned long memcpy_count;
297 unsigned long bytes_transferred;
298 };
299
300 /**
301 * struct dma_router - DMA router structure
302 * @dev: pointer to the DMA router device
303 * @route_free: function to be called when the route can be disconnected
304 */
305 struct dma_router {
306 struct device *dev;
307 void (*route_free)(struct device *dev, void *route_data);
308 };
309
310 /**
311 * struct dma_chan - devices supply DMA channels, clients use them
312 * @device: ptr to the dma device who supplies this channel, always !%NULL
313 * @slave: ptr to the device using this channel
314 * @cookie: last cookie value returned to client
315 * @completed_cookie: last completed cookie for this channel
316 * @chan_id: channel ID for sysfs
317 * @dev: class device for sysfs
318 * @name: backlink name for sysfs
319 * @dbg_client_name: slave name for debugfs in format:
320 * dev_name(requester's dev):channel name, for example: "2b00000.mcasp:tx"
321 * @device_node: used to add this to the device chan list
322 * @local: per-cpu pointer to a struct dma_chan_percpu
323 * @client_count: how many clients are using this channel
324 * @table_count: number of appearances in the mem-to-mem allocation table
325 * @router: pointer to the DMA router structure
326 * @route_data: channel specific data for the router
327 * @private: private data for certain client-channel associations
328 */
329 struct dma_chan {
330 struct dma_device *device;
331 struct device *slave;
332 dma_cookie_t cookie;
333 dma_cookie_t completed_cookie;
334
335 /* sysfs */
336 int chan_id;
337 struct dma_chan_dev *dev;
338 const char *name;
339 #ifdef CONFIG_DEBUG_FS
340 char *dbg_client_name;
341 #endif
342
343 struct list_head device_node;
344 struct dma_chan_percpu __percpu *local;
345 int client_count;
346 int table_count;
347
348 /* DMA router */
349 struct dma_router *router;
350 void *route_data;
351
352 void *private;
353 };
354
355 /**
356 * struct dma_chan_dev - relate sysfs device node to backing channel device
357 * @chan: driver channel device
358 * @device: sysfs device
359 * @dev_id: parent dma_device dev_id
360 */
361 struct dma_chan_dev {
362 struct dma_chan *chan;
363 struct device device;
364 int dev_id;
365 };
366
367 /**
368 * enum dma_slave_buswidth - defines bus width of the DMA slave
369 * device, source or target buses
370 */
371 enum dma_slave_buswidth {
372 DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
373 DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
374 DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
375 DMA_SLAVE_BUSWIDTH_3_BYTES = 3,
376 DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
377 DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
378 DMA_SLAVE_BUSWIDTH_16_BYTES = 16,
379 DMA_SLAVE_BUSWIDTH_32_BYTES = 32,
380 DMA_SLAVE_BUSWIDTH_64_BYTES = 64,
381 };
382
383 /**
384 * struct dma_slave_config - dma slave channel runtime config
385 * @direction: whether the data shall go in or out on this slave
386 * channel, right now. DMA_MEM_TO_DEV and DMA_DEV_TO_MEM are
387 * legal values. DEPRECATED, drivers should use the direction argument
388 * to the device_prep_slave_sg and device_prep_dma_cyclic functions or
389 * the dir field in the dma_interleaved_template structure.
390 * @src_addr: this is the physical address where DMA slave data
391 * should be read (RX), if the source is memory this argument is
392 * ignored.
393 * @dst_addr: this is the physical address where DMA slave data
394 * should be written (TX), if the source is memory this argument
395 * is ignored.
396 * @src_addr_width: this is the width in bytes of the source (RX)
397 * register where DMA data shall be read. If the source
398 * is memory this may be ignored depending on architecture.
399 * Legal values: 1, 2, 3, 4, 8, 16, 32, 64.
400 * @dst_addr_width: same as src_addr_width but for destination
401 * target (TX) mutatis mutandis.
402 * @src_maxburst: the maximum number of words (note: words, as in
403 * units of the src_addr_width member, not bytes) that can be sent
404 * in one burst to the device. Typically something like half the
405 * FIFO depth on I/O peripherals so you don't overflow it. This
406 * may or may not be applicable on memory sources.
407 * @dst_maxburst: same as src_maxburst but for destination target
408 * mutatis mutandis.
409 * @src_port_window_size: The length of the register area in words the data need
410 * to be accessed on the device side. It is only used for devices which is using
411 * an area instead of a single register to receive the data. Typically the DMA
412 * loops in this area in order to transfer the data.
413 * @dst_port_window_size: same as src_port_window_size but for the destination
414 * port.
415 * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill
416 * with 'true' if peripheral should be flow controller. Direction will be
417 * selected at Runtime.
418 * @slave_id: Slave requester id. Only valid for slave channels. The dma
419 * slave peripheral will have unique id as dma requester which need to be
420 * pass as slave config.
421 *
422 * This struct is passed in as configuration data to a DMA engine
423 * in order to set up a certain channel for DMA transport at runtime.
424 * The DMA device/engine has to provide support for an additional
425 * callback in the dma_device structure, device_config and this struct
426 * will then be passed in as an argument to the function.
427 *
428 * The rationale for adding configuration information to this struct is as
429 * follows: if it is likely that more than one DMA slave controllers in
430 * the world will support the configuration option, then make it generic.
431 * If not: if it is fixed so that it be sent in static from the platform
432 * data, then prefer to do that.
433 */
434 struct dma_slave_config {
435 enum dma_transfer_direction direction;
436 phys_addr_t src_addr;
437 phys_addr_t dst_addr;
438 enum dma_slave_buswidth src_addr_width;
439 enum dma_slave_buswidth dst_addr_width;
440 u32 src_maxburst;
441 u32 dst_maxburst;
442 u32 src_port_window_size;
443 u32 dst_port_window_size;
444 bool device_fc;
445 unsigned int slave_id;
446 };
447
448 /**
449 * enum dma_residue_granularity - Granularity of the reported transfer residue
450 * @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The
451 * DMA channel is only able to tell whether a descriptor has been completed or
452 * not, which means residue reporting is not supported by this channel. The
453 * residue field of the dma_tx_state field will always be 0.
454 * @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully
455 * completed segment of the transfer (For cyclic transfers this is after each
456 * period). This is typically implemented by having the hardware generate an
457 * interrupt after each transferred segment and then the drivers updates the
458 * outstanding residue by the size of the segment. Another possibility is if
459 * the hardware supports scatter-gather and the segment descriptor has a field
460 * which gets set after the segment has been completed. The driver then counts
461 * the number of segments without the flag set to compute the residue.
462 * @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred
463 * burst. This is typically only supported if the hardware has a progress
464 * register of some sort (E.g. a register with the current read/write address
465 * or a register with the amount of bursts/beats/bytes that have been
466 * transferred or still need to be transferred).
467 */
468 enum dma_residue_granularity {
469 DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0,
470 DMA_RESIDUE_GRANULARITY_SEGMENT = 1,
471 DMA_RESIDUE_GRANULARITY_BURST = 2,
472 };
473
474 /**
475 * struct dma_slave_caps - expose capabilities of a slave channel only
476 * @src_addr_widths: bit mask of src addr widths the channel supports.
477 * Width is specified in bytes, e.g. for a channel supporting
478 * a width of 4 the mask should have BIT(4) set.
479 * @dst_addr_widths: bit mask of dst addr widths the channel supports
480 * @directions: bit mask of slave directions the channel supports.
481 * Since the enum dma_transfer_direction is not defined as bit flag for
482 * each type, the dma controller should set BIT(<TYPE>) and same
483 * should be checked by controller as well
484 * @min_burst: min burst capability per-transfer
485 * @max_burst: max burst capability per-transfer
486 * @max_sg_burst: max number of SG list entries executed in a single burst
487 * DMA tansaction with no software intervention for reinitialization.
488 * Zero value means unlimited number of entries.
489 * @cmd_pause: true, if pause is supported (i.e. for reading residue or
490 * for resume later)
491 * @cmd_resume: true, if resume is supported
492 * @cmd_terminate: true, if terminate cmd is supported
493 * @residue_granularity: granularity of the reported transfer residue
494 * @descriptor_reuse: if a descriptor can be reused by client and
495 * resubmitted multiple times
496 */
497 struct dma_slave_caps {
498 u32 src_addr_widths;
499 u32 dst_addr_widths;
500 u32 directions;
501 u32 min_burst;
502 u32 max_burst;
503 u32 max_sg_burst;
504 bool cmd_pause;
505 bool cmd_resume;
506 bool cmd_terminate;
507 enum dma_residue_granularity residue_granularity;
508 bool descriptor_reuse;
509 };
510
dma_chan_name(struct dma_chan * chan)511 static inline const char *dma_chan_name(struct dma_chan *chan)
512 {
513 return dev_name(&chan->dev->device);
514 }
515
516 void dma_chan_cleanup(struct kref *kref);
517
518 /**
519 * typedef dma_filter_fn - callback filter for dma_request_channel
520 * @chan: channel to be reviewed
521 * @filter_param: opaque parameter passed through dma_request_channel
522 *
523 * When this optional parameter is specified in a call to dma_request_channel a
524 * suitable channel is passed to this routine for further dispositioning before
525 * being returned. Where 'suitable' indicates a non-busy channel that
526 * satisfies the given capability mask. It returns 'true' to indicate that the
527 * channel is suitable.
528 */
529 typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
530
531 typedef void (*dma_async_tx_callback)(void *dma_async_param);
532
533 enum dmaengine_tx_result {
534 DMA_TRANS_NOERROR = 0, /* SUCCESS */
535 DMA_TRANS_READ_FAILED, /* Source DMA read failed */
536 DMA_TRANS_WRITE_FAILED, /* Destination DMA write failed */
537 DMA_TRANS_ABORTED, /* Op never submitted / aborted */
538 };
539
540 struct dmaengine_result {
541 enum dmaengine_tx_result result;
542 u32 residue;
543 };
544
545 typedef void (*dma_async_tx_callback_result)(void *dma_async_param,
546 const struct dmaengine_result *result);
547
548 struct dmaengine_unmap_data {
549 #if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
550 u16 map_cnt;
551 #else
552 u8 map_cnt;
553 #endif
554 u8 to_cnt;
555 u8 from_cnt;
556 u8 bidi_cnt;
557 struct device *dev;
558 struct kref kref;
559 size_t len;
560 dma_addr_t addr[];
561 };
562
563 struct dma_async_tx_descriptor;
564
565 struct dma_descriptor_metadata_ops {
566 int (*attach)(struct dma_async_tx_descriptor *desc, void *data,
567 size_t len);
568
569 void *(*get_ptr)(struct dma_async_tx_descriptor *desc,
570 size_t *payload_len, size_t *max_len);
571 int (*set_len)(struct dma_async_tx_descriptor *desc,
572 size_t payload_len);
573 };
574
575 /**
576 * struct dma_async_tx_descriptor - async transaction descriptor
577 * ---dma generic offload fields---
578 * @cookie: tracking cookie for this transaction, set to -EBUSY if
579 * this tx is sitting on a dependency list
580 * @flags: flags to augment operation preparation, control completion, and
581 * communicate status
582 * @phys: physical address of the descriptor
583 * @chan: target channel for this operation
584 * @tx_submit: accept the descriptor, assign ordered cookie and mark the
585 * descriptor pending. To be pushed on .issue_pending() call
586 * @callback: routine to call after this operation is complete
587 * @callback_param: general parameter to pass to the callback routine
588 * @desc_metadata_mode: core managed metadata mode to protect mixed use of
589 * DESC_METADATA_CLIENT or DESC_METADATA_ENGINE. Otherwise
590 * DESC_METADATA_NONE
591 * @metadata_ops: DMA driver provided metadata mode ops, need to be set by the
592 * DMA driver if metadata mode is supported with the descriptor
593 * ---async_tx api specific fields---
594 * @next: at completion submit this descriptor
595 * @parent: pointer to the next level up in the dependency chain
596 * @lock: protect the parent and next pointers
597 */
598 struct dma_async_tx_descriptor {
599 dma_cookie_t cookie;
600 enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
601 dma_addr_t phys;
602 struct dma_chan *chan;
603 dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
604 int (*desc_free)(struct dma_async_tx_descriptor *tx);
605 dma_async_tx_callback callback;
606 dma_async_tx_callback_result callback_result;
607 void *callback_param;
608 struct dmaengine_unmap_data *unmap;
609 enum dma_desc_metadata_mode desc_metadata_mode;
610 struct dma_descriptor_metadata_ops *metadata_ops;
611 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
612 struct dma_async_tx_descriptor *next;
613 struct dma_async_tx_descriptor *parent;
614 spinlock_t lock;
615 #endif
616 };
617
618 #ifdef CONFIG_DMA_ENGINE
dma_set_unmap(struct dma_async_tx_descriptor * tx,struct dmaengine_unmap_data * unmap)619 static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
620 struct dmaengine_unmap_data *unmap)
621 {
622 kref_get(&unmap->kref);
623 tx->unmap = unmap;
624 }
625
626 struct dmaengine_unmap_data *
627 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags);
628 void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap);
629 #else
dma_set_unmap(struct dma_async_tx_descriptor * tx,struct dmaengine_unmap_data * unmap)630 static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
631 struct dmaengine_unmap_data *unmap)
632 {
633 }
634 static inline struct dmaengine_unmap_data *
dmaengine_get_unmap_data(struct device * dev,int nr,gfp_t flags)635 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
636 {
637 return NULL;
638 }
dmaengine_unmap_put(struct dmaengine_unmap_data * unmap)639 static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
640 {
641 }
642 #endif
643
dma_descriptor_unmap(struct dma_async_tx_descriptor * tx)644 static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx)
645 {
646 if (!tx->unmap)
647 return;
648
649 dmaengine_unmap_put(tx->unmap);
650 tx->unmap = NULL;
651 }
652
653 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
txd_lock(struct dma_async_tx_descriptor * txd)654 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
655 {
656 }
txd_unlock(struct dma_async_tx_descriptor * txd)657 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
658 {
659 }
txd_chain(struct dma_async_tx_descriptor * txd,struct dma_async_tx_descriptor * next)660 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
661 {
662 BUG();
663 }
txd_clear_parent(struct dma_async_tx_descriptor * txd)664 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
665 {
666 }
txd_clear_next(struct dma_async_tx_descriptor * txd)667 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
668 {
669 }
txd_next(struct dma_async_tx_descriptor * txd)670 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
671 {
672 return NULL;
673 }
txd_parent(struct dma_async_tx_descriptor * txd)674 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
675 {
676 return NULL;
677 }
678
679 #else
txd_lock(struct dma_async_tx_descriptor * txd)680 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
681 {
682 spin_lock_bh(&txd->lock);
683 }
txd_unlock(struct dma_async_tx_descriptor * txd)684 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
685 {
686 spin_unlock_bh(&txd->lock);
687 }
txd_chain(struct dma_async_tx_descriptor * txd,struct dma_async_tx_descriptor * next)688 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
689 {
690 txd->next = next;
691 next->parent = txd;
692 }
txd_clear_parent(struct dma_async_tx_descriptor * txd)693 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
694 {
695 txd->parent = NULL;
696 }
txd_clear_next(struct dma_async_tx_descriptor * txd)697 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
698 {
699 txd->next = NULL;
700 }
txd_parent(struct dma_async_tx_descriptor * txd)701 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
702 {
703 return txd->parent;
704 }
txd_next(struct dma_async_tx_descriptor * txd)705 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
706 {
707 return txd->next;
708 }
709 #endif
710
711 /**
712 * struct dma_tx_state - filled in to report the status of
713 * a transfer.
714 * @last: last completed DMA cookie
715 * @used: last issued DMA cookie (i.e. the one in progress)
716 * @residue: the remaining number of bytes left to transmit
717 * on the selected transfer for states DMA_IN_PROGRESS and
718 * DMA_PAUSED if this is implemented in the driver, else 0
719 * @in_flight_bytes: amount of data in bytes cached by the DMA.
720 */
721 struct dma_tx_state {
722 dma_cookie_t last;
723 dma_cookie_t used;
724 u32 residue;
725 u32 in_flight_bytes;
726 };
727
728 /**
729 * enum dmaengine_alignment - defines alignment of the DMA async tx
730 * buffers
731 */
732 enum dmaengine_alignment {
733 DMAENGINE_ALIGN_1_BYTE = 0,
734 DMAENGINE_ALIGN_2_BYTES = 1,
735 DMAENGINE_ALIGN_4_BYTES = 2,
736 DMAENGINE_ALIGN_8_BYTES = 3,
737 DMAENGINE_ALIGN_16_BYTES = 4,
738 DMAENGINE_ALIGN_32_BYTES = 5,
739 DMAENGINE_ALIGN_64_BYTES = 6,
740 };
741
742 /**
743 * struct dma_slave_map - associates slave device and it's slave channel with
744 * parameter to be used by a filter function
745 * @devname: name of the device
746 * @slave: slave channel name
747 * @param: opaque parameter to pass to struct dma_filter.fn
748 */
749 struct dma_slave_map {
750 const char *devname;
751 const char *slave;
752 void *param;
753 };
754
755 /**
756 * struct dma_filter - information for slave device/channel to filter_fn/param
757 * mapping
758 * @fn: filter function callback
759 * @mapcnt: number of slave device/channel in the map
760 * @map: array of channel to filter mapping data
761 */
762 struct dma_filter {
763 dma_filter_fn fn;
764 int mapcnt;
765 const struct dma_slave_map *map;
766 };
767
768 /**
769 * struct dma_device - info on the entity supplying DMA services
770 * @chancnt: how many DMA channels are supported
771 * @privatecnt: how many DMA channels are requested by dma_request_channel
772 * @channels: the list of struct dma_chan
773 * @global_node: list_head for global dma_device_list
774 * @filter: information for device/slave to filter function/param mapping
775 * @cap_mask: one or more dma_capability flags
776 * @desc_metadata_modes: supported metadata modes by the DMA device
777 * @max_xor: maximum number of xor sources, 0 if no capability
778 * @max_pq: maximum number of PQ sources and PQ-continue capability
779 * @copy_align: alignment shift for memcpy operations
780 * @xor_align: alignment shift for xor operations
781 * @pq_align: alignment shift for pq operations
782 * @fill_align: alignment shift for memset operations
783 * @dev_id: unique device ID
784 * @dev: struct device reference for dma mapping api
785 * @owner: owner module (automatically set based on the provided dev)
786 * @src_addr_widths: bit mask of src addr widths the device supports
787 * Width is specified in bytes, e.g. for a device supporting
788 * a width of 4 the mask should have BIT(4) set.
789 * @dst_addr_widths: bit mask of dst addr widths the device supports
790 * @directions: bit mask of slave directions the device supports.
791 * Since the enum dma_transfer_direction is not defined as bit flag for
792 * each type, the dma controller should set BIT(<TYPE>) and same
793 * should be checked by controller as well
794 * @min_burst: min burst capability per-transfer
795 * @max_burst: max burst capability per-transfer
796 * @max_sg_burst: max number of SG list entries executed in a single burst
797 * DMA tansaction with no software intervention for reinitialization.
798 * Zero value means unlimited number of entries.
799 * @residue_granularity: granularity of the transfer residue reported
800 * by tx_status
801 * @device_alloc_chan_resources: allocate resources and return the
802 * number of allocated descriptors
803 * @device_free_chan_resources: release DMA channel's resources
804 * @device_prep_dma_memcpy: prepares a memcpy operation
805 * @device_prep_dma_xor: prepares a xor operation
806 * @device_prep_dma_xor_val: prepares a xor validation operation
807 * @device_prep_dma_pq: prepares a pq operation
808 * @device_prep_dma_pq_val: prepares a pqzero_sum operation
809 * @device_prep_dma_memset: prepares a memset operation
810 * @device_prep_dma_memset_sg: prepares a memset operation over a scatter list
811 * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
812 * @device_prep_slave_sg: prepares a slave dma operation
813 * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
814 * The function takes a buffer of size buf_len. The callback function will
815 * be called after period_len bytes have been transferred.
816 * @device_prep_interleaved_dma: Transfer expression in a generic way.
817 * @device_prep_dma_imm_data: DMA's 8 byte immediate data to the dst address
818 * @device_caps: May be used to override the generic DMA slave capabilities
819 * with per-channel specific ones
820 * @device_config: Pushes a new configuration to a channel, return 0 or an error
821 * code
822 * @device_pause: Pauses any transfer happening on a channel. Returns
823 * 0 or an error code
824 * @device_resume: Resumes any transfer on a channel previously
825 * paused. Returns 0 or an error code
826 * @device_terminate_all: Aborts all transfers on a channel. Returns 0
827 * or an error code
828 * @device_synchronize: Synchronizes the termination of a transfers to the
829 * current context.
830 * @device_tx_status: poll for transaction completion, the optional
831 * txstate parameter can be supplied with a pointer to get a
832 * struct with auxiliary transfer status information, otherwise the call
833 * will just return a simple status code
834 * @device_issue_pending: push pending transactions to hardware
835 * @descriptor_reuse: a submitted transfer can be resubmitted after completion
836 * @device_release: called sometime atfer dma_async_device_unregister() is
837 * called and there are no further references to this structure. This
838 * must be implemented to free resources however many existing drivers
839 * do not and are therefore not safe to unbind while in use.
840 * @dbg_summary_show: optional routine to show contents in debugfs; default code
841 * will be used when this is omitted, but custom code can show extra,
842 * controller specific information.
843 */
844 struct dma_device {
845 struct kref ref;
846 unsigned int chancnt;
847 unsigned int privatecnt;
848 struct list_head channels;
849 struct list_head global_node;
850 struct dma_filter filter;
851 dma_cap_mask_t cap_mask;
852 enum dma_desc_metadata_mode desc_metadata_modes;
853 unsigned short max_xor;
854 unsigned short max_pq;
855 enum dmaengine_alignment copy_align;
856 enum dmaengine_alignment xor_align;
857 enum dmaengine_alignment pq_align;
858 enum dmaengine_alignment fill_align;
859 #define DMA_HAS_PQ_CONTINUE (1 << 15)
860
861 int dev_id;
862 struct device *dev;
863 struct module *owner;
864 struct ida chan_ida;
865 struct mutex chan_mutex; /* to protect chan_ida */
866
867 u32 src_addr_widths;
868 u32 dst_addr_widths;
869 u32 directions;
870 u32 min_burst;
871 u32 max_burst;
872 u32 max_sg_burst;
873 bool descriptor_reuse;
874 enum dma_residue_granularity residue_granularity;
875
876 int (*device_alloc_chan_resources)(struct dma_chan *chan);
877 void (*device_free_chan_resources)(struct dma_chan *chan);
878
879 struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
880 struct dma_chan *chan, dma_addr_t dst, dma_addr_t src,
881 size_t len, unsigned long flags);
882 struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
883 struct dma_chan *chan, dma_addr_t dst, dma_addr_t *src,
884 unsigned int src_cnt, size_t len, unsigned long flags);
885 struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(
886 struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
887 size_t len, enum sum_check_flags *result, unsigned long flags);
888 struct dma_async_tx_descriptor *(*device_prep_dma_pq)(
889 struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
890 unsigned int src_cnt, const unsigned char *scf,
891 size_t len, unsigned long flags);
892 struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(
893 struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
894 unsigned int src_cnt, const unsigned char *scf, size_t len,
895 enum sum_check_flags *pqres, unsigned long flags);
896 struct dma_async_tx_descriptor *(*device_prep_dma_memset)(
897 struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
898 unsigned long flags);
899 struct dma_async_tx_descriptor *(*device_prep_dma_memset_sg)(
900 struct dma_chan *chan, struct scatterlist *sg,
901 unsigned int nents, int value, unsigned long flags);
902 struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
903 struct dma_chan *chan, unsigned long flags);
904
905 struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
906 struct dma_chan *chan, struct scatterlist *sgl,
907 unsigned int sg_len, enum dma_transfer_direction direction,
908 unsigned long flags, void *context);
909 struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(
910 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
911 size_t period_len, enum dma_transfer_direction direction,
912 unsigned long flags);
913 struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)(
914 struct dma_chan *chan, struct dma_interleaved_template *xt,
915 unsigned long flags);
916 struct dma_async_tx_descriptor *(*device_prep_dma_imm_data)(
917 struct dma_chan *chan, dma_addr_t dst, u64 data,
918 unsigned long flags);
919
920 void (*device_caps)(struct dma_chan *chan,
921 struct dma_slave_caps *caps);
922 int (*device_config)(struct dma_chan *chan,
923 struct dma_slave_config *config);
924 int (*device_pause)(struct dma_chan *chan);
925 int (*device_resume)(struct dma_chan *chan);
926 int (*device_terminate_all)(struct dma_chan *chan);
927 void (*device_synchronize)(struct dma_chan *chan);
928
929 enum dma_status (*device_tx_status)(struct dma_chan *chan,
930 dma_cookie_t cookie,
931 struct dma_tx_state *txstate);
932 void (*device_issue_pending)(struct dma_chan *chan);
933 void (*device_release)(struct dma_device *dev);
934 /* debugfs support */
935 #ifdef CONFIG_DEBUG_FS
936 void (*dbg_summary_show)(struct seq_file *s, struct dma_device *dev);
937 struct dentry *dbg_dev_root;
938 #endif
939 };
940
dmaengine_slave_config(struct dma_chan * chan,struct dma_slave_config * config)941 static inline int dmaengine_slave_config(struct dma_chan *chan,
942 struct dma_slave_config *config)
943 {
944 if (chan->device->device_config)
945 return chan->device->device_config(chan, config);
946
947 return -ENOSYS;
948 }
949
is_slave_direction(enum dma_transfer_direction direction)950 static inline bool is_slave_direction(enum dma_transfer_direction direction)
951 {
952 return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM);
953 }
954
dmaengine_prep_slave_single(struct dma_chan * chan,dma_addr_t buf,size_t len,enum dma_transfer_direction dir,unsigned long flags)955 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single(
956 struct dma_chan *chan, dma_addr_t buf, size_t len,
957 enum dma_transfer_direction dir, unsigned long flags)
958 {
959 struct scatterlist sg;
960 sg_init_table(&sg, 1);
961 sg_dma_address(&sg) = buf;
962 sg_dma_len(&sg) = len;
963
964 if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
965 return NULL;
966
967 return chan->device->device_prep_slave_sg(chan, &sg, 1,
968 dir, flags, NULL);
969 }
970
dmaengine_prep_slave_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction dir,unsigned long flags)971 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg(
972 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
973 enum dma_transfer_direction dir, unsigned long flags)
974 {
975 if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
976 return NULL;
977
978 return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
979 dir, flags, NULL);
980 }
981
982 #ifdef CONFIG_RAPIDIO_DMA_ENGINE
983 struct rio_dma_ext;
dmaengine_prep_rio_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction dir,unsigned long flags,struct rio_dma_ext * rio_ext)984 static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg(
985 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
986 enum dma_transfer_direction dir, unsigned long flags,
987 struct rio_dma_ext *rio_ext)
988 {
989 if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
990 return NULL;
991
992 return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
993 dir, flags, rio_ext);
994 }
995 #endif
996
dmaengine_prep_dma_cyclic(struct dma_chan * chan,dma_addr_t buf_addr,size_t buf_len,size_t period_len,enum dma_transfer_direction dir,unsigned long flags)997 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic(
998 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
999 size_t period_len, enum dma_transfer_direction dir,
1000 unsigned long flags)
1001 {
1002 if (!chan || !chan->device || !chan->device->device_prep_dma_cyclic)
1003 return NULL;
1004
1005 return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len,
1006 period_len, dir, flags);
1007 }
1008
dmaengine_prep_interleaved_dma(struct dma_chan * chan,struct dma_interleaved_template * xt,unsigned long flags)1009 static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma(
1010 struct dma_chan *chan, struct dma_interleaved_template *xt,
1011 unsigned long flags)
1012 {
1013 if (!chan || !chan->device || !chan->device->device_prep_interleaved_dma)
1014 return NULL;
1015 if (flags & DMA_PREP_REPEAT &&
1016 !test_bit(DMA_REPEAT, chan->device->cap_mask.bits))
1017 return NULL;
1018
1019 return chan->device->device_prep_interleaved_dma(chan, xt, flags);
1020 }
1021
dmaengine_prep_dma_memset(struct dma_chan * chan,dma_addr_t dest,int value,size_t len,unsigned long flags)1022 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memset(
1023 struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
1024 unsigned long flags)
1025 {
1026 if (!chan || !chan->device || !chan->device->device_prep_dma_memset)
1027 return NULL;
1028
1029 return chan->device->device_prep_dma_memset(chan, dest, value,
1030 len, flags);
1031 }
1032
dmaengine_prep_dma_memcpy(struct dma_chan * chan,dma_addr_t dest,dma_addr_t src,size_t len,unsigned long flags)1033 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memcpy(
1034 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1035 size_t len, unsigned long flags)
1036 {
1037 if (!chan || !chan->device || !chan->device->device_prep_dma_memcpy)
1038 return NULL;
1039
1040 return chan->device->device_prep_dma_memcpy(chan, dest, src,
1041 len, flags);
1042 }
1043
dmaengine_is_metadata_mode_supported(struct dma_chan * chan,enum dma_desc_metadata_mode mode)1044 static inline bool dmaengine_is_metadata_mode_supported(struct dma_chan *chan,
1045 enum dma_desc_metadata_mode mode)
1046 {
1047 if (!chan)
1048 return false;
1049
1050 return !!(chan->device->desc_metadata_modes & mode);
1051 }
1052
1053 #ifdef CONFIG_DMA_ENGINE
1054 int dmaengine_desc_attach_metadata(struct dma_async_tx_descriptor *desc,
1055 void *data, size_t len);
1056 void *dmaengine_desc_get_metadata_ptr(struct dma_async_tx_descriptor *desc,
1057 size_t *payload_len, size_t *max_len);
1058 int dmaengine_desc_set_metadata_len(struct dma_async_tx_descriptor *desc,
1059 size_t payload_len);
1060 #else /* CONFIG_DMA_ENGINE */
dmaengine_desc_attach_metadata(struct dma_async_tx_descriptor * desc,void * data,size_t len)1061 static inline int dmaengine_desc_attach_metadata(
1062 struct dma_async_tx_descriptor *desc, void *data, size_t len)
1063 {
1064 return -EINVAL;
1065 }
dmaengine_desc_get_metadata_ptr(struct dma_async_tx_descriptor * desc,size_t * payload_len,size_t * max_len)1066 static inline void *dmaengine_desc_get_metadata_ptr(
1067 struct dma_async_tx_descriptor *desc, size_t *payload_len,
1068 size_t *max_len)
1069 {
1070 return NULL;
1071 }
dmaengine_desc_set_metadata_len(struct dma_async_tx_descriptor * desc,size_t payload_len)1072 static inline int dmaengine_desc_set_metadata_len(
1073 struct dma_async_tx_descriptor *desc, size_t payload_len)
1074 {
1075 return -EINVAL;
1076 }
1077 #endif /* CONFIG_DMA_ENGINE */
1078
1079 /**
1080 * dmaengine_terminate_all() - Terminate all active DMA transfers
1081 * @chan: The channel for which to terminate the transfers
1082 *
1083 * This function is DEPRECATED use either dmaengine_terminate_sync() or
1084 * dmaengine_terminate_async() instead.
1085 */
dmaengine_terminate_all(struct dma_chan * chan)1086 static inline int dmaengine_terminate_all(struct dma_chan *chan)
1087 {
1088 if (chan->device->device_terminate_all)
1089 return chan->device->device_terminate_all(chan);
1090
1091 return -ENOSYS;
1092 }
1093
1094 /**
1095 * dmaengine_terminate_async() - Terminate all active DMA transfers
1096 * @chan: The channel for which to terminate the transfers
1097 *
1098 * Calling this function will terminate all active and pending descriptors
1099 * that have previously been submitted to the channel. It is not guaranteed
1100 * though that the transfer for the active descriptor has stopped when the
1101 * function returns. Furthermore it is possible the complete callback of a
1102 * submitted transfer is still running when this function returns.
1103 *
1104 * dmaengine_synchronize() needs to be called before it is safe to free
1105 * any memory that is accessed by previously submitted descriptors or before
1106 * freeing any resources accessed from within the completion callback of any
1107 * previously submitted descriptors.
1108 *
1109 * This function can be called from atomic context as well as from within a
1110 * complete callback of a descriptor submitted on the same channel.
1111 *
1112 * If none of the two conditions above apply consider using
1113 * dmaengine_terminate_sync() instead.
1114 */
dmaengine_terminate_async(struct dma_chan * chan)1115 static inline int dmaengine_terminate_async(struct dma_chan *chan)
1116 {
1117 if (chan->device->device_terminate_all)
1118 return chan->device->device_terminate_all(chan);
1119
1120 return -EINVAL;
1121 }
1122
1123 /**
1124 * dmaengine_synchronize() - Synchronize DMA channel termination
1125 * @chan: The channel to synchronize
1126 *
1127 * Synchronizes to the DMA channel termination to the current context. When this
1128 * function returns it is guaranteed that all transfers for previously issued
1129 * descriptors have stopped and it is safe to free the memory associated
1130 * with them. Furthermore it is guaranteed that all complete callback functions
1131 * for a previously submitted descriptor have finished running and it is safe to
1132 * free resources accessed from within the complete callbacks.
1133 *
1134 * The behavior of this function is undefined if dma_async_issue_pending() has
1135 * been called between dmaengine_terminate_async() and this function.
1136 *
1137 * This function must only be called from non-atomic context and must not be
1138 * called from within a complete callback of a descriptor submitted on the same
1139 * channel.
1140 */
dmaengine_synchronize(struct dma_chan * chan)1141 static inline void dmaengine_synchronize(struct dma_chan *chan)
1142 {
1143 might_sleep();
1144
1145 if (chan->device->device_synchronize)
1146 chan->device->device_synchronize(chan);
1147 }
1148
1149 /**
1150 * dmaengine_terminate_sync() - Terminate all active DMA transfers
1151 * @chan: The channel for which to terminate the transfers
1152 *
1153 * Calling this function will terminate all active and pending transfers
1154 * that have previously been submitted to the channel. It is similar to
1155 * dmaengine_terminate_async() but guarantees that the DMA transfer has actually
1156 * stopped and that all complete callbacks have finished running when the
1157 * function returns.
1158 *
1159 * This function must only be called from non-atomic context and must not be
1160 * called from within a complete callback of a descriptor submitted on the same
1161 * channel.
1162 */
dmaengine_terminate_sync(struct dma_chan * chan)1163 static inline int dmaengine_terminate_sync(struct dma_chan *chan)
1164 {
1165 int ret;
1166
1167 ret = dmaengine_terminate_async(chan);
1168 if (ret)
1169 return ret;
1170
1171 dmaengine_synchronize(chan);
1172
1173 return 0;
1174 }
1175
dmaengine_pause(struct dma_chan * chan)1176 static inline int dmaengine_pause(struct dma_chan *chan)
1177 {
1178 if (chan->device->device_pause)
1179 return chan->device->device_pause(chan);
1180
1181 return -ENOSYS;
1182 }
1183
dmaengine_resume(struct dma_chan * chan)1184 static inline int dmaengine_resume(struct dma_chan *chan)
1185 {
1186 if (chan->device->device_resume)
1187 return chan->device->device_resume(chan);
1188
1189 return -ENOSYS;
1190 }
1191
dmaengine_tx_status(struct dma_chan * chan,dma_cookie_t cookie,struct dma_tx_state * state)1192 static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan,
1193 dma_cookie_t cookie, struct dma_tx_state *state)
1194 {
1195 return chan->device->device_tx_status(chan, cookie, state);
1196 }
1197
dmaengine_submit(struct dma_async_tx_descriptor * desc)1198 static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
1199 {
1200 return desc->tx_submit(desc);
1201 }
1202
dmaengine_check_align(enum dmaengine_alignment align,size_t off1,size_t off2,size_t len)1203 static inline bool dmaengine_check_align(enum dmaengine_alignment align,
1204 size_t off1, size_t off2, size_t len)
1205 {
1206 return !(((1 << align) - 1) & (off1 | off2 | len));
1207 }
1208
is_dma_copy_aligned(struct dma_device * dev,size_t off1,size_t off2,size_t len)1209 static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1,
1210 size_t off2, size_t len)
1211 {
1212 return dmaengine_check_align(dev->copy_align, off1, off2, len);
1213 }
1214
is_dma_xor_aligned(struct dma_device * dev,size_t off1,size_t off2,size_t len)1215 static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1,
1216 size_t off2, size_t len)
1217 {
1218 return dmaengine_check_align(dev->xor_align, off1, off2, len);
1219 }
1220
is_dma_pq_aligned(struct dma_device * dev,size_t off1,size_t off2,size_t len)1221 static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1,
1222 size_t off2, size_t len)
1223 {
1224 return dmaengine_check_align(dev->pq_align, off1, off2, len);
1225 }
1226
is_dma_fill_aligned(struct dma_device * dev,size_t off1,size_t off2,size_t len)1227 static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1,
1228 size_t off2, size_t len)
1229 {
1230 return dmaengine_check_align(dev->fill_align, off1, off2, len);
1231 }
1232
1233 static inline void
dma_set_maxpq(struct dma_device * dma,int maxpq,int has_pq_continue)1234 dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
1235 {
1236 dma->max_pq = maxpq;
1237 if (has_pq_continue)
1238 dma->max_pq |= DMA_HAS_PQ_CONTINUE;
1239 }
1240
dmaf_continue(enum dma_ctrl_flags flags)1241 static inline bool dmaf_continue(enum dma_ctrl_flags flags)
1242 {
1243 return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
1244 }
1245
dmaf_p_disabled_continue(enum dma_ctrl_flags flags)1246 static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
1247 {
1248 enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
1249
1250 return (flags & mask) == mask;
1251 }
1252
dma_dev_has_pq_continue(struct dma_device * dma)1253 static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
1254 {
1255 return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
1256 }
1257
dma_dev_to_maxpq(struct dma_device * dma)1258 static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
1259 {
1260 return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
1261 }
1262
1263 /* dma_maxpq - reduce maxpq in the face of continued operations
1264 * @dma - dma device with PQ capability
1265 * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
1266 *
1267 * When an engine does not support native continuation we need 3 extra
1268 * source slots to reuse P and Q with the following coefficients:
1269 * 1/ {00} * P : remove P from Q', but use it as a source for P'
1270 * 2/ {01} * Q : use Q to continue Q' calculation
1271 * 3/ {00} * Q : subtract Q from P' to cancel (2)
1272 *
1273 * In the case where P is disabled we only need 1 extra source:
1274 * 1/ {01} * Q : use Q to continue Q' calculation
1275 */
dma_maxpq(struct dma_device * dma,enum dma_ctrl_flags flags)1276 static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
1277 {
1278 if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags))
1279 return dma_dev_to_maxpq(dma);
1280 if (dmaf_p_disabled_continue(flags))
1281 return dma_dev_to_maxpq(dma) - 1;
1282 if (dmaf_continue(flags))
1283 return dma_dev_to_maxpq(dma) - 3;
1284 BUG();
1285 }
1286
dmaengine_get_icg(bool inc,bool sgl,size_t icg,size_t dir_icg)1287 static inline size_t dmaengine_get_icg(bool inc, bool sgl, size_t icg,
1288 size_t dir_icg)
1289 {
1290 if (inc) {
1291 if (dir_icg)
1292 return dir_icg;
1293 if (sgl)
1294 return icg;
1295 }
1296
1297 return 0;
1298 }
1299
dmaengine_get_dst_icg(struct dma_interleaved_template * xt,struct data_chunk * chunk)1300 static inline size_t dmaengine_get_dst_icg(struct dma_interleaved_template *xt,
1301 struct data_chunk *chunk)
1302 {
1303 return dmaengine_get_icg(xt->dst_inc, xt->dst_sgl,
1304 chunk->icg, chunk->dst_icg);
1305 }
1306
dmaengine_get_src_icg(struct dma_interleaved_template * xt,struct data_chunk * chunk)1307 static inline size_t dmaengine_get_src_icg(struct dma_interleaved_template *xt,
1308 struct data_chunk *chunk)
1309 {
1310 return dmaengine_get_icg(xt->src_inc, xt->src_sgl,
1311 chunk->icg, chunk->src_icg);
1312 }
1313
1314 /* --- public DMA engine API --- */
1315
1316 #ifdef CONFIG_DMA_ENGINE
1317 void dmaengine_get(void);
1318 void dmaengine_put(void);
1319 #else
dmaengine_get(void)1320 static inline void dmaengine_get(void)
1321 {
1322 }
dmaengine_put(void)1323 static inline void dmaengine_put(void)
1324 {
1325 }
1326 #endif
1327
1328 #ifdef CONFIG_ASYNC_TX_DMA
1329 #define async_dmaengine_get() dmaengine_get()
1330 #define async_dmaengine_put() dmaengine_put()
1331 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
1332 #define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
1333 #else
1334 #define async_dma_find_channel(type) dma_find_channel(type)
1335 #endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */
1336 #else
async_dmaengine_get(void)1337 static inline void async_dmaengine_get(void)
1338 {
1339 }
async_dmaengine_put(void)1340 static inline void async_dmaengine_put(void)
1341 {
1342 }
1343 static inline struct dma_chan *
async_dma_find_channel(enum dma_transaction_type type)1344 async_dma_find_channel(enum dma_transaction_type type)
1345 {
1346 return NULL;
1347 }
1348 #endif /* CONFIG_ASYNC_TX_DMA */
1349 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
1350 struct dma_chan *chan);
1351
async_tx_ack(struct dma_async_tx_descriptor * tx)1352 static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
1353 {
1354 tx->flags |= DMA_CTRL_ACK;
1355 }
1356
async_tx_clear_ack(struct dma_async_tx_descriptor * tx)1357 static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
1358 {
1359 tx->flags &= ~DMA_CTRL_ACK;
1360 }
1361
async_tx_test_ack(struct dma_async_tx_descriptor * tx)1362 static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
1363 {
1364 return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
1365 }
1366
1367 #define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
1368 static inline void
__dma_cap_set(enum dma_transaction_type tx_type,dma_cap_mask_t * dstp)1369 __dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
1370 {
1371 set_bit(tx_type, dstp->bits);
1372 }
1373
1374 #define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
1375 static inline void
__dma_cap_clear(enum dma_transaction_type tx_type,dma_cap_mask_t * dstp)1376 __dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
1377 {
1378 clear_bit(tx_type, dstp->bits);
1379 }
1380
1381 #define dma_cap_zero(mask) __dma_cap_zero(&(mask))
__dma_cap_zero(dma_cap_mask_t * dstp)1382 static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
1383 {
1384 bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
1385 }
1386
1387 #define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
1388 static inline int
__dma_has_cap(enum dma_transaction_type tx_type,dma_cap_mask_t * srcp)1389 __dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
1390 {
1391 return test_bit(tx_type, srcp->bits);
1392 }
1393
1394 #define for_each_dma_cap_mask(cap, mask) \
1395 for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END)
1396
1397 /**
1398 * dma_async_issue_pending - flush pending transactions to HW
1399 * @chan: target DMA channel
1400 *
1401 * This allows drivers to push copies to HW in batches,
1402 * reducing MMIO writes where possible.
1403 */
dma_async_issue_pending(struct dma_chan * chan)1404 static inline void dma_async_issue_pending(struct dma_chan *chan)
1405 {
1406 chan->device->device_issue_pending(chan);
1407 }
1408
1409 /**
1410 * dma_async_is_tx_complete - poll for transaction completion
1411 * @chan: DMA channel
1412 * @cookie: transaction identifier to check status of
1413 * @last: returns last completed cookie, can be NULL
1414 * @used: returns last issued cookie, can be NULL
1415 *
1416 * If @last and @used are passed in, upon return they reflect the driver
1417 * internal state and can be used with dma_async_is_complete() to check
1418 * the status of multiple cookies without re-checking hardware state.
1419 */
dma_async_is_tx_complete(struct dma_chan * chan,dma_cookie_t cookie,dma_cookie_t * last,dma_cookie_t * used)1420 static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
1421 dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
1422 {
1423 struct dma_tx_state state;
1424 enum dma_status status;
1425
1426 status = chan->device->device_tx_status(chan, cookie, &state);
1427 if (last)
1428 *last = state.last;
1429 if (used)
1430 *used = state.used;
1431 return status;
1432 }
1433
1434 /**
1435 * dma_async_is_complete - test a cookie against chan state
1436 * @cookie: transaction identifier to test status of
1437 * @last_complete: last know completed transaction
1438 * @last_used: last cookie value handed out
1439 *
1440 * dma_async_is_complete() is used in dma_async_is_tx_complete()
1441 * the test logic is separated for lightweight testing of multiple cookies
1442 */
dma_async_is_complete(dma_cookie_t cookie,dma_cookie_t last_complete,dma_cookie_t last_used)1443 static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
1444 dma_cookie_t last_complete, dma_cookie_t last_used)
1445 {
1446 if (last_complete <= last_used) {
1447 if ((cookie <= last_complete) || (cookie > last_used))
1448 return DMA_COMPLETE;
1449 } else {
1450 if ((cookie <= last_complete) && (cookie > last_used))
1451 return DMA_COMPLETE;
1452 }
1453 return DMA_IN_PROGRESS;
1454 }
1455
1456 static inline void
dma_set_tx_state(struct dma_tx_state * st,dma_cookie_t last,dma_cookie_t used,u32 residue)1457 dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
1458 {
1459 if (!st)
1460 return;
1461
1462 st->last = last;
1463 st->used = used;
1464 st->residue = residue;
1465 }
1466
1467 #ifdef CONFIG_DMA_ENGINE
1468 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
1469 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
1470 enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
1471 void dma_issue_pending_all(void);
1472 struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1473 dma_filter_fn fn, void *fn_param,
1474 struct device_node *np);
1475
1476 struct dma_chan *dma_request_chan(struct device *dev, const char *name);
1477 struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask);
1478
1479 void dma_release_channel(struct dma_chan *chan);
1480 int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps);
1481 #else
dma_find_channel(enum dma_transaction_type tx_type)1482 static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
1483 {
1484 return NULL;
1485 }
dma_sync_wait(struct dma_chan * chan,dma_cookie_t cookie)1486 static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
1487 {
1488 return DMA_COMPLETE;
1489 }
dma_wait_for_async_tx(struct dma_async_tx_descriptor * tx)1490 static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1491 {
1492 return DMA_COMPLETE;
1493 }
dma_issue_pending_all(void)1494 static inline void dma_issue_pending_all(void)
1495 {
1496 }
__dma_request_channel(const dma_cap_mask_t * mask,dma_filter_fn fn,void * fn_param,struct device_node * np)1497 static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1498 dma_filter_fn fn,
1499 void *fn_param,
1500 struct device_node *np)
1501 {
1502 return NULL;
1503 }
dma_request_chan(struct device * dev,const char * name)1504 static inline struct dma_chan *dma_request_chan(struct device *dev,
1505 const char *name)
1506 {
1507 return ERR_PTR(-ENODEV);
1508 }
dma_request_chan_by_mask(const dma_cap_mask_t * mask)1509 static inline struct dma_chan *dma_request_chan_by_mask(
1510 const dma_cap_mask_t *mask)
1511 {
1512 return ERR_PTR(-ENODEV);
1513 }
dma_release_channel(struct dma_chan * chan)1514 static inline void dma_release_channel(struct dma_chan *chan)
1515 {
1516 }
dma_get_slave_caps(struct dma_chan * chan,struct dma_slave_caps * caps)1517 static inline int dma_get_slave_caps(struct dma_chan *chan,
1518 struct dma_slave_caps *caps)
1519 {
1520 return -ENXIO;
1521 }
1522 #endif
1523
dmaengine_desc_set_reuse(struct dma_async_tx_descriptor * tx)1524 static inline int dmaengine_desc_set_reuse(struct dma_async_tx_descriptor *tx)
1525 {
1526 struct dma_slave_caps caps;
1527 int ret;
1528
1529 ret = dma_get_slave_caps(tx->chan, &caps);
1530 if (ret)
1531 return ret;
1532
1533 if (!caps.descriptor_reuse)
1534 return -EPERM;
1535
1536 tx->flags |= DMA_CTRL_REUSE;
1537 return 0;
1538 }
1539
dmaengine_desc_clear_reuse(struct dma_async_tx_descriptor * tx)1540 static inline void dmaengine_desc_clear_reuse(struct dma_async_tx_descriptor *tx)
1541 {
1542 tx->flags &= ~DMA_CTRL_REUSE;
1543 }
1544
dmaengine_desc_test_reuse(struct dma_async_tx_descriptor * tx)1545 static inline bool dmaengine_desc_test_reuse(struct dma_async_tx_descriptor *tx)
1546 {
1547 return (tx->flags & DMA_CTRL_REUSE) == DMA_CTRL_REUSE;
1548 }
1549
dmaengine_desc_free(struct dma_async_tx_descriptor * desc)1550 static inline int dmaengine_desc_free(struct dma_async_tx_descriptor *desc)
1551 {
1552 /* this is supported for reusable desc, so check that */
1553 if (!dmaengine_desc_test_reuse(desc))
1554 return -EPERM;
1555
1556 return desc->desc_free(desc);
1557 }
1558
1559 /* --- DMA device --- */
1560
1561 int dma_async_device_register(struct dma_device *device);
1562 int dmaenginem_async_device_register(struct dma_device *device);
1563 void dma_async_device_unregister(struct dma_device *device);
1564 int dma_async_device_channel_register(struct dma_device *device,
1565 struct dma_chan *chan);
1566 void dma_async_device_channel_unregister(struct dma_device *device,
1567 struct dma_chan *chan);
1568 void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
1569 #define dma_request_channel(mask, x, y) \
1570 __dma_request_channel(&(mask), x, y, NULL)
1571
1572 /* Deprecated, please use dma_request_chan() directly */
1573 static inline struct dma_chan * __deprecated
dma_request_slave_channel(struct device * dev,const char * name)1574 dma_request_slave_channel(struct device *dev, const char *name)
1575 {
1576 struct dma_chan *ch = dma_request_chan(dev, name);
1577
1578 return IS_ERR(ch) ? NULL : ch;
1579 }
1580
1581 static inline struct dma_chan
dma_request_slave_channel_compat(const dma_cap_mask_t mask,dma_filter_fn fn,void * fn_param,struct device * dev,const char * name)1582 *dma_request_slave_channel_compat(const dma_cap_mask_t mask,
1583 dma_filter_fn fn, void *fn_param,
1584 struct device *dev, const char *name)
1585 {
1586 struct dma_chan *chan;
1587
1588 chan = dma_request_slave_channel(dev, name);
1589 if (chan)
1590 return chan;
1591
1592 if (!fn || !fn_param)
1593 return NULL;
1594
1595 return __dma_request_channel(&mask, fn, fn_param, NULL);
1596 }
1597
1598 static inline char *
dmaengine_get_direction_text(enum dma_transfer_direction dir)1599 dmaengine_get_direction_text(enum dma_transfer_direction dir)
1600 {
1601 switch (dir) {
1602 case DMA_DEV_TO_MEM:
1603 return "DEV_TO_MEM";
1604 case DMA_MEM_TO_DEV:
1605 return "MEM_TO_DEV";
1606 case DMA_MEM_TO_MEM:
1607 return "MEM_TO_MEM";
1608 case DMA_DEV_TO_DEV:
1609 return "DEV_TO_DEV";
1610 default:
1611 return "invalid";
1612 }
1613 }
1614 #endif /* DMAENGINE_H */
1615