1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * drivers/base/core.c - core driver model code (device registration, etc)
4 *
5 * Copyright (c) 2002-3 Patrick Mochel
6 * Copyright (c) 2002-3 Open Source Development Labs
7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8 * Copyright (c) 2006 Novell, Inc.
9 */
10
11 #include <linux/device.h>
12 #include <linux/err.h>
13 #include <linux/fwnode.h>
14 #include <linux/init.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/string.h>
18 #include <linux/kdev_t.h>
19 #include <linux/notifier.h>
20 #include <linux/of.h>
21 #include <linux/of_device.h>
22 #include <linux/genhd.h>
23 #include <linux/mutex.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/netdevice.h>
26 #include <linux/sched/signal.h>
27 #include <linux/sysfs.h>
28
29 #include "base.h"
30 #include "power/power.h"
31
32 #ifdef CONFIG_SYSFS_DEPRECATED
33 #ifdef CONFIG_SYSFS_DEPRECATED_V2
34 long sysfs_deprecated = 1;
35 #else
36 long sysfs_deprecated = 0;
37 #endif
sysfs_deprecated_setup(char * arg)38 static int __init sysfs_deprecated_setup(char *arg)
39 {
40 return kstrtol(arg, 10, &sysfs_deprecated);
41 }
42 early_param("sysfs.deprecated", sysfs_deprecated_setup);
43 #endif
44
45 /* Device links support. */
46
47 #ifdef CONFIG_SRCU
48 static DEFINE_MUTEX(device_links_lock);
49 DEFINE_STATIC_SRCU(device_links_srcu);
50
device_links_write_lock(void)51 static inline void device_links_write_lock(void)
52 {
53 mutex_lock(&device_links_lock);
54 }
55
device_links_write_unlock(void)56 static inline void device_links_write_unlock(void)
57 {
58 mutex_unlock(&device_links_lock);
59 }
60
device_links_read_lock(void)61 int device_links_read_lock(void)
62 {
63 return srcu_read_lock(&device_links_srcu);
64 }
65
device_links_read_unlock(int idx)66 void device_links_read_unlock(int idx)
67 {
68 srcu_read_unlock(&device_links_srcu, idx);
69 }
70 #else /* !CONFIG_SRCU */
71 static DECLARE_RWSEM(device_links_lock);
72
device_links_write_lock(void)73 static inline void device_links_write_lock(void)
74 {
75 down_write(&device_links_lock);
76 }
77
device_links_write_unlock(void)78 static inline void device_links_write_unlock(void)
79 {
80 up_write(&device_links_lock);
81 }
82
device_links_read_lock(void)83 int device_links_read_lock(void)
84 {
85 down_read(&device_links_lock);
86 return 0;
87 }
88
device_links_read_unlock(int not_used)89 void device_links_read_unlock(int not_used)
90 {
91 up_read(&device_links_lock);
92 }
93 #endif /* !CONFIG_SRCU */
94
95 /**
96 * device_is_dependent - Check if one device depends on another one
97 * @dev: Device to check dependencies for.
98 * @target: Device to check against.
99 *
100 * Check if @target depends on @dev or any device dependent on it (its child or
101 * its consumer etc). Return 1 if that is the case or 0 otherwise.
102 */
device_is_dependent(struct device * dev,void * target)103 static int device_is_dependent(struct device *dev, void *target)
104 {
105 struct device_link *link;
106 int ret;
107
108 if (dev == target)
109 return 1;
110
111 ret = device_for_each_child(dev, target, device_is_dependent);
112 if (ret)
113 return ret;
114
115 list_for_each_entry(link, &dev->links.consumers, s_node) {
116 if (link->consumer == target)
117 return 1;
118
119 ret = device_is_dependent(link->consumer, target);
120 if (ret)
121 break;
122 }
123 return ret;
124 }
125
device_reorder_to_tail(struct device * dev,void * not_used)126 static int device_reorder_to_tail(struct device *dev, void *not_used)
127 {
128 struct device_link *link;
129
130 /*
131 * Devices that have not been registered yet will be put to the ends
132 * of the lists during the registration, so skip them here.
133 */
134 if (device_is_registered(dev))
135 devices_kset_move_last(dev);
136
137 if (device_pm_initialized(dev))
138 device_pm_move_last(dev);
139
140 device_for_each_child(dev, NULL, device_reorder_to_tail);
141 list_for_each_entry(link, &dev->links.consumers, s_node)
142 device_reorder_to_tail(link->consumer, NULL);
143
144 return 0;
145 }
146
147 /**
148 * device_pm_move_to_tail - Move set of devices to the end of device lists
149 * @dev: Device to move
150 *
151 * This is a device_reorder_to_tail() wrapper taking the requisite locks.
152 *
153 * It moves the @dev along with all of its children and all of its consumers
154 * to the ends of the device_kset and dpm_list, recursively.
155 */
device_pm_move_to_tail(struct device * dev)156 void device_pm_move_to_tail(struct device *dev)
157 {
158 int idx;
159
160 idx = device_links_read_lock();
161 device_pm_lock();
162 device_reorder_to_tail(dev, NULL);
163 device_pm_unlock();
164 device_links_read_unlock(idx);
165 }
166
167 /**
168 * device_link_add - Create a link between two devices.
169 * @consumer: Consumer end of the link.
170 * @supplier: Supplier end of the link.
171 * @flags: Link flags.
172 *
173 * The caller is responsible for the proper synchronization of the link creation
174 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the
175 * runtime PM framework to take the link into account. Second, if the
176 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
177 * be forced into the active metastate and reference-counted upon the creation
178 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
179 * ignored.
180 *
181 * If the DL_FLAG_AUTOREMOVE_CONSUMER is set, the link will be removed
182 * automatically when the consumer device driver unbinds from it.
183 * The combination of both DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_STATELESS
184 * set is invalid and will cause NULL to be returned.
185 *
186 * A side effect of the link creation is re-ordering of dpm_list and the
187 * devices_kset list by moving the consumer device and all devices depending
188 * on it to the ends of these lists (that does not happen to devices that have
189 * not been registered when this function is called).
190 *
191 * The supplier device is required to be registered when this function is called
192 * and NULL will be returned if that is not the case. The consumer device need
193 * not be registered, however.
194 */
device_link_add(struct device * consumer,struct device * supplier,u32 flags)195 struct device_link *device_link_add(struct device *consumer,
196 struct device *supplier, u32 flags)
197 {
198 struct device_link *link;
199
200 if (!consumer || !supplier ||
201 ((flags & DL_FLAG_STATELESS) &&
202 (flags & DL_FLAG_AUTOREMOVE_CONSUMER)))
203 return NULL;
204
205 device_links_write_lock();
206 device_pm_lock();
207
208 /*
209 * If the supplier has not been fully registered yet or there is a
210 * reverse dependency between the consumer and the supplier already in
211 * the graph, return NULL.
212 */
213 if (!device_pm_initialized(supplier)
214 || device_is_dependent(consumer, supplier)) {
215 link = NULL;
216 goto out;
217 }
218
219 list_for_each_entry(link, &supplier->links.consumers, s_node)
220 if (link->consumer == consumer) {
221 kref_get(&link->kref);
222 goto out;
223 }
224
225 link = kzalloc(sizeof(*link), GFP_KERNEL);
226 if (!link)
227 goto out;
228
229 if (flags & DL_FLAG_PM_RUNTIME) {
230 if (flags & DL_FLAG_RPM_ACTIVE) {
231 if (pm_runtime_get_sync(supplier) < 0) {
232 pm_runtime_put_noidle(supplier);
233 kfree(link);
234 link = NULL;
235 goto out;
236 }
237 link->rpm_active = true;
238 }
239 pm_runtime_new_link(consumer);
240 /*
241 * If the link is being added by the consumer driver at probe
242 * time, balance the decrementation of the supplier's runtime PM
243 * usage counter after consumer probe in driver_probe_device().
244 */
245 if (consumer->links.status == DL_DEV_PROBING)
246 pm_runtime_get_noresume(supplier);
247 }
248 get_device(supplier);
249 link->supplier = supplier;
250 INIT_LIST_HEAD(&link->s_node);
251 get_device(consumer);
252 link->consumer = consumer;
253 INIT_LIST_HEAD(&link->c_node);
254 link->flags = flags;
255 kref_init(&link->kref);
256
257 /* Determine the initial link state. */
258 if (flags & DL_FLAG_STATELESS) {
259 link->status = DL_STATE_NONE;
260 } else {
261 switch (supplier->links.status) {
262 case DL_DEV_DRIVER_BOUND:
263 switch (consumer->links.status) {
264 case DL_DEV_PROBING:
265 /*
266 * Some callers expect the link creation during
267 * consumer driver probe to resume the supplier
268 * even without DL_FLAG_RPM_ACTIVE.
269 */
270 if (flags & DL_FLAG_PM_RUNTIME)
271 pm_runtime_resume(supplier);
272
273 link->status = DL_STATE_CONSUMER_PROBE;
274 break;
275 case DL_DEV_DRIVER_BOUND:
276 link->status = DL_STATE_ACTIVE;
277 break;
278 default:
279 link->status = DL_STATE_AVAILABLE;
280 break;
281 }
282 break;
283 case DL_DEV_UNBINDING:
284 link->status = DL_STATE_SUPPLIER_UNBIND;
285 break;
286 default:
287 link->status = DL_STATE_DORMANT;
288 break;
289 }
290 }
291
292 /*
293 * Move the consumer and all of the devices depending on it to the end
294 * of dpm_list and the devices_kset list.
295 *
296 * It is necessary to hold dpm_list locked throughout all that or else
297 * we may end up suspending with a wrong ordering of it.
298 */
299 device_reorder_to_tail(consumer, NULL);
300
301 list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
302 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
303
304 dev_info(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
305
306 out:
307 device_pm_unlock();
308 device_links_write_unlock();
309 return link;
310 }
311 EXPORT_SYMBOL_GPL(device_link_add);
312
device_link_free(struct device_link * link)313 static void device_link_free(struct device_link *link)
314 {
315 put_device(link->consumer);
316 put_device(link->supplier);
317 kfree(link);
318 }
319
320 #ifdef CONFIG_SRCU
__device_link_free_srcu(struct rcu_head * rhead)321 static void __device_link_free_srcu(struct rcu_head *rhead)
322 {
323 device_link_free(container_of(rhead, struct device_link, rcu_head));
324 }
325
__device_link_del(struct kref * kref)326 static void __device_link_del(struct kref *kref)
327 {
328 struct device_link *link = container_of(kref, struct device_link, kref);
329
330 dev_info(link->consumer, "Dropping the link to %s\n",
331 dev_name(link->supplier));
332
333 if (link->flags & DL_FLAG_PM_RUNTIME)
334 pm_runtime_drop_link(link->consumer);
335
336 list_del_rcu(&link->s_node);
337 list_del_rcu(&link->c_node);
338 call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu);
339 }
340 #else /* !CONFIG_SRCU */
__device_link_del(struct kref * kref)341 static void __device_link_del(struct kref *kref)
342 {
343 struct device_link *link = container_of(kref, struct device_link, kref);
344
345 dev_info(link->consumer, "Dropping the link to %s\n",
346 dev_name(link->supplier));
347
348 if (link->flags & DL_FLAG_PM_RUNTIME)
349 pm_runtime_drop_link(link->consumer);
350
351 list_del(&link->s_node);
352 list_del(&link->c_node);
353 device_link_free(link);
354 }
355 #endif /* !CONFIG_SRCU */
356
357 /**
358 * device_link_del - Delete a link between two devices.
359 * @link: Device link to delete.
360 *
361 * The caller must ensure proper synchronization of this function with runtime
362 * PM. If the link was added multiple times, it needs to be deleted as often.
363 * Care is required for hotplugged devices: Their links are purged on removal
364 * and calling device_link_del() is then no longer allowed.
365 */
device_link_del(struct device_link * link)366 void device_link_del(struct device_link *link)
367 {
368 device_links_write_lock();
369 device_pm_lock();
370 kref_put(&link->kref, __device_link_del);
371 device_pm_unlock();
372 device_links_write_unlock();
373 }
374 EXPORT_SYMBOL_GPL(device_link_del);
375
376 /**
377 * device_link_remove - remove a link between two devices.
378 * @consumer: Consumer end of the link.
379 * @supplier: Supplier end of the link.
380 *
381 * The caller must ensure proper synchronization of this function with runtime
382 * PM.
383 */
device_link_remove(void * consumer,struct device * supplier)384 void device_link_remove(void *consumer, struct device *supplier)
385 {
386 struct device_link *link;
387
388 if (WARN_ON(consumer == supplier))
389 return;
390
391 device_links_write_lock();
392 device_pm_lock();
393
394 list_for_each_entry(link, &supplier->links.consumers, s_node) {
395 if (link->consumer == consumer) {
396 kref_put(&link->kref, __device_link_del);
397 break;
398 }
399 }
400
401 device_pm_unlock();
402 device_links_write_unlock();
403 }
404 EXPORT_SYMBOL_GPL(device_link_remove);
405
device_links_missing_supplier(struct device * dev)406 static void device_links_missing_supplier(struct device *dev)
407 {
408 struct device_link *link;
409
410 list_for_each_entry(link, &dev->links.suppliers, c_node)
411 if (link->status == DL_STATE_CONSUMER_PROBE)
412 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
413 }
414
415 /**
416 * device_links_check_suppliers - Check presence of supplier drivers.
417 * @dev: Consumer device.
418 *
419 * Check links from this device to any suppliers. Walk the list of the device's
420 * links to suppliers and see if all of them are available. If not, simply
421 * return -EPROBE_DEFER.
422 *
423 * We need to guarantee that the supplier will not go away after the check has
424 * been positive here. It only can go away in __device_release_driver() and
425 * that function checks the device's links to consumers. This means we need to
426 * mark the link as "consumer probe in progress" to make the supplier removal
427 * wait for us to complete (or bad things may happen).
428 *
429 * Links with the DL_FLAG_STATELESS flag set are ignored.
430 */
device_links_check_suppliers(struct device * dev)431 int device_links_check_suppliers(struct device *dev)
432 {
433 struct device_link *link;
434 int ret = 0;
435
436 device_links_write_lock();
437
438 list_for_each_entry(link, &dev->links.suppliers, c_node) {
439 if (link->flags & DL_FLAG_STATELESS)
440 continue;
441
442 if (link->status != DL_STATE_AVAILABLE) {
443 device_links_missing_supplier(dev);
444 ret = -EPROBE_DEFER;
445 break;
446 }
447 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
448 }
449 dev->links.status = DL_DEV_PROBING;
450
451 device_links_write_unlock();
452 return ret;
453 }
454
455 /**
456 * device_links_driver_bound - Update device links after probing its driver.
457 * @dev: Device to update the links for.
458 *
459 * The probe has been successful, so update links from this device to any
460 * consumers by changing their status to "available".
461 *
462 * Also change the status of @dev's links to suppliers to "active".
463 *
464 * Links with the DL_FLAG_STATELESS flag set are ignored.
465 */
device_links_driver_bound(struct device * dev)466 void device_links_driver_bound(struct device *dev)
467 {
468 struct device_link *link;
469
470 device_links_write_lock();
471
472 list_for_each_entry(link, &dev->links.consumers, s_node) {
473 if (link->flags & DL_FLAG_STATELESS)
474 continue;
475
476 WARN_ON(link->status != DL_STATE_DORMANT);
477 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
478 }
479
480 list_for_each_entry(link, &dev->links.suppliers, c_node) {
481 if (link->flags & DL_FLAG_STATELESS)
482 continue;
483
484 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
485 WRITE_ONCE(link->status, DL_STATE_ACTIVE);
486 }
487
488 dev->links.status = DL_DEV_DRIVER_BOUND;
489
490 device_links_write_unlock();
491 }
492
493 /**
494 * __device_links_no_driver - Update links of a device without a driver.
495 * @dev: Device without a drvier.
496 *
497 * Delete all non-persistent links from this device to any suppliers.
498 *
499 * Persistent links stay around, but their status is changed to "available",
500 * unless they already are in the "supplier unbind in progress" state in which
501 * case they need not be updated.
502 *
503 * Links with the DL_FLAG_STATELESS flag set are ignored.
504 */
__device_links_no_driver(struct device * dev)505 static void __device_links_no_driver(struct device *dev)
506 {
507 struct device_link *link, *ln;
508
509 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
510 if (link->flags & DL_FLAG_STATELESS)
511 continue;
512
513 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
514 kref_put(&link->kref, __device_link_del);
515 else if (link->status != DL_STATE_SUPPLIER_UNBIND)
516 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
517 }
518
519 dev->links.status = DL_DEV_NO_DRIVER;
520 }
521
device_links_no_driver(struct device * dev)522 void device_links_no_driver(struct device *dev)
523 {
524 device_links_write_lock();
525 __device_links_no_driver(dev);
526 device_links_write_unlock();
527 }
528
529 /**
530 * device_links_driver_cleanup - Update links after driver removal.
531 * @dev: Device whose driver has just gone away.
532 *
533 * Update links to consumers for @dev by changing their status to "dormant" and
534 * invoke %__device_links_no_driver() to update links to suppliers for it as
535 * appropriate.
536 *
537 * Links with the DL_FLAG_STATELESS flag set are ignored.
538 */
device_links_driver_cleanup(struct device * dev)539 void device_links_driver_cleanup(struct device *dev)
540 {
541 struct device_link *link;
542
543 device_links_write_lock();
544
545 list_for_each_entry(link, &dev->links.consumers, s_node) {
546 if (link->flags & DL_FLAG_STATELESS)
547 continue;
548
549 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
550 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
551
552 /*
553 * autoremove the links between this @dev and its consumer
554 * devices that are not active, i.e. where the link state
555 * has moved to DL_STATE_SUPPLIER_UNBIND.
556 */
557 if (link->status == DL_STATE_SUPPLIER_UNBIND &&
558 link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
559 kref_put(&link->kref, __device_link_del);
560
561 WRITE_ONCE(link->status, DL_STATE_DORMANT);
562 }
563
564 __device_links_no_driver(dev);
565
566 device_links_write_unlock();
567 }
568
569 /**
570 * device_links_busy - Check if there are any busy links to consumers.
571 * @dev: Device to check.
572 *
573 * Check each consumer of the device and return 'true' if its link's status
574 * is one of "consumer probe" or "active" (meaning that the given consumer is
575 * probing right now or its driver is present). Otherwise, change the link
576 * state to "supplier unbind" to prevent the consumer from being probed
577 * successfully going forward.
578 *
579 * Return 'false' if there are no probing or active consumers.
580 *
581 * Links with the DL_FLAG_STATELESS flag set are ignored.
582 */
device_links_busy(struct device * dev)583 bool device_links_busy(struct device *dev)
584 {
585 struct device_link *link;
586 bool ret = false;
587
588 device_links_write_lock();
589
590 list_for_each_entry(link, &dev->links.consumers, s_node) {
591 if (link->flags & DL_FLAG_STATELESS)
592 continue;
593
594 if (link->status == DL_STATE_CONSUMER_PROBE
595 || link->status == DL_STATE_ACTIVE) {
596 ret = true;
597 break;
598 }
599 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
600 }
601
602 dev->links.status = DL_DEV_UNBINDING;
603
604 device_links_write_unlock();
605 return ret;
606 }
607
608 /**
609 * device_links_unbind_consumers - Force unbind consumers of the given device.
610 * @dev: Device to unbind the consumers of.
611 *
612 * Walk the list of links to consumers for @dev and if any of them is in the
613 * "consumer probe" state, wait for all device probes in progress to complete
614 * and start over.
615 *
616 * If that's not the case, change the status of the link to "supplier unbind"
617 * and check if the link was in the "active" state. If so, force the consumer
618 * driver to unbind and start over (the consumer will not re-probe as we have
619 * changed the state of the link already).
620 *
621 * Links with the DL_FLAG_STATELESS flag set are ignored.
622 */
device_links_unbind_consumers(struct device * dev)623 void device_links_unbind_consumers(struct device *dev)
624 {
625 struct device_link *link;
626
627 start:
628 device_links_write_lock();
629
630 list_for_each_entry(link, &dev->links.consumers, s_node) {
631 enum device_link_state status;
632
633 if (link->flags & DL_FLAG_STATELESS)
634 continue;
635
636 status = link->status;
637 if (status == DL_STATE_CONSUMER_PROBE) {
638 device_links_write_unlock();
639
640 wait_for_device_probe();
641 goto start;
642 }
643 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
644 if (status == DL_STATE_ACTIVE) {
645 struct device *consumer = link->consumer;
646
647 get_device(consumer);
648
649 device_links_write_unlock();
650
651 device_release_driver_internal(consumer, NULL,
652 consumer->parent);
653 put_device(consumer);
654 goto start;
655 }
656 }
657
658 device_links_write_unlock();
659 }
660
661 /**
662 * device_links_purge - Delete existing links to other devices.
663 * @dev: Target device.
664 */
device_links_purge(struct device * dev)665 static void device_links_purge(struct device *dev)
666 {
667 struct device_link *link, *ln;
668
669 /*
670 * Delete all of the remaining links from this device to any other
671 * devices (either consumers or suppliers).
672 */
673 device_links_write_lock();
674
675 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
676 WARN_ON(link->status == DL_STATE_ACTIVE);
677 __device_link_del(&link->kref);
678 }
679
680 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
681 WARN_ON(link->status != DL_STATE_DORMANT &&
682 link->status != DL_STATE_NONE);
683 __device_link_del(&link->kref);
684 }
685
686 device_links_write_unlock();
687 }
688
689 /* Device links support end. */
690
691 int (*platform_notify)(struct device *dev) = NULL;
692 int (*platform_notify_remove)(struct device *dev) = NULL;
693 static struct kobject *dev_kobj;
694 struct kobject *sysfs_dev_char_kobj;
695 struct kobject *sysfs_dev_block_kobj;
696
697 static DEFINE_MUTEX(device_hotplug_lock);
698
lock_device_hotplug(void)699 void lock_device_hotplug(void)
700 {
701 mutex_lock(&device_hotplug_lock);
702 }
703
unlock_device_hotplug(void)704 void unlock_device_hotplug(void)
705 {
706 mutex_unlock(&device_hotplug_lock);
707 }
708
lock_device_hotplug_sysfs(void)709 int lock_device_hotplug_sysfs(void)
710 {
711 if (mutex_trylock(&device_hotplug_lock))
712 return 0;
713
714 /* Avoid busy looping (5 ms of sleep should do). */
715 msleep(5);
716 return restart_syscall();
717 }
718
719 #ifdef CONFIG_BLOCK
device_is_not_partition(struct device * dev)720 static inline int device_is_not_partition(struct device *dev)
721 {
722 return !(dev->type == &part_type);
723 }
724 #else
device_is_not_partition(struct device * dev)725 static inline int device_is_not_partition(struct device *dev)
726 {
727 return 1;
728 }
729 #endif
730
731 /**
732 * dev_driver_string - Return a device's driver name, if at all possible
733 * @dev: struct device to get the name of
734 *
735 * Will return the device's driver's name if it is bound to a device. If
736 * the device is not bound to a driver, it will return the name of the bus
737 * it is attached to. If it is not attached to a bus either, an empty
738 * string will be returned.
739 */
dev_driver_string(const struct device * dev)740 const char *dev_driver_string(const struct device *dev)
741 {
742 struct device_driver *drv;
743
744 /* dev->driver can change to NULL underneath us because of unbinding,
745 * so be careful about accessing it. dev->bus and dev->class should
746 * never change once they are set, so they don't need special care.
747 */
748 drv = READ_ONCE(dev->driver);
749 return drv ? drv->name :
750 (dev->bus ? dev->bus->name :
751 (dev->class ? dev->class->name : ""));
752 }
753 EXPORT_SYMBOL(dev_driver_string);
754
755 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
756
dev_attr_show(struct kobject * kobj,struct attribute * attr,char * buf)757 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
758 char *buf)
759 {
760 struct device_attribute *dev_attr = to_dev_attr(attr);
761 struct device *dev = kobj_to_dev(kobj);
762 ssize_t ret = -EIO;
763
764 if (dev_attr->show)
765 ret = dev_attr->show(dev, dev_attr, buf);
766 if (ret >= (ssize_t)PAGE_SIZE) {
767 printk("dev_attr_show: %pS returned bad count\n",
768 dev_attr->show);
769 }
770 return ret;
771 }
772
dev_attr_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t count)773 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
774 const char *buf, size_t count)
775 {
776 struct device_attribute *dev_attr = to_dev_attr(attr);
777 struct device *dev = kobj_to_dev(kobj);
778 ssize_t ret = -EIO;
779
780 if (dev_attr->store)
781 ret = dev_attr->store(dev, dev_attr, buf, count);
782 return ret;
783 }
784
785 static const struct sysfs_ops dev_sysfs_ops = {
786 .show = dev_attr_show,
787 .store = dev_attr_store,
788 };
789
790 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
791
device_store_ulong(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)792 ssize_t device_store_ulong(struct device *dev,
793 struct device_attribute *attr,
794 const char *buf, size_t size)
795 {
796 struct dev_ext_attribute *ea = to_ext_attr(attr);
797 char *end;
798 unsigned long new = simple_strtoul(buf, &end, 0);
799 if (end == buf)
800 return -EINVAL;
801 *(unsigned long *)(ea->var) = new;
802 /* Always return full write size even if we didn't consume all */
803 return size;
804 }
805 EXPORT_SYMBOL_GPL(device_store_ulong);
806
device_show_ulong(struct device * dev,struct device_attribute * attr,char * buf)807 ssize_t device_show_ulong(struct device *dev,
808 struct device_attribute *attr,
809 char *buf)
810 {
811 struct dev_ext_attribute *ea = to_ext_attr(attr);
812 return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var));
813 }
814 EXPORT_SYMBOL_GPL(device_show_ulong);
815
device_store_int(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)816 ssize_t device_store_int(struct device *dev,
817 struct device_attribute *attr,
818 const char *buf, size_t size)
819 {
820 struct dev_ext_attribute *ea = to_ext_attr(attr);
821 char *end;
822 long new = simple_strtol(buf, &end, 0);
823 if (end == buf || new > INT_MAX || new < INT_MIN)
824 return -EINVAL;
825 *(int *)(ea->var) = new;
826 /* Always return full write size even if we didn't consume all */
827 return size;
828 }
829 EXPORT_SYMBOL_GPL(device_store_int);
830
device_show_int(struct device * dev,struct device_attribute * attr,char * buf)831 ssize_t device_show_int(struct device *dev,
832 struct device_attribute *attr,
833 char *buf)
834 {
835 struct dev_ext_attribute *ea = to_ext_attr(attr);
836
837 return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var));
838 }
839 EXPORT_SYMBOL_GPL(device_show_int);
840
device_store_bool(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)841 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
842 const char *buf, size_t size)
843 {
844 struct dev_ext_attribute *ea = to_ext_attr(attr);
845
846 if (strtobool(buf, ea->var) < 0)
847 return -EINVAL;
848
849 return size;
850 }
851 EXPORT_SYMBOL_GPL(device_store_bool);
852
device_show_bool(struct device * dev,struct device_attribute * attr,char * buf)853 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
854 char *buf)
855 {
856 struct dev_ext_attribute *ea = to_ext_attr(attr);
857
858 return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var));
859 }
860 EXPORT_SYMBOL_GPL(device_show_bool);
861
862 /**
863 * device_release - free device structure.
864 * @kobj: device's kobject.
865 *
866 * This is called once the reference count for the object
867 * reaches 0. We forward the call to the device's release
868 * method, which should handle actually freeing the structure.
869 */
device_release(struct kobject * kobj)870 static void device_release(struct kobject *kobj)
871 {
872 struct device *dev = kobj_to_dev(kobj);
873 struct device_private *p = dev->p;
874
875 /*
876 * Some platform devices are driven without driver attached
877 * and managed resources may have been acquired. Make sure
878 * all resources are released.
879 *
880 * Drivers still can add resources into device after device
881 * is deleted but alive, so release devres here to avoid
882 * possible memory leak.
883 */
884 devres_release_all(dev);
885
886 if (dev->release)
887 dev->release(dev);
888 else if (dev->type && dev->type->release)
889 dev->type->release(dev);
890 else if (dev->class && dev->class->dev_release)
891 dev->class->dev_release(dev);
892 else
893 WARN(1, KERN_ERR "Device '%s' does not have a release() "
894 "function, it is broken and must be fixed.\n",
895 dev_name(dev));
896 kfree(p);
897 }
898
device_namespace(struct kobject * kobj)899 static const void *device_namespace(struct kobject *kobj)
900 {
901 struct device *dev = kobj_to_dev(kobj);
902 const void *ns = NULL;
903
904 if (dev->class && dev->class->ns_type)
905 ns = dev->class->namespace(dev);
906
907 return ns;
908 }
909
device_get_ownership(struct kobject * kobj,kuid_t * uid,kgid_t * gid)910 static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid)
911 {
912 struct device *dev = kobj_to_dev(kobj);
913
914 if (dev->class && dev->class->get_ownership)
915 dev->class->get_ownership(dev, uid, gid);
916 }
917
918 static struct kobj_type device_ktype = {
919 .release = device_release,
920 .sysfs_ops = &dev_sysfs_ops,
921 .namespace = device_namespace,
922 .get_ownership = device_get_ownership,
923 };
924
925
dev_uevent_filter(struct kset * kset,struct kobject * kobj)926 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
927 {
928 struct kobj_type *ktype = get_ktype(kobj);
929
930 if (ktype == &device_ktype) {
931 struct device *dev = kobj_to_dev(kobj);
932 if (dev->bus)
933 return 1;
934 if (dev->class)
935 return 1;
936 }
937 return 0;
938 }
939
dev_uevent_name(struct kset * kset,struct kobject * kobj)940 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
941 {
942 struct device *dev = kobj_to_dev(kobj);
943
944 if (dev->bus)
945 return dev->bus->name;
946 if (dev->class)
947 return dev->class->name;
948 return NULL;
949 }
950
dev_uevent(struct kset * kset,struct kobject * kobj,struct kobj_uevent_env * env)951 static int dev_uevent(struct kset *kset, struct kobject *kobj,
952 struct kobj_uevent_env *env)
953 {
954 struct device *dev = kobj_to_dev(kobj);
955 int retval = 0;
956
957 /* add device node properties if present */
958 if (MAJOR(dev->devt)) {
959 const char *tmp;
960 const char *name;
961 umode_t mode = 0;
962 kuid_t uid = GLOBAL_ROOT_UID;
963 kgid_t gid = GLOBAL_ROOT_GID;
964
965 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
966 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
967 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
968 if (name) {
969 add_uevent_var(env, "DEVNAME=%s", name);
970 if (mode)
971 add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
972 if (!uid_eq(uid, GLOBAL_ROOT_UID))
973 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
974 if (!gid_eq(gid, GLOBAL_ROOT_GID))
975 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
976 kfree(tmp);
977 }
978 }
979
980 if (dev->type && dev->type->name)
981 add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
982
983 if (dev->driver)
984 add_uevent_var(env, "DRIVER=%s", dev->driver->name);
985
986 /* Add common DT information about the device */
987 of_device_uevent(dev, env);
988
989 /* have the bus specific function add its stuff */
990 if (dev->bus && dev->bus->uevent) {
991 retval = dev->bus->uevent(dev, env);
992 if (retval)
993 pr_debug("device: '%s': %s: bus uevent() returned %d\n",
994 dev_name(dev), __func__, retval);
995 }
996
997 /* have the class specific function add its stuff */
998 if (dev->class && dev->class->dev_uevent) {
999 retval = dev->class->dev_uevent(dev, env);
1000 if (retval)
1001 pr_debug("device: '%s': %s: class uevent() "
1002 "returned %d\n", dev_name(dev),
1003 __func__, retval);
1004 }
1005
1006 /* have the device type specific function add its stuff */
1007 if (dev->type && dev->type->uevent) {
1008 retval = dev->type->uevent(dev, env);
1009 if (retval)
1010 pr_debug("device: '%s': %s: dev_type uevent() "
1011 "returned %d\n", dev_name(dev),
1012 __func__, retval);
1013 }
1014
1015 return retval;
1016 }
1017
1018 static const struct kset_uevent_ops device_uevent_ops = {
1019 .filter = dev_uevent_filter,
1020 .name = dev_uevent_name,
1021 .uevent = dev_uevent,
1022 };
1023
uevent_show(struct device * dev,struct device_attribute * attr,char * buf)1024 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
1025 char *buf)
1026 {
1027 struct kobject *top_kobj;
1028 struct kset *kset;
1029 struct kobj_uevent_env *env = NULL;
1030 int i;
1031 size_t count = 0;
1032 int retval;
1033
1034 /* search the kset, the device belongs to */
1035 top_kobj = &dev->kobj;
1036 while (!top_kobj->kset && top_kobj->parent)
1037 top_kobj = top_kobj->parent;
1038 if (!top_kobj->kset)
1039 goto out;
1040
1041 kset = top_kobj->kset;
1042 if (!kset->uevent_ops || !kset->uevent_ops->uevent)
1043 goto out;
1044
1045 /* respect filter */
1046 if (kset->uevent_ops && kset->uevent_ops->filter)
1047 if (!kset->uevent_ops->filter(kset, &dev->kobj))
1048 goto out;
1049
1050 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
1051 if (!env)
1052 return -ENOMEM;
1053
1054 /* let the kset specific function add its keys */
1055 retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
1056 if (retval)
1057 goto out;
1058
1059 /* copy keys to file */
1060 for (i = 0; i < env->envp_idx; i++)
1061 count += sprintf(&buf[count], "%s\n", env->envp[i]);
1062 out:
1063 kfree(env);
1064 return count;
1065 }
1066
uevent_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1067 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
1068 const char *buf, size_t count)
1069 {
1070 if (kobject_synth_uevent(&dev->kobj, buf, count))
1071 dev_err(dev, "uevent: failed to send synthetic uevent\n");
1072
1073 return count;
1074 }
1075 static DEVICE_ATTR_RW(uevent);
1076
online_show(struct device * dev,struct device_attribute * attr,char * buf)1077 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
1078 char *buf)
1079 {
1080 bool val;
1081
1082 device_lock(dev);
1083 val = !dev->offline;
1084 device_unlock(dev);
1085 return sprintf(buf, "%u\n", val);
1086 }
1087
online_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1088 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
1089 const char *buf, size_t count)
1090 {
1091 bool val;
1092 int ret;
1093
1094 ret = strtobool(buf, &val);
1095 if (ret < 0)
1096 return ret;
1097
1098 ret = lock_device_hotplug_sysfs();
1099 if (ret)
1100 return ret;
1101
1102 ret = val ? device_online(dev) : device_offline(dev);
1103 unlock_device_hotplug();
1104 return ret < 0 ? ret : count;
1105 }
1106 static DEVICE_ATTR_RW(online);
1107
device_add_groups(struct device * dev,const struct attribute_group ** groups)1108 int device_add_groups(struct device *dev, const struct attribute_group **groups)
1109 {
1110 return sysfs_create_groups(&dev->kobj, groups);
1111 }
1112 EXPORT_SYMBOL_GPL(device_add_groups);
1113
device_remove_groups(struct device * dev,const struct attribute_group ** groups)1114 void device_remove_groups(struct device *dev,
1115 const struct attribute_group **groups)
1116 {
1117 sysfs_remove_groups(&dev->kobj, groups);
1118 }
1119 EXPORT_SYMBOL_GPL(device_remove_groups);
1120
1121 union device_attr_group_devres {
1122 const struct attribute_group *group;
1123 const struct attribute_group **groups;
1124 };
1125
devm_attr_group_match(struct device * dev,void * res,void * data)1126 static int devm_attr_group_match(struct device *dev, void *res, void *data)
1127 {
1128 return ((union device_attr_group_devres *)res)->group == data;
1129 }
1130
devm_attr_group_remove(struct device * dev,void * res)1131 static void devm_attr_group_remove(struct device *dev, void *res)
1132 {
1133 union device_attr_group_devres *devres = res;
1134 const struct attribute_group *group = devres->group;
1135
1136 dev_dbg(dev, "%s: removing group %p\n", __func__, group);
1137 sysfs_remove_group(&dev->kobj, group);
1138 }
1139
devm_attr_groups_remove(struct device * dev,void * res)1140 static void devm_attr_groups_remove(struct device *dev, void *res)
1141 {
1142 union device_attr_group_devres *devres = res;
1143 const struct attribute_group **groups = devres->groups;
1144
1145 dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
1146 sysfs_remove_groups(&dev->kobj, groups);
1147 }
1148
1149 /**
1150 * devm_device_add_group - given a device, create a managed attribute group
1151 * @dev: The device to create the group for
1152 * @grp: The attribute group to create
1153 *
1154 * This function creates a group for the first time. It will explicitly
1155 * warn and error if any of the attribute files being created already exist.
1156 *
1157 * Returns 0 on success or error code on failure.
1158 */
devm_device_add_group(struct device * dev,const struct attribute_group * grp)1159 int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
1160 {
1161 union device_attr_group_devres *devres;
1162 int error;
1163
1164 devres = devres_alloc(devm_attr_group_remove,
1165 sizeof(*devres), GFP_KERNEL);
1166 if (!devres)
1167 return -ENOMEM;
1168
1169 error = sysfs_create_group(&dev->kobj, grp);
1170 if (error) {
1171 devres_free(devres);
1172 return error;
1173 }
1174
1175 devres->group = grp;
1176 devres_add(dev, devres);
1177 return 0;
1178 }
1179 EXPORT_SYMBOL_GPL(devm_device_add_group);
1180
1181 /**
1182 * devm_device_remove_group: remove a managed group from a device
1183 * @dev: device to remove the group from
1184 * @grp: group to remove
1185 *
1186 * This function removes a group of attributes from a device. The attributes
1187 * previously have to have been created for this group, otherwise it will fail.
1188 */
devm_device_remove_group(struct device * dev,const struct attribute_group * grp)1189 void devm_device_remove_group(struct device *dev,
1190 const struct attribute_group *grp)
1191 {
1192 WARN_ON(devres_release(dev, devm_attr_group_remove,
1193 devm_attr_group_match,
1194 /* cast away const */ (void *)grp));
1195 }
1196 EXPORT_SYMBOL_GPL(devm_device_remove_group);
1197
1198 /**
1199 * devm_device_add_groups - create a bunch of managed attribute groups
1200 * @dev: The device to create the group for
1201 * @groups: The attribute groups to create, NULL terminated
1202 *
1203 * This function creates a bunch of managed attribute groups. If an error
1204 * occurs when creating a group, all previously created groups will be
1205 * removed, unwinding everything back to the original state when this
1206 * function was called. It will explicitly warn and error if any of the
1207 * attribute files being created already exist.
1208 *
1209 * Returns 0 on success or error code from sysfs_create_group on failure.
1210 */
devm_device_add_groups(struct device * dev,const struct attribute_group ** groups)1211 int devm_device_add_groups(struct device *dev,
1212 const struct attribute_group **groups)
1213 {
1214 union device_attr_group_devres *devres;
1215 int error;
1216
1217 devres = devres_alloc(devm_attr_groups_remove,
1218 sizeof(*devres), GFP_KERNEL);
1219 if (!devres)
1220 return -ENOMEM;
1221
1222 error = sysfs_create_groups(&dev->kobj, groups);
1223 if (error) {
1224 devres_free(devres);
1225 return error;
1226 }
1227
1228 devres->groups = groups;
1229 devres_add(dev, devres);
1230 return 0;
1231 }
1232 EXPORT_SYMBOL_GPL(devm_device_add_groups);
1233
1234 /**
1235 * devm_device_remove_groups - remove a list of managed groups
1236 *
1237 * @dev: The device for the groups to be removed from
1238 * @groups: NULL terminated list of groups to be removed
1239 *
1240 * If groups is not NULL, remove the specified groups from the device.
1241 */
devm_device_remove_groups(struct device * dev,const struct attribute_group ** groups)1242 void devm_device_remove_groups(struct device *dev,
1243 const struct attribute_group **groups)
1244 {
1245 WARN_ON(devres_release(dev, devm_attr_groups_remove,
1246 devm_attr_group_match,
1247 /* cast away const */ (void *)groups));
1248 }
1249 EXPORT_SYMBOL_GPL(devm_device_remove_groups);
1250
device_add_attrs(struct device * dev)1251 static int device_add_attrs(struct device *dev)
1252 {
1253 struct class *class = dev->class;
1254 const struct device_type *type = dev->type;
1255 int error;
1256
1257 if (class) {
1258 error = device_add_groups(dev, class->dev_groups);
1259 if (error)
1260 return error;
1261 }
1262
1263 if (type) {
1264 error = device_add_groups(dev, type->groups);
1265 if (error)
1266 goto err_remove_class_groups;
1267 }
1268
1269 error = device_add_groups(dev, dev->groups);
1270 if (error)
1271 goto err_remove_type_groups;
1272
1273 if (device_supports_offline(dev) && !dev->offline_disabled) {
1274 error = device_create_file(dev, &dev_attr_online);
1275 if (error)
1276 goto err_remove_dev_groups;
1277 }
1278
1279 return 0;
1280
1281 err_remove_dev_groups:
1282 device_remove_groups(dev, dev->groups);
1283 err_remove_type_groups:
1284 if (type)
1285 device_remove_groups(dev, type->groups);
1286 err_remove_class_groups:
1287 if (class)
1288 device_remove_groups(dev, class->dev_groups);
1289
1290 return error;
1291 }
1292
device_remove_attrs(struct device * dev)1293 static void device_remove_attrs(struct device *dev)
1294 {
1295 struct class *class = dev->class;
1296 const struct device_type *type = dev->type;
1297
1298 device_remove_file(dev, &dev_attr_online);
1299 device_remove_groups(dev, dev->groups);
1300
1301 if (type)
1302 device_remove_groups(dev, type->groups);
1303
1304 if (class)
1305 device_remove_groups(dev, class->dev_groups);
1306 }
1307
dev_show(struct device * dev,struct device_attribute * attr,char * buf)1308 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
1309 char *buf)
1310 {
1311 return print_dev_t(buf, dev->devt);
1312 }
1313 static DEVICE_ATTR_RO(dev);
1314
1315 /* /sys/devices/ */
1316 struct kset *devices_kset;
1317
1318 /**
1319 * devices_kset_move_before - Move device in the devices_kset's list.
1320 * @deva: Device to move.
1321 * @devb: Device @deva should come before.
1322 */
devices_kset_move_before(struct device * deva,struct device * devb)1323 static void devices_kset_move_before(struct device *deva, struct device *devb)
1324 {
1325 if (!devices_kset)
1326 return;
1327 pr_debug("devices_kset: Moving %s before %s\n",
1328 dev_name(deva), dev_name(devb));
1329 spin_lock(&devices_kset->list_lock);
1330 list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
1331 spin_unlock(&devices_kset->list_lock);
1332 }
1333
1334 /**
1335 * devices_kset_move_after - Move device in the devices_kset's list.
1336 * @deva: Device to move
1337 * @devb: Device @deva should come after.
1338 */
devices_kset_move_after(struct device * deva,struct device * devb)1339 static void devices_kset_move_after(struct device *deva, struct device *devb)
1340 {
1341 if (!devices_kset)
1342 return;
1343 pr_debug("devices_kset: Moving %s after %s\n",
1344 dev_name(deva), dev_name(devb));
1345 spin_lock(&devices_kset->list_lock);
1346 list_move(&deva->kobj.entry, &devb->kobj.entry);
1347 spin_unlock(&devices_kset->list_lock);
1348 }
1349
1350 /**
1351 * devices_kset_move_last - move the device to the end of devices_kset's list.
1352 * @dev: device to move
1353 */
devices_kset_move_last(struct device * dev)1354 void devices_kset_move_last(struct device *dev)
1355 {
1356 if (!devices_kset)
1357 return;
1358 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
1359 spin_lock(&devices_kset->list_lock);
1360 list_move_tail(&dev->kobj.entry, &devices_kset->list);
1361 spin_unlock(&devices_kset->list_lock);
1362 }
1363
1364 /**
1365 * device_create_file - create sysfs attribute file for device.
1366 * @dev: device.
1367 * @attr: device attribute descriptor.
1368 */
device_create_file(struct device * dev,const struct device_attribute * attr)1369 int device_create_file(struct device *dev,
1370 const struct device_attribute *attr)
1371 {
1372 int error = 0;
1373
1374 if (dev) {
1375 WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
1376 "Attribute %s: write permission without 'store'\n",
1377 attr->attr.name);
1378 WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
1379 "Attribute %s: read permission without 'show'\n",
1380 attr->attr.name);
1381 error = sysfs_create_file(&dev->kobj, &attr->attr);
1382 }
1383
1384 return error;
1385 }
1386 EXPORT_SYMBOL_GPL(device_create_file);
1387
1388 /**
1389 * device_remove_file - remove sysfs attribute file.
1390 * @dev: device.
1391 * @attr: device attribute descriptor.
1392 */
device_remove_file(struct device * dev,const struct device_attribute * attr)1393 void device_remove_file(struct device *dev,
1394 const struct device_attribute *attr)
1395 {
1396 if (dev)
1397 sysfs_remove_file(&dev->kobj, &attr->attr);
1398 }
1399 EXPORT_SYMBOL_GPL(device_remove_file);
1400
1401 /**
1402 * device_remove_file_self - remove sysfs attribute file from its own method.
1403 * @dev: device.
1404 * @attr: device attribute descriptor.
1405 *
1406 * See kernfs_remove_self() for details.
1407 */
device_remove_file_self(struct device * dev,const struct device_attribute * attr)1408 bool device_remove_file_self(struct device *dev,
1409 const struct device_attribute *attr)
1410 {
1411 if (dev)
1412 return sysfs_remove_file_self(&dev->kobj, &attr->attr);
1413 else
1414 return false;
1415 }
1416 EXPORT_SYMBOL_GPL(device_remove_file_self);
1417
1418 /**
1419 * device_create_bin_file - create sysfs binary attribute file for device.
1420 * @dev: device.
1421 * @attr: device binary attribute descriptor.
1422 */
device_create_bin_file(struct device * dev,const struct bin_attribute * attr)1423 int device_create_bin_file(struct device *dev,
1424 const struct bin_attribute *attr)
1425 {
1426 int error = -EINVAL;
1427 if (dev)
1428 error = sysfs_create_bin_file(&dev->kobj, attr);
1429 return error;
1430 }
1431 EXPORT_SYMBOL_GPL(device_create_bin_file);
1432
1433 /**
1434 * device_remove_bin_file - remove sysfs binary attribute file
1435 * @dev: device.
1436 * @attr: device binary attribute descriptor.
1437 */
device_remove_bin_file(struct device * dev,const struct bin_attribute * attr)1438 void device_remove_bin_file(struct device *dev,
1439 const struct bin_attribute *attr)
1440 {
1441 if (dev)
1442 sysfs_remove_bin_file(&dev->kobj, attr);
1443 }
1444 EXPORT_SYMBOL_GPL(device_remove_bin_file);
1445
klist_children_get(struct klist_node * n)1446 static void klist_children_get(struct klist_node *n)
1447 {
1448 struct device_private *p = to_device_private_parent(n);
1449 struct device *dev = p->device;
1450
1451 get_device(dev);
1452 }
1453
klist_children_put(struct klist_node * n)1454 static void klist_children_put(struct klist_node *n)
1455 {
1456 struct device_private *p = to_device_private_parent(n);
1457 struct device *dev = p->device;
1458
1459 put_device(dev);
1460 }
1461
1462 /**
1463 * device_initialize - init device structure.
1464 * @dev: device.
1465 *
1466 * This prepares the device for use by other layers by initializing
1467 * its fields.
1468 * It is the first half of device_register(), if called by
1469 * that function, though it can also be called separately, so one
1470 * may use @dev's fields. In particular, get_device()/put_device()
1471 * may be used for reference counting of @dev after calling this
1472 * function.
1473 *
1474 * All fields in @dev must be initialized by the caller to 0, except
1475 * for those explicitly set to some other value. The simplest
1476 * approach is to use kzalloc() to allocate the structure containing
1477 * @dev.
1478 *
1479 * NOTE: Use put_device() to give up your reference instead of freeing
1480 * @dev directly once you have called this function.
1481 */
device_initialize(struct device * dev)1482 void device_initialize(struct device *dev)
1483 {
1484 dev->kobj.kset = devices_kset;
1485 kobject_init(&dev->kobj, &device_ktype);
1486 INIT_LIST_HEAD(&dev->dma_pools);
1487 mutex_init(&dev->mutex);
1488 lockdep_set_novalidate_class(&dev->mutex);
1489 spin_lock_init(&dev->devres_lock);
1490 INIT_LIST_HEAD(&dev->devres_head);
1491 device_pm_init(dev);
1492 set_dev_node(dev, -1);
1493 #ifdef CONFIG_GENERIC_MSI_IRQ
1494 INIT_LIST_HEAD(&dev->msi_list);
1495 #endif
1496 INIT_LIST_HEAD(&dev->links.consumers);
1497 INIT_LIST_HEAD(&dev->links.suppliers);
1498 dev->links.status = DL_DEV_NO_DRIVER;
1499 }
1500 EXPORT_SYMBOL_GPL(device_initialize);
1501
virtual_device_parent(struct device * dev)1502 struct kobject *virtual_device_parent(struct device *dev)
1503 {
1504 static struct kobject *virtual_dir = NULL;
1505
1506 if (!virtual_dir)
1507 virtual_dir = kobject_create_and_add("virtual",
1508 &devices_kset->kobj);
1509
1510 return virtual_dir;
1511 }
1512
1513 struct class_dir {
1514 struct kobject kobj;
1515 struct class *class;
1516 };
1517
1518 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
1519
class_dir_release(struct kobject * kobj)1520 static void class_dir_release(struct kobject *kobj)
1521 {
1522 struct class_dir *dir = to_class_dir(kobj);
1523 kfree(dir);
1524 }
1525
1526 static const
class_dir_child_ns_type(struct kobject * kobj)1527 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
1528 {
1529 struct class_dir *dir = to_class_dir(kobj);
1530 return dir->class->ns_type;
1531 }
1532
1533 static struct kobj_type class_dir_ktype = {
1534 .release = class_dir_release,
1535 .sysfs_ops = &kobj_sysfs_ops,
1536 .child_ns_type = class_dir_child_ns_type
1537 };
1538
1539 static struct kobject *
class_dir_create_and_add(struct class * class,struct kobject * parent_kobj)1540 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
1541 {
1542 struct class_dir *dir;
1543 int retval;
1544
1545 dir = kzalloc(sizeof(*dir), GFP_KERNEL);
1546 if (!dir)
1547 return ERR_PTR(-ENOMEM);
1548
1549 dir->class = class;
1550 kobject_init(&dir->kobj, &class_dir_ktype);
1551
1552 dir->kobj.kset = &class->p->glue_dirs;
1553
1554 retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
1555 if (retval < 0) {
1556 kobject_put(&dir->kobj);
1557 return ERR_PTR(retval);
1558 }
1559 return &dir->kobj;
1560 }
1561
1562 static DEFINE_MUTEX(gdp_mutex);
1563
get_device_parent(struct device * dev,struct device * parent)1564 static struct kobject *get_device_parent(struct device *dev,
1565 struct device *parent)
1566 {
1567 if (dev->class) {
1568 struct kobject *kobj = NULL;
1569 struct kobject *parent_kobj;
1570 struct kobject *k;
1571
1572 #ifdef CONFIG_BLOCK
1573 /* block disks show up in /sys/block */
1574 if (sysfs_deprecated && dev->class == &block_class) {
1575 if (parent && parent->class == &block_class)
1576 return &parent->kobj;
1577 return &block_class.p->subsys.kobj;
1578 }
1579 #endif
1580
1581 /*
1582 * If we have no parent, we live in "virtual".
1583 * Class-devices with a non class-device as parent, live
1584 * in a "glue" directory to prevent namespace collisions.
1585 */
1586 if (parent == NULL)
1587 parent_kobj = virtual_device_parent(dev);
1588 else if (parent->class && !dev->class->ns_type)
1589 return &parent->kobj;
1590 else
1591 parent_kobj = &parent->kobj;
1592
1593 mutex_lock(&gdp_mutex);
1594
1595 /* find our class-directory at the parent and reference it */
1596 spin_lock(&dev->class->p->glue_dirs.list_lock);
1597 list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
1598 if (k->parent == parent_kobj) {
1599 kobj = kobject_get(k);
1600 break;
1601 }
1602 spin_unlock(&dev->class->p->glue_dirs.list_lock);
1603 if (kobj) {
1604 mutex_unlock(&gdp_mutex);
1605 return kobj;
1606 }
1607
1608 /* or create a new class-directory at the parent device */
1609 k = class_dir_create_and_add(dev->class, parent_kobj);
1610 /* do not emit an uevent for this simple "glue" directory */
1611 mutex_unlock(&gdp_mutex);
1612 return k;
1613 }
1614
1615 /* subsystems can specify a default root directory for their devices */
1616 if (!parent && dev->bus && dev->bus->dev_root)
1617 return &dev->bus->dev_root->kobj;
1618
1619 if (parent)
1620 return &parent->kobj;
1621 return NULL;
1622 }
1623
live_in_glue_dir(struct kobject * kobj,struct device * dev)1624 static inline bool live_in_glue_dir(struct kobject *kobj,
1625 struct device *dev)
1626 {
1627 if (!kobj || !dev->class ||
1628 kobj->kset != &dev->class->p->glue_dirs)
1629 return false;
1630 return true;
1631 }
1632
get_glue_dir(struct device * dev)1633 static inline struct kobject *get_glue_dir(struct device *dev)
1634 {
1635 return dev->kobj.parent;
1636 }
1637
1638 /*
1639 * make sure cleaning up dir as the last step, we need to make
1640 * sure .release handler of kobject is run with holding the
1641 * global lock
1642 */
cleanup_glue_dir(struct device * dev,struct kobject * glue_dir)1643 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
1644 {
1645 /* see if we live in a "glue" directory */
1646 if (!live_in_glue_dir(glue_dir, dev))
1647 return;
1648
1649 mutex_lock(&gdp_mutex);
1650 if (!kobject_has_children(glue_dir))
1651 kobject_del(glue_dir);
1652 kobject_put(glue_dir);
1653 mutex_unlock(&gdp_mutex);
1654 }
1655
device_add_class_symlinks(struct device * dev)1656 static int device_add_class_symlinks(struct device *dev)
1657 {
1658 struct device_node *of_node = dev_of_node(dev);
1659 int error;
1660
1661 if (of_node) {
1662 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
1663 if (error)
1664 dev_warn(dev, "Error %d creating of_node link\n",error);
1665 /* An error here doesn't warrant bringing down the device */
1666 }
1667
1668 if (!dev->class)
1669 return 0;
1670
1671 error = sysfs_create_link(&dev->kobj,
1672 &dev->class->p->subsys.kobj,
1673 "subsystem");
1674 if (error)
1675 goto out_devnode;
1676
1677 if (dev->parent && device_is_not_partition(dev)) {
1678 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
1679 "device");
1680 if (error)
1681 goto out_subsys;
1682 }
1683
1684 #ifdef CONFIG_BLOCK
1685 /* /sys/block has directories and does not need symlinks */
1686 if (sysfs_deprecated && dev->class == &block_class)
1687 return 0;
1688 #endif
1689
1690 /* link in the class directory pointing to the device */
1691 error = sysfs_create_link(&dev->class->p->subsys.kobj,
1692 &dev->kobj, dev_name(dev));
1693 if (error)
1694 goto out_device;
1695
1696 return 0;
1697
1698 out_device:
1699 sysfs_remove_link(&dev->kobj, "device");
1700
1701 out_subsys:
1702 sysfs_remove_link(&dev->kobj, "subsystem");
1703 out_devnode:
1704 sysfs_remove_link(&dev->kobj, "of_node");
1705 return error;
1706 }
1707
device_remove_class_symlinks(struct device * dev)1708 static void device_remove_class_symlinks(struct device *dev)
1709 {
1710 if (dev_of_node(dev))
1711 sysfs_remove_link(&dev->kobj, "of_node");
1712
1713 if (!dev->class)
1714 return;
1715
1716 if (dev->parent && device_is_not_partition(dev))
1717 sysfs_remove_link(&dev->kobj, "device");
1718 sysfs_remove_link(&dev->kobj, "subsystem");
1719 #ifdef CONFIG_BLOCK
1720 if (sysfs_deprecated && dev->class == &block_class)
1721 return;
1722 #endif
1723 sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
1724 }
1725
1726 /**
1727 * dev_set_name - set a device name
1728 * @dev: device
1729 * @fmt: format string for the device's name
1730 */
dev_set_name(struct device * dev,const char * fmt,...)1731 int dev_set_name(struct device *dev, const char *fmt, ...)
1732 {
1733 va_list vargs;
1734 int err;
1735
1736 va_start(vargs, fmt);
1737 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
1738 va_end(vargs);
1739 return err;
1740 }
1741 EXPORT_SYMBOL_GPL(dev_set_name);
1742
1743 /**
1744 * device_to_dev_kobj - select a /sys/dev/ directory for the device
1745 * @dev: device
1746 *
1747 * By default we select char/ for new entries. Setting class->dev_obj
1748 * to NULL prevents an entry from being created. class->dev_kobj must
1749 * be set (or cleared) before any devices are registered to the class
1750 * otherwise device_create_sys_dev_entry() and
1751 * device_remove_sys_dev_entry() will disagree about the presence of
1752 * the link.
1753 */
device_to_dev_kobj(struct device * dev)1754 static struct kobject *device_to_dev_kobj(struct device *dev)
1755 {
1756 struct kobject *kobj;
1757
1758 if (dev->class)
1759 kobj = dev->class->dev_kobj;
1760 else
1761 kobj = sysfs_dev_char_kobj;
1762
1763 return kobj;
1764 }
1765
device_create_sys_dev_entry(struct device * dev)1766 static int device_create_sys_dev_entry(struct device *dev)
1767 {
1768 struct kobject *kobj = device_to_dev_kobj(dev);
1769 int error = 0;
1770 char devt_str[15];
1771
1772 if (kobj) {
1773 format_dev_t(devt_str, dev->devt);
1774 error = sysfs_create_link(kobj, &dev->kobj, devt_str);
1775 }
1776
1777 return error;
1778 }
1779
device_remove_sys_dev_entry(struct device * dev)1780 static void device_remove_sys_dev_entry(struct device *dev)
1781 {
1782 struct kobject *kobj = device_to_dev_kobj(dev);
1783 char devt_str[15];
1784
1785 if (kobj) {
1786 format_dev_t(devt_str, dev->devt);
1787 sysfs_remove_link(kobj, devt_str);
1788 }
1789 }
1790
device_private_init(struct device * dev)1791 static int device_private_init(struct device *dev)
1792 {
1793 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
1794 if (!dev->p)
1795 return -ENOMEM;
1796 dev->p->device = dev;
1797 klist_init(&dev->p->klist_children, klist_children_get,
1798 klist_children_put);
1799 INIT_LIST_HEAD(&dev->p->deferred_probe);
1800 return 0;
1801 }
1802
1803 /**
1804 * device_add - add device to device hierarchy.
1805 * @dev: device.
1806 *
1807 * This is part 2 of device_register(), though may be called
1808 * separately _iff_ device_initialize() has been called separately.
1809 *
1810 * This adds @dev to the kobject hierarchy via kobject_add(), adds it
1811 * to the global and sibling lists for the device, then
1812 * adds it to the other relevant subsystems of the driver model.
1813 *
1814 * Do not call this routine or device_register() more than once for
1815 * any device structure. The driver model core is not designed to work
1816 * with devices that get unregistered and then spring back to life.
1817 * (Among other things, it's very hard to guarantee that all references
1818 * to the previous incarnation of @dev have been dropped.) Allocate
1819 * and register a fresh new struct device instead.
1820 *
1821 * NOTE: _Never_ directly free @dev after calling this function, even
1822 * if it returned an error! Always use put_device() to give up your
1823 * reference instead.
1824 */
device_add(struct device * dev)1825 int device_add(struct device *dev)
1826 {
1827 struct device *parent;
1828 struct kobject *kobj;
1829 struct class_interface *class_intf;
1830 int error = -EINVAL;
1831 struct kobject *glue_dir = NULL;
1832
1833 dev = get_device(dev);
1834 if (!dev)
1835 goto done;
1836
1837 if (!dev->p) {
1838 error = device_private_init(dev);
1839 if (error)
1840 goto done;
1841 }
1842
1843 /*
1844 * for statically allocated devices, which should all be converted
1845 * some day, we need to initialize the name. We prevent reading back
1846 * the name, and force the use of dev_name()
1847 */
1848 if (dev->init_name) {
1849 dev_set_name(dev, "%s", dev->init_name);
1850 dev->init_name = NULL;
1851 }
1852
1853 /* subsystems can specify simple device enumeration */
1854 if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
1855 dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
1856
1857 if (!dev_name(dev)) {
1858 error = -EINVAL;
1859 goto name_error;
1860 }
1861
1862 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
1863
1864 parent = get_device(dev->parent);
1865 kobj = get_device_parent(dev, parent);
1866 if (IS_ERR(kobj)) {
1867 error = PTR_ERR(kobj);
1868 goto parent_error;
1869 }
1870 if (kobj)
1871 dev->kobj.parent = kobj;
1872
1873 /* use parent numa_node */
1874 if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
1875 set_dev_node(dev, dev_to_node(parent));
1876
1877 /* first, register with generic layer. */
1878 /* we require the name to be set before, and pass NULL */
1879 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
1880 if (error) {
1881 glue_dir = get_glue_dir(dev);
1882 goto Error;
1883 }
1884
1885 /* notify platform of device entry */
1886 if (platform_notify)
1887 platform_notify(dev);
1888
1889 error = device_create_file(dev, &dev_attr_uevent);
1890 if (error)
1891 goto attrError;
1892
1893 error = device_add_class_symlinks(dev);
1894 if (error)
1895 goto SymlinkError;
1896 error = device_add_attrs(dev);
1897 if (error)
1898 goto AttrsError;
1899 error = bus_add_device(dev);
1900 if (error)
1901 goto BusError;
1902 error = dpm_sysfs_add(dev);
1903 if (error)
1904 goto DPMError;
1905 device_pm_add(dev);
1906
1907 if (MAJOR(dev->devt)) {
1908 error = device_create_file(dev, &dev_attr_dev);
1909 if (error)
1910 goto DevAttrError;
1911
1912 error = device_create_sys_dev_entry(dev);
1913 if (error)
1914 goto SysEntryError;
1915
1916 devtmpfs_create_node(dev);
1917 }
1918
1919 /* Notify clients of device addition. This call must come
1920 * after dpm_sysfs_add() and before kobject_uevent().
1921 */
1922 if (dev->bus)
1923 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
1924 BUS_NOTIFY_ADD_DEVICE, dev);
1925
1926 kobject_uevent(&dev->kobj, KOBJ_ADD);
1927 bus_probe_device(dev);
1928 if (parent)
1929 klist_add_tail(&dev->p->knode_parent,
1930 &parent->p->klist_children);
1931
1932 if (dev->class) {
1933 mutex_lock(&dev->class->p->mutex);
1934 /* tie the class to the device */
1935 klist_add_tail(&dev->knode_class,
1936 &dev->class->p->klist_devices);
1937
1938 /* notify any interfaces that the device is here */
1939 list_for_each_entry(class_intf,
1940 &dev->class->p->interfaces, node)
1941 if (class_intf->add_dev)
1942 class_intf->add_dev(dev, class_intf);
1943 mutex_unlock(&dev->class->p->mutex);
1944 }
1945 done:
1946 put_device(dev);
1947 return error;
1948 SysEntryError:
1949 if (MAJOR(dev->devt))
1950 device_remove_file(dev, &dev_attr_dev);
1951 DevAttrError:
1952 device_pm_remove(dev);
1953 dpm_sysfs_remove(dev);
1954 DPMError:
1955 bus_remove_device(dev);
1956 BusError:
1957 device_remove_attrs(dev);
1958 AttrsError:
1959 device_remove_class_symlinks(dev);
1960 SymlinkError:
1961 device_remove_file(dev, &dev_attr_uevent);
1962 attrError:
1963 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
1964 glue_dir = get_glue_dir(dev);
1965 kobject_del(&dev->kobj);
1966 Error:
1967 cleanup_glue_dir(dev, glue_dir);
1968 parent_error:
1969 put_device(parent);
1970 name_error:
1971 kfree(dev->p);
1972 dev->p = NULL;
1973 goto done;
1974 }
1975 EXPORT_SYMBOL_GPL(device_add);
1976
1977 /**
1978 * device_register - register a device with the system.
1979 * @dev: pointer to the device structure
1980 *
1981 * This happens in two clean steps - initialize the device
1982 * and add it to the system. The two steps can be called
1983 * separately, but this is the easiest and most common.
1984 * I.e. you should only call the two helpers separately if
1985 * have a clearly defined need to use and refcount the device
1986 * before it is added to the hierarchy.
1987 *
1988 * For more information, see the kerneldoc for device_initialize()
1989 * and device_add().
1990 *
1991 * NOTE: _Never_ directly free @dev after calling this function, even
1992 * if it returned an error! Always use put_device() to give up the
1993 * reference initialized in this function instead.
1994 */
device_register(struct device * dev)1995 int device_register(struct device *dev)
1996 {
1997 device_initialize(dev);
1998 return device_add(dev);
1999 }
2000 EXPORT_SYMBOL_GPL(device_register);
2001
2002 /**
2003 * get_device - increment reference count for device.
2004 * @dev: device.
2005 *
2006 * This simply forwards the call to kobject_get(), though
2007 * we do take care to provide for the case that we get a NULL
2008 * pointer passed in.
2009 */
get_device(struct device * dev)2010 struct device *get_device(struct device *dev)
2011 {
2012 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
2013 }
2014 EXPORT_SYMBOL_GPL(get_device);
2015
2016 /**
2017 * put_device - decrement reference count.
2018 * @dev: device in question.
2019 */
put_device(struct device * dev)2020 void put_device(struct device *dev)
2021 {
2022 /* might_sleep(); */
2023 if (dev)
2024 kobject_put(&dev->kobj);
2025 }
2026 EXPORT_SYMBOL_GPL(put_device);
2027
2028 /**
2029 * device_del - delete device from system.
2030 * @dev: device.
2031 *
2032 * This is the first part of the device unregistration
2033 * sequence. This removes the device from the lists we control
2034 * from here, has it removed from the other driver model
2035 * subsystems it was added to in device_add(), and removes it
2036 * from the kobject hierarchy.
2037 *
2038 * NOTE: this should be called manually _iff_ device_add() was
2039 * also called manually.
2040 */
device_del(struct device * dev)2041 void device_del(struct device *dev)
2042 {
2043 struct device *parent = dev->parent;
2044 struct kobject *glue_dir = NULL;
2045 struct class_interface *class_intf;
2046
2047 /* Notify clients of device removal. This call must come
2048 * before dpm_sysfs_remove().
2049 */
2050 if (dev->bus)
2051 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2052 BUS_NOTIFY_DEL_DEVICE, dev);
2053
2054 dpm_sysfs_remove(dev);
2055 if (parent)
2056 klist_del(&dev->p->knode_parent);
2057 if (MAJOR(dev->devt)) {
2058 devtmpfs_delete_node(dev);
2059 device_remove_sys_dev_entry(dev);
2060 device_remove_file(dev, &dev_attr_dev);
2061 }
2062 if (dev->class) {
2063 device_remove_class_symlinks(dev);
2064
2065 mutex_lock(&dev->class->p->mutex);
2066 /* notify any interfaces that the device is now gone */
2067 list_for_each_entry(class_intf,
2068 &dev->class->p->interfaces, node)
2069 if (class_intf->remove_dev)
2070 class_intf->remove_dev(dev, class_intf);
2071 /* remove the device from the class list */
2072 klist_del(&dev->knode_class);
2073 mutex_unlock(&dev->class->p->mutex);
2074 }
2075 device_remove_file(dev, &dev_attr_uevent);
2076 device_remove_attrs(dev);
2077 bus_remove_device(dev);
2078 device_pm_remove(dev);
2079 driver_deferred_probe_del(dev);
2080 device_remove_properties(dev);
2081 device_links_purge(dev);
2082
2083 /* Notify the platform of the removal, in case they
2084 * need to do anything...
2085 */
2086 if (platform_notify_remove)
2087 platform_notify_remove(dev);
2088 if (dev->bus)
2089 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2090 BUS_NOTIFY_REMOVED_DEVICE, dev);
2091 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
2092 glue_dir = get_glue_dir(dev);
2093 kobject_del(&dev->kobj);
2094 cleanup_glue_dir(dev, glue_dir);
2095 put_device(parent);
2096 }
2097 EXPORT_SYMBOL_GPL(device_del);
2098
2099 /**
2100 * device_unregister - unregister device from system.
2101 * @dev: device going away.
2102 *
2103 * We do this in two parts, like we do device_register(). First,
2104 * we remove it from all the subsystems with device_del(), then
2105 * we decrement the reference count via put_device(). If that
2106 * is the final reference count, the device will be cleaned up
2107 * via device_release() above. Otherwise, the structure will
2108 * stick around until the final reference to the device is dropped.
2109 */
device_unregister(struct device * dev)2110 void device_unregister(struct device *dev)
2111 {
2112 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2113 device_del(dev);
2114 put_device(dev);
2115 }
2116 EXPORT_SYMBOL_GPL(device_unregister);
2117
prev_device(struct klist_iter * i)2118 static struct device *prev_device(struct klist_iter *i)
2119 {
2120 struct klist_node *n = klist_prev(i);
2121 struct device *dev = NULL;
2122 struct device_private *p;
2123
2124 if (n) {
2125 p = to_device_private_parent(n);
2126 dev = p->device;
2127 }
2128 return dev;
2129 }
2130
next_device(struct klist_iter * i)2131 static struct device *next_device(struct klist_iter *i)
2132 {
2133 struct klist_node *n = klist_next(i);
2134 struct device *dev = NULL;
2135 struct device_private *p;
2136
2137 if (n) {
2138 p = to_device_private_parent(n);
2139 dev = p->device;
2140 }
2141 return dev;
2142 }
2143
2144 /**
2145 * device_get_devnode - path of device node file
2146 * @dev: device
2147 * @mode: returned file access mode
2148 * @uid: returned file owner
2149 * @gid: returned file group
2150 * @tmp: possibly allocated string
2151 *
2152 * Return the relative path of a possible device node.
2153 * Non-default names may need to allocate a memory to compose
2154 * a name. This memory is returned in tmp and needs to be
2155 * freed by the caller.
2156 */
device_get_devnode(struct device * dev,umode_t * mode,kuid_t * uid,kgid_t * gid,const char ** tmp)2157 const char *device_get_devnode(struct device *dev,
2158 umode_t *mode, kuid_t *uid, kgid_t *gid,
2159 const char **tmp)
2160 {
2161 char *s;
2162
2163 *tmp = NULL;
2164
2165 /* the device type may provide a specific name */
2166 if (dev->type && dev->type->devnode)
2167 *tmp = dev->type->devnode(dev, mode, uid, gid);
2168 if (*tmp)
2169 return *tmp;
2170
2171 /* the class may provide a specific name */
2172 if (dev->class && dev->class->devnode)
2173 *tmp = dev->class->devnode(dev, mode);
2174 if (*tmp)
2175 return *tmp;
2176
2177 /* return name without allocation, tmp == NULL */
2178 if (strchr(dev_name(dev), '!') == NULL)
2179 return dev_name(dev);
2180
2181 /* replace '!' in the name with '/' */
2182 s = kstrdup(dev_name(dev), GFP_KERNEL);
2183 if (!s)
2184 return NULL;
2185 strreplace(s, '!', '/');
2186 return *tmp = s;
2187 }
2188
2189 /**
2190 * device_for_each_child - device child iterator.
2191 * @parent: parent struct device.
2192 * @fn: function to be called for each device.
2193 * @data: data for the callback.
2194 *
2195 * Iterate over @parent's child devices, and call @fn for each,
2196 * passing it @data.
2197 *
2198 * We check the return of @fn each time. If it returns anything
2199 * other than 0, we break out and return that value.
2200 */
device_for_each_child(struct device * parent,void * data,int (* fn)(struct device * dev,void * data))2201 int device_for_each_child(struct device *parent, void *data,
2202 int (*fn)(struct device *dev, void *data))
2203 {
2204 struct klist_iter i;
2205 struct device *child;
2206 int error = 0;
2207
2208 if (!parent->p)
2209 return 0;
2210
2211 klist_iter_init(&parent->p->klist_children, &i);
2212 while (!error && (child = next_device(&i)))
2213 error = fn(child, data);
2214 klist_iter_exit(&i);
2215 return error;
2216 }
2217 EXPORT_SYMBOL_GPL(device_for_each_child);
2218
2219 /**
2220 * device_for_each_child_reverse - device child iterator in reversed order.
2221 * @parent: parent struct device.
2222 * @fn: function to be called for each device.
2223 * @data: data for the callback.
2224 *
2225 * Iterate over @parent's child devices, and call @fn for each,
2226 * passing it @data.
2227 *
2228 * We check the return of @fn each time. If it returns anything
2229 * other than 0, we break out and return that value.
2230 */
device_for_each_child_reverse(struct device * parent,void * data,int (* fn)(struct device * dev,void * data))2231 int device_for_each_child_reverse(struct device *parent, void *data,
2232 int (*fn)(struct device *dev, void *data))
2233 {
2234 struct klist_iter i;
2235 struct device *child;
2236 int error = 0;
2237
2238 if (!parent->p)
2239 return 0;
2240
2241 klist_iter_init(&parent->p->klist_children, &i);
2242 while ((child = prev_device(&i)) && !error)
2243 error = fn(child, data);
2244 klist_iter_exit(&i);
2245 return error;
2246 }
2247 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
2248
2249 /**
2250 * device_find_child - device iterator for locating a particular device.
2251 * @parent: parent struct device
2252 * @match: Callback function to check device
2253 * @data: Data to pass to match function
2254 *
2255 * This is similar to the device_for_each_child() function above, but it
2256 * returns a reference to a device that is 'found' for later use, as
2257 * determined by the @match callback.
2258 *
2259 * The callback should return 0 if the device doesn't match and non-zero
2260 * if it does. If the callback returns non-zero and a reference to the
2261 * current device can be obtained, this function will return to the caller
2262 * and not iterate over any more devices.
2263 *
2264 * NOTE: you will need to drop the reference with put_device() after use.
2265 */
device_find_child(struct device * parent,void * data,int (* match)(struct device * dev,void * data))2266 struct device *device_find_child(struct device *parent, void *data,
2267 int (*match)(struct device *dev, void *data))
2268 {
2269 struct klist_iter i;
2270 struct device *child;
2271
2272 if (!parent)
2273 return NULL;
2274
2275 klist_iter_init(&parent->p->klist_children, &i);
2276 while ((child = next_device(&i)))
2277 if (match(child, data) && get_device(child))
2278 break;
2279 klist_iter_exit(&i);
2280 return child;
2281 }
2282 EXPORT_SYMBOL_GPL(device_find_child);
2283
devices_init(void)2284 int __init devices_init(void)
2285 {
2286 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
2287 if (!devices_kset)
2288 return -ENOMEM;
2289 dev_kobj = kobject_create_and_add("dev", NULL);
2290 if (!dev_kobj)
2291 goto dev_kobj_err;
2292 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
2293 if (!sysfs_dev_block_kobj)
2294 goto block_kobj_err;
2295 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
2296 if (!sysfs_dev_char_kobj)
2297 goto char_kobj_err;
2298
2299 return 0;
2300
2301 char_kobj_err:
2302 kobject_put(sysfs_dev_block_kobj);
2303 block_kobj_err:
2304 kobject_put(dev_kobj);
2305 dev_kobj_err:
2306 kset_unregister(devices_kset);
2307 return -ENOMEM;
2308 }
2309
device_check_offline(struct device * dev,void * not_used)2310 static int device_check_offline(struct device *dev, void *not_used)
2311 {
2312 int ret;
2313
2314 ret = device_for_each_child(dev, NULL, device_check_offline);
2315 if (ret)
2316 return ret;
2317
2318 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
2319 }
2320
2321 /**
2322 * device_offline - Prepare the device for hot-removal.
2323 * @dev: Device to be put offline.
2324 *
2325 * Execute the device bus type's .offline() callback, if present, to prepare
2326 * the device for a subsequent hot-removal. If that succeeds, the device must
2327 * not be used until either it is removed or its bus type's .online() callback
2328 * is executed.
2329 *
2330 * Call under device_hotplug_lock.
2331 */
device_offline(struct device * dev)2332 int device_offline(struct device *dev)
2333 {
2334 int ret;
2335
2336 if (dev->offline_disabled)
2337 return -EPERM;
2338
2339 ret = device_for_each_child(dev, NULL, device_check_offline);
2340 if (ret)
2341 return ret;
2342
2343 device_lock(dev);
2344 if (device_supports_offline(dev)) {
2345 if (dev->offline) {
2346 ret = 1;
2347 } else {
2348 ret = dev->bus->offline(dev);
2349 if (!ret) {
2350 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2351 dev->offline = true;
2352 }
2353 }
2354 }
2355 device_unlock(dev);
2356
2357 return ret;
2358 }
2359
2360 /**
2361 * device_online - Put the device back online after successful device_offline().
2362 * @dev: Device to be put back online.
2363 *
2364 * If device_offline() has been successfully executed for @dev, but the device
2365 * has not been removed subsequently, execute its bus type's .online() callback
2366 * to indicate that the device can be used again.
2367 *
2368 * Call under device_hotplug_lock.
2369 */
device_online(struct device * dev)2370 int device_online(struct device *dev)
2371 {
2372 int ret = 0;
2373
2374 device_lock(dev);
2375 if (device_supports_offline(dev)) {
2376 if (dev->offline) {
2377 ret = dev->bus->online(dev);
2378 if (!ret) {
2379 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2380 dev->offline = false;
2381 }
2382 } else {
2383 ret = 1;
2384 }
2385 }
2386 device_unlock(dev);
2387
2388 return ret;
2389 }
2390
2391 struct root_device {
2392 struct device dev;
2393 struct module *owner;
2394 };
2395
to_root_device(struct device * d)2396 static inline struct root_device *to_root_device(struct device *d)
2397 {
2398 return container_of(d, struct root_device, dev);
2399 }
2400
root_device_release(struct device * dev)2401 static void root_device_release(struct device *dev)
2402 {
2403 kfree(to_root_device(dev));
2404 }
2405
2406 /**
2407 * __root_device_register - allocate and register a root device
2408 * @name: root device name
2409 * @owner: owner module of the root device, usually THIS_MODULE
2410 *
2411 * This function allocates a root device and registers it
2412 * using device_register(). In order to free the returned
2413 * device, use root_device_unregister().
2414 *
2415 * Root devices are dummy devices which allow other devices
2416 * to be grouped under /sys/devices. Use this function to
2417 * allocate a root device and then use it as the parent of
2418 * any device which should appear under /sys/devices/{name}
2419 *
2420 * The /sys/devices/{name} directory will also contain a
2421 * 'module' symlink which points to the @owner directory
2422 * in sysfs.
2423 *
2424 * Returns &struct device pointer on success, or ERR_PTR() on error.
2425 *
2426 * Note: You probably want to use root_device_register().
2427 */
__root_device_register(const char * name,struct module * owner)2428 struct device *__root_device_register(const char *name, struct module *owner)
2429 {
2430 struct root_device *root;
2431 int err = -ENOMEM;
2432
2433 root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
2434 if (!root)
2435 return ERR_PTR(err);
2436
2437 err = dev_set_name(&root->dev, "%s", name);
2438 if (err) {
2439 kfree(root);
2440 return ERR_PTR(err);
2441 }
2442
2443 root->dev.release = root_device_release;
2444
2445 err = device_register(&root->dev);
2446 if (err) {
2447 put_device(&root->dev);
2448 return ERR_PTR(err);
2449 }
2450
2451 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */
2452 if (owner) {
2453 struct module_kobject *mk = &owner->mkobj;
2454
2455 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
2456 if (err) {
2457 device_unregister(&root->dev);
2458 return ERR_PTR(err);
2459 }
2460 root->owner = owner;
2461 }
2462 #endif
2463
2464 return &root->dev;
2465 }
2466 EXPORT_SYMBOL_GPL(__root_device_register);
2467
2468 /**
2469 * root_device_unregister - unregister and free a root device
2470 * @dev: device going away
2471 *
2472 * This function unregisters and cleans up a device that was created by
2473 * root_device_register().
2474 */
root_device_unregister(struct device * dev)2475 void root_device_unregister(struct device *dev)
2476 {
2477 struct root_device *root = to_root_device(dev);
2478
2479 if (root->owner)
2480 sysfs_remove_link(&root->dev.kobj, "module");
2481
2482 device_unregister(dev);
2483 }
2484 EXPORT_SYMBOL_GPL(root_device_unregister);
2485
2486
device_create_release(struct device * dev)2487 static void device_create_release(struct device *dev)
2488 {
2489 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2490 kfree(dev);
2491 }
2492
2493 static __printf(6, 0) struct device *
device_create_groups_vargs(struct class * class,struct device * parent,dev_t devt,void * drvdata,const struct attribute_group ** groups,const char * fmt,va_list args)2494 device_create_groups_vargs(struct class *class, struct device *parent,
2495 dev_t devt, void *drvdata,
2496 const struct attribute_group **groups,
2497 const char *fmt, va_list args)
2498 {
2499 struct device *dev = NULL;
2500 int retval = -ENODEV;
2501
2502 if (class == NULL || IS_ERR(class))
2503 goto error;
2504
2505 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2506 if (!dev) {
2507 retval = -ENOMEM;
2508 goto error;
2509 }
2510
2511 device_initialize(dev);
2512 dev->devt = devt;
2513 dev->class = class;
2514 dev->parent = parent;
2515 dev->groups = groups;
2516 dev->release = device_create_release;
2517 dev_set_drvdata(dev, drvdata);
2518
2519 retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
2520 if (retval)
2521 goto error;
2522
2523 retval = device_add(dev);
2524 if (retval)
2525 goto error;
2526
2527 return dev;
2528
2529 error:
2530 put_device(dev);
2531 return ERR_PTR(retval);
2532 }
2533
2534 /**
2535 * device_create_vargs - creates a device and registers it with sysfs
2536 * @class: pointer to the struct class that this device should be registered to
2537 * @parent: pointer to the parent struct device of this new device, if any
2538 * @devt: the dev_t for the char device to be added
2539 * @drvdata: the data to be added to the device for callbacks
2540 * @fmt: string for the device's name
2541 * @args: va_list for the device's name
2542 *
2543 * This function can be used by char device classes. A struct device
2544 * will be created in sysfs, registered to the specified class.
2545 *
2546 * A "dev" file will be created, showing the dev_t for the device, if
2547 * the dev_t is not 0,0.
2548 * If a pointer to a parent struct device is passed in, the newly created
2549 * struct device will be a child of that device in sysfs.
2550 * The pointer to the struct device will be returned from the call.
2551 * Any further sysfs files that might be required can be created using this
2552 * pointer.
2553 *
2554 * Returns &struct device pointer on success, or ERR_PTR() on error.
2555 *
2556 * Note: the struct class passed to this function must have previously
2557 * been created with a call to class_create().
2558 */
device_create_vargs(struct class * class,struct device * parent,dev_t devt,void * drvdata,const char * fmt,va_list args)2559 struct device *device_create_vargs(struct class *class, struct device *parent,
2560 dev_t devt, void *drvdata, const char *fmt,
2561 va_list args)
2562 {
2563 return device_create_groups_vargs(class, parent, devt, drvdata, NULL,
2564 fmt, args);
2565 }
2566 EXPORT_SYMBOL_GPL(device_create_vargs);
2567
2568 /**
2569 * device_create - creates a device and registers it with sysfs
2570 * @class: pointer to the struct class that this device should be registered to
2571 * @parent: pointer to the parent struct device of this new device, if any
2572 * @devt: the dev_t for the char device to be added
2573 * @drvdata: the data to be added to the device for callbacks
2574 * @fmt: string for the device's name
2575 *
2576 * This function can be used by char device classes. A struct device
2577 * will be created in sysfs, registered to the specified class.
2578 *
2579 * A "dev" file will be created, showing the dev_t for the device, if
2580 * the dev_t is not 0,0.
2581 * If a pointer to a parent struct device is passed in, the newly created
2582 * struct device will be a child of that device in sysfs.
2583 * The pointer to the struct device will be returned from the call.
2584 * Any further sysfs files that might be required can be created using this
2585 * pointer.
2586 *
2587 * Returns &struct device pointer on success, or ERR_PTR() on error.
2588 *
2589 * Note: the struct class passed to this function must have previously
2590 * been created with a call to class_create().
2591 */
device_create(struct class * class,struct device * parent,dev_t devt,void * drvdata,const char * fmt,...)2592 struct device *device_create(struct class *class, struct device *parent,
2593 dev_t devt, void *drvdata, const char *fmt, ...)
2594 {
2595 va_list vargs;
2596 struct device *dev;
2597
2598 va_start(vargs, fmt);
2599 dev = device_create_vargs(class, parent, devt, drvdata, fmt, vargs);
2600 va_end(vargs);
2601 return dev;
2602 }
2603 EXPORT_SYMBOL_GPL(device_create);
2604
2605 /**
2606 * device_create_with_groups - creates a device and registers it with sysfs
2607 * @class: pointer to the struct class that this device should be registered to
2608 * @parent: pointer to the parent struct device of this new device, if any
2609 * @devt: the dev_t for the char device to be added
2610 * @drvdata: the data to be added to the device for callbacks
2611 * @groups: NULL-terminated list of attribute groups to be created
2612 * @fmt: string for the device's name
2613 *
2614 * This function can be used by char device classes. A struct device
2615 * will be created in sysfs, registered to the specified class.
2616 * Additional attributes specified in the groups parameter will also
2617 * be created automatically.
2618 *
2619 * A "dev" file will be created, showing the dev_t for the device, if
2620 * the dev_t is not 0,0.
2621 * If a pointer to a parent struct device is passed in, the newly created
2622 * struct device will be a child of that device in sysfs.
2623 * The pointer to the struct device will be returned from the call.
2624 * Any further sysfs files that might be required can be created using this
2625 * pointer.
2626 *
2627 * Returns &struct device pointer on success, or ERR_PTR() on error.
2628 *
2629 * Note: the struct class passed to this function must have previously
2630 * been created with a call to class_create().
2631 */
device_create_with_groups(struct class * class,struct device * parent,dev_t devt,void * drvdata,const struct attribute_group ** groups,const char * fmt,...)2632 struct device *device_create_with_groups(struct class *class,
2633 struct device *parent, dev_t devt,
2634 void *drvdata,
2635 const struct attribute_group **groups,
2636 const char *fmt, ...)
2637 {
2638 va_list vargs;
2639 struct device *dev;
2640
2641 va_start(vargs, fmt);
2642 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
2643 fmt, vargs);
2644 va_end(vargs);
2645 return dev;
2646 }
2647 EXPORT_SYMBOL_GPL(device_create_with_groups);
2648
__match_devt(struct device * dev,const void * data)2649 static int __match_devt(struct device *dev, const void *data)
2650 {
2651 const dev_t *devt = data;
2652
2653 return dev->devt == *devt;
2654 }
2655
2656 /**
2657 * device_destroy - removes a device that was created with device_create()
2658 * @class: pointer to the struct class that this device was registered with
2659 * @devt: the dev_t of the device that was previously registered
2660 *
2661 * This call unregisters and cleans up a device that was created with a
2662 * call to device_create().
2663 */
device_destroy(struct class * class,dev_t devt)2664 void device_destroy(struct class *class, dev_t devt)
2665 {
2666 struct device *dev;
2667
2668 dev = class_find_device(class, NULL, &devt, __match_devt);
2669 if (dev) {
2670 put_device(dev);
2671 device_unregister(dev);
2672 }
2673 }
2674 EXPORT_SYMBOL_GPL(device_destroy);
2675
2676 /**
2677 * device_rename - renames a device
2678 * @dev: the pointer to the struct device to be renamed
2679 * @new_name: the new name of the device
2680 *
2681 * It is the responsibility of the caller to provide mutual
2682 * exclusion between two different calls of device_rename
2683 * on the same device to ensure that new_name is valid and
2684 * won't conflict with other devices.
2685 *
2686 * Note: Don't call this function. Currently, the networking layer calls this
2687 * function, but that will change. The following text from Kay Sievers offers
2688 * some insight:
2689 *
2690 * Renaming devices is racy at many levels, symlinks and other stuff are not
2691 * replaced atomically, and you get a "move" uevent, but it's not easy to
2692 * connect the event to the old and new device. Device nodes are not renamed at
2693 * all, there isn't even support for that in the kernel now.
2694 *
2695 * In the meantime, during renaming, your target name might be taken by another
2696 * driver, creating conflicts. Or the old name is taken directly after you
2697 * renamed it -- then you get events for the same DEVPATH, before you even see
2698 * the "move" event. It's just a mess, and nothing new should ever rely on
2699 * kernel device renaming. Besides that, it's not even implemented now for
2700 * other things than (driver-core wise very simple) network devices.
2701 *
2702 * We are currently about to change network renaming in udev to completely
2703 * disallow renaming of devices in the same namespace as the kernel uses,
2704 * because we can't solve the problems properly, that arise with swapping names
2705 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
2706 * be allowed to some other name than eth[0-9]*, for the aforementioned
2707 * reasons.
2708 *
2709 * Make up a "real" name in the driver before you register anything, or add
2710 * some other attributes for userspace to find the device, or use udev to add
2711 * symlinks -- but never rename kernel devices later, it's a complete mess. We
2712 * don't even want to get into that and try to implement the missing pieces in
2713 * the core. We really have other pieces to fix in the driver core mess. :)
2714 */
device_rename(struct device * dev,const char * new_name)2715 int device_rename(struct device *dev, const char *new_name)
2716 {
2717 struct kobject *kobj = &dev->kobj;
2718 char *old_device_name = NULL;
2719 int error;
2720
2721 dev = get_device(dev);
2722 if (!dev)
2723 return -EINVAL;
2724
2725 dev_dbg(dev, "renaming to %s\n", new_name);
2726
2727 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
2728 if (!old_device_name) {
2729 error = -ENOMEM;
2730 goto out;
2731 }
2732
2733 if (dev->class) {
2734 error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
2735 kobj, old_device_name,
2736 new_name, kobject_namespace(kobj));
2737 if (error)
2738 goto out;
2739 }
2740
2741 error = kobject_rename(kobj, new_name);
2742 if (error)
2743 goto out;
2744
2745 out:
2746 put_device(dev);
2747
2748 kfree(old_device_name);
2749
2750 return error;
2751 }
2752 EXPORT_SYMBOL_GPL(device_rename);
2753
device_move_class_links(struct device * dev,struct device * old_parent,struct device * new_parent)2754 static int device_move_class_links(struct device *dev,
2755 struct device *old_parent,
2756 struct device *new_parent)
2757 {
2758 int error = 0;
2759
2760 if (old_parent)
2761 sysfs_remove_link(&dev->kobj, "device");
2762 if (new_parent)
2763 error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
2764 "device");
2765 return error;
2766 }
2767
2768 /**
2769 * device_move - moves a device to a new parent
2770 * @dev: the pointer to the struct device to be moved
2771 * @new_parent: the new parent of the device (can be NULL)
2772 * @dpm_order: how to reorder the dpm_list
2773 */
device_move(struct device * dev,struct device * new_parent,enum dpm_order dpm_order)2774 int device_move(struct device *dev, struct device *new_parent,
2775 enum dpm_order dpm_order)
2776 {
2777 int error;
2778 struct device *old_parent;
2779 struct kobject *new_parent_kobj;
2780
2781 dev = get_device(dev);
2782 if (!dev)
2783 return -EINVAL;
2784
2785 device_pm_lock();
2786 new_parent = get_device(new_parent);
2787 new_parent_kobj = get_device_parent(dev, new_parent);
2788 if (IS_ERR(new_parent_kobj)) {
2789 error = PTR_ERR(new_parent_kobj);
2790 put_device(new_parent);
2791 goto out;
2792 }
2793
2794 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
2795 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
2796 error = kobject_move(&dev->kobj, new_parent_kobj);
2797 if (error) {
2798 cleanup_glue_dir(dev, new_parent_kobj);
2799 put_device(new_parent);
2800 goto out;
2801 }
2802 old_parent = dev->parent;
2803 dev->parent = new_parent;
2804 if (old_parent)
2805 klist_remove(&dev->p->knode_parent);
2806 if (new_parent) {
2807 klist_add_tail(&dev->p->knode_parent,
2808 &new_parent->p->klist_children);
2809 set_dev_node(dev, dev_to_node(new_parent));
2810 }
2811
2812 if (dev->class) {
2813 error = device_move_class_links(dev, old_parent, new_parent);
2814 if (error) {
2815 /* We ignore errors on cleanup since we're hosed anyway... */
2816 device_move_class_links(dev, new_parent, old_parent);
2817 if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
2818 if (new_parent)
2819 klist_remove(&dev->p->knode_parent);
2820 dev->parent = old_parent;
2821 if (old_parent) {
2822 klist_add_tail(&dev->p->knode_parent,
2823 &old_parent->p->klist_children);
2824 set_dev_node(dev, dev_to_node(old_parent));
2825 }
2826 }
2827 cleanup_glue_dir(dev, new_parent_kobj);
2828 put_device(new_parent);
2829 goto out;
2830 }
2831 }
2832 switch (dpm_order) {
2833 case DPM_ORDER_NONE:
2834 break;
2835 case DPM_ORDER_DEV_AFTER_PARENT:
2836 device_pm_move_after(dev, new_parent);
2837 devices_kset_move_after(dev, new_parent);
2838 break;
2839 case DPM_ORDER_PARENT_BEFORE_DEV:
2840 device_pm_move_before(new_parent, dev);
2841 devices_kset_move_before(new_parent, dev);
2842 break;
2843 case DPM_ORDER_DEV_LAST:
2844 device_pm_move_last(dev);
2845 devices_kset_move_last(dev);
2846 break;
2847 }
2848
2849 put_device(old_parent);
2850 out:
2851 device_pm_unlock();
2852 put_device(dev);
2853 return error;
2854 }
2855 EXPORT_SYMBOL_GPL(device_move);
2856
2857 /**
2858 * device_shutdown - call ->shutdown() on each device to shutdown.
2859 */
device_shutdown(void)2860 void device_shutdown(void)
2861 {
2862 struct device *dev, *parent;
2863
2864 wait_for_device_probe();
2865 device_block_probing();
2866
2867 spin_lock(&devices_kset->list_lock);
2868 /*
2869 * Walk the devices list backward, shutting down each in turn.
2870 * Beware that device unplug events may also start pulling
2871 * devices offline, even as the system is shutting down.
2872 */
2873 while (!list_empty(&devices_kset->list)) {
2874 dev = list_entry(devices_kset->list.prev, struct device,
2875 kobj.entry);
2876
2877 /*
2878 * hold reference count of device's parent to
2879 * prevent it from being freed because parent's
2880 * lock is to be held
2881 */
2882 parent = get_device(dev->parent);
2883 get_device(dev);
2884 /*
2885 * Make sure the device is off the kset list, in the
2886 * event that dev->*->shutdown() doesn't remove it.
2887 */
2888 list_del_init(&dev->kobj.entry);
2889 spin_unlock(&devices_kset->list_lock);
2890
2891 /* hold lock to avoid race with probe/release */
2892 if (parent)
2893 device_lock(parent);
2894 device_lock(dev);
2895
2896 /* Don't allow any more runtime suspends */
2897 pm_runtime_get_noresume(dev);
2898 pm_runtime_barrier(dev);
2899
2900 if (dev->class && dev->class->shutdown_pre) {
2901 if (initcall_debug)
2902 dev_info(dev, "shutdown_pre\n");
2903 dev->class->shutdown_pre(dev);
2904 }
2905 if (dev->bus && dev->bus->shutdown) {
2906 if (initcall_debug)
2907 dev_info(dev, "shutdown\n");
2908 dev->bus->shutdown(dev);
2909 } else if (dev->driver && dev->driver->shutdown) {
2910 if (initcall_debug)
2911 dev_info(dev, "shutdown\n");
2912 dev->driver->shutdown(dev);
2913 }
2914
2915 device_unlock(dev);
2916 if (parent)
2917 device_unlock(parent);
2918
2919 put_device(dev);
2920 put_device(parent);
2921
2922 spin_lock(&devices_kset->list_lock);
2923 }
2924 spin_unlock(&devices_kset->list_lock);
2925 }
2926
2927 /*
2928 * Device logging functions
2929 */
2930
2931 #ifdef CONFIG_PRINTK
2932 static int
create_syslog_header(const struct device * dev,char * hdr,size_t hdrlen)2933 create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen)
2934 {
2935 const char *subsys;
2936 size_t pos = 0;
2937
2938 if (dev->class)
2939 subsys = dev->class->name;
2940 else if (dev->bus)
2941 subsys = dev->bus->name;
2942 else
2943 return 0;
2944
2945 pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys);
2946 if (pos >= hdrlen)
2947 goto overflow;
2948
2949 /*
2950 * Add device identifier DEVICE=:
2951 * b12:8 block dev_t
2952 * c127:3 char dev_t
2953 * n8 netdev ifindex
2954 * +sound:card0 subsystem:devname
2955 */
2956 if (MAJOR(dev->devt)) {
2957 char c;
2958
2959 if (strcmp(subsys, "block") == 0)
2960 c = 'b';
2961 else
2962 c = 'c';
2963 pos++;
2964 pos += snprintf(hdr + pos, hdrlen - pos,
2965 "DEVICE=%c%u:%u",
2966 c, MAJOR(dev->devt), MINOR(dev->devt));
2967 } else if (strcmp(subsys, "net") == 0) {
2968 struct net_device *net = to_net_dev(dev);
2969
2970 pos++;
2971 pos += snprintf(hdr + pos, hdrlen - pos,
2972 "DEVICE=n%u", net->ifindex);
2973 } else {
2974 pos++;
2975 pos += snprintf(hdr + pos, hdrlen - pos,
2976 "DEVICE=+%s:%s", subsys, dev_name(dev));
2977 }
2978
2979 if (pos >= hdrlen)
2980 goto overflow;
2981
2982 return pos;
2983
2984 overflow:
2985 dev_WARN(dev, "device/subsystem name too long");
2986 return 0;
2987 }
2988
dev_vprintk_emit(int level,const struct device * dev,const char * fmt,va_list args)2989 int dev_vprintk_emit(int level, const struct device *dev,
2990 const char *fmt, va_list args)
2991 {
2992 char hdr[128];
2993 size_t hdrlen;
2994
2995 hdrlen = create_syslog_header(dev, hdr, sizeof(hdr));
2996
2997 return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args);
2998 }
2999 EXPORT_SYMBOL(dev_vprintk_emit);
3000
dev_printk_emit(int level,const struct device * dev,const char * fmt,...)3001 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
3002 {
3003 va_list args;
3004 int r;
3005
3006 va_start(args, fmt);
3007
3008 r = dev_vprintk_emit(level, dev, fmt, args);
3009
3010 va_end(args);
3011
3012 return r;
3013 }
3014 EXPORT_SYMBOL(dev_printk_emit);
3015
__dev_printk(const char * level,const struct device * dev,struct va_format * vaf)3016 static void __dev_printk(const char *level, const struct device *dev,
3017 struct va_format *vaf)
3018 {
3019 if (dev)
3020 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
3021 dev_driver_string(dev), dev_name(dev), vaf);
3022 else
3023 printk("%s(NULL device *): %pV", level, vaf);
3024 }
3025
dev_printk(const char * level,const struct device * dev,const char * fmt,...)3026 void dev_printk(const char *level, const struct device *dev,
3027 const char *fmt, ...)
3028 {
3029 struct va_format vaf;
3030 va_list args;
3031
3032 va_start(args, fmt);
3033
3034 vaf.fmt = fmt;
3035 vaf.va = &args;
3036
3037 __dev_printk(level, dev, &vaf);
3038
3039 va_end(args);
3040 }
3041 EXPORT_SYMBOL(dev_printk);
3042
3043 #define define_dev_printk_level(func, kern_level) \
3044 void func(const struct device *dev, const char *fmt, ...) \
3045 { \
3046 struct va_format vaf; \
3047 va_list args; \
3048 \
3049 va_start(args, fmt); \
3050 \
3051 vaf.fmt = fmt; \
3052 vaf.va = &args; \
3053 \
3054 __dev_printk(kern_level, dev, &vaf); \
3055 \
3056 va_end(args); \
3057 } \
3058 EXPORT_SYMBOL(func);
3059
3060 define_dev_printk_level(_dev_emerg, KERN_EMERG);
3061 define_dev_printk_level(_dev_alert, KERN_ALERT);
3062 define_dev_printk_level(_dev_crit, KERN_CRIT);
3063 define_dev_printk_level(_dev_err, KERN_ERR);
3064 define_dev_printk_level(_dev_warn, KERN_WARNING);
3065 define_dev_printk_level(_dev_notice, KERN_NOTICE);
3066 define_dev_printk_level(_dev_info, KERN_INFO);
3067
3068 #endif
3069
fwnode_is_primary(struct fwnode_handle * fwnode)3070 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
3071 {
3072 return fwnode && !IS_ERR(fwnode->secondary);
3073 }
3074
3075 /**
3076 * set_primary_fwnode - Change the primary firmware node of a given device.
3077 * @dev: Device to handle.
3078 * @fwnode: New primary firmware node of the device.
3079 *
3080 * Set the device's firmware node pointer to @fwnode, but if a secondary
3081 * firmware node of the device is present, preserve it.
3082 */
set_primary_fwnode(struct device * dev,struct fwnode_handle * fwnode)3083 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
3084 {
3085 if (fwnode) {
3086 struct fwnode_handle *fn = dev->fwnode;
3087
3088 if (fwnode_is_primary(fn))
3089 fn = fn->secondary;
3090
3091 if (fn) {
3092 WARN_ON(fwnode->secondary);
3093 fwnode->secondary = fn;
3094 }
3095 dev->fwnode = fwnode;
3096 } else {
3097 dev->fwnode = fwnode_is_primary(dev->fwnode) ?
3098 dev->fwnode->secondary : NULL;
3099 }
3100 }
3101 EXPORT_SYMBOL_GPL(set_primary_fwnode);
3102
3103 /**
3104 * set_secondary_fwnode - Change the secondary firmware node of a given device.
3105 * @dev: Device to handle.
3106 * @fwnode: New secondary firmware node of the device.
3107 *
3108 * If a primary firmware node of the device is present, set its secondary
3109 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to
3110 * @fwnode.
3111 */
set_secondary_fwnode(struct device * dev,struct fwnode_handle * fwnode)3112 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
3113 {
3114 if (fwnode)
3115 fwnode->secondary = ERR_PTR(-ENODEV);
3116
3117 if (fwnode_is_primary(dev->fwnode))
3118 dev->fwnode->secondary = fwnode;
3119 else
3120 dev->fwnode = fwnode;
3121 }
3122
3123 /**
3124 * device_set_of_node_from_dev - reuse device-tree node of another device
3125 * @dev: device whose device-tree node is being set
3126 * @dev2: device whose device-tree node is being reused
3127 *
3128 * Takes another reference to the new device-tree node after first dropping
3129 * any reference held to the old node.
3130 */
device_set_of_node_from_dev(struct device * dev,const struct device * dev2)3131 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
3132 {
3133 of_node_put(dev->of_node);
3134 dev->of_node = of_node_get(dev2->of_node);
3135 dev->of_node_reused = true;
3136 }
3137 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
3138