1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * drivers/base/core.c - core driver model code (device registration, etc)
4 *
5 * Copyright (c) 2002-3 Patrick Mochel
6 * Copyright (c) 2002-3 Open Source Development Labs
7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8 * Copyright (c) 2006 Novell, Inc.
9 */
10
11 #include <linux/acpi.h>
12 #include <linux/cpufreq.h>
13 #include <linux/device.h>
14 #include <linux/err.h>
15 #include <linux/fwnode.h>
16 #include <linux/init.h>
17 #include <linux/kstrtox.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/kdev_t.h>
21 #include <linux/notifier.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/blkdev.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/netdevice.h>
28 #include <linux/sched/signal.h>
29 #include <linux/sched/mm.h>
30 #include <linux/string_helpers.h>
31 #include <linux/swiotlb.h>
32 #include <linux/sysfs.h>
33 #include <linux/dma-map-ops.h> /* for dma_default_coherent */
34
35 #include "base.h"
36 #include "physical_location.h"
37 #include "power/power.h"
38
39 /* Device links support. */
40 static LIST_HEAD(deferred_sync);
41 static unsigned int defer_sync_state_count = 1;
42 static DEFINE_MUTEX(fwnode_link_lock);
43 static bool fw_devlink_is_permissive(void);
44 static void __fw_devlink_link_to_consumers(struct device *dev);
45 static bool fw_devlink_drv_reg_done;
46 static bool fw_devlink_best_effort;
47
48 /**
49 * __fwnode_link_add - Create a link between two fwnode_handles.
50 * @con: Consumer end of the link.
51 * @sup: Supplier end of the link.
52 *
53 * Create a fwnode link between fwnode handles @con and @sup. The fwnode link
54 * represents the detail that the firmware lists @sup fwnode as supplying a
55 * resource to @con.
56 *
57 * The driver core will use the fwnode link to create a device link between the
58 * two device objects corresponding to @con and @sup when they are created. The
59 * driver core will automatically delete the fwnode link between @con and @sup
60 * after doing that.
61 *
62 * Attempts to create duplicate links between the same pair of fwnode handles
63 * are ignored and there is no reference counting.
64 */
__fwnode_link_add(struct fwnode_handle * con,struct fwnode_handle * sup,u8 flags)65 static int __fwnode_link_add(struct fwnode_handle *con,
66 struct fwnode_handle *sup, u8 flags)
67 {
68 struct fwnode_link *link;
69
70 list_for_each_entry(link, &sup->consumers, s_hook)
71 if (link->consumer == con) {
72 link->flags |= flags;
73 return 0;
74 }
75
76 link = kzalloc(sizeof(*link), GFP_KERNEL);
77 if (!link)
78 return -ENOMEM;
79
80 link->supplier = sup;
81 INIT_LIST_HEAD(&link->s_hook);
82 link->consumer = con;
83 INIT_LIST_HEAD(&link->c_hook);
84 link->flags = flags;
85
86 list_add(&link->s_hook, &sup->consumers);
87 list_add(&link->c_hook, &con->suppliers);
88 pr_debug("%pfwf Linked as a fwnode consumer to %pfwf\n",
89 con, sup);
90
91 return 0;
92 }
93
fwnode_link_add(struct fwnode_handle * con,struct fwnode_handle * sup)94 int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup)
95 {
96 int ret;
97
98 mutex_lock(&fwnode_link_lock);
99 ret = __fwnode_link_add(con, sup, 0);
100 mutex_unlock(&fwnode_link_lock);
101 return ret;
102 }
103
104 /**
105 * __fwnode_link_del - Delete a link between two fwnode_handles.
106 * @link: the fwnode_link to be deleted
107 *
108 * The fwnode_link_lock needs to be held when this function is called.
109 */
__fwnode_link_del(struct fwnode_link * link)110 static void __fwnode_link_del(struct fwnode_link *link)
111 {
112 pr_debug("%pfwf Dropping the fwnode link to %pfwf\n",
113 link->consumer, link->supplier);
114 list_del(&link->s_hook);
115 list_del(&link->c_hook);
116 kfree(link);
117 }
118
119 /**
120 * __fwnode_link_cycle - Mark a fwnode link as being part of a cycle.
121 * @link: the fwnode_link to be marked
122 *
123 * The fwnode_link_lock needs to be held when this function is called.
124 */
__fwnode_link_cycle(struct fwnode_link * link)125 static void __fwnode_link_cycle(struct fwnode_link *link)
126 {
127 pr_debug("%pfwf: Relaxing link with %pfwf\n",
128 link->consumer, link->supplier);
129 link->flags |= FWLINK_FLAG_CYCLE;
130 }
131
132 /**
133 * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle.
134 * @fwnode: fwnode whose supplier links need to be deleted
135 *
136 * Deletes all supplier links connecting directly to @fwnode.
137 */
fwnode_links_purge_suppliers(struct fwnode_handle * fwnode)138 static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode)
139 {
140 struct fwnode_link *link, *tmp;
141
142 mutex_lock(&fwnode_link_lock);
143 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook)
144 __fwnode_link_del(link);
145 mutex_unlock(&fwnode_link_lock);
146 }
147
148 /**
149 * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle.
150 * @fwnode: fwnode whose consumer links need to be deleted
151 *
152 * Deletes all consumer links connecting directly to @fwnode.
153 */
fwnode_links_purge_consumers(struct fwnode_handle * fwnode)154 static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode)
155 {
156 struct fwnode_link *link, *tmp;
157
158 mutex_lock(&fwnode_link_lock);
159 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook)
160 __fwnode_link_del(link);
161 mutex_unlock(&fwnode_link_lock);
162 }
163
164 /**
165 * fwnode_links_purge - Delete all links connected to a fwnode_handle.
166 * @fwnode: fwnode whose links needs to be deleted
167 *
168 * Deletes all links connecting directly to a fwnode.
169 */
fwnode_links_purge(struct fwnode_handle * fwnode)170 void fwnode_links_purge(struct fwnode_handle *fwnode)
171 {
172 fwnode_links_purge_suppliers(fwnode);
173 fwnode_links_purge_consumers(fwnode);
174 }
175
fw_devlink_purge_absent_suppliers(struct fwnode_handle * fwnode)176 void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode)
177 {
178 struct fwnode_handle *child;
179
180 /* Don't purge consumer links of an added child */
181 if (fwnode->dev)
182 return;
183
184 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
185 fwnode_links_purge_consumers(fwnode);
186
187 fwnode_for_each_available_child_node(fwnode, child)
188 fw_devlink_purge_absent_suppliers(child);
189 }
190 EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers);
191
192 /**
193 * __fwnode_links_move_consumers - Move consumer from @from to @to fwnode_handle
194 * @from: move consumers away from this fwnode
195 * @to: move consumers to this fwnode
196 *
197 * Move all consumer links from @from fwnode to @to fwnode.
198 */
__fwnode_links_move_consumers(struct fwnode_handle * from,struct fwnode_handle * to)199 static void __fwnode_links_move_consumers(struct fwnode_handle *from,
200 struct fwnode_handle *to)
201 {
202 struct fwnode_link *link, *tmp;
203
204 list_for_each_entry_safe(link, tmp, &from->consumers, s_hook) {
205 __fwnode_link_add(link->consumer, to, link->flags);
206 __fwnode_link_del(link);
207 }
208 }
209
210 /**
211 * __fw_devlink_pickup_dangling_consumers - Pick up dangling consumers
212 * @fwnode: fwnode from which to pick up dangling consumers
213 * @new_sup: fwnode of new supplier
214 *
215 * If the @fwnode has a corresponding struct device and the device supports
216 * probing (that is, added to a bus), then we want to let fw_devlink create
217 * MANAGED device links to this device, so leave @fwnode and its descendant's
218 * fwnode links alone.
219 *
220 * Otherwise, move its consumers to the new supplier @new_sup.
221 */
__fw_devlink_pickup_dangling_consumers(struct fwnode_handle * fwnode,struct fwnode_handle * new_sup)222 static void __fw_devlink_pickup_dangling_consumers(struct fwnode_handle *fwnode,
223 struct fwnode_handle *new_sup)
224 {
225 struct fwnode_handle *child;
226
227 if (fwnode->dev && fwnode->dev->bus)
228 return;
229
230 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
231 __fwnode_links_move_consumers(fwnode, new_sup);
232
233 fwnode_for_each_available_child_node(fwnode, child)
234 __fw_devlink_pickup_dangling_consumers(child, new_sup);
235 }
236
237 static DEFINE_MUTEX(device_links_lock);
238 DEFINE_STATIC_SRCU(device_links_srcu);
239
device_links_write_lock(void)240 static inline void device_links_write_lock(void)
241 {
242 mutex_lock(&device_links_lock);
243 }
244
device_links_write_unlock(void)245 static inline void device_links_write_unlock(void)
246 {
247 mutex_unlock(&device_links_lock);
248 }
249
device_links_read_lock(void)250 int device_links_read_lock(void) __acquires(&device_links_srcu)
251 {
252 return srcu_read_lock(&device_links_srcu);
253 }
254
device_links_read_unlock(int idx)255 void device_links_read_unlock(int idx) __releases(&device_links_srcu)
256 {
257 srcu_read_unlock(&device_links_srcu, idx);
258 }
259
device_links_read_lock_held(void)260 int device_links_read_lock_held(void)
261 {
262 return srcu_read_lock_held(&device_links_srcu);
263 }
264
device_link_synchronize_removal(void)265 static void device_link_synchronize_removal(void)
266 {
267 synchronize_srcu(&device_links_srcu);
268 }
269
device_link_remove_from_lists(struct device_link * link)270 static void device_link_remove_from_lists(struct device_link *link)
271 {
272 list_del_rcu(&link->s_node);
273 list_del_rcu(&link->c_node);
274 }
275
device_is_ancestor(struct device * dev,struct device * target)276 static bool device_is_ancestor(struct device *dev, struct device *target)
277 {
278 while (target->parent) {
279 target = target->parent;
280 if (dev == target)
281 return true;
282 }
283 return false;
284 }
285
device_link_flag_is_sync_state_only(u32 flags)286 static inline bool device_link_flag_is_sync_state_only(u32 flags)
287 {
288 return (flags & ~(DL_FLAG_INFERRED | DL_FLAG_CYCLE)) ==
289 (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED);
290 }
291
292 /**
293 * device_is_dependent - Check if one device depends on another one
294 * @dev: Device to check dependencies for.
295 * @target: Device to check against.
296 *
297 * Check if @target depends on @dev or any device dependent on it (its child or
298 * its consumer etc). Return 1 if that is the case or 0 otherwise.
299 */
device_is_dependent(struct device * dev,void * target)300 int device_is_dependent(struct device *dev, void *target)
301 {
302 struct device_link *link;
303 int ret;
304
305 /*
306 * The "ancestors" check is needed to catch the case when the target
307 * device has not been completely initialized yet and it is still
308 * missing from the list of children of its parent device.
309 */
310 if (dev == target || device_is_ancestor(dev, target))
311 return 1;
312
313 ret = device_for_each_child(dev, target, device_is_dependent);
314 if (ret)
315 return ret;
316
317 list_for_each_entry(link, &dev->links.consumers, s_node) {
318 if (device_link_flag_is_sync_state_only(link->flags))
319 continue;
320
321 if (link->consumer == target)
322 return 1;
323
324 ret = device_is_dependent(link->consumer, target);
325 if (ret)
326 break;
327 }
328 return ret;
329 }
330
device_link_init_status(struct device_link * link,struct device * consumer,struct device * supplier)331 static void device_link_init_status(struct device_link *link,
332 struct device *consumer,
333 struct device *supplier)
334 {
335 switch (supplier->links.status) {
336 case DL_DEV_PROBING:
337 switch (consumer->links.status) {
338 case DL_DEV_PROBING:
339 /*
340 * A consumer driver can create a link to a supplier
341 * that has not completed its probing yet as long as it
342 * knows that the supplier is already functional (for
343 * example, it has just acquired some resources from the
344 * supplier).
345 */
346 link->status = DL_STATE_CONSUMER_PROBE;
347 break;
348 default:
349 link->status = DL_STATE_DORMANT;
350 break;
351 }
352 break;
353 case DL_DEV_DRIVER_BOUND:
354 switch (consumer->links.status) {
355 case DL_DEV_PROBING:
356 link->status = DL_STATE_CONSUMER_PROBE;
357 break;
358 case DL_DEV_DRIVER_BOUND:
359 link->status = DL_STATE_ACTIVE;
360 break;
361 default:
362 link->status = DL_STATE_AVAILABLE;
363 break;
364 }
365 break;
366 case DL_DEV_UNBINDING:
367 link->status = DL_STATE_SUPPLIER_UNBIND;
368 break;
369 default:
370 link->status = DL_STATE_DORMANT;
371 break;
372 }
373 }
374
device_reorder_to_tail(struct device * dev,void * not_used)375 static int device_reorder_to_tail(struct device *dev, void *not_used)
376 {
377 struct device_link *link;
378
379 /*
380 * Devices that have not been registered yet will be put to the ends
381 * of the lists during the registration, so skip them here.
382 */
383 if (device_is_registered(dev))
384 devices_kset_move_last(dev);
385
386 if (device_pm_initialized(dev))
387 device_pm_move_last(dev);
388
389 device_for_each_child(dev, NULL, device_reorder_to_tail);
390 list_for_each_entry(link, &dev->links.consumers, s_node) {
391 if (device_link_flag_is_sync_state_only(link->flags))
392 continue;
393 device_reorder_to_tail(link->consumer, NULL);
394 }
395
396 return 0;
397 }
398
399 /**
400 * device_pm_move_to_tail - Move set of devices to the end of device lists
401 * @dev: Device to move
402 *
403 * This is a device_reorder_to_tail() wrapper taking the requisite locks.
404 *
405 * It moves the @dev along with all of its children and all of its consumers
406 * to the ends of the device_kset and dpm_list, recursively.
407 */
device_pm_move_to_tail(struct device * dev)408 void device_pm_move_to_tail(struct device *dev)
409 {
410 int idx;
411
412 idx = device_links_read_lock();
413 device_pm_lock();
414 device_reorder_to_tail(dev, NULL);
415 device_pm_unlock();
416 device_links_read_unlock(idx);
417 }
418
419 #define to_devlink(dev) container_of((dev), struct device_link, link_dev)
420
status_show(struct device * dev,struct device_attribute * attr,char * buf)421 static ssize_t status_show(struct device *dev,
422 struct device_attribute *attr, char *buf)
423 {
424 const char *output;
425
426 switch (to_devlink(dev)->status) {
427 case DL_STATE_NONE:
428 output = "not tracked";
429 break;
430 case DL_STATE_DORMANT:
431 output = "dormant";
432 break;
433 case DL_STATE_AVAILABLE:
434 output = "available";
435 break;
436 case DL_STATE_CONSUMER_PROBE:
437 output = "consumer probing";
438 break;
439 case DL_STATE_ACTIVE:
440 output = "active";
441 break;
442 case DL_STATE_SUPPLIER_UNBIND:
443 output = "supplier unbinding";
444 break;
445 default:
446 output = "unknown";
447 break;
448 }
449
450 return sysfs_emit(buf, "%s\n", output);
451 }
452 static DEVICE_ATTR_RO(status);
453
auto_remove_on_show(struct device * dev,struct device_attribute * attr,char * buf)454 static ssize_t auto_remove_on_show(struct device *dev,
455 struct device_attribute *attr, char *buf)
456 {
457 struct device_link *link = to_devlink(dev);
458 const char *output;
459
460 if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
461 output = "supplier unbind";
462 else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
463 output = "consumer unbind";
464 else
465 output = "never";
466
467 return sysfs_emit(buf, "%s\n", output);
468 }
469 static DEVICE_ATTR_RO(auto_remove_on);
470
runtime_pm_show(struct device * dev,struct device_attribute * attr,char * buf)471 static ssize_t runtime_pm_show(struct device *dev,
472 struct device_attribute *attr, char *buf)
473 {
474 struct device_link *link = to_devlink(dev);
475
476 return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME));
477 }
478 static DEVICE_ATTR_RO(runtime_pm);
479
sync_state_only_show(struct device * dev,struct device_attribute * attr,char * buf)480 static ssize_t sync_state_only_show(struct device *dev,
481 struct device_attribute *attr, char *buf)
482 {
483 struct device_link *link = to_devlink(dev);
484
485 return sysfs_emit(buf, "%d\n",
486 !!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
487 }
488 static DEVICE_ATTR_RO(sync_state_only);
489
490 static struct attribute *devlink_attrs[] = {
491 &dev_attr_status.attr,
492 &dev_attr_auto_remove_on.attr,
493 &dev_attr_runtime_pm.attr,
494 &dev_attr_sync_state_only.attr,
495 NULL,
496 };
497 ATTRIBUTE_GROUPS(devlink);
498
device_link_release_fn(struct work_struct * work)499 static void device_link_release_fn(struct work_struct *work)
500 {
501 struct device_link *link = container_of(work, struct device_link, rm_work);
502
503 /* Ensure that all references to the link object have been dropped. */
504 device_link_synchronize_removal();
505
506 pm_runtime_release_supplier(link);
507 /*
508 * If supplier_preactivated is set, the link has been dropped between
509 * the pm_runtime_get_suppliers() and pm_runtime_put_suppliers() calls
510 * in __driver_probe_device(). In that case, drop the supplier's
511 * PM-runtime usage counter to remove the reference taken by
512 * pm_runtime_get_suppliers().
513 */
514 if (link->supplier_preactivated)
515 pm_runtime_put_noidle(link->supplier);
516
517 pm_request_idle(link->supplier);
518
519 put_device(link->consumer);
520 put_device(link->supplier);
521 kfree(link);
522 }
523
devlink_dev_release(struct device * dev)524 static void devlink_dev_release(struct device *dev)
525 {
526 struct device_link *link = to_devlink(dev);
527
528 INIT_WORK(&link->rm_work, device_link_release_fn);
529 /*
530 * It may take a while to complete this work because of the SRCU
531 * synchronization in device_link_release_fn() and if the consumer or
532 * supplier devices get deleted when it runs, so put it into the "long"
533 * workqueue.
534 */
535 queue_work(system_long_wq, &link->rm_work);
536 }
537
538 static struct class devlink_class = {
539 .name = "devlink",
540 .dev_groups = devlink_groups,
541 .dev_release = devlink_dev_release,
542 };
543
devlink_add_symlinks(struct device * dev)544 static int devlink_add_symlinks(struct device *dev)
545 {
546 int ret;
547 size_t len;
548 struct device_link *link = to_devlink(dev);
549 struct device *sup = link->supplier;
550 struct device *con = link->consumer;
551 char *buf;
552
553 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
554 strlen(dev_bus_name(con)) + strlen(dev_name(con)));
555 len += strlen(":");
556 len += strlen("supplier:") + 1;
557 buf = kzalloc(len, GFP_KERNEL);
558 if (!buf)
559 return -ENOMEM;
560
561 ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
562 if (ret)
563 goto out;
564
565 ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
566 if (ret)
567 goto err_con;
568
569 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
570 ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf);
571 if (ret)
572 goto err_con_dev;
573
574 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
575 ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf);
576 if (ret)
577 goto err_sup_dev;
578
579 goto out;
580
581 err_sup_dev:
582 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
583 sysfs_remove_link(&sup->kobj, buf);
584 err_con_dev:
585 sysfs_remove_link(&link->link_dev.kobj, "consumer");
586 err_con:
587 sysfs_remove_link(&link->link_dev.kobj, "supplier");
588 out:
589 kfree(buf);
590 return ret;
591 }
592
devlink_remove_symlinks(struct device * dev)593 static void devlink_remove_symlinks(struct device *dev)
594 {
595 struct device_link *link = to_devlink(dev);
596 size_t len;
597 struct device *sup = link->supplier;
598 struct device *con = link->consumer;
599 char *buf;
600
601 sysfs_remove_link(&link->link_dev.kobj, "consumer");
602 sysfs_remove_link(&link->link_dev.kobj, "supplier");
603
604 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
605 strlen(dev_bus_name(con)) + strlen(dev_name(con)));
606 len += strlen(":");
607 len += strlen("supplier:") + 1;
608 buf = kzalloc(len, GFP_KERNEL);
609 if (!buf) {
610 WARN(1, "Unable to properly free device link symlinks!\n");
611 return;
612 }
613
614 if (device_is_registered(con)) {
615 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
616 sysfs_remove_link(&con->kobj, buf);
617 }
618 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
619 sysfs_remove_link(&sup->kobj, buf);
620 kfree(buf);
621 }
622
623 static struct class_interface devlink_class_intf = {
624 .class = &devlink_class,
625 .add_dev = devlink_add_symlinks,
626 .remove_dev = devlink_remove_symlinks,
627 };
628
devlink_class_init(void)629 static int __init devlink_class_init(void)
630 {
631 int ret;
632
633 ret = class_register(&devlink_class);
634 if (ret)
635 return ret;
636
637 ret = class_interface_register(&devlink_class_intf);
638 if (ret)
639 class_unregister(&devlink_class);
640
641 return ret;
642 }
643 postcore_initcall(devlink_class_init);
644
645 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
646 DL_FLAG_AUTOREMOVE_SUPPLIER | \
647 DL_FLAG_AUTOPROBE_CONSUMER | \
648 DL_FLAG_SYNC_STATE_ONLY | \
649 DL_FLAG_INFERRED | \
650 DL_FLAG_CYCLE)
651
652 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
653 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
654
655 /**
656 * device_link_add - Create a link between two devices.
657 * @consumer: Consumer end of the link.
658 * @supplier: Supplier end of the link.
659 * @flags: Link flags.
660 *
661 * The caller is responsible for the proper synchronization of the link creation
662 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the
663 * runtime PM framework to take the link into account. Second, if the
664 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
665 * be forced into the active meta state and reference-counted upon the creation
666 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
667 * ignored.
668 *
669 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
670 * expected to release the link returned by it directly with the help of either
671 * device_link_del() or device_link_remove().
672 *
673 * If that flag is not set, however, the caller of this function is handing the
674 * management of the link over to the driver core entirely and its return value
675 * can only be used to check whether or not the link is present. In that case,
676 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
677 * flags can be used to indicate to the driver core when the link can be safely
678 * deleted. Namely, setting one of them in @flags indicates to the driver core
679 * that the link is not going to be used (by the given caller of this function)
680 * after unbinding the consumer or supplier driver, respectively, from its
681 * device, so the link can be deleted at that point. If none of them is set,
682 * the link will be maintained until one of the devices pointed to by it (either
683 * the consumer or the supplier) is unregistered.
684 *
685 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
686 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
687 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
688 * be used to request the driver core to automatically probe for a consumer
689 * driver after successfully binding a driver to the supplier device.
690 *
691 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
692 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
693 * the same time is invalid and will cause NULL to be returned upfront.
694 * However, if a device link between the given @consumer and @supplier pair
695 * exists already when this function is called for them, the existing link will
696 * be returned regardless of its current type and status (the link's flags may
697 * be modified then). The caller of this function is then expected to treat
698 * the link as though it has just been created, so (in particular) if
699 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
700 * explicitly when not needed any more (as stated above).
701 *
702 * A side effect of the link creation is re-ordering of dpm_list and the
703 * devices_kset list by moving the consumer device and all devices depending
704 * on it to the ends of these lists (that does not happen to devices that have
705 * not been registered when this function is called).
706 *
707 * The supplier device is required to be registered when this function is called
708 * and NULL will be returned if that is not the case. The consumer device need
709 * not be registered, however.
710 */
device_link_add(struct device * consumer,struct device * supplier,u32 flags)711 struct device_link *device_link_add(struct device *consumer,
712 struct device *supplier, u32 flags)
713 {
714 struct device_link *link;
715
716 if (!consumer || !supplier || consumer == supplier ||
717 flags & ~DL_ADD_VALID_FLAGS ||
718 (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
719 (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
720 flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
721 DL_FLAG_AUTOREMOVE_SUPPLIER)))
722 return NULL;
723
724 if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
725 if (pm_runtime_get_sync(supplier) < 0) {
726 pm_runtime_put_noidle(supplier);
727 return NULL;
728 }
729 }
730
731 if (!(flags & DL_FLAG_STATELESS))
732 flags |= DL_FLAG_MANAGED;
733
734 if (flags & DL_FLAG_SYNC_STATE_ONLY &&
735 !device_link_flag_is_sync_state_only(flags))
736 return NULL;
737
738 device_links_write_lock();
739 device_pm_lock();
740
741 /*
742 * If the supplier has not been fully registered yet or there is a
743 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
744 * the supplier already in the graph, return NULL. If the link is a
745 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
746 * because it only affects sync_state() callbacks.
747 */
748 if (!device_pm_initialized(supplier)
749 || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
750 device_is_dependent(consumer, supplier))) {
751 link = NULL;
752 goto out;
753 }
754
755 /*
756 * SYNC_STATE_ONLY links are useless once a consumer device has probed.
757 * So, only create it if the consumer hasn't probed yet.
758 */
759 if (flags & DL_FLAG_SYNC_STATE_ONLY &&
760 consumer->links.status != DL_DEV_NO_DRIVER &&
761 consumer->links.status != DL_DEV_PROBING) {
762 link = NULL;
763 goto out;
764 }
765
766 /*
767 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
768 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
769 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
770 */
771 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
772 flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
773
774 list_for_each_entry(link, &supplier->links.consumers, s_node) {
775 if (link->consumer != consumer)
776 continue;
777
778 if (link->flags & DL_FLAG_INFERRED &&
779 !(flags & DL_FLAG_INFERRED))
780 link->flags &= ~DL_FLAG_INFERRED;
781
782 if (flags & DL_FLAG_PM_RUNTIME) {
783 if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
784 pm_runtime_new_link(consumer);
785 link->flags |= DL_FLAG_PM_RUNTIME;
786 }
787 if (flags & DL_FLAG_RPM_ACTIVE)
788 refcount_inc(&link->rpm_active);
789 }
790
791 if (flags & DL_FLAG_STATELESS) {
792 kref_get(&link->kref);
793 if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
794 !(link->flags & DL_FLAG_STATELESS)) {
795 link->flags |= DL_FLAG_STATELESS;
796 goto reorder;
797 } else {
798 link->flags |= DL_FLAG_STATELESS;
799 goto out;
800 }
801 }
802
803 /*
804 * If the life time of the link following from the new flags is
805 * longer than indicated by the flags of the existing link,
806 * update the existing link to stay around longer.
807 */
808 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
809 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
810 link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
811 link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
812 }
813 } else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
814 link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
815 DL_FLAG_AUTOREMOVE_SUPPLIER);
816 }
817 if (!(link->flags & DL_FLAG_MANAGED)) {
818 kref_get(&link->kref);
819 link->flags |= DL_FLAG_MANAGED;
820 device_link_init_status(link, consumer, supplier);
821 }
822 if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
823 !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
824 link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
825 goto reorder;
826 }
827
828 goto out;
829 }
830
831 link = kzalloc(sizeof(*link), GFP_KERNEL);
832 if (!link)
833 goto out;
834
835 refcount_set(&link->rpm_active, 1);
836
837 get_device(supplier);
838 link->supplier = supplier;
839 INIT_LIST_HEAD(&link->s_node);
840 get_device(consumer);
841 link->consumer = consumer;
842 INIT_LIST_HEAD(&link->c_node);
843 link->flags = flags;
844 kref_init(&link->kref);
845
846 link->link_dev.class = &devlink_class;
847 device_set_pm_not_required(&link->link_dev);
848 dev_set_name(&link->link_dev, "%s:%s--%s:%s",
849 dev_bus_name(supplier), dev_name(supplier),
850 dev_bus_name(consumer), dev_name(consumer));
851 if (device_register(&link->link_dev)) {
852 put_device(&link->link_dev);
853 link = NULL;
854 goto out;
855 }
856
857 if (flags & DL_FLAG_PM_RUNTIME) {
858 if (flags & DL_FLAG_RPM_ACTIVE)
859 refcount_inc(&link->rpm_active);
860
861 pm_runtime_new_link(consumer);
862 }
863
864 /* Determine the initial link state. */
865 if (flags & DL_FLAG_STATELESS)
866 link->status = DL_STATE_NONE;
867 else
868 device_link_init_status(link, consumer, supplier);
869
870 /*
871 * Some callers expect the link creation during consumer driver probe to
872 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
873 */
874 if (link->status == DL_STATE_CONSUMER_PROBE &&
875 flags & DL_FLAG_PM_RUNTIME)
876 pm_runtime_resume(supplier);
877
878 list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
879 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
880
881 if (flags & DL_FLAG_SYNC_STATE_ONLY) {
882 dev_dbg(consumer,
883 "Linked as a sync state only consumer to %s\n",
884 dev_name(supplier));
885 goto out;
886 }
887
888 reorder:
889 /*
890 * Move the consumer and all of the devices depending on it to the end
891 * of dpm_list and the devices_kset list.
892 *
893 * It is necessary to hold dpm_list locked throughout all that or else
894 * we may end up suspending with a wrong ordering of it.
895 */
896 device_reorder_to_tail(consumer, NULL);
897
898 dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
899
900 out:
901 device_pm_unlock();
902 device_links_write_unlock();
903
904 if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
905 pm_runtime_put(supplier);
906
907 return link;
908 }
909 EXPORT_SYMBOL_GPL(device_link_add);
910
__device_link_del(struct kref * kref)911 static void __device_link_del(struct kref *kref)
912 {
913 struct device_link *link = container_of(kref, struct device_link, kref);
914
915 dev_dbg(link->consumer, "Dropping the link to %s\n",
916 dev_name(link->supplier));
917
918 pm_runtime_drop_link(link);
919
920 device_link_remove_from_lists(link);
921 device_unregister(&link->link_dev);
922 }
923
device_link_put_kref(struct device_link * link)924 static void device_link_put_kref(struct device_link *link)
925 {
926 if (link->flags & DL_FLAG_STATELESS)
927 kref_put(&link->kref, __device_link_del);
928 else if (!device_is_registered(link->consumer))
929 __device_link_del(&link->kref);
930 else
931 WARN(1, "Unable to drop a managed device link reference\n");
932 }
933
934 /**
935 * device_link_del - Delete a stateless link between two devices.
936 * @link: Device link to delete.
937 *
938 * The caller must ensure proper synchronization of this function with runtime
939 * PM. If the link was added multiple times, it needs to be deleted as often.
940 * Care is required for hotplugged devices: Their links are purged on removal
941 * and calling device_link_del() is then no longer allowed.
942 */
device_link_del(struct device_link * link)943 void device_link_del(struct device_link *link)
944 {
945 device_links_write_lock();
946 device_link_put_kref(link);
947 device_links_write_unlock();
948 }
949 EXPORT_SYMBOL_GPL(device_link_del);
950
951 /**
952 * device_link_remove - Delete a stateless link between two devices.
953 * @consumer: Consumer end of the link.
954 * @supplier: Supplier end of the link.
955 *
956 * The caller must ensure proper synchronization of this function with runtime
957 * PM.
958 */
device_link_remove(void * consumer,struct device * supplier)959 void device_link_remove(void *consumer, struct device *supplier)
960 {
961 struct device_link *link;
962
963 if (WARN_ON(consumer == supplier))
964 return;
965
966 device_links_write_lock();
967
968 list_for_each_entry(link, &supplier->links.consumers, s_node) {
969 if (link->consumer == consumer) {
970 device_link_put_kref(link);
971 break;
972 }
973 }
974
975 device_links_write_unlock();
976 }
977 EXPORT_SYMBOL_GPL(device_link_remove);
978
device_links_missing_supplier(struct device * dev)979 static void device_links_missing_supplier(struct device *dev)
980 {
981 struct device_link *link;
982
983 list_for_each_entry(link, &dev->links.suppliers, c_node) {
984 if (link->status != DL_STATE_CONSUMER_PROBE)
985 continue;
986
987 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
988 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
989 } else {
990 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
991 WRITE_ONCE(link->status, DL_STATE_DORMANT);
992 }
993 }
994 }
995
dev_is_best_effort(struct device * dev)996 static bool dev_is_best_effort(struct device *dev)
997 {
998 return (fw_devlink_best_effort && dev->can_match) ||
999 (dev->fwnode && (dev->fwnode->flags & FWNODE_FLAG_BEST_EFFORT));
1000 }
1001
fwnode_links_check_suppliers(struct fwnode_handle * fwnode)1002 static struct fwnode_handle *fwnode_links_check_suppliers(
1003 struct fwnode_handle *fwnode)
1004 {
1005 struct fwnode_link *link;
1006
1007 if (!fwnode || fw_devlink_is_permissive())
1008 return NULL;
1009
1010 list_for_each_entry(link, &fwnode->suppliers, c_hook)
1011 if (!(link->flags & FWLINK_FLAG_CYCLE))
1012 return link->supplier;
1013
1014 return NULL;
1015 }
1016
1017 /**
1018 * device_links_check_suppliers - Check presence of supplier drivers.
1019 * @dev: Consumer device.
1020 *
1021 * Check links from this device to any suppliers. Walk the list of the device's
1022 * links to suppliers and see if all of them are available. If not, simply
1023 * return -EPROBE_DEFER.
1024 *
1025 * We need to guarantee that the supplier will not go away after the check has
1026 * been positive here. It only can go away in __device_release_driver() and
1027 * that function checks the device's links to consumers. This means we need to
1028 * mark the link as "consumer probe in progress" to make the supplier removal
1029 * wait for us to complete (or bad things may happen).
1030 *
1031 * Links without the DL_FLAG_MANAGED flag set are ignored.
1032 */
device_links_check_suppliers(struct device * dev)1033 int device_links_check_suppliers(struct device *dev)
1034 {
1035 struct device_link *link;
1036 int ret = 0, fwnode_ret = 0;
1037 struct fwnode_handle *sup_fw;
1038
1039 /*
1040 * Device waiting for supplier to become available is not allowed to
1041 * probe.
1042 */
1043 mutex_lock(&fwnode_link_lock);
1044 sup_fw = fwnode_links_check_suppliers(dev->fwnode);
1045 if (sup_fw) {
1046 if (!dev_is_best_effort(dev)) {
1047 fwnode_ret = -EPROBE_DEFER;
1048 dev_err_probe(dev, -EPROBE_DEFER,
1049 "wait for supplier %pfwf\n", sup_fw);
1050 } else {
1051 fwnode_ret = -EAGAIN;
1052 }
1053 }
1054 mutex_unlock(&fwnode_link_lock);
1055 if (fwnode_ret == -EPROBE_DEFER)
1056 return fwnode_ret;
1057
1058 device_links_write_lock();
1059
1060 list_for_each_entry(link, &dev->links.suppliers, c_node) {
1061 if (!(link->flags & DL_FLAG_MANAGED))
1062 continue;
1063
1064 if (link->status != DL_STATE_AVAILABLE &&
1065 !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
1066
1067 if (dev_is_best_effort(dev) &&
1068 link->flags & DL_FLAG_INFERRED &&
1069 !link->supplier->can_match) {
1070 ret = -EAGAIN;
1071 continue;
1072 }
1073
1074 device_links_missing_supplier(dev);
1075 dev_err_probe(dev, -EPROBE_DEFER,
1076 "supplier %s not ready\n",
1077 dev_name(link->supplier));
1078 ret = -EPROBE_DEFER;
1079 break;
1080 }
1081 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1082 }
1083 dev->links.status = DL_DEV_PROBING;
1084
1085 device_links_write_unlock();
1086
1087 return ret ? ret : fwnode_ret;
1088 }
1089
1090 /**
1091 * __device_links_queue_sync_state - Queue a device for sync_state() callback
1092 * @dev: Device to call sync_state() on
1093 * @list: List head to queue the @dev on
1094 *
1095 * Queues a device for a sync_state() callback when the device links write lock
1096 * isn't held. This allows the sync_state() execution flow to use device links
1097 * APIs. The caller must ensure this function is called with
1098 * device_links_write_lock() held.
1099 *
1100 * This function does a get_device() to make sure the device is not freed while
1101 * on this list.
1102 *
1103 * So the caller must also ensure that device_links_flush_sync_list() is called
1104 * as soon as the caller releases device_links_write_lock(). This is necessary
1105 * to make sure the sync_state() is called in a timely fashion and the
1106 * put_device() is called on this device.
1107 */
__device_links_queue_sync_state(struct device * dev,struct list_head * list)1108 static void __device_links_queue_sync_state(struct device *dev,
1109 struct list_head *list)
1110 {
1111 struct device_link *link;
1112
1113 if (!dev_has_sync_state(dev))
1114 return;
1115 if (dev->state_synced)
1116 return;
1117
1118 list_for_each_entry(link, &dev->links.consumers, s_node) {
1119 if (!(link->flags & DL_FLAG_MANAGED))
1120 continue;
1121 if (link->status != DL_STATE_ACTIVE)
1122 return;
1123 }
1124
1125 /*
1126 * Set the flag here to avoid adding the same device to a list more
1127 * than once. This can happen if new consumers get added to the device
1128 * and probed before the list is flushed.
1129 */
1130 dev->state_synced = true;
1131
1132 if (WARN_ON(!list_empty(&dev->links.defer_sync)))
1133 return;
1134
1135 get_device(dev);
1136 list_add_tail(&dev->links.defer_sync, list);
1137 }
1138
1139 /**
1140 * device_links_flush_sync_list - Call sync_state() on a list of devices
1141 * @list: List of devices to call sync_state() on
1142 * @dont_lock_dev: Device for which lock is already held by the caller
1143 *
1144 * Calls sync_state() on all the devices that have been queued for it. This
1145 * function is used in conjunction with __device_links_queue_sync_state(). The
1146 * @dont_lock_dev parameter is useful when this function is called from a
1147 * context where a device lock is already held.
1148 */
device_links_flush_sync_list(struct list_head * list,struct device * dont_lock_dev)1149 static void device_links_flush_sync_list(struct list_head *list,
1150 struct device *dont_lock_dev)
1151 {
1152 struct device *dev, *tmp;
1153
1154 list_for_each_entry_safe(dev, tmp, list, links.defer_sync) {
1155 list_del_init(&dev->links.defer_sync);
1156
1157 if (dev != dont_lock_dev)
1158 device_lock(dev);
1159
1160 dev_sync_state(dev);
1161
1162 if (dev != dont_lock_dev)
1163 device_unlock(dev);
1164
1165 put_device(dev);
1166 }
1167 }
1168
device_links_supplier_sync_state_pause(void)1169 void device_links_supplier_sync_state_pause(void)
1170 {
1171 device_links_write_lock();
1172 defer_sync_state_count++;
1173 device_links_write_unlock();
1174 }
1175
device_links_supplier_sync_state_resume(void)1176 void device_links_supplier_sync_state_resume(void)
1177 {
1178 struct device *dev, *tmp;
1179 LIST_HEAD(sync_list);
1180
1181 device_links_write_lock();
1182 if (!defer_sync_state_count) {
1183 WARN(true, "Unmatched sync_state pause/resume!");
1184 goto out;
1185 }
1186 defer_sync_state_count--;
1187 if (defer_sync_state_count)
1188 goto out;
1189
1190 list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) {
1191 /*
1192 * Delete from deferred_sync list before queuing it to
1193 * sync_list because defer_sync is used for both lists.
1194 */
1195 list_del_init(&dev->links.defer_sync);
1196 __device_links_queue_sync_state(dev, &sync_list);
1197 }
1198 out:
1199 device_links_write_unlock();
1200
1201 device_links_flush_sync_list(&sync_list, NULL);
1202 }
1203
sync_state_resume_initcall(void)1204 static int sync_state_resume_initcall(void)
1205 {
1206 device_links_supplier_sync_state_resume();
1207 return 0;
1208 }
1209 late_initcall(sync_state_resume_initcall);
1210
__device_links_supplier_defer_sync(struct device * sup)1211 static void __device_links_supplier_defer_sync(struct device *sup)
1212 {
1213 if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup))
1214 list_add_tail(&sup->links.defer_sync, &deferred_sync);
1215 }
1216
device_link_drop_managed(struct device_link * link)1217 static void device_link_drop_managed(struct device_link *link)
1218 {
1219 link->flags &= ~DL_FLAG_MANAGED;
1220 WRITE_ONCE(link->status, DL_STATE_NONE);
1221 kref_put(&link->kref, __device_link_del);
1222 }
1223
waiting_for_supplier_show(struct device * dev,struct device_attribute * attr,char * buf)1224 static ssize_t waiting_for_supplier_show(struct device *dev,
1225 struct device_attribute *attr,
1226 char *buf)
1227 {
1228 bool val;
1229
1230 device_lock(dev);
1231 mutex_lock(&fwnode_link_lock);
1232 val = !!fwnode_links_check_suppliers(dev->fwnode);
1233 mutex_unlock(&fwnode_link_lock);
1234 device_unlock(dev);
1235 return sysfs_emit(buf, "%u\n", val);
1236 }
1237 static DEVICE_ATTR_RO(waiting_for_supplier);
1238
1239 /**
1240 * device_links_force_bind - Prepares device to be force bound
1241 * @dev: Consumer device.
1242 *
1243 * device_bind_driver() force binds a device to a driver without calling any
1244 * driver probe functions. So the consumer really isn't going to wait for any
1245 * supplier before it's bound to the driver. We still want the device link
1246 * states to be sensible when this happens.
1247 *
1248 * In preparation for device_bind_driver(), this function goes through each
1249 * supplier device links and checks if the supplier is bound. If it is, then
1250 * the device link status is set to CONSUMER_PROBE. Otherwise, the device link
1251 * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored.
1252 */
device_links_force_bind(struct device * dev)1253 void device_links_force_bind(struct device *dev)
1254 {
1255 struct device_link *link, *ln;
1256
1257 device_links_write_lock();
1258
1259 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1260 if (!(link->flags & DL_FLAG_MANAGED))
1261 continue;
1262
1263 if (link->status != DL_STATE_AVAILABLE) {
1264 device_link_drop_managed(link);
1265 continue;
1266 }
1267 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1268 }
1269 dev->links.status = DL_DEV_PROBING;
1270
1271 device_links_write_unlock();
1272 }
1273
1274 /**
1275 * device_links_driver_bound - Update device links after probing its driver.
1276 * @dev: Device to update the links for.
1277 *
1278 * The probe has been successful, so update links from this device to any
1279 * consumers by changing their status to "available".
1280 *
1281 * Also change the status of @dev's links to suppliers to "active".
1282 *
1283 * Links without the DL_FLAG_MANAGED flag set are ignored.
1284 */
device_links_driver_bound(struct device * dev)1285 void device_links_driver_bound(struct device *dev)
1286 {
1287 struct device_link *link, *ln;
1288 LIST_HEAD(sync_list);
1289
1290 /*
1291 * If a device binds successfully, it's expected to have created all
1292 * the device links it needs to or make new device links as it needs
1293 * them. So, fw_devlink no longer needs to create device links to any
1294 * of the device's suppliers.
1295 *
1296 * Also, if a child firmware node of this bound device is not added as a
1297 * device by now, assume it is never going to be added. Make this bound
1298 * device the fallback supplier to the dangling consumers of the child
1299 * firmware node because this bound device is probably implementing the
1300 * child firmware node functionality and we don't want the dangling
1301 * consumers to defer probe indefinitely waiting for a device for the
1302 * child firmware node.
1303 */
1304 if (dev->fwnode && dev->fwnode->dev == dev) {
1305 struct fwnode_handle *child;
1306 fwnode_links_purge_suppliers(dev->fwnode);
1307 mutex_lock(&fwnode_link_lock);
1308 fwnode_for_each_available_child_node(dev->fwnode, child)
1309 __fw_devlink_pickup_dangling_consumers(child,
1310 dev->fwnode);
1311 __fw_devlink_link_to_consumers(dev);
1312 mutex_unlock(&fwnode_link_lock);
1313 }
1314 device_remove_file(dev, &dev_attr_waiting_for_supplier);
1315
1316 device_links_write_lock();
1317
1318 list_for_each_entry(link, &dev->links.consumers, s_node) {
1319 if (!(link->flags & DL_FLAG_MANAGED))
1320 continue;
1321
1322 /*
1323 * Links created during consumer probe may be in the "consumer
1324 * probe" state to start with if the supplier is still probing
1325 * when they are created and they may become "active" if the
1326 * consumer probe returns first. Skip them here.
1327 */
1328 if (link->status == DL_STATE_CONSUMER_PROBE ||
1329 link->status == DL_STATE_ACTIVE)
1330 continue;
1331
1332 WARN_ON(link->status != DL_STATE_DORMANT);
1333 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1334
1335 if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
1336 driver_deferred_probe_add(link->consumer);
1337 }
1338
1339 if (defer_sync_state_count)
1340 __device_links_supplier_defer_sync(dev);
1341 else
1342 __device_links_queue_sync_state(dev, &sync_list);
1343
1344 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1345 struct device *supplier;
1346
1347 if (!(link->flags & DL_FLAG_MANAGED))
1348 continue;
1349
1350 supplier = link->supplier;
1351 if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
1352 /*
1353 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
1354 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
1355 * save to drop the managed link completely.
1356 */
1357 device_link_drop_managed(link);
1358 } else if (dev_is_best_effort(dev) &&
1359 link->flags & DL_FLAG_INFERRED &&
1360 link->status != DL_STATE_CONSUMER_PROBE &&
1361 !link->supplier->can_match) {
1362 /*
1363 * When dev_is_best_effort() is true, we ignore device
1364 * links to suppliers that don't have a driver. If the
1365 * consumer device still managed to probe, there's no
1366 * point in maintaining a device link in a weird state
1367 * (consumer probed before supplier). So delete it.
1368 */
1369 device_link_drop_managed(link);
1370 } else {
1371 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
1372 WRITE_ONCE(link->status, DL_STATE_ACTIVE);
1373 }
1374
1375 /*
1376 * This needs to be done even for the deleted
1377 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
1378 * device link that was preventing the supplier from getting a
1379 * sync_state() call.
1380 */
1381 if (defer_sync_state_count)
1382 __device_links_supplier_defer_sync(supplier);
1383 else
1384 __device_links_queue_sync_state(supplier, &sync_list);
1385 }
1386
1387 dev->links.status = DL_DEV_DRIVER_BOUND;
1388
1389 device_links_write_unlock();
1390
1391 device_links_flush_sync_list(&sync_list, dev);
1392 }
1393
1394 /**
1395 * __device_links_no_driver - Update links of a device without a driver.
1396 * @dev: Device without a drvier.
1397 *
1398 * Delete all non-persistent links from this device to any suppliers.
1399 *
1400 * Persistent links stay around, but their status is changed to "available",
1401 * unless they already are in the "supplier unbind in progress" state in which
1402 * case they need not be updated.
1403 *
1404 * Links without the DL_FLAG_MANAGED flag set are ignored.
1405 */
__device_links_no_driver(struct device * dev)1406 static void __device_links_no_driver(struct device *dev)
1407 {
1408 struct device_link *link, *ln;
1409
1410 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1411 if (!(link->flags & DL_FLAG_MANAGED))
1412 continue;
1413
1414 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
1415 device_link_drop_managed(link);
1416 continue;
1417 }
1418
1419 if (link->status != DL_STATE_CONSUMER_PROBE &&
1420 link->status != DL_STATE_ACTIVE)
1421 continue;
1422
1423 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1424 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1425 } else {
1426 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1427 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1428 }
1429 }
1430
1431 dev->links.status = DL_DEV_NO_DRIVER;
1432 }
1433
1434 /**
1435 * device_links_no_driver - Update links after failing driver probe.
1436 * @dev: Device whose driver has just failed to probe.
1437 *
1438 * Clean up leftover links to consumers for @dev and invoke
1439 * %__device_links_no_driver() to update links to suppliers for it as
1440 * appropriate.
1441 *
1442 * Links without the DL_FLAG_MANAGED flag set are ignored.
1443 */
device_links_no_driver(struct device * dev)1444 void device_links_no_driver(struct device *dev)
1445 {
1446 struct device_link *link;
1447
1448 device_links_write_lock();
1449
1450 list_for_each_entry(link, &dev->links.consumers, s_node) {
1451 if (!(link->flags & DL_FLAG_MANAGED))
1452 continue;
1453
1454 /*
1455 * The probe has failed, so if the status of the link is
1456 * "consumer probe" or "active", it must have been added by
1457 * a probing consumer while this device was still probing.
1458 * Change its state to "dormant", as it represents a valid
1459 * relationship, but it is not functionally meaningful.
1460 */
1461 if (link->status == DL_STATE_CONSUMER_PROBE ||
1462 link->status == DL_STATE_ACTIVE)
1463 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1464 }
1465
1466 __device_links_no_driver(dev);
1467
1468 device_links_write_unlock();
1469 }
1470
1471 /**
1472 * device_links_driver_cleanup - Update links after driver removal.
1473 * @dev: Device whose driver has just gone away.
1474 *
1475 * Update links to consumers for @dev by changing their status to "dormant" and
1476 * invoke %__device_links_no_driver() to update links to suppliers for it as
1477 * appropriate.
1478 *
1479 * Links without the DL_FLAG_MANAGED flag set are ignored.
1480 */
device_links_driver_cleanup(struct device * dev)1481 void device_links_driver_cleanup(struct device *dev)
1482 {
1483 struct device_link *link, *ln;
1484
1485 device_links_write_lock();
1486
1487 list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1488 if (!(link->flags & DL_FLAG_MANAGED))
1489 continue;
1490
1491 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1492 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1493
1494 /*
1495 * autoremove the links between this @dev and its consumer
1496 * devices that are not active, i.e. where the link state
1497 * has moved to DL_STATE_SUPPLIER_UNBIND.
1498 */
1499 if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1500 link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1501 device_link_drop_managed(link);
1502
1503 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1504 }
1505
1506 list_del_init(&dev->links.defer_sync);
1507 __device_links_no_driver(dev);
1508
1509 device_links_write_unlock();
1510 }
1511
1512 /**
1513 * device_links_busy - Check if there are any busy links to consumers.
1514 * @dev: Device to check.
1515 *
1516 * Check each consumer of the device and return 'true' if its link's status
1517 * is one of "consumer probe" or "active" (meaning that the given consumer is
1518 * probing right now or its driver is present). Otherwise, change the link
1519 * state to "supplier unbind" to prevent the consumer from being probed
1520 * successfully going forward.
1521 *
1522 * Return 'false' if there are no probing or active consumers.
1523 *
1524 * Links without the DL_FLAG_MANAGED flag set are ignored.
1525 */
device_links_busy(struct device * dev)1526 bool device_links_busy(struct device *dev)
1527 {
1528 struct device_link *link;
1529 bool ret = false;
1530
1531 device_links_write_lock();
1532
1533 list_for_each_entry(link, &dev->links.consumers, s_node) {
1534 if (!(link->flags & DL_FLAG_MANAGED))
1535 continue;
1536
1537 if (link->status == DL_STATE_CONSUMER_PROBE
1538 || link->status == DL_STATE_ACTIVE) {
1539 ret = true;
1540 break;
1541 }
1542 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1543 }
1544
1545 dev->links.status = DL_DEV_UNBINDING;
1546
1547 device_links_write_unlock();
1548 return ret;
1549 }
1550
1551 /**
1552 * device_links_unbind_consumers - Force unbind consumers of the given device.
1553 * @dev: Device to unbind the consumers of.
1554 *
1555 * Walk the list of links to consumers for @dev and if any of them is in the
1556 * "consumer probe" state, wait for all device probes in progress to complete
1557 * and start over.
1558 *
1559 * If that's not the case, change the status of the link to "supplier unbind"
1560 * and check if the link was in the "active" state. If so, force the consumer
1561 * driver to unbind and start over (the consumer will not re-probe as we have
1562 * changed the state of the link already).
1563 *
1564 * Links without the DL_FLAG_MANAGED flag set are ignored.
1565 */
device_links_unbind_consumers(struct device * dev)1566 void device_links_unbind_consumers(struct device *dev)
1567 {
1568 struct device_link *link;
1569
1570 start:
1571 device_links_write_lock();
1572
1573 list_for_each_entry(link, &dev->links.consumers, s_node) {
1574 enum device_link_state status;
1575
1576 if (!(link->flags & DL_FLAG_MANAGED) ||
1577 link->flags & DL_FLAG_SYNC_STATE_ONLY)
1578 continue;
1579
1580 status = link->status;
1581 if (status == DL_STATE_CONSUMER_PROBE) {
1582 device_links_write_unlock();
1583
1584 wait_for_device_probe();
1585 goto start;
1586 }
1587 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1588 if (status == DL_STATE_ACTIVE) {
1589 struct device *consumer = link->consumer;
1590
1591 get_device(consumer);
1592
1593 device_links_write_unlock();
1594
1595 device_release_driver_internal(consumer, NULL,
1596 consumer->parent);
1597 put_device(consumer);
1598 goto start;
1599 }
1600 }
1601
1602 device_links_write_unlock();
1603 }
1604
1605 /**
1606 * device_links_purge - Delete existing links to other devices.
1607 * @dev: Target device.
1608 */
device_links_purge(struct device * dev)1609 static void device_links_purge(struct device *dev)
1610 {
1611 struct device_link *link, *ln;
1612
1613 if (dev->class == &devlink_class)
1614 return;
1615
1616 /*
1617 * Delete all of the remaining links from this device to any other
1618 * devices (either consumers or suppliers).
1619 */
1620 device_links_write_lock();
1621
1622 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1623 WARN_ON(link->status == DL_STATE_ACTIVE);
1624 __device_link_del(&link->kref);
1625 }
1626
1627 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1628 WARN_ON(link->status != DL_STATE_DORMANT &&
1629 link->status != DL_STATE_NONE);
1630 __device_link_del(&link->kref);
1631 }
1632
1633 device_links_write_unlock();
1634 }
1635
1636 #define FW_DEVLINK_FLAGS_PERMISSIVE (DL_FLAG_INFERRED | \
1637 DL_FLAG_SYNC_STATE_ONLY)
1638 #define FW_DEVLINK_FLAGS_ON (DL_FLAG_INFERRED | \
1639 DL_FLAG_AUTOPROBE_CONSUMER)
1640 #define FW_DEVLINK_FLAGS_RPM (FW_DEVLINK_FLAGS_ON | \
1641 DL_FLAG_PM_RUNTIME)
1642
1643 static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
fw_devlink_setup(char * arg)1644 static int __init fw_devlink_setup(char *arg)
1645 {
1646 if (!arg)
1647 return -EINVAL;
1648
1649 if (strcmp(arg, "off") == 0) {
1650 fw_devlink_flags = 0;
1651 } else if (strcmp(arg, "permissive") == 0) {
1652 fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1653 } else if (strcmp(arg, "on") == 0) {
1654 fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1655 } else if (strcmp(arg, "rpm") == 0) {
1656 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
1657 }
1658 return 0;
1659 }
1660 early_param("fw_devlink", fw_devlink_setup);
1661
1662 static bool fw_devlink_strict;
fw_devlink_strict_setup(char * arg)1663 static int __init fw_devlink_strict_setup(char *arg)
1664 {
1665 return kstrtobool(arg, &fw_devlink_strict);
1666 }
1667 early_param("fw_devlink.strict", fw_devlink_strict_setup);
1668
1669 #define FW_DEVLINK_SYNC_STATE_STRICT 0
1670 #define FW_DEVLINK_SYNC_STATE_TIMEOUT 1
1671
1672 #ifndef CONFIG_FW_DEVLINK_SYNC_STATE_TIMEOUT
1673 static int fw_devlink_sync_state;
1674 #else
1675 static int fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT;
1676 #endif
1677
fw_devlink_sync_state_setup(char * arg)1678 static int __init fw_devlink_sync_state_setup(char *arg)
1679 {
1680 if (!arg)
1681 return -EINVAL;
1682
1683 if (strcmp(arg, "strict") == 0) {
1684 fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_STRICT;
1685 return 0;
1686 } else if (strcmp(arg, "timeout") == 0) {
1687 fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT;
1688 return 0;
1689 }
1690 return -EINVAL;
1691 }
1692 early_param("fw_devlink.sync_state", fw_devlink_sync_state_setup);
1693
fw_devlink_get_flags(u8 fwlink_flags)1694 static inline u32 fw_devlink_get_flags(u8 fwlink_flags)
1695 {
1696 if (fwlink_flags & FWLINK_FLAG_CYCLE)
1697 return FW_DEVLINK_FLAGS_PERMISSIVE | DL_FLAG_CYCLE;
1698
1699 return fw_devlink_flags;
1700 }
1701
fw_devlink_is_permissive(void)1702 static bool fw_devlink_is_permissive(void)
1703 {
1704 return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE;
1705 }
1706
fw_devlink_is_strict(void)1707 bool fw_devlink_is_strict(void)
1708 {
1709 return fw_devlink_strict && !fw_devlink_is_permissive();
1710 }
1711
fw_devlink_parse_fwnode(struct fwnode_handle * fwnode)1712 static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode)
1713 {
1714 if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED)
1715 return;
1716
1717 fwnode_call_int_op(fwnode, add_links);
1718 fwnode->flags |= FWNODE_FLAG_LINKS_ADDED;
1719 }
1720
fw_devlink_parse_fwtree(struct fwnode_handle * fwnode)1721 static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode)
1722 {
1723 struct fwnode_handle *child = NULL;
1724
1725 fw_devlink_parse_fwnode(fwnode);
1726
1727 while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1728 fw_devlink_parse_fwtree(child);
1729 }
1730
fw_devlink_relax_link(struct device_link * link)1731 static void fw_devlink_relax_link(struct device_link *link)
1732 {
1733 if (!(link->flags & DL_FLAG_INFERRED))
1734 return;
1735
1736 if (device_link_flag_is_sync_state_only(link->flags))
1737 return;
1738
1739 pm_runtime_drop_link(link);
1740 link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE;
1741 dev_dbg(link->consumer, "Relaxing link with %s\n",
1742 dev_name(link->supplier));
1743 }
1744
fw_devlink_no_driver(struct device * dev,void * data)1745 static int fw_devlink_no_driver(struct device *dev, void *data)
1746 {
1747 struct device_link *link = to_devlink(dev);
1748
1749 if (!link->supplier->can_match)
1750 fw_devlink_relax_link(link);
1751
1752 return 0;
1753 }
1754
fw_devlink_drivers_done(void)1755 void fw_devlink_drivers_done(void)
1756 {
1757 fw_devlink_drv_reg_done = true;
1758 device_links_write_lock();
1759 class_for_each_device(&devlink_class, NULL, NULL,
1760 fw_devlink_no_driver);
1761 device_links_write_unlock();
1762 }
1763
fw_devlink_dev_sync_state(struct device * dev,void * data)1764 static int fw_devlink_dev_sync_state(struct device *dev, void *data)
1765 {
1766 struct device_link *link = to_devlink(dev);
1767 struct device *sup = link->supplier;
1768
1769 if (!(link->flags & DL_FLAG_MANAGED) ||
1770 link->status == DL_STATE_ACTIVE || sup->state_synced ||
1771 !dev_has_sync_state(sup))
1772 return 0;
1773
1774 if (fw_devlink_sync_state == FW_DEVLINK_SYNC_STATE_STRICT) {
1775 dev_warn(sup, "sync_state() pending due to %s\n",
1776 dev_name(link->consumer));
1777 return 0;
1778 }
1779
1780 if (!list_empty(&sup->links.defer_sync))
1781 return 0;
1782
1783 dev_warn(sup, "Timed out. Forcing sync_state()\n");
1784 sup->state_synced = true;
1785 get_device(sup);
1786 list_add_tail(&sup->links.defer_sync, data);
1787
1788 return 0;
1789 }
1790
fw_devlink_probing_done(void)1791 void fw_devlink_probing_done(void)
1792 {
1793 LIST_HEAD(sync_list);
1794
1795 device_links_write_lock();
1796 class_for_each_device(&devlink_class, NULL, &sync_list,
1797 fw_devlink_dev_sync_state);
1798 device_links_write_unlock();
1799 device_links_flush_sync_list(&sync_list, NULL);
1800 }
1801
1802 /**
1803 * wait_for_init_devices_probe - Try to probe any device needed for init
1804 *
1805 * Some devices might need to be probed and bound successfully before the kernel
1806 * boot sequence can finish and move on to init/userspace. For example, a
1807 * network interface might need to be bound to be able to mount a NFS rootfs.
1808 *
1809 * With fw_devlink=on by default, some of these devices might be blocked from
1810 * probing because they are waiting on a optional supplier that doesn't have a
1811 * driver. While fw_devlink will eventually identify such devices and unblock
1812 * the probing automatically, it might be too late by the time it unblocks the
1813 * probing of devices. For example, the IP4 autoconfig might timeout before
1814 * fw_devlink unblocks probing of the network interface.
1815 *
1816 * This function is available to temporarily try and probe all devices that have
1817 * a driver even if some of their suppliers haven't been added or don't have
1818 * drivers.
1819 *
1820 * The drivers can then decide which of the suppliers are optional vs mandatory
1821 * and probe the device if possible. By the time this function returns, all such
1822 * "best effort" probes are guaranteed to be completed. If a device successfully
1823 * probes in this mode, we delete all fw_devlink discovered dependencies of that
1824 * device where the supplier hasn't yet probed successfully because they have to
1825 * be optional dependencies.
1826 *
1827 * Any devices that didn't successfully probe go back to being treated as if
1828 * this function was never called.
1829 *
1830 * This also means that some devices that aren't needed for init and could have
1831 * waited for their optional supplier to probe (when the supplier's module is
1832 * loaded later on) would end up probing prematurely with limited functionality.
1833 * So call this function only when boot would fail without it.
1834 */
wait_for_init_devices_probe(void)1835 void __init wait_for_init_devices_probe(void)
1836 {
1837 if (!fw_devlink_flags || fw_devlink_is_permissive())
1838 return;
1839
1840 /*
1841 * Wait for all ongoing probes to finish so that the "best effort" is
1842 * only applied to devices that can't probe otherwise.
1843 */
1844 wait_for_device_probe();
1845
1846 pr_info("Trying to probe devices needed for running init ...\n");
1847 fw_devlink_best_effort = true;
1848 driver_deferred_probe_trigger();
1849
1850 /*
1851 * Wait for all "best effort" probes to finish before going back to
1852 * normal enforcement.
1853 */
1854 wait_for_device_probe();
1855 fw_devlink_best_effort = false;
1856 }
1857
fw_devlink_unblock_consumers(struct device * dev)1858 static void fw_devlink_unblock_consumers(struct device *dev)
1859 {
1860 struct device_link *link;
1861
1862 if (!fw_devlink_flags || fw_devlink_is_permissive())
1863 return;
1864
1865 device_links_write_lock();
1866 list_for_each_entry(link, &dev->links.consumers, s_node)
1867 fw_devlink_relax_link(link);
1868 device_links_write_unlock();
1869 }
1870
1871
fwnode_init_without_drv(struct fwnode_handle * fwnode)1872 static bool fwnode_init_without_drv(struct fwnode_handle *fwnode)
1873 {
1874 struct device *dev;
1875 bool ret;
1876
1877 if (!(fwnode->flags & FWNODE_FLAG_INITIALIZED))
1878 return false;
1879
1880 dev = get_dev_from_fwnode(fwnode);
1881 ret = !dev || dev->links.status == DL_DEV_NO_DRIVER;
1882 put_device(dev);
1883
1884 return ret;
1885 }
1886
fwnode_ancestor_init_without_drv(struct fwnode_handle * fwnode)1887 static bool fwnode_ancestor_init_without_drv(struct fwnode_handle *fwnode)
1888 {
1889 struct fwnode_handle *parent;
1890
1891 fwnode_for_each_parent_node(fwnode, parent) {
1892 if (fwnode_init_without_drv(parent)) {
1893 fwnode_handle_put(parent);
1894 return true;
1895 }
1896 }
1897
1898 return false;
1899 }
1900
1901 /**
1902 * __fw_devlink_relax_cycles - Relax and mark dependency cycles.
1903 * @con: Potential consumer device.
1904 * @sup_handle: Potential supplier's fwnode.
1905 *
1906 * Needs to be called with fwnode_lock and device link lock held.
1907 *
1908 * Check if @sup_handle or any of its ancestors or suppliers direct/indirectly
1909 * depend on @con. This function can detect multiple cyles between @sup_handle
1910 * and @con. When such dependency cycles are found, convert all device links
1911 * created solely by fw_devlink into SYNC_STATE_ONLY device links. Also, mark
1912 * all fwnode links in the cycle with FWLINK_FLAG_CYCLE so that when they are
1913 * converted into a device link in the future, they are created as
1914 * SYNC_STATE_ONLY device links. This is the equivalent of doing
1915 * fw_devlink=permissive just between the devices in the cycle. We need to do
1916 * this because, at this point, fw_devlink can't tell which of these
1917 * dependencies is not a real dependency.
1918 *
1919 * Return true if one or more cycles were found. Otherwise, return false.
1920 */
__fw_devlink_relax_cycles(struct device * con,struct fwnode_handle * sup_handle)1921 static bool __fw_devlink_relax_cycles(struct device *con,
1922 struct fwnode_handle *sup_handle)
1923 {
1924 struct device *sup_dev = NULL, *par_dev = NULL;
1925 struct fwnode_link *link;
1926 struct device_link *dev_link;
1927 bool ret = false;
1928
1929 if (!sup_handle)
1930 return false;
1931
1932 /*
1933 * We aren't trying to find all cycles. Just a cycle between con and
1934 * sup_handle.
1935 */
1936 if (sup_handle->flags & FWNODE_FLAG_VISITED)
1937 return false;
1938
1939 sup_handle->flags |= FWNODE_FLAG_VISITED;
1940
1941 sup_dev = get_dev_from_fwnode(sup_handle);
1942
1943 /* Termination condition. */
1944 if (sup_dev == con) {
1945 ret = true;
1946 goto out;
1947 }
1948
1949 /*
1950 * If sup_dev is bound to a driver and @con hasn't started binding to a
1951 * driver, sup_dev can't be a consumer of @con. So, no need to check
1952 * further.
1953 */
1954 if (sup_dev && sup_dev->links.status == DL_DEV_DRIVER_BOUND &&
1955 con->links.status == DL_DEV_NO_DRIVER) {
1956 ret = false;
1957 goto out;
1958 }
1959
1960 list_for_each_entry(link, &sup_handle->suppliers, c_hook) {
1961 if (__fw_devlink_relax_cycles(con, link->supplier)) {
1962 __fwnode_link_cycle(link);
1963 ret = true;
1964 }
1965 }
1966
1967 /*
1968 * Give priority to device parent over fwnode parent to account for any
1969 * quirks in how fwnodes are converted to devices.
1970 */
1971 if (sup_dev)
1972 par_dev = get_device(sup_dev->parent);
1973 else
1974 par_dev = fwnode_get_next_parent_dev(sup_handle);
1975
1976 if (par_dev && __fw_devlink_relax_cycles(con, par_dev->fwnode))
1977 ret = true;
1978
1979 if (!sup_dev)
1980 goto out;
1981
1982 list_for_each_entry(dev_link, &sup_dev->links.suppliers, c_node) {
1983 /*
1984 * Ignore a SYNC_STATE_ONLY flag only if it wasn't marked as
1985 * such due to a cycle.
1986 */
1987 if (device_link_flag_is_sync_state_only(dev_link->flags) &&
1988 !(dev_link->flags & DL_FLAG_CYCLE))
1989 continue;
1990
1991 if (__fw_devlink_relax_cycles(con,
1992 dev_link->supplier->fwnode)) {
1993 fw_devlink_relax_link(dev_link);
1994 dev_link->flags |= DL_FLAG_CYCLE;
1995 ret = true;
1996 }
1997 }
1998
1999 out:
2000 sup_handle->flags &= ~FWNODE_FLAG_VISITED;
2001 put_device(sup_dev);
2002 put_device(par_dev);
2003 return ret;
2004 }
2005
2006 /**
2007 * fw_devlink_create_devlink - Create a device link from a consumer to fwnode
2008 * @con: consumer device for the device link
2009 * @sup_handle: fwnode handle of supplier
2010 * @link: fwnode link that's being converted to a device link
2011 *
2012 * This function will try to create a device link between the consumer device
2013 * @con and the supplier device represented by @sup_handle.
2014 *
2015 * The supplier has to be provided as a fwnode because incorrect cycles in
2016 * fwnode links can sometimes cause the supplier device to never be created.
2017 * This function detects such cases and returns an error if it cannot create a
2018 * device link from the consumer to a missing supplier.
2019 *
2020 * Returns,
2021 * 0 on successfully creating a device link
2022 * -EINVAL if the device link cannot be created as expected
2023 * -EAGAIN if the device link cannot be created right now, but it may be
2024 * possible to do that in the future
2025 */
fw_devlink_create_devlink(struct device * con,struct fwnode_handle * sup_handle,struct fwnode_link * link)2026 static int fw_devlink_create_devlink(struct device *con,
2027 struct fwnode_handle *sup_handle,
2028 struct fwnode_link *link)
2029 {
2030 struct device *sup_dev;
2031 int ret = 0;
2032 u32 flags;
2033
2034 if (con->fwnode == link->consumer)
2035 flags = fw_devlink_get_flags(link->flags);
2036 else
2037 flags = FW_DEVLINK_FLAGS_PERMISSIVE;
2038
2039 /*
2040 * In some cases, a device P might also be a supplier to its child node
2041 * C. However, this would defer the probe of C until the probe of P
2042 * completes successfully. This is perfectly fine in the device driver
2043 * model. device_add() doesn't guarantee probe completion of the device
2044 * by the time it returns.
2045 *
2046 * However, there are a few drivers that assume C will finish probing
2047 * as soon as it's added and before P finishes probing. So, we provide
2048 * a flag to let fw_devlink know not to delay the probe of C until the
2049 * probe of P completes successfully.
2050 *
2051 * When such a flag is set, we can't create device links where P is the
2052 * supplier of C as that would delay the probe of C.
2053 */
2054 if (sup_handle->flags & FWNODE_FLAG_NEEDS_CHILD_BOUND_ON_ADD &&
2055 fwnode_is_ancestor_of(sup_handle, con->fwnode))
2056 return -EINVAL;
2057
2058 /*
2059 * SYNC_STATE_ONLY device links don't block probing and supports cycles.
2060 * So cycle detection isn't necessary and shouldn't be done.
2061 */
2062 if (!(flags & DL_FLAG_SYNC_STATE_ONLY)) {
2063 device_links_write_lock();
2064 if (__fw_devlink_relax_cycles(con, sup_handle)) {
2065 __fwnode_link_cycle(link);
2066 flags = fw_devlink_get_flags(link->flags);
2067 dev_info(con, "Fixed dependency cycle(s) with %pfwf\n",
2068 sup_handle);
2069 }
2070 device_links_write_unlock();
2071 }
2072
2073 if (sup_handle->flags & FWNODE_FLAG_NOT_DEVICE)
2074 sup_dev = fwnode_get_next_parent_dev(sup_handle);
2075 else
2076 sup_dev = get_dev_from_fwnode(sup_handle);
2077
2078 if (sup_dev) {
2079 /*
2080 * If it's one of those drivers that don't actually bind to
2081 * their device using driver core, then don't wait on this
2082 * supplier device indefinitely.
2083 */
2084 if (sup_dev->links.status == DL_DEV_NO_DRIVER &&
2085 sup_handle->flags & FWNODE_FLAG_INITIALIZED) {
2086 dev_dbg(con,
2087 "Not linking %pfwf - dev might never probe\n",
2088 sup_handle);
2089 ret = -EINVAL;
2090 goto out;
2091 }
2092
2093 if (con != sup_dev && !device_link_add(con, sup_dev, flags)) {
2094 dev_err(con, "Failed to create device link (0x%x) with %s\n",
2095 flags, dev_name(sup_dev));
2096 ret = -EINVAL;
2097 }
2098
2099 goto out;
2100 }
2101
2102 /*
2103 * Supplier or supplier's ancestor already initialized without a struct
2104 * device or being probed by a driver.
2105 */
2106 if (fwnode_init_without_drv(sup_handle) ||
2107 fwnode_ancestor_init_without_drv(sup_handle)) {
2108 dev_dbg(con, "Not linking %pfwf - might never become dev\n",
2109 sup_handle);
2110 return -EINVAL;
2111 }
2112
2113 ret = -EAGAIN;
2114 out:
2115 put_device(sup_dev);
2116 return ret;
2117 }
2118
2119 /**
2120 * __fw_devlink_link_to_consumers - Create device links to consumers of a device
2121 * @dev: Device that needs to be linked to its consumers
2122 *
2123 * This function looks at all the consumer fwnodes of @dev and creates device
2124 * links between the consumer device and @dev (supplier).
2125 *
2126 * If the consumer device has not been added yet, then this function creates a
2127 * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device
2128 * of the consumer fwnode. This is necessary to make sure @dev doesn't get a
2129 * sync_state() callback before the real consumer device gets to be added and
2130 * then probed.
2131 *
2132 * Once device links are created from the real consumer to @dev (supplier), the
2133 * fwnode links are deleted.
2134 */
__fw_devlink_link_to_consumers(struct device * dev)2135 static void __fw_devlink_link_to_consumers(struct device *dev)
2136 {
2137 struct fwnode_handle *fwnode = dev->fwnode;
2138 struct fwnode_link *link, *tmp;
2139
2140 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
2141 struct device *con_dev;
2142 bool own_link = true;
2143 int ret;
2144
2145 con_dev = get_dev_from_fwnode(link->consumer);
2146 /*
2147 * If consumer device is not available yet, make a "proxy"
2148 * SYNC_STATE_ONLY link from the consumer's parent device to
2149 * the supplier device. This is necessary to make sure the
2150 * supplier doesn't get a sync_state() callback before the real
2151 * consumer can create a device link to the supplier.
2152 *
2153 * This proxy link step is needed to handle the case where the
2154 * consumer's parent device is added before the supplier.
2155 */
2156 if (!con_dev) {
2157 con_dev = fwnode_get_next_parent_dev(link->consumer);
2158 /*
2159 * However, if the consumer's parent device is also the
2160 * parent of the supplier, don't create a
2161 * consumer-supplier link from the parent to its child
2162 * device. Such a dependency is impossible.
2163 */
2164 if (con_dev &&
2165 fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) {
2166 put_device(con_dev);
2167 con_dev = NULL;
2168 } else {
2169 own_link = false;
2170 }
2171 }
2172
2173 if (!con_dev)
2174 continue;
2175
2176 ret = fw_devlink_create_devlink(con_dev, fwnode, link);
2177 put_device(con_dev);
2178 if (!own_link || ret == -EAGAIN)
2179 continue;
2180
2181 __fwnode_link_del(link);
2182 }
2183 }
2184
2185 /**
2186 * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device
2187 * @dev: The consumer device that needs to be linked to its suppliers
2188 * @fwnode: Root of the fwnode tree that is used to create device links
2189 *
2190 * This function looks at all the supplier fwnodes of fwnode tree rooted at
2191 * @fwnode and creates device links between @dev (consumer) and all the
2192 * supplier devices of the entire fwnode tree at @fwnode.
2193 *
2194 * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev
2195 * and the real suppliers of @dev. Once these device links are created, the
2196 * fwnode links are deleted.
2197 *
2198 * In addition, it also looks at all the suppliers of the entire fwnode tree
2199 * because some of the child devices of @dev that have not been added yet
2200 * (because @dev hasn't probed) might already have their suppliers added to
2201 * driver core. So, this function creates SYNC_STATE_ONLY device links between
2202 * @dev (consumer) and these suppliers to make sure they don't execute their
2203 * sync_state() callbacks before these child devices have a chance to create
2204 * their device links. The fwnode links that correspond to the child devices
2205 * aren't delete because they are needed later to create the device links
2206 * between the real consumer and supplier devices.
2207 */
__fw_devlink_link_to_suppliers(struct device * dev,struct fwnode_handle * fwnode)2208 static void __fw_devlink_link_to_suppliers(struct device *dev,
2209 struct fwnode_handle *fwnode)
2210 {
2211 bool own_link = (dev->fwnode == fwnode);
2212 struct fwnode_link *link, *tmp;
2213 struct fwnode_handle *child = NULL;
2214
2215 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
2216 int ret;
2217 struct fwnode_handle *sup = link->supplier;
2218
2219 ret = fw_devlink_create_devlink(dev, sup, link);
2220 if (!own_link || ret == -EAGAIN)
2221 continue;
2222
2223 __fwnode_link_del(link);
2224 }
2225
2226 /*
2227 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of
2228 * all the descendants. This proxy link step is needed to handle the
2229 * case where the supplier is added before the consumer's parent device
2230 * (@dev).
2231 */
2232 while ((child = fwnode_get_next_available_child_node(fwnode, child)))
2233 __fw_devlink_link_to_suppliers(dev, child);
2234 }
2235
fw_devlink_link_device(struct device * dev)2236 static void fw_devlink_link_device(struct device *dev)
2237 {
2238 struct fwnode_handle *fwnode = dev->fwnode;
2239
2240 if (!fw_devlink_flags)
2241 return;
2242
2243 fw_devlink_parse_fwtree(fwnode);
2244
2245 mutex_lock(&fwnode_link_lock);
2246 __fw_devlink_link_to_consumers(dev);
2247 __fw_devlink_link_to_suppliers(dev, fwnode);
2248 mutex_unlock(&fwnode_link_lock);
2249 }
2250
2251 /* Device links support end. */
2252
2253 int (*platform_notify)(struct device *dev) = NULL;
2254 int (*platform_notify_remove)(struct device *dev) = NULL;
2255 static struct kobject *dev_kobj;
2256
2257 /* /sys/dev/char */
2258 static struct kobject *sysfs_dev_char_kobj;
2259
2260 /* /sys/dev/block */
2261 static struct kobject *sysfs_dev_block_kobj;
2262
2263 static DEFINE_MUTEX(device_hotplug_lock);
2264
lock_device_hotplug(void)2265 void lock_device_hotplug(void)
2266 {
2267 mutex_lock(&device_hotplug_lock);
2268 }
2269
unlock_device_hotplug(void)2270 void unlock_device_hotplug(void)
2271 {
2272 mutex_unlock(&device_hotplug_lock);
2273 }
2274
lock_device_hotplug_sysfs(void)2275 int lock_device_hotplug_sysfs(void)
2276 {
2277 if (mutex_trylock(&device_hotplug_lock))
2278 return 0;
2279
2280 /* Avoid busy looping (5 ms of sleep should do). */
2281 msleep(5);
2282 return restart_syscall();
2283 }
2284
2285 #ifdef CONFIG_BLOCK
device_is_not_partition(struct device * dev)2286 static inline int device_is_not_partition(struct device *dev)
2287 {
2288 return !(dev->type == &part_type);
2289 }
2290 #else
device_is_not_partition(struct device * dev)2291 static inline int device_is_not_partition(struct device *dev)
2292 {
2293 return 1;
2294 }
2295 #endif
2296
device_platform_notify(struct device * dev)2297 static void device_platform_notify(struct device *dev)
2298 {
2299 acpi_device_notify(dev);
2300
2301 software_node_notify(dev);
2302
2303 if (platform_notify)
2304 platform_notify(dev);
2305 }
2306
device_platform_notify_remove(struct device * dev)2307 static void device_platform_notify_remove(struct device *dev)
2308 {
2309 if (platform_notify_remove)
2310 platform_notify_remove(dev);
2311
2312 software_node_notify_remove(dev);
2313
2314 acpi_device_notify_remove(dev);
2315 }
2316
2317 /**
2318 * dev_driver_string - Return a device's driver name, if at all possible
2319 * @dev: struct device to get the name of
2320 *
2321 * Will return the device's driver's name if it is bound to a device. If
2322 * the device is not bound to a driver, it will return the name of the bus
2323 * it is attached to. If it is not attached to a bus either, an empty
2324 * string will be returned.
2325 */
dev_driver_string(const struct device * dev)2326 const char *dev_driver_string(const struct device *dev)
2327 {
2328 struct device_driver *drv;
2329
2330 /* dev->driver can change to NULL underneath us because of unbinding,
2331 * so be careful about accessing it. dev->bus and dev->class should
2332 * never change once they are set, so they don't need special care.
2333 */
2334 drv = READ_ONCE(dev->driver);
2335 return drv ? drv->name : dev_bus_name(dev);
2336 }
2337 EXPORT_SYMBOL(dev_driver_string);
2338
2339 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
2340
dev_attr_show(struct kobject * kobj,struct attribute * attr,char * buf)2341 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
2342 char *buf)
2343 {
2344 struct device_attribute *dev_attr = to_dev_attr(attr);
2345 struct device *dev = kobj_to_dev(kobj);
2346 ssize_t ret = -EIO;
2347
2348 if (dev_attr->show)
2349 ret = dev_attr->show(dev, dev_attr, buf);
2350 if (ret >= (ssize_t)PAGE_SIZE) {
2351 printk("dev_attr_show: %pS returned bad count\n",
2352 dev_attr->show);
2353 }
2354 return ret;
2355 }
2356
dev_attr_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t count)2357 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
2358 const char *buf, size_t count)
2359 {
2360 struct device_attribute *dev_attr = to_dev_attr(attr);
2361 struct device *dev = kobj_to_dev(kobj);
2362 ssize_t ret = -EIO;
2363
2364 if (dev_attr->store)
2365 ret = dev_attr->store(dev, dev_attr, buf, count);
2366 return ret;
2367 }
2368
2369 static const struct sysfs_ops dev_sysfs_ops = {
2370 .show = dev_attr_show,
2371 .store = dev_attr_store,
2372 };
2373
2374 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
2375
device_store_ulong(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)2376 ssize_t device_store_ulong(struct device *dev,
2377 struct device_attribute *attr,
2378 const char *buf, size_t size)
2379 {
2380 struct dev_ext_attribute *ea = to_ext_attr(attr);
2381 int ret;
2382 unsigned long new;
2383
2384 ret = kstrtoul(buf, 0, &new);
2385 if (ret)
2386 return ret;
2387 *(unsigned long *)(ea->var) = new;
2388 /* Always return full write size even if we didn't consume all */
2389 return size;
2390 }
2391 EXPORT_SYMBOL_GPL(device_store_ulong);
2392
device_show_ulong(struct device * dev,struct device_attribute * attr,char * buf)2393 ssize_t device_show_ulong(struct device *dev,
2394 struct device_attribute *attr,
2395 char *buf)
2396 {
2397 struct dev_ext_attribute *ea = to_ext_attr(attr);
2398 return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var));
2399 }
2400 EXPORT_SYMBOL_GPL(device_show_ulong);
2401
device_store_int(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)2402 ssize_t device_store_int(struct device *dev,
2403 struct device_attribute *attr,
2404 const char *buf, size_t size)
2405 {
2406 struct dev_ext_attribute *ea = to_ext_attr(attr);
2407 int ret;
2408 long new;
2409
2410 ret = kstrtol(buf, 0, &new);
2411 if (ret)
2412 return ret;
2413
2414 if (new > INT_MAX || new < INT_MIN)
2415 return -EINVAL;
2416 *(int *)(ea->var) = new;
2417 /* Always return full write size even if we didn't consume all */
2418 return size;
2419 }
2420 EXPORT_SYMBOL_GPL(device_store_int);
2421
device_show_int(struct device * dev,struct device_attribute * attr,char * buf)2422 ssize_t device_show_int(struct device *dev,
2423 struct device_attribute *attr,
2424 char *buf)
2425 {
2426 struct dev_ext_attribute *ea = to_ext_attr(attr);
2427
2428 return sysfs_emit(buf, "%d\n", *(int *)(ea->var));
2429 }
2430 EXPORT_SYMBOL_GPL(device_show_int);
2431
device_store_bool(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)2432 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
2433 const char *buf, size_t size)
2434 {
2435 struct dev_ext_attribute *ea = to_ext_attr(attr);
2436
2437 if (kstrtobool(buf, ea->var) < 0)
2438 return -EINVAL;
2439
2440 return size;
2441 }
2442 EXPORT_SYMBOL_GPL(device_store_bool);
2443
device_show_bool(struct device * dev,struct device_attribute * attr,char * buf)2444 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
2445 char *buf)
2446 {
2447 struct dev_ext_attribute *ea = to_ext_attr(attr);
2448
2449 return sysfs_emit(buf, "%d\n", *(bool *)(ea->var));
2450 }
2451 EXPORT_SYMBOL_GPL(device_show_bool);
2452
2453 /**
2454 * device_release - free device structure.
2455 * @kobj: device's kobject.
2456 *
2457 * This is called once the reference count for the object
2458 * reaches 0. We forward the call to the device's release
2459 * method, which should handle actually freeing the structure.
2460 */
device_release(struct kobject * kobj)2461 static void device_release(struct kobject *kobj)
2462 {
2463 struct device *dev = kobj_to_dev(kobj);
2464 struct device_private *p = dev->p;
2465
2466 /*
2467 * Some platform devices are driven without driver attached
2468 * and managed resources may have been acquired. Make sure
2469 * all resources are released.
2470 *
2471 * Drivers still can add resources into device after device
2472 * is deleted but alive, so release devres here to avoid
2473 * possible memory leak.
2474 */
2475 devres_release_all(dev);
2476
2477 kfree(dev->dma_range_map);
2478
2479 if (dev->release)
2480 dev->release(dev);
2481 else if (dev->type && dev->type->release)
2482 dev->type->release(dev);
2483 else if (dev->class && dev->class->dev_release)
2484 dev->class->dev_release(dev);
2485 else
2486 WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
2487 dev_name(dev));
2488 kfree(p);
2489 }
2490
device_namespace(const struct kobject * kobj)2491 static const void *device_namespace(const struct kobject *kobj)
2492 {
2493 const struct device *dev = kobj_to_dev(kobj);
2494 const void *ns = NULL;
2495
2496 if (dev->class && dev->class->ns_type)
2497 ns = dev->class->namespace(dev);
2498
2499 return ns;
2500 }
2501
device_get_ownership(const struct kobject * kobj,kuid_t * uid,kgid_t * gid)2502 static void device_get_ownership(const struct kobject *kobj, kuid_t *uid, kgid_t *gid)
2503 {
2504 const struct device *dev = kobj_to_dev(kobj);
2505
2506 if (dev->class && dev->class->get_ownership)
2507 dev->class->get_ownership(dev, uid, gid);
2508 }
2509
2510 static const struct kobj_type device_ktype = {
2511 .release = device_release,
2512 .sysfs_ops = &dev_sysfs_ops,
2513 .namespace = device_namespace,
2514 .get_ownership = device_get_ownership,
2515 };
2516
2517
dev_uevent_filter(const struct kobject * kobj)2518 static int dev_uevent_filter(const struct kobject *kobj)
2519 {
2520 const struct kobj_type *ktype = get_ktype(kobj);
2521
2522 if (ktype == &device_ktype) {
2523 const struct device *dev = kobj_to_dev(kobj);
2524 if (dev->bus)
2525 return 1;
2526 if (dev->class)
2527 return 1;
2528 }
2529 return 0;
2530 }
2531
dev_uevent_name(const struct kobject * kobj)2532 static const char *dev_uevent_name(const struct kobject *kobj)
2533 {
2534 const struct device *dev = kobj_to_dev(kobj);
2535
2536 if (dev->bus)
2537 return dev->bus->name;
2538 if (dev->class)
2539 return dev->class->name;
2540 return NULL;
2541 }
2542
dev_uevent(const struct kobject * kobj,struct kobj_uevent_env * env)2543 static int dev_uevent(const struct kobject *kobj, struct kobj_uevent_env *env)
2544 {
2545 const struct device *dev = kobj_to_dev(kobj);
2546 int retval = 0;
2547
2548 /* add device node properties if present */
2549 if (MAJOR(dev->devt)) {
2550 const char *tmp;
2551 const char *name;
2552 umode_t mode = 0;
2553 kuid_t uid = GLOBAL_ROOT_UID;
2554 kgid_t gid = GLOBAL_ROOT_GID;
2555
2556 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
2557 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
2558 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
2559 if (name) {
2560 add_uevent_var(env, "DEVNAME=%s", name);
2561 if (mode)
2562 add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
2563 if (!uid_eq(uid, GLOBAL_ROOT_UID))
2564 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
2565 if (!gid_eq(gid, GLOBAL_ROOT_GID))
2566 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
2567 kfree(tmp);
2568 }
2569 }
2570
2571 if (dev->type && dev->type->name)
2572 add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
2573
2574 if (dev->driver)
2575 add_uevent_var(env, "DRIVER=%s", dev->driver->name);
2576
2577 /* Add common DT information about the device */
2578 of_device_uevent(dev, env);
2579
2580 /* have the bus specific function add its stuff */
2581 if (dev->bus && dev->bus->uevent) {
2582 retval = dev->bus->uevent(dev, env);
2583 if (retval)
2584 pr_debug("device: '%s': %s: bus uevent() returned %d\n",
2585 dev_name(dev), __func__, retval);
2586 }
2587
2588 /* have the class specific function add its stuff */
2589 if (dev->class && dev->class->dev_uevent) {
2590 retval = dev->class->dev_uevent(dev, env);
2591 if (retval)
2592 pr_debug("device: '%s': %s: class uevent() "
2593 "returned %d\n", dev_name(dev),
2594 __func__, retval);
2595 }
2596
2597 /* have the device type specific function add its stuff */
2598 if (dev->type && dev->type->uevent) {
2599 retval = dev->type->uevent(dev, env);
2600 if (retval)
2601 pr_debug("device: '%s': %s: dev_type uevent() "
2602 "returned %d\n", dev_name(dev),
2603 __func__, retval);
2604 }
2605
2606 return retval;
2607 }
2608
2609 static const struct kset_uevent_ops device_uevent_ops = {
2610 .filter = dev_uevent_filter,
2611 .name = dev_uevent_name,
2612 .uevent = dev_uevent,
2613 };
2614
uevent_show(struct device * dev,struct device_attribute * attr,char * buf)2615 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
2616 char *buf)
2617 {
2618 struct kobject *top_kobj;
2619 struct kset *kset;
2620 struct kobj_uevent_env *env = NULL;
2621 int i;
2622 int len = 0;
2623 int retval;
2624
2625 /* search the kset, the device belongs to */
2626 top_kobj = &dev->kobj;
2627 while (!top_kobj->kset && top_kobj->parent)
2628 top_kobj = top_kobj->parent;
2629 if (!top_kobj->kset)
2630 goto out;
2631
2632 kset = top_kobj->kset;
2633 if (!kset->uevent_ops || !kset->uevent_ops->uevent)
2634 goto out;
2635
2636 /* respect filter */
2637 if (kset->uevent_ops && kset->uevent_ops->filter)
2638 if (!kset->uevent_ops->filter(&dev->kobj))
2639 goto out;
2640
2641 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
2642 if (!env)
2643 return -ENOMEM;
2644
2645 /* let the kset specific function add its keys */
2646 retval = kset->uevent_ops->uevent(&dev->kobj, env);
2647 if (retval)
2648 goto out;
2649
2650 /* copy keys to file */
2651 for (i = 0; i < env->envp_idx; i++)
2652 len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]);
2653 out:
2654 kfree(env);
2655 return len;
2656 }
2657
uevent_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2658 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
2659 const char *buf, size_t count)
2660 {
2661 int rc;
2662
2663 rc = kobject_synth_uevent(&dev->kobj, buf, count);
2664
2665 if (rc) {
2666 dev_err(dev, "uevent: failed to send synthetic uevent: %d\n", rc);
2667 return rc;
2668 }
2669
2670 return count;
2671 }
2672 static DEVICE_ATTR_RW(uevent);
2673
online_show(struct device * dev,struct device_attribute * attr,char * buf)2674 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
2675 char *buf)
2676 {
2677 bool val;
2678
2679 device_lock(dev);
2680 val = !dev->offline;
2681 device_unlock(dev);
2682 return sysfs_emit(buf, "%u\n", val);
2683 }
2684
online_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2685 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
2686 const char *buf, size_t count)
2687 {
2688 bool val;
2689 int ret;
2690
2691 ret = kstrtobool(buf, &val);
2692 if (ret < 0)
2693 return ret;
2694
2695 ret = lock_device_hotplug_sysfs();
2696 if (ret)
2697 return ret;
2698
2699 ret = val ? device_online(dev) : device_offline(dev);
2700 unlock_device_hotplug();
2701 return ret < 0 ? ret : count;
2702 }
2703 static DEVICE_ATTR_RW(online);
2704
removable_show(struct device * dev,struct device_attribute * attr,char * buf)2705 static ssize_t removable_show(struct device *dev, struct device_attribute *attr,
2706 char *buf)
2707 {
2708 const char *loc;
2709
2710 switch (dev->removable) {
2711 case DEVICE_REMOVABLE:
2712 loc = "removable";
2713 break;
2714 case DEVICE_FIXED:
2715 loc = "fixed";
2716 break;
2717 default:
2718 loc = "unknown";
2719 }
2720 return sysfs_emit(buf, "%s\n", loc);
2721 }
2722 static DEVICE_ATTR_RO(removable);
2723
device_add_groups(struct device * dev,const struct attribute_group ** groups)2724 int device_add_groups(struct device *dev, const struct attribute_group **groups)
2725 {
2726 return sysfs_create_groups(&dev->kobj, groups);
2727 }
2728 EXPORT_SYMBOL_GPL(device_add_groups);
2729
device_remove_groups(struct device * dev,const struct attribute_group ** groups)2730 void device_remove_groups(struct device *dev,
2731 const struct attribute_group **groups)
2732 {
2733 sysfs_remove_groups(&dev->kobj, groups);
2734 }
2735 EXPORT_SYMBOL_GPL(device_remove_groups);
2736
2737 union device_attr_group_devres {
2738 const struct attribute_group *group;
2739 const struct attribute_group **groups;
2740 };
2741
devm_attr_group_remove(struct device * dev,void * res)2742 static void devm_attr_group_remove(struct device *dev, void *res)
2743 {
2744 union device_attr_group_devres *devres = res;
2745 const struct attribute_group *group = devres->group;
2746
2747 dev_dbg(dev, "%s: removing group %p\n", __func__, group);
2748 sysfs_remove_group(&dev->kobj, group);
2749 }
2750
devm_attr_groups_remove(struct device * dev,void * res)2751 static void devm_attr_groups_remove(struct device *dev, void *res)
2752 {
2753 union device_attr_group_devres *devres = res;
2754 const struct attribute_group **groups = devres->groups;
2755
2756 dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
2757 sysfs_remove_groups(&dev->kobj, groups);
2758 }
2759
2760 /**
2761 * devm_device_add_group - given a device, create a managed attribute group
2762 * @dev: The device to create the group for
2763 * @grp: The attribute group to create
2764 *
2765 * This function creates a group for the first time. It will explicitly
2766 * warn and error if any of the attribute files being created already exist.
2767 *
2768 * Returns 0 on success or error code on failure.
2769 */
devm_device_add_group(struct device * dev,const struct attribute_group * grp)2770 int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
2771 {
2772 union device_attr_group_devres *devres;
2773 int error;
2774
2775 devres = devres_alloc(devm_attr_group_remove,
2776 sizeof(*devres), GFP_KERNEL);
2777 if (!devres)
2778 return -ENOMEM;
2779
2780 error = sysfs_create_group(&dev->kobj, grp);
2781 if (error) {
2782 devres_free(devres);
2783 return error;
2784 }
2785
2786 devres->group = grp;
2787 devres_add(dev, devres);
2788 return 0;
2789 }
2790 EXPORT_SYMBOL_GPL(devm_device_add_group);
2791
2792 /**
2793 * devm_device_add_groups - create a bunch of managed attribute groups
2794 * @dev: The device to create the group for
2795 * @groups: The attribute groups to create, NULL terminated
2796 *
2797 * This function creates a bunch of managed attribute groups. If an error
2798 * occurs when creating a group, all previously created groups will be
2799 * removed, unwinding everything back to the original state when this
2800 * function was called. It will explicitly warn and error if any of the
2801 * attribute files being created already exist.
2802 *
2803 * Returns 0 on success or error code from sysfs_create_group on failure.
2804 */
devm_device_add_groups(struct device * dev,const struct attribute_group ** groups)2805 int devm_device_add_groups(struct device *dev,
2806 const struct attribute_group **groups)
2807 {
2808 union device_attr_group_devres *devres;
2809 int error;
2810
2811 devres = devres_alloc(devm_attr_groups_remove,
2812 sizeof(*devres), GFP_KERNEL);
2813 if (!devres)
2814 return -ENOMEM;
2815
2816 error = sysfs_create_groups(&dev->kobj, groups);
2817 if (error) {
2818 devres_free(devres);
2819 return error;
2820 }
2821
2822 devres->groups = groups;
2823 devres_add(dev, devres);
2824 return 0;
2825 }
2826 EXPORT_SYMBOL_GPL(devm_device_add_groups);
2827
device_add_attrs(struct device * dev)2828 static int device_add_attrs(struct device *dev)
2829 {
2830 const struct class *class = dev->class;
2831 const struct device_type *type = dev->type;
2832 int error;
2833
2834 if (class) {
2835 error = device_add_groups(dev, class->dev_groups);
2836 if (error)
2837 return error;
2838 }
2839
2840 if (type) {
2841 error = device_add_groups(dev, type->groups);
2842 if (error)
2843 goto err_remove_class_groups;
2844 }
2845
2846 error = device_add_groups(dev, dev->groups);
2847 if (error)
2848 goto err_remove_type_groups;
2849
2850 if (device_supports_offline(dev) && !dev->offline_disabled) {
2851 error = device_create_file(dev, &dev_attr_online);
2852 if (error)
2853 goto err_remove_dev_groups;
2854 }
2855
2856 if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) {
2857 error = device_create_file(dev, &dev_attr_waiting_for_supplier);
2858 if (error)
2859 goto err_remove_dev_online;
2860 }
2861
2862 if (dev_removable_is_valid(dev)) {
2863 error = device_create_file(dev, &dev_attr_removable);
2864 if (error)
2865 goto err_remove_dev_waiting_for_supplier;
2866 }
2867
2868 if (dev_add_physical_location(dev)) {
2869 error = device_add_group(dev,
2870 &dev_attr_physical_location_group);
2871 if (error)
2872 goto err_remove_dev_removable;
2873 }
2874
2875 return 0;
2876
2877 err_remove_dev_removable:
2878 device_remove_file(dev, &dev_attr_removable);
2879 err_remove_dev_waiting_for_supplier:
2880 device_remove_file(dev, &dev_attr_waiting_for_supplier);
2881 err_remove_dev_online:
2882 device_remove_file(dev, &dev_attr_online);
2883 err_remove_dev_groups:
2884 device_remove_groups(dev, dev->groups);
2885 err_remove_type_groups:
2886 if (type)
2887 device_remove_groups(dev, type->groups);
2888 err_remove_class_groups:
2889 if (class)
2890 device_remove_groups(dev, class->dev_groups);
2891
2892 return error;
2893 }
2894
device_remove_attrs(struct device * dev)2895 static void device_remove_attrs(struct device *dev)
2896 {
2897 const struct class *class = dev->class;
2898 const struct device_type *type = dev->type;
2899
2900 if (dev->physical_location) {
2901 device_remove_group(dev, &dev_attr_physical_location_group);
2902 kfree(dev->physical_location);
2903 }
2904
2905 device_remove_file(dev, &dev_attr_removable);
2906 device_remove_file(dev, &dev_attr_waiting_for_supplier);
2907 device_remove_file(dev, &dev_attr_online);
2908 device_remove_groups(dev, dev->groups);
2909
2910 if (type)
2911 device_remove_groups(dev, type->groups);
2912
2913 if (class)
2914 device_remove_groups(dev, class->dev_groups);
2915 }
2916
dev_show(struct device * dev,struct device_attribute * attr,char * buf)2917 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
2918 char *buf)
2919 {
2920 return print_dev_t(buf, dev->devt);
2921 }
2922 static DEVICE_ATTR_RO(dev);
2923
2924 /* /sys/devices/ */
2925 struct kset *devices_kset;
2926
2927 /**
2928 * devices_kset_move_before - Move device in the devices_kset's list.
2929 * @deva: Device to move.
2930 * @devb: Device @deva should come before.
2931 */
devices_kset_move_before(struct device * deva,struct device * devb)2932 static void devices_kset_move_before(struct device *deva, struct device *devb)
2933 {
2934 if (!devices_kset)
2935 return;
2936 pr_debug("devices_kset: Moving %s before %s\n",
2937 dev_name(deva), dev_name(devb));
2938 spin_lock(&devices_kset->list_lock);
2939 list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
2940 spin_unlock(&devices_kset->list_lock);
2941 }
2942
2943 /**
2944 * devices_kset_move_after - Move device in the devices_kset's list.
2945 * @deva: Device to move
2946 * @devb: Device @deva should come after.
2947 */
devices_kset_move_after(struct device * deva,struct device * devb)2948 static void devices_kset_move_after(struct device *deva, struct device *devb)
2949 {
2950 if (!devices_kset)
2951 return;
2952 pr_debug("devices_kset: Moving %s after %s\n",
2953 dev_name(deva), dev_name(devb));
2954 spin_lock(&devices_kset->list_lock);
2955 list_move(&deva->kobj.entry, &devb->kobj.entry);
2956 spin_unlock(&devices_kset->list_lock);
2957 }
2958
2959 /**
2960 * devices_kset_move_last - move the device to the end of devices_kset's list.
2961 * @dev: device to move
2962 */
devices_kset_move_last(struct device * dev)2963 void devices_kset_move_last(struct device *dev)
2964 {
2965 if (!devices_kset)
2966 return;
2967 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
2968 spin_lock(&devices_kset->list_lock);
2969 list_move_tail(&dev->kobj.entry, &devices_kset->list);
2970 spin_unlock(&devices_kset->list_lock);
2971 }
2972
2973 /**
2974 * device_create_file - create sysfs attribute file for device.
2975 * @dev: device.
2976 * @attr: device attribute descriptor.
2977 */
device_create_file(struct device * dev,const struct device_attribute * attr)2978 int device_create_file(struct device *dev,
2979 const struct device_attribute *attr)
2980 {
2981 int error = 0;
2982
2983 if (dev) {
2984 WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
2985 "Attribute %s: write permission without 'store'\n",
2986 attr->attr.name);
2987 WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
2988 "Attribute %s: read permission without 'show'\n",
2989 attr->attr.name);
2990 error = sysfs_create_file(&dev->kobj, &attr->attr);
2991 }
2992
2993 return error;
2994 }
2995 EXPORT_SYMBOL_GPL(device_create_file);
2996
2997 /**
2998 * device_remove_file - remove sysfs attribute file.
2999 * @dev: device.
3000 * @attr: device attribute descriptor.
3001 */
device_remove_file(struct device * dev,const struct device_attribute * attr)3002 void device_remove_file(struct device *dev,
3003 const struct device_attribute *attr)
3004 {
3005 if (dev)
3006 sysfs_remove_file(&dev->kobj, &attr->attr);
3007 }
3008 EXPORT_SYMBOL_GPL(device_remove_file);
3009
3010 /**
3011 * device_remove_file_self - remove sysfs attribute file from its own method.
3012 * @dev: device.
3013 * @attr: device attribute descriptor.
3014 *
3015 * See kernfs_remove_self() for details.
3016 */
device_remove_file_self(struct device * dev,const struct device_attribute * attr)3017 bool device_remove_file_self(struct device *dev,
3018 const struct device_attribute *attr)
3019 {
3020 if (dev)
3021 return sysfs_remove_file_self(&dev->kobj, &attr->attr);
3022 else
3023 return false;
3024 }
3025 EXPORT_SYMBOL_GPL(device_remove_file_self);
3026
3027 /**
3028 * device_create_bin_file - create sysfs binary attribute file for device.
3029 * @dev: device.
3030 * @attr: device binary attribute descriptor.
3031 */
device_create_bin_file(struct device * dev,const struct bin_attribute * attr)3032 int device_create_bin_file(struct device *dev,
3033 const struct bin_attribute *attr)
3034 {
3035 int error = -EINVAL;
3036 if (dev)
3037 error = sysfs_create_bin_file(&dev->kobj, attr);
3038 return error;
3039 }
3040 EXPORT_SYMBOL_GPL(device_create_bin_file);
3041
3042 /**
3043 * device_remove_bin_file - remove sysfs binary attribute file
3044 * @dev: device.
3045 * @attr: device binary attribute descriptor.
3046 */
device_remove_bin_file(struct device * dev,const struct bin_attribute * attr)3047 void device_remove_bin_file(struct device *dev,
3048 const struct bin_attribute *attr)
3049 {
3050 if (dev)
3051 sysfs_remove_bin_file(&dev->kobj, attr);
3052 }
3053 EXPORT_SYMBOL_GPL(device_remove_bin_file);
3054
klist_children_get(struct klist_node * n)3055 static void klist_children_get(struct klist_node *n)
3056 {
3057 struct device_private *p = to_device_private_parent(n);
3058 struct device *dev = p->device;
3059
3060 get_device(dev);
3061 }
3062
klist_children_put(struct klist_node * n)3063 static void klist_children_put(struct klist_node *n)
3064 {
3065 struct device_private *p = to_device_private_parent(n);
3066 struct device *dev = p->device;
3067
3068 put_device(dev);
3069 }
3070
3071 /**
3072 * device_initialize - init device structure.
3073 * @dev: device.
3074 *
3075 * This prepares the device for use by other layers by initializing
3076 * its fields.
3077 * It is the first half of device_register(), if called by
3078 * that function, though it can also be called separately, so one
3079 * may use @dev's fields. In particular, get_device()/put_device()
3080 * may be used for reference counting of @dev after calling this
3081 * function.
3082 *
3083 * All fields in @dev must be initialized by the caller to 0, except
3084 * for those explicitly set to some other value. The simplest
3085 * approach is to use kzalloc() to allocate the structure containing
3086 * @dev.
3087 *
3088 * NOTE: Use put_device() to give up your reference instead of freeing
3089 * @dev directly once you have called this function.
3090 */
device_initialize(struct device * dev)3091 void device_initialize(struct device *dev)
3092 {
3093 dev->kobj.kset = devices_kset;
3094 kobject_init(&dev->kobj, &device_ktype);
3095 INIT_LIST_HEAD(&dev->dma_pools);
3096 mutex_init(&dev->mutex);
3097 lockdep_set_novalidate_class(&dev->mutex);
3098 spin_lock_init(&dev->devres_lock);
3099 INIT_LIST_HEAD(&dev->devres_head);
3100 device_pm_init(dev);
3101 set_dev_node(dev, NUMA_NO_NODE);
3102 INIT_LIST_HEAD(&dev->links.consumers);
3103 INIT_LIST_HEAD(&dev->links.suppliers);
3104 INIT_LIST_HEAD(&dev->links.defer_sync);
3105 dev->links.status = DL_DEV_NO_DRIVER;
3106 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
3107 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
3108 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
3109 dev->dma_coherent = dma_default_coherent;
3110 #endif
3111 swiotlb_dev_init(dev);
3112 }
3113 EXPORT_SYMBOL_GPL(device_initialize);
3114
virtual_device_parent(struct device * dev)3115 struct kobject *virtual_device_parent(struct device *dev)
3116 {
3117 static struct kobject *virtual_dir = NULL;
3118
3119 if (!virtual_dir)
3120 virtual_dir = kobject_create_and_add("virtual",
3121 &devices_kset->kobj);
3122
3123 return virtual_dir;
3124 }
3125
3126 struct class_dir {
3127 struct kobject kobj;
3128 const struct class *class;
3129 };
3130
3131 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
3132
class_dir_release(struct kobject * kobj)3133 static void class_dir_release(struct kobject *kobj)
3134 {
3135 struct class_dir *dir = to_class_dir(kobj);
3136 kfree(dir);
3137 }
3138
3139 static const
class_dir_child_ns_type(const struct kobject * kobj)3140 struct kobj_ns_type_operations *class_dir_child_ns_type(const struct kobject *kobj)
3141 {
3142 const struct class_dir *dir = to_class_dir(kobj);
3143 return dir->class->ns_type;
3144 }
3145
3146 static const struct kobj_type class_dir_ktype = {
3147 .release = class_dir_release,
3148 .sysfs_ops = &kobj_sysfs_ops,
3149 .child_ns_type = class_dir_child_ns_type
3150 };
3151
class_dir_create_and_add(struct subsys_private * sp,struct kobject * parent_kobj)3152 static struct kobject *class_dir_create_and_add(struct subsys_private *sp,
3153 struct kobject *parent_kobj)
3154 {
3155 struct class_dir *dir;
3156 int retval;
3157
3158 dir = kzalloc(sizeof(*dir), GFP_KERNEL);
3159 if (!dir)
3160 return ERR_PTR(-ENOMEM);
3161
3162 dir->class = sp->class;
3163 kobject_init(&dir->kobj, &class_dir_ktype);
3164
3165 dir->kobj.kset = &sp->glue_dirs;
3166
3167 retval = kobject_add(&dir->kobj, parent_kobj, "%s", sp->class->name);
3168 if (retval < 0) {
3169 kobject_put(&dir->kobj);
3170 return ERR_PTR(retval);
3171 }
3172 return &dir->kobj;
3173 }
3174
3175 static DEFINE_MUTEX(gdp_mutex);
3176
get_device_parent(struct device * dev,struct device * parent)3177 static struct kobject *get_device_parent(struct device *dev,
3178 struct device *parent)
3179 {
3180 struct subsys_private *sp = class_to_subsys(dev->class);
3181 struct kobject *kobj = NULL;
3182
3183 if (sp) {
3184 struct kobject *parent_kobj;
3185 struct kobject *k;
3186
3187 /*
3188 * If we have no parent, we live in "virtual".
3189 * Class-devices with a non class-device as parent, live
3190 * in a "glue" directory to prevent namespace collisions.
3191 */
3192 if (parent == NULL)
3193 parent_kobj = virtual_device_parent(dev);
3194 else if (parent->class && !dev->class->ns_type) {
3195 subsys_put(sp);
3196 return &parent->kobj;
3197 } else {
3198 parent_kobj = &parent->kobj;
3199 }
3200
3201 mutex_lock(&gdp_mutex);
3202
3203 /* find our class-directory at the parent and reference it */
3204 spin_lock(&sp->glue_dirs.list_lock);
3205 list_for_each_entry(k, &sp->glue_dirs.list, entry)
3206 if (k->parent == parent_kobj) {
3207 kobj = kobject_get(k);
3208 break;
3209 }
3210 spin_unlock(&sp->glue_dirs.list_lock);
3211 if (kobj) {
3212 mutex_unlock(&gdp_mutex);
3213 subsys_put(sp);
3214 return kobj;
3215 }
3216
3217 /* or create a new class-directory at the parent device */
3218 k = class_dir_create_and_add(sp, parent_kobj);
3219 /* do not emit an uevent for this simple "glue" directory */
3220 mutex_unlock(&gdp_mutex);
3221 subsys_put(sp);
3222 return k;
3223 }
3224
3225 /* subsystems can specify a default root directory for their devices */
3226 if (!parent && dev->bus) {
3227 struct device *dev_root = bus_get_dev_root(dev->bus);
3228
3229 if (dev_root) {
3230 kobj = &dev_root->kobj;
3231 put_device(dev_root);
3232 return kobj;
3233 }
3234 }
3235
3236 if (parent)
3237 return &parent->kobj;
3238 return NULL;
3239 }
3240
live_in_glue_dir(struct kobject * kobj,struct device * dev)3241 static inline bool live_in_glue_dir(struct kobject *kobj,
3242 struct device *dev)
3243 {
3244 struct subsys_private *sp;
3245 bool retval;
3246
3247 if (!kobj || !dev->class)
3248 return false;
3249
3250 sp = class_to_subsys(dev->class);
3251 if (!sp)
3252 return false;
3253
3254 if (kobj->kset == &sp->glue_dirs)
3255 retval = true;
3256 else
3257 retval = false;
3258
3259 subsys_put(sp);
3260 return retval;
3261 }
3262
get_glue_dir(struct device * dev)3263 static inline struct kobject *get_glue_dir(struct device *dev)
3264 {
3265 return dev->kobj.parent;
3266 }
3267
3268 /**
3269 * kobject_has_children - Returns whether a kobject has children.
3270 * @kobj: the object to test
3271 *
3272 * This will return whether a kobject has other kobjects as children.
3273 *
3274 * It does NOT account for the presence of attribute files, only sub
3275 * directories. It also assumes there is no concurrent addition or
3276 * removal of such children, and thus relies on external locking.
3277 */
kobject_has_children(struct kobject * kobj)3278 static inline bool kobject_has_children(struct kobject *kobj)
3279 {
3280 WARN_ON_ONCE(kref_read(&kobj->kref) == 0);
3281
3282 return kobj->sd && kobj->sd->dir.subdirs;
3283 }
3284
3285 /*
3286 * make sure cleaning up dir as the last step, we need to make
3287 * sure .release handler of kobject is run with holding the
3288 * global lock
3289 */
cleanup_glue_dir(struct device * dev,struct kobject * glue_dir)3290 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
3291 {
3292 unsigned int ref;
3293
3294 /* see if we live in a "glue" directory */
3295 if (!live_in_glue_dir(glue_dir, dev))
3296 return;
3297
3298 mutex_lock(&gdp_mutex);
3299 /**
3300 * There is a race condition between removing glue directory
3301 * and adding a new device under the glue directory.
3302 *
3303 * CPU1: CPU2:
3304 *
3305 * device_add()
3306 * get_device_parent()
3307 * class_dir_create_and_add()
3308 * kobject_add_internal()
3309 * create_dir() // create glue_dir
3310 *
3311 * device_add()
3312 * get_device_parent()
3313 * kobject_get() // get glue_dir
3314 *
3315 * device_del()
3316 * cleanup_glue_dir()
3317 * kobject_del(glue_dir)
3318 *
3319 * kobject_add()
3320 * kobject_add_internal()
3321 * create_dir() // in glue_dir
3322 * sysfs_create_dir_ns()
3323 * kernfs_create_dir_ns(sd)
3324 *
3325 * sysfs_remove_dir() // glue_dir->sd=NULL
3326 * sysfs_put() // free glue_dir->sd
3327 *
3328 * // sd is freed
3329 * kernfs_new_node(sd)
3330 * kernfs_get(glue_dir)
3331 * kernfs_add_one()
3332 * kernfs_put()
3333 *
3334 * Before CPU1 remove last child device under glue dir, if CPU2 add
3335 * a new device under glue dir, the glue_dir kobject reference count
3336 * will be increase to 2 in kobject_get(k). And CPU2 has been called
3337 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
3338 * and sysfs_put(). This result in glue_dir->sd is freed.
3339 *
3340 * Then the CPU2 will see a stale "empty" but still potentially used
3341 * glue dir around in kernfs_new_node().
3342 *
3343 * In order to avoid this happening, we also should make sure that
3344 * kernfs_node for glue_dir is released in CPU1 only when refcount
3345 * for glue_dir kobj is 1.
3346 */
3347 ref = kref_read(&glue_dir->kref);
3348 if (!kobject_has_children(glue_dir) && !--ref)
3349 kobject_del(glue_dir);
3350 kobject_put(glue_dir);
3351 mutex_unlock(&gdp_mutex);
3352 }
3353
device_add_class_symlinks(struct device * dev)3354 static int device_add_class_symlinks(struct device *dev)
3355 {
3356 struct device_node *of_node = dev_of_node(dev);
3357 struct subsys_private *sp;
3358 int error;
3359
3360 if (of_node) {
3361 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
3362 if (error)
3363 dev_warn(dev, "Error %d creating of_node link\n",error);
3364 /* An error here doesn't warrant bringing down the device */
3365 }
3366
3367 sp = class_to_subsys(dev->class);
3368 if (!sp)
3369 return 0;
3370
3371 error = sysfs_create_link(&dev->kobj, &sp->subsys.kobj, "subsystem");
3372 if (error)
3373 goto out_devnode;
3374
3375 if (dev->parent && device_is_not_partition(dev)) {
3376 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
3377 "device");
3378 if (error)
3379 goto out_subsys;
3380 }
3381
3382 /* link in the class directory pointing to the device */
3383 error = sysfs_create_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev));
3384 if (error)
3385 goto out_device;
3386 goto exit;
3387
3388 out_device:
3389 sysfs_remove_link(&dev->kobj, "device");
3390 out_subsys:
3391 sysfs_remove_link(&dev->kobj, "subsystem");
3392 out_devnode:
3393 sysfs_remove_link(&dev->kobj, "of_node");
3394 exit:
3395 subsys_put(sp);
3396 return error;
3397 }
3398
device_remove_class_symlinks(struct device * dev)3399 static void device_remove_class_symlinks(struct device *dev)
3400 {
3401 struct subsys_private *sp = class_to_subsys(dev->class);
3402
3403 if (dev_of_node(dev))
3404 sysfs_remove_link(&dev->kobj, "of_node");
3405
3406 if (!sp)
3407 return;
3408
3409 if (dev->parent && device_is_not_partition(dev))
3410 sysfs_remove_link(&dev->kobj, "device");
3411 sysfs_remove_link(&dev->kobj, "subsystem");
3412 sysfs_delete_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev));
3413 subsys_put(sp);
3414 }
3415
3416 /**
3417 * dev_set_name - set a device name
3418 * @dev: device
3419 * @fmt: format string for the device's name
3420 */
dev_set_name(struct device * dev,const char * fmt,...)3421 int dev_set_name(struct device *dev, const char *fmt, ...)
3422 {
3423 va_list vargs;
3424 int err;
3425
3426 va_start(vargs, fmt);
3427 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
3428 va_end(vargs);
3429 return err;
3430 }
3431 EXPORT_SYMBOL_GPL(dev_set_name);
3432
3433 /* select a /sys/dev/ directory for the device */
device_to_dev_kobj(struct device * dev)3434 static struct kobject *device_to_dev_kobj(struct device *dev)
3435 {
3436 if (is_blockdev(dev))
3437 return sysfs_dev_block_kobj;
3438 else
3439 return sysfs_dev_char_kobj;
3440 }
3441
device_create_sys_dev_entry(struct device * dev)3442 static int device_create_sys_dev_entry(struct device *dev)
3443 {
3444 struct kobject *kobj = device_to_dev_kobj(dev);
3445 int error = 0;
3446 char devt_str[15];
3447
3448 if (kobj) {
3449 format_dev_t(devt_str, dev->devt);
3450 error = sysfs_create_link(kobj, &dev->kobj, devt_str);
3451 }
3452
3453 return error;
3454 }
3455
device_remove_sys_dev_entry(struct device * dev)3456 static void device_remove_sys_dev_entry(struct device *dev)
3457 {
3458 struct kobject *kobj = device_to_dev_kobj(dev);
3459 char devt_str[15];
3460
3461 if (kobj) {
3462 format_dev_t(devt_str, dev->devt);
3463 sysfs_remove_link(kobj, devt_str);
3464 }
3465 }
3466
device_private_init(struct device * dev)3467 static int device_private_init(struct device *dev)
3468 {
3469 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
3470 if (!dev->p)
3471 return -ENOMEM;
3472 dev->p->device = dev;
3473 klist_init(&dev->p->klist_children, klist_children_get,
3474 klist_children_put);
3475 INIT_LIST_HEAD(&dev->p->deferred_probe);
3476 return 0;
3477 }
3478
3479 /**
3480 * device_add - add device to device hierarchy.
3481 * @dev: device.
3482 *
3483 * This is part 2 of device_register(), though may be called
3484 * separately _iff_ device_initialize() has been called separately.
3485 *
3486 * This adds @dev to the kobject hierarchy via kobject_add(), adds it
3487 * to the global and sibling lists for the device, then
3488 * adds it to the other relevant subsystems of the driver model.
3489 *
3490 * Do not call this routine or device_register() more than once for
3491 * any device structure. The driver model core is not designed to work
3492 * with devices that get unregistered and then spring back to life.
3493 * (Among other things, it's very hard to guarantee that all references
3494 * to the previous incarnation of @dev have been dropped.) Allocate
3495 * and register a fresh new struct device instead.
3496 *
3497 * NOTE: _Never_ directly free @dev after calling this function, even
3498 * if it returned an error! Always use put_device() to give up your
3499 * reference instead.
3500 *
3501 * Rule of thumb is: if device_add() succeeds, you should call
3502 * device_del() when you want to get rid of it. If device_add() has
3503 * *not* succeeded, use *only* put_device() to drop the reference
3504 * count.
3505 */
device_add(struct device * dev)3506 int device_add(struct device *dev)
3507 {
3508 struct subsys_private *sp;
3509 struct device *parent;
3510 struct kobject *kobj;
3511 struct class_interface *class_intf;
3512 int error = -EINVAL;
3513 struct kobject *glue_dir = NULL;
3514
3515 dev = get_device(dev);
3516 if (!dev)
3517 goto done;
3518
3519 if (!dev->p) {
3520 error = device_private_init(dev);
3521 if (error)
3522 goto done;
3523 }
3524
3525 /*
3526 * for statically allocated devices, which should all be converted
3527 * some day, we need to initialize the name. We prevent reading back
3528 * the name, and force the use of dev_name()
3529 */
3530 if (dev->init_name) {
3531 error = dev_set_name(dev, "%s", dev->init_name);
3532 dev->init_name = NULL;
3533 }
3534
3535 if (dev_name(dev))
3536 error = 0;
3537 /* subsystems can specify simple device enumeration */
3538 else if (dev->bus && dev->bus->dev_name)
3539 error = dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
3540 else
3541 error = -EINVAL;
3542 if (error)
3543 goto name_error;
3544
3545 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3546
3547 parent = get_device(dev->parent);
3548 kobj = get_device_parent(dev, parent);
3549 if (IS_ERR(kobj)) {
3550 error = PTR_ERR(kobj);
3551 goto parent_error;
3552 }
3553 if (kobj)
3554 dev->kobj.parent = kobj;
3555
3556 /* use parent numa_node */
3557 if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
3558 set_dev_node(dev, dev_to_node(parent));
3559
3560 /* first, register with generic layer. */
3561 /* we require the name to be set before, and pass NULL */
3562 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
3563 if (error) {
3564 glue_dir = kobj;
3565 goto Error;
3566 }
3567
3568 /* notify platform of device entry */
3569 device_platform_notify(dev);
3570
3571 error = device_create_file(dev, &dev_attr_uevent);
3572 if (error)
3573 goto attrError;
3574
3575 error = device_add_class_symlinks(dev);
3576 if (error)
3577 goto SymlinkError;
3578 error = device_add_attrs(dev);
3579 if (error)
3580 goto AttrsError;
3581 error = bus_add_device(dev);
3582 if (error)
3583 goto BusError;
3584 error = dpm_sysfs_add(dev);
3585 if (error)
3586 goto DPMError;
3587 device_pm_add(dev);
3588
3589 if (MAJOR(dev->devt)) {
3590 error = device_create_file(dev, &dev_attr_dev);
3591 if (error)
3592 goto DevAttrError;
3593
3594 error = device_create_sys_dev_entry(dev);
3595 if (error)
3596 goto SysEntryError;
3597
3598 devtmpfs_create_node(dev);
3599 }
3600
3601 /* Notify clients of device addition. This call must come
3602 * after dpm_sysfs_add() and before kobject_uevent().
3603 */
3604 bus_notify(dev, BUS_NOTIFY_ADD_DEVICE);
3605 kobject_uevent(&dev->kobj, KOBJ_ADD);
3606
3607 /*
3608 * Check if any of the other devices (consumers) have been waiting for
3609 * this device (supplier) to be added so that they can create a device
3610 * link to it.
3611 *
3612 * This needs to happen after device_pm_add() because device_link_add()
3613 * requires the supplier be registered before it's called.
3614 *
3615 * But this also needs to happen before bus_probe_device() to make sure
3616 * waiting consumers can link to it before the driver is bound to the
3617 * device and the driver sync_state callback is called for this device.
3618 */
3619 if (dev->fwnode && !dev->fwnode->dev) {
3620 dev->fwnode->dev = dev;
3621 fw_devlink_link_device(dev);
3622 }
3623
3624 bus_probe_device(dev);
3625
3626 /*
3627 * If all driver registration is done and a newly added device doesn't
3628 * match with any driver, don't block its consumers from probing in
3629 * case the consumer device is able to operate without this supplier.
3630 */
3631 if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match)
3632 fw_devlink_unblock_consumers(dev);
3633
3634 if (parent)
3635 klist_add_tail(&dev->p->knode_parent,
3636 &parent->p->klist_children);
3637
3638 sp = class_to_subsys(dev->class);
3639 if (sp) {
3640 mutex_lock(&sp->mutex);
3641 /* tie the class to the device */
3642 klist_add_tail(&dev->p->knode_class, &sp->klist_devices);
3643
3644 /* notify any interfaces that the device is here */
3645 list_for_each_entry(class_intf, &sp->interfaces, node)
3646 if (class_intf->add_dev)
3647 class_intf->add_dev(dev);
3648 mutex_unlock(&sp->mutex);
3649 subsys_put(sp);
3650 }
3651 done:
3652 put_device(dev);
3653 return error;
3654 SysEntryError:
3655 if (MAJOR(dev->devt))
3656 device_remove_file(dev, &dev_attr_dev);
3657 DevAttrError:
3658 device_pm_remove(dev);
3659 dpm_sysfs_remove(dev);
3660 DPMError:
3661 dev->driver = NULL;
3662 bus_remove_device(dev);
3663 BusError:
3664 device_remove_attrs(dev);
3665 AttrsError:
3666 device_remove_class_symlinks(dev);
3667 SymlinkError:
3668 device_remove_file(dev, &dev_attr_uevent);
3669 attrError:
3670 device_platform_notify_remove(dev);
3671 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3672 glue_dir = get_glue_dir(dev);
3673 kobject_del(&dev->kobj);
3674 Error:
3675 cleanup_glue_dir(dev, glue_dir);
3676 parent_error:
3677 put_device(parent);
3678 name_error:
3679 kfree(dev->p);
3680 dev->p = NULL;
3681 goto done;
3682 }
3683 EXPORT_SYMBOL_GPL(device_add);
3684
3685 /**
3686 * device_register - register a device with the system.
3687 * @dev: pointer to the device structure
3688 *
3689 * This happens in two clean steps - initialize the device
3690 * and add it to the system. The two steps can be called
3691 * separately, but this is the easiest and most common.
3692 * I.e. you should only call the two helpers separately if
3693 * have a clearly defined need to use and refcount the device
3694 * before it is added to the hierarchy.
3695 *
3696 * For more information, see the kerneldoc for device_initialize()
3697 * and device_add().
3698 *
3699 * NOTE: _Never_ directly free @dev after calling this function, even
3700 * if it returned an error! Always use put_device() to give up the
3701 * reference initialized in this function instead.
3702 */
device_register(struct device * dev)3703 int device_register(struct device *dev)
3704 {
3705 device_initialize(dev);
3706 return device_add(dev);
3707 }
3708 EXPORT_SYMBOL_GPL(device_register);
3709
3710 /**
3711 * get_device - increment reference count for device.
3712 * @dev: device.
3713 *
3714 * This simply forwards the call to kobject_get(), though
3715 * we do take care to provide for the case that we get a NULL
3716 * pointer passed in.
3717 */
get_device(struct device * dev)3718 struct device *get_device(struct device *dev)
3719 {
3720 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
3721 }
3722 EXPORT_SYMBOL_GPL(get_device);
3723
3724 /**
3725 * put_device - decrement reference count.
3726 * @dev: device in question.
3727 */
put_device(struct device * dev)3728 void put_device(struct device *dev)
3729 {
3730 /* might_sleep(); */
3731 if (dev)
3732 kobject_put(&dev->kobj);
3733 }
3734 EXPORT_SYMBOL_GPL(put_device);
3735
kill_device(struct device * dev)3736 bool kill_device(struct device *dev)
3737 {
3738 /*
3739 * Require the device lock and set the "dead" flag to guarantee that
3740 * the update behavior is consistent with the other bitfields near
3741 * it and that we cannot have an asynchronous probe routine trying
3742 * to run while we are tearing out the bus/class/sysfs from
3743 * underneath the device.
3744 */
3745 device_lock_assert(dev);
3746
3747 if (dev->p->dead)
3748 return false;
3749 dev->p->dead = true;
3750 return true;
3751 }
3752 EXPORT_SYMBOL_GPL(kill_device);
3753
3754 /**
3755 * device_del - delete device from system.
3756 * @dev: device.
3757 *
3758 * This is the first part of the device unregistration
3759 * sequence. This removes the device from the lists we control
3760 * from here, has it removed from the other driver model
3761 * subsystems it was added to in device_add(), and removes it
3762 * from the kobject hierarchy.
3763 *
3764 * NOTE: this should be called manually _iff_ device_add() was
3765 * also called manually.
3766 */
device_del(struct device * dev)3767 void device_del(struct device *dev)
3768 {
3769 struct subsys_private *sp;
3770 struct device *parent = dev->parent;
3771 struct kobject *glue_dir = NULL;
3772 struct class_interface *class_intf;
3773 unsigned int noio_flag;
3774
3775 device_lock(dev);
3776 kill_device(dev);
3777 device_unlock(dev);
3778
3779 if (dev->fwnode && dev->fwnode->dev == dev)
3780 dev->fwnode->dev = NULL;
3781
3782 /* Notify clients of device removal. This call must come
3783 * before dpm_sysfs_remove().
3784 */
3785 noio_flag = memalloc_noio_save();
3786 bus_notify(dev, BUS_NOTIFY_DEL_DEVICE);
3787
3788 dpm_sysfs_remove(dev);
3789 if (parent)
3790 klist_del(&dev->p->knode_parent);
3791 if (MAJOR(dev->devt)) {
3792 devtmpfs_delete_node(dev);
3793 device_remove_sys_dev_entry(dev);
3794 device_remove_file(dev, &dev_attr_dev);
3795 }
3796
3797 sp = class_to_subsys(dev->class);
3798 if (sp) {
3799 device_remove_class_symlinks(dev);
3800
3801 mutex_lock(&sp->mutex);
3802 /* notify any interfaces that the device is now gone */
3803 list_for_each_entry(class_intf, &sp->interfaces, node)
3804 if (class_intf->remove_dev)
3805 class_intf->remove_dev(dev);
3806 /* remove the device from the class list */
3807 klist_del(&dev->p->knode_class);
3808 mutex_unlock(&sp->mutex);
3809 subsys_put(sp);
3810 }
3811 device_remove_file(dev, &dev_attr_uevent);
3812 device_remove_attrs(dev);
3813 bus_remove_device(dev);
3814 device_pm_remove(dev);
3815 driver_deferred_probe_del(dev);
3816 device_platform_notify_remove(dev);
3817 device_links_purge(dev);
3818
3819 /*
3820 * If a device does not have a driver attached, we need to clean
3821 * up any managed resources. We do this in device_release(), but
3822 * it's never called (and we leak the device) if a managed
3823 * resource holds a reference to the device. So release all
3824 * managed resources here, like we do in driver_detach(). We
3825 * still need to do so again in device_release() in case someone
3826 * adds a new resource after this point, though.
3827 */
3828 devres_release_all(dev);
3829
3830 bus_notify(dev, BUS_NOTIFY_REMOVED_DEVICE);
3831 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3832 glue_dir = get_glue_dir(dev);
3833 kobject_del(&dev->kobj);
3834 cleanup_glue_dir(dev, glue_dir);
3835 memalloc_noio_restore(noio_flag);
3836 put_device(parent);
3837 }
3838 EXPORT_SYMBOL_GPL(device_del);
3839
3840 /**
3841 * device_unregister - unregister device from system.
3842 * @dev: device going away.
3843 *
3844 * We do this in two parts, like we do device_register(). First,
3845 * we remove it from all the subsystems with device_del(), then
3846 * we decrement the reference count via put_device(). If that
3847 * is the final reference count, the device will be cleaned up
3848 * via device_release() above. Otherwise, the structure will
3849 * stick around until the final reference to the device is dropped.
3850 */
device_unregister(struct device * dev)3851 void device_unregister(struct device *dev)
3852 {
3853 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3854 device_del(dev);
3855 put_device(dev);
3856 }
3857 EXPORT_SYMBOL_GPL(device_unregister);
3858
prev_device(struct klist_iter * i)3859 static struct device *prev_device(struct klist_iter *i)
3860 {
3861 struct klist_node *n = klist_prev(i);
3862 struct device *dev = NULL;
3863 struct device_private *p;
3864
3865 if (n) {
3866 p = to_device_private_parent(n);
3867 dev = p->device;
3868 }
3869 return dev;
3870 }
3871
next_device(struct klist_iter * i)3872 static struct device *next_device(struct klist_iter *i)
3873 {
3874 struct klist_node *n = klist_next(i);
3875 struct device *dev = NULL;
3876 struct device_private *p;
3877
3878 if (n) {
3879 p = to_device_private_parent(n);
3880 dev = p->device;
3881 }
3882 return dev;
3883 }
3884
3885 /**
3886 * device_get_devnode - path of device node file
3887 * @dev: device
3888 * @mode: returned file access mode
3889 * @uid: returned file owner
3890 * @gid: returned file group
3891 * @tmp: possibly allocated string
3892 *
3893 * Return the relative path of a possible device node.
3894 * Non-default names may need to allocate a memory to compose
3895 * a name. This memory is returned in tmp and needs to be
3896 * freed by the caller.
3897 */
device_get_devnode(const struct device * dev,umode_t * mode,kuid_t * uid,kgid_t * gid,const char ** tmp)3898 const char *device_get_devnode(const struct device *dev,
3899 umode_t *mode, kuid_t *uid, kgid_t *gid,
3900 const char **tmp)
3901 {
3902 char *s;
3903
3904 *tmp = NULL;
3905
3906 /* the device type may provide a specific name */
3907 if (dev->type && dev->type->devnode)
3908 *tmp = dev->type->devnode(dev, mode, uid, gid);
3909 if (*tmp)
3910 return *tmp;
3911
3912 /* the class may provide a specific name */
3913 if (dev->class && dev->class->devnode)
3914 *tmp = dev->class->devnode(dev, mode);
3915 if (*tmp)
3916 return *tmp;
3917
3918 /* return name without allocation, tmp == NULL */
3919 if (strchr(dev_name(dev), '!') == NULL)
3920 return dev_name(dev);
3921
3922 /* replace '!' in the name with '/' */
3923 s = kstrdup_and_replace(dev_name(dev), '!', '/', GFP_KERNEL);
3924 if (!s)
3925 return NULL;
3926 return *tmp = s;
3927 }
3928
3929 /**
3930 * device_for_each_child - device child iterator.
3931 * @parent: parent struct device.
3932 * @fn: function to be called for each device.
3933 * @data: data for the callback.
3934 *
3935 * Iterate over @parent's child devices, and call @fn for each,
3936 * passing it @data.
3937 *
3938 * We check the return of @fn each time. If it returns anything
3939 * other than 0, we break out and return that value.
3940 */
device_for_each_child(struct device * parent,void * data,int (* fn)(struct device * dev,void * data))3941 int device_for_each_child(struct device *parent, void *data,
3942 int (*fn)(struct device *dev, void *data))
3943 {
3944 struct klist_iter i;
3945 struct device *child;
3946 int error = 0;
3947
3948 if (!parent->p)
3949 return 0;
3950
3951 klist_iter_init(&parent->p->klist_children, &i);
3952 while (!error && (child = next_device(&i)))
3953 error = fn(child, data);
3954 klist_iter_exit(&i);
3955 return error;
3956 }
3957 EXPORT_SYMBOL_GPL(device_for_each_child);
3958
3959 /**
3960 * device_for_each_child_reverse - device child iterator in reversed order.
3961 * @parent: parent struct device.
3962 * @fn: function to be called for each device.
3963 * @data: data for the callback.
3964 *
3965 * Iterate over @parent's child devices, and call @fn for each,
3966 * passing it @data.
3967 *
3968 * We check the return of @fn each time. If it returns anything
3969 * other than 0, we break out and return that value.
3970 */
device_for_each_child_reverse(struct device * parent,void * data,int (* fn)(struct device * dev,void * data))3971 int device_for_each_child_reverse(struct device *parent, void *data,
3972 int (*fn)(struct device *dev, void *data))
3973 {
3974 struct klist_iter i;
3975 struct device *child;
3976 int error = 0;
3977
3978 if (!parent->p)
3979 return 0;
3980
3981 klist_iter_init(&parent->p->klist_children, &i);
3982 while ((child = prev_device(&i)) && !error)
3983 error = fn(child, data);
3984 klist_iter_exit(&i);
3985 return error;
3986 }
3987 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
3988
3989 /**
3990 * device_find_child - device iterator for locating a particular device.
3991 * @parent: parent struct device
3992 * @match: Callback function to check device
3993 * @data: Data to pass to match function
3994 *
3995 * This is similar to the device_for_each_child() function above, but it
3996 * returns a reference to a device that is 'found' for later use, as
3997 * determined by the @match callback.
3998 *
3999 * The callback should return 0 if the device doesn't match and non-zero
4000 * if it does. If the callback returns non-zero and a reference to the
4001 * current device can be obtained, this function will return to the caller
4002 * and not iterate over any more devices.
4003 *
4004 * NOTE: you will need to drop the reference with put_device() after use.
4005 */
device_find_child(struct device * parent,void * data,int (* match)(struct device * dev,void * data))4006 struct device *device_find_child(struct device *parent, void *data,
4007 int (*match)(struct device *dev, void *data))
4008 {
4009 struct klist_iter i;
4010 struct device *child;
4011
4012 if (!parent)
4013 return NULL;
4014
4015 klist_iter_init(&parent->p->klist_children, &i);
4016 while ((child = next_device(&i)))
4017 if (match(child, data) && get_device(child))
4018 break;
4019 klist_iter_exit(&i);
4020 return child;
4021 }
4022 EXPORT_SYMBOL_GPL(device_find_child);
4023
4024 /**
4025 * device_find_child_by_name - device iterator for locating a child device.
4026 * @parent: parent struct device
4027 * @name: name of the child device
4028 *
4029 * This is similar to the device_find_child() function above, but it
4030 * returns a reference to a device that has the name @name.
4031 *
4032 * NOTE: you will need to drop the reference with put_device() after use.
4033 */
device_find_child_by_name(struct device * parent,const char * name)4034 struct device *device_find_child_by_name(struct device *parent,
4035 const char *name)
4036 {
4037 struct klist_iter i;
4038 struct device *child;
4039
4040 if (!parent)
4041 return NULL;
4042
4043 klist_iter_init(&parent->p->klist_children, &i);
4044 while ((child = next_device(&i)))
4045 if (sysfs_streq(dev_name(child), name) && get_device(child))
4046 break;
4047 klist_iter_exit(&i);
4048 return child;
4049 }
4050 EXPORT_SYMBOL_GPL(device_find_child_by_name);
4051
match_any(struct device * dev,void * unused)4052 static int match_any(struct device *dev, void *unused)
4053 {
4054 return 1;
4055 }
4056
4057 /**
4058 * device_find_any_child - device iterator for locating a child device, if any.
4059 * @parent: parent struct device
4060 *
4061 * This is similar to the device_find_child() function above, but it
4062 * returns a reference to a child device, if any.
4063 *
4064 * NOTE: you will need to drop the reference with put_device() after use.
4065 */
device_find_any_child(struct device * parent)4066 struct device *device_find_any_child(struct device *parent)
4067 {
4068 return device_find_child(parent, NULL, match_any);
4069 }
4070 EXPORT_SYMBOL_GPL(device_find_any_child);
4071
devices_init(void)4072 int __init devices_init(void)
4073 {
4074 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
4075 if (!devices_kset)
4076 return -ENOMEM;
4077 dev_kobj = kobject_create_and_add("dev", NULL);
4078 if (!dev_kobj)
4079 goto dev_kobj_err;
4080 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
4081 if (!sysfs_dev_block_kobj)
4082 goto block_kobj_err;
4083 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
4084 if (!sysfs_dev_char_kobj)
4085 goto char_kobj_err;
4086
4087 return 0;
4088
4089 char_kobj_err:
4090 kobject_put(sysfs_dev_block_kobj);
4091 block_kobj_err:
4092 kobject_put(dev_kobj);
4093 dev_kobj_err:
4094 kset_unregister(devices_kset);
4095 return -ENOMEM;
4096 }
4097
device_check_offline(struct device * dev,void * not_used)4098 static int device_check_offline(struct device *dev, void *not_used)
4099 {
4100 int ret;
4101
4102 ret = device_for_each_child(dev, NULL, device_check_offline);
4103 if (ret)
4104 return ret;
4105
4106 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
4107 }
4108
4109 /**
4110 * device_offline - Prepare the device for hot-removal.
4111 * @dev: Device to be put offline.
4112 *
4113 * Execute the device bus type's .offline() callback, if present, to prepare
4114 * the device for a subsequent hot-removal. If that succeeds, the device must
4115 * not be used until either it is removed or its bus type's .online() callback
4116 * is executed.
4117 *
4118 * Call under device_hotplug_lock.
4119 */
device_offline(struct device * dev)4120 int device_offline(struct device *dev)
4121 {
4122 int ret;
4123
4124 if (dev->offline_disabled)
4125 return -EPERM;
4126
4127 ret = device_for_each_child(dev, NULL, device_check_offline);
4128 if (ret)
4129 return ret;
4130
4131 device_lock(dev);
4132 if (device_supports_offline(dev)) {
4133 if (dev->offline) {
4134 ret = 1;
4135 } else {
4136 ret = dev->bus->offline(dev);
4137 if (!ret) {
4138 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
4139 dev->offline = true;
4140 }
4141 }
4142 }
4143 device_unlock(dev);
4144
4145 return ret;
4146 }
4147
4148 /**
4149 * device_online - Put the device back online after successful device_offline().
4150 * @dev: Device to be put back online.
4151 *
4152 * If device_offline() has been successfully executed for @dev, but the device
4153 * has not been removed subsequently, execute its bus type's .online() callback
4154 * to indicate that the device can be used again.
4155 *
4156 * Call under device_hotplug_lock.
4157 */
device_online(struct device * dev)4158 int device_online(struct device *dev)
4159 {
4160 int ret = 0;
4161
4162 device_lock(dev);
4163 if (device_supports_offline(dev)) {
4164 if (dev->offline) {
4165 ret = dev->bus->online(dev);
4166 if (!ret) {
4167 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
4168 dev->offline = false;
4169 }
4170 } else {
4171 ret = 1;
4172 }
4173 }
4174 device_unlock(dev);
4175
4176 return ret;
4177 }
4178
4179 struct root_device {
4180 struct device dev;
4181 struct module *owner;
4182 };
4183
to_root_device(struct device * d)4184 static inline struct root_device *to_root_device(struct device *d)
4185 {
4186 return container_of(d, struct root_device, dev);
4187 }
4188
root_device_release(struct device * dev)4189 static void root_device_release(struct device *dev)
4190 {
4191 kfree(to_root_device(dev));
4192 }
4193
4194 /**
4195 * __root_device_register - allocate and register a root device
4196 * @name: root device name
4197 * @owner: owner module of the root device, usually THIS_MODULE
4198 *
4199 * This function allocates a root device and registers it
4200 * using device_register(). In order to free the returned
4201 * device, use root_device_unregister().
4202 *
4203 * Root devices are dummy devices which allow other devices
4204 * to be grouped under /sys/devices. Use this function to
4205 * allocate a root device and then use it as the parent of
4206 * any device which should appear under /sys/devices/{name}
4207 *
4208 * The /sys/devices/{name} directory will also contain a
4209 * 'module' symlink which points to the @owner directory
4210 * in sysfs.
4211 *
4212 * Returns &struct device pointer on success, or ERR_PTR() on error.
4213 *
4214 * Note: You probably want to use root_device_register().
4215 */
__root_device_register(const char * name,struct module * owner)4216 struct device *__root_device_register(const char *name, struct module *owner)
4217 {
4218 struct root_device *root;
4219 int err = -ENOMEM;
4220
4221 root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
4222 if (!root)
4223 return ERR_PTR(err);
4224
4225 err = dev_set_name(&root->dev, "%s", name);
4226 if (err) {
4227 kfree(root);
4228 return ERR_PTR(err);
4229 }
4230
4231 root->dev.release = root_device_release;
4232
4233 err = device_register(&root->dev);
4234 if (err) {
4235 put_device(&root->dev);
4236 return ERR_PTR(err);
4237 }
4238
4239 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */
4240 if (owner) {
4241 struct module_kobject *mk = &owner->mkobj;
4242
4243 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
4244 if (err) {
4245 device_unregister(&root->dev);
4246 return ERR_PTR(err);
4247 }
4248 root->owner = owner;
4249 }
4250 #endif
4251
4252 return &root->dev;
4253 }
4254 EXPORT_SYMBOL_GPL(__root_device_register);
4255
4256 /**
4257 * root_device_unregister - unregister and free a root device
4258 * @dev: device going away
4259 *
4260 * This function unregisters and cleans up a device that was created by
4261 * root_device_register().
4262 */
root_device_unregister(struct device * dev)4263 void root_device_unregister(struct device *dev)
4264 {
4265 struct root_device *root = to_root_device(dev);
4266
4267 if (root->owner)
4268 sysfs_remove_link(&root->dev.kobj, "module");
4269
4270 device_unregister(dev);
4271 }
4272 EXPORT_SYMBOL_GPL(root_device_unregister);
4273
4274
device_create_release(struct device * dev)4275 static void device_create_release(struct device *dev)
4276 {
4277 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
4278 kfree(dev);
4279 }
4280
4281 static __printf(6, 0) struct device *
device_create_groups_vargs(const struct class * class,struct device * parent,dev_t devt,void * drvdata,const struct attribute_group ** groups,const char * fmt,va_list args)4282 device_create_groups_vargs(const struct class *class, struct device *parent,
4283 dev_t devt, void *drvdata,
4284 const struct attribute_group **groups,
4285 const char *fmt, va_list args)
4286 {
4287 struct device *dev = NULL;
4288 int retval = -ENODEV;
4289
4290 if (IS_ERR_OR_NULL(class))
4291 goto error;
4292
4293 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
4294 if (!dev) {
4295 retval = -ENOMEM;
4296 goto error;
4297 }
4298
4299 device_initialize(dev);
4300 dev->devt = devt;
4301 dev->class = class;
4302 dev->parent = parent;
4303 dev->groups = groups;
4304 dev->release = device_create_release;
4305 dev_set_drvdata(dev, drvdata);
4306
4307 retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
4308 if (retval)
4309 goto error;
4310
4311 retval = device_add(dev);
4312 if (retval)
4313 goto error;
4314
4315 return dev;
4316
4317 error:
4318 put_device(dev);
4319 return ERR_PTR(retval);
4320 }
4321
4322 /**
4323 * device_create - creates a device and registers it with sysfs
4324 * @class: pointer to the struct class that this device should be registered to
4325 * @parent: pointer to the parent struct device of this new device, if any
4326 * @devt: the dev_t for the char device to be added
4327 * @drvdata: the data to be added to the device for callbacks
4328 * @fmt: string for the device's name
4329 *
4330 * This function can be used by char device classes. A struct device
4331 * will be created in sysfs, registered to the specified class.
4332 *
4333 * A "dev" file will be created, showing the dev_t for the device, if
4334 * the dev_t is not 0,0.
4335 * If a pointer to a parent struct device is passed in, the newly created
4336 * struct device will be a child of that device in sysfs.
4337 * The pointer to the struct device will be returned from the call.
4338 * Any further sysfs files that might be required can be created using this
4339 * pointer.
4340 *
4341 * Returns &struct device pointer on success, or ERR_PTR() on error.
4342 */
device_create(const struct class * class,struct device * parent,dev_t devt,void * drvdata,const char * fmt,...)4343 struct device *device_create(const struct class *class, struct device *parent,
4344 dev_t devt, void *drvdata, const char *fmt, ...)
4345 {
4346 va_list vargs;
4347 struct device *dev;
4348
4349 va_start(vargs, fmt);
4350 dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
4351 fmt, vargs);
4352 va_end(vargs);
4353 return dev;
4354 }
4355 EXPORT_SYMBOL_GPL(device_create);
4356
4357 /**
4358 * device_create_with_groups - creates a device and registers it with sysfs
4359 * @class: pointer to the struct class that this device should be registered to
4360 * @parent: pointer to the parent struct device of this new device, if any
4361 * @devt: the dev_t for the char device to be added
4362 * @drvdata: the data to be added to the device for callbacks
4363 * @groups: NULL-terminated list of attribute groups to be created
4364 * @fmt: string for the device's name
4365 *
4366 * This function can be used by char device classes. A struct device
4367 * will be created in sysfs, registered to the specified class.
4368 * Additional attributes specified in the groups parameter will also
4369 * be created automatically.
4370 *
4371 * A "dev" file will be created, showing the dev_t for the device, if
4372 * the dev_t is not 0,0.
4373 * If a pointer to a parent struct device is passed in, the newly created
4374 * struct device will be a child of that device in sysfs.
4375 * The pointer to the struct device will be returned from the call.
4376 * Any further sysfs files that might be required can be created using this
4377 * pointer.
4378 *
4379 * Returns &struct device pointer on success, or ERR_PTR() on error.
4380 */
device_create_with_groups(const struct class * class,struct device * parent,dev_t devt,void * drvdata,const struct attribute_group ** groups,const char * fmt,...)4381 struct device *device_create_with_groups(const struct class *class,
4382 struct device *parent, dev_t devt,
4383 void *drvdata,
4384 const struct attribute_group **groups,
4385 const char *fmt, ...)
4386 {
4387 va_list vargs;
4388 struct device *dev;
4389
4390 va_start(vargs, fmt);
4391 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
4392 fmt, vargs);
4393 va_end(vargs);
4394 return dev;
4395 }
4396 EXPORT_SYMBOL_GPL(device_create_with_groups);
4397
4398 /**
4399 * device_destroy - removes a device that was created with device_create()
4400 * @class: pointer to the struct class that this device was registered with
4401 * @devt: the dev_t of the device that was previously registered
4402 *
4403 * This call unregisters and cleans up a device that was created with a
4404 * call to device_create().
4405 */
device_destroy(const struct class * class,dev_t devt)4406 void device_destroy(const struct class *class, dev_t devt)
4407 {
4408 struct device *dev;
4409
4410 dev = class_find_device_by_devt(class, devt);
4411 if (dev) {
4412 put_device(dev);
4413 device_unregister(dev);
4414 }
4415 }
4416 EXPORT_SYMBOL_GPL(device_destroy);
4417
4418 /**
4419 * device_rename - renames a device
4420 * @dev: the pointer to the struct device to be renamed
4421 * @new_name: the new name of the device
4422 *
4423 * It is the responsibility of the caller to provide mutual
4424 * exclusion between two different calls of device_rename
4425 * on the same device to ensure that new_name is valid and
4426 * won't conflict with other devices.
4427 *
4428 * Note: given that some subsystems (networking and infiniband) use this
4429 * function, with no immediate plans for this to change, we cannot assume or
4430 * require that this function not be called at all.
4431 *
4432 * However, if you're writing new code, do not call this function. The following
4433 * text from Kay Sievers offers some insight:
4434 *
4435 * Renaming devices is racy at many levels, symlinks and other stuff are not
4436 * replaced atomically, and you get a "move" uevent, but it's not easy to
4437 * connect the event to the old and new device. Device nodes are not renamed at
4438 * all, there isn't even support for that in the kernel now.
4439 *
4440 * In the meantime, during renaming, your target name might be taken by another
4441 * driver, creating conflicts. Or the old name is taken directly after you
4442 * renamed it -- then you get events for the same DEVPATH, before you even see
4443 * the "move" event. It's just a mess, and nothing new should ever rely on
4444 * kernel device renaming. Besides that, it's not even implemented now for
4445 * other things than (driver-core wise very simple) network devices.
4446 *
4447 * Make up a "real" name in the driver before you register anything, or add
4448 * some other attributes for userspace to find the device, or use udev to add
4449 * symlinks -- but never rename kernel devices later, it's a complete mess. We
4450 * don't even want to get into that and try to implement the missing pieces in
4451 * the core. We really have other pieces to fix in the driver core mess. :)
4452 */
device_rename(struct device * dev,const char * new_name)4453 int device_rename(struct device *dev, const char *new_name)
4454 {
4455 struct kobject *kobj = &dev->kobj;
4456 char *old_device_name = NULL;
4457 int error;
4458
4459 dev = get_device(dev);
4460 if (!dev)
4461 return -EINVAL;
4462
4463 dev_dbg(dev, "renaming to %s\n", new_name);
4464
4465 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
4466 if (!old_device_name) {
4467 error = -ENOMEM;
4468 goto out;
4469 }
4470
4471 if (dev->class) {
4472 struct subsys_private *sp = class_to_subsys(dev->class);
4473
4474 if (!sp) {
4475 error = -EINVAL;
4476 goto out;
4477 }
4478
4479 error = sysfs_rename_link_ns(&sp->subsys.kobj, kobj, old_device_name,
4480 new_name, kobject_namespace(kobj));
4481 subsys_put(sp);
4482 if (error)
4483 goto out;
4484 }
4485
4486 error = kobject_rename(kobj, new_name);
4487 if (error)
4488 goto out;
4489
4490 out:
4491 put_device(dev);
4492
4493 kfree(old_device_name);
4494
4495 return error;
4496 }
4497 EXPORT_SYMBOL_GPL(device_rename);
4498
device_move_class_links(struct device * dev,struct device * old_parent,struct device * new_parent)4499 static int device_move_class_links(struct device *dev,
4500 struct device *old_parent,
4501 struct device *new_parent)
4502 {
4503 int error = 0;
4504
4505 if (old_parent)
4506 sysfs_remove_link(&dev->kobj, "device");
4507 if (new_parent)
4508 error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
4509 "device");
4510 return error;
4511 }
4512
4513 /**
4514 * device_move - moves a device to a new parent
4515 * @dev: the pointer to the struct device to be moved
4516 * @new_parent: the new parent of the device (can be NULL)
4517 * @dpm_order: how to reorder the dpm_list
4518 */
device_move(struct device * dev,struct device * new_parent,enum dpm_order dpm_order)4519 int device_move(struct device *dev, struct device *new_parent,
4520 enum dpm_order dpm_order)
4521 {
4522 int error;
4523 struct device *old_parent;
4524 struct kobject *new_parent_kobj;
4525
4526 dev = get_device(dev);
4527 if (!dev)
4528 return -EINVAL;
4529
4530 device_pm_lock();
4531 new_parent = get_device(new_parent);
4532 new_parent_kobj = get_device_parent(dev, new_parent);
4533 if (IS_ERR(new_parent_kobj)) {
4534 error = PTR_ERR(new_parent_kobj);
4535 put_device(new_parent);
4536 goto out;
4537 }
4538
4539 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
4540 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
4541 error = kobject_move(&dev->kobj, new_parent_kobj);
4542 if (error) {
4543 cleanup_glue_dir(dev, new_parent_kobj);
4544 put_device(new_parent);
4545 goto out;
4546 }
4547 old_parent = dev->parent;
4548 dev->parent = new_parent;
4549 if (old_parent)
4550 klist_remove(&dev->p->knode_parent);
4551 if (new_parent) {
4552 klist_add_tail(&dev->p->knode_parent,
4553 &new_parent->p->klist_children);
4554 set_dev_node(dev, dev_to_node(new_parent));
4555 }
4556
4557 if (dev->class) {
4558 error = device_move_class_links(dev, old_parent, new_parent);
4559 if (error) {
4560 /* We ignore errors on cleanup since we're hosed anyway... */
4561 device_move_class_links(dev, new_parent, old_parent);
4562 if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
4563 if (new_parent)
4564 klist_remove(&dev->p->knode_parent);
4565 dev->parent = old_parent;
4566 if (old_parent) {
4567 klist_add_tail(&dev->p->knode_parent,
4568 &old_parent->p->klist_children);
4569 set_dev_node(dev, dev_to_node(old_parent));
4570 }
4571 }
4572 cleanup_glue_dir(dev, new_parent_kobj);
4573 put_device(new_parent);
4574 goto out;
4575 }
4576 }
4577 switch (dpm_order) {
4578 case DPM_ORDER_NONE:
4579 break;
4580 case DPM_ORDER_DEV_AFTER_PARENT:
4581 device_pm_move_after(dev, new_parent);
4582 devices_kset_move_after(dev, new_parent);
4583 break;
4584 case DPM_ORDER_PARENT_BEFORE_DEV:
4585 device_pm_move_before(new_parent, dev);
4586 devices_kset_move_before(new_parent, dev);
4587 break;
4588 case DPM_ORDER_DEV_LAST:
4589 device_pm_move_last(dev);
4590 devices_kset_move_last(dev);
4591 break;
4592 }
4593
4594 put_device(old_parent);
4595 out:
4596 device_pm_unlock();
4597 put_device(dev);
4598 return error;
4599 }
4600 EXPORT_SYMBOL_GPL(device_move);
4601
device_attrs_change_owner(struct device * dev,kuid_t kuid,kgid_t kgid)4602 static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
4603 kgid_t kgid)
4604 {
4605 struct kobject *kobj = &dev->kobj;
4606 const struct class *class = dev->class;
4607 const struct device_type *type = dev->type;
4608 int error;
4609
4610 if (class) {
4611 /*
4612 * Change the device groups of the device class for @dev to
4613 * @kuid/@kgid.
4614 */
4615 error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
4616 kgid);
4617 if (error)
4618 return error;
4619 }
4620
4621 if (type) {
4622 /*
4623 * Change the device groups of the device type for @dev to
4624 * @kuid/@kgid.
4625 */
4626 error = sysfs_groups_change_owner(kobj, type->groups, kuid,
4627 kgid);
4628 if (error)
4629 return error;
4630 }
4631
4632 /* Change the device groups of @dev to @kuid/@kgid. */
4633 error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
4634 if (error)
4635 return error;
4636
4637 if (device_supports_offline(dev) && !dev->offline_disabled) {
4638 /* Change online device attributes of @dev to @kuid/@kgid. */
4639 error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
4640 kuid, kgid);
4641 if (error)
4642 return error;
4643 }
4644
4645 return 0;
4646 }
4647
4648 /**
4649 * device_change_owner - change the owner of an existing device.
4650 * @dev: device.
4651 * @kuid: new owner's kuid
4652 * @kgid: new owner's kgid
4653 *
4654 * This changes the owner of @dev and its corresponding sysfs entries to
4655 * @kuid/@kgid. This function closely mirrors how @dev was added via driver
4656 * core.
4657 *
4658 * Returns 0 on success or error code on failure.
4659 */
device_change_owner(struct device * dev,kuid_t kuid,kgid_t kgid)4660 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
4661 {
4662 int error;
4663 struct kobject *kobj = &dev->kobj;
4664 struct subsys_private *sp;
4665
4666 dev = get_device(dev);
4667 if (!dev)
4668 return -EINVAL;
4669
4670 /*
4671 * Change the kobject and the default attributes and groups of the
4672 * ktype associated with it to @kuid/@kgid.
4673 */
4674 error = sysfs_change_owner(kobj, kuid, kgid);
4675 if (error)
4676 goto out;
4677
4678 /*
4679 * Change the uevent file for @dev to the new owner. The uevent file
4680 * was created in a separate step when @dev got added and we mirror
4681 * that step here.
4682 */
4683 error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
4684 kgid);
4685 if (error)
4686 goto out;
4687
4688 /*
4689 * Change the device groups, the device groups associated with the
4690 * device class, and the groups associated with the device type of @dev
4691 * to @kuid/@kgid.
4692 */
4693 error = device_attrs_change_owner(dev, kuid, kgid);
4694 if (error)
4695 goto out;
4696
4697 error = dpm_sysfs_change_owner(dev, kuid, kgid);
4698 if (error)
4699 goto out;
4700
4701 /*
4702 * Change the owner of the symlink located in the class directory of
4703 * the device class associated with @dev which points to the actual
4704 * directory entry for @dev to @kuid/@kgid. This ensures that the
4705 * symlink shows the same permissions as its target.
4706 */
4707 sp = class_to_subsys(dev->class);
4708 if (!sp) {
4709 error = -EINVAL;
4710 goto out;
4711 }
4712 error = sysfs_link_change_owner(&sp->subsys.kobj, &dev->kobj, dev_name(dev), kuid, kgid);
4713 subsys_put(sp);
4714
4715 out:
4716 put_device(dev);
4717 return error;
4718 }
4719 EXPORT_SYMBOL_GPL(device_change_owner);
4720
4721 /**
4722 * device_shutdown - call ->shutdown() on each device to shutdown.
4723 */
device_shutdown(void)4724 void device_shutdown(void)
4725 {
4726 struct device *dev, *parent;
4727
4728 wait_for_device_probe();
4729 device_block_probing();
4730
4731 cpufreq_suspend();
4732
4733 spin_lock(&devices_kset->list_lock);
4734 /*
4735 * Walk the devices list backward, shutting down each in turn.
4736 * Beware that device unplug events may also start pulling
4737 * devices offline, even as the system is shutting down.
4738 */
4739 while (!list_empty(&devices_kset->list)) {
4740 dev = list_entry(devices_kset->list.prev, struct device,
4741 kobj.entry);
4742
4743 /*
4744 * hold reference count of device's parent to
4745 * prevent it from being freed because parent's
4746 * lock is to be held
4747 */
4748 parent = get_device(dev->parent);
4749 get_device(dev);
4750 /*
4751 * Make sure the device is off the kset list, in the
4752 * event that dev->*->shutdown() doesn't remove it.
4753 */
4754 list_del_init(&dev->kobj.entry);
4755 spin_unlock(&devices_kset->list_lock);
4756
4757 /* hold lock to avoid race with probe/release */
4758 if (parent)
4759 device_lock(parent);
4760 device_lock(dev);
4761
4762 /* Don't allow any more runtime suspends */
4763 pm_runtime_get_noresume(dev);
4764 pm_runtime_barrier(dev);
4765
4766 if (dev->class && dev->class->shutdown_pre) {
4767 if (initcall_debug)
4768 dev_info(dev, "shutdown_pre\n");
4769 dev->class->shutdown_pre(dev);
4770 }
4771 if (dev->bus && dev->bus->shutdown) {
4772 if (initcall_debug)
4773 dev_info(dev, "shutdown\n");
4774 dev->bus->shutdown(dev);
4775 } else if (dev->driver && dev->driver->shutdown) {
4776 if (initcall_debug)
4777 dev_info(dev, "shutdown\n");
4778 dev->driver->shutdown(dev);
4779 }
4780
4781 device_unlock(dev);
4782 if (parent)
4783 device_unlock(parent);
4784
4785 put_device(dev);
4786 put_device(parent);
4787
4788 spin_lock(&devices_kset->list_lock);
4789 }
4790 spin_unlock(&devices_kset->list_lock);
4791 }
4792
4793 /*
4794 * Device logging functions
4795 */
4796
4797 #ifdef CONFIG_PRINTK
4798 static void
set_dev_info(const struct device * dev,struct dev_printk_info * dev_info)4799 set_dev_info(const struct device *dev, struct dev_printk_info *dev_info)
4800 {
4801 const char *subsys;
4802
4803 memset(dev_info, 0, sizeof(*dev_info));
4804
4805 if (dev->class)
4806 subsys = dev->class->name;
4807 else if (dev->bus)
4808 subsys = dev->bus->name;
4809 else
4810 return;
4811
4812 strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem));
4813
4814 /*
4815 * Add device identifier DEVICE=:
4816 * b12:8 block dev_t
4817 * c127:3 char dev_t
4818 * n8 netdev ifindex
4819 * +sound:card0 subsystem:devname
4820 */
4821 if (MAJOR(dev->devt)) {
4822 char c;
4823
4824 if (strcmp(subsys, "block") == 0)
4825 c = 'b';
4826 else
4827 c = 'c';
4828
4829 snprintf(dev_info->device, sizeof(dev_info->device),
4830 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt));
4831 } else if (strcmp(subsys, "net") == 0) {
4832 struct net_device *net = to_net_dev(dev);
4833
4834 snprintf(dev_info->device, sizeof(dev_info->device),
4835 "n%u", net->ifindex);
4836 } else {
4837 snprintf(dev_info->device, sizeof(dev_info->device),
4838 "+%s:%s", subsys, dev_name(dev));
4839 }
4840 }
4841
dev_vprintk_emit(int level,const struct device * dev,const char * fmt,va_list args)4842 int dev_vprintk_emit(int level, const struct device *dev,
4843 const char *fmt, va_list args)
4844 {
4845 struct dev_printk_info dev_info;
4846
4847 set_dev_info(dev, &dev_info);
4848
4849 return vprintk_emit(0, level, &dev_info, fmt, args);
4850 }
4851 EXPORT_SYMBOL(dev_vprintk_emit);
4852
dev_printk_emit(int level,const struct device * dev,const char * fmt,...)4853 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
4854 {
4855 va_list args;
4856 int r;
4857
4858 va_start(args, fmt);
4859
4860 r = dev_vprintk_emit(level, dev, fmt, args);
4861
4862 va_end(args);
4863
4864 return r;
4865 }
4866 EXPORT_SYMBOL(dev_printk_emit);
4867
__dev_printk(const char * level,const struct device * dev,struct va_format * vaf)4868 static void __dev_printk(const char *level, const struct device *dev,
4869 struct va_format *vaf)
4870 {
4871 if (dev)
4872 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
4873 dev_driver_string(dev), dev_name(dev), vaf);
4874 else
4875 printk("%s(NULL device *): %pV", level, vaf);
4876 }
4877
_dev_printk(const char * level,const struct device * dev,const char * fmt,...)4878 void _dev_printk(const char *level, const struct device *dev,
4879 const char *fmt, ...)
4880 {
4881 struct va_format vaf;
4882 va_list args;
4883
4884 va_start(args, fmt);
4885
4886 vaf.fmt = fmt;
4887 vaf.va = &args;
4888
4889 __dev_printk(level, dev, &vaf);
4890
4891 va_end(args);
4892 }
4893 EXPORT_SYMBOL(_dev_printk);
4894
4895 #define define_dev_printk_level(func, kern_level) \
4896 void func(const struct device *dev, const char *fmt, ...) \
4897 { \
4898 struct va_format vaf; \
4899 va_list args; \
4900 \
4901 va_start(args, fmt); \
4902 \
4903 vaf.fmt = fmt; \
4904 vaf.va = &args; \
4905 \
4906 __dev_printk(kern_level, dev, &vaf); \
4907 \
4908 va_end(args); \
4909 } \
4910 EXPORT_SYMBOL(func);
4911
4912 define_dev_printk_level(_dev_emerg, KERN_EMERG);
4913 define_dev_printk_level(_dev_alert, KERN_ALERT);
4914 define_dev_printk_level(_dev_crit, KERN_CRIT);
4915 define_dev_printk_level(_dev_err, KERN_ERR);
4916 define_dev_printk_level(_dev_warn, KERN_WARNING);
4917 define_dev_printk_level(_dev_notice, KERN_NOTICE);
4918 define_dev_printk_level(_dev_info, KERN_INFO);
4919
4920 #endif
4921
4922 /**
4923 * dev_err_probe - probe error check and log helper
4924 * @dev: the pointer to the struct device
4925 * @err: error value to test
4926 * @fmt: printf-style format string
4927 * @...: arguments as specified in the format string
4928 *
4929 * This helper implements common pattern present in probe functions for error
4930 * checking: print debug or error message depending if the error value is
4931 * -EPROBE_DEFER and propagate error upwards.
4932 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
4933 * checked later by reading devices_deferred debugfs attribute.
4934 * It replaces code sequence::
4935 *
4936 * if (err != -EPROBE_DEFER)
4937 * dev_err(dev, ...);
4938 * else
4939 * dev_dbg(dev, ...);
4940 * return err;
4941 *
4942 * with::
4943 *
4944 * return dev_err_probe(dev, err, ...);
4945 *
4946 * Note that it is deemed acceptable to use this function for error
4947 * prints during probe even if the @err is known to never be -EPROBE_DEFER.
4948 * The benefit compared to a normal dev_err() is the standardized format
4949 * of the error code and the fact that the error code is returned.
4950 *
4951 * Returns @err.
4952 *
4953 */
dev_err_probe(const struct device * dev,int err,const char * fmt,...)4954 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
4955 {
4956 struct va_format vaf;
4957 va_list args;
4958
4959 va_start(args, fmt);
4960 vaf.fmt = fmt;
4961 vaf.va = &args;
4962
4963 if (err != -EPROBE_DEFER) {
4964 dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4965 } else {
4966 device_set_deferred_probe_reason(dev, &vaf);
4967 dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4968 }
4969
4970 va_end(args);
4971
4972 return err;
4973 }
4974 EXPORT_SYMBOL_GPL(dev_err_probe);
4975
fwnode_is_primary(struct fwnode_handle * fwnode)4976 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
4977 {
4978 return fwnode && !IS_ERR(fwnode->secondary);
4979 }
4980
4981 /**
4982 * set_primary_fwnode - Change the primary firmware node of a given device.
4983 * @dev: Device to handle.
4984 * @fwnode: New primary firmware node of the device.
4985 *
4986 * Set the device's firmware node pointer to @fwnode, but if a secondary
4987 * firmware node of the device is present, preserve it.
4988 *
4989 * Valid fwnode cases are:
4990 * - primary --> secondary --> -ENODEV
4991 * - primary --> NULL
4992 * - secondary --> -ENODEV
4993 * - NULL
4994 */
set_primary_fwnode(struct device * dev,struct fwnode_handle * fwnode)4995 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4996 {
4997 struct device *parent = dev->parent;
4998 struct fwnode_handle *fn = dev->fwnode;
4999
5000 if (fwnode) {
5001 if (fwnode_is_primary(fn))
5002 fn = fn->secondary;
5003
5004 if (fn) {
5005 WARN_ON(fwnode->secondary);
5006 fwnode->secondary = fn;
5007 }
5008 dev->fwnode = fwnode;
5009 } else {
5010 if (fwnode_is_primary(fn)) {
5011 dev->fwnode = fn->secondary;
5012
5013 /* Skip nullifying fn->secondary if the primary is shared */
5014 if (parent && fn == parent->fwnode)
5015 return;
5016
5017 /* Set fn->secondary = NULL, so fn remains the primary fwnode */
5018 fn->secondary = NULL;
5019 } else {
5020 dev->fwnode = NULL;
5021 }
5022 }
5023 }
5024 EXPORT_SYMBOL_GPL(set_primary_fwnode);
5025
5026 /**
5027 * set_secondary_fwnode - Change the secondary firmware node of a given device.
5028 * @dev: Device to handle.
5029 * @fwnode: New secondary firmware node of the device.
5030 *
5031 * If a primary firmware node of the device is present, set its secondary
5032 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to
5033 * @fwnode.
5034 */
set_secondary_fwnode(struct device * dev,struct fwnode_handle * fwnode)5035 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
5036 {
5037 if (fwnode)
5038 fwnode->secondary = ERR_PTR(-ENODEV);
5039
5040 if (fwnode_is_primary(dev->fwnode))
5041 dev->fwnode->secondary = fwnode;
5042 else
5043 dev->fwnode = fwnode;
5044 }
5045 EXPORT_SYMBOL_GPL(set_secondary_fwnode);
5046
5047 /**
5048 * device_set_of_node_from_dev - reuse device-tree node of another device
5049 * @dev: device whose device-tree node is being set
5050 * @dev2: device whose device-tree node is being reused
5051 *
5052 * Takes another reference to the new device-tree node after first dropping
5053 * any reference held to the old node.
5054 */
device_set_of_node_from_dev(struct device * dev,const struct device * dev2)5055 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
5056 {
5057 of_node_put(dev->of_node);
5058 dev->of_node = of_node_get(dev2->of_node);
5059 dev->of_node_reused = true;
5060 }
5061 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
5062
device_set_node(struct device * dev,struct fwnode_handle * fwnode)5063 void device_set_node(struct device *dev, struct fwnode_handle *fwnode)
5064 {
5065 dev->fwnode = fwnode;
5066 dev->of_node = to_of_node(fwnode);
5067 }
5068 EXPORT_SYMBOL_GPL(device_set_node);
5069
device_match_name(struct device * dev,const void * name)5070 int device_match_name(struct device *dev, const void *name)
5071 {
5072 return sysfs_streq(dev_name(dev), name);
5073 }
5074 EXPORT_SYMBOL_GPL(device_match_name);
5075
device_match_of_node(struct device * dev,const void * np)5076 int device_match_of_node(struct device *dev, const void *np)
5077 {
5078 return dev->of_node == np;
5079 }
5080 EXPORT_SYMBOL_GPL(device_match_of_node);
5081
device_match_fwnode(struct device * dev,const void * fwnode)5082 int device_match_fwnode(struct device *dev, const void *fwnode)
5083 {
5084 return dev_fwnode(dev) == fwnode;
5085 }
5086 EXPORT_SYMBOL_GPL(device_match_fwnode);
5087
device_match_devt(struct device * dev,const void * pdevt)5088 int device_match_devt(struct device *dev, const void *pdevt)
5089 {
5090 return dev->devt == *(dev_t *)pdevt;
5091 }
5092 EXPORT_SYMBOL_GPL(device_match_devt);
5093
device_match_acpi_dev(struct device * dev,const void * adev)5094 int device_match_acpi_dev(struct device *dev, const void *adev)
5095 {
5096 return ACPI_COMPANION(dev) == adev;
5097 }
5098 EXPORT_SYMBOL(device_match_acpi_dev);
5099
device_match_acpi_handle(struct device * dev,const void * handle)5100 int device_match_acpi_handle(struct device *dev, const void *handle)
5101 {
5102 return ACPI_HANDLE(dev) == handle;
5103 }
5104 EXPORT_SYMBOL(device_match_acpi_handle);
5105
device_match_any(struct device * dev,const void * unused)5106 int device_match_any(struct device *dev, const void *unused)
5107 {
5108 return 1;
5109 }
5110 EXPORT_SYMBOL_GPL(device_match_any);
5111