1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/skbuff.h>
97 #include <linux/bpf.h>
98 #include <linux/bpf_trace.h>
99 #include <net/net_namespace.h>
100 #include <net/sock.h>
101 #include <net/busy_poll.h>
102 #include <linux/rtnetlink.h>
103 #include <linux/stat.h>
104 #include <net/dst.h>
105 #include <net/dst_metadata.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <linux/pci.h>
135 #include <linux/inetdevice.h>
136 #include <linux/cpu_rmap.h>
137 #include <linux/static_key.h>
138 #include <linux/hashtable.h>
139 #include <linux/vmalloc.h>
140 #include <linux/if_macvlan.h>
141 #include <linux/errqueue.h>
142 #include <linux/hrtimer.h>
143 #include <linux/netfilter_ingress.h>
144 #include <linux/crash_dump.h>
145 #include <linux/sctp.h>
146 #include <net/udp_tunnel.h>
147 #include <linux/net_namespace.h>
148
149 #include "net-sysfs.h"
150
151 #define MAX_GRO_SKBS 8
152
153 /* This should be increased if a protocol with a bigger head is added. */
154 #define GRO_MAX_HEAD (MAX_HEADER + 128)
155
156 static DEFINE_SPINLOCK(ptype_lock);
157 static DEFINE_SPINLOCK(offload_lock);
158 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
159 struct list_head ptype_all __read_mostly; /* Taps */
160 static struct list_head offload_base __read_mostly;
161
162 static int netif_rx_internal(struct sk_buff *skb);
163 static int call_netdevice_notifiers_info(unsigned long val,
164 struct netdev_notifier_info *info);
165 static struct napi_struct *napi_by_id(unsigned int napi_id);
166
167 /*
168 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
169 * semaphore.
170 *
171 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
172 *
173 * Writers must hold the rtnl semaphore while they loop through the
174 * dev_base_head list, and hold dev_base_lock for writing when they do the
175 * actual updates. This allows pure readers to access the list even
176 * while a writer is preparing to update it.
177 *
178 * To put it another way, dev_base_lock is held for writing only to
179 * protect against pure readers; the rtnl semaphore provides the
180 * protection against other writers.
181 *
182 * See, for example usages, register_netdevice() and
183 * unregister_netdevice(), which must be called with the rtnl
184 * semaphore held.
185 */
186 DEFINE_RWLOCK(dev_base_lock);
187 EXPORT_SYMBOL(dev_base_lock);
188
189 static DEFINE_MUTEX(ifalias_mutex);
190
191 /* protects napi_hash addition/deletion and napi_gen_id */
192 static DEFINE_SPINLOCK(napi_hash_lock);
193
194 static unsigned int napi_gen_id = NR_CPUS;
195 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
196
197 static seqcount_t devnet_rename_seq;
198
dev_base_seq_inc(struct net * net)199 static inline void dev_base_seq_inc(struct net *net)
200 {
201 while (++net->dev_base_seq == 0)
202 ;
203 }
204
dev_name_hash(struct net * net,const char * name)205 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
206 {
207 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
208
209 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
210 }
211
dev_index_hash(struct net * net,int ifindex)212 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
213 {
214 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
215 }
216
rps_lock(struct softnet_data * sd)217 static inline void rps_lock(struct softnet_data *sd)
218 {
219 #ifdef CONFIG_RPS
220 spin_lock(&sd->input_pkt_queue.lock);
221 #endif
222 }
223
rps_unlock(struct softnet_data * sd)224 static inline void rps_unlock(struct softnet_data *sd)
225 {
226 #ifdef CONFIG_RPS
227 spin_unlock(&sd->input_pkt_queue.lock);
228 #endif
229 }
230
231 /* Device list insertion */
list_netdevice(struct net_device * dev)232 static void list_netdevice(struct net_device *dev)
233 {
234 struct net *net = dev_net(dev);
235
236 ASSERT_RTNL();
237
238 write_lock_bh(&dev_base_lock);
239 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
240 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
241 hlist_add_head_rcu(&dev->index_hlist,
242 dev_index_hash(net, dev->ifindex));
243 write_unlock_bh(&dev_base_lock);
244
245 dev_base_seq_inc(net);
246 }
247
248 /* Device list removal
249 * caller must respect a RCU grace period before freeing/reusing dev
250 */
unlist_netdevice(struct net_device * dev)251 static void unlist_netdevice(struct net_device *dev)
252 {
253 ASSERT_RTNL();
254
255 /* Unlink dev from the device chain */
256 write_lock_bh(&dev_base_lock);
257 list_del_rcu(&dev->dev_list);
258 hlist_del_rcu(&dev->name_hlist);
259 hlist_del_rcu(&dev->index_hlist);
260 write_unlock_bh(&dev_base_lock);
261
262 dev_base_seq_inc(dev_net(dev));
263 }
264
265 /*
266 * Our notifier list
267 */
268
269 static RAW_NOTIFIER_HEAD(netdev_chain);
270
271 /*
272 * Device drivers call our routines to queue packets here. We empty the
273 * queue in the local softnet handler.
274 */
275
276 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
277 EXPORT_PER_CPU_SYMBOL(softnet_data);
278
279 #ifdef CONFIG_LOCKDEP
280 /*
281 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
282 * according to dev->type
283 */
284 static const unsigned short netdev_lock_type[] = {
285 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
286 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
287 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
288 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
289 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
290 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
291 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
292 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
293 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
294 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
295 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
296 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
297 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
298 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
299 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
300
301 static const char *const netdev_lock_name[] = {
302 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
303 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
304 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
305 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
306 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
307 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
308 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
309 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
310 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
311 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
312 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
313 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
314 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
315 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
316 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
317
318 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
319 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
320
netdev_lock_pos(unsigned short dev_type)321 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
322 {
323 int i;
324
325 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
326 if (netdev_lock_type[i] == dev_type)
327 return i;
328 /* the last key is used by default */
329 return ARRAY_SIZE(netdev_lock_type) - 1;
330 }
331
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)332 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
333 unsigned short dev_type)
334 {
335 int i;
336
337 i = netdev_lock_pos(dev_type);
338 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
339 netdev_lock_name[i]);
340 }
341
netdev_set_addr_lockdep_class(struct net_device * dev)342 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
343 {
344 int i;
345
346 i = netdev_lock_pos(dev->type);
347 lockdep_set_class_and_name(&dev->addr_list_lock,
348 &netdev_addr_lock_key[i],
349 netdev_lock_name[i]);
350 }
351 #else
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)352 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
353 unsigned short dev_type)
354 {
355 }
netdev_set_addr_lockdep_class(struct net_device * dev)356 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
357 {
358 }
359 #endif
360
361 /*******************************************************************************
362 *
363 * Protocol management and registration routines
364 *
365 *******************************************************************************/
366
367
368 /*
369 * Add a protocol ID to the list. Now that the input handler is
370 * smarter we can dispense with all the messy stuff that used to be
371 * here.
372 *
373 * BEWARE!!! Protocol handlers, mangling input packets,
374 * MUST BE last in hash buckets and checking protocol handlers
375 * MUST start from promiscuous ptype_all chain in net_bh.
376 * It is true now, do not change it.
377 * Explanation follows: if protocol handler, mangling packet, will
378 * be the first on list, it is not able to sense, that packet
379 * is cloned and should be copied-on-write, so that it will
380 * change it and subsequent readers will get broken packet.
381 * --ANK (980803)
382 */
383
ptype_head(const struct packet_type * pt)384 static inline struct list_head *ptype_head(const struct packet_type *pt)
385 {
386 if (pt->type == htons(ETH_P_ALL))
387 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
388 else
389 return pt->dev ? &pt->dev->ptype_specific :
390 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
391 }
392
393 /**
394 * dev_add_pack - add packet handler
395 * @pt: packet type declaration
396 *
397 * Add a protocol handler to the networking stack. The passed &packet_type
398 * is linked into kernel lists and may not be freed until it has been
399 * removed from the kernel lists.
400 *
401 * This call does not sleep therefore it can not
402 * guarantee all CPU's that are in middle of receiving packets
403 * will see the new packet type (until the next received packet).
404 */
405
dev_add_pack(struct packet_type * pt)406 void dev_add_pack(struct packet_type *pt)
407 {
408 struct list_head *head = ptype_head(pt);
409
410 spin_lock(&ptype_lock);
411 list_add_rcu(&pt->list, head);
412 spin_unlock(&ptype_lock);
413 }
414 EXPORT_SYMBOL(dev_add_pack);
415
416 /**
417 * __dev_remove_pack - remove packet handler
418 * @pt: packet type declaration
419 *
420 * Remove a protocol handler that was previously added to the kernel
421 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
422 * from the kernel lists and can be freed or reused once this function
423 * returns.
424 *
425 * The packet type might still be in use by receivers
426 * and must not be freed until after all the CPU's have gone
427 * through a quiescent state.
428 */
__dev_remove_pack(struct packet_type * pt)429 void __dev_remove_pack(struct packet_type *pt)
430 {
431 struct list_head *head = ptype_head(pt);
432 struct packet_type *pt1;
433
434 spin_lock(&ptype_lock);
435
436 list_for_each_entry(pt1, head, list) {
437 if (pt == pt1) {
438 list_del_rcu(&pt->list);
439 goto out;
440 }
441 }
442
443 pr_warn("dev_remove_pack: %p not found\n", pt);
444 out:
445 spin_unlock(&ptype_lock);
446 }
447 EXPORT_SYMBOL(__dev_remove_pack);
448
449 /**
450 * dev_remove_pack - remove packet handler
451 * @pt: packet type declaration
452 *
453 * Remove a protocol handler that was previously added to the kernel
454 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
455 * from the kernel lists and can be freed or reused once this function
456 * returns.
457 *
458 * This call sleeps to guarantee that no CPU is looking at the packet
459 * type after return.
460 */
dev_remove_pack(struct packet_type * pt)461 void dev_remove_pack(struct packet_type *pt)
462 {
463 __dev_remove_pack(pt);
464
465 synchronize_net();
466 }
467 EXPORT_SYMBOL(dev_remove_pack);
468
469
470 /**
471 * dev_add_offload - register offload handlers
472 * @po: protocol offload declaration
473 *
474 * Add protocol offload handlers to the networking stack. The passed
475 * &proto_offload is linked into kernel lists and may not be freed until
476 * it has been removed from the kernel lists.
477 *
478 * This call does not sleep therefore it can not
479 * guarantee all CPU's that are in middle of receiving packets
480 * will see the new offload handlers (until the next received packet).
481 */
dev_add_offload(struct packet_offload * po)482 void dev_add_offload(struct packet_offload *po)
483 {
484 struct packet_offload *elem;
485
486 spin_lock(&offload_lock);
487 list_for_each_entry(elem, &offload_base, list) {
488 if (po->priority < elem->priority)
489 break;
490 }
491 list_add_rcu(&po->list, elem->list.prev);
492 spin_unlock(&offload_lock);
493 }
494 EXPORT_SYMBOL(dev_add_offload);
495
496 /**
497 * __dev_remove_offload - remove offload handler
498 * @po: packet offload declaration
499 *
500 * Remove a protocol offload handler that was previously added to the
501 * kernel offload handlers by dev_add_offload(). The passed &offload_type
502 * is removed from the kernel lists and can be freed or reused once this
503 * function returns.
504 *
505 * The packet type might still be in use by receivers
506 * and must not be freed until after all the CPU's have gone
507 * through a quiescent state.
508 */
__dev_remove_offload(struct packet_offload * po)509 static void __dev_remove_offload(struct packet_offload *po)
510 {
511 struct list_head *head = &offload_base;
512 struct packet_offload *po1;
513
514 spin_lock(&offload_lock);
515
516 list_for_each_entry(po1, head, list) {
517 if (po == po1) {
518 list_del_rcu(&po->list);
519 goto out;
520 }
521 }
522
523 pr_warn("dev_remove_offload: %p not found\n", po);
524 out:
525 spin_unlock(&offload_lock);
526 }
527
528 /**
529 * dev_remove_offload - remove packet offload handler
530 * @po: packet offload declaration
531 *
532 * Remove a packet offload handler that was previously added to the kernel
533 * offload handlers by dev_add_offload(). The passed &offload_type is
534 * removed from the kernel lists and can be freed or reused once this
535 * function returns.
536 *
537 * This call sleeps to guarantee that no CPU is looking at the packet
538 * type after return.
539 */
dev_remove_offload(struct packet_offload * po)540 void dev_remove_offload(struct packet_offload *po)
541 {
542 __dev_remove_offload(po);
543
544 synchronize_net();
545 }
546 EXPORT_SYMBOL(dev_remove_offload);
547
548 /******************************************************************************
549 *
550 * Device Boot-time Settings Routines
551 *
552 ******************************************************************************/
553
554 /* Boot time configuration table */
555 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
556
557 /**
558 * netdev_boot_setup_add - add new setup entry
559 * @name: name of the device
560 * @map: configured settings for the device
561 *
562 * Adds new setup entry to the dev_boot_setup list. The function
563 * returns 0 on error and 1 on success. This is a generic routine to
564 * all netdevices.
565 */
netdev_boot_setup_add(char * name,struct ifmap * map)566 static int netdev_boot_setup_add(char *name, struct ifmap *map)
567 {
568 struct netdev_boot_setup *s;
569 int i;
570
571 s = dev_boot_setup;
572 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
573 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
574 memset(s[i].name, 0, sizeof(s[i].name));
575 strlcpy(s[i].name, name, IFNAMSIZ);
576 memcpy(&s[i].map, map, sizeof(s[i].map));
577 break;
578 }
579 }
580
581 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
582 }
583
584 /**
585 * netdev_boot_setup_check - check boot time settings
586 * @dev: the netdevice
587 *
588 * Check boot time settings for the device.
589 * The found settings are set for the device to be used
590 * later in the device probing.
591 * Returns 0 if no settings found, 1 if they are.
592 */
netdev_boot_setup_check(struct net_device * dev)593 int netdev_boot_setup_check(struct net_device *dev)
594 {
595 struct netdev_boot_setup *s = dev_boot_setup;
596 int i;
597
598 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
599 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
600 !strcmp(dev->name, s[i].name)) {
601 dev->irq = s[i].map.irq;
602 dev->base_addr = s[i].map.base_addr;
603 dev->mem_start = s[i].map.mem_start;
604 dev->mem_end = s[i].map.mem_end;
605 return 1;
606 }
607 }
608 return 0;
609 }
610 EXPORT_SYMBOL(netdev_boot_setup_check);
611
612
613 /**
614 * netdev_boot_base - get address from boot time settings
615 * @prefix: prefix for network device
616 * @unit: id for network device
617 *
618 * Check boot time settings for the base address of device.
619 * The found settings are set for the device to be used
620 * later in the device probing.
621 * Returns 0 if no settings found.
622 */
netdev_boot_base(const char * prefix,int unit)623 unsigned long netdev_boot_base(const char *prefix, int unit)
624 {
625 const struct netdev_boot_setup *s = dev_boot_setup;
626 char name[IFNAMSIZ];
627 int i;
628
629 sprintf(name, "%s%d", prefix, unit);
630
631 /*
632 * If device already registered then return base of 1
633 * to indicate not to probe for this interface
634 */
635 if (__dev_get_by_name(&init_net, name))
636 return 1;
637
638 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
639 if (!strcmp(name, s[i].name))
640 return s[i].map.base_addr;
641 return 0;
642 }
643
644 /*
645 * Saves at boot time configured settings for any netdevice.
646 */
netdev_boot_setup(char * str)647 int __init netdev_boot_setup(char *str)
648 {
649 int ints[5];
650 struct ifmap map;
651
652 str = get_options(str, ARRAY_SIZE(ints), ints);
653 if (!str || !*str)
654 return 0;
655
656 /* Save settings */
657 memset(&map, 0, sizeof(map));
658 if (ints[0] > 0)
659 map.irq = ints[1];
660 if (ints[0] > 1)
661 map.base_addr = ints[2];
662 if (ints[0] > 2)
663 map.mem_start = ints[3];
664 if (ints[0] > 3)
665 map.mem_end = ints[4];
666
667 /* Add new entry to the list */
668 return netdev_boot_setup_add(str, &map);
669 }
670
671 __setup("netdev=", netdev_boot_setup);
672
673 /*******************************************************************************
674 *
675 * Device Interface Subroutines
676 *
677 *******************************************************************************/
678
679 /**
680 * dev_get_iflink - get 'iflink' value of a interface
681 * @dev: targeted interface
682 *
683 * Indicates the ifindex the interface is linked to.
684 * Physical interfaces have the same 'ifindex' and 'iflink' values.
685 */
686
dev_get_iflink(const struct net_device * dev)687 int dev_get_iflink(const struct net_device *dev)
688 {
689 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
690 return dev->netdev_ops->ndo_get_iflink(dev);
691
692 return dev->ifindex;
693 }
694 EXPORT_SYMBOL(dev_get_iflink);
695
696 /**
697 * dev_fill_metadata_dst - Retrieve tunnel egress information.
698 * @dev: targeted interface
699 * @skb: The packet.
700 *
701 * For better visibility of tunnel traffic OVS needs to retrieve
702 * egress tunnel information for a packet. Following API allows
703 * user to get this info.
704 */
dev_fill_metadata_dst(struct net_device * dev,struct sk_buff * skb)705 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
706 {
707 struct ip_tunnel_info *info;
708
709 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
710 return -EINVAL;
711
712 info = skb_tunnel_info_unclone(skb);
713 if (!info)
714 return -ENOMEM;
715 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
716 return -EINVAL;
717
718 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
719 }
720 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
721
722 /**
723 * __dev_get_by_name - find a device by its name
724 * @net: the applicable net namespace
725 * @name: name to find
726 *
727 * Find an interface by name. Must be called under RTNL semaphore
728 * or @dev_base_lock. If the name is found a pointer to the device
729 * is returned. If the name is not found then %NULL is returned. The
730 * reference counters are not incremented so the caller must be
731 * careful with locks.
732 */
733
__dev_get_by_name(struct net * net,const char * name)734 struct net_device *__dev_get_by_name(struct net *net, const char *name)
735 {
736 struct net_device *dev;
737 struct hlist_head *head = dev_name_hash(net, name);
738
739 hlist_for_each_entry(dev, head, name_hlist)
740 if (!strncmp(dev->name, name, IFNAMSIZ))
741 return dev;
742
743 return NULL;
744 }
745 EXPORT_SYMBOL(__dev_get_by_name);
746
747 /**
748 * dev_get_by_name_rcu - find a device by its name
749 * @net: the applicable net namespace
750 * @name: name to find
751 *
752 * Find an interface by name.
753 * If the name is found a pointer to the device is returned.
754 * If the name is not found then %NULL is returned.
755 * The reference counters are not incremented so the caller must be
756 * careful with locks. The caller must hold RCU lock.
757 */
758
dev_get_by_name_rcu(struct net * net,const char * name)759 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
760 {
761 struct net_device *dev;
762 struct hlist_head *head = dev_name_hash(net, name);
763
764 hlist_for_each_entry_rcu(dev, head, name_hlist)
765 if (!strncmp(dev->name, name, IFNAMSIZ))
766 return dev;
767
768 return NULL;
769 }
770 EXPORT_SYMBOL(dev_get_by_name_rcu);
771
772 /**
773 * dev_get_by_name - find a device by its name
774 * @net: the applicable net namespace
775 * @name: name to find
776 *
777 * Find an interface by name. This can be called from any
778 * context and does its own locking. The returned handle has
779 * the usage count incremented and the caller must use dev_put() to
780 * release it when it is no longer needed. %NULL is returned if no
781 * matching device is found.
782 */
783
dev_get_by_name(struct net * net,const char * name)784 struct net_device *dev_get_by_name(struct net *net, const char *name)
785 {
786 struct net_device *dev;
787
788 rcu_read_lock();
789 dev = dev_get_by_name_rcu(net, name);
790 if (dev)
791 dev_hold(dev);
792 rcu_read_unlock();
793 return dev;
794 }
795 EXPORT_SYMBOL(dev_get_by_name);
796
797 /**
798 * __dev_get_by_index - find a device by its ifindex
799 * @net: the applicable net namespace
800 * @ifindex: index of device
801 *
802 * Search for an interface by index. Returns %NULL if the device
803 * is not found or a pointer to the device. The device has not
804 * had its reference counter increased so the caller must be careful
805 * about locking. The caller must hold either the RTNL semaphore
806 * or @dev_base_lock.
807 */
808
__dev_get_by_index(struct net * net,int ifindex)809 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
810 {
811 struct net_device *dev;
812 struct hlist_head *head = dev_index_hash(net, ifindex);
813
814 hlist_for_each_entry(dev, head, index_hlist)
815 if (dev->ifindex == ifindex)
816 return dev;
817
818 return NULL;
819 }
820 EXPORT_SYMBOL(__dev_get_by_index);
821
822 /**
823 * dev_get_by_index_rcu - find a device by its ifindex
824 * @net: the applicable net namespace
825 * @ifindex: index of device
826 *
827 * Search for an interface by index. Returns %NULL if the device
828 * is not found or a pointer to the device. The device has not
829 * had its reference counter increased so the caller must be careful
830 * about locking. The caller must hold RCU lock.
831 */
832
dev_get_by_index_rcu(struct net * net,int ifindex)833 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
834 {
835 struct net_device *dev;
836 struct hlist_head *head = dev_index_hash(net, ifindex);
837
838 hlist_for_each_entry_rcu(dev, head, index_hlist)
839 if (dev->ifindex == ifindex)
840 return dev;
841
842 return NULL;
843 }
844 EXPORT_SYMBOL(dev_get_by_index_rcu);
845
846
847 /**
848 * dev_get_by_index - find a device by its ifindex
849 * @net: the applicable net namespace
850 * @ifindex: index of device
851 *
852 * Search for an interface by index. Returns NULL if the device
853 * is not found or a pointer to the device. The device returned has
854 * had a reference added and the pointer is safe until the user calls
855 * dev_put to indicate they have finished with it.
856 */
857
dev_get_by_index(struct net * net,int ifindex)858 struct net_device *dev_get_by_index(struct net *net, int ifindex)
859 {
860 struct net_device *dev;
861
862 rcu_read_lock();
863 dev = dev_get_by_index_rcu(net, ifindex);
864 if (dev)
865 dev_hold(dev);
866 rcu_read_unlock();
867 return dev;
868 }
869 EXPORT_SYMBOL(dev_get_by_index);
870
871 /**
872 * dev_get_by_napi_id - find a device by napi_id
873 * @napi_id: ID of the NAPI struct
874 *
875 * Search for an interface by NAPI ID. Returns %NULL if the device
876 * is not found or a pointer to the device. The device has not had
877 * its reference counter increased so the caller must be careful
878 * about locking. The caller must hold RCU lock.
879 */
880
dev_get_by_napi_id(unsigned int napi_id)881 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
882 {
883 struct napi_struct *napi;
884
885 WARN_ON_ONCE(!rcu_read_lock_held());
886
887 if (napi_id < MIN_NAPI_ID)
888 return NULL;
889
890 napi = napi_by_id(napi_id);
891
892 return napi ? napi->dev : NULL;
893 }
894 EXPORT_SYMBOL(dev_get_by_napi_id);
895
896 /**
897 * netdev_get_name - get a netdevice name, knowing its ifindex.
898 * @net: network namespace
899 * @name: a pointer to the buffer where the name will be stored.
900 * @ifindex: the ifindex of the interface to get the name from.
901 *
902 * The use of raw_seqcount_begin() and cond_resched() before
903 * retrying is required as we want to give the writers a chance
904 * to complete when CONFIG_PREEMPT is not set.
905 */
netdev_get_name(struct net * net,char * name,int ifindex)906 int netdev_get_name(struct net *net, char *name, int ifindex)
907 {
908 struct net_device *dev;
909 unsigned int seq;
910
911 retry:
912 seq = raw_seqcount_begin(&devnet_rename_seq);
913 rcu_read_lock();
914 dev = dev_get_by_index_rcu(net, ifindex);
915 if (!dev) {
916 rcu_read_unlock();
917 return -ENODEV;
918 }
919
920 strcpy(name, dev->name);
921 rcu_read_unlock();
922 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
923 cond_resched();
924 goto retry;
925 }
926
927 return 0;
928 }
929
930 /**
931 * dev_getbyhwaddr_rcu - find a device by its hardware address
932 * @net: the applicable net namespace
933 * @type: media type of device
934 * @ha: hardware address
935 *
936 * Search for an interface by MAC address. Returns NULL if the device
937 * is not found or a pointer to the device.
938 * The caller must hold RCU or RTNL.
939 * The returned device has not had its ref count increased
940 * and the caller must therefore be careful about locking
941 *
942 */
943
dev_getbyhwaddr_rcu(struct net * net,unsigned short type,const char * ha)944 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
945 const char *ha)
946 {
947 struct net_device *dev;
948
949 for_each_netdev_rcu(net, dev)
950 if (dev->type == type &&
951 !memcmp(dev->dev_addr, ha, dev->addr_len))
952 return dev;
953
954 return NULL;
955 }
956 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
957
__dev_getfirstbyhwtype(struct net * net,unsigned short type)958 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
959 {
960 struct net_device *dev;
961
962 ASSERT_RTNL();
963 for_each_netdev(net, dev)
964 if (dev->type == type)
965 return dev;
966
967 return NULL;
968 }
969 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
970
dev_getfirstbyhwtype(struct net * net,unsigned short type)971 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
972 {
973 struct net_device *dev, *ret = NULL;
974
975 rcu_read_lock();
976 for_each_netdev_rcu(net, dev)
977 if (dev->type == type) {
978 dev_hold(dev);
979 ret = dev;
980 break;
981 }
982 rcu_read_unlock();
983 return ret;
984 }
985 EXPORT_SYMBOL(dev_getfirstbyhwtype);
986
987 /**
988 * __dev_get_by_flags - find any device with given flags
989 * @net: the applicable net namespace
990 * @if_flags: IFF_* values
991 * @mask: bitmask of bits in if_flags to check
992 *
993 * Search for any interface with the given flags. Returns NULL if a device
994 * is not found or a pointer to the device. Must be called inside
995 * rtnl_lock(), and result refcount is unchanged.
996 */
997
__dev_get_by_flags(struct net * net,unsigned short if_flags,unsigned short mask)998 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
999 unsigned short mask)
1000 {
1001 struct net_device *dev, *ret;
1002
1003 ASSERT_RTNL();
1004
1005 ret = NULL;
1006 for_each_netdev(net, dev) {
1007 if (((dev->flags ^ if_flags) & mask) == 0) {
1008 ret = dev;
1009 break;
1010 }
1011 }
1012 return ret;
1013 }
1014 EXPORT_SYMBOL(__dev_get_by_flags);
1015
1016 /**
1017 * dev_valid_name - check if name is okay for network device
1018 * @name: name string
1019 *
1020 * Network device names need to be valid file names to
1021 * to allow sysfs to work. We also disallow any kind of
1022 * whitespace.
1023 */
dev_valid_name(const char * name)1024 bool dev_valid_name(const char *name)
1025 {
1026 if (*name == '\0')
1027 return false;
1028 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1029 return false;
1030 if (!strcmp(name, ".") || !strcmp(name, ".."))
1031 return false;
1032
1033 while (*name) {
1034 if (*name == '/' || *name == ':' || isspace(*name))
1035 return false;
1036 name++;
1037 }
1038 return true;
1039 }
1040 EXPORT_SYMBOL(dev_valid_name);
1041
1042 /**
1043 * __dev_alloc_name - allocate a name for a device
1044 * @net: network namespace to allocate the device name in
1045 * @name: name format string
1046 * @buf: scratch buffer and result name string
1047 *
1048 * Passed a format string - eg "lt%d" it will try and find a suitable
1049 * id. It scans list of devices to build up a free map, then chooses
1050 * the first empty slot. The caller must hold the dev_base or rtnl lock
1051 * while allocating the name and adding the device in order to avoid
1052 * duplicates.
1053 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1054 * Returns the number of the unit assigned or a negative errno code.
1055 */
1056
__dev_alloc_name(struct net * net,const char * name,char * buf)1057 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1058 {
1059 int i = 0;
1060 const char *p;
1061 const int max_netdevices = 8*PAGE_SIZE;
1062 unsigned long *inuse;
1063 struct net_device *d;
1064
1065 if (!dev_valid_name(name))
1066 return -EINVAL;
1067
1068 p = strchr(name, '%');
1069 if (p) {
1070 /*
1071 * Verify the string as this thing may have come from
1072 * the user. There must be either one "%d" and no other "%"
1073 * characters.
1074 */
1075 if (p[1] != 'd' || strchr(p + 2, '%'))
1076 return -EINVAL;
1077
1078 /* Use one page as a bit array of possible slots */
1079 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1080 if (!inuse)
1081 return -ENOMEM;
1082
1083 for_each_netdev(net, d) {
1084 if (!sscanf(d->name, name, &i))
1085 continue;
1086 if (i < 0 || i >= max_netdevices)
1087 continue;
1088
1089 /* avoid cases where sscanf is not exact inverse of printf */
1090 snprintf(buf, IFNAMSIZ, name, i);
1091 if (!strncmp(buf, d->name, IFNAMSIZ))
1092 set_bit(i, inuse);
1093 }
1094
1095 i = find_first_zero_bit(inuse, max_netdevices);
1096 free_page((unsigned long) inuse);
1097 }
1098
1099 snprintf(buf, IFNAMSIZ, name, i);
1100 if (!__dev_get_by_name(net, buf))
1101 return i;
1102
1103 /* It is possible to run out of possible slots
1104 * when the name is long and there isn't enough space left
1105 * for the digits, or if all bits are used.
1106 */
1107 return -ENFILE;
1108 }
1109
dev_alloc_name_ns(struct net * net,struct net_device * dev,const char * name)1110 static int dev_alloc_name_ns(struct net *net,
1111 struct net_device *dev,
1112 const char *name)
1113 {
1114 char buf[IFNAMSIZ];
1115 int ret;
1116
1117 BUG_ON(!net);
1118 ret = __dev_alloc_name(net, name, buf);
1119 if (ret >= 0)
1120 strlcpy(dev->name, buf, IFNAMSIZ);
1121 return ret;
1122 }
1123
1124 /**
1125 * dev_alloc_name - allocate a name for a device
1126 * @dev: device
1127 * @name: name format string
1128 *
1129 * Passed a format string - eg "lt%d" it will try and find a suitable
1130 * id. It scans list of devices to build up a free map, then chooses
1131 * the first empty slot. The caller must hold the dev_base or rtnl lock
1132 * while allocating the name and adding the device in order to avoid
1133 * duplicates.
1134 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1135 * Returns the number of the unit assigned or a negative errno code.
1136 */
1137
dev_alloc_name(struct net_device * dev,const char * name)1138 int dev_alloc_name(struct net_device *dev, const char *name)
1139 {
1140 return dev_alloc_name_ns(dev_net(dev), dev, name);
1141 }
1142 EXPORT_SYMBOL(dev_alloc_name);
1143
dev_get_valid_name(struct net * net,struct net_device * dev,const char * name)1144 int dev_get_valid_name(struct net *net, struct net_device *dev,
1145 const char *name)
1146 {
1147 BUG_ON(!net);
1148
1149 if (!dev_valid_name(name))
1150 return -EINVAL;
1151
1152 if (strchr(name, '%'))
1153 return dev_alloc_name_ns(net, dev, name);
1154 else if (__dev_get_by_name(net, name))
1155 return -EEXIST;
1156 else if (dev->name != name)
1157 strlcpy(dev->name, name, IFNAMSIZ);
1158
1159 return 0;
1160 }
1161 EXPORT_SYMBOL(dev_get_valid_name);
1162
1163 /**
1164 * dev_change_name - change name of a device
1165 * @dev: device
1166 * @newname: name (or format string) must be at least IFNAMSIZ
1167 *
1168 * Change name of a device, can pass format strings "eth%d".
1169 * for wildcarding.
1170 */
dev_change_name(struct net_device * dev,const char * newname)1171 int dev_change_name(struct net_device *dev, const char *newname)
1172 {
1173 unsigned char old_assign_type;
1174 char oldname[IFNAMSIZ];
1175 int err = 0;
1176 int ret;
1177 struct net *net;
1178
1179 ASSERT_RTNL();
1180 BUG_ON(!dev_net(dev));
1181
1182 net = dev_net(dev);
1183 if (dev->flags & IFF_UP)
1184 return -EBUSY;
1185
1186 write_seqcount_begin(&devnet_rename_seq);
1187
1188 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1189 write_seqcount_end(&devnet_rename_seq);
1190 return 0;
1191 }
1192
1193 memcpy(oldname, dev->name, IFNAMSIZ);
1194
1195 err = dev_get_valid_name(net, dev, newname);
1196 if (err < 0) {
1197 write_seqcount_end(&devnet_rename_seq);
1198 return err;
1199 }
1200
1201 if (oldname[0] && !strchr(oldname, '%'))
1202 netdev_info(dev, "renamed from %s\n", oldname);
1203
1204 old_assign_type = dev->name_assign_type;
1205 dev->name_assign_type = NET_NAME_RENAMED;
1206
1207 rollback:
1208 ret = device_rename(&dev->dev, dev->name);
1209 if (ret) {
1210 memcpy(dev->name, oldname, IFNAMSIZ);
1211 dev->name_assign_type = old_assign_type;
1212 write_seqcount_end(&devnet_rename_seq);
1213 return ret;
1214 }
1215
1216 write_seqcount_end(&devnet_rename_seq);
1217
1218 netdev_adjacent_rename_links(dev, oldname);
1219
1220 write_lock_bh(&dev_base_lock);
1221 hlist_del_rcu(&dev->name_hlist);
1222 write_unlock_bh(&dev_base_lock);
1223
1224 synchronize_rcu();
1225
1226 write_lock_bh(&dev_base_lock);
1227 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1228 write_unlock_bh(&dev_base_lock);
1229
1230 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1231 ret = notifier_to_errno(ret);
1232
1233 if (ret) {
1234 /* err >= 0 after dev_alloc_name() or stores the first errno */
1235 if (err >= 0) {
1236 err = ret;
1237 write_seqcount_begin(&devnet_rename_seq);
1238 memcpy(dev->name, oldname, IFNAMSIZ);
1239 memcpy(oldname, newname, IFNAMSIZ);
1240 dev->name_assign_type = old_assign_type;
1241 old_assign_type = NET_NAME_RENAMED;
1242 goto rollback;
1243 } else {
1244 pr_err("%s: name change rollback failed: %d\n",
1245 dev->name, ret);
1246 }
1247 }
1248
1249 return err;
1250 }
1251
1252 /**
1253 * dev_set_alias - change ifalias of a device
1254 * @dev: device
1255 * @alias: name up to IFALIASZ
1256 * @len: limit of bytes to copy from info
1257 *
1258 * Set ifalias for a device,
1259 */
dev_set_alias(struct net_device * dev,const char * alias,size_t len)1260 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1261 {
1262 struct dev_ifalias *new_alias = NULL;
1263
1264 if (len >= IFALIASZ)
1265 return -EINVAL;
1266
1267 if (len) {
1268 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1269 if (!new_alias)
1270 return -ENOMEM;
1271
1272 memcpy(new_alias->ifalias, alias, len);
1273 new_alias->ifalias[len] = 0;
1274 }
1275
1276 mutex_lock(&ifalias_mutex);
1277 rcu_swap_protected(dev->ifalias, new_alias,
1278 mutex_is_locked(&ifalias_mutex));
1279 mutex_unlock(&ifalias_mutex);
1280
1281 if (new_alias)
1282 kfree_rcu(new_alias, rcuhead);
1283
1284 return len;
1285 }
1286 EXPORT_SYMBOL(dev_set_alias);
1287
1288 /**
1289 * dev_get_alias - get ifalias of a device
1290 * @dev: device
1291 * @name: buffer to store name of ifalias
1292 * @len: size of buffer
1293 *
1294 * get ifalias for a device. Caller must make sure dev cannot go
1295 * away, e.g. rcu read lock or own a reference count to device.
1296 */
dev_get_alias(const struct net_device * dev,char * name,size_t len)1297 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1298 {
1299 const struct dev_ifalias *alias;
1300 int ret = 0;
1301
1302 rcu_read_lock();
1303 alias = rcu_dereference(dev->ifalias);
1304 if (alias)
1305 ret = snprintf(name, len, "%s", alias->ifalias);
1306 rcu_read_unlock();
1307
1308 return ret;
1309 }
1310
1311 /**
1312 * netdev_features_change - device changes features
1313 * @dev: device to cause notification
1314 *
1315 * Called to indicate a device has changed features.
1316 */
netdev_features_change(struct net_device * dev)1317 void netdev_features_change(struct net_device *dev)
1318 {
1319 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1320 }
1321 EXPORT_SYMBOL(netdev_features_change);
1322
1323 /**
1324 * netdev_state_change - device changes state
1325 * @dev: device to cause notification
1326 *
1327 * Called to indicate a device has changed state. This function calls
1328 * the notifier chains for netdev_chain and sends a NEWLINK message
1329 * to the routing socket.
1330 */
netdev_state_change(struct net_device * dev)1331 void netdev_state_change(struct net_device *dev)
1332 {
1333 if (dev->flags & IFF_UP) {
1334 struct netdev_notifier_change_info change_info = {
1335 .info.dev = dev,
1336 };
1337
1338 call_netdevice_notifiers_info(NETDEV_CHANGE,
1339 &change_info.info);
1340 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1341 }
1342 }
1343 EXPORT_SYMBOL(netdev_state_change);
1344
1345 /**
1346 * netdev_notify_peers - notify network peers about existence of @dev
1347 * @dev: network device
1348 *
1349 * Generate traffic such that interested network peers are aware of
1350 * @dev, such as by generating a gratuitous ARP. This may be used when
1351 * a device wants to inform the rest of the network about some sort of
1352 * reconfiguration such as a failover event or virtual machine
1353 * migration.
1354 */
netdev_notify_peers(struct net_device * dev)1355 void netdev_notify_peers(struct net_device *dev)
1356 {
1357 rtnl_lock();
1358 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1359 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1360 rtnl_unlock();
1361 }
1362 EXPORT_SYMBOL(netdev_notify_peers);
1363
__dev_open(struct net_device * dev)1364 static int __dev_open(struct net_device *dev)
1365 {
1366 const struct net_device_ops *ops = dev->netdev_ops;
1367 int ret;
1368
1369 ASSERT_RTNL();
1370
1371 if (!netif_device_present(dev))
1372 return -ENODEV;
1373
1374 /* Block netpoll from trying to do any rx path servicing.
1375 * If we don't do this there is a chance ndo_poll_controller
1376 * or ndo_poll may be running while we open the device
1377 */
1378 netpoll_poll_disable(dev);
1379
1380 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1381 ret = notifier_to_errno(ret);
1382 if (ret)
1383 return ret;
1384
1385 set_bit(__LINK_STATE_START, &dev->state);
1386
1387 if (ops->ndo_validate_addr)
1388 ret = ops->ndo_validate_addr(dev);
1389
1390 if (!ret && ops->ndo_open)
1391 ret = ops->ndo_open(dev);
1392
1393 netpoll_poll_enable(dev);
1394
1395 if (ret)
1396 clear_bit(__LINK_STATE_START, &dev->state);
1397 else {
1398 dev->flags |= IFF_UP;
1399 dev_set_rx_mode(dev);
1400 dev_activate(dev);
1401 add_device_randomness(dev->dev_addr, dev->addr_len);
1402 }
1403
1404 return ret;
1405 }
1406
1407 /**
1408 * dev_open - prepare an interface for use.
1409 * @dev: device to open
1410 *
1411 * Takes a device from down to up state. The device's private open
1412 * function is invoked and then the multicast lists are loaded. Finally
1413 * the device is moved into the up state and a %NETDEV_UP message is
1414 * sent to the netdev notifier chain.
1415 *
1416 * Calling this function on an active interface is a nop. On a failure
1417 * a negative errno code is returned.
1418 */
dev_open(struct net_device * dev)1419 int dev_open(struct net_device *dev)
1420 {
1421 int ret;
1422
1423 if (dev->flags & IFF_UP)
1424 return 0;
1425
1426 ret = __dev_open(dev);
1427 if (ret < 0)
1428 return ret;
1429
1430 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1431 call_netdevice_notifiers(NETDEV_UP, dev);
1432
1433 return ret;
1434 }
1435 EXPORT_SYMBOL(dev_open);
1436
__dev_close_many(struct list_head * head)1437 static void __dev_close_many(struct list_head *head)
1438 {
1439 struct net_device *dev;
1440
1441 ASSERT_RTNL();
1442 might_sleep();
1443
1444 list_for_each_entry(dev, head, close_list) {
1445 /* Temporarily disable netpoll until the interface is down */
1446 netpoll_poll_disable(dev);
1447
1448 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1449
1450 clear_bit(__LINK_STATE_START, &dev->state);
1451
1452 /* Synchronize to scheduled poll. We cannot touch poll list, it
1453 * can be even on different cpu. So just clear netif_running().
1454 *
1455 * dev->stop() will invoke napi_disable() on all of it's
1456 * napi_struct instances on this device.
1457 */
1458 smp_mb__after_atomic(); /* Commit netif_running(). */
1459 }
1460
1461 dev_deactivate_many(head);
1462
1463 list_for_each_entry(dev, head, close_list) {
1464 const struct net_device_ops *ops = dev->netdev_ops;
1465
1466 /*
1467 * Call the device specific close. This cannot fail.
1468 * Only if device is UP
1469 *
1470 * We allow it to be called even after a DETACH hot-plug
1471 * event.
1472 */
1473 if (ops->ndo_stop)
1474 ops->ndo_stop(dev);
1475
1476 dev->flags &= ~IFF_UP;
1477 netpoll_poll_enable(dev);
1478 }
1479 }
1480
__dev_close(struct net_device * dev)1481 static void __dev_close(struct net_device *dev)
1482 {
1483 LIST_HEAD(single);
1484
1485 list_add(&dev->close_list, &single);
1486 __dev_close_many(&single);
1487 list_del(&single);
1488 }
1489
dev_close_many(struct list_head * head,bool unlink)1490 void dev_close_many(struct list_head *head, bool unlink)
1491 {
1492 struct net_device *dev, *tmp;
1493
1494 /* Remove the devices that don't need to be closed */
1495 list_for_each_entry_safe(dev, tmp, head, close_list)
1496 if (!(dev->flags & IFF_UP))
1497 list_del_init(&dev->close_list);
1498
1499 __dev_close_many(head);
1500
1501 list_for_each_entry_safe(dev, tmp, head, close_list) {
1502 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1503 call_netdevice_notifiers(NETDEV_DOWN, dev);
1504 if (unlink)
1505 list_del_init(&dev->close_list);
1506 }
1507 }
1508 EXPORT_SYMBOL(dev_close_many);
1509
1510 /**
1511 * dev_close - shutdown an interface.
1512 * @dev: device to shutdown
1513 *
1514 * This function moves an active device into down state. A
1515 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1516 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1517 * chain.
1518 */
dev_close(struct net_device * dev)1519 void dev_close(struct net_device *dev)
1520 {
1521 if (dev->flags & IFF_UP) {
1522 LIST_HEAD(single);
1523
1524 list_add(&dev->close_list, &single);
1525 dev_close_many(&single, true);
1526 list_del(&single);
1527 }
1528 }
1529 EXPORT_SYMBOL(dev_close);
1530
1531
1532 /**
1533 * dev_disable_lro - disable Large Receive Offload on a device
1534 * @dev: device
1535 *
1536 * Disable Large Receive Offload (LRO) on a net device. Must be
1537 * called under RTNL. This is needed if received packets may be
1538 * forwarded to another interface.
1539 */
dev_disable_lro(struct net_device * dev)1540 void dev_disable_lro(struct net_device *dev)
1541 {
1542 struct net_device *lower_dev;
1543 struct list_head *iter;
1544
1545 dev->wanted_features &= ~NETIF_F_LRO;
1546 netdev_update_features(dev);
1547
1548 if (unlikely(dev->features & NETIF_F_LRO))
1549 netdev_WARN(dev, "failed to disable LRO!\n");
1550
1551 netdev_for_each_lower_dev(dev, lower_dev, iter)
1552 dev_disable_lro(lower_dev);
1553 }
1554 EXPORT_SYMBOL(dev_disable_lro);
1555
1556 /**
1557 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1558 * @dev: device
1559 *
1560 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1561 * called under RTNL. This is needed if Generic XDP is installed on
1562 * the device.
1563 */
dev_disable_gro_hw(struct net_device * dev)1564 static void dev_disable_gro_hw(struct net_device *dev)
1565 {
1566 dev->wanted_features &= ~NETIF_F_GRO_HW;
1567 netdev_update_features(dev);
1568
1569 if (unlikely(dev->features & NETIF_F_GRO_HW))
1570 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1571 }
1572
netdev_cmd_to_name(enum netdev_cmd cmd)1573 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1574 {
1575 #define N(val) \
1576 case NETDEV_##val: \
1577 return "NETDEV_" __stringify(val);
1578 switch (cmd) {
1579 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1580 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1581 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1582 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1583 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1584 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1585 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1586 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1587 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1588 }
1589 #undef N
1590 return "UNKNOWN_NETDEV_EVENT";
1591 }
1592 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1593
call_netdevice_notifier(struct notifier_block * nb,unsigned long val,struct net_device * dev)1594 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1595 struct net_device *dev)
1596 {
1597 struct netdev_notifier_info info = {
1598 .dev = dev,
1599 };
1600
1601 return nb->notifier_call(nb, val, &info);
1602 }
1603
1604 static int dev_boot_phase = 1;
1605
1606 /**
1607 * register_netdevice_notifier - register a network notifier block
1608 * @nb: notifier
1609 *
1610 * Register a notifier to be called when network device events occur.
1611 * The notifier passed is linked into the kernel structures and must
1612 * not be reused until it has been unregistered. A negative errno code
1613 * is returned on a failure.
1614 *
1615 * When registered all registration and up events are replayed
1616 * to the new notifier to allow device to have a race free
1617 * view of the network device list.
1618 */
1619
register_netdevice_notifier(struct notifier_block * nb)1620 int register_netdevice_notifier(struct notifier_block *nb)
1621 {
1622 struct net_device *dev;
1623 struct net_device *last;
1624 struct net *net;
1625 int err;
1626
1627 /* Close race with setup_net() and cleanup_net() */
1628 down_write(&pernet_ops_rwsem);
1629 rtnl_lock();
1630 err = raw_notifier_chain_register(&netdev_chain, nb);
1631 if (err)
1632 goto unlock;
1633 if (dev_boot_phase)
1634 goto unlock;
1635 for_each_net(net) {
1636 for_each_netdev(net, dev) {
1637 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1638 err = notifier_to_errno(err);
1639 if (err)
1640 goto rollback;
1641
1642 if (!(dev->flags & IFF_UP))
1643 continue;
1644
1645 call_netdevice_notifier(nb, NETDEV_UP, dev);
1646 }
1647 }
1648
1649 unlock:
1650 rtnl_unlock();
1651 up_write(&pernet_ops_rwsem);
1652 return err;
1653
1654 rollback:
1655 last = dev;
1656 for_each_net(net) {
1657 for_each_netdev(net, dev) {
1658 if (dev == last)
1659 goto outroll;
1660
1661 if (dev->flags & IFF_UP) {
1662 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1663 dev);
1664 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1665 }
1666 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1667 }
1668 }
1669
1670 outroll:
1671 raw_notifier_chain_unregister(&netdev_chain, nb);
1672 goto unlock;
1673 }
1674 EXPORT_SYMBOL(register_netdevice_notifier);
1675
1676 /**
1677 * unregister_netdevice_notifier - unregister a network notifier block
1678 * @nb: notifier
1679 *
1680 * Unregister a notifier previously registered by
1681 * register_netdevice_notifier(). The notifier is unlinked into the
1682 * kernel structures and may then be reused. A negative errno code
1683 * is returned on a failure.
1684 *
1685 * After unregistering unregister and down device events are synthesized
1686 * for all devices on the device list to the removed notifier to remove
1687 * the need for special case cleanup code.
1688 */
1689
unregister_netdevice_notifier(struct notifier_block * nb)1690 int unregister_netdevice_notifier(struct notifier_block *nb)
1691 {
1692 struct net_device *dev;
1693 struct net *net;
1694 int err;
1695
1696 /* Close race with setup_net() and cleanup_net() */
1697 down_write(&pernet_ops_rwsem);
1698 rtnl_lock();
1699 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1700 if (err)
1701 goto unlock;
1702
1703 for_each_net(net) {
1704 for_each_netdev(net, dev) {
1705 if (dev->flags & IFF_UP) {
1706 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1707 dev);
1708 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1709 }
1710 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1711 }
1712 }
1713 unlock:
1714 rtnl_unlock();
1715 up_write(&pernet_ops_rwsem);
1716 return err;
1717 }
1718 EXPORT_SYMBOL(unregister_netdevice_notifier);
1719
1720 /**
1721 * call_netdevice_notifiers_info - call all network notifier blocks
1722 * @val: value passed unmodified to notifier function
1723 * @info: notifier information data
1724 *
1725 * Call all network notifier blocks. Parameters and return value
1726 * are as for raw_notifier_call_chain().
1727 */
1728
call_netdevice_notifiers_info(unsigned long val,struct netdev_notifier_info * info)1729 static int call_netdevice_notifiers_info(unsigned long val,
1730 struct netdev_notifier_info *info)
1731 {
1732 ASSERT_RTNL();
1733 return raw_notifier_call_chain(&netdev_chain, val, info);
1734 }
1735
1736 /**
1737 * call_netdevice_notifiers - call all network notifier blocks
1738 * @val: value passed unmodified to notifier function
1739 * @dev: net_device pointer passed unmodified to notifier function
1740 *
1741 * Call all network notifier blocks. Parameters and return value
1742 * are as for raw_notifier_call_chain().
1743 */
1744
call_netdevice_notifiers(unsigned long val,struct net_device * dev)1745 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1746 {
1747 struct netdev_notifier_info info = {
1748 .dev = dev,
1749 };
1750
1751 return call_netdevice_notifiers_info(val, &info);
1752 }
1753 EXPORT_SYMBOL(call_netdevice_notifiers);
1754
1755 /**
1756 * call_netdevice_notifiers_mtu - call all network notifier blocks
1757 * @val: value passed unmodified to notifier function
1758 * @dev: net_device pointer passed unmodified to notifier function
1759 * @arg: additional u32 argument passed to the notifier function
1760 *
1761 * Call all network notifier blocks. Parameters and return value
1762 * are as for raw_notifier_call_chain().
1763 */
call_netdevice_notifiers_mtu(unsigned long val,struct net_device * dev,u32 arg)1764 static int call_netdevice_notifiers_mtu(unsigned long val,
1765 struct net_device *dev, u32 arg)
1766 {
1767 struct netdev_notifier_info_ext info = {
1768 .info.dev = dev,
1769 .ext.mtu = arg,
1770 };
1771
1772 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1773
1774 return call_netdevice_notifiers_info(val, &info.info);
1775 }
1776
1777 #ifdef CONFIG_NET_INGRESS
1778 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
1779
net_inc_ingress_queue(void)1780 void net_inc_ingress_queue(void)
1781 {
1782 static_branch_inc(&ingress_needed_key);
1783 }
1784 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1785
net_dec_ingress_queue(void)1786 void net_dec_ingress_queue(void)
1787 {
1788 static_branch_dec(&ingress_needed_key);
1789 }
1790 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1791 #endif
1792
1793 #ifdef CONFIG_NET_EGRESS
1794 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1795
net_inc_egress_queue(void)1796 void net_inc_egress_queue(void)
1797 {
1798 static_branch_inc(&egress_needed_key);
1799 }
1800 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1801
net_dec_egress_queue(void)1802 void net_dec_egress_queue(void)
1803 {
1804 static_branch_dec(&egress_needed_key);
1805 }
1806 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1807 #endif
1808
1809 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
1810 #ifdef HAVE_JUMP_LABEL
1811 static atomic_t netstamp_needed_deferred;
1812 static atomic_t netstamp_wanted;
netstamp_clear(struct work_struct * work)1813 static void netstamp_clear(struct work_struct *work)
1814 {
1815 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1816 int wanted;
1817
1818 wanted = atomic_add_return(deferred, &netstamp_wanted);
1819 if (wanted > 0)
1820 static_branch_enable(&netstamp_needed_key);
1821 else
1822 static_branch_disable(&netstamp_needed_key);
1823 }
1824 static DECLARE_WORK(netstamp_work, netstamp_clear);
1825 #endif
1826
net_enable_timestamp(void)1827 void net_enable_timestamp(void)
1828 {
1829 #ifdef HAVE_JUMP_LABEL
1830 int wanted;
1831
1832 while (1) {
1833 wanted = atomic_read(&netstamp_wanted);
1834 if (wanted <= 0)
1835 break;
1836 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1837 return;
1838 }
1839 atomic_inc(&netstamp_needed_deferred);
1840 schedule_work(&netstamp_work);
1841 #else
1842 static_branch_inc(&netstamp_needed_key);
1843 #endif
1844 }
1845 EXPORT_SYMBOL(net_enable_timestamp);
1846
net_disable_timestamp(void)1847 void net_disable_timestamp(void)
1848 {
1849 #ifdef HAVE_JUMP_LABEL
1850 int wanted;
1851
1852 while (1) {
1853 wanted = atomic_read(&netstamp_wanted);
1854 if (wanted <= 1)
1855 break;
1856 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1857 return;
1858 }
1859 atomic_dec(&netstamp_needed_deferred);
1860 schedule_work(&netstamp_work);
1861 #else
1862 static_branch_dec(&netstamp_needed_key);
1863 #endif
1864 }
1865 EXPORT_SYMBOL(net_disable_timestamp);
1866
net_timestamp_set(struct sk_buff * skb)1867 static inline void net_timestamp_set(struct sk_buff *skb)
1868 {
1869 skb->tstamp = 0;
1870 if (static_branch_unlikely(&netstamp_needed_key))
1871 __net_timestamp(skb);
1872 }
1873
1874 #define net_timestamp_check(COND, SKB) \
1875 if (static_branch_unlikely(&netstamp_needed_key)) { \
1876 if ((COND) && !(SKB)->tstamp) \
1877 __net_timestamp(SKB); \
1878 } \
1879
is_skb_forwardable(const struct net_device * dev,const struct sk_buff * skb)1880 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1881 {
1882 unsigned int len;
1883
1884 if (!(dev->flags & IFF_UP))
1885 return false;
1886
1887 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1888 if (skb->len <= len)
1889 return true;
1890
1891 /* if TSO is enabled, we don't care about the length as the packet
1892 * could be forwarded without being segmented before
1893 */
1894 if (skb_is_gso(skb))
1895 return true;
1896
1897 return false;
1898 }
1899 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1900
__dev_forward_skb(struct net_device * dev,struct sk_buff * skb)1901 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1902 {
1903 int ret = ____dev_forward_skb(dev, skb);
1904
1905 if (likely(!ret)) {
1906 skb->protocol = eth_type_trans(skb, dev);
1907 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1908 }
1909
1910 return ret;
1911 }
1912 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1913
1914 /**
1915 * dev_forward_skb - loopback an skb to another netif
1916 *
1917 * @dev: destination network device
1918 * @skb: buffer to forward
1919 *
1920 * return values:
1921 * NET_RX_SUCCESS (no congestion)
1922 * NET_RX_DROP (packet was dropped, but freed)
1923 *
1924 * dev_forward_skb can be used for injecting an skb from the
1925 * start_xmit function of one device into the receive queue
1926 * of another device.
1927 *
1928 * The receiving device may be in another namespace, so
1929 * we have to clear all information in the skb that could
1930 * impact namespace isolation.
1931 */
dev_forward_skb(struct net_device * dev,struct sk_buff * skb)1932 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1933 {
1934 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1935 }
1936 EXPORT_SYMBOL_GPL(dev_forward_skb);
1937
deliver_skb(struct sk_buff * skb,struct packet_type * pt_prev,struct net_device * orig_dev)1938 static inline int deliver_skb(struct sk_buff *skb,
1939 struct packet_type *pt_prev,
1940 struct net_device *orig_dev)
1941 {
1942 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1943 return -ENOMEM;
1944 refcount_inc(&skb->users);
1945 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1946 }
1947
deliver_ptype_list_skb(struct sk_buff * skb,struct packet_type ** pt,struct net_device * orig_dev,__be16 type,struct list_head * ptype_list)1948 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1949 struct packet_type **pt,
1950 struct net_device *orig_dev,
1951 __be16 type,
1952 struct list_head *ptype_list)
1953 {
1954 struct packet_type *ptype, *pt_prev = *pt;
1955
1956 list_for_each_entry_rcu(ptype, ptype_list, list) {
1957 if (ptype->type != type)
1958 continue;
1959 if (pt_prev)
1960 deliver_skb(skb, pt_prev, orig_dev);
1961 pt_prev = ptype;
1962 }
1963 *pt = pt_prev;
1964 }
1965
skb_loop_sk(struct packet_type * ptype,struct sk_buff * skb)1966 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1967 {
1968 if (!ptype->af_packet_priv || !skb->sk)
1969 return false;
1970
1971 if (ptype->id_match)
1972 return ptype->id_match(ptype, skb->sk);
1973 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1974 return true;
1975
1976 return false;
1977 }
1978
1979 /*
1980 * Support routine. Sends outgoing frames to any network
1981 * taps currently in use.
1982 */
1983
dev_queue_xmit_nit(struct sk_buff * skb,struct net_device * dev)1984 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1985 {
1986 struct packet_type *ptype;
1987 struct sk_buff *skb2 = NULL;
1988 struct packet_type *pt_prev = NULL;
1989 struct list_head *ptype_list = &ptype_all;
1990
1991 rcu_read_lock();
1992 again:
1993 list_for_each_entry_rcu(ptype, ptype_list, list) {
1994 /* Never send packets back to the socket
1995 * they originated from - MvS (miquels@drinkel.ow.org)
1996 */
1997 if (skb_loop_sk(ptype, skb))
1998 continue;
1999
2000 if (pt_prev) {
2001 deliver_skb(skb2, pt_prev, skb->dev);
2002 pt_prev = ptype;
2003 continue;
2004 }
2005
2006 /* need to clone skb, done only once */
2007 skb2 = skb_clone(skb, GFP_ATOMIC);
2008 if (!skb2)
2009 goto out_unlock;
2010
2011 net_timestamp_set(skb2);
2012
2013 /* skb->nh should be correctly
2014 * set by sender, so that the second statement is
2015 * just protection against buggy protocols.
2016 */
2017 skb_reset_mac_header(skb2);
2018
2019 if (skb_network_header(skb2) < skb2->data ||
2020 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2021 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2022 ntohs(skb2->protocol),
2023 dev->name);
2024 skb_reset_network_header(skb2);
2025 }
2026
2027 skb2->transport_header = skb2->network_header;
2028 skb2->pkt_type = PACKET_OUTGOING;
2029 pt_prev = ptype;
2030 }
2031
2032 if (ptype_list == &ptype_all) {
2033 ptype_list = &dev->ptype_all;
2034 goto again;
2035 }
2036 out_unlock:
2037 if (pt_prev) {
2038 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2039 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2040 else
2041 kfree_skb(skb2);
2042 }
2043 rcu_read_unlock();
2044 }
2045 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2046
2047 /**
2048 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2049 * @dev: Network device
2050 * @txq: number of queues available
2051 *
2052 * If real_num_tx_queues is changed the tc mappings may no longer be
2053 * valid. To resolve this verify the tc mapping remains valid and if
2054 * not NULL the mapping. With no priorities mapping to this
2055 * offset/count pair it will no longer be used. In the worst case TC0
2056 * is invalid nothing can be done so disable priority mappings. If is
2057 * expected that drivers will fix this mapping if they can before
2058 * calling netif_set_real_num_tx_queues.
2059 */
netif_setup_tc(struct net_device * dev,unsigned int txq)2060 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2061 {
2062 int i;
2063 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2064
2065 /* If TC0 is invalidated disable TC mapping */
2066 if (tc->offset + tc->count > txq) {
2067 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2068 dev->num_tc = 0;
2069 return;
2070 }
2071
2072 /* Invalidated prio to tc mappings set to TC0 */
2073 for (i = 1; i < TC_BITMASK + 1; i++) {
2074 int q = netdev_get_prio_tc_map(dev, i);
2075
2076 tc = &dev->tc_to_txq[q];
2077 if (tc->offset + tc->count > txq) {
2078 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2079 i, q);
2080 netdev_set_prio_tc_map(dev, i, 0);
2081 }
2082 }
2083 }
2084
netdev_txq_to_tc(struct net_device * dev,unsigned int txq)2085 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2086 {
2087 if (dev->num_tc) {
2088 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2089 int i;
2090
2091 /* walk through the TCs and see if it falls into any of them */
2092 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2093 if ((txq - tc->offset) < tc->count)
2094 return i;
2095 }
2096
2097 /* didn't find it, just return -1 to indicate no match */
2098 return -1;
2099 }
2100
2101 return 0;
2102 }
2103 EXPORT_SYMBOL(netdev_txq_to_tc);
2104
2105 #ifdef CONFIG_XPS
2106 struct static_key xps_needed __read_mostly;
2107 EXPORT_SYMBOL(xps_needed);
2108 struct static_key xps_rxqs_needed __read_mostly;
2109 EXPORT_SYMBOL(xps_rxqs_needed);
2110 static DEFINE_MUTEX(xps_map_mutex);
2111 #define xmap_dereference(P) \
2112 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2113
remove_xps_queue(struct xps_dev_maps * dev_maps,int tci,u16 index)2114 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2115 int tci, u16 index)
2116 {
2117 struct xps_map *map = NULL;
2118 int pos;
2119
2120 if (dev_maps)
2121 map = xmap_dereference(dev_maps->attr_map[tci]);
2122 if (!map)
2123 return false;
2124
2125 for (pos = map->len; pos--;) {
2126 if (map->queues[pos] != index)
2127 continue;
2128
2129 if (map->len > 1) {
2130 map->queues[pos] = map->queues[--map->len];
2131 break;
2132 }
2133
2134 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2135 kfree_rcu(map, rcu);
2136 return false;
2137 }
2138
2139 return true;
2140 }
2141
remove_xps_queue_cpu(struct net_device * dev,struct xps_dev_maps * dev_maps,int cpu,u16 offset,u16 count)2142 static bool remove_xps_queue_cpu(struct net_device *dev,
2143 struct xps_dev_maps *dev_maps,
2144 int cpu, u16 offset, u16 count)
2145 {
2146 int num_tc = dev->num_tc ? : 1;
2147 bool active = false;
2148 int tci;
2149
2150 for (tci = cpu * num_tc; num_tc--; tci++) {
2151 int i, j;
2152
2153 for (i = count, j = offset; i--; j++) {
2154 if (!remove_xps_queue(dev_maps, tci, j))
2155 break;
2156 }
2157
2158 active |= i < 0;
2159 }
2160
2161 return active;
2162 }
2163
clean_xps_maps(struct net_device * dev,const unsigned long * mask,struct xps_dev_maps * dev_maps,unsigned int nr_ids,u16 offset,u16 count,bool is_rxqs_map)2164 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2165 struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2166 u16 offset, u16 count, bool is_rxqs_map)
2167 {
2168 bool active = false;
2169 int i, j;
2170
2171 for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2172 j < nr_ids;)
2173 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2174 count);
2175 if (!active) {
2176 if (is_rxqs_map) {
2177 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2178 } else {
2179 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2180
2181 for (i = offset + (count - 1); count--; i--)
2182 netdev_queue_numa_node_write(
2183 netdev_get_tx_queue(dev, i),
2184 NUMA_NO_NODE);
2185 }
2186 kfree_rcu(dev_maps, rcu);
2187 }
2188 }
2189
netif_reset_xps_queues(struct net_device * dev,u16 offset,u16 count)2190 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2191 u16 count)
2192 {
2193 const unsigned long *possible_mask = NULL;
2194 struct xps_dev_maps *dev_maps;
2195 unsigned int nr_ids;
2196
2197 if (!static_key_false(&xps_needed))
2198 return;
2199
2200 cpus_read_lock();
2201 mutex_lock(&xps_map_mutex);
2202
2203 if (static_key_false(&xps_rxqs_needed)) {
2204 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2205 if (dev_maps) {
2206 nr_ids = dev->num_rx_queues;
2207 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2208 offset, count, true);
2209 }
2210 }
2211
2212 dev_maps = xmap_dereference(dev->xps_cpus_map);
2213 if (!dev_maps)
2214 goto out_no_maps;
2215
2216 if (num_possible_cpus() > 1)
2217 possible_mask = cpumask_bits(cpu_possible_mask);
2218 nr_ids = nr_cpu_ids;
2219 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2220 false);
2221
2222 out_no_maps:
2223 if (static_key_enabled(&xps_rxqs_needed))
2224 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2225
2226 static_key_slow_dec_cpuslocked(&xps_needed);
2227 mutex_unlock(&xps_map_mutex);
2228 cpus_read_unlock();
2229 }
2230
netif_reset_xps_queues_gt(struct net_device * dev,u16 index)2231 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2232 {
2233 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2234 }
2235
expand_xps_map(struct xps_map * map,int attr_index,u16 index,bool is_rxqs_map)2236 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2237 u16 index, bool is_rxqs_map)
2238 {
2239 struct xps_map *new_map;
2240 int alloc_len = XPS_MIN_MAP_ALLOC;
2241 int i, pos;
2242
2243 for (pos = 0; map && pos < map->len; pos++) {
2244 if (map->queues[pos] != index)
2245 continue;
2246 return map;
2247 }
2248
2249 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2250 if (map) {
2251 if (pos < map->alloc_len)
2252 return map;
2253
2254 alloc_len = map->alloc_len * 2;
2255 }
2256
2257 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2258 * map
2259 */
2260 if (is_rxqs_map)
2261 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2262 else
2263 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2264 cpu_to_node(attr_index));
2265 if (!new_map)
2266 return NULL;
2267
2268 for (i = 0; i < pos; i++)
2269 new_map->queues[i] = map->queues[i];
2270 new_map->alloc_len = alloc_len;
2271 new_map->len = pos;
2272
2273 return new_map;
2274 }
2275
2276 /* Must be called under cpus_read_lock */
__netif_set_xps_queue(struct net_device * dev,const unsigned long * mask,u16 index,bool is_rxqs_map)2277 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2278 u16 index, bool is_rxqs_map)
2279 {
2280 const unsigned long *online_mask = NULL, *possible_mask = NULL;
2281 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2282 int i, j, tci, numa_node_id = -2;
2283 int maps_sz, num_tc = 1, tc = 0;
2284 struct xps_map *map, *new_map;
2285 bool active = false;
2286 unsigned int nr_ids;
2287
2288 if (dev->num_tc) {
2289 /* Do not allow XPS on subordinate device directly */
2290 num_tc = dev->num_tc;
2291 if (num_tc < 0)
2292 return -EINVAL;
2293
2294 /* If queue belongs to subordinate dev use its map */
2295 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2296
2297 tc = netdev_txq_to_tc(dev, index);
2298 if (tc < 0)
2299 return -EINVAL;
2300 }
2301
2302 mutex_lock(&xps_map_mutex);
2303 if (is_rxqs_map) {
2304 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2305 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2306 nr_ids = dev->num_rx_queues;
2307 } else {
2308 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2309 if (num_possible_cpus() > 1) {
2310 online_mask = cpumask_bits(cpu_online_mask);
2311 possible_mask = cpumask_bits(cpu_possible_mask);
2312 }
2313 dev_maps = xmap_dereference(dev->xps_cpus_map);
2314 nr_ids = nr_cpu_ids;
2315 }
2316
2317 if (maps_sz < L1_CACHE_BYTES)
2318 maps_sz = L1_CACHE_BYTES;
2319
2320 /* allocate memory for queue storage */
2321 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2322 j < nr_ids;) {
2323 if (!new_dev_maps)
2324 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2325 if (!new_dev_maps) {
2326 mutex_unlock(&xps_map_mutex);
2327 return -ENOMEM;
2328 }
2329
2330 tci = j * num_tc + tc;
2331 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2332 NULL;
2333
2334 map = expand_xps_map(map, j, index, is_rxqs_map);
2335 if (!map)
2336 goto error;
2337
2338 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2339 }
2340
2341 if (!new_dev_maps)
2342 goto out_no_new_maps;
2343
2344 static_key_slow_inc_cpuslocked(&xps_needed);
2345 if (is_rxqs_map)
2346 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2347
2348 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2349 j < nr_ids;) {
2350 /* copy maps belonging to foreign traffic classes */
2351 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2352 /* fill in the new device map from the old device map */
2353 map = xmap_dereference(dev_maps->attr_map[tci]);
2354 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2355 }
2356
2357 /* We need to explicitly update tci as prevous loop
2358 * could break out early if dev_maps is NULL.
2359 */
2360 tci = j * num_tc + tc;
2361
2362 if (netif_attr_test_mask(j, mask, nr_ids) &&
2363 netif_attr_test_online(j, online_mask, nr_ids)) {
2364 /* add tx-queue to CPU/rx-queue maps */
2365 int pos = 0;
2366
2367 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2368 while ((pos < map->len) && (map->queues[pos] != index))
2369 pos++;
2370
2371 if (pos == map->len)
2372 map->queues[map->len++] = index;
2373 #ifdef CONFIG_NUMA
2374 if (!is_rxqs_map) {
2375 if (numa_node_id == -2)
2376 numa_node_id = cpu_to_node(j);
2377 else if (numa_node_id != cpu_to_node(j))
2378 numa_node_id = -1;
2379 }
2380 #endif
2381 } else if (dev_maps) {
2382 /* fill in the new device map from the old device map */
2383 map = xmap_dereference(dev_maps->attr_map[tci]);
2384 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2385 }
2386
2387 /* copy maps belonging to foreign traffic classes */
2388 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2389 /* fill in the new device map from the old device map */
2390 map = xmap_dereference(dev_maps->attr_map[tci]);
2391 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2392 }
2393 }
2394
2395 if (is_rxqs_map)
2396 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2397 else
2398 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2399
2400 /* Cleanup old maps */
2401 if (!dev_maps)
2402 goto out_no_old_maps;
2403
2404 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2405 j < nr_ids;) {
2406 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2407 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2408 map = xmap_dereference(dev_maps->attr_map[tci]);
2409 if (map && map != new_map)
2410 kfree_rcu(map, rcu);
2411 }
2412 }
2413
2414 kfree_rcu(dev_maps, rcu);
2415
2416 out_no_old_maps:
2417 dev_maps = new_dev_maps;
2418 active = true;
2419
2420 out_no_new_maps:
2421 if (!is_rxqs_map) {
2422 /* update Tx queue numa node */
2423 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2424 (numa_node_id >= 0) ?
2425 numa_node_id : NUMA_NO_NODE);
2426 }
2427
2428 if (!dev_maps)
2429 goto out_no_maps;
2430
2431 /* removes tx-queue from unused CPUs/rx-queues */
2432 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2433 j < nr_ids;) {
2434 for (i = tc, tci = j * num_tc; i--; tci++)
2435 active |= remove_xps_queue(dev_maps, tci, index);
2436 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2437 !netif_attr_test_online(j, online_mask, nr_ids))
2438 active |= remove_xps_queue(dev_maps, tci, index);
2439 for (i = num_tc - tc, tci++; --i; tci++)
2440 active |= remove_xps_queue(dev_maps, tci, index);
2441 }
2442
2443 /* free map if not active */
2444 if (!active) {
2445 if (is_rxqs_map)
2446 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2447 else
2448 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2449 kfree_rcu(dev_maps, rcu);
2450 }
2451
2452 out_no_maps:
2453 mutex_unlock(&xps_map_mutex);
2454
2455 return 0;
2456 error:
2457 /* remove any maps that we added */
2458 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2459 j < nr_ids;) {
2460 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2461 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2462 map = dev_maps ?
2463 xmap_dereference(dev_maps->attr_map[tci]) :
2464 NULL;
2465 if (new_map && new_map != map)
2466 kfree(new_map);
2467 }
2468 }
2469
2470 mutex_unlock(&xps_map_mutex);
2471
2472 kfree(new_dev_maps);
2473 return -ENOMEM;
2474 }
2475 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2476
netif_set_xps_queue(struct net_device * dev,const struct cpumask * mask,u16 index)2477 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2478 u16 index)
2479 {
2480 int ret;
2481
2482 cpus_read_lock();
2483 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2484 cpus_read_unlock();
2485
2486 return ret;
2487 }
2488 EXPORT_SYMBOL(netif_set_xps_queue);
2489
2490 #endif
netdev_unbind_all_sb_channels(struct net_device * dev)2491 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2492 {
2493 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2494
2495 /* Unbind any subordinate channels */
2496 while (txq-- != &dev->_tx[0]) {
2497 if (txq->sb_dev)
2498 netdev_unbind_sb_channel(dev, txq->sb_dev);
2499 }
2500 }
2501
netdev_reset_tc(struct net_device * dev)2502 void netdev_reset_tc(struct net_device *dev)
2503 {
2504 #ifdef CONFIG_XPS
2505 netif_reset_xps_queues_gt(dev, 0);
2506 #endif
2507 netdev_unbind_all_sb_channels(dev);
2508
2509 /* Reset TC configuration of device */
2510 dev->num_tc = 0;
2511 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2512 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2513 }
2514 EXPORT_SYMBOL(netdev_reset_tc);
2515
netdev_set_tc_queue(struct net_device * dev,u8 tc,u16 count,u16 offset)2516 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2517 {
2518 if (tc >= dev->num_tc)
2519 return -EINVAL;
2520
2521 #ifdef CONFIG_XPS
2522 netif_reset_xps_queues(dev, offset, count);
2523 #endif
2524 dev->tc_to_txq[tc].count = count;
2525 dev->tc_to_txq[tc].offset = offset;
2526 return 0;
2527 }
2528 EXPORT_SYMBOL(netdev_set_tc_queue);
2529
netdev_set_num_tc(struct net_device * dev,u8 num_tc)2530 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2531 {
2532 if (num_tc > TC_MAX_QUEUE)
2533 return -EINVAL;
2534
2535 #ifdef CONFIG_XPS
2536 netif_reset_xps_queues_gt(dev, 0);
2537 #endif
2538 netdev_unbind_all_sb_channels(dev);
2539
2540 dev->num_tc = num_tc;
2541 return 0;
2542 }
2543 EXPORT_SYMBOL(netdev_set_num_tc);
2544
netdev_unbind_sb_channel(struct net_device * dev,struct net_device * sb_dev)2545 void netdev_unbind_sb_channel(struct net_device *dev,
2546 struct net_device *sb_dev)
2547 {
2548 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2549
2550 #ifdef CONFIG_XPS
2551 netif_reset_xps_queues_gt(sb_dev, 0);
2552 #endif
2553 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2554 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2555
2556 while (txq-- != &dev->_tx[0]) {
2557 if (txq->sb_dev == sb_dev)
2558 txq->sb_dev = NULL;
2559 }
2560 }
2561 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2562
netdev_bind_sb_channel_queue(struct net_device * dev,struct net_device * sb_dev,u8 tc,u16 count,u16 offset)2563 int netdev_bind_sb_channel_queue(struct net_device *dev,
2564 struct net_device *sb_dev,
2565 u8 tc, u16 count, u16 offset)
2566 {
2567 /* Make certain the sb_dev and dev are already configured */
2568 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2569 return -EINVAL;
2570
2571 /* We cannot hand out queues we don't have */
2572 if ((offset + count) > dev->real_num_tx_queues)
2573 return -EINVAL;
2574
2575 /* Record the mapping */
2576 sb_dev->tc_to_txq[tc].count = count;
2577 sb_dev->tc_to_txq[tc].offset = offset;
2578
2579 /* Provide a way for Tx queue to find the tc_to_txq map or
2580 * XPS map for itself.
2581 */
2582 while (count--)
2583 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2584
2585 return 0;
2586 }
2587 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2588
netdev_set_sb_channel(struct net_device * dev,u16 channel)2589 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2590 {
2591 /* Do not use a multiqueue device to represent a subordinate channel */
2592 if (netif_is_multiqueue(dev))
2593 return -ENODEV;
2594
2595 /* We allow channels 1 - 32767 to be used for subordinate channels.
2596 * Channel 0 is meant to be "native" mode and used only to represent
2597 * the main root device. We allow writing 0 to reset the device back
2598 * to normal mode after being used as a subordinate channel.
2599 */
2600 if (channel > S16_MAX)
2601 return -EINVAL;
2602
2603 dev->num_tc = -channel;
2604
2605 return 0;
2606 }
2607 EXPORT_SYMBOL(netdev_set_sb_channel);
2608
2609 /*
2610 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2611 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2612 */
netif_set_real_num_tx_queues(struct net_device * dev,unsigned int txq)2613 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2614 {
2615 bool disabling;
2616 int rc;
2617
2618 disabling = txq < dev->real_num_tx_queues;
2619
2620 if (txq < 1 || txq > dev->num_tx_queues)
2621 return -EINVAL;
2622
2623 if (dev->reg_state == NETREG_REGISTERED ||
2624 dev->reg_state == NETREG_UNREGISTERING) {
2625 ASSERT_RTNL();
2626
2627 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2628 txq);
2629 if (rc)
2630 return rc;
2631
2632 if (dev->num_tc)
2633 netif_setup_tc(dev, txq);
2634
2635 dev->real_num_tx_queues = txq;
2636
2637 if (disabling) {
2638 synchronize_net();
2639 qdisc_reset_all_tx_gt(dev, txq);
2640 #ifdef CONFIG_XPS
2641 netif_reset_xps_queues_gt(dev, txq);
2642 #endif
2643 }
2644 } else {
2645 dev->real_num_tx_queues = txq;
2646 }
2647
2648 return 0;
2649 }
2650 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2651
2652 #ifdef CONFIG_SYSFS
2653 /**
2654 * netif_set_real_num_rx_queues - set actual number of RX queues used
2655 * @dev: Network device
2656 * @rxq: Actual number of RX queues
2657 *
2658 * This must be called either with the rtnl_lock held or before
2659 * registration of the net device. Returns 0 on success, or a
2660 * negative error code. If called before registration, it always
2661 * succeeds.
2662 */
netif_set_real_num_rx_queues(struct net_device * dev,unsigned int rxq)2663 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2664 {
2665 int rc;
2666
2667 if (rxq < 1 || rxq > dev->num_rx_queues)
2668 return -EINVAL;
2669
2670 if (dev->reg_state == NETREG_REGISTERED) {
2671 ASSERT_RTNL();
2672
2673 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2674 rxq);
2675 if (rc)
2676 return rc;
2677 }
2678
2679 dev->real_num_rx_queues = rxq;
2680 return 0;
2681 }
2682 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2683 #endif
2684
2685 /**
2686 * netif_get_num_default_rss_queues - default number of RSS queues
2687 *
2688 * This routine should set an upper limit on the number of RSS queues
2689 * used by default by multiqueue devices.
2690 */
netif_get_num_default_rss_queues(void)2691 int netif_get_num_default_rss_queues(void)
2692 {
2693 return is_kdump_kernel() ?
2694 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2695 }
2696 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2697
__netif_reschedule(struct Qdisc * q)2698 static void __netif_reschedule(struct Qdisc *q)
2699 {
2700 struct softnet_data *sd;
2701 unsigned long flags;
2702
2703 local_irq_save(flags);
2704 sd = this_cpu_ptr(&softnet_data);
2705 q->next_sched = NULL;
2706 *sd->output_queue_tailp = q;
2707 sd->output_queue_tailp = &q->next_sched;
2708 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2709 local_irq_restore(flags);
2710 }
2711
__netif_schedule(struct Qdisc * q)2712 void __netif_schedule(struct Qdisc *q)
2713 {
2714 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2715 __netif_reschedule(q);
2716 }
2717 EXPORT_SYMBOL(__netif_schedule);
2718
2719 struct dev_kfree_skb_cb {
2720 enum skb_free_reason reason;
2721 };
2722
get_kfree_skb_cb(const struct sk_buff * skb)2723 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2724 {
2725 return (struct dev_kfree_skb_cb *)skb->cb;
2726 }
2727
netif_schedule_queue(struct netdev_queue * txq)2728 void netif_schedule_queue(struct netdev_queue *txq)
2729 {
2730 rcu_read_lock();
2731 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2732 struct Qdisc *q = rcu_dereference(txq->qdisc);
2733
2734 __netif_schedule(q);
2735 }
2736 rcu_read_unlock();
2737 }
2738 EXPORT_SYMBOL(netif_schedule_queue);
2739
netif_tx_wake_queue(struct netdev_queue * dev_queue)2740 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2741 {
2742 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2743 struct Qdisc *q;
2744
2745 rcu_read_lock();
2746 q = rcu_dereference(dev_queue->qdisc);
2747 __netif_schedule(q);
2748 rcu_read_unlock();
2749 }
2750 }
2751 EXPORT_SYMBOL(netif_tx_wake_queue);
2752
__dev_kfree_skb_irq(struct sk_buff * skb,enum skb_free_reason reason)2753 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2754 {
2755 unsigned long flags;
2756
2757 if (unlikely(!skb))
2758 return;
2759
2760 if (likely(refcount_read(&skb->users) == 1)) {
2761 smp_rmb();
2762 refcount_set(&skb->users, 0);
2763 } else if (likely(!refcount_dec_and_test(&skb->users))) {
2764 return;
2765 }
2766 get_kfree_skb_cb(skb)->reason = reason;
2767 local_irq_save(flags);
2768 skb->next = __this_cpu_read(softnet_data.completion_queue);
2769 __this_cpu_write(softnet_data.completion_queue, skb);
2770 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2771 local_irq_restore(flags);
2772 }
2773 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2774
__dev_kfree_skb_any(struct sk_buff * skb,enum skb_free_reason reason)2775 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2776 {
2777 if (in_irq() || irqs_disabled())
2778 __dev_kfree_skb_irq(skb, reason);
2779 else
2780 dev_kfree_skb(skb);
2781 }
2782 EXPORT_SYMBOL(__dev_kfree_skb_any);
2783
2784
2785 /**
2786 * netif_device_detach - mark device as removed
2787 * @dev: network device
2788 *
2789 * Mark device as removed from system and therefore no longer available.
2790 */
netif_device_detach(struct net_device * dev)2791 void netif_device_detach(struct net_device *dev)
2792 {
2793 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2794 netif_running(dev)) {
2795 netif_tx_stop_all_queues(dev);
2796 }
2797 }
2798 EXPORT_SYMBOL(netif_device_detach);
2799
2800 /**
2801 * netif_device_attach - mark device as attached
2802 * @dev: network device
2803 *
2804 * Mark device as attached from system and restart if needed.
2805 */
netif_device_attach(struct net_device * dev)2806 void netif_device_attach(struct net_device *dev)
2807 {
2808 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2809 netif_running(dev)) {
2810 netif_tx_wake_all_queues(dev);
2811 __netdev_watchdog_up(dev);
2812 }
2813 }
2814 EXPORT_SYMBOL(netif_device_attach);
2815
2816 /*
2817 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2818 * to be used as a distribution range.
2819 */
skb_tx_hash(const struct net_device * dev,const struct net_device * sb_dev,struct sk_buff * skb)2820 static u16 skb_tx_hash(const struct net_device *dev,
2821 const struct net_device *sb_dev,
2822 struct sk_buff *skb)
2823 {
2824 u32 hash;
2825 u16 qoffset = 0;
2826 u16 qcount = dev->real_num_tx_queues;
2827
2828 if (dev->num_tc) {
2829 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2830
2831 qoffset = sb_dev->tc_to_txq[tc].offset;
2832 qcount = sb_dev->tc_to_txq[tc].count;
2833 }
2834
2835 if (skb_rx_queue_recorded(skb)) {
2836 hash = skb_get_rx_queue(skb);
2837 while (unlikely(hash >= qcount))
2838 hash -= qcount;
2839 return hash + qoffset;
2840 }
2841
2842 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2843 }
2844
skb_warn_bad_offload(const struct sk_buff * skb)2845 static void skb_warn_bad_offload(const struct sk_buff *skb)
2846 {
2847 static const netdev_features_t null_features;
2848 struct net_device *dev = skb->dev;
2849 const char *name = "";
2850
2851 if (!net_ratelimit())
2852 return;
2853
2854 if (dev) {
2855 if (dev->dev.parent)
2856 name = dev_driver_string(dev->dev.parent);
2857 else
2858 name = netdev_name(dev);
2859 }
2860 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2861 "gso_type=%d ip_summed=%d\n",
2862 name, dev ? &dev->features : &null_features,
2863 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2864 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2865 skb_shinfo(skb)->gso_type, skb->ip_summed);
2866 }
2867
2868 /*
2869 * Invalidate hardware checksum when packet is to be mangled, and
2870 * complete checksum manually on outgoing path.
2871 */
skb_checksum_help(struct sk_buff * skb)2872 int skb_checksum_help(struct sk_buff *skb)
2873 {
2874 __wsum csum;
2875 int ret = 0, offset;
2876
2877 if (skb->ip_summed == CHECKSUM_COMPLETE)
2878 goto out_set_summed;
2879
2880 if (unlikely(skb_shinfo(skb)->gso_size)) {
2881 skb_warn_bad_offload(skb);
2882 return -EINVAL;
2883 }
2884
2885 /* Before computing a checksum, we should make sure no frag could
2886 * be modified by an external entity : checksum could be wrong.
2887 */
2888 if (skb_has_shared_frag(skb)) {
2889 ret = __skb_linearize(skb);
2890 if (ret)
2891 goto out;
2892 }
2893
2894 offset = skb_checksum_start_offset(skb);
2895 BUG_ON(offset >= skb_headlen(skb));
2896 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2897
2898 offset += skb->csum_offset;
2899 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2900
2901 if (skb_cloned(skb) &&
2902 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2903 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2904 if (ret)
2905 goto out;
2906 }
2907
2908 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2909 out_set_summed:
2910 skb->ip_summed = CHECKSUM_NONE;
2911 out:
2912 return ret;
2913 }
2914 EXPORT_SYMBOL(skb_checksum_help);
2915
skb_crc32c_csum_help(struct sk_buff * skb)2916 int skb_crc32c_csum_help(struct sk_buff *skb)
2917 {
2918 __le32 crc32c_csum;
2919 int ret = 0, offset, start;
2920
2921 if (skb->ip_summed != CHECKSUM_PARTIAL)
2922 goto out;
2923
2924 if (unlikely(skb_is_gso(skb)))
2925 goto out;
2926
2927 /* Before computing a checksum, we should make sure no frag could
2928 * be modified by an external entity : checksum could be wrong.
2929 */
2930 if (unlikely(skb_has_shared_frag(skb))) {
2931 ret = __skb_linearize(skb);
2932 if (ret)
2933 goto out;
2934 }
2935 start = skb_checksum_start_offset(skb);
2936 offset = start + offsetof(struct sctphdr, checksum);
2937 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2938 ret = -EINVAL;
2939 goto out;
2940 }
2941 if (skb_cloned(skb) &&
2942 !skb_clone_writable(skb, offset + sizeof(__le32))) {
2943 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2944 if (ret)
2945 goto out;
2946 }
2947 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2948 skb->len - start, ~(__u32)0,
2949 crc32c_csum_stub));
2950 *(__le32 *)(skb->data + offset) = crc32c_csum;
2951 skb->ip_summed = CHECKSUM_NONE;
2952 skb->csum_not_inet = 0;
2953 out:
2954 return ret;
2955 }
2956
skb_network_protocol(struct sk_buff * skb,int * depth)2957 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2958 {
2959 __be16 type = skb->protocol;
2960
2961 /* Tunnel gso handlers can set protocol to ethernet. */
2962 if (type == htons(ETH_P_TEB)) {
2963 struct ethhdr *eth;
2964
2965 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2966 return 0;
2967
2968 eth = (struct ethhdr *)skb->data;
2969 type = eth->h_proto;
2970 }
2971
2972 return __vlan_get_protocol(skb, type, depth);
2973 }
2974
2975 /**
2976 * skb_mac_gso_segment - mac layer segmentation handler.
2977 * @skb: buffer to segment
2978 * @features: features for the output path (see dev->features)
2979 */
skb_mac_gso_segment(struct sk_buff * skb,netdev_features_t features)2980 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2981 netdev_features_t features)
2982 {
2983 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2984 struct packet_offload *ptype;
2985 int vlan_depth = skb->mac_len;
2986 __be16 type = skb_network_protocol(skb, &vlan_depth);
2987
2988 if (unlikely(!type))
2989 return ERR_PTR(-EINVAL);
2990
2991 __skb_pull(skb, vlan_depth);
2992
2993 rcu_read_lock();
2994 list_for_each_entry_rcu(ptype, &offload_base, list) {
2995 if (ptype->type == type && ptype->callbacks.gso_segment) {
2996 segs = ptype->callbacks.gso_segment(skb, features);
2997 break;
2998 }
2999 }
3000 rcu_read_unlock();
3001
3002 __skb_push(skb, skb->data - skb_mac_header(skb));
3003
3004 return segs;
3005 }
3006 EXPORT_SYMBOL(skb_mac_gso_segment);
3007
3008
3009 /* openvswitch calls this on rx path, so we need a different check.
3010 */
skb_needs_check(struct sk_buff * skb,bool tx_path)3011 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3012 {
3013 if (tx_path)
3014 return skb->ip_summed != CHECKSUM_PARTIAL &&
3015 skb->ip_summed != CHECKSUM_UNNECESSARY;
3016
3017 return skb->ip_summed == CHECKSUM_NONE;
3018 }
3019
3020 /**
3021 * __skb_gso_segment - Perform segmentation on skb.
3022 * @skb: buffer to segment
3023 * @features: features for the output path (see dev->features)
3024 * @tx_path: whether it is called in TX path
3025 *
3026 * This function segments the given skb and returns a list of segments.
3027 *
3028 * It may return NULL if the skb requires no segmentation. This is
3029 * only possible when GSO is used for verifying header integrity.
3030 *
3031 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
3032 */
__skb_gso_segment(struct sk_buff * skb,netdev_features_t features,bool tx_path)3033 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3034 netdev_features_t features, bool tx_path)
3035 {
3036 struct sk_buff *segs;
3037
3038 if (unlikely(skb_needs_check(skb, tx_path))) {
3039 int err;
3040
3041 /* We're going to init ->check field in TCP or UDP header */
3042 err = skb_cow_head(skb, 0);
3043 if (err < 0)
3044 return ERR_PTR(err);
3045 }
3046
3047 /* Only report GSO partial support if it will enable us to
3048 * support segmentation on this frame without needing additional
3049 * work.
3050 */
3051 if (features & NETIF_F_GSO_PARTIAL) {
3052 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3053 struct net_device *dev = skb->dev;
3054
3055 partial_features |= dev->features & dev->gso_partial_features;
3056 if (!skb_gso_ok(skb, features | partial_features))
3057 features &= ~NETIF_F_GSO_PARTIAL;
3058 }
3059
3060 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
3061 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3062
3063 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3064 SKB_GSO_CB(skb)->encap_level = 0;
3065
3066 skb_reset_mac_header(skb);
3067 skb_reset_mac_len(skb);
3068
3069 segs = skb_mac_gso_segment(skb, features);
3070
3071 if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3072 skb_warn_bad_offload(skb);
3073
3074 return segs;
3075 }
3076 EXPORT_SYMBOL(__skb_gso_segment);
3077
3078 /* Take action when hardware reception checksum errors are detected. */
3079 #ifdef CONFIG_BUG
netdev_rx_csum_fault(struct net_device * dev)3080 void netdev_rx_csum_fault(struct net_device *dev)
3081 {
3082 if (net_ratelimit()) {
3083 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3084 dump_stack();
3085 }
3086 }
3087 EXPORT_SYMBOL(netdev_rx_csum_fault);
3088 #endif
3089
3090 /* XXX: check that highmem exists at all on the given machine. */
illegal_highdma(struct net_device * dev,struct sk_buff * skb)3091 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3092 {
3093 #ifdef CONFIG_HIGHMEM
3094 int i;
3095
3096 if (!(dev->features & NETIF_F_HIGHDMA)) {
3097 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3098 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3099
3100 if (PageHighMem(skb_frag_page(frag)))
3101 return 1;
3102 }
3103 }
3104 #endif
3105 return 0;
3106 }
3107
3108 /* If MPLS offload request, verify we are testing hardware MPLS features
3109 * instead of standard features for the netdev.
3110 */
3111 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3112 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3113 netdev_features_t features,
3114 __be16 type)
3115 {
3116 if (eth_p_mpls(type))
3117 features &= skb->dev->mpls_features;
3118
3119 return features;
3120 }
3121 #else
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3122 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3123 netdev_features_t features,
3124 __be16 type)
3125 {
3126 return features;
3127 }
3128 #endif
3129
harmonize_features(struct sk_buff * skb,netdev_features_t features)3130 static netdev_features_t harmonize_features(struct sk_buff *skb,
3131 netdev_features_t features)
3132 {
3133 int tmp;
3134 __be16 type;
3135
3136 type = skb_network_protocol(skb, &tmp);
3137 features = net_mpls_features(skb, features, type);
3138
3139 if (skb->ip_summed != CHECKSUM_NONE &&
3140 !can_checksum_protocol(features, type)) {
3141 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3142 }
3143 if (illegal_highdma(skb->dev, skb))
3144 features &= ~NETIF_F_SG;
3145
3146 return features;
3147 }
3148
passthru_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3149 netdev_features_t passthru_features_check(struct sk_buff *skb,
3150 struct net_device *dev,
3151 netdev_features_t features)
3152 {
3153 return features;
3154 }
3155 EXPORT_SYMBOL(passthru_features_check);
3156
dflt_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3157 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3158 struct net_device *dev,
3159 netdev_features_t features)
3160 {
3161 return vlan_features_check(skb, features);
3162 }
3163
gso_features_check(const struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3164 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3165 struct net_device *dev,
3166 netdev_features_t features)
3167 {
3168 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3169
3170 if (gso_segs > dev->gso_max_segs)
3171 return features & ~NETIF_F_GSO_MASK;
3172
3173 /* Support for GSO partial features requires software
3174 * intervention before we can actually process the packets
3175 * so we need to strip support for any partial features now
3176 * and we can pull them back in after we have partially
3177 * segmented the frame.
3178 */
3179 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3180 features &= ~dev->gso_partial_features;
3181
3182 /* Make sure to clear the IPv4 ID mangling feature if the
3183 * IPv4 header has the potential to be fragmented.
3184 */
3185 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3186 struct iphdr *iph = skb->encapsulation ?
3187 inner_ip_hdr(skb) : ip_hdr(skb);
3188
3189 if (!(iph->frag_off & htons(IP_DF)))
3190 features &= ~NETIF_F_TSO_MANGLEID;
3191 }
3192
3193 return features;
3194 }
3195
netif_skb_features(struct sk_buff * skb)3196 netdev_features_t netif_skb_features(struct sk_buff *skb)
3197 {
3198 struct net_device *dev = skb->dev;
3199 netdev_features_t features = dev->features;
3200
3201 if (skb_is_gso(skb))
3202 features = gso_features_check(skb, dev, features);
3203
3204 /* If encapsulation offload request, verify we are testing
3205 * hardware encapsulation features instead of standard
3206 * features for the netdev
3207 */
3208 if (skb->encapsulation)
3209 features &= dev->hw_enc_features;
3210
3211 if (skb_vlan_tagged(skb))
3212 features = netdev_intersect_features(features,
3213 dev->vlan_features |
3214 NETIF_F_HW_VLAN_CTAG_TX |
3215 NETIF_F_HW_VLAN_STAG_TX);
3216
3217 if (dev->netdev_ops->ndo_features_check)
3218 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3219 features);
3220 else
3221 features &= dflt_features_check(skb, dev, features);
3222
3223 return harmonize_features(skb, features);
3224 }
3225 EXPORT_SYMBOL(netif_skb_features);
3226
xmit_one(struct sk_buff * skb,struct net_device * dev,struct netdev_queue * txq,bool more)3227 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3228 struct netdev_queue *txq, bool more)
3229 {
3230 unsigned int len;
3231 int rc;
3232
3233 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
3234 dev_queue_xmit_nit(skb, dev);
3235
3236 len = skb->len;
3237 trace_net_dev_start_xmit(skb, dev);
3238 rc = netdev_start_xmit(skb, dev, txq, more);
3239 trace_net_dev_xmit(skb, rc, dev, len);
3240
3241 return rc;
3242 }
3243
dev_hard_start_xmit(struct sk_buff * first,struct net_device * dev,struct netdev_queue * txq,int * ret)3244 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3245 struct netdev_queue *txq, int *ret)
3246 {
3247 struct sk_buff *skb = first;
3248 int rc = NETDEV_TX_OK;
3249
3250 while (skb) {
3251 struct sk_buff *next = skb->next;
3252
3253 skb->next = NULL;
3254 rc = xmit_one(skb, dev, txq, next != NULL);
3255 if (unlikely(!dev_xmit_complete(rc))) {
3256 skb->next = next;
3257 goto out;
3258 }
3259
3260 skb = next;
3261 if (netif_xmit_stopped(txq) && skb) {
3262 rc = NETDEV_TX_BUSY;
3263 break;
3264 }
3265 }
3266
3267 out:
3268 *ret = rc;
3269 return skb;
3270 }
3271
validate_xmit_vlan(struct sk_buff * skb,netdev_features_t features)3272 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3273 netdev_features_t features)
3274 {
3275 if (skb_vlan_tag_present(skb) &&
3276 !vlan_hw_offload_capable(features, skb->vlan_proto))
3277 skb = __vlan_hwaccel_push_inside(skb);
3278 return skb;
3279 }
3280
skb_csum_hwoffload_help(struct sk_buff * skb,const netdev_features_t features)3281 int skb_csum_hwoffload_help(struct sk_buff *skb,
3282 const netdev_features_t features)
3283 {
3284 if (unlikely(skb->csum_not_inet))
3285 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3286 skb_crc32c_csum_help(skb);
3287
3288 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3289 }
3290 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3291
validate_xmit_skb(struct sk_buff * skb,struct net_device * dev,bool * again)3292 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3293 {
3294 netdev_features_t features;
3295
3296 features = netif_skb_features(skb);
3297 skb = validate_xmit_vlan(skb, features);
3298 if (unlikely(!skb))
3299 goto out_null;
3300
3301 skb = sk_validate_xmit_skb(skb, dev);
3302 if (unlikely(!skb))
3303 goto out_null;
3304
3305 if (netif_needs_gso(skb, features)) {
3306 struct sk_buff *segs;
3307
3308 segs = skb_gso_segment(skb, features);
3309 if (IS_ERR(segs)) {
3310 goto out_kfree_skb;
3311 } else if (segs) {
3312 consume_skb(skb);
3313 skb = segs;
3314 }
3315 } else {
3316 if (skb_needs_linearize(skb, features) &&
3317 __skb_linearize(skb))
3318 goto out_kfree_skb;
3319
3320 /* If packet is not checksummed and device does not
3321 * support checksumming for this protocol, complete
3322 * checksumming here.
3323 */
3324 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3325 if (skb->encapsulation)
3326 skb_set_inner_transport_header(skb,
3327 skb_checksum_start_offset(skb));
3328 else
3329 skb_set_transport_header(skb,
3330 skb_checksum_start_offset(skb));
3331 if (skb_csum_hwoffload_help(skb, features))
3332 goto out_kfree_skb;
3333 }
3334 }
3335
3336 skb = validate_xmit_xfrm(skb, features, again);
3337
3338 return skb;
3339
3340 out_kfree_skb:
3341 kfree_skb(skb);
3342 out_null:
3343 atomic_long_inc(&dev->tx_dropped);
3344 return NULL;
3345 }
3346
validate_xmit_skb_list(struct sk_buff * skb,struct net_device * dev,bool * again)3347 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3348 {
3349 struct sk_buff *next, *head = NULL, *tail;
3350
3351 for (; skb != NULL; skb = next) {
3352 next = skb->next;
3353 skb->next = NULL;
3354
3355 /* in case skb wont be segmented, point to itself */
3356 skb->prev = skb;
3357
3358 skb = validate_xmit_skb(skb, dev, again);
3359 if (!skb)
3360 continue;
3361
3362 if (!head)
3363 head = skb;
3364 else
3365 tail->next = skb;
3366 /* If skb was segmented, skb->prev points to
3367 * the last segment. If not, it still contains skb.
3368 */
3369 tail = skb->prev;
3370 }
3371 return head;
3372 }
3373 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3374
qdisc_pkt_len_init(struct sk_buff * skb)3375 static void qdisc_pkt_len_init(struct sk_buff *skb)
3376 {
3377 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3378
3379 qdisc_skb_cb(skb)->pkt_len = skb->len;
3380
3381 /* To get more precise estimation of bytes sent on wire,
3382 * we add to pkt_len the headers size of all segments
3383 */
3384 if (shinfo->gso_size) {
3385 unsigned int hdr_len;
3386 u16 gso_segs = shinfo->gso_segs;
3387
3388 /* mac layer + network layer */
3389 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3390
3391 /* + transport layer */
3392 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3393 const struct tcphdr *th;
3394 struct tcphdr _tcphdr;
3395
3396 th = skb_header_pointer(skb, skb_transport_offset(skb),
3397 sizeof(_tcphdr), &_tcphdr);
3398 if (likely(th))
3399 hdr_len += __tcp_hdrlen(th);
3400 } else {
3401 struct udphdr _udphdr;
3402
3403 if (skb_header_pointer(skb, skb_transport_offset(skb),
3404 sizeof(_udphdr), &_udphdr))
3405 hdr_len += sizeof(struct udphdr);
3406 }
3407
3408 if (shinfo->gso_type & SKB_GSO_DODGY)
3409 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3410 shinfo->gso_size);
3411
3412 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3413 }
3414 }
3415
__dev_xmit_skb(struct sk_buff * skb,struct Qdisc * q,struct net_device * dev,struct netdev_queue * txq)3416 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3417 struct net_device *dev,
3418 struct netdev_queue *txq)
3419 {
3420 spinlock_t *root_lock = qdisc_lock(q);
3421 struct sk_buff *to_free = NULL;
3422 bool contended;
3423 int rc;
3424
3425 qdisc_calculate_pkt_len(skb, q);
3426
3427 if (q->flags & TCQ_F_NOLOCK) {
3428 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3429 __qdisc_drop(skb, &to_free);
3430 rc = NET_XMIT_DROP;
3431 } else {
3432 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3433 qdisc_run(q);
3434 }
3435
3436 if (unlikely(to_free))
3437 kfree_skb_list(to_free);
3438 return rc;
3439 }
3440
3441 /*
3442 * Heuristic to force contended enqueues to serialize on a
3443 * separate lock before trying to get qdisc main lock.
3444 * This permits qdisc->running owner to get the lock more
3445 * often and dequeue packets faster.
3446 */
3447 contended = qdisc_is_running(q);
3448 if (unlikely(contended))
3449 spin_lock(&q->busylock);
3450
3451 spin_lock(root_lock);
3452 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3453 __qdisc_drop(skb, &to_free);
3454 rc = NET_XMIT_DROP;
3455 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3456 qdisc_run_begin(q)) {
3457 /*
3458 * This is a work-conserving queue; there are no old skbs
3459 * waiting to be sent out; and the qdisc is not running -
3460 * xmit the skb directly.
3461 */
3462
3463 qdisc_bstats_update(q, skb);
3464
3465 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3466 if (unlikely(contended)) {
3467 spin_unlock(&q->busylock);
3468 contended = false;
3469 }
3470 __qdisc_run(q);
3471 }
3472
3473 qdisc_run_end(q);
3474 rc = NET_XMIT_SUCCESS;
3475 } else {
3476 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3477 if (qdisc_run_begin(q)) {
3478 if (unlikely(contended)) {
3479 spin_unlock(&q->busylock);
3480 contended = false;
3481 }
3482 __qdisc_run(q);
3483 qdisc_run_end(q);
3484 }
3485 }
3486 spin_unlock(root_lock);
3487 if (unlikely(to_free))
3488 kfree_skb_list(to_free);
3489 if (unlikely(contended))
3490 spin_unlock(&q->busylock);
3491 return rc;
3492 }
3493
3494 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
skb_update_prio(struct sk_buff * skb)3495 static void skb_update_prio(struct sk_buff *skb)
3496 {
3497 const struct netprio_map *map;
3498 const struct sock *sk;
3499 unsigned int prioidx;
3500
3501 if (skb->priority)
3502 return;
3503 map = rcu_dereference_bh(skb->dev->priomap);
3504 if (!map)
3505 return;
3506 sk = skb_to_full_sk(skb);
3507 if (!sk)
3508 return;
3509
3510 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3511
3512 if (prioidx < map->priomap_len)
3513 skb->priority = map->priomap[prioidx];
3514 }
3515 #else
3516 #define skb_update_prio(skb)
3517 #endif
3518
3519 DEFINE_PER_CPU(int, xmit_recursion);
3520 EXPORT_SYMBOL(xmit_recursion);
3521
3522 /**
3523 * dev_loopback_xmit - loop back @skb
3524 * @net: network namespace this loopback is happening in
3525 * @sk: sk needed to be a netfilter okfn
3526 * @skb: buffer to transmit
3527 */
dev_loopback_xmit(struct net * net,struct sock * sk,struct sk_buff * skb)3528 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3529 {
3530 skb_reset_mac_header(skb);
3531 __skb_pull(skb, skb_network_offset(skb));
3532 skb->pkt_type = PACKET_LOOPBACK;
3533 skb->ip_summed = CHECKSUM_UNNECESSARY;
3534 WARN_ON(!skb_dst(skb));
3535 skb_dst_force(skb);
3536 netif_rx_ni(skb);
3537 return 0;
3538 }
3539 EXPORT_SYMBOL(dev_loopback_xmit);
3540
3541 #ifdef CONFIG_NET_EGRESS
3542 static struct sk_buff *
sch_handle_egress(struct sk_buff * skb,int * ret,struct net_device * dev)3543 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3544 {
3545 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3546 struct tcf_result cl_res;
3547
3548 if (!miniq)
3549 return skb;
3550
3551 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3552 mini_qdisc_bstats_cpu_update(miniq, skb);
3553
3554 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3555 case TC_ACT_OK:
3556 case TC_ACT_RECLASSIFY:
3557 skb->tc_index = TC_H_MIN(cl_res.classid);
3558 break;
3559 case TC_ACT_SHOT:
3560 mini_qdisc_qstats_cpu_drop(miniq);
3561 *ret = NET_XMIT_DROP;
3562 kfree_skb(skb);
3563 return NULL;
3564 case TC_ACT_STOLEN:
3565 case TC_ACT_QUEUED:
3566 case TC_ACT_TRAP:
3567 *ret = NET_XMIT_SUCCESS;
3568 consume_skb(skb);
3569 return NULL;
3570 case TC_ACT_REDIRECT:
3571 /* No need to push/pop skb's mac_header here on egress! */
3572 skb_do_redirect(skb);
3573 *ret = NET_XMIT_SUCCESS;
3574 return NULL;
3575 default:
3576 break;
3577 }
3578
3579 return skb;
3580 }
3581 #endif /* CONFIG_NET_EGRESS */
3582
3583 #ifdef CONFIG_XPS
__get_xps_queue_idx(struct net_device * dev,struct sk_buff * skb,struct xps_dev_maps * dev_maps,unsigned int tci)3584 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3585 struct xps_dev_maps *dev_maps, unsigned int tci)
3586 {
3587 struct xps_map *map;
3588 int queue_index = -1;
3589
3590 if (dev->num_tc) {
3591 tci *= dev->num_tc;
3592 tci += netdev_get_prio_tc_map(dev, skb->priority);
3593 }
3594
3595 map = rcu_dereference(dev_maps->attr_map[tci]);
3596 if (map) {
3597 if (map->len == 1)
3598 queue_index = map->queues[0];
3599 else
3600 queue_index = map->queues[reciprocal_scale(
3601 skb_get_hash(skb), map->len)];
3602 if (unlikely(queue_index >= dev->real_num_tx_queues))
3603 queue_index = -1;
3604 }
3605 return queue_index;
3606 }
3607 #endif
3608
get_xps_queue(struct net_device * dev,struct net_device * sb_dev,struct sk_buff * skb)3609 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3610 struct sk_buff *skb)
3611 {
3612 #ifdef CONFIG_XPS
3613 struct xps_dev_maps *dev_maps;
3614 struct sock *sk = skb->sk;
3615 int queue_index = -1;
3616
3617 if (!static_key_false(&xps_needed))
3618 return -1;
3619
3620 rcu_read_lock();
3621 if (!static_key_false(&xps_rxqs_needed))
3622 goto get_cpus_map;
3623
3624 dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3625 if (dev_maps) {
3626 int tci = sk_rx_queue_get(sk);
3627
3628 if (tci >= 0 && tci < dev->num_rx_queues)
3629 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3630 tci);
3631 }
3632
3633 get_cpus_map:
3634 if (queue_index < 0) {
3635 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3636 if (dev_maps) {
3637 unsigned int tci = skb->sender_cpu - 1;
3638
3639 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3640 tci);
3641 }
3642 }
3643 rcu_read_unlock();
3644
3645 return queue_index;
3646 #else
3647 return -1;
3648 #endif
3649 }
3650
dev_pick_tx_zero(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev,select_queue_fallback_t fallback)3651 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3652 struct net_device *sb_dev,
3653 select_queue_fallback_t fallback)
3654 {
3655 return 0;
3656 }
3657 EXPORT_SYMBOL(dev_pick_tx_zero);
3658
dev_pick_tx_cpu_id(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev,select_queue_fallback_t fallback)3659 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3660 struct net_device *sb_dev,
3661 select_queue_fallback_t fallback)
3662 {
3663 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3664 }
3665 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3666
__netdev_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)3667 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3668 struct net_device *sb_dev)
3669 {
3670 struct sock *sk = skb->sk;
3671 int queue_index = sk_tx_queue_get(sk);
3672
3673 sb_dev = sb_dev ? : dev;
3674
3675 if (queue_index < 0 || skb->ooo_okay ||
3676 queue_index >= dev->real_num_tx_queues) {
3677 int new_index = get_xps_queue(dev, sb_dev, skb);
3678
3679 if (new_index < 0)
3680 new_index = skb_tx_hash(dev, sb_dev, skb);
3681
3682 if (queue_index != new_index && sk &&
3683 sk_fullsock(sk) &&
3684 rcu_access_pointer(sk->sk_dst_cache))
3685 sk_tx_queue_set(sk, new_index);
3686
3687 queue_index = new_index;
3688 }
3689
3690 return queue_index;
3691 }
3692
netdev_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)3693 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3694 struct sk_buff *skb,
3695 struct net_device *sb_dev)
3696 {
3697 int queue_index = 0;
3698
3699 #ifdef CONFIG_XPS
3700 u32 sender_cpu = skb->sender_cpu - 1;
3701
3702 if (sender_cpu >= (u32)NR_CPUS)
3703 skb->sender_cpu = raw_smp_processor_id() + 1;
3704 #endif
3705
3706 if (dev->real_num_tx_queues != 1) {
3707 const struct net_device_ops *ops = dev->netdev_ops;
3708
3709 if (ops->ndo_select_queue)
3710 queue_index = ops->ndo_select_queue(dev, skb, sb_dev,
3711 __netdev_pick_tx);
3712 else
3713 queue_index = __netdev_pick_tx(dev, skb, sb_dev);
3714
3715 queue_index = netdev_cap_txqueue(dev, queue_index);
3716 }
3717
3718 skb_set_queue_mapping(skb, queue_index);
3719 return netdev_get_tx_queue(dev, queue_index);
3720 }
3721
3722 /**
3723 * __dev_queue_xmit - transmit a buffer
3724 * @skb: buffer to transmit
3725 * @sb_dev: suboordinate device used for L2 forwarding offload
3726 *
3727 * Queue a buffer for transmission to a network device. The caller must
3728 * have set the device and priority and built the buffer before calling
3729 * this function. The function can be called from an interrupt.
3730 *
3731 * A negative errno code is returned on a failure. A success does not
3732 * guarantee the frame will be transmitted as it may be dropped due
3733 * to congestion or traffic shaping.
3734 *
3735 * -----------------------------------------------------------------------------------
3736 * I notice this method can also return errors from the queue disciplines,
3737 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3738 * be positive.
3739 *
3740 * Regardless of the return value, the skb is consumed, so it is currently
3741 * difficult to retry a send to this method. (You can bump the ref count
3742 * before sending to hold a reference for retry if you are careful.)
3743 *
3744 * When calling this method, interrupts MUST be enabled. This is because
3745 * the BH enable code must have IRQs enabled so that it will not deadlock.
3746 * --BLG
3747 */
__dev_queue_xmit(struct sk_buff * skb,struct net_device * sb_dev)3748 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
3749 {
3750 struct net_device *dev = skb->dev;
3751 struct netdev_queue *txq;
3752 struct Qdisc *q;
3753 int rc = -ENOMEM;
3754 bool again = false;
3755
3756 skb_reset_mac_header(skb);
3757
3758 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3759 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3760
3761 /* Disable soft irqs for various locks below. Also
3762 * stops preemption for RCU.
3763 */
3764 rcu_read_lock_bh();
3765
3766 skb_update_prio(skb);
3767
3768 qdisc_pkt_len_init(skb);
3769 #ifdef CONFIG_NET_CLS_ACT
3770 skb->tc_at_ingress = 0;
3771 # ifdef CONFIG_NET_EGRESS
3772 if (static_branch_unlikely(&egress_needed_key)) {
3773 skb = sch_handle_egress(skb, &rc, dev);
3774 if (!skb)
3775 goto out;
3776 }
3777 # endif
3778 #endif
3779 /* If device/qdisc don't need skb->dst, release it right now while
3780 * its hot in this cpu cache.
3781 */
3782 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3783 skb_dst_drop(skb);
3784 else
3785 skb_dst_force(skb);
3786
3787 txq = netdev_pick_tx(dev, skb, sb_dev);
3788 q = rcu_dereference_bh(txq->qdisc);
3789
3790 trace_net_dev_queue(skb);
3791 if (q->enqueue) {
3792 rc = __dev_xmit_skb(skb, q, dev, txq);
3793 goto out;
3794 }
3795
3796 /* The device has no queue. Common case for software devices:
3797 * loopback, all the sorts of tunnels...
3798
3799 * Really, it is unlikely that netif_tx_lock protection is necessary
3800 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
3801 * counters.)
3802 * However, it is possible, that they rely on protection
3803 * made by us here.
3804
3805 * Check this and shot the lock. It is not prone from deadlocks.
3806 *Either shot noqueue qdisc, it is even simpler 8)
3807 */
3808 if (dev->flags & IFF_UP) {
3809 int cpu = smp_processor_id(); /* ok because BHs are off */
3810
3811 if (txq->xmit_lock_owner != cpu) {
3812 if (unlikely(__this_cpu_read(xmit_recursion) >
3813 XMIT_RECURSION_LIMIT))
3814 goto recursion_alert;
3815
3816 skb = validate_xmit_skb(skb, dev, &again);
3817 if (!skb)
3818 goto out;
3819
3820 HARD_TX_LOCK(dev, txq, cpu);
3821
3822 if (!netif_xmit_stopped(txq)) {
3823 __this_cpu_inc(xmit_recursion);
3824 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3825 __this_cpu_dec(xmit_recursion);
3826 if (dev_xmit_complete(rc)) {
3827 HARD_TX_UNLOCK(dev, txq);
3828 goto out;
3829 }
3830 }
3831 HARD_TX_UNLOCK(dev, txq);
3832 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3833 dev->name);
3834 } else {
3835 /* Recursion is detected! It is possible,
3836 * unfortunately
3837 */
3838 recursion_alert:
3839 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3840 dev->name);
3841 }
3842 }
3843
3844 rc = -ENETDOWN;
3845 rcu_read_unlock_bh();
3846
3847 atomic_long_inc(&dev->tx_dropped);
3848 kfree_skb_list(skb);
3849 return rc;
3850 out:
3851 rcu_read_unlock_bh();
3852 return rc;
3853 }
3854
dev_queue_xmit(struct sk_buff * skb)3855 int dev_queue_xmit(struct sk_buff *skb)
3856 {
3857 return __dev_queue_xmit(skb, NULL);
3858 }
3859 EXPORT_SYMBOL(dev_queue_xmit);
3860
dev_queue_xmit_accel(struct sk_buff * skb,struct net_device * sb_dev)3861 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
3862 {
3863 return __dev_queue_xmit(skb, sb_dev);
3864 }
3865 EXPORT_SYMBOL(dev_queue_xmit_accel);
3866
dev_direct_xmit(struct sk_buff * skb,u16 queue_id)3867 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3868 {
3869 struct net_device *dev = skb->dev;
3870 struct sk_buff *orig_skb = skb;
3871 struct netdev_queue *txq;
3872 int ret = NETDEV_TX_BUSY;
3873 bool again = false;
3874
3875 if (unlikely(!netif_running(dev) ||
3876 !netif_carrier_ok(dev)))
3877 goto drop;
3878
3879 skb = validate_xmit_skb_list(skb, dev, &again);
3880 if (skb != orig_skb)
3881 goto drop;
3882
3883 skb_set_queue_mapping(skb, queue_id);
3884 txq = skb_get_tx_queue(dev, skb);
3885
3886 local_bh_disable();
3887
3888 HARD_TX_LOCK(dev, txq, smp_processor_id());
3889 if (!netif_xmit_frozen_or_drv_stopped(txq))
3890 ret = netdev_start_xmit(skb, dev, txq, false);
3891 HARD_TX_UNLOCK(dev, txq);
3892
3893 local_bh_enable();
3894
3895 if (!dev_xmit_complete(ret))
3896 kfree_skb(skb);
3897
3898 return ret;
3899 drop:
3900 atomic_long_inc(&dev->tx_dropped);
3901 kfree_skb_list(skb);
3902 return NET_XMIT_DROP;
3903 }
3904 EXPORT_SYMBOL(dev_direct_xmit);
3905
3906 /*************************************************************************
3907 * Receiver routines
3908 *************************************************************************/
3909
3910 int netdev_max_backlog __read_mostly = 1000;
3911 EXPORT_SYMBOL(netdev_max_backlog);
3912
3913 int netdev_tstamp_prequeue __read_mostly = 1;
3914 int netdev_budget __read_mostly = 300;
3915 unsigned int __read_mostly netdev_budget_usecs = 2000;
3916 int weight_p __read_mostly = 64; /* old backlog weight */
3917 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
3918 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
3919 int dev_rx_weight __read_mostly = 64;
3920 int dev_tx_weight __read_mostly = 64;
3921
3922 /* Called with irq disabled */
____napi_schedule(struct softnet_data * sd,struct napi_struct * napi)3923 static inline void ____napi_schedule(struct softnet_data *sd,
3924 struct napi_struct *napi)
3925 {
3926 list_add_tail(&napi->poll_list, &sd->poll_list);
3927 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3928 }
3929
3930 #ifdef CONFIG_RPS
3931
3932 /* One global table that all flow-based protocols share. */
3933 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3934 EXPORT_SYMBOL(rps_sock_flow_table);
3935 u32 rps_cpu_mask __read_mostly;
3936 EXPORT_SYMBOL(rps_cpu_mask);
3937
3938 struct static_key rps_needed __read_mostly;
3939 EXPORT_SYMBOL(rps_needed);
3940 struct static_key rfs_needed __read_mostly;
3941 EXPORT_SYMBOL(rfs_needed);
3942
3943 static struct rps_dev_flow *
set_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow * rflow,u16 next_cpu)3944 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3945 struct rps_dev_flow *rflow, u16 next_cpu)
3946 {
3947 if (next_cpu < nr_cpu_ids) {
3948 #ifdef CONFIG_RFS_ACCEL
3949 struct netdev_rx_queue *rxqueue;
3950 struct rps_dev_flow_table *flow_table;
3951 struct rps_dev_flow *old_rflow;
3952 u32 flow_id;
3953 u16 rxq_index;
3954 int rc;
3955
3956 /* Should we steer this flow to a different hardware queue? */
3957 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3958 !(dev->features & NETIF_F_NTUPLE))
3959 goto out;
3960 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3961 if (rxq_index == skb_get_rx_queue(skb))
3962 goto out;
3963
3964 rxqueue = dev->_rx + rxq_index;
3965 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3966 if (!flow_table)
3967 goto out;
3968 flow_id = skb_get_hash(skb) & flow_table->mask;
3969 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3970 rxq_index, flow_id);
3971 if (rc < 0)
3972 goto out;
3973 old_rflow = rflow;
3974 rflow = &flow_table->flows[flow_id];
3975 rflow->filter = rc;
3976 if (old_rflow->filter == rflow->filter)
3977 old_rflow->filter = RPS_NO_FILTER;
3978 out:
3979 #endif
3980 rflow->last_qtail =
3981 per_cpu(softnet_data, next_cpu).input_queue_head;
3982 }
3983
3984 rflow->cpu = next_cpu;
3985 return rflow;
3986 }
3987
3988 /*
3989 * get_rps_cpu is called from netif_receive_skb and returns the target
3990 * CPU from the RPS map of the receiving queue for a given skb.
3991 * rcu_read_lock must be held on entry.
3992 */
get_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow ** rflowp)3993 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3994 struct rps_dev_flow **rflowp)
3995 {
3996 const struct rps_sock_flow_table *sock_flow_table;
3997 struct netdev_rx_queue *rxqueue = dev->_rx;
3998 struct rps_dev_flow_table *flow_table;
3999 struct rps_map *map;
4000 int cpu = -1;
4001 u32 tcpu;
4002 u32 hash;
4003
4004 if (skb_rx_queue_recorded(skb)) {
4005 u16 index = skb_get_rx_queue(skb);
4006
4007 if (unlikely(index >= dev->real_num_rx_queues)) {
4008 WARN_ONCE(dev->real_num_rx_queues > 1,
4009 "%s received packet on queue %u, but number "
4010 "of RX queues is %u\n",
4011 dev->name, index, dev->real_num_rx_queues);
4012 goto done;
4013 }
4014 rxqueue += index;
4015 }
4016
4017 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4018
4019 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4020 map = rcu_dereference(rxqueue->rps_map);
4021 if (!flow_table && !map)
4022 goto done;
4023
4024 skb_reset_network_header(skb);
4025 hash = skb_get_hash(skb);
4026 if (!hash)
4027 goto done;
4028
4029 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4030 if (flow_table && sock_flow_table) {
4031 struct rps_dev_flow *rflow;
4032 u32 next_cpu;
4033 u32 ident;
4034
4035 /* First check into global flow table if there is a match */
4036 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4037 if ((ident ^ hash) & ~rps_cpu_mask)
4038 goto try_rps;
4039
4040 next_cpu = ident & rps_cpu_mask;
4041
4042 /* OK, now we know there is a match,
4043 * we can look at the local (per receive queue) flow table
4044 */
4045 rflow = &flow_table->flows[hash & flow_table->mask];
4046 tcpu = rflow->cpu;
4047
4048 /*
4049 * If the desired CPU (where last recvmsg was done) is
4050 * different from current CPU (one in the rx-queue flow
4051 * table entry), switch if one of the following holds:
4052 * - Current CPU is unset (>= nr_cpu_ids).
4053 * - Current CPU is offline.
4054 * - The current CPU's queue tail has advanced beyond the
4055 * last packet that was enqueued using this table entry.
4056 * This guarantees that all previous packets for the flow
4057 * have been dequeued, thus preserving in order delivery.
4058 */
4059 if (unlikely(tcpu != next_cpu) &&
4060 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4061 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4062 rflow->last_qtail)) >= 0)) {
4063 tcpu = next_cpu;
4064 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4065 }
4066
4067 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4068 *rflowp = rflow;
4069 cpu = tcpu;
4070 goto done;
4071 }
4072 }
4073
4074 try_rps:
4075
4076 if (map) {
4077 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4078 if (cpu_online(tcpu)) {
4079 cpu = tcpu;
4080 goto done;
4081 }
4082 }
4083
4084 done:
4085 return cpu;
4086 }
4087
4088 #ifdef CONFIG_RFS_ACCEL
4089
4090 /**
4091 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4092 * @dev: Device on which the filter was set
4093 * @rxq_index: RX queue index
4094 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4095 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4096 *
4097 * Drivers that implement ndo_rx_flow_steer() should periodically call
4098 * this function for each installed filter and remove the filters for
4099 * which it returns %true.
4100 */
rps_may_expire_flow(struct net_device * dev,u16 rxq_index,u32 flow_id,u16 filter_id)4101 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4102 u32 flow_id, u16 filter_id)
4103 {
4104 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4105 struct rps_dev_flow_table *flow_table;
4106 struct rps_dev_flow *rflow;
4107 bool expire = true;
4108 unsigned int cpu;
4109
4110 rcu_read_lock();
4111 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4112 if (flow_table && flow_id <= flow_table->mask) {
4113 rflow = &flow_table->flows[flow_id];
4114 cpu = READ_ONCE(rflow->cpu);
4115 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4116 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4117 rflow->last_qtail) <
4118 (int)(10 * flow_table->mask)))
4119 expire = false;
4120 }
4121 rcu_read_unlock();
4122 return expire;
4123 }
4124 EXPORT_SYMBOL(rps_may_expire_flow);
4125
4126 #endif /* CONFIG_RFS_ACCEL */
4127
4128 /* Called from hardirq (IPI) context */
rps_trigger_softirq(void * data)4129 static void rps_trigger_softirq(void *data)
4130 {
4131 struct softnet_data *sd = data;
4132
4133 ____napi_schedule(sd, &sd->backlog);
4134 sd->received_rps++;
4135 }
4136
4137 #endif /* CONFIG_RPS */
4138
4139 /*
4140 * Check if this softnet_data structure is another cpu one
4141 * If yes, queue it to our IPI list and return 1
4142 * If no, return 0
4143 */
rps_ipi_queued(struct softnet_data * sd)4144 static int rps_ipi_queued(struct softnet_data *sd)
4145 {
4146 #ifdef CONFIG_RPS
4147 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4148
4149 if (sd != mysd) {
4150 sd->rps_ipi_next = mysd->rps_ipi_list;
4151 mysd->rps_ipi_list = sd;
4152
4153 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4154 return 1;
4155 }
4156 #endif /* CONFIG_RPS */
4157 return 0;
4158 }
4159
4160 #ifdef CONFIG_NET_FLOW_LIMIT
4161 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4162 #endif
4163
skb_flow_limit(struct sk_buff * skb,unsigned int qlen)4164 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4165 {
4166 #ifdef CONFIG_NET_FLOW_LIMIT
4167 struct sd_flow_limit *fl;
4168 struct softnet_data *sd;
4169 unsigned int old_flow, new_flow;
4170
4171 if (qlen < (netdev_max_backlog >> 1))
4172 return false;
4173
4174 sd = this_cpu_ptr(&softnet_data);
4175
4176 rcu_read_lock();
4177 fl = rcu_dereference(sd->flow_limit);
4178 if (fl) {
4179 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4180 old_flow = fl->history[fl->history_head];
4181 fl->history[fl->history_head] = new_flow;
4182
4183 fl->history_head++;
4184 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4185
4186 if (likely(fl->buckets[old_flow]))
4187 fl->buckets[old_flow]--;
4188
4189 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4190 fl->count++;
4191 rcu_read_unlock();
4192 return true;
4193 }
4194 }
4195 rcu_read_unlock();
4196 #endif
4197 return false;
4198 }
4199
4200 /*
4201 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4202 * queue (may be a remote CPU queue).
4203 */
enqueue_to_backlog(struct sk_buff * skb,int cpu,unsigned int * qtail)4204 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4205 unsigned int *qtail)
4206 {
4207 struct softnet_data *sd;
4208 unsigned long flags;
4209 unsigned int qlen;
4210
4211 sd = &per_cpu(softnet_data, cpu);
4212
4213 local_irq_save(flags);
4214
4215 rps_lock(sd);
4216 if (!netif_running(skb->dev))
4217 goto drop;
4218 qlen = skb_queue_len(&sd->input_pkt_queue);
4219 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4220 if (qlen) {
4221 enqueue:
4222 __skb_queue_tail(&sd->input_pkt_queue, skb);
4223 input_queue_tail_incr_save(sd, qtail);
4224 rps_unlock(sd);
4225 local_irq_restore(flags);
4226 return NET_RX_SUCCESS;
4227 }
4228
4229 /* Schedule NAPI for backlog device
4230 * We can use non atomic operation since we own the queue lock
4231 */
4232 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4233 if (!rps_ipi_queued(sd))
4234 ____napi_schedule(sd, &sd->backlog);
4235 }
4236 goto enqueue;
4237 }
4238
4239 drop:
4240 sd->dropped++;
4241 rps_unlock(sd);
4242
4243 local_irq_restore(flags);
4244
4245 atomic_long_inc(&skb->dev->rx_dropped);
4246 kfree_skb(skb);
4247 return NET_RX_DROP;
4248 }
4249
netif_get_rxqueue(struct sk_buff * skb)4250 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4251 {
4252 struct net_device *dev = skb->dev;
4253 struct netdev_rx_queue *rxqueue;
4254
4255 rxqueue = dev->_rx;
4256
4257 if (skb_rx_queue_recorded(skb)) {
4258 u16 index = skb_get_rx_queue(skb);
4259
4260 if (unlikely(index >= dev->real_num_rx_queues)) {
4261 WARN_ONCE(dev->real_num_rx_queues > 1,
4262 "%s received packet on queue %u, but number "
4263 "of RX queues is %u\n",
4264 dev->name, index, dev->real_num_rx_queues);
4265
4266 return rxqueue; /* Return first rxqueue */
4267 }
4268 rxqueue += index;
4269 }
4270 return rxqueue;
4271 }
4272
netif_receive_generic_xdp(struct sk_buff * skb,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)4273 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4274 struct xdp_buff *xdp,
4275 struct bpf_prog *xdp_prog)
4276 {
4277 struct netdev_rx_queue *rxqueue;
4278 void *orig_data, *orig_data_end;
4279 u32 metalen, act = XDP_DROP;
4280 int hlen, off;
4281 u32 mac_len;
4282
4283 /* Reinjected packets coming from act_mirred or similar should
4284 * not get XDP generic processing.
4285 */
4286 if (skb_cloned(skb) || skb_is_tc_redirected(skb))
4287 return XDP_PASS;
4288
4289 /* XDP packets must be linear and must have sufficient headroom
4290 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4291 * native XDP provides, thus we need to do it here as well.
4292 */
4293 if (skb_is_nonlinear(skb) ||
4294 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4295 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4296 int troom = skb->tail + skb->data_len - skb->end;
4297
4298 /* In case we have to go down the path and also linearize,
4299 * then lets do the pskb_expand_head() work just once here.
4300 */
4301 if (pskb_expand_head(skb,
4302 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4303 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4304 goto do_drop;
4305 if (skb_linearize(skb))
4306 goto do_drop;
4307 }
4308
4309 /* The XDP program wants to see the packet starting at the MAC
4310 * header.
4311 */
4312 mac_len = skb->data - skb_mac_header(skb);
4313 hlen = skb_headlen(skb) + mac_len;
4314 xdp->data = skb->data - mac_len;
4315 xdp->data_meta = xdp->data;
4316 xdp->data_end = xdp->data + hlen;
4317 xdp->data_hard_start = skb->data - skb_headroom(skb);
4318 orig_data_end = xdp->data_end;
4319 orig_data = xdp->data;
4320
4321 rxqueue = netif_get_rxqueue(skb);
4322 xdp->rxq = &rxqueue->xdp_rxq;
4323
4324 act = bpf_prog_run_xdp(xdp_prog, xdp);
4325
4326 off = xdp->data - orig_data;
4327 if (off > 0)
4328 __skb_pull(skb, off);
4329 else if (off < 0)
4330 __skb_push(skb, -off);
4331 skb->mac_header += off;
4332
4333 /* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4334 * pckt.
4335 */
4336 off = orig_data_end - xdp->data_end;
4337 if (off != 0) {
4338 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4339 skb->len -= off;
4340
4341 }
4342
4343 switch (act) {
4344 case XDP_REDIRECT:
4345 case XDP_TX:
4346 __skb_push(skb, mac_len);
4347 break;
4348 case XDP_PASS:
4349 metalen = xdp->data - xdp->data_meta;
4350 if (metalen)
4351 skb_metadata_set(skb, metalen);
4352 break;
4353 default:
4354 bpf_warn_invalid_xdp_action(act);
4355 /* fall through */
4356 case XDP_ABORTED:
4357 trace_xdp_exception(skb->dev, xdp_prog, act);
4358 /* fall through */
4359 case XDP_DROP:
4360 do_drop:
4361 kfree_skb(skb);
4362 break;
4363 }
4364
4365 return act;
4366 }
4367
4368 /* When doing generic XDP we have to bypass the qdisc layer and the
4369 * network taps in order to match in-driver-XDP behavior.
4370 */
generic_xdp_tx(struct sk_buff * skb,struct bpf_prog * xdp_prog)4371 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4372 {
4373 struct net_device *dev = skb->dev;
4374 struct netdev_queue *txq;
4375 bool free_skb = true;
4376 int cpu, rc;
4377
4378 txq = netdev_pick_tx(dev, skb, NULL);
4379 cpu = smp_processor_id();
4380 HARD_TX_LOCK(dev, txq, cpu);
4381 if (!netif_xmit_stopped(txq)) {
4382 rc = netdev_start_xmit(skb, dev, txq, 0);
4383 if (dev_xmit_complete(rc))
4384 free_skb = false;
4385 }
4386 HARD_TX_UNLOCK(dev, txq);
4387 if (free_skb) {
4388 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4389 kfree_skb(skb);
4390 }
4391 }
4392 EXPORT_SYMBOL_GPL(generic_xdp_tx);
4393
4394 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4395
do_xdp_generic(struct bpf_prog * xdp_prog,struct sk_buff * skb)4396 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4397 {
4398 if (xdp_prog) {
4399 struct xdp_buff xdp;
4400 u32 act;
4401 int err;
4402
4403 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4404 if (act != XDP_PASS) {
4405 switch (act) {
4406 case XDP_REDIRECT:
4407 err = xdp_do_generic_redirect(skb->dev, skb,
4408 &xdp, xdp_prog);
4409 if (err)
4410 goto out_redir;
4411 break;
4412 case XDP_TX:
4413 generic_xdp_tx(skb, xdp_prog);
4414 break;
4415 }
4416 return XDP_DROP;
4417 }
4418 }
4419 return XDP_PASS;
4420 out_redir:
4421 kfree_skb(skb);
4422 return XDP_DROP;
4423 }
4424 EXPORT_SYMBOL_GPL(do_xdp_generic);
4425
netif_rx_internal(struct sk_buff * skb)4426 static int netif_rx_internal(struct sk_buff *skb)
4427 {
4428 int ret;
4429
4430 net_timestamp_check(netdev_tstamp_prequeue, skb);
4431
4432 trace_netif_rx(skb);
4433
4434 if (static_branch_unlikely(&generic_xdp_needed_key)) {
4435 int ret;
4436
4437 preempt_disable();
4438 rcu_read_lock();
4439 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4440 rcu_read_unlock();
4441 preempt_enable();
4442
4443 /* Consider XDP consuming the packet a success from
4444 * the netdev point of view we do not want to count
4445 * this as an error.
4446 */
4447 if (ret != XDP_PASS)
4448 return NET_RX_SUCCESS;
4449 }
4450
4451 #ifdef CONFIG_RPS
4452 if (static_key_false(&rps_needed)) {
4453 struct rps_dev_flow voidflow, *rflow = &voidflow;
4454 int cpu;
4455
4456 preempt_disable();
4457 rcu_read_lock();
4458
4459 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4460 if (cpu < 0)
4461 cpu = smp_processor_id();
4462
4463 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4464
4465 rcu_read_unlock();
4466 preempt_enable();
4467 } else
4468 #endif
4469 {
4470 unsigned int qtail;
4471
4472 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4473 put_cpu();
4474 }
4475 return ret;
4476 }
4477
4478 /**
4479 * netif_rx - post buffer to the network code
4480 * @skb: buffer to post
4481 *
4482 * This function receives a packet from a device driver and queues it for
4483 * the upper (protocol) levels to process. It always succeeds. The buffer
4484 * may be dropped during processing for congestion control or by the
4485 * protocol layers.
4486 *
4487 * return values:
4488 * NET_RX_SUCCESS (no congestion)
4489 * NET_RX_DROP (packet was dropped)
4490 *
4491 */
4492
netif_rx(struct sk_buff * skb)4493 int netif_rx(struct sk_buff *skb)
4494 {
4495 trace_netif_rx_entry(skb);
4496
4497 return netif_rx_internal(skb);
4498 }
4499 EXPORT_SYMBOL(netif_rx);
4500
netif_rx_ni(struct sk_buff * skb)4501 int netif_rx_ni(struct sk_buff *skb)
4502 {
4503 int err;
4504
4505 trace_netif_rx_ni_entry(skb);
4506
4507 preempt_disable();
4508 err = netif_rx_internal(skb);
4509 if (local_softirq_pending())
4510 do_softirq();
4511 preempt_enable();
4512
4513 return err;
4514 }
4515 EXPORT_SYMBOL(netif_rx_ni);
4516
net_tx_action(struct softirq_action * h)4517 static __latent_entropy void net_tx_action(struct softirq_action *h)
4518 {
4519 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4520
4521 if (sd->completion_queue) {
4522 struct sk_buff *clist;
4523
4524 local_irq_disable();
4525 clist = sd->completion_queue;
4526 sd->completion_queue = NULL;
4527 local_irq_enable();
4528
4529 while (clist) {
4530 struct sk_buff *skb = clist;
4531
4532 clist = clist->next;
4533
4534 WARN_ON(refcount_read(&skb->users));
4535 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4536 trace_consume_skb(skb);
4537 else
4538 trace_kfree_skb(skb, net_tx_action);
4539
4540 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4541 __kfree_skb(skb);
4542 else
4543 __kfree_skb_defer(skb);
4544 }
4545
4546 __kfree_skb_flush();
4547 }
4548
4549 if (sd->output_queue) {
4550 struct Qdisc *head;
4551
4552 local_irq_disable();
4553 head = sd->output_queue;
4554 sd->output_queue = NULL;
4555 sd->output_queue_tailp = &sd->output_queue;
4556 local_irq_enable();
4557
4558 while (head) {
4559 struct Qdisc *q = head;
4560 spinlock_t *root_lock = NULL;
4561
4562 head = head->next_sched;
4563
4564 if (!(q->flags & TCQ_F_NOLOCK)) {
4565 root_lock = qdisc_lock(q);
4566 spin_lock(root_lock);
4567 }
4568 /* We need to make sure head->next_sched is read
4569 * before clearing __QDISC_STATE_SCHED
4570 */
4571 smp_mb__before_atomic();
4572 clear_bit(__QDISC_STATE_SCHED, &q->state);
4573 qdisc_run(q);
4574 if (root_lock)
4575 spin_unlock(root_lock);
4576 }
4577 }
4578
4579 xfrm_dev_backlog(sd);
4580 }
4581
4582 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4583 /* This hook is defined here for ATM LANE */
4584 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4585 unsigned char *addr) __read_mostly;
4586 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4587 #endif
4588
4589 static inline struct sk_buff *
sch_handle_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev)4590 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4591 struct net_device *orig_dev)
4592 {
4593 #ifdef CONFIG_NET_CLS_ACT
4594 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4595 struct tcf_result cl_res;
4596
4597 /* If there's at least one ingress present somewhere (so
4598 * we get here via enabled static key), remaining devices
4599 * that are not configured with an ingress qdisc will bail
4600 * out here.
4601 */
4602 if (!miniq)
4603 return skb;
4604
4605 if (*pt_prev) {
4606 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4607 *pt_prev = NULL;
4608 }
4609
4610 qdisc_skb_cb(skb)->pkt_len = skb->len;
4611 skb->tc_at_ingress = 1;
4612 mini_qdisc_bstats_cpu_update(miniq, skb);
4613
4614 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4615 case TC_ACT_OK:
4616 case TC_ACT_RECLASSIFY:
4617 skb->tc_index = TC_H_MIN(cl_res.classid);
4618 break;
4619 case TC_ACT_SHOT:
4620 mini_qdisc_qstats_cpu_drop(miniq);
4621 kfree_skb(skb);
4622 return NULL;
4623 case TC_ACT_STOLEN:
4624 case TC_ACT_QUEUED:
4625 case TC_ACT_TRAP:
4626 consume_skb(skb);
4627 return NULL;
4628 case TC_ACT_REDIRECT:
4629 /* skb_mac_header check was done by cls/act_bpf, so
4630 * we can safely push the L2 header back before
4631 * redirecting to another netdev
4632 */
4633 __skb_push(skb, skb->mac_len);
4634 skb_do_redirect(skb);
4635 return NULL;
4636 case TC_ACT_REINSERT:
4637 /* this does not scrub the packet, and updates stats on error */
4638 skb_tc_reinsert(skb, &cl_res);
4639 return NULL;
4640 default:
4641 break;
4642 }
4643 #endif /* CONFIG_NET_CLS_ACT */
4644 return skb;
4645 }
4646
4647 /**
4648 * netdev_is_rx_handler_busy - check if receive handler is registered
4649 * @dev: device to check
4650 *
4651 * Check if a receive handler is already registered for a given device.
4652 * Return true if there one.
4653 *
4654 * The caller must hold the rtnl_mutex.
4655 */
netdev_is_rx_handler_busy(struct net_device * dev)4656 bool netdev_is_rx_handler_busy(struct net_device *dev)
4657 {
4658 ASSERT_RTNL();
4659 return dev && rtnl_dereference(dev->rx_handler);
4660 }
4661 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4662
4663 /**
4664 * netdev_rx_handler_register - register receive handler
4665 * @dev: device to register a handler for
4666 * @rx_handler: receive handler to register
4667 * @rx_handler_data: data pointer that is used by rx handler
4668 *
4669 * Register a receive handler for a device. This handler will then be
4670 * called from __netif_receive_skb. A negative errno code is returned
4671 * on a failure.
4672 *
4673 * The caller must hold the rtnl_mutex.
4674 *
4675 * For a general description of rx_handler, see enum rx_handler_result.
4676 */
netdev_rx_handler_register(struct net_device * dev,rx_handler_func_t * rx_handler,void * rx_handler_data)4677 int netdev_rx_handler_register(struct net_device *dev,
4678 rx_handler_func_t *rx_handler,
4679 void *rx_handler_data)
4680 {
4681 if (netdev_is_rx_handler_busy(dev))
4682 return -EBUSY;
4683
4684 if (dev->priv_flags & IFF_NO_RX_HANDLER)
4685 return -EINVAL;
4686
4687 /* Note: rx_handler_data must be set before rx_handler */
4688 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4689 rcu_assign_pointer(dev->rx_handler, rx_handler);
4690
4691 return 0;
4692 }
4693 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4694
4695 /**
4696 * netdev_rx_handler_unregister - unregister receive handler
4697 * @dev: device to unregister a handler from
4698 *
4699 * Unregister a receive handler from a device.
4700 *
4701 * The caller must hold the rtnl_mutex.
4702 */
netdev_rx_handler_unregister(struct net_device * dev)4703 void netdev_rx_handler_unregister(struct net_device *dev)
4704 {
4705
4706 ASSERT_RTNL();
4707 RCU_INIT_POINTER(dev->rx_handler, NULL);
4708 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4709 * section has a guarantee to see a non NULL rx_handler_data
4710 * as well.
4711 */
4712 synchronize_net();
4713 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4714 }
4715 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4716
4717 /*
4718 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4719 * the special handling of PFMEMALLOC skbs.
4720 */
skb_pfmemalloc_protocol(struct sk_buff * skb)4721 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4722 {
4723 switch (skb->protocol) {
4724 case htons(ETH_P_ARP):
4725 case htons(ETH_P_IP):
4726 case htons(ETH_P_IPV6):
4727 case htons(ETH_P_8021Q):
4728 case htons(ETH_P_8021AD):
4729 return true;
4730 default:
4731 return false;
4732 }
4733 }
4734
nf_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev)4735 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4736 int *ret, struct net_device *orig_dev)
4737 {
4738 #ifdef CONFIG_NETFILTER_INGRESS
4739 if (nf_hook_ingress_active(skb)) {
4740 int ingress_retval;
4741
4742 if (*pt_prev) {
4743 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4744 *pt_prev = NULL;
4745 }
4746
4747 rcu_read_lock();
4748 ingress_retval = nf_hook_ingress(skb);
4749 rcu_read_unlock();
4750 return ingress_retval;
4751 }
4752 #endif /* CONFIG_NETFILTER_INGRESS */
4753 return 0;
4754 }
4755
__netif_receive_skb_core(struct sk_buff * skb,bool pfmemalloc,struct packet_type ** ppt_prev)4756 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc,
4757 struct packet_type **ppt_prev)
4758 {
4759 struct packet_type *ptype, *pt_prev;
4760 rx_handler_func_t *rx_handler;
4761 struct net_device *orig_dev;
4762 bool deliver_exact = false;
4763 int ret = NET_RX_DROP;
4764 __be16 type;
4765
4766 net_timestamp_check(!netdev_tstamp_prequeue, skb);
4767
4768 trace_netif_receive_skb(skb);
4769
4770 orig_dev = skb->dev;
4771
4772 skb_reset_network_header(skb);
4773 if (!skb_transport_header_was_set(skb))
4774 skb_reset_transport_header(skb);
4775 skb_reset_mac_len(skb);
4776
4777 pt_prev = NULL;
4778
4779 another_round:
4780 skb->skb_iif = skb->dev->ifindex;
4781
4782 __this_cpu_inc(softnet_data.processed);
4783
4784 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4785 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4786 skb = skb_vlan_untag(skb);
4787 if (unlikely(!skb))
4788 goto out;
4789 }
4790
4791 if (skb_skip_tc_classify(skb))
4792 goto skip_classify;
4793
4794 if (pfmemalloc)
4795 goto skip_taps;
4796
4797 list_for_each_entry_rcu(ptype, &ptype_all, list) {
4798 if (pt_prev)
4799 ret = deliver_skb(skb, pt_prev, orig_dev);
4800 pt_prev = ptype;
4801 }
4802
4803 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4804 if (pt_prev)
4805 ret = deliver_skb(skb, pt_prev, orig_dev);
4806 pt_prev = ptype;
4807 }
4808
4809 skip_taps:
4810 #ifdef CONFIG_NET_INGRESS
4811 if (static_branch_unlikely(&ingress_needed_key)) {
4812 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4813 if (!skb)
4814 goto out;
4815
4816 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4817 goto out;
4818 }
4819 #endif
4820 skb_reset_tc(skb);
4821 skip_classify:
4822 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4823 goto drop;
4824
4825 if (skb_vlan_tag_present(skb)) {
4826 if (pt_prev) {
4827 ret = deliver_skb(skb, pt_prev, orig_dev);
4828 pt_prev = NULL;
4829 }
4830 if (vlan_do_receive(&skb))
4831 goto another_round;
4832 else if (unlikely(!skb))
4833 goto out;
4834 }
4835
4836 rx_handler = rcu_dereference(skb->dev->rx_handler);
4837 if (rx_handler) {
4838 if (pt_prev) {
4839 ret = deliver_skb(skb, pt_prev, orig_dev);
4840 pt_prev = NULL;
4841 }
4842 switch (rx_handler(&skb)) {
4843 case RX_HANDLER_CONSUMED:
4844 ret = NET_RX_SUCCESS;
4845 goto out;
4846 case RX_HANDLER_ANOTHER:
4847 goto another_round;
4848 case RX_HANDLER_EXACT:
4849 deliver_exact = true;
4850 case RX_HANDLER_PASS:
4851 break;
4852 default:
4853 BUG();
4854 }
4855 }
4856
4857 if (unlikely(skb_vlan_tag_present(skb))) {
4858 if (skb_vlan_tag_get_id(skb))
4859 skb->pkt_type = PACKET_OTHERHOST;
4860 /* Note: we might in the future use prio bits
4861 * and set skb->priority like in vlan_do_receive()
4862 * For the time being, just ignore Priority Code Point
4863 */
4864 skb->vlan_tci = 0;
4865 }
4866
4867 type = skb->protocol;
4868
4869 /* deliver only exact match when indicated */
4870 if (likely(!deliver_exact)) {
4871 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4872 &ptype_base[ntohs(type) &
4873 PTYPE_HASH_MASK]);
4874 }
4875
4876 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4877 &orig_dev->ptype_specific);
4878
4879 if (unlikely(skb->dev != orig_dev)) {
4880 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4881 &skb->dev->ptype_specific);
4882 }
4883
4884 if (pt_prev) {
4885 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4886 goto drop;
4887 *ppt_prev = pt_prev;
4888 } else {
4889 drop:
4890 if (!deliver_exact)
4891 atomic_long_inc(&skb->dev->rx_dropped);
4892 else
4893 atomic_long_inc(&skb->dev->rx_nohandler);
4894 kfree_skb(skb);
4895 /* Jamal, now you will not able to escape explaining
4896 * me how you were going to use this. :-)
4897 */
4898 ret = NET_RX_DROP;
4899 }
4900
4901 out:
4902 return ret;
4903 }
4904
__netif_receive_skb_one_core(struct sk_buff * skb,bool pfmemalloc)4905 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
4906 {
4907 struct net_device *orig_dev = skb->dev;
4908 struct packet_type *pt_prev = NULL;
4909 int ret;
4910
4911 ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
4912 if (pt_prev)
4913 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4914 return ret;
4915 }
4916
4917 /**
4918 * netif_receive_skb_core - special purpose version of netif_receive_skb
4919 * @skb: buffer to process
4920 *
4921 * More direct receive version of netif_receive_skb(). It should
4922 * only be used by callers that have a need to skip RPS and Generic XDP.
4923 * Caller must also take care of handling if (page_is_)pfmemalloc.
4924 *
4925 * This function may only be called from softirq context and interrupts
4926 * should be enabled.
4927 *
4928 * Return values (usually ignored):
4929 * NET_RX_SUCCESS: no congestion
4930 * NET_RX_DROP: packet was dropped
4931 */
netif_receive_skb_core(struct sk_buff * skb)4932 int netif_receive_skb_core(struct sk_buff *skb)
4933 {
4934 int ret;
4935
4936 rcu_read_lock();
4937 ret = __netif_receive_skb_one_core(skb, false);
4938 rcu_read_unlock();
4939
4940 return ret;
4941 }
4942 EXPORT_SYMBOL(netif_receive_skb_core);
4943
__netif_receive_skb_list_ptype(struct list_head * head,struct packet_type * pt_prev,struct net_device * orig_dev)4944 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
4945 struct packet_type *pt_prev,
4946 struct net_device *orig_dev)
4947 {
4948 struct sk_buff *skb, *next;
4949
4950 if (!pt_prev)
4951 return;
4952 if (list_empty(head))
4953 return;
4954 if (pt_prev->list_func != NULL)
4955 pt_prev->list_func(head, pt_prev, orig_dev);
4956 else
4957 list_for_each_entry_safe(skb, next, head, list)
4958 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4959 }
4960
__netif_receive_skb_list_core(struct list_head * head,bool pfmemalloc)4961 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
4962 {
4963 /* Fast-path assumptions:
4964 * - There is no RX handler.
4965 * - Only one packet_type matches.
4966 * If either of these fails, we will end up doing some per-packet
4967 * processing in-line, then handling the 'last ptype' for the whole
4968 * sublist. This can't cause out-of-order delivery to any single ptype,
4969 * because the 'last ptype' must be constant across the sublist, and all
4970 * other ptypes are handled per-packet.
4971 */
4972 /* Current (common) ptype of sublist */
4973 struct packet_type *pt_curr = NULL;
4974 /* Current (common) orig_dev of sublist */
4975 struct net_device *od_curr = NULL;
4976 struct list_head sublist;
4977 struct sk_buff *skb, *next;
4978
4979 INIT_LIST_HEAD(&sublist);
4980 list_for_each_entry_safe(skb, next, head, list) {
4981 struct net_device *orig_dev = skb->dev;
4982 struct packet_type *pt_prev = NULL;
4983
4984 list_del(&skb->list);
4985 __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
4986 if (!pt_prev)
4987 continue;
4988 if (pt_curr != pt_prev || od_curr != orig_dev) {
4989 /* dispatch old sublist */
4990 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
4991 /* start new sublist */
4992 INIT_LIST_HEAD(&sublist);
4993 pt_curr = pt_prev;
4994 od_curr = orig_dev;
4995 }
4996 list_add_tail(&skb->list, &sublist);
4997 }
4998
4999 /* dispatch final sublist */
5000 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5001 }
5002
__netif_receive_skb(struct sk_buff * skb)5003 static int __netif_receive_skb(struct sk_buff *skb)
5004 {
5005 int ret;
5006
5007 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5008 unsigned int noreclaim_flag;
5009
5010 /*
5011 * PFMEMALLOC skbs are special, they should
5012 * - be delivered to SOCK_MEMALLOC sockets only
5013 * - stay away from userspace
5014 * - have bounded memory usage
5015 *
5016 * Use PF_MEMALLOC as this saves us from propagating the allocation
5017 * context down to all allocation sites.
5018 */
5019 noreclaim_flag = memalloc_noreclaim_save();
5020 ret = __netif_receive_skb_one_core(skb, true);
5021 memalloc_noreclaim_restore(noreclaim_flag);
5022 } else
5023 ret = __netif_receive_skb_one_core(skb, false);
5024
5025 return ret;
5026 }
5027
__netif_receive_skb_list(struct list_head * head)5028 static void __netif_receive_skb_list(struct list_head *head)
5029 {
5030 unsigned long noreclaim_flag = 0;
5031 struct sk_buff *skb, *next;
5032 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5033
5034 list_for_each_entry_safe(skb, next, head, list) {
5035 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5036 struct list_head sublist;
5037
5038 /* Handle the previous sublist */
5039 list_cut_before(&sublist, head, &skb->list);
5040 if (!list_empty(&sublist))
5041 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5042 pfmemalloc = !pfmemalloc;
5043 /* See comments in __netif_receive_skb */
5044 if (pfmemalloc)
5045 noreclaim_flag = memalloc_noreclaim_save();
5046 else
5047 memalloc_noreclaim_restore(noreclaim_flag);
5048 }
5049 }
5050 /* Handle the remaining sublist */
5051 if (!list_empty(head))
5052 __netif_receive_skb_list_core(head, pfmemalloc);
5053 /* Restore pflags */
5054 if (pfmemalloc)
5055 memalloc_noreclaim_restore(noreclaim_flag);
5056 }
5057
generic_xdp_install(struct net_device * dev,struct netdev_bpf * xdp)5058 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5059 {
5060 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5061 struct bpf_prog *new = xdp->prog;
5062 int ret = 0;
5063
5064 switch (xdp->command) {
5065 case XDP_SETUP_PROG:
5066 rcu_assign_pointer(dev->xdp_prog, new);
5067 if (old)
5068 bpf_prog_put(old);
5069
5070 if (old && !new) {
5071 static_branch_dec(&generic_xdp_needed_key);
5072 } else if (new && !old) {
5073 static_branch_inc(&generic_xdp_needed_key);
5074 dev_disable_lro(dev);
5075 dev_disable_gro_hw(dev);
5076 }
5077 break;
5078
5079 case XDP_QUERY_PROG:
5080 xdp->prog_id = old ? old->aux->id : 0;
5081 break;
5082
5083 default:
5084 ret = -EINVAL;
5085 break;
5086 }
5087
5088 return ret;
5089 }
5090
netif_receive_skb_internal(struct sk_buff * skb)5091 static int netif_receive_skb_internal(struct sk_buff *skb)
5092 {
5093 int ret;
5094
5095 net_timestamp_check(netdev_tstamp_prequeue, skb);
5096
5097 if (skb_defer_rx_timestamp(skb))
5098 return NET_RX_SUCCESS;
5099
5100 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5101 int ret;
5102
5103 preempt_disable();
5104 rcu_read_lock();
5105 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5106 rcu_read_unlock();
5107 preempt_enable();
5108
5109 if (ret != XDP_PASS)
5110 return NET_RX_DROP;
5111 }
5112
5113 rcu_read_lock();
5114 #ifdef CONFIG_RPS
5115 if (static_key_false(&rps_needed)) {
5116 struct rps_dev_flow voidflow, *rflow = &voidflow;
5117 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5118
5119 if (cpu >= 0) {
5120 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5121 rcu_read_unlock();
5122 return ret;
5123 }
5124 }
5125 #endif
5126 ret = __netif_receive_skb(skb);
5127 rcu_read_unlock();
5128 return ret;
5129 }
5130
netif_receive_skb_list_internal(struct list_head * head)5131 static void netif_receive_skb_list_internal(struct list_head *head)
5132 {
5133 struct bpf_prog *xdp_prog = NULL;
5134 struct sk_buff *skb, *next;
5135 struct list_head sublist;
5136
5137 INIT_LIST_HEAD(&sublist);
5138 list_for_each_entry_safe(skb, next, head, list) {
5139 net_timestamp_check(netdev_tstamp_prequeue, skb);
5140 list_del(&skb->list);
5141 if (!skb_defer_rx_timestamp(skb))
5142 list_add_tail(&skb->list, &sublist);
5143 }
5144 list_splice_init(&sublist, head);
5145
5146 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5147 preempt_disable();
5148 rcu_read_lock();
5149 list_for_each_entry_safe(skb, next, head, list) {
5150 xdp_prog = rcu_dereference(skb->dev->xdp_prog);
5151 list_del(&skb->list);
5152 if (do_xdp_generic(xdp_prog, skb) == XDP_PASS)
5153 list_add_tail(&skb->list, &sublist);
5154 }
5155 rcu_read_unlock();
5156 preempt_enable();
5157 /* Put passed packets back on main list */
5158 list_splice_init(&sublist, head);
5159 }
5160
5161 rcu_read_lock();
5162 #ifdef CONFIG_RPS
5163 if (static_key_false(&rps_needed)) {
5164 list_for_each_entry_safe(skb, next, head, list) {
5165 struct rps_dev_flow voidflow, *rflow = &voidflow;
5166 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5167
5168 if (cpu >= 0) {
5169 /* Will be handled, remove from list */
5170 list_del(&skb->list);
5171 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5172 }
5173 }
5174 }
5175 #endif
5176 __netif_receive_skb_list(head);
5177 rcu_read_unlock();
5178 }
5179
5180 /**
5181 * netif_receive_skb - process receive buffer from network
5182 * @skb: buffer to process
5183 *
5184 * netif_receive_skb() is the main receive data processing function.
5185 * It always succeeds. The buffer may be dropped during processing
5186 * for congestion control or by the protocol layers.
5187 *
5188 * This function may only be called from softirq context and interrupts
5189 * should be enabled.
5190 *
5191 * Return values (usually ignored):
5192 * NET_RX_SUCCESS: no congestion
5193 * NET_RX_DROP: packet was dropped
5194 */
netif_receive_skb(struct sk_buff * skb)5195 int netif_receive_skb(struct sk_buff *skb)
5196 {
5197 trace_netif_receive_skb_entry(skb);
5198
5199 return netif_receive_skb_internal(skb);
5200 }
5201 EXPORT_SYMBOL(netif_receive_skb);
5202
5203 /**
5204 * netif_receive_skb_list - process many receive buffers from network
5205 * @head: list of skbs to process.
5206 *
5207 * Since return value of netif_receive_skb() is normally ignored, and
5208 * wouldn't be meaningful for a list, this function returns void.
5209 *
5210 * This function may only be called from softirq context and interrupts
5211 * should be enabled.
5212 */
netif_receive_skb_list(struct list_head * head)5213 void netif_receive_skb_list(struct list_head *head)
5214 {
5215 struct sk_buff *skb;
5216
5217 if (list_empty(head))
5218 return;
5219 list_for_each_entry(skb, head, list)
5220 trace_netif_receive_skb_list_entry(skb);
5221 netif_receive_skb_list_internal(head);
5222 }
5223 EXPORT_SYMBOL(netif_receive_skb_list);
5224
5225 DEFINE_PER_CPU(struct work_struct, flush_works);
5226
5227 /* Network device is going away, flush any packets still pending */
flush_backlog(struct work_struct * work)5228 static void flush_backlog(struct work_struct *work)
5229 {
5230 struct sk_buff *skb, *tmp;
5231 struct softnet_data *sd;
5232
5233 local_bh_disable();
5234 sd = this_cpu_ptr(&softnet_data);
5235
5236 local_irq_disable();
5237 rps_lock(sd);
5238 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5239 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5240 __skb_unlink(skb, &sd->input_pkt_queue);
5241 kfree_skb(skb);
5242 input_queue_head_incr(sd);
5243 }
5244 }
5245 rps_unlock(sd);
5246 local_irq_enable();
5247
5248 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5249 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5250 __skb_unlink(skb, &sd->process_queue);
5251 kfree_skb(skb);
5252 input_queue_head_incr(sd);
5253 }
5254 }
5255 local_bh_enable();
5256 }
5257
flush_all_backlogs(void)5258 static void flush_all_backlogs(void)
5259 {
5260 unsigned int cpu;
5261
5262 get_online_cpus();
5263
5264 for_each_online_cpu(cpu)
5265 queue_work_on(cpu, system_highpri_wq,
5266 per_cpu_ptr(&flush_works, cpu));
5267
5268 for_each_online_cpu(cpu)
5269 flush_work(per_cpu_ptr(&flush_works, cpu));
5270
5271 put_online_cpus();
5272 }
5273
napi_gro_complete(struct sk_buff * skb)5274 static int napi_gro_complete(struct sk_buff *skb)
5275 {
5276 struct packet_offload *ptype;
5277 __be16 type = skb->protocol;
5278 struct list_head *head = &offload_base;
5279 int err = -ENOENT;
5280
5281 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5282
5283 if (NAPI_GRO_CB(skb)->count == 1) {
5284 skb_shinfo(skb)->gso_size = 0;
5285 goto out;
5286 }
5287
5288 rcu_read_lock();
5289 list_for_each_entry_rcu(ptype, head, list) {
5290 if (ptype->type != type || !ptype->callbacks.gro_complete)
5291 continue;
5292
5293 err = ptype->callbacks.gro_complete(skb, 0);
5294 break;
5295 }
5296 rcu_read_unlock();
5297
5298 if (err) {
5299 WARN_ON(&ptype->list == head);
5300 kfree_skb(skb);
5301 return NET_RX_SUCCESS;
5302 }
5303
5304 out:
5305 return netif_receive_skb_internal(skb);
5306 }
5307
__napi_gro_flush_chain(struct napi_struct * napi,u32 index,bool flush_old)5308 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5309 bool flush_old)
5310 {
5311 struct list_head *head = &napi->gro_hash[index].list;
5312 struct sk_buff *skb, *p;
5313
5314 list_for_each_entry_safe_reverse(skb, p, head, list) {
5315 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5316 return;
5317 list_del(&skb->list);
5318 skb->next = NULL;
5319 napi_gro_complete(skb);
5320 napi->gro_hash[index].count--;
5321 }
5322
5323 if (!napi->gro_hash[index].count)
5324 __clear_bit(index, &napi->gro_bitmask);
5325 }
5326
5327 /* napi->gro_hash[].list contains packets ordered by age.
5328 * youngest packets at the head of it.
5329 * Complete skbs in reverse order to reduce latencies.
5330 */
napi_gro_flush(struct napi_struct * napi,bool flush_old)5331 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5332 {
5333 u32 i;
5334
5335 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
5336 if (test_bit(i, &napi->gro_bitmask))
5337 __napi_gro_flush_chain(napi, i, flush_old);
5338 }
5339 }
5340 EXPORT_SYMBOL(napi_gro_flush);
5341
gro_list_prepare(struct napi_struct * napi,struct sk_buff * skb)5342 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5343 struct sk_buff *skb)
5344 {
5345 unsigned int maclen = skb->dev->hard_header_len;
5346 u32 hash = skb_get_hash_raw(skb);
5347 struct list_head *head;
5348 struct sk_buff *p;
5349
5350 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5351 list_for_each_entry(p, head, list) {
5352 unsigned long diffs;
5353
5354 NAPI_GRO_CB(p)->flush = 0;
5355
5356 if (hash != skb_get_hash_raw(p)) {
5357 NAPI_GRO_CB(p)->same_flow = 0;
5358 continue;
5359 }
5360
5361 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5362 diffs |= p->vlan_tci ^ skb->vlan_tci;
5363 diffs |= skb_metadata_dst_cmp(p, skb);
5364 diffs |= skb_metadata_differs(p, skb);
5365 if (maclen == ETH_HLEN)
5366 diffs |= compare_ether_header(skb_mac_header(p),
5367 skb_mac_header(skb));
5368 else if (!diffs)
5369 diffs = memcmp(skb_mac_header(p),
5370 skb_mac_header(skb),
5371 maclen);
5372 NAPI_GRO_CB(p)->same_flow = !diffs;
5373 }
5374
5375 return head;
5376 }
5377
skb_gro_reset_offset(struct sk_buff * skb)5378 static void skb_gro_reset_offset(struct sk_buff *skb)
5379 {
5380 const struct skb_shared_info *pinfo = skb_shinfo(skb);
5381 const skb_frag_t *frag0 = &pinfo->frags[0];
5382
5383 NAPI_GRO_CB(skb)->data_offset = 0;
5384 NAPI_GRO_CB(skb)->frag0 = NULL;
5385 NAPI_GRO_CB(skb)->frag0_len = 0;
5386
5387 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
5388 pinfo->nr_frags &&
5389 !PageHighMem(skb_frag_page(frag0))) {
5390 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5391 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5392 skb_frag_size(frag0),
5393 skb->end - skb->tail);
5394 }
5395 }
5396
gro_pull_from_frag0(struct sk_buff * skb,int grow)5397 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5398 {
5399 struct skb_shared_info *pinfo = skb_shinfo(skb);
5400
5401 BUG_ON(skb->end - skb->tail < grow);
5402
5403 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5404
5405 skb->data_len -= grow;
5406 skb->tail += grow;
5407
5408 pinfo->frags[0].page_offset += grow;
5409 skb_frag_size_sub(&pinfo->frags[0], grow);
5410
5411 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5412 skb_frag_unref(skb, 0);
5413 memmove(pinfo->frags, pinfo->frags + 1,
5414 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5415 }
5416 }
5417
gro_flush_oldest(struct list_head * head)5418 static void gro_flush_oldest(struct list_head *head)
5419 {
5420 struct sk_buff *oldest;
5421
5422 oldest = list_last_entry(head, struct sk_buff, list);
5423
5424 /* We are called with head length >= MAX_GRO_SKBS, so this is
5425 * impossible.
5426 */
5427 if (WARN_ON_ONCE(!oldest))
5428 return;
5429
5430 /* Do not adjust napi->gro_hash[].count, caller is adding a new
5431 * SKB to the chain.
5432 */
5433 list_del(&oldest->list);
5434 napi_gro_complete(oldest);
5435 }
5436
dev_gro_receive(struct napi_struct * napi,struct sk_buff * skb)5437 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5438 {
5439 u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5440 struct list_head *head = &offload_base;
5441 struct packet_offload *ptype;
5442 __be16 type = skb->protocol;
5443 struct list_head *gro_head;
5444 struct sk_buff *pp = NULL;
5445 enum gro_result ret;
5446 int same_flow;
5447 int grow;
5448
5449 if (netif_elide_gro(skb->dev))
5450 goto normal;
5451
5452 gro_head = gro_list_prepare(napi, skb);
5453
5454 rcu_read_lock();
5455 list_for_each_entry_rcu(ptype, head, list) {
5456 if (ptype->type != type || !ptype->callbacks.gro_receive)
5457 continue;
5458
5459 skb_set_network_header(skb, skb_gro_offset(skb));
5460 skb_reset_mac_len(skb);
5461 NAPI_GRO_CB(skb)->same_flow = 0;
5462 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5463 NAPI_GRO_CB(skb)->free = 0;
5464 NAPI_GRO_CB(skb)->encap_mark = 0;
5465 NAPI_GRO_CB(skb)->recursion_counter = 0;
5466 NAPI_GRO_CB(skb)->is_fou = 0;
5467 NAPI_GRO_CB(skb)->is_atomic = 1;
5468 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5469
5470 /* Setup for GRO checksum validation */
5471 switch (skb->ip_summed) {
5472 case CHECKSUM_COMPLETE:
5473 NAPI_GRO_CB(skb)->csum = skb->csum;
5474 NAPI_GRO_CB(skb)->csum_valid = 1;
5475 NAPI_GRO_CB(skb)->csum_cnt = 0;
5476 break;
5477 case CHECKSUM_UNNECESSARY:
5478 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5479 NAPI_GRO_CB(skb)->csum_valid = 0;
5480 break;
5481 default:
5482 NAPI_GRO_CB(skb)->csum_cnt = 0;
5483 NAPI_GRO_CB(skb)->csum_valid = 0;
5484 }
5485
5486 pp = ptype->callbacks.gro_receive(gro_head, skb);
5487 break;
5488 }
5489 rcu_read_unlock();
5490
5491 if (&ptype->list == head)
5492 goto normal;
5493
5494 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
5495 ret = GRO_CONSUMED;
5496 goto ok;
5497 }
5498
5499 same_flow = NAPI_GRO_CB(skb)->same_flow;
5500 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5501
5502 if (pp) {
5503 list_del(&pp->list);
5504 pp->next = NULL;
5505 napi_gro_complete(pp);
5506 napi->gro_hash[hash].count--;
5507 }
5508
5509 if (same_flow)
5510 goto ok;
5511
5512 if (NAPI_GRO_CB(skb)->flush)
5513 goto normal;
5514
5515 if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5516 gro_flush_oldest(gro_head);
5517 } else {
5518 napi->gro_hash[hash].count++;
5519 }
5520 NAPI_GRO_CB(skb)->count = 1;
5521 NAPI_GRO_CB(skb)->age = jiffies;
5522 NAPI_GRO_CB(skb)->last = skb;
5523 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5524 list_add(&skb->list, gro_head);
5525 ret = GRO_HELD;
5526
5527 pull:
5528 grow = skb_gro_offset(skb) - skb_headlen(skb);
5529 if (grow > 0)
5530 gro_pull_from_frag0(skb, grow);
5531 ok:
5532 if (napi->gro_hash[hash].count) {
5533 if (!test_bit(hash, &napi->gro_bitmask))
5534 __set_bit(hash, &napi->gro_bitmask);
5535 } else if (test_bit(hash, &napi->gro_bitmask)) {
5536 __clear_bit(hash, &napi->gro_bitmask);
5537 }
5538
5539 return ret;
5540
5541 normal:
5542 ret = GRO_NORMAL;
5543 goto pull;
5544 }
5545
gro_find_receive_by_type(__be16 type)5546 struct packet_offload *gro_find_receive_by_type(__be16 type)
5547 {
5548 struct list_head *offload_head = &offload_base;
5549 struct packet_offload *ptype;
5550
5551 list_for_each_entry_rcu(ptype, offload_head, list) {
5552 if (ptype->type != type || !ptype->callbacks.gro_receive)
5553 continue;
5554 return ptype;
5555 }
5556 return NULL;
5557 }
5558 EXPORT_SYMBOL(gro_find_receive_by_type);
5559
gro_find_complete_by_type(__be16 type)5560 struct packet_offload *gro_find_complete_by_type(__be16 type)
5561 {
5562 struct list_head *offload_head = &offload_base;
5563 struct packet_offload *ptype;
5564
5565 list_for_each_entry_rcu(ptype, offload_head, list) {
5566 if (ptype->type != type || !ptype->callbacks.gro_complete)
5567 continue;
5568 return ptype;
5569 }
5570 return NULL;
5571 }
5572 EXPORT_SYMBOL(gro_find_complete_by_type);
5573
napi_skb_free_stolen_head(struct sk_buff * skb)5574 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5575 {
5576 skb_dst_drop(skb);
5577 secpath_reset(skb);
5578 kmem_cache_free(skbuff_head_cache, skb);
5579 }
5580
napi_skb_finish(gro_result_t ret,struct sk_buff * skb)5581 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5582 {
5583 switch (ret) {
5584 case GRO_NORMAL:
5585 if (netif_receive_skb_internal(skb))
5586 ret = GRO_DROP;
5587 break;
5588
5589 case GRO_DROP:
5590 kfree_skb(skb);
5591 break;
5592
5593 case GRO_MERGED_FREE:
5594 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5595 napi_skb_free_stolen_head(skb);
5596 else
5597 __kfree_skb(skb);
5598 break;
5599
5600 case GRO_HELD:
5601 case GRO_MERGED:
5602 case GRO_CONSUMED:
5603 break;
5604 }
5605
5606 return ret;
5607 }
5608
napi_gro_receive(struct napi_struct * napi,struct sk_buff * skb)5609 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5610 {
5611 skb_mark_napi_id(skb, napi);
5612 trace_napi_gro_receive_entry(skb);
5613
5614 skb_gro_reset_offset(skb);
5615
5616 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
5617 }
5618 EXPORT_SYMBOL(napi_gro_receive);
5619
napi_reuse_skb(struct napi_struct * napi,struct sk_buff * skb)5620 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5621 {
5622 if (unlikely(skb->pfmemalloc)) {
5623 consume_skb(skb);
5624 return;
5625 }
5626 __skb_pull(skb, skb_headlen(skb));
5627 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5628 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5629 skb->vlan_tci = 0;
5630 skb->dev = napi->dev;
5631 skb->skb_iif = 0;
5632 skb->encapsulation = 0;
5633 skb_shinfo(skb)->gso_type = 0;
5634 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5635 secpath_reset(skb);
5636
5637 napi->skb = skb;
5638 }
5639
napi_get_frags(struct napi_struct * napi)5640 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5641 {
5642 struct sk_buff *skb = napi->skb;
5643
5644 if (!skb) {
5645 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5646 if (skb) {
5647 napi->skb = skb;
5648 skb_mark_napi_id(skb, napi);
5649 }
5650 }
5651 return skb;
5652 }
5653 EXPORT_SYMBOL(napi_get_frags);
5654
napi_frags_finish(struct napi_struct * napi,struct sk_buff * skb,gro_result_t ret)5655 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5656 struct sk_buff *skb,
5657 gro_result_t ret)
5658 {
5659 switch (ret) {
5660 case GRO_NORMAL:
5661 case GRO_HELD:
5662 __skb_push(skb, ETH_HLEN);
5663 skb->protocol = eth_type_trans(skb, skb->dev);
5664 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5665 ret = GRO_DROP;
5666 break;
5667
5668 case GRO_DROP:
5669 napi_reuse_skb(napi, skb);
5670 break;
5671
5672 case GRO_MERGED_FREE:
5673 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5674 napi_skb_free_stolen_head(skb);
5675 else
5676 napi_reuse_skb(napi, skb);
5677 break;
5678
5679 case GRO_MERGED:
5680 case GRO_CONSUMED:
5681 break;
5682 }
5683
5684 return ret;
5685 }
5686
5687 /* Upper GRO stack assumes network header starts at gro_offset=0
5688 * Drivers could call both napi_gro_frags() and napi_gro_receive()
5689 * We copy ethernet header into skb->data to have a common layout.
5690 */
napi_frags_skb(struct napi_struct * napi)5691 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5692 {
5693 struct sk_buff *skb = napi->skb;
5694 const struct ethhdr *eth;
5695 unsigned int hlen = sizeof(*eth);
5696
5697 napi->skb = NULL;
5698
5699 skb_reset_mac_header(skb);
5700 skb_gro_reset_offset(skb);
5701
5702 eth = skb_gro_header_fast(skb, 0);
5703 if (unlikely(skb_gro_header_hard(skb, hlen))) {
5704 eth = skb_gro_header_slow(skb, hlen, 0);
5705 if (unlikely(!eth)) {
5706 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5707 __func__, napi->dev->name);
5708 napi_reuse_skb(napi, skb);
5709 return NULL;
5710 }
5711 } else {
5712 gro_pull_from_frag0(skb, hlen);
5713 NAPI_GRO_CB(skb)->frag0 += hlen;
5714 NAPI_GRO_CB(skb)->frag0_len -= hlen;
5715 }
5716 __skb_pull(skb, hlen);
5717
5718 /*
5719 * This works because the only protocols we care about don't require
5720 * special handling.
5721 * We'll fix it up properly in napi_frags_finish()
5722 */
5723 skb->protocol = eth->h_proto;
5724
5725 return skb;
5726 }
5727
napi_gro_frags(struct napi_struct * napi)5728 gro_result_t napi_gro_frags(struct napi_struct *napi)
5729 {
5730 struct sk_buff *skb = napi_frags_skb(napi);
5731
5732 if (!skb)
5733 return GRO_DROP;
5734
5735 trace_napi_gro_frags_entry(skb);
5736
5737 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5738 }
5739 EXPORT_SYMBOL(napi_gro_frags);
5740
5741 /* Compute the checksum from gro_offset and return the folded value
5742 * after adding in any pseudo checksum.
5743 */
__skb_gro_checksum_complete(struct sk_buff * skb)5744 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5745 {
5746 __wsum wsum;
5747 __sum16 sum;
5748
5749 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5750
5751 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5752 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5753 if (likely(!sum)) {
5754 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5755 !skb->csum_complete_sw)
5756 netdev_rx_csum_fault(skb->dev);
5757 }
5758
5759 NAPI_GRO_CB(skb)->csum = wsum;
5760 NAPI_GRO_CB(skb)->csum_valid = 1;
5761
5762 return sum;
5763 }
5764 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5765
net_rps_send_ipi(struct softnet_data * remsd)5766 static void net_rps_send_ipi(struct softnet_data *remsd)
5767 {
5768 #ifdef CONFIG_RPS
5769 while (remsd) {
5770 struct softnet_data *next = remsd->rps_ipi_next;
5771
5772 if (cpu_online(remsd->cpu))
5773 smp_call_function_single_async(remsd->cpu, &remsd->csd);
5774 remsd = next;
5775 }
5776 #endif
5777 }
5778
5779 /*
5780 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5781 * Note: called with local irq disabled, but exits with local irq enabled.
5782 */
net_rps_action_and_irq_enable(struct softnet_data * sd)5783 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5784 {
5785 #ifdef CONFIG_RPS
5786 struct softnet_data *remsd = sd->rps_ipi_list;
5787
5788 if (remsd) {
5789 sd->rps_ipi_list = NULL;
5790
5791 local_irq_enable();
5792
5793 /* Send pending IPI's to kick RPS processing on remote cpus. */
5794 net_rps_send_ipi(remsd);
5795 } else
5796 #endif
5797 local_irq_enable();
5798 }
5799
sd_has_rps_ipi_waiting(struct softnet_data * sd)5800 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5801 {
5802 #ifdef CONFIG_RPS
5803 return sd->rps_ipi_list != NULL;
5804 #else
5805 return false;
5806 #endif
5807 }
5808
process_backlog(struct napi_struct * napi,int quota)5809 static int process_backlog(struct napi_struct *napi, int quota)
5810 {
5811 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5812 bool again = true;
5813 int work = 0;
5814
5815 /* Check if we have pending ipi, its better to send them now,
5816 * not waiting net_rx_action() end.
5817 */
5818 if (sd_has_rps_ipi_waiting(sd)) {
5819 local_irq_disable();
5820 net_rps_action_and_irq_enable(sd);
5821 }
5822
5823 napi->weight = dev_rx_weight;
5824 while (again) {
5825 struct sk_buff *skb;
5826
5827 while ((skb = __skb_dequeue(&sd->process_queue))) {
5828 rcu_read_lock();
5829 __netif_receive_skb(skb);
5830 rcu_read_unlock();
5831 input_queue_head_incr(sd);
5832 if (++work >= quota)
5833 return work;
5834
5835 }
5836
5837 local_irq_disable();
5838 rps_lock(sd);
5839 if (skb_queue_empty(&sd->input_pkt_queue)) {
5840 /*
5841 * Inline a custom version of __napi_complete().
5842 * only current cpu owns and manipulates this napi,
5843 * and NAPI_STATE_SCHED is the only possible flag set
5844 * on backlog.
5845 * We can use a plain write instead of clear_bit(),
5846 * and we dont need an smp_mb() memory barrier.
5847 */
5848 napi->state = 0;
5849 again = false;
5850 } else {
5851 skb_queue_splice_tail_init(&sd->input_pkt_queue,
5852 &sd->process_queue);
5853 }
5854 rps_unlock(sd);
5855 local_irq_enable();
5856 }
5857
5858 return work;
5859 }
5860
5861 /**
5862 * __napi_schedule - schedule for receive
5863 * @n: entry to schedule
5864 *
5865 * The entry's receive function will be scheduled to run.
5866 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5867 */
__napi_schedule(struct napi_struct * n)5868 void __napi_schedule(struct napi_struct *n)
5869 {
5870 unsigned long flags;
5871
5872 local_irq_save(flags);
5873 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5874 local_irq_restore(flags);
5875 }
5876 EXPORT_SYMBOL(__napi_schedule);
5877
5878 /**
5879 * napi_schedule_prep - check if napi can be scheduled
5880 * @n: napi context
5881 *
5882 * Test if NAPI routine is already running, and if not mark
5883 * it as running. This is used as a condition variable
5884 * insure only one NAPI poll instance runs. We also make
5885 * sure there is no pending NAPI disable.
5886 */
napi_schedule_prep(struct napi_struct * n)5887 bool napi_schedule_prep(struct napi_struct *n)
5888 {
5889 unsigned long val, new;
5890
5891 do {
5892 val = READ_ONCE(n->state);
5893 if (unlikely(val & NAPIF_STATE_DISABLE))
5894 return false;
5895 new = val | NAPIF_STATE_SCHED;
5896
5897 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5898 * This was suggested by Alexander Duyck, as compiler
5899 * emits better code than :
5900 * if (val & NAPIF_STATE_SCHED)
5901 * new |= NAPIF_STATE_MISSED;
5902 */
5903 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5904 NAPIF_STATE_MISSED;
5905 } while (cmpxchg(&n->state, val, new) != val);
5906
5907 return !(val & NAPIF_STATE_SCHED);
5908 }
5909 EXPORT_SYMBOL(napi_schedule_prep);
5910
5911 /**
5912 * __napi_schedule_irqoff - schedule for receive
5913 * @n: entry to schedule
5914 *
5915 * Variant of __napi_schedule() assuming hard irqs are masked
5916 */
__napi_schedule_irqoff(struct napi_struct * n)5917 void __napi_schedule_irqoff(struct napi_struct *n)
5918 {
5919 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5920 }
5921 EXPORT_SYMBOL(__napi_schedule_irqoff);
5922
napi_complete_done(struct napi_struct * n,int work_done)5923 bool napi_complete_done(struct napi_struct *n, int work_done)
5924 {
5925 unsigned long flags, val, new;
5926
5927 /*
5928 * 1) Don't let napi dequeue from the cpu poll list
5929 * just in case its running on a different cpu.
5930 * 2) If we are busy polling, do nothing here, we have
5931 * the guarantee we will be called later.
5932 */
5933 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5934 NAPIF_STATE_IN_BUSY_POLL)))
5935 return false;
5936
5937 if (n->gro_bitmask) {
5938 unsigned long timeout = 0;
5939
5940 if (work_done)
5941 timeout = n->dev->gro_flush_timeout;
5942
5943 if (timeout)
5944 hrtimer_start(&n->timer, ns_to_ktime(timeout),
5945 HRTIMER_MODE_REL_PINNED);
5946 else
5947 napi_gro_flush(n, false);
5948 }
5949 if (unlikely(!list_empty(&n->poll_list))) {
5950 /* If n->poll_list is not empty, we need to mask irqs */
5951 local_irq_save(flags);
5952 list_del_init(&n->poll_list);
5953 local_irq_restore(flags);
5954 }
5955
5956 do {
5957 val = READ_ONCE(n->state);
5958
5959 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5960
5961 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5962
5963 /* If STATE_MISSED was set, leave STATE_SCHED set,
5964 * because we will call napi->poll() one more time.
5965 * This C code was suggested by Alexander Duyck to help gcc.
5966 */
5967 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5968 NAPIF_STATE_SCHED;
5969 } while (cmpxchg(&n->state, val, new) != val);
5970
5971 if (unlikely(val & NAPIF_STATE_MISSED)) {
5972 __napi_schedule(n);
5973 return false;
5974 }
5975
5976 return true;
5977 }
5978 EXPORT_SYMBOL(napi_complete_done);
5979
5980 /* must be called under rcu_read_lock(), as we dont take a reference */
napi_by_id(unsigned int napi_id)5981 static struct napi_struct *napi_by_id(unsigned int napi_id)
5982 {
5983 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5984 struct napi_struct *napi;
5985
5986 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5987 if (napi->napi_id == napi_id)
5988 return napi;
5989
5990 return NULL;
5991 }
5992
5993 #if defined(CONFIG_NET_RX_BUSY_POLL)
5994
5995 #define BUSY_POLL_BUDGET 8
5996
busy_poll_stop(struct napi_struct * napi,void * have_poll_lock)5997 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5998 {
5999 int rc;
6000
6001 /* Busy polling means there is a high chance device driver hard irq
6002 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6003 * set in napi_schedule_prep().
6004 * Since we are about to call napi->poll() once more, we can safely
6005 * clear NAPI_STATE_MISSED.
6006 *
6007 * Note: x86 could use a single "lock and ..." instruction
6008 * to perform these two clear_bit()
6009 */
6010 clear_bit(NAPI_STATE_MISSED, &napi->state);
6011 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6012
6013 local_bh_disable();
6014
6015 /* All we really want here is to re-enable device interrupts.
6016 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6017 */
6018 rc = napi->poll(napi, BUSY_POLL_BUDGET);
6019 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6020 netpoll_poll_unlock(have_poll_lock);
6021 if (rc == BUSY_POLL_BUDGET)
6022 __napi_schedule(napi);
6023 local_bh_enable();
6024 }
6025
napi_busy_loop(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg)6026 void napi_busy_loop(unsigned int napi_id,
6027 bool (*loop_end)(void *, unsigned long),
6028 void *loop_end_arg)
6029 {
6030 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6031 int (*napi_poll)(struct napi_struct *napi, int budget);
6032 void *have_poll_lock = NULL;
6033 struct napi_struct *napi;
6034
6035 restart:
6036 napi_poll = NULL;
6037
6038 rcu_read_lock();
6039
6040 napi = napi_by_id(napi_id);
6041 if (!napi)
6042 goto out;
6043
6044 preempt_disable();
6045 for (;;) {
6046 int work = 0;
6047
6048 local_bh_disable();
6049 if (!napi_poll) {
6050 unsigned long val = READ_ONCE(napi->state);
6051
6052 /* If multiple threads are competing for this napi,
6053 * we avoid dirtying napi->state as much as we can.
6054 */
6055 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6056 NAPIF_STATE_IN_BUSY_POLL))
6057 goto count;
6058 if (cmpxchg(&napi->state, val,
6059 val | NAPIF_STATE_IN_BUSY_POLL |
6060 NAPIF_STATE_SCHED) != val)
6061 goto count;
6062 have_poll_lock = netpoll_poll_lock(napi);
6063 napi_poll = napi->poll;
6064 }
6065 work = napi_poll(napi, BUSY_POLL_BUDGET);
6066 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6067 count:
6068 if (work > 0)
6069 __NET_ADD_STATS(dev_net(napi->dev),
6070 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6071 local_bh_enable();
6072
6073 if (!loop_end || loop_end(loop_end_arg, start_time))
6074 break;
6075
6076 if (unlikely(need_resched())) {
6077 if (napi_poll)
6078 busy_poll_stop(napi, have_poll_lock);
6079 preempt_enable();
6080 rcu_read_unlock();
6081 cond_resched();
6082 if (loop_end(loop_end_arg, start_time))
6083 return;
6084 goto restart;
6085 }
6086 cpu_relax();
6087 }
6088 if (napi_poll)
6089 busy_poll_stop(napi, have_poll_lock);
6090 preempt_enable();
6091 out:
6092 rcu_read_unlock();
6093 }
6094 EXPORT_SYMBOL(napi_busy_loop);
6095
6096 #endif /* CONFIG_NET_RX_BUSY_POLL */
6097
napi_hash_add(struct napi_struct * napi)6098 static void napi_hash_add(struct napi_struct *napi)
6099 {
6100 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6101 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6102 return;
6103
6104 spin_lock(&napi_hash_lock);
6105
6106 /* 0..NR_CPUS range is reserved for sender_cpu use */
6107 do {
6108 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6109 napi_gen_id = MIN_NAPI_ID;
6110 } while (napi_by_id(napi_gen_id));
6111 napi->napi_id = napi_gen_id;
6112
6113 hlist_add_head_rcu(&napi->napi_hash_node,
6114 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6115
6116 spin_unlock(&napi_hash_lock);
6117 }
6118
6119 /* Warning : caller is responsible to make sure rcu grace period
6120 * is respected before freeing memory containing @napi
6121 */
napi_hash_del(struct napi_struct * napi)6122 bool napi_hash_del(struct napi_struct *napi)
6123 {
6124 bool rcu_sync_needed = false;
6125
6126 spin_lock(&napi_hash_lock);
6127
6128 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6129 rcu_sync_needed = true;
6130 hlist_del_rcu(&napi->napi_hash_node);
6131 }
6132 spin_unlock(&napi_hash_lock);
6133 return rcu_sync_needed;
6134 }
6135 EXPORT_SYMBOL_GPL(napi_hash_del);
6136
napi_watchdog(struct hrtimer * timer)6137 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6138 {
6139 struct napi_struct *napi;
6140
6141 napi = container_of(timer, struct napi_struct, timer);
6142
6143 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6144 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6145 */
6146 if (napi->gro_bitmask && !napi_disable_pending(napi) &&
6147 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6148 __napi_schedule_irqoff(napi);
6149
6150 return HRTIMER_NORESTART;
6151 }
6152
init_gro_hash(struct napi_struct * napi)6153 static void init_gro_hash(struct napi_struct *napi)
6154 {
6155 int i;
6156
6157 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6158 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6159 napi->gro_hash[i].count = 0;
6160 }
6161 napi->gro_bitmask = 0;
6162 }
6163
netif_napi_add(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int),int weight)6164 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6165 int (*poll)(struct napi_struct *, int), int weight)
6166 {
6167 INIT_LIST_HEAD(&napi->poll_list);
6168 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6169 napi->timer.function = napi_watchdog;
6170 init_gro_hash(napi);
6171 napi->skb = NULL;
6172 napi->poll = poll;
6173 if (weight > NAPI_POLL_WEIGHT)
6174 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
6175 weight, dev->name);
6176 napi->weight = weight;
6177 list_add(&napi->dev_list, &dev->napi_list);
6178 napi->dev = dev;
6179 #ifdef CONFIG_NETPOLL
6180 napi->poll_owner = -1;
6181 #endif
6182 set_bit(NAPI_STATE_SCHED, &napi->state);
6183 napi_hash_add(napi);
6184 }
6185 EXPORT_SYMBOL(netif_napi_add);
6186
napi_disable(struct napi_struct * n)6187 void napi_disable(struct napi_struct *n)
6188 {
6189 might_sleep();
6190 set_bit(NAPI_STATE_DISABLE, &n->state);
6191
6192 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6193 msleep(1);
6194 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6195 msleep(1);
6196
6197 hrtimer_cancel(&n->timer);
6198
6199 clear_bit(NAPI_STATE_DISABLE, &n->state);
6200 }
6201 EXPORT_SYMBOL(napi_disable);
6202
flush_gro_hash(struct napi_struct * napi)6203 static void flush_gro_hash(struct napi_struct *napi)
6204 {
6205 int i;
6206
6207 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6208 struct sk_buff *skb, *n;
6209
6210 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6211 kfree_skb(skb);
6212 napi->gro_hash[i].count = 0;
6213 }
6214 }
6215
6216 /* Must be called in process context */
netif_napi_del(struct napi_struct * napi)6217 void netif_napi_del(struct napi_struct *napi)
6218 {
6219 might_sleep();
6220 if (napi_hash_del(napi))
6221 synchronize_net();
6222 list_del_init(&napi->dev_list);
6223 napi_free_frags(napi);
6224
6225 flush_gro_hash(napi);
6226 napi->gro_bitmask = 0;
6227 }
6228 EXPORT_SYMBOL(netif_napi_del);
6229
napi_poll(struct napi_struct * n,struct list_head * repoll)6230 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6231 {
6232 void *have;
6233 int work, weight;
6234
6235 list_del_init(&n->poll_list);
6236
6237 have = netpoll_poll_lock(n);
6238
6239 weight = n->weight;
6240
6241 /* This NAPI_STATE_SCHED test is for avoiding a race
6242 * with netpoll's poll_napi(). Only the entity which
6243 * obtains the lock and sees NAPI_STATE_SCHED set will
6244 * actually make the ->poll() call. Therefore we avoid
6245 * accidentally calling ->poll() when NAPI is not scheduled.
6246 */
6247 work = 0;
6248 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6249 work = n->poll(n, weight);
6250 trace_napi_poll(n, work, weight);
6251 }
6252
6253 WARN_ON_ONCE(work > weight);
6254
6255 if (likely(work < weight))
6256 goto out_unlock;
6257
6258 /* Drivers must not modify the NAPI state if they
6259 * consume the entire weight. In such cases this code
6260 * still "owns" the NAPI instance and therefore can
6261 * move the instance around on the list at-will.
6262 */
6263 if (unlikely(napi_disable_pending(n))) {
6264 napi_complete(n);
6265 goto out_unlock;
6266 }
6267
6268 if (n->gro_bitmask) {
6269 /* flush too old packets
6270 * If HZ < 1000, flush all packets.
6271 */
6272 napi_gro_flush(n, HZ >= 1000);
6273 }
6274
6275 /* Some drivers may have called napi_schedule
6276 * prior to exhausting their budget.
6277 */
6278 if (unlikely(!list_empty(&n->poll_list))) {
6279 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6280 n->dev ? n->dev->name : "backlog");
6281 goto out_unlock;
6282 }
6283
6284 list_add_tail(&n->poll_list, repoll);
6285
6286 out_unlock:
6287 netpoll_poll_unlock(have);
6288
6289 return work;
6290 }
6291
net_rx_action(struct softirq_action * h)6292 static __latent_entropy void net_rx_action(struct softirq_action *h)
6293 {
6294 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6295 unsigned long time_limit = jiffies +
6296 usecs_to_jiffies(netdev_budget_usecs);
6297 int budget = netdev_budget;
6298 LIST_HEAD(list);
6299 LIST_HEAD(repoll);
6300
6301 local_irq_disable();
6302 list_splice_init(&sd->poll_list, &list);
6303 local_irq_enable();
6304
6305 for (;;) {
6306 struct napi_struct *n;
6307
6308 if (list_empty(&list)) {
6309 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6310 goto out;
6311 break;
6312 }
6313
6314 n = list_first_entry(&list, struct napi_struct, poll_list);
6315 budget -= napi_poll(n, &repoll);
6316
6317 /* If softirq window is exhausted then punt.
6318 * Allow this to run for 2 jiffies since which will allow
6319 * an average latency of 1.5/HZ.
6320 */
6321 if (unlikely(budget <= 0 ||
6322 time_after_eq(jiffies, time_limit))) {
6323 sd->time_squeeze++;
6324 break;
6325 }
6326 }
6327
6328 local_irq_disable();
6329
6330 list_splice_tail_init(&sd->poll_list, &list);
6331 list_splice_tail(&repoll, &list);
6332 list_splice(&list, &sd->poll_list);
6333 if (!list_empty(&sd->poll_list))
6334 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6335
6336 net_rps_action_and_irq_enable(sd);
6337 out:
6338 __kfree_skb_flush();
6339 }
6340
6341 struct netdev_adjacent {
6342 struct net_device *dev;
6343
6344 /* upper master flag, there can only be one master device per list */
6345 bool master;
6346
6347 /* counter for the number of times this device was added to us */
6348 u16 ref_nr;
6349
6350 /* private field for the users */
6351 void *private;
6352
6353 struct list_head list;
6354 struct rcu_head rcu;
6355 };
6356
__netdev_find_adj(struct net_device * adj_dev,struct list_head * adj_list)6357 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6358 struct list_head *adj_list)
6359 {
6360 struct netdev_adjacent *adj;
6361
6362 list_for_each_entry(adj, adj_list, list) {
6363 if (adj->dev == adj_dev)
6364 return adj;
6365 }
6366 return NULL;
6367 }
6368
__netdev_has_upper_dev(struct net_device * upper_dev,void * data)6369 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6370 {
6371 struct net_device *dev = data;
6372
6373 return upper_dev == dev;
6374 }
6375
6376 /**
6377 * netdev_has_upper_dev - Check if device is linked to an upper device
6378 * @dev: device
6379 * @upper_dev: upper device to check
6380 *
6381 * Find out if a device is linked to specified upper device and return true
6382 * in case it is. Note that this checks only immediate upper device,
6383 * not through a complete stack of devices. The caller must hold the RTNL lock.
6384 */
netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)6385 bool netdev_has_upper_dev(struct net_device *dev,
6386 struct net_device *upper_dev)
6387 {
6388 ASSERT_RTNL();
6389
6390 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6391 upper_dev);
6392 }
6393 EXPORT_SYMBOL(netdev_has_upper_dev);
6394
6395 /**
6396 * netdev_has_upper_dev_all - Check if device is linked to an upper device
6397 * @dev: device
6398 * @upper_dev: upper device to check
6399 *
6400 * Find out if a device is linked to specified upper device and return true
6401 * in case it is. Note that this checks the entire upper device chain.
6402 * The caller must hold rcu lock.
6403 */
6404
netdev_has_upper_dev_all_rcu(struct net_device * dev,struct net_device * upper_dev)6405 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6406 struct net_device *upper_dev)
6407 {
6408 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6409 upper_dev);
6410 }
6411 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6412
6413 /**
6414 * netdev_has_any_upper_dev - Check if device is linked to some device
6415 * @dev: device
6416 *
6417 * Find out if a device is linked to an upper device and return true in case
6418 * it is. The caller must hold the RTNL lock.
6419 */
netdev_has_any_upper_dev(struct net_device * dev)6420 bool netdev_has_any_upper_dev(struct net_device *dev)
6421 {
6422 ASSERT_RTNL();
6423
6424 return !list_empty(&dev->adj_list.upper);
6425 }
6426 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6427
6428 /**
6429 * netdev_master_upper_dev_get - Get master upper device
6430 * @dev: device
6431 *
6432 * Find a master upper device and return pointer to it or NULL in case
6433 * it's not there. The caller must hold the RTNL lock.
6434 */
netdev_master_upper_dev_get(struct net_device * dev)6435 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6436 {
6437 struct netdev_adjacent *upper;
6438
6439 ASSERT_RTNL();
6440
6441 if (list_empty(&dev->adj_list.upper))
6442 return NULL;
6443
6444 upper = list_first_entry(&dev->adj_list.upper,
6445 struct netdev_adjacent, list);
6446 if (likely(upper->master))
6447 return upper->dev;
6448 return NULL;
6449 }
6450 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6451
6452 /**
6453 * netdev_has_any_lower_dev - Check if device is linked to some device
6454 * @dev: device
6455 *
6456 * Find out if a device is linked to a lower device and return true in case
6457 * it is. The caller must hold the RTNL lock.
6458 */
netdev_has_any_lower_dev(struct net_device * dev)6459 static bool netdev_has_any_lower_dev(struct net_device *dev)
6460 {
6461 ASSERT_RTNL();
6462
6463 return !list_empty(&dev->adj_list.lower);
6464 }
6465
netdev_adjacent_get_private(struct list_head * adj_list)6466 void *netdev_adjacent_get_private(struct list_head *adj_list)
6467 {
6468 struct netdev_adjacent *adj;
6469
6470 adj = list_entry(adj_list, struct netdev_adjacent, list);
6471
6472 return adj->private;
6473 }
6474 EXPORT_SYMBOL(netdev_adjacent_get_private);
6475
6476 /**
6477 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6478 * @dev: device
6479 * @iter: list_head ** of the current position
6480 *
6481 * Gets the next device from the dev's upper list, starting from iter
6482 * position. The caller must hold RCU read lock.
6483 */
netdev_upper_get_next_dev_rcu(struct net_device * dev,struct list_head ** iter)6484 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6485 struct list_head **iter)
6486 {
6487 struct netdev_adjacent *upper;
6488
6489 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6490
6491 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6492
6493 if (&upper->list == &dev->adj_list.upper)
6494 return NULL;
6495
6496 *iter = &upper->list;
6497
6498 return upper->dev;
6499 }
6500 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6501
netdev_next_upper_dev_rcu(struct net_device * dev,struct list_head ** iter)6502 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6503 struct list_head **iter)
6504 {
6505 struct netdev_adjacent *upper;
6506
6507 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6508
6509 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6510
6511 if (&upper->list == &dev->adj_list.upper)
6512 return NULL;
6513
6514 *iter = &upper->list;
6515
6516 return upper->dev;
6517 }
6518
netdev_walk_all_upper_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,void * data),void * data)6519 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6520 int (*fn)(struct net_device *dev,
6521 void *data),
6522 void *data)
6523 {
6524 struct net_device *udev;
6525 struct list_head *iter;
6526 int ret;
6527
6528 for (iter = &dev->adj_list.upper,
6529 udev = netdev_next_upper_dev_rcu(dev, &iter);
6530 udev;
6531 udev = netdev_next_upper_dev_rcu(dev, &iter)) {
6532 /* first is the upper device itself */
6533 ret = fn(udev, data);
6534 if (ret)
6535 return ret;
6536
6537 /* then look at all of its upper devices */
6538 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
6539 if (ret)
6540 return ret;
6541 }
6542
6543 return 0;
6544 }
6545 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6546
6547 /**
6548 * netdev_lower_get_next_private - Get the next ->private from the
6549 * lower neighbour list
6550 * @dev: device
6551 * @iter: list_head ** of the current position
6552 *
6553 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6554 * list, starting from iter position. The caller must hold either hold the
6555 * RTNL lock or its own locking that guarantees that the neighbour lower
6556 * list will remain unchanged.
6557 */
netdev_lower_get_next_private(struct net_device * dev,struct list_head ** iter)6558 void *netdev_lower_get_next_private(struct net_device *dev,
6559 struct list_head **iter)
6560 {
6561 struct netdev_adjacent *lower;
6562
6563 lower = list_entry(*iter, struct netdev_adjacent, list);
6564
6565 if (&lower->list == &dev->adj_list.lower)
6566 return NULL;
6567
6568 *iter = lower->list.next;
6569
6570 return lower->private;
6571 }
6572 EXPORT_SYMBOL(netdev_lower_get_next_private);
6573
6574 /**
6575 * netdev_lower_get_next_private_rcu - Get the next ->private from the
6576 * lower neighbour list, RCU
6577 * variant
6578 * @dev: device
6579 * @iter: list_head ** of the current position
6580 *
6581 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6582 * list, starting from iter position. The caller must hold RCU read lock.
6583 */
netdev_lower_get_next_private_rcu(struct net_device * dev,struct list_head ** iter)6584 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6585 struct list_head **iter)
6586 {
6587 struct netdev_adjacent *lower;
6588
6589 WARN_ON_ONCE(!rcu_read_lock_held());
6590
6591 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6592
6593 if (&lower->list == &dev->adj_list.lower)
6594 return NULL;
6595
6596 *iter = &lower->list;
6597
6598 return lower->private;
6599 }
6600 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6601
6602 /**
6603 * netdev_lower_get_next - Get the next device from the lower neighbour
6604 * list
6605 * @dev: device
6606 * @iter: list_head ** of the current position
6607 *
6608 * Gets the next netdev_adjacent from the dev's lower neighbour
6609 * list, starting from iter position. The caller must hold RTNL lock or
6610 * its own locking that guarantees that the neighbour lower
6611 * list will remain unchanged.
6612 */
netdev_lower_get_next(struct net_device * dev,struct list_head ** iter)6613 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6614 {
6615 struct netdev_adjacent *lower;
6616
6617 lower = list_entry(*iter, struct netdev_adjacent, list);
6618
6619 if (&lower->list == &dev->adj_list.lower)
6620 return NULL;
6621
6622 *iter = lower->list.next;
6623
6624 return lower->dev;
6625 }
6626 EXPORT_SYMBOL(netdev_lower_get_next);
6627
netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter)6628 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6629 struct list_head **iter)
6630 {
6631 struct netdev_adjacent *lower;
6632
6633 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6634
6635 if (&lower->list == &dev->adj_list.lower)
6636 return NULL;
6637
6638 *iter = &lower->list;
6639
6640 return lower->dev;
6641 }
6642
netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,void * data),void * data)6643 int netdev_walk_all_lower_dev(struct net_device *dev,
6644 int (*fn)(struct net_device *dev,
6645 void *data),
6646 void *data)
6647 {
6648 struct net_device *ldev;
6649 struct list_head *iter;
6650 int ret;
6651
6652 for (iter = &dev->adj_list.lower,
6653 ldev = netdev_next_lower_dev(dev, &iter);
6654 ldev;
6655 ldev = netdev_next_lower_dev(dev, &iter)) {
6656 /* first is the lower device itself */
6657 ret = fn(ldev, data);
6658 if (ret)
6659 return ret;
6660
6661 /* then look at all of its lower devices */
6662 ret = netdev_walk_all_lower_dev(ldev, fn, data);
6663 if (ret)
6664 return ret;
6665 }
6666
6667 return 0;
6668 }
6669 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6670
netdev_next_lower_dev_rcu(struct net_device * dev,struct list_head ** iter)6671 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6672 struct list_head **iter)
6673 {
6674 struct netdev_adjacent *lower;
6675
6676 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6677 if (&lower->list == &dev->adj_list.lower)
6678 return NULL;
6679
6680 *iter = &lower->list;
6681
6682 return lower->dev;
6683 }
6684
netdev_walk_all_lower_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,void * data),void * data)6685 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6686 int (*fn)(struct net_device *dev,
6687 void *data),
6688 void *data)
6689 {
6690 struct net_device *ldev;
6691 struct list_head *iter;
6692 int ret;
6693
6694 for (iter = &dev->adj_list.lower,
6695 ldev = netdev_next_lower_dev_rcu(dev, &iter);
6696 ldev;
6697 ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6698 /* first is the lower device itself */
6699 ret = fn(ldev, data);
6700 if (ret)
6701 return ret;
6702
6703 /* then look at all of its lower devices */
6704 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6705 if (ret)
6706 return ret;
6707 }
6708
6709 return 0;
6710 }
6711 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6712
6713 /**
6714 * netdev_lower_get_first_private_rcu - Get the first ->private from the
6715 * lower neighbour list, RCU
6716 * variant
6717 * @dev: device
6718 *
6719 * Gets the first netdev_adjacent->private from the dev's lower neighbour
6720 * list. The caller must hold RCU read lock.
6721 */
netdev_lower_get_first_private_rcu(struct net_device * dev)6722 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6723 {
6724 struct netdev_adjacent *lower;
6725
6726 lower = list_first_or_null_rcu(&dev->adj_list.lower,
6727 struct netdev_adjacent, list);
6728 if (lower)
6729 return lower->private;
6730 return NULL;
6731 }
6732 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6733
6734 /**
6735 * netdev_master_upper_dev_get_rcu - Get master upper device
6736 * @dev: device
6737 *
6738 * Find a master upper device and return pointer to it or NULL in case
6739 * it's not there. The caller must hold the RCU read lock.
6740 */
netdev_master_upper_dev_get_rcu(struct net_device * dev)6741 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6742 {
6743 struct netdev_adjacent *upper;
6744
6745 upper = list_first_or_null_rcu(&dev->adj_list.upper,
6746 struct netdev_adjacent, list);
6747 if (upper && likely(upper->master))
6748 return upper->dev;
6749 return NULL;
6750 }
6751 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6752
netdev_adjacent_sysfs_add(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)6753 static int netdev_adjacent_sysfs_add(struct net_device *dev,
6754 struct net_device *adj_dev,
6755 struct list_head *dev_list)
6756 {
6757 char linkname[IFNAMSIZ+7];
6758
6759 sprintf(linkname, dev_list == &dev->adj_list.upper ?
6760 "upper_%s" : "lower_%s", adj_dev->name);
6761 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6762 linkname);
6763 }
netdev_adjacent_sysfs_del(struct net_device * dev,char * name,struct list_head * dev_list)6764 static void netdev_adjacent_sysfs_del(struct net_device *dev,
6765 char *name,
6766 struct list_head *dev_list)
6767 {
6768 char linkname[IFNAMSIZ+7];
6769
6770 sprintf(linkname, dev_list == &dev->adj_list.upper ?
6771 "upper_%s" : "lower_%s", name);
6772 sysfs_remove_link(&(dev->dev.kobj), linkname);
6773 }
6774
netdev_adjacent_is_neigh_list(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)6775 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6776 struct net_device *adj_dev,
6777 struct list_head *dev_list)
6778 {
6779 return (dev_list == &dev->adj_list.upper ||
6780 dev_list == &dev->adj_list.lower) &&
6781 net_eq(dev_net(dev), dev_net(adj_dev));
6782 }
6783
__netdev_adjacent_dev_insert(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list,void * private,bool master)6784 static int __netdev_adjacent_dev_insert(struct net_device *dev,
6785 struct net_device *adj_dev,
6786 struct list_head *dev_list,
6787 void *private, bool master)
6788 {
6789 struct netdev_adjacent *adj;
6790 int ret;
6791
6792 adj = __netdev_find_adj(adj_dev, dev_list);
6793
6794 if (adj) {
6795 adj->ref_nr += 1;
6796 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6797 dev->name, adj_dev->name, adj->ref_nr);
6798
6799 return 0;
6800 }
6801
6802 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6803 if (!adj)
6804 return -ENOMEM;
6805
6806 adj->dev = adj_dev;
6807 adj->master = master;
6808 adj->ref_nr = 1;
6809 adj->private = private;
6810 dev_hold(adj_dev);
6811
6812 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6813 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6814
6815 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6816 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6817 if (ret)
6818 goto free_adj;
6819 }
6820
6821 /* Ensure that master link is always the first item in list. */
6822 if (master) {
6823 ret = sysfs_create_link(&(dev->dev.kobj),
6824 &(adj_dev->dev.kobj), "master");
6825 if (ret)
6826 goto remove_symlinks;
6827
6828 list_add_rcu(&adj->list, dev_list);
6829 } else {
6830 list_add_tail_rcu(&adj->list, dev_list);
6831 }
6832
6833 return 0;
6834
6835 remove_symlinks:
6836 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6837 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6838 free_adj:
6839 kfree(adj);
6840 dev_put(adj_dev);
6841
6842 return ret;
6843 }
6844
__netdev_adjacent_dev_remove(struct net_device * dev,struct net_device * adj_dev,u16 ref_nr,struct list_head * dev_list)6845 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6846 struct net_device *adj_dev,
6847 u16 ref_nr,
6848 struct list_head *dev_list)
6849 {
6850 struct netdev_adjacent *adj;
6851
6852 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6853 dev->name, adj_dev->name, ref_nr);
6854
6855 adj = __netdev_find_adj(adj_dev, dev_list);
6856
6857 if (!adj) {
6858 pr_err("Adjacency does not exist for device %s from %s\n",
6859 dev->name, adj_dev->name);
6860 WARN_ON(1);
6861 return;
6862 }
6863
6864 if (adj->ref_nr > ref_nr) {
6865 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6866 dev->name, adj_dev->name, ref_nr,
6867 adj->ref_nr - ref_nr);
6868 adj->ref_nr -= ref_nr;
6869 return;
6870 }
6871
6872 if (adj->master)
6873 sysfs_remove_link(&(dev->dev.kobj), "master");
6874
6875 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6876 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6877
6878 list_del_rcu(&adj->list);
6879 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6880 adj_dev->name, dev->name, adj_dev->name);
6881 dev_put(adj_dev);
6882 kfree_rcu(adj, rcu);
6883 }
6884
__netdev_adjacent_dev_link_lists(struct net_device * dev,struct net_device * upper_dev,struct list_head * up_list,struct list_head * down_list,void * private,bool master)6885 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6886 struct net_device *upper_dev,
6887 struct list_head *up_list,
6888 struct list_head *down_list,
6889 void *private, bool master)
6890 {
6891 int ret;
6892
6893 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6894 private, master);
6895 if (ret)
6896 return ret;
6897
6898 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6899 private, false);
6900 if (ret) {
6901 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6902 return ret;
6903 }
6904
6905 return 0;
6906 }
6907
__netdev_adjacent_dev_unlink_lists(struct net_device * dev,struct net_device * upper_dev,u16 ref_nr,struct list_head * up_list,struct list_head * down_list)6908 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6909 struct net_device *upper_dev,
6910 u16 ref_nr,
6911 struct list_head *up_list,
6912 struct list_head *down_list)
6913 {
6914 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6915 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
6916 }
6917
__netdev_adjacent_dev_link_neighbour(struct net_device * dev,struct net_device * upper_dev,void * private,bool master)6918 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6919 struct net_device *upper_dev,
6920 void *private, bool master)
6921 {
6922 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6923 &dev->adj_list.upper,
6924 &upper_dev->adj_list.lower,
6925 private, master);
6926 }
6927
__netdev_adjacent_dev_unlink_neighbour(struct net_device * dev,struct net_device * upper_dev)6928 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6929 struct net_device *upper_dev)
6930 {
6931 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
6932 &dev->adj_list.upper,
6933 &upper_dev->adj_list.lower);
6934 }
6935
__netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,bool master,void * upper_priv,void * upper_info,struct netlink_ext_ack * extack)6936 static int __netdev_upper_dev_link(struct net_device *dev,
6937 struct net_device *upper_dev, bool master,
6938 void *upper_priv, void *upper_info,
6939 struct netlink_ext_ack *extack)
6940 {
6941 struct netdev_notifier_changeupper_info changeupper_info = {
6942 .info = {
6943 .dev = dev,
6944 .extack = extack,
6945 },
6946 .upper_dev = upper_dev,
6947 .master = master,
6948 .linking = true,
6949 .upper_info = upper_info,
6950 };
6951 struct net_device *master_dev;
6952 int ret = 0;
6953
6954 ASSERT_RTNL();
6955
6956 if (dev == upper_dev)
6957 return -EBUSY;
6958
6959 /* To prevent loops, check if dev is not upper device to upper_dev. */
6960 if (netdev_has_upper_dev(upper_dev, dev))
6961 return -EBUSY;
6962
6963 if (!master) {
6964 if (netdev_has_upper_dev(dev, upper_dev))
6965 return -EEXIST;
6966 } else {
6967 master_dev = netdev_master_upper_dev_get(dev);
6968 if (master_dev)
6969 return master_dev == upper_dev ? -EEXIST : -EBUSY;
6970 }
6971
6972 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6973 &changeupper_info.info);
6974 ret = notifier_to_errno(ret);
6975 if (ret)
6976 return ret;
6977
6978 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
6979 master);
6980 if (ret)
6981 return ret;
6982
6983 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6984 &changeupper_info.info);
6985 ret = notifier_to_errno(ret);
6986 if (ret)
6987 goto rollback;
6988
6989 return 0;
6990
6991 rollback:
6992 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6993
6994 return ret;
6995 }
6996
6997 /**
6998 * netdev_upper_dev_link - Add a link to the upper device
6999 * @dev: device
7000 * @upper_dev: new upper device
7001 * @extack: netlink extended ack
7002 *
7003 * Adds a link to device which is upper to this one. The caller must hold
7004 * the RTNL lock. On a failure a negative errno code is returned.
7005 * On success the reference counts are adjusted and the function
7006 * returns zero.
7007 */
netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,struct netlink_ext_ack * extack)7008 int netdev_upper_dev_link(struct net_device *dev,
7009 struct net_device *upper_dev,
7010 struct netlink_ext_ack *extack)
7011 {
7012 return __netdev_upper_dev_link(dev, upper_dev, false,
7013 NULL, NULL, extack);
7014 }
7015 EXPORT_SYMBOL(netdev_upper_dev_link);
7016
7017 /**
7018 * netdev_master_upper_dev_link - Add a master link to the upper device
7019 * @dev: device
7020 * @upper_dev: new upper device
7021 * @upper_priv: upper device private
7022 * @upper_info: upper info to be passed down via notifier
7023 * @extack: netlink extended ack
7024 *
7025 * Adds a link to device which is upper to this one. In this case, only
7026 * one master upper device can be linked, although other non-master devices
7027 * might be linked as well. The caller must hold the RTNL lock.
7028 * On a failure a negative errno code is returned. On success the reference
7029 * counts are adjusted and the function returns zero.
7030 */
netdev_master_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,void * upper_priv,void * upper_info,struct netlink_ext_ack * extack)7031 int netdev_master_upper_dev_link(struct net_device *dev,
7032 struct net_device *upper_dev,
7033 void *upper_priv, void *upper_info,
7034 struct netlink_ext_ack *extack)
7035 {
7036 return __netdev_upper_dev_link(dev, upper_dev, true,
7037 upper_priv, upper_info, extack);
7038 }
7039 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7040
7041 /**
7042 * netdev_upper_dev_unlink - Removes a link to upper device
7043 * @dev: device
7044 * @upper_dev: new upper device
7045 *
7046 * Removes a link to device which is upper to this one. The caller must hold
7047 * the RTNL lock.
7048 */
netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev)7049 void netdev_upper_dev_unlink(struct net_device *dev,
7050 struct net_device *upper_dev)
7051 {
7052 struct netdev_notifier_changeupper_info changeupper_info = {
7053 .info = {
7054 .dev = dev,
7055 },
7056 .upper_dev = upper_dev,
7057 .linking = false,
7058 };
7059
7060 ASSERT_RTNL();
7061
7062 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7063
7064 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7065 &changeupper_info.info);
7066
7067 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7068
7069 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7070 &changeupper_info.info);
7071 }
7072 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7073
7074 /**
7075 * netdev_bonding_info_change - Dispatch event about slave change
7076 * @dev: device
7077 * @bonding_info: info to dispatch
7078 *
7079 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7080 * The caller must hold the RTNL lock.
7081 */
netdev_bonding_info_change(struct net_device * dev,struct netdev_bonding_info * bonding_info)7082 void netdev_bonding_info_change(struct net_device *dev,
7083 struct netdev_bonding_info *bonding_info)
7084 {
7085 struct netdev_notifier_bonding_info info = {
7086 .info.dev = dev,
7087 };
7088
7089 memcpy(&info.bonding_info, bonding_info,
7090 sizeof(struct netdev_bonding_info));
7091 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7092 &info.info);
7093 }
7094 EXPORT_SYMBOL(netdev_bonding_info_change);
7095
netdev_adjacent_add_links(struct net_device * dev)7096 static void netdev_adjacent_add_links(struct net_device *dev)
7097 {
7098 struct netdev_adjacent *iter;
7099
7100 struct net *net = dev_net(dev);
7101
7102 list_for_each_entry(iter, &dev->adj_list.upper, list) {
7103 if (!net_eq(net, dev_net(iter->dev)))
7104 continue;
7105 netdev_adjacent_sysfs_add(iter->dev, dev,
7106 &iter->dev->adj_list.lower);
7107 netdev_adjacent_sysfs_add(dev, iter->dev,
7108 &dev->adj_list.upper);
7109 }
7110
7111 list_for_each_entry(iter, &dev->adj_list.lower, list) {
7112 if (!net_eq(net, dev_net(iter->dev)))
7113 continue;
7114 netdev_adjacent_sysfs_add(iter->dev, dev,
7115 &iter->dev->adj_list.upper);
7116 netdev_adjacent_sysfs_add(dev, iter->dev,
7117 &dev->adj_list.lower);
7118 }
7119 }
7120
netdev_adjacent_del_links(struct net_device * dev)7121 static void netdev_adjacent_del_links(struct net_device *dev)
7122 {
7123 struct netdev_adjacent *iter;
7124
7125 struct net *net = dev_net(dev);
7126
7127 list_for_each_entry(iter, &dev->adj_list.upper, list) {
7128 if (!net_eq(net, dev_net(iter->dev)))
7129 continue;
7130 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7131 &iter->dev->adj_list.lower);
7132 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7133 &dev->adj_list.upper);
7134 }
7135
7136 list_for_each_entry(iter, &dev->adj_list.lower, list) {
7137 if (!net_eq(net, dev_net(iter->dev)))
7138 continue;
7139 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7140 &iter->dev->adj_list.upper);
7141 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7142 &dev->adj_list.lower);
7143 }
7144 }
7145
netdev_adjacent_rename_links(struct net_device * dev,char * oldname)7146 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7147 {
7148 struct netdev_adjacent *iter;
7149
7150 struct net *net = dev_net(dev);
7151
7152 list_for_each_entry(iter, &dev->adj_list.upper, list) {
7153 if (!net_eq(net, dev_net(iter->dev)))
7154 continue;
7155 netdev_adjacent_sysfs_del(iter->dev, oldname,
7156 &iter->dev->adj_list.lower);
7157 netdev_adjacent_sysfs_add(iter->dev, dev,
7158 &iter->dev->adj_list.lower);
7159 }
7160
7161 list_for_each_entry(iter, &dev->adj_list.lower, list) {
7162 if (!net_eq(net, dev_net(iter->dev)))
7163 continue;
7164 netdev_adjacent_sysfs_del(iter->dev, oldname,
7165 &iter->dev->adj_list.upper);
7166 netdev_adjacent_sysfs_add(iter->dev, dev,
7167 &iter->dev->adj_list.upper);
7168 }
7169 }
7170
netdev_lower_dev_get_private(struct net_device * dev,struct net_device * lower_dev)7171 void *netdev_lower_dev_get_private(struct net_device *dev,
7172 struct net_device *lower_dev)
7173 {
7174 struct netdev_adjacent *lower;
7175
7176 if (!lower_dev)
7177 return NULL;
7178 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7179 if (!lower)
7180 return NULL;
7181
7182 return lower->private;
7183 }
7184 EXPORT_SYMBOL(netdev_lower_dev_get_private);
7185
7186
dev_get_nest_level(struct net_device * dev)7187 int dev_get_nest_level(struct net_device *dev)
7188 {
7189 struct net_device *lower = NULL;
7190 struct list_head *iter;
7191 int max_nest = -1;
7192 int nest;
7193
7194 ASSERT_RTNL();
7195
7196 netdev_for_each_lower_dev(dev, lower, iter) {
7197 nest = dev_get_nest_level(lower);
7198 if (max_nest < nest)
7199 max_nest = nest;
7200 }
7201
7202 return max_nest + 1;
7203 }
7204 EXPORT_SYMBOL(dev_get_nest_level);
7205
7206 /**
7207 * netdev_lower_change - Dispatch event about lower device state change
7208 * @lower_dev: device
7209 * @lower_state_info: state to dispatch
7210 *
7211 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7212 * The caller must hold the RTNL lock.
7213 */
netdev_lower_state_changed(struct net_device * lower_dev,void * lower_state_info)7214 void netdev_lower_state_changed(struct net_device *lower_dev,
7215 void *lower_state_info)
7216 {
7217 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7218 .info.dev = lower_dev,
7219 };
7220
7221 ASSERT_RTNL();
7222 changelowerstate_info.lower_state_info = lower_state_info;
7223 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7224 &changelowerstate_info.info);
7225 }
7226 EXPORT_SYMBOL(netdev_lower_state_changed);
7227
dev_change_rx_flags(struct net_device * dev,int flags)7228 static void dev_change_rx_flags(struct net_device *dev, int flags)
7229 {
7230 const struct net_device_ops *ops = dev->netdev_ops;
7231
7232 if (ops->ndo_change_rx_flags)
7233 ops->ndo_change_rx_flags(dev, flags);
7234 }
7235
__dev_set_promiscuity(struct net_device * dev,int inc,bool notify)7236 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7237 {
7238 unsigned int old_flags = dev->flags;
7239 kuid_t uid;
7240 kgid_t gid;
7241
7242 ASSERT_RTNL();
7243
7244 dev->flags |= IFF_PROMISC;
7245 dev->promiscuity += inc;
7246 if (dev->promiscuity == 0) {
7247 /*
7248 * Avoid overflow.
7249 * If inc causes overflow, untouch promisc and return error.
7250 */
7251 if (inc < 0)
7252 dev->flags &= ~IFF_PROMISC;
7253 else {
7254 dev->promiscuity -= inc;
7255 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7256 dev->name);
7257 return -EOVERFLOW;
7258 }
7259 }
7260 if (dev->flags != old_flags) {
7261 pr_info("device %s %s promiscuous mode\n",
7262 dev->name,
7263 dev->flags & IFF_PROMISC ? "entered" : "left");
7264 if (audit_enabled) {
7265 current_uid_gid(&uid, &gid);
7266 audit_log(audit_context(), GFP_ATOMIC,
7267 AUDIT_ANOM_PROMISCUOUS,
7268 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7269 dev->name, (dev->flags & IFF_PROMISC),
7270 (old_flags & IFF_PROMISC),
7271 from_kuid(&init_user_ns, audit_get_loginuid(current)),
7272 from_kuid(&init_user_ns, uid),
7273 from_kgid(&init_user_ns, gid),
7274 audit_get_sessionid(current));
7275 }
7276
7277 dev_change_rx_flags(dev, IFF_PROMISC);
7278 }
7279 if (notify)
7280 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
7281 return 0;
7282 }
7283
7284 /**
7285 * dev_set_promiscuity - update promiscuity count on a device
7286 * @dev: device
7287 * @inc: modifier
7288 *
7289 * Add or remove promiscuity from a device. While the count in the device
7290 * remains above zero the interface remains promiscuous. Once it hits zero
7291 * the device reverts back to normal filtering operation. A negative inc
7292 * value is used to drop promiscuity on the device.
7293 * Return 0 if successful or a negative errno code on error.
7294 */
dev_set_promiscuity(struct net_device * dev,int inc)7295 int dev_set_promiscuity(struct net_device *dev, int inc)
7296 {
7297 unsigned int old_flags = dev->flags;
7298 int err;
7299
7300 err = __dev_set_promiscuity(dev, inc, true);
7301 if (err < 0)
7302 return err;
7303 if (dev->flags != old_flags)
7304 dev_set_rx_mode(dev);
7305 return err;
7306 }
7307 EXPORT_SYMBOL(dev_set_promiscuity);
7308
__dev_set_allmulti(struct net_device * dev,int inc,bool notify)7309 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
7310 {
7311 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
7312
7313 ASSERT_RTNL();
7314
7315 dev->flags |= IFF_ALLMULTI;
7316 dev->allmulti += inc;
7317 if (dev->allmulti == 0) {
7318 /*
7319 * Avoid overflow.
7320 * If inc causes overflow, untouch allmulti and return error.
7321 */
7322 if (inc < 0)
7323 dev->flags &= ~IFF_ALLMULTI;
7324 else {
7325 dev->allmulti -= inc;
7326 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
7327 dev->name);
7328 return -EOVERFLOW;
7329 }
7330 }
7331 if (dev->flags ^ old_flags) {
7332 dev_change_rx_flags(dev, IFF_ALLMULTI);
7333 dev_set_rx_mode(dev);
7334 if (notify)
7335 __dev_notify_flags(dev, old_flags,
7336 dev->gflags ^ old_gflags);
7337 }
7338 return 0;
7339 }
7340
7341 /**
7342 * dev_set_allmulti - update allmulti count on a device
7343 * @dev: device
7344 * @inc: modifier
7345 *
7346 * Add or remove reception of all multicast frames to a device. While the
7347 * count in the device remains above zero the interface remains listening
7348 * to all interfaces. Once it hits zero the device reverts back to normal
7349 * filtering operation. A negative @inc value is used to drop the counter
7350 * when releasing a resource needing all multicasts.
7351 * Return 0 if successful or a negative errno code on error.
7352 */
7353
dev_set_allmulti(struct net_device * dev,int inc)7354 int dev_set_allmulti(struct net_device *dev, int inc)
7355 {
7356 return __dev_set_allmulti(dev, inc, true);
7357 }
7358 EXPORT_SYMBOL(dev_set_allmulti);
7359
7360 /*
7361 * Upload unicast and multicast address lists to device and
7362 * configure RX filtering. When the device doesn't support unicast
7363 * filtering it is put in promiscuous mode while unicast addresses
7364 * are present.
7365 */
__dev_set_rx_mode(struct net_device * dev)7366 void __dev_set_rx_mode(struct net_device *dev)
7367 {
7368 const struct net_device_ops *ops = dev->netdev_ops;
7369
7370 /* dev_open will call this function so the list will stay sane. */
7371 if (!(dev->flags&IFF_UP))
7372 return;
7373
7374 if (!netif_device_present(dev))
7375 return;
7376
7377 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
7378 /* Unicast addresses changes may only happen under the rtnl,
7379 * therefore calling __dev_set_promiscuity here is safe.
7380 */
7381 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
7382 __dev_set_promiscuity(dev, 1, false);
7383 dev->uc_promisc = true;
7384 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
7385 __dev_set_promiscuity(dev, -1, false);
7386 dev->uc_promisc = false;
7387 }
7388 }
7389
7390 if (ops->ndo_set_rx_mode)
7391 ops->ndo_set_rx_mode(dev);
7392 }
7393
dev_set_rx_mode(struct net_device * dev)7394 void dev_set_rx_mode(struct net_device *dev)
7395 {
7396 netif_addr_lock_bh(dev);
7397 __dev_set_rx_mode(dev);
7398 netif_addr_unlock_bh(dev);
7399 }
7400
7401 /**
7402 * dev_get_flags - get flags reported to userspace
7403 * @dev: device
7404 *
7405 * Get the combination of flag bits exported through APIs to userspace.
7406 */
dev_get_flags(const struct net_device * dev)7407 unsigned int dev_get_flags(const struct net_device *dev)
7408 {
7409 unsigned int flags;
7410
7411 flags = (dev->flags & ~(IFF_PROMISC |
7412 IFF_ALLMULTI |
7413 IFF_RUNNING |
7414 IFF_LOWER_UP |
7415 IFF_DORMANT)) |
7416 (dev->gflags & (IFF_PROMISC |
7417 IFF_ALLMULTI));
7418
7419 if (netif_running(dev)) {
7420 if (netif_oper_up(dev))
7421 flags |= IFF_RUNNING;
7422 if (netif_carrier_ok(dev))
7423 flags |= IFF_LOWER_UP;
7424 if (netif_dormant(dev))
7425 flags |= IFF_DORMANT;
7426 }
7427
7428 return flags;
7429 }
7430 EXPORT_SYMBOL(dev_get_flags);
7431
__dev_change_flags(struct net_device * dev,unsigned int flags)7432 int __dev_change_flags(struct net_device *dev, unsigned int flags)
7433 {
7434 unsigned int old_flags = dev->flags;
7435 int ret;
7436
7437 ASSERT_RTNL();
7438
7439 /*
7440 * Set the flags on our device.
7441 */
7442
7443 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
7444 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
7445 IFF_AUTOMEDIA)) |
7446 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
7447 IFF_ALLMULTI));
7448
7449 /*
7450 * Load in the correct multicast list now the flags have changed.
7451 */
7452
7453 if ((old_flags ^ flags) & IFF_MULTICAST)
7454 dev_change_rx_flags(dev, IFF_MULTICAST);
7455
7456 dev_set_rx_mode(dev);
7457
7458 /*
7459 * Have we downed the interface. We handle IFF_UP ourselves
7460 * according to user attempts to set it, rather than blindly
7461 * setting it.
7462 */
7463
7464 ret = 0;
7465 if ((old_flags ^ flags) & IFF_UP) {
7466 if (old_flags & IFF_UP)
7467 __dev_close(dev);
7468 else
7469 ret = __dev_open(dev);
7470 }
7471
7472 if ((flags ^ dev->gflags) & IFF_PROMISC) {
7473 int inc = (flags & IFF_PROMISC) ? 1 : -1;
7474 unsigned int old_flags = dev->flags;
7475
7476 dev->gflags ^= IFF_PROMISC;
7477
7478 if (__dev_set_promiscuity(dev, inc, false) >= 0)
7479 if (dev->flags != old_flags)
7480 dev_set_rx_mode(dev);
7481 }
7482
7483 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
7484 * is important. Some (broken) drivers set IFF_PROMISC, when
7485 * IFF_ALLMULTI is requested not asking us and not reporting.
7486 */
7487 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
7488 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
7489
7490 dev->gflags ^= IFF_ALLMULTI;
7491 __dev_set_allmulti(dev, inc, false);
7492 }
7493
7494 return ret;
7495 }
7496
__dev_notify_flags(struct net_device * dev,unsigned int old_flags,unsigned int gchanges)7497 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
7498 unsigned int gchanges)
7499 {
7500 unsigned int changes = dev->flags ^ old_flags;
7501
7502 if (gchanges)
7503 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
7504
7505 if (changes & IFF_UP) {
7506 if (dev->flags & IFF_UP)
7507 call_netdevice_notifiers(NETDEV_UP, dev);
7508 else
7509 call_netdevice_notifiers(NETDEV_DOWN, dev);
7510 }
7511
7512 if (dev->flags & IFF_UP &&
7513 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
7514 struct netdev_notifier_change_info change_info = {
7515 .info = {
7516 .dev = dev,
7517 },
7518 .flags_changed = changes,
7519 };
7520
7521 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
7522 }
7523 }
7524
7525 /**
7526 * dev_change_flags - change device settings
7527 * @dev: device
7528 * @flags: device state flags
7529 *
7530 * Change settings on device based state flags. The flags are
7531 * in the userspace exported format.
7532 */
dev_change_flags(struct net_device * dev,unsigned int flags)7533 int dev_change_flags(struct net_device *dev, unsigned int flags)
7534 {
7535 int ret;
7536 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
7537
7538 ret = __dev_change_flags(dev, flags);
7539 if (ret < 0)
7540 return ret;
7541
7542 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
7543 __dev_notify_flags(dev, old_flags, changes);
7544 return ret;
7545 }
7546 EXPORT_SYMBOL(dev_change_flags);
7547
__dev_set_mtu(struct net_device * dev,int new_mtu)7548 int __dev_set_mtu(struct net_device *dev, int new_mtu)
7549 {
7550 const struct net_device_ops *ops = dev->netdev_ops;
7551
7552 if (ops->ndo_change_mtu)
7553 return ops->ndo_change_mtu(dev, new_mtu);
7554
7555 dev->mtu = new_mtu;
7556 return 0;
7557 }
7558 EXPORT_SYMBOL(__dev_set_mtu);
7559
7560 /**
7561 * dev_set_mtu_ext - Change maximum transfer unit
7562 * @dev: device
7563 * @new_mtu: new transfer unit
7564 * @extack: netlink extended ack
7565 *
7566 * Change the maximum transfer size of the network device.
7567 */
dev_set_mtu_ext(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)7568 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
7569 struct netlink_ext_ack *extack)
7570 {
7571 int err, orig_mtu;
7572
7573 if (new_mtu == dev->mtu)
7574 return 0;
7575
7576 /* MTU must be positive, and in range */
7577 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7578 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
7579 return -EINVAL;
7580 }
7581
7582 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7583 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
7584 return -EINVAL;
7585 }
7586
7587 if (!netif_device_present(dev))
7588 return -ENODEV;
7589
7590 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7591 err = notifier_to_errno(err);
7592 if (err)
7593 return err;
7594
7595 orig_mtu = dev->mtu;
7596 err = __dev_set_mtu(dev, new_mtu);
7597
7598 if (!err) {
7599 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7600 orig_mtu);
7601 err = notifier_to_errno(err);
7602 if (err) {
7603 /* setting mtu back and notifying everyone again,
7604 * so that they have a chance to revert changes.
7605 */
7606 __dev_set_mtu(dev, orig_mtu);
7607 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7608 new_mtu);
7609 }
7610 }
7611 return err;
7612 }
7613
dev_set_mtu(struct net_device * dev,int new_mtu)7614 int dev_set_mtu(struct net_device *dev, int new_mtu)
7615 {
7616 struct netlink_ext_ack extack;
7617 int err;
7618
7619 memset(&extack, 0, sizeof(extack));
7620 err = dev_set_mtu_ext(dev, new_mtu, &extack);
7621 if (err && extack._msg)
7622 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
7623 return err;
7624 }
7625 EXPORT_SYMBOL(dev_set_mtu);
7626
7627 /**
7628 * dev_change_tx_queue_len - Change TX queue length of a netdevice
7629 * @dev: device
7630 * @new_len: new tx queue length
7631 */
dev_change_tx_queue_len(struct net_device * dev,unsigned long new_len)7632 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
7633 {
7634 unsigned int orig_len = dev->tx_queue_len;
7635 int res;
7636
7637 if (new_len != (unsigned int)new_len)
7638 return -ERANGE;
7639
7640 if (new_len != orig_len) {
7641 dev->tx_queue_len = new_len;
7642 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
7643 res = notifier_to_errno(res);
7644 if (res)
7645 goto err_rollback;
7646 res = dev_qdisc_change_tx_queue_len(dev);
7647 if (res)
7648 goto err_rollback;
7649 }
7650
7651 return 0;
7652
7653 err_rollback:
7654 netdev_err(dev, "refused to change device tx_queue_len\n");
7655 dev->tx_queue_len = orig_len;
7656 return res;
7657 }
7658
7659 /**
7660 * dev_set_group - Change group this device belongs to
7661 * @dev: device
7662 * @new_group: group this device should belong to
7663 */
dev_set_group(struct net_device * dev,int new_group)7664 void dev_set_group(struct net_device *dev, int new_group)
7665 {
7666 dev->group = new_group;
7667 }
7668 EXPORT_SYMBOL(dev_set_group);
7669
7670 /**
7671 * dev_set_mac_address - Change Media Access Control Address
7672 * @dev: device
7673 * @sa: new address
7674 *
7675 * Change the hardware (MAC) address of the device
7676 */
dev_set_mac_address(struct net_device * dev,struct sockaddr * sa)7677 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
7678 {
7679 const struct net_device_ops *ops = dev->netdev_ops;
7680 int err;
7681
7682 if (!ops->ndo_set_mac_address)
7683 return -EOPNOTSUPP;
7684 if (sa->sa_family != dev->type)
7685 return -EINVAL;
7686 if (!netif_device_present(dev))
7687 return -ENODEV;
7688 err = ops->ndo_set_mac_address(dev, sa);
7689 if (err)
7690 return err;
7691 dev->addr_assign_type = NET_ADDR_SET;
7692 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7693 add_device_randomness(dev->dev_addr, dev->addr_len);
7694 return 0;
7695 }
7696 EXPORT_SYMBOL(dev_set_mac_address);
7697
7698 /**
7699 * dev_change_carrier - Change device carrier
7700 * @dev: device
7701 * @new_carrier: new value
7702 *
7703 * Change device carrier
7704 */
dev_change_carrier(struct net_device * dev,bool new_carrier)7705 int dev_change_carrier(struct net_device *dev, bool new_carrier)
7706 {
7707 const struct net_device_ops *ops = dev->netdev_ops;
7708
7709 if (!ops->ndo_change_carrier)
7710 return -EOPNOTSUPP;
7711 if (!netif_device_present(dev))
7712 return -ENODEV;
7713 return ops->ndo_change_carrier(dev, new_carrier);
7714 }
7715 EXPORT_SYMBOL(dev_change_carrier);
7716
7717 /**
7718 * dev_get_phys_port_id - Get device physical port ID
7719 * @dev: device
7720 * @ppid: port ID
7721 *
7722 * Get device physical port ID
7723 */
dev_get_phys_port_id(struct net_device * dev,struct netdev_phys_item_id * ppid)7724 int dev_get_phys_port_id(struct net_device *dev,
7725 struct netdev_phys_item_id *ppid)
7726 {
7727 const struct net_device_ops *ops = dev->netdev_ops;
7728
7729 if (!ops->ndo_get_phys_port_id)
7730 return -EOPNOTSUPP;
7731 return ops->ndo_get_phys_port_id(dev, ppid);
7732 }
7733 EXPORT_SYMBOL(dev_get_phys_port_id);
7734
7735 /**
7736 * dev_get_phys_port_name - Get device physical port name
7737 * @dev: device
7738 * @name: port name
7739 * @len: limit of bytes to copy to name
7740 *
7741 * Get device physical port name
7742 */
dev_get_phys_port_name(struct net_device * dev,char * name,size_t len)7743 int dev_get_phys_port_name(struct net_device *dev,
7744 char *name, size_t len)
7745 {
7746 const struct net_device_ops *ops = dev->netdev_ops;
7747
7748 if (!ops->ndo_get_phys_port_name)
7749 return -EOPNOTSUPP;
7750 return ops->ndo_get_phys_port_name(dev, name, len);
7751 }
7752 EXPORT_SYMBOL(dev_get_phys_port_name);
7753
7754 /**
7755 * dev_change_proto_down - update protocol port state information
7756 * @dev: device
7757 * @proto_down: new value
7758 *
7759 * This info can be used by switch drivers to set the phys state of the
7760 * port.
7761 */
dev_change_proto_down(struct net_device * dev,bool proto_down)7762 int dev_change_proto_down(struct net_device *dev, bool proto_down)
7763 {
7764 const struct net_device_ops *ops = dev->netdev_ops;
7765
7766 if (!ops->ndo_change_proto_down)
7767 return -EOPNOTSUPP;
7768 if (!netif_device_present(dev))
7769 return -ENODEV;
7770 return ops->ndo_change_proto_down(dev, proto_down);
7771 }
7772 EXPORT_SYMBOL(dev_change_proto_down);
7773
__dev_xdp_query(struct net_device * dev,bpf_op_t bpf_op,enum bpf_netdev_command cmd)7774 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
7775 enum bpf_netdev_command cmd)
7776 {
7777 struct netdev_bpf xdp;
7778
7779 if (!bpf_op)
7780 return 0;
7781
7782 memset(&xdp, 0, sizeof(xdp));
7783 xdp.command = cmd;
7784
7785 /* Query must always succeed. */
7786 WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
7787
7788 return xdp.prog_id;
7789 }
7790
dev_xdp_install(struct net_device * dev,bpf_op_t bpf_op,struct netlink_ext_ack * extack,u32 flags,struct bpf_prog * prog)7791 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
7792 struct netlink_ext_ack *extack, u32 flags,
7793 struct bpf_prog *prog)
7794 {
7795 struct netdev_bpf xdp;
7796
7797 memset(&xdp, 0, sizeof(xdp));
7798 if (flags & XDP_FLAGS_HW_MODE)
7799 xdp.command = XDP_SETUP_PROG_HW;
7800 else
7801 xdp.command = XDP_SETUP_PROG;
7802 xdp.extack = extack;
7803 xdp.flags = flags;
7804 xdp.prog = prog;
7805
7806 return bpf_op(dev, &xdp);
7807 }
7808
dev_xdp_uninstall(struct net_device * dev)7809 static void dev_xdp_uninstall(struct net_device *dev)
7810 {
7811 struct netdev_bpf xdp;
7812 bpf_op_t ndo_bpf;
7813
7814 /* Remove generic XDP */
7815 WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
7816
7817 /* Remove from the driver */
7818 ndo_bpf = dev->netdev_ops->ndo_bpf;
7819 if (!ndo_bpf)
7820 return;
7821
7822 memset(&xdp, 0, sizeof(xdp));
7823 xdp.command = XDP_QUERY_PROG;
7824 WARN_ON(ndo_bpf(dev, &xdp));
7825 if (xdp.prog_id)
7826 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
7827 NULL));
7828
7829 /* Remove HW offload */
7830 memset(&xdp, 0, sizeof(xdp));
7831 xdp.command = XDP_QUERY_PROG_HW;
7832 if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
7833 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
7834 NULL));
7835 }
7836
7837 /**
7838 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
7839 * @dev: device
7840 * @extack: netlink extended ack
7841 * @fd: new program fd or negative value to clear
7842 * @flags: xdp-related flags
7843 *
7844 * Set or clear a bpf program for a device
7845 */
dev_change_xdp_fd(struct net_device * dev,struct netlink_ext_ack * extack,int fd,u32 flags)7846 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
7847 int fd, u32 flags)
7848 {
7849 const struct net_device_ops *ops = dev->netdev_ops;
7850 enum bpf_netdev_command query;
7851 struct bpf_prog *prog = NULL;
7852 bpf_op_t bpf_op, bpf_chk;
7853 int err;
7854
7855 ASSERT_RTNL();
7856
7857 query = flags & XDP_FLAGS_HW_MODE ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
7858
7859 bpf_op = bpf_chk = ops->ndo_bpf;
7860 if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
7861 return -EOPNOTSUPP;
7862 if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
7863 bpf_op = generic_xdp_install;
7864 if (bpf_op == bpf_chk)
7865 bpf_chk = generic_xdp_install;
7866
7867 if (fd >= 0) {
7868 if (__dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG) ||
7869 __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG_HW))
7870 return -EEXIST;
7871 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
7872 __dev_xdp_query(dev, bpf_op, query))
7873 return -EBUSY;
7874
7875 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
7876 bpf_op == ops->ndo_bpf);
7877 if (IS_ERR(prog))
7878 return PTR_ERR(prog);
7879
7880 if (!(flags & XDP_FLAGS_HW_MODE) &&
7881 bpf_prog_is_dev_bound(prog->aux)) {
7882 NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
7883 bpf_prog_put(prog);
7884 return -EINVAL;
7885 }
7886 }
7887
7888 err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
7889 if (err < 0 && prog)
7890 bpf_prog_put(prog);
7891
7892 return err;
7893 }
7894
7895 /**
7896 * dev_new_index - allocate an ifindex
7897 * @net: the applicable net namespace
7898 *
7899 * Returns a suitable unique value for a new device interface
7900 * number. The caller must hold the rtnl semaphore or the
7901 * dev_base_lock to be sure it remains unique.
7902 */
dev_new_index(struct net * net)7903 static int dev_new_index(struct net *net)
7904 {
7905 int ifindex = net->ifindex;
7906
7907 for (;;) {
7908 if (++ifindex <= 0)
7909 ifindex = 1;
7910 if (!__dev_get_by_index(net, ifindex))
7911 return net->ifindex = ifindex;
7912 }
7913 }
7914
7915 /* Delayed registration/unregisteration */
7916 static LIST_HEAD(net_todo_list);
7917 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
7918
net_set_todo(struct net_device * dev)7919 static void net_set_todo(struct net_device *dev)
7920 {
7921 list_add_tail(&dev->todo_list, &net_todo_list);
7922 dev_net(dev)->dev_unreg_count++;
7923 }
7924
rollback_registered_many(struct list_head * head)7925 static void rollback_registered_many(struct list_head *head)
7926 {
7927 struct net_device *dev, *tmp;
7928 LIST_HEAD(close_head);
7929
7930 BUG_ON(dev_boot_phase);
7931 ASSERT_RTNL();
7932
7933 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
7934 /* Some devices call without registering
7935 * for initialization unwind. Remove those
7936 * devices and proceed with the remaining.
7937 */
7938 if (dev->reg_state == NETREG_UNINITIALIZED) {
7939 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7940 dev->name, dev);
7941
7942 WARN_ON(1);
7943 list_del(&dev->unreg_list);
7944 continue;
7945 }
7946 dev->dismantle = true;
7947 BUG_ON(dev->reg_state != NETREG_REGISTERED);
7948 }
7949
7950 /* If device is running, close it first. */
7951 list_for_each_entry(dev, head, unreg_list)
7952 list_add_tail(&dev->close_list, &close_head);
7953 dev_close_many(&close_head, true);
7954
7955 list_for_each_entry(dev, head, unreg_list) {
7956 /* And unlink it from device chain. */
7957 unlist_netdevice(dev);
7958
7959 dev->reg_state = NETREG_UNREGISTERING;
7960 }
7961 flush_all_backlogs();
7962
7963 synchronize_net();
7964
7965 list_for_each_entry(dev, head, unreg_list) {
7966 struct sk_buff *skb = NULL;
7967
7968 /* Shutdown queueing discipline. */
7969 dev_shutdown(dev);
7970
7971 dev_xdp_uninstall(dev);
7972
7973 /* Notify protocols, that we are about to destroy
7974 * this device. They should clean all the things.
7975 */
7976 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7977
7978 if (!dev->rtnl_link_ops ||
7979 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7980 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
7981 GFP_KERNEL, NULL, 0);
7982
7983 /*
7984 * Flush the unicast and multicast chains
7985 */
7986 dev_uc_flush(dev);
7987 dev_mc_flush(dev);
7988
7989 if (dev->netdev_ops->ndo_uninit)
7990 dev->netdev_ops->ndo_uninit(dev);
7991
7992 if (skb)
7993 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
7994
7995 /* Notifier chain MUST detach us all upper devices. */
7996 WARN_ON(netdev_has_any_upper_dev(dev));
7997 WARN_ON(netdev_has_any_lower_dev(dev));
7998
7999 /* Remove entries from kobject tree */
8000 netdev_unregister_kobject(dev);
8001 #ifdef CONFIG_XPS
8002 /* Remove XPS queueing entries */
8003 netif_reset_xps_queues_gt(dev, 0);
8004 #endif
8005 }
8006
8007 synchronize_net();
8008
8009 list_for_each_entry(dev, head, unreg_list)
8010 dev_put(dev);
8011 }
8012
rollback_registered(struct net_device * dev)8013 static void rollback_registered(struct net_device *dev)
8014 {
8015 LIST_HEAD(single);
8016
8017 list_add(&dev->unreg_list, &single);
8018 rollback_registered_many(&single);
8019 list_del(&single);
8020 }
8021
netdev_sync_upper_features(struct net_device * lower,struct net_device * upper,netdev_features_t features)8022 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
8023 struct net_device *upper, netdev_features_t features)
8024 {
8025 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8026 netdev_features_t feature;
8027 int feature_bit;
8028
8029 for_each_netdev_feature(&upper_disables, feature_bit) {
8030 feature = __NETIF_F_BIT(feature_bit);
8031 if (!(upper->wanted_features & feature)
8032 && (features & feature)) {
8033 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8034 &feature, upper->name);
8035 features &= ~feature;
8036 }
8037 }
8038
8039 return features;
8040 }
8041
netdev_sync_lower_features(struct net_device * upper,struct net_device * lower,netdev_features_t features)8042 static void netdev_sync_lower_features(struct net_device *upper,
8043 struct net_device *lower, netdev_features_t features)
8044 {
8045 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8046 netdev_features_t feature;
8047 int feature_bit;
8048
8049 for_each_netdev_feature(&upper_disables, feature_bit) {
8050 feature = __NETIF_F_BIT(feature_bit);
8051 if (!(features & feature) && (lower->features & feature)) {
8052 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8053 &feature, lower->name);
8054 lower->wanted_features &= ~feature;
8055 netdev_update_features(lower);
8056
8057 if (unlikely(lower->features & feature))
8058 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8059 &feature, lower->name);
8060 }
8061 }
8062 }
8063
netdev_fix_features(struct net_device * dev,netdev_features_t features)8064 static netdev_features_t netdev_fix_features(struct net_device *dev,
8065 netdev_features_t features)
8066 {
8067 /* Fix illegal checksum combinations */
8068 if ((features & NETIF_F_HW_CSUM) &&
8069 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
8070 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
8071 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8072 }
8073
8074 /* TSO requires that SG is present as well. */
8075 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
8076 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
8077 features &= ~NETIF_F_ALL_TSO;
8078 }
8079
8080 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8081 !(features & NETIF_F_IP_CSUM)) {
8082 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8083 features &= ~NETIF_F_TSO;
8084 features &= ~NETIF_F_TSO_ECN;
8085 }
8086
8087 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8088 !(features & NETIF_F_IPV6_CSUM)) {
8089 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8090 features &= ~NETIF_F_TSO6;
8091 }
8092
8093 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8094 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8095 features &= ~NETIF_F_TSO_MANGLEID;
8096
8097 /* TSO ECN requires that TSO is present as well. */
8098 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8099 features &= ~NETIF_F_TSO_ECN;
8100
8101 /* Software GSO depends on SG. */
8102 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
8103 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
8104 features &= ~NETIF_F_GSO;
8105 }
8106
8107 /* GSO partial features require GSO partial be set */
8108 if ((features & dev->gso_partial_features) &&
8109 !(features & NETIF_F_GSO_PARTIAL)) {
8110 netdev_dbg(dev,
8111 "Dropping partially supported GSO features since no GSO partial.\n");
8112 features &= ~dev->gso_partial_features;
8113 }
8114
8115 if (!(features & NETIF_F_RXCSUM)) {
8116 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8117 * successfully merged by hardware must also have the
8118 * checksum verified by hardware. If the user does not
8119 * want to enable RXCSUM, logically, we should disable GRO_HW.
8120 */
8121 if (features & NETIF_F_GRO_HW) {
8122 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8123 features &= ~NETIF_F_GRO_HW;
8124 }
8125 }
8126
8127 /* LRO/HW-GRO features cannot be combined with RX-FCS */
8128 if (features & NETIF_F_RXFCS) {
8129 if (features & NETIF_F_LRO) {
8130 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8131 features &= ~NETIF_F_LRO;
8132 }
8133
8134 if (features & NETIF_F_GRO_HW) {
8135 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8136 features &= ~NETIF_F_GRO_HW;
8137 }
8138 }
8139
8140 return features;
8141 }
8142
__netdev_update_features(struct net_device * dev)8143 int __netdev_update_features(struct net_device *dev)
8144 {
8145 struct net_device *upper, *lower;
8146 netdev_features_t features;
8147 struct list_head *iter;
8148 int err = -1;
8149
8150 ASSERT_RTNL();
8151
8152 features = netdev_get_wanted_features(dev);
8153
8154 if (dev->netdev_ops->ndo_fix_features)
8155 features = dev->netdev_ops->ndo_fix_features(dev, features);
8156
8157 /* driver might be less strict about feature dependencies */
8158 features = netdev_fix_features(dev, features);
8159
8160 /* some features can't be enabled if they're off an an upper device */
8161 netdev_for_each_upper_dev_rcu(dev, upper, iter)
8162 features = netdev_sync_upper_features(dev, upper, features);
8163
8164 if (dev->features == features)
8165 goto sync_lower;
8166
8167 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
8168 &dev->features, &features);
8169
8170 if (dev->netdev_ops->ndo_set_features)
8171 err = dev->netdev_ops->ndo_set_features(dev, features);
8172 else
8173 err = 0;
8174
8175 if (unlikely(err < 0)) {
8176 netdev_err(dev,
8177 "set_features() failed (%d); wanted %pNF, left %pNF\n",
8178 err, &features, &dev->features);
8179 /* return non-0 since some features might have changed and
8180 * it's better to fire a spurious notification than miss it
8181 */
8182 return -1;
8183 }
8184
8185 sync_lower:
8186 /* some features must be disabled on lower devices when disabled
8187 * on an upper device (think: bonding master or bridge)
8188 */
8189 netdev_for_each_lower_dev(dev, lower, iter)
8190 netdev_sync_lower_features(dev, lower, features);
8191
8192 if (!err) {
8193 netdev_features_t diff = features ^ dev->features;
8194
8195 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
8196 /* udp_tunnel_{get,drop}_rx_info both need
8197 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
8198 * device, or they won't do anything.
8199 * Thus we need to update dev->features
8200 * *before* calling udp_tunnel_get_rx_info,
8201 * but *after* calling udp_tunnel_drop_rx_info.
8202 */
8203 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
8204 dev->features = features;
8205 udp_tunnel_get_rx_info(dev);
8206 } else {
8207 udp_tunnel_drop_rx_info(dev);
8208 }
8209 }
8210
8211 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
8212 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
8213 dev->features = features;
8214 err |= vlan_get_rx_ctag_filter_info(dev);
8215 } else {
8216 vlan_drop_rx_ctag_filter_info(dev);
8217 }
8218 }
8219
8220 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
8221 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
8222 dev->features = features;
8223 err |= vlan_get_rx_stag_filter_info(dev);
8224 } else {
8225 vlan_drop_rx_stag_filter_info(dev);
8226 }
8227 }
8228
8229 dev->features = features;
8230 }
8231
8232 return err < 0 ? 0 : 1;
8233 }
8234
8235 /**
8236 * netdev_update_features - recalculate device features
8237 * @dev: the device to check
8238 *
8239 * Recalculate dev->features set and send notifications if it
8240 * has changed. Should be called after driver or hardware dependent
8241 * conditions might have changed that influence the features.
8242 */
netdev_update_features(struct net_device * dev)8243 void netdev_update_features(struct net_device *dev)
8244 {
8245 if (__netdev_update_features(dev))
8246 netdev_features_change(dev);
8247 }
8248 EXPORT_SYMBOL(netdev_update_features);
8249
8250 /**
8251 * netdev_change_features - recalculate device features
8252 * @dev: the device to check
8253 *
8254 * Recalculate dev->features set and send notifications even
8255 * if they have not changed. Should be called instead of
8256 * netdev_update_features() if also dev->vlan_features might
8257 * have changed to allow the changes to be propagated to stacked
8258 * VLAN devices.
8259 */
netdev_change_features(struct net_device * dev)8260 void netdev_change_features(struct net_device *dev)
8261 {
8262 __netdev_update_features(dev);
8263 netdev_features_change(dev);
8264 }
8265 EXPORT_SYMBOL(netdev_change_features);
8266
8267 /**
8268 * netif_stacked_transfer_operstate - transfer operstate
8269 * @rootdev: the root or lower level device to transfer state from
8270 * @dev: the device to transfer operstate to
8271 *
8272 * Transfer operational state from root to device. This is normally
8273 * called when a stacking relationship exists between the root
8274 * device and the device(a leaf device).
8275 */
netif_stacked_transfer_operstate(const struct net_device * rootdev,struct net_device * dev)8276 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
8277 struct net_device *dev)
8278 {
8279 if (rootdev->operstate == IF_OPER_DORMANT)
8280 netif_dormant_on(dev);
8281 else
8282 netif_dormant_off(dev);
8283
8284 if (netif_carrier_ok(rootdev))
8285 netif_carrier_on(dev);
8286 else
8287 netif_carrier_off(dev);
8288 }
8289 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
8290
netif_alloc_rx_queues(struct net_device * dev)8291 static int netif_alloc_rx_queues(struct net_device *dev)
8292 {
8293 unsigned int i, count = dev->num_rx_queues;
8294 struct netdev_rx_queue *rx;
8295 size_t sz = count * sizeof(*rx);
8296 int err = 0;
8297
8298 BUG_ON(count < 1);
8299
8300 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8301 if (!rx)
8302 return -ENOMEM;
8303
8304 dev->_rx = rx;
8305
8306 for (i = 0; i < count; i++) {
8307 rx[i].dev = dev;
8308
8309 /* XDP RX-queue setup */
8310 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
8311 if (err < 0)
8312 goto err_rxq_info;
8313 }
8314 return 0;
8315
8316 err_rxq_info:
8317 /* Rollback successful reg's and free other resources */
8318 while (i--)
8319 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
8320 kvfree(dev->_rx);
8321 dev->_rx = NULL;
8322 return err;
8323 }
8324
netif_free_rx_queues(struct net_device * dev)8325 static void netif_free_rx_queues(struct net_device *dev)
8326 {
8327 unsigned int i, count = dev->num_rx_queues;
8328
8329 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
8330 if (!dev->_rx)
8331 return;
8332
8333 for (i = 0; i < count; i++)
8334 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
8335
8336 kvfree(dev->_rx);
8337 }
8338
netdev_init_one_queue(struct net_device * dev,struct netdev_queue * queue,void * _unused)8339 static void netdev_init_one_queue(struct net_device *dev,
8340 struct netdev_queue *queue, void *_unused)
8341 {
8342 /* Initialize queue lock */
8343 spin_lock_init(&queue->_xmit_lock);
8344 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
8345 queue->xmit_lock_owner = -1;
8346 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
8347 queue->dev = dev;
8348 #ifdef CONFIG_BQL
8349 dql_init(&queue->dql, HZ);
8350 #endif
8351 }
8352
netif_free_tx_queues(struct net_device * dev)8353 static void netif_free_tx_queues(struct net_device *dev)
8354 {
8355 kvfree(dev->_tx);
8356 }
8357
netif_alloc_netdev_queues(struct net_device * dev)8358 static int netif_alloc_netdev_queues(struct net_device *dev)
8359 {
8360 unsigned int count = dev->num_tx_queues;
8361 struct netdev_queue *tx;
8362 size_t sz = count * sizeof(*tx);
8363
8364 if (count < 1 || count > 0xffff)
8365 return -EINVAL;
8366
8367 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8368 if (!tx)
8369 return -ENOMEM;
8370
8371 dev->_tx = tx;
8372
8373 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
8374 spin_lock_init(&dev->tx_global_lock);
8375
8376 return 0;
8377 }
8378
netif_tx_stop_all_queues(struct net_device * dev)8379 void netif_tx_stop_all_queues(struct net_device *dev)
8380 {
8381 unsigned int i;
8382
8383 for (i = 0; i < dev->num_tx_queues; i++) {
8384 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
8385
8386 netif_tx_stop_queue(txq);
8387 }
8388 }
8389 EXPORT_SYMBOL(netif_tx_stop_all_queues);
8390
8391 /**
8392 * register_netdevice - register a network device
8393 * @dev: device to register
8394 *
8395 * Take a completed network device structure and add it to the kernel
8396 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8397 * chain. 0 is returned on success. A negative errno code is returned
8398 * on a failure to set up the device, or if the name is a duplicate.
8399 *
8400 * Callers must hold the rtnl semaphore. You may want
8401 * register_netdev() instead of this.
8402 *
8403 * BUGS:
8404 * The locking appears insufficient to guarantee two parallel registers
8405 * will not get the same name.
8406 */
8407
register_netdevice(struct net_device * dev)8408 int register_netdevice(struct net_device *dev)
8409 {
8410 int ret;
8411 struct net *net = dev_net(dev);
8412
8413 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
8414 NETDEV_FEATURE_COUNT);
8415 BUG_ON(dev_boot_phase);
8416 ASSERT_RTNL();
8417
8418 might_sleep();
8419
8420 /* When net_device's are persistent, this will be fatal. */
8421 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
8422 BUG_ON(!net);
8423
8424 spin_lock_init(&dev->addr_list_lock);
8425 netdev_set_addr_lockdep_class(dev);
8426
8427 ret = dev_get_valid_name(net, dev, dev->name);
8428 if (ret < 0)
8429 goto out;
8430
8431 /* Init, if this function is available */
8432 if (dev->netdev_ops->ndo_init) {
8433 ret = dev->netdev_ops->ndo_init(dev);
8434 if (ret) {
8435 if (ret > 0)
8436 ret = -EIO;
8437 goto out;
8438 }
8439 }
8440
8441 if (((dev->hw_features | dev->features) &
8442 NETIF_F_HW_VLAN_CTAG_FILTER) &&
8443 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
8444 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
8445 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
8446 ret = -EINVAL;
8447 goto err_uninit;
8448 }
8449
8450 ret = -EBUSY;
8451 if (!dev->ifindex)
8452 dev->ifindex = dev_new_index(net);
8453 else if (__dev_get_by_index(net, dev->ifindex))
8454 goto err_uninit;
8455
8456 /* Transfer changeable features to wanted_features and enable
8457 * software offloads (GSO and GRO).
8458 */
8459 dev->hw_features |= NETIF_F_SOFT_FEATURES;
8460 dev->features |= NETIF_F_SOFT_FEATURES;
8461
8462 if (dev->netdev_ops->ndo_udp_tunnel_add) {
8463 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8464 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8465 }
8466
8467 dev->wanted_features = dev->features & dev->hw_features;
8468
8469 if (!(dev->flags & IFF_LOOPBACK))
8470 dev->hw_features |= NETIF_F_NOCACHE_COPY;
8471
8472 /* If IPv4 TCP segmentation offload is supported we should also
8473 * allow the device to enable segmenting the frame with the option
8474 * of ignoring a static IP ID value. This doesn't enable the
8475 * feature itself but allows the user to enable it later.
8476 */
8477 if (dev->hw_features & NETIF_F_TSO)
8478 dev->hw_features |= NETIF_F_TSO_MANGLEID;
8479 if (dev->vlan_features & NETIF_F_TSO)
8480 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
8481 if (dev->mpls_features & NETIF_F_TSO)
8482 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
8483 if (dev->hw_enc_features & NETIF_F_TSO)
8484 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
8485
8486 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
8487 */
8488 dev->vlan_features |= NETIF_F_HIGHDMA;
8489
8490 /* Make NETIF_F_SG inheritable to tunnel devices.
8491 */
8492 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
8493
8494 /* Make NETIF_F_SG inheritable to MPLS.
8495 */
8496 dev->mpls_features |= NETIF_F_SG;
8497
8498 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
8499 ret = notifier_to_errno(ret);
8500 if (ret)
8501 goto err_uninit;
8502
8503 ret = netdev_register_kobject(dev);
8504 if (ret)
8505 goto err_uninit;
8506 dev->reg_state = NETREG_REGISTERED;
8507
8508 __netdev_update_features(dev);
8509
8510 /*
8511 * Default initial state at registry is that the
8512 * device is present.
8513 */
8514
8515 set_bit(__LINK_STATE_PRESENT, &dev->state);
8516
8517 linkwatch_init_dev(dev);
8518
8519 dev_init_scheduler(dev);
8520 dev_hold(dev);
8521 list_netdevice(dev);
8522 add_device_randomness(dev->dev_addr, dev->addr_len);
8523
8524 /* If the device has permanent device address, driver should
8525 * set dev_addr and also addr_assign_type should be set to
8526 * NET_ADDR_PERM (default value).
8527 */
8528 if (dev->addr_assign_type == NET_ADDR_PERM)
8529 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
8530
8531 /* Notify protocols, that a new device appeared. */
8532 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
8533 ret = notifier_to_errno(ret);
8534 if (ret) {
8535 rollback_registered(dev);
8536 dev->reg_state = NETREG_UNREGISTERED;
8537 }
8538 /*
8539 * Prevent userspace races by waiting until the network
8540 * device is fully setup before sending notifications.
8541 */
8542 if (!dev->rtnl_link_ops ||
8543 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8544 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8545
8546 out:
8547 return ret;
8548
8549 err_uninit:
8550 if (dev->netdev_ops->ndo_uninit)
8551 dev->netdev_ops->ndo_uninit(dev);
8552 if (dev->priv_destructor)
8553 dev->priv_destructor(dev);
8554 goto out;
8555 }
8556 EXPORT_SYMBOL(register_netdevice);
8557
8558 /**
8559 * init_dummy_netdev - init a dummy network device for NAPI
8560 * @dev: device to init
8561 *
8562 * This takes a network device structure and initialize the minimum
8563 * amount of fields so it can be used to schedule NAPI polls without
8564 * registering a full blown interface. This is to be used by drivers
8565 * that need to tie several hardware interfaces to a single NAPI
8566 * poll scheduler due to HW limitations.
8567 */
init_dummy_netdev(struct net_device * dev)8568 int init_dummy_netdev(struct net_device *dev)
8569 {
8570 /* Clear everything. Note we don't initialize spinlocks
8571 * are they aren't supposed to be taken by any of the
8572 * NAPI code and this dummy netdev is supposed to be
8573 * only ever used for NAPI polls
8574 */
8575 memset(dev, 0, sizeof(struct net_device));
8576
8577 /* make sure we BUG if trying to hit standard
8578 * register/unregister code path
8579 */
8580 dev->reg_state = NETREG_DUMMY;
8581
8582 /* NAPI wants this */
8583 INIT_LIST_HEAD(&dev->napi_list);
8584
8585 /* a dummy interface is started by default */
8586 set_bit(__LINK_STATE_PRESENT, &dev->state);
8587 set_bit(__LINK_STATE_START, &dev->state);
8588
8589 /* Note : We dont allocate pcpu_refcnt for dummy devices,
8590 * because users of this 'device' dont need to change
8591 * its refcount.
8592 */
8593
8594 return 0;
8595 }
8596 EXPORT_SYMBOL_GPL(init_dummy_netdev);
8597
8598
8599 /**
8600 * register_netdev - register a network device
8601 * @dev: device to register
8602 *
8603 * Take a completed network device structure and add it to the kernel
8604 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8605 * chain. 0 is returned on success. A negative errno code is returned
8606 * on a failure to set up the device, or if the name is a duplicate.
8607 *
8608 * This is a wrapper around register_netdevice that takes the rtnl semaphore
8609 * and expands the device name if you passed a format string to
8610 * alloc_netdev.
8611 */
register_netdev(struct net_device * dev)8612 int register_netdev(struct net_device *dev)
8613 {
8614 int err;
8615
8616 if (rtnl_lock_killable())
8617 return -EINTR;
8618 err = register_netdevice(dev);
8619 rtnl_unlock();
8620 return err;
8621 }
8622 EXPORT_SYMBOL(register_netdev);
8623
netdev_refcnt_read(const struct net_device * dev)8624 int netdev_refcnt_read(const struct net_device *dev)
8625 {
8626 int i, refcnt = 0;
8627
8628 for_each_possible_cpu(i)
8629 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
8630 return refcnt;
8631 }
8632 EXPORT_SYMBOL(netdev_refcnt_read);
8633
8634 /**
8635 * netdev_wait_allrefs - wait until all references are gone.
8636 * @dev: target net_device
8637 *
8638 * This is called when unregistering network devices.
8639 *
8640 * Any protocol or device that holds a reference should register
8641 * for netdevice notification, and cleanup and put back the
8642 * reference if they receive an UNREGISTER event.
8643 * We can get stuck here if buggy protocols don't correctly
8644 * call dev_put.
8645 */
netdev_wait_allrefs(struct net_device * dev)8646 static void netdev_wait_allrefs(struct net_device *dev)
8647 {
8648 unsigned long rebroadcast_time, warning_time;
8649 int refcnt;
8650
8651 linkwatch_forget_dev(dev);
8652
8653 rebroadcast_time = warning_time = jiffies;
8654 refcnt = netdev_refcnt_read(dev);
8655
8656 while (refcnt != 0) {
8657 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
8658 rtnl_lock();
8659
8660 /* Rebroadcast unregister notification */
8661 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8662
8663 __rtnl_unlock();
8664 rcu_barrier();
8665 rtnl_lock();
8666
8667 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
8668 &dev->state)) {
8669 /* We must not have linkwatch events
8670 * pending on unregister. If this
8671 * happens, we simply run the queue
8672 * unscheduled, resulting in a noop
8673 * for this device.
8674 */
8675 linkwatch_run_queue();
8676 }
8677
8678 __rtnl_unlock();
8679
8680 rebroadcast_time = jiffies;
8681 }
8682
8683 msleep(250);
8684
8685 refcnt = netdev_refcnt_read(dev);
8686
8687 if (time_after(jiffies, warning_time + 10 * HZ)) {
8688 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8689 dev->name, refcnt);
8690 warning_time = jiffies;
8691 }
8692 }
8693 }
8694
8695 /* The sequence is:
8696 *
8697 * rtnl_lock();
8698 * ...
8699 * register_netdevice(x1);
8700 * register_netdevice(x2);
8701 * ...
8702 * unregister_netdevice(y1);
8703 * unregister_netdevice(y2);
8704 * ...
8705 * rtnl_unlock();
8706 * free_netdev(y1);
8707 * free_netdev(y2);
8708 *
8709 * We are invoked by rtnl_unlock().
8710 * This allows us to deal with problems:
8711 * 1) We can delete sysfs objects which invoke hotplug
8712 * without deadlocking with linkwatch via keventd.
8713 * 2) Since we run with the RTNL semaphore not held, we can sleep
8714 * safely in order to wait for the netdev refcnt to drop to zero.
8715 *
8716 * We must not return until all unregister events added during
8717 * the interval the lock was held have been completed.
8718 */
netdev_run_todo(void)8719 void netdev_run_todo(void)
8720 {
8721 struct list_head list;
8722
8723 /* Snapshot list, allow later requests */
8724 list_replace_init(&net_todo_list, &list);
8725
8726 __rtnl_unlock();
8727
8728
8729 /* Wait for rcu callbacks to finish before next phase */
8730 if (!list_empty(&list))
8731 rcu_barrier();
8732
8733 while (!list_empty(&list)) {
8734 struct net_device *dev
8735 = list_first_entry(&list, struct net_device, todo_list);
8736 list_del(&dev->todo_list);
8737
8738 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
8739 pr_err("network todo '%s' but state %d\n",
8740 dev->name, dev->reg_state);
8741 dump_stack();
8742 continue;
8743 }
8744
8745 dev->reg_state = NETREG_UNREGISTERED;
8746
8747 netdev_wait_allrefs(dev);
8748
8749 /* paranoia */
8750 BUG_ON(netdev_refcnt_read(dev));
8751 BUG_ON(!list_empty(&dev->ptype_all));
8752 BUG_ON(!list_empty(&dev->ptype_specific));
8753 WARN_ON(rcu_access_pointer(dev->ip_ptr));
8754 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
8755 #if IS_ENABLED(CONFIG_DECNET)
8756 WARN_ON(dev->dn_ptr);
8757 #endif
8758 if (dev->priv_destructor)
8759 dev->priv_destructor(dev);
8760 if (dev->needs_free_netdev)
8761 free_netdev(dev);
8762
8763 /* Report a network device has been unregistered */
8764 rtnl_lock();
8765 dev_net(dev)->dev_unreg_count--;
8766 __rtnl_unlock();
8767 wake_up(&netdev_unregistering_wq);
8768
8769 /* Free network device */
8770 kobject_put(&dev->dev.kobj);
8771 }
8772 }
8773
8774 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
8775 * all the same fields in the same order as net_device_stats, with only
8776 * the type differing, but rtnl_link_stats64 may have additional fields
8777 * at the end for newer counters.
8778 */
netdev_stats_to_stats64(struct rtnl_link_stats64 * stats64,const struct net_device_stats * netdev_stats)8779 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
8780 const struct net_device_stats *netdev_stats)
8781 {
8782 #if BITS_PER_LONG == 64
8783 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
8784 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
8785 /* zero out counters that only exist in rtnl_link_stats64 */
8786 memset((char *)stats64 + sizeof(*netdev_stats), 0,
8787 sizeof(*stats64) - sizeof(*netdev_stats));
8788 #else
8789 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
8790 const unsigned long *src = (const unsigned long *)netdev_stats;
8791 u64 *dst = (u64 *)stats64;
8792
8793 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
8794 for (i = 0; i < n; i++)
8795 dst[i] = src[i];
8796 /* zero out counters that only exist in rtnl_link_stats64 */
8797 memset((char *)stats64 + n * sizeof(u64), 0,
8798 sizeof(*stats64) - n * sizeof(u64));
8799 #endif
8800 }
8801 EXPORT_SYMBOL(netdev_stats_to_stats64);
8802
8803 /**
8804 * dev_get_stats - get network device statistics
8805 * @dev: device to get statistics from
8806 * @storage: place to store stats
8807 *
8808 * Get network statistics from device. Return @storage.
8809 * The device driver may provide its own method by setting
8810 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
8811 * otherwise the internal statistics structure is used.
8812 */
dev_get_stats(struct net_device * dev,struct rtnl_link_stats64 * storage)8813 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
8814 struct rtnl_link_stats64 *storage)
8815 {
8816 const struct net_device_ops *ops = dev->netdev_ops;
8817
8818 if (ops->ndo_get_stats64) {
8819 memset(storage, 0, sizeof(*storage));
8820 ops->ndo_get_stats64(dev, storage);
8821 } else if (ops->ndo_get_stats) {
8822 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
8823 } else {
8824 netdev_stats_to_stats64(storage, &dev->stats);
8825 }
8826 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
8827 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
8828 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
8829 return storage;
8830 }
8831 EXPORT_SYMBOL(dev_get_stats);
8832
dev_ingress_queue_create(struct net_device * dev)8833 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
8834 {
8835 struct netdev_queue *queue = dev_ingress_queue(dev);
8836
8837 #ifdef CONFIG_NET_CLS_ACT
8838 if (queue)
8839 return queue;
8840 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
8841 if (!queue)
8842 return NULL;
8843 netdev_init_one_queue(dev, queue, NULL);
8844 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
8845 queue->qdisc_sleeping = &noop_qdisc;
8846 rcu_assign_pointer(dev->ingress_queue, queue);
8847 #endif
8848 return queue;
8849 }
8850
8851 static const struct ethtool_ops default_ethtool_ops;
8852
netdev_set_default_ethtool_ops(struct net_device * dev,const struct ethtool_ops * ops)8853 void netdev_set_default_ethtool_ops(struct net_device *dev,
8854 const struct ethtool_ops *ops)
8855 {
8856 if (dev->ethtool_ops == &default_ethtool_ops)
8857 dev->ethtool_ops = ops;
8858 }
8859 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
8860
netdev_freemem(struct net_device * dev)8861 void netdev_freemem(struct net_device *dev)
8862 {
8863 char *addr = (char *)dev - dev->padded;
8864
8865 kvfree(addr);
8866 }
8867
8868 /**
8869 * alloc_netdev_mqs - allocate network device
8870 * @sizeof_priv: size of private data to allocate space for
8871 * @name: device name format string
8872 * @name_assign_type: origin of device name
8873 * @setup: callback to initialize device
8874 * @txqs: the number of TX subqueues to allocate
8875 * @rxqs: the number of RX subqueues to allocate
8876 *
8877 * Allocates a struct net_device with private data area for driver use
8878 * and performs basic initialization. Also allocates subqueue structs
8879 * for each queue on the device.
8880 */
alloc_netdev_mqs(int sizeof_priv,const char * name,unsigned char name_assign_type,void (* setup)(struct net_device *),unsigned int txqs,unsigned int rxqs)8881 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
8882 unsigned char name_assign_type,
8883 void (*setup)(struct net_device *),
8884 unsigned int txqs, unsigned int rxqs)
8885 {
8886 struct net_device *dev;
8887 unsigned int alloc_size;
8888 struct net_device *p;
8889
8890 BUG_ON(strlen(name) >= sizeof(dev->name));
8891
8892 if (txqs < 1) {
8893 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
8894 return NULL;
8895 }
8896
8897 if (rxqs < 1) {
8898 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
8899 return NULL;
8900 }
8901
8902 alloc_size = sizeof(struct net_device);
8903 if (sizeof_priv) {
8904 /* ensure 32-byte alignment of private area */
8905 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
8906 alloc_size += sizeof_priv;
8907 }
8908 /* ensure 32-byte alignment of whole construct */
8909 alloc_size += NETDEV_ALIGN - 1;
8910
8911 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8912 if (!p)
8913 return NULL;
8914
8915 dev = PTR_ALIGN(p, NETDEV_ALIGN);
8916 dev->padded = (char *)dev - (char *)p;
8917
8918 dev->pcpu_refcnt = alloc_percpu(int);
8919 if (!dev->pcpu_refcnt)
8920 goto free_dev;
8921
8922 if (dev_addr_init(dev))
8923 goto free_pcpu;
8924
8925 dev_mc_init(dev);
8926 dev_uc_init(dev);
8927
8928 dev_net_set(dev, &init_net);
8929
8930 dev->gso_max_size = GSO_MAX_SIZE;
8931 dev->gso_max_segs = GSO_MAX_SEGS;
8932
8933 INIT_LIST_HEAD(&dev->napi_list);
8934 INIT_LIST_HEAD(&dev->unreg_list);
8935 INIT_LIST_HEAD(&dev->close_list);
8936 INIT_LIST_HEAD(&dev->link_watch_list);
8937 INIT_LIST_HEAD(&dev->adj_list.upper);
8938 INIT_LIST_HEAD(&dev->adj_list.lower);
8939 INIT_LIST_HEAD(&dev->ptype_all);
8940 INIT_LIST_HEAD(&dev->ptype_specific);
8941 #ifdef CONFIG_NET_SCHED
8942 hash_init(dev->qdisc_hash);
8943 #endif
8944 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8945 setup(dev);
8946
8947 if (!dev->tx_queue_len) {
8948 dev->priv_flags |= IFF_NO_QUEUE;
8949 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
8950 }
8951
8952 dev->num_tx_queues = txqs;
8953 dev->real_num_tx_queues = txqs;
8954 if (netif_alloc_netdev_queues(dev))
8955 goto free_all;
8956
8957 dev->num_rx_queues = rxqs;
8958 dev->real_num_rx_queues = rxqs;
8959 if (netif_alloc_rx_queues(dev))
8960 goto free_all;
8961
8962 strcpy(dev->name, name);
8963 dev->name_assign_type = name_assign_type;
8964 dev->group = INIT_NETDEV_GROUP;
8965 if (!dev->ethtool_ops)
8966 dev->ethtool_ops = &default_ethtool_ops;
8967
8968 nf_hook_ingress_init(dev);
8969
8970 return dev;
8971
8972 free_all:
8973 free_netdev(dev);
8974 return NULL;
8975
8976 free_pcpu:
8977 free_percpu(dev->pcpu_refcnt);
8978 free_dev:
8979 netdev_freemem(dev);
8980 return NULL;
8981 }
8982 EXPORT_SYMBOL(alloc_netdev_mqs);
8983
8984 /**
8985 * free_netdev - free network device
8986 * @dev: device
8987 *
8988 * This function does the last stage of destroying an allocated device
8989 * interface. The reference to the device object is released. If this
8990 * is the last reference then it will be freed.Must be called in process
8991 * context.
8992 */
free_netdev(struct net_device * dev)8993 void free_netdev(struct net_device *dev)
8994 {
8995 struct napi_struct *p, *n;
8996
8997 might_sleep();
8998 netif_free_tx_queues(dev);
8999 netif_free_rx_queues(dev);
9000
9001 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
9002
9003 /* Flush device addresses */
9004 dev_addr_flush(dev);
9005
9006 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
9007 netif_napi_del(p);
9008
9009 free_percpu(dev->pcpu_refcnt);
9010 dev->pcpu_refcnt = NULL;
9011
9012 /* Compatibility with error handling in drivers */
9013 if (dev->reg_state == NETREG_UNINITIALIZED) {
9014 netdev_freemem(dev);
9015 return;
9016 }
9017
9018 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
9019 dev->reg_state = NETREG_RELEASED;
9020
9021 /* will free via device release */
9022 put_device(&dev->dev);
9023 }
9024 EXPORT_SYMBOL(free_netdev);
9025
9026 /**
9027 * synchronize_net - Synchronize with packet receive processing
9028 *
9029 * Wait for packets currently being received to be done.
9030 * Does not block later packets from starting.
9031 */
synchronize_net(void)9032 void synchronize_net(void)
9033 {
9034 might_sleep();
9035 if (rtnl_is_locked())
9036 synchronize_rcu_expedited();
9037 else
9038 synchronize_rcu();
9039 }
9040 EXPORT_SYMBOL(synchronize_net);
9041
9042 /**
9043 * unregister_netdevice_queue - remove device from the kernel
9044 * @dev: device
9045 * @head: list
9046 *
9047 * This function shuts down a device interface and removes it
9048 * from the kernel tables.
9049 * If head not NULL, device is queued to be unregistered later.
9050 *
9051 * Callers must hold the rtnl semaphore. You may want
9052 * unregister_netdev() instead of this.
9053 */
9054
unregister_netdevice_queue(struct net_device * dev,struct list_head * head)9055 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
9056 {
9057 ASSERT_RTNL();
9058
9059 if (head) {
9060 list_move_tail(&dev->unreg_list, head);
9061 } else {
9062 rollback_registered(dev);
9063 /* Finish processing unregister after unlock */
9064 net_set_todo(dev);
9065 }
9066 }
9067 EXPORT_SYMBOL(unregister_netdevice_queue);
9068
9069 /**
9070 * unregister_netdevice_many - unregister many devices
9071 * @head: list of devices
9072 *
9073 * Note: As most callers use a stack allocated list_head,
9074 * we force a list_del() to make sure stack wont be corrupted later.
9075 */
unregister_netdevice_many(struct list_head * head)9076 void unregister_netdevice_many(struct list_head *head)
9077 {
9078 struct net_device *dev;
9079
9080 if (!list_empty(head)) {
9081 rollback_registered_many(head);
9082 list_for_each_entry(dev, head, unreg_list)
9083 net_set_todo(dev);
9084 list_del(head);
9085 }
9086 }
9087 EXPORT_SYMBOL(unregister_netdevice_many);
9088
9089 /**
9090 * unregister_netdev - remove device from the kernel
9091 * @dev: device
9092 *
9093 * This function shuts down a device interface and removes it
9094 * from the kernel tables.
9095 *
9096 * This is just a wrapper for unregister_netdevice that takes
9097 * the rtnl semaphore. In general you want to use this and not
9098 * unregister_netdevice.
9099 */
unregister_netdev(struct net_device * dev)9100 void unregister_netdev(struct net_device *dev)
9101 {
9102 rtnl_lock();
9103 unregister_netdevice(dev);
9104 rtnl_unlock();
9105 }
9106 EXPORT_SYMBOL(unregister_netdev);
9107
9108 /**
9109 * dev_change_net_namespace - move device to different nethost namespace
9110 * @dev: device
9111 * @net: network namespace
9112 * @pat: If not NULL name pattern to try if the current device name
9113 * is already taken in the destination network namespace.
9114 *
9115 * This function shuts down a device interface and moves it
9116 * to a new network namespace. On success 0 is returned, on
9117 * a failure a netagive errno code is returned.
9118 *
9119 * Callers must hold the rtnl semaphore.
9120 */
9121
dev_change_net_namespace(struct net_device * dev,struct net * net,const char * pat)9122 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
9123 {
9124 int err, new_nsid, new_ifindex;
9125
9126 ASSERT_RTNL();
9127
9128 /* Don't allow namespace local devices to be moved. */
9129 err = -EINVAL;
9130 if (dev->features & NETIF_F_NETNS_LOCAL)
9131 goto out;
9132
9133 /* Ensure the device has been registrered */
9134 if (dev->reg_state != NETREG_REGISTERED)
9135 goto out;
9136
9137 /* Get out if there is nothing todo */
9138 err = 0;
9139 if (net_eq(dev_net(dev), net))
9140 goto out;
9141
9142 /* Pick the destination device name, and ensure
9143 * we can use it in the destination network namespace.
9144 */
9145 err = -EEXIST;
9146 if (__dev_get_by_name(net, dev->name)) {
9147 /* We get here if we can't use the current device name */
9148 if (!pat)
9149 goto out;
9150 err = dev_get_valid_name(net, dev, pat);
9151 if (err < 0)
9152 goto out;
9153 }
9154
9155 /*
9156 * And now a mini version of register_netdevice unregister_netdevice.
9157 */
9158
9159 /* If device is running close it first. */
9160 dev_close(dev);
9161
9162 /* And unlink it from device chain */
9163 unlist_netdevice(dev);
9164
9165 synchronize_net();
9166
9167 /* Shutdown queueing discipline. */
9168 dev_shutdown(dev);
9169
9170 /* Notify protocols, that we are about to destroy
9171 * this device. They should clean all the things.
9172 *
9173 * Note that dev->reg_state stays at NETREG_REGISTERED.
9174 * This is wanted because this way 8021q and macvlan know
9175 * the device is just moving and can keep their slaves up.
9176 */
9177 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9178 rcu_barrier();
9179
9180 new_nsid = peernet2id_alloc(dev_net(dev), net);
9181 /* If there is an ifindex conflict assign a new one */
9182 if (__dev_get_by_index(net, dev->ifindex))
9183 new_ifindex = dev_new_index(net);
9184 else
9185 new_ifindex = dev->ifindex;
9186
9187 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
9188 new_ifindex);
9189
9190 /*
9191 * Flush the unicast and multicast chains
9192 */
9193 dev_uc_flush(dev);
9194 dev_mc_flush(dev);
9195
9196 /* Send a netdev-removed uevent to the old namespace */
9197 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
9198 netdev_adjacent_del_links(dev);
9199
9200 /* Actually switch the network namespace */
9201 dev_net_set(dev, net);
9202 dev->ifindex = new_ifindex;
9203
9204 /* Send a netdev-add uevent to the new namespace */
9205 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
9206 netdev_adjacent_add_links(dev);
9207
9208 /* Fixup kobjects */
9209 err = device_rename(&dev->dev, dev->name);
9210 WARN_ON(err);
9211
9212 /* Add the device back in the hashes */
9213 list_netdevice(dev);
9214
9215 /* Notify protocols, that a new device appeared. */
9216 call_netdevice_notifiers(NETDEV_REGISTER, dev);
9217
9218 /*
9219 * Prevent userspace races by waiting until the network
9220 * device is fully setup before sending notifications.
9221 */
9222 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9223
9224 synchronize_net();
9225 err = 0;
9226 out:
9227 return err;
9228 }
9229 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
9230
dev_cpu_dead(unsigned int oldcpu)9231 static int dev_cpu_dead(unsigned int oldcpu)
9232 {
9233 struct sk_buff **list_skb;
9234 struct sk_buff *skb;
9235 unsigned int cpu;
9236 struct softnet_data *sd, *oldsd, *remsd = NULL;
9237
9238 local_irq_disable();
9239 cpu = smp_processor_id();
9240 sd = &per_cpu(softnet_data, cpu);
9241 oldsd = &per_cpu(softnet_data, oldcpu);
9242
9243 /* Find end of our completion_queue. */
9244 list_skb = &sd->completion_queue;
9245 while (*list_skb)
9246 list_skb = &(*list_skb)->next;
9247 /* Append completion queue from offline CPU. */
9248 *list_skb = oldsd->completion_queue;
9249 oldsd->completion_queue = NULL;
9250
9251 /* Append output queue from offline CPU. */
9252 if (oldsd->output_queue) {
9253 *sd->output_queue_tailp = oldsd->output_queue;
9254 sd->output_queue_tailp = oldsd->output_queue_tailp;
9255 oldsd->output_queue = NULL;
9256 oldsd->output_queue_tailp = &oldsd->output_queue;
9257 }
9258 /* Append NAPI poll list from offline CPU, with one exception :
9259 * process_backlog() must be called by cpu owning percpu backlog.
9260 * We properly handle process_queue & input_pkt_queue later.
9261 */
9262 while (!list_empty(&oldsd->poll_list)) {
9263 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
9264 struct napi_struct,
9265 poll_list);
9266
9267 list_del_init(&napi->poll_list);
9268 if (napi->poll == process_backlog)
9269 napi->state = 0;
9270 else
9271 ____napi_schedule(sd, napi);
9272 }
9273
9274 raise_softirq_irqoff(NET_TX_SOFTIRQ);
9275 local_irq_enable();
9276
9277 #ifdef CONFIG_RPS
9278 remsd = oldsd->rps_ipi_list;
9279 oldsd->rps_ipi_list = NULL;
9280 #endif
9281 /* send out pending IPI's on offline CPU */
9282 net_rps_send_ipi(remsd);
9283
9284 /* Process offline CPU's input_pkt_queue */
9285 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
9286 netif_rx_ni(skb);
9287 input_queue_head_incr(oldsd);
9288 }
9289 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
9290 netif_rx_ni(skb);
9291 input_queue_head_incr(oldsd);
9292 }
9293
9294 return 0;
9295 }
9296
9297 /**
9298 * netdev_increment_features - increment feature set by one
9299 * @all: current feature set
9300 * @one: new feature set
9301 * @mask: mask feature set
9302 *
9303 * Computes a new feature set after adding a device with feature set
9304 * @one to the master device with current feature set @all. Will not
9305 * enable anything that is off in @mask. Returns the new feature set.
9306 */
netdev_increment_features(netdev_features_t all,netdev_features_t one,netdev_features_t mask)9307 netdev_features_t netdev_increment_features(netdev_features_t all,
9308 netdev_features_t one, netdev_features_t mask)
9309 {
9310 if (mask & NETIF_F_HW_CSUM)
9311 mask |= NETIF_F_CSUM_MASK;
9312 mask |= NETIF_F_VLAN_CHALLENGED;
9313
9314 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
9315 all &= one | ~NETIF_F_ALL_FOR_ALL;
9316
9317 /* If one device supports hw checksumming, set for all. */
9318 if (all & NETIF_F_HW_CSUM)
9319 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
9320
9321 return all;
9322 }
9323 EXPORT_SYMBOL(netdev_increment_features);
9324
netdev_create_hash(void)9325 static struct hlist_head * __net_init netdev_create_hash(void)
9326 {
9327 int i;
9328 struct hlist_head *hash;
9329
9330 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
9331 if (hash != NULL)
9332 for (i = 0; i < NETDEV_HASHENTRIES; i++)
9333 INIT_HLIST_HEAD(&hash[i]);
9334
9335 return hash;
9336 }
9337
9338 /* Initialize per network namespace state */
netdev_init(struct net * net)9339 static int __net_init netdev_init(struct net *net)
9340 {
9341 BUILD_BUG_ON(GRO_HASH_BUCKETS >
9342 8 * FIELD_SIZEOF(struct napi_struct, gro_bitmask));
9343
9344 if (net != &init_net)
9345 INIT_LIST_HEAD(&net->dev_base_head);
9346
9347 net->dev_name_head = netdev_create_hash();
9348 if (net->dev_name_head == NULL)
9349 goto err_name;
9350
9351 net->dev_index_head = netdev_create_hash();
9352 if (net->dev_index_head == NULL)
9353 goto err_idx;
9354
9355 return 0;
9356
9357 err_idx:
9358 kfree(net->dev_name_head);
9359 err_name:
9360 return -ENOMEM;
9361 }
9362
9363 /**
9364 * netdev_drivername - network driver for the device
9365 * @dev: network device
9366 *
9367 * Determine network driver for device.
9368 */
netdev_drivername(const struct net_device * dev)9369 const char *netdev_drivername(const struct net_device *dev)
9370 {
9371 const struct device_driver *driver;
9372 const struct device *parent;
9373 const char *empty = "";
9374
9375 parent = dev->dev.parent;
9376 if (!parent)
9377 return empty;
9378
9379 driver = parent->driver;
9380 if (driver && driver->name)
9381 return driver->name;
9382 return empty;
9383 }
9384
__netdev_printk(const char * level,const struct net_device * dev,struct va_format * vaf)9385 static void __netdev_printk(const char *level, const struct net_device *dev,
9386 struct va_format *vaf)
9387 {
9388 if (dev && dev->dev.parent) {
9389 dev_printk_emit(level[1] - '0',
9390 dev->dev.parent,
9391 "%s %s %s%s: %pV",
9392 dev_driver_string(dev->dev.parent),
9393 dev_name(dev->dev.parent),
9394 netdev_name(dev), netdev_reg_state(dev),
9395 vaf);
9396 } else if (dev) {
9397 printk("%s%s%s: %pV",
9398 level, netdev_name(dev), netdev_reg_state(dev), vaf);
9399 } else {
9400 printk("%s(NULL net_device): %pV", level, vaf);
9401 }
9402 }
9403
netdev_printk(const char * level,const struct net_device * dev,const char * format,...)9404 void netdev_printk(const char *level, const struct net_device *dev,
9405 const char *format, ...)
9406 {
9407 struct va_format vaf;
9408 va_list args;
9409
9410 va_start(args, format);
9411
9412 vaf.fmt = format;
9413 vaf.va = &args;
9414
9415 __netdev_printk(level, dev, &vaf);
9416
9417 va_end(args);
9418 }
9419 EXPORT_SYMBOL(netdev_printk);
9420
9421 #define define_netdev_printk_level(func, level) \
9422 void func(const struct net_device *dev, const char *fmt, ...) \
9423 { \
9424 struct va_format vaf; \
9425 va_list args; \
9426 \
9427 va_start(args, fmt); \
9428 \
9429 vaf.fmt = fmt; \
9430 vaf.va = &args; \
9431 \
9432 __netdev_printk(level, dev, &vaf); \
9433 \
9434 va_end(args); \
9435 } \
9436 EXPORT_SYMBOL(func);
9437
9438 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
9439 define_netdev_printk_level(netdev_alert, KERN_ALERT);
9440 define_netdev_printk_level(netdev_crit, KERN_CRIT);
9441 define_netdev_printk_level(netdev_err, KERN_ERR);
9442 define_netdev_printk_level(netdev_warn, KERN_WARNING);
9443 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
9444 define_netdev_printk_level(netdev_info, KERN_INFO);
9445
netdev_exit(struct net * net)9446 static void __net_exit netdev_exit(struct net *net)
9447 {
9448 kfree(net->dev_name_head);
9449 kfree(net->dev_index_head);
9450 if (net != &init_net)
9451 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
9452 }
9453
9454 static struct pernet_operations __net_initdata netdev_net_ops = {
9455 .init = netdev_init,
9456 .exit = netdev_exit,
9457 };
9458
default_device_exit(struct net * net)9459 static void __net_exit default_device_exit(struct net *net)
9460 {
9461 struct net_device *dev, *aux;
9462 /*
9463 * Push all migratable network devices back to the
9464 * initial network namespace
9465 */
9466 rtnl_lock();
9467 for_each_netdev_safe(net, dev, aux) {
9468 int err;
9469 char fb_name[IFNAMSIZ];
9470
9471 /* Ignore unmoveable devices (i.e. loopback) */
9472 if (dev->features & NETIF_F_NETNS_LOCAL)
9473 continue;
9474
9475 /* Leave virtual devices for the generic cleanup */
9476 if (dev->rtnl_link_ops)
9477 continue;
9478
9479 /* Push remaining network devices to init_net */
9480 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
9481 err = dev_change_net_namespace(dev, &init_net, fb_name);
9482 if (err) {
9483 pr_emerg("%s: failed to move %s to init_net: %d\n",
9484 __func__, dev->name, err);
9485 BUG();
9486 }
9487 }
9488 rtnl_unlock();
9489 }
9490
rtnl_lock_unregistering(struct list_head * net_list)9491 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
9492 {
9493 /* Return with the rtnl_lock held when there are no network
9494 * devices unregistering in any network namespace in net_list.
9495 */
9496 struct net *net;
9497 bool unregistering;
9498 DEFINE_WAIT_FUNC(wait, woken_wake_function);
9499
9500 add_wait_queue(&netdev_unregistering_wq, &wait);
9501 for (;;) {
9502 unregistering = false;
9503 rtnl_lock();
9504 list_for_each_entry(net, net_list, exit_list) {
9505 if (net->dev_unreg_count > 0) {
9506 unregistering = true;
9507 break;
9508 }
9509 }
9510 if (!unregistering)
9511 break;
9512 __rtnl_unlock();
9513
9514 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
9515 }
9516 remove_wait_queue(&netdev_unregistering_wq, &wait);
9517 }
9518
default_device_exit_batch(struct list_head * net_list)9519 static void __net_exit default_device_exit_batch(struct list_head *net_list)
9520 {
9521 /* At exit all network devices most be removed from a network
9522 * namespace. Do this in the reverse order of registration.
9523 * Do this across as many network namespaces as possible to
9524 * improve batching efficiency.
9525 */
9526 struct net_device *dev;
9527 struct net *net;
9528 LIST_HEAD(dev_kill_list);
9529
9530 /* To prevent network device cleanup code from dereferencing
9531 * loopback devices or network devices that have been freed
9532 * wait here for all pending unregistrations to complete,
9533 * before unregistring the loopback device and allowing the
9534 * network namespace be freed.
9535 *
9536 * The netdev todo list containing all network devices
9537 * unregistrations that happen in default_device_exit_batch
9538 * will run in the rtnl_unlock() at the end of
9539 * default_device_exit_batch.
9540 */
9541 rtnl_lock_unregistering(net_list);
9542 list_for_each_entry(net, net_list, exit_list) {
9543 for_each_netdev_reverse(net, dev) {
9544 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
9545 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
9546 else
9547 unregister_netdevice_queue(dev, &dev_kill_list);
9548 }
9549 }
9550 unregister_netdevice_many(&dev_kill_list);
9551 rtnl_unlock();
9552 }
9553
9554 static struct pernet_operations __net_initdata default_device_ops = {
9555 .exit = default_device_exit,
9556 .exit_batch = default_device_exit_batch,
9557 };
9558
9559 /*
9560 * Initialize the DEV module. At boot time this walks the device list and
9561 * unhooks any devices that fail to initialise (normally hardware not
9562 * present) and leaves us with a valid list of present and active devices.
9563 *
9564 */
9565
9566 /*
9567 * This is called single threaded during boot, so no need
9568 * to take the rtnl semaphore.
9569 */
net_dev_init(void)9570 static int __init net_dev_init(void)
9571 {
9572 int i, rc = -ENOMEM;
9573
9574 BUG_ON(!dev_boot_phase);
9575
9576 if (dev_proc_init())
9577 goto out;
9578
9579 if (netdev_kobject_init())
9580 goto out;
9581
9582 INIT_LIST_HEAD(&ptype_all);
9583 for (i = 0; i < PTYPE_HASH_SIZE; i++)
9584 INIT_LIST_HEAD(&ptype_base[i]);
9585
9586 INIT_LIST_HEAD(&offload_base);
9587
9588 if (register_pernet_subsys(&netdev_net_ops))
9589 goto out;
9590
9591 /*
9592 * Initialise the packet receive queues.
9593 */
9594
9595 for_each_possible_cpu(i) {
9596 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
9597 struct softnet_data *sd = &per_cpu(softnet_data, i);
9598
9599 INIT_WORK(flush, flush_backlog);
9600
9601 skb_queue_head_init(&sd->input_pkt_queue);
9602 skb_queue_head_init(&sd->process_queue);
9603 #ifdef CONFIG_XFRM_OFFLOAD
9604 skb_queue_head_init(&sd->xfrm_backlog);
9605 #endif
9606 INIT_LIST_HEAD(&sd->poll_list);
9607 sd->output_queue_tailp = &sd->output_queue;
9608 #ifdef CONFIG_RPS
9609 sd->csd.func = rps_trigger_softirq;
9610 sd->csd.info = sd;
9611 sd->cpu = i;
9612 #endif
9613
9614 init_gro_hash(&sd->backlog);
9615 sd->backlog.poll = process_backlog;
9616 sd->backlog.weight = weight_p;
9617 }
9618
9619 dev_boot_phase = 0;
9620
9621 /* The loopback device is special if any other network devices
9622 * is present in a network namespace the loopback device must
9623 * be present. Since we now dynamically allocate and free the
9624 * loopback device ensure this invariant is maintained by
9625 * keeping the loopback device as the first device on the
9626 * list of network devices. Ensuring the loopback devices
9627 * is the first device that appears and the last network device
9628 * that disappears.
9629 */
9630 if (register_pernet_device(&loopback_net_ops))
9631 goto out;
9632
9633 if (register_pernet_device(&default_device_ops))
9634 goto out;
9635
9636 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
9637 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
9638
9639 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
9640 NULL, dev_cpu_dead);
9641 WARN_ON(rc < 0);
9642 rc = 0;
9643 out:
9644 return rc;
9645 }
9646
9647 subsys_initcall(net_dev_init);
9648