1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/skbuff.h>
97 #include <linux/bpf.h>
98 #include <linux/bpf_trace.h>
99 #include <net/net_namespace.h>
100 #include <net/sock.h>
101 #include <net/busy_poll.h>
102 #include <linux/rtnetlink.h>
103 #include <linux/stat.h>
104 #include <net/dst.h>
105 #include <net/dst_metadata.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <linux/pci.h>
135 #include <linux/inetdevice.h>
136 #include <linux/cpu_rmap.h>
137 #include <linux/static_key.h>
138 #include <linux/hashtable.h>
139 #include <linux/vmalloc.h>
140 #include <linux/if_macvlan.h>
141 #include <linux/errqueue.h>
142 #include <linux/hrtimer.h>
143 #include <linux/netfilter_ingress.h>
144 #include <linux/crash_dump.h>
145 #include <linux/sctp.h>
146 #include <net/udp_tunnel.h>
147 #include <linux/net_namespace.h>
148 
149 #include "net-sysfs.h"
150 
151 #define MAX_GRO_SKBS 8
152 
153 /* This should be increased if a protocol with a bigger head is added. */
154 #define GRO_MAX_HEAD (MAX_HEADER + 128)
155 
156 static DEFINE_SPINLOCK(ptype_lock);
157 static DEFINE_SPINLOCK(offload_lock);
158 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
159 struct list_head ptype_all __read_mostly;	/* Taps */
160 static struct list_head offload_base __read_mostly;
161 
162 static int netif_rx_internal(struct sk_buff *skb);
163 static int call_netdevice_notifiers_info(unsigned long val,
164 					 struct netdev_notifier_info *info);
165 static struct napi_struct *napi_by_id(unsigned int napi_id);
166 
167 /*
168  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
169  * semaphore.
170  *
171  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
172  *
173  * Writers must hold the rtnl semaphore while they loop through the
174  * dev_base_head list, and hold dev_base_lock for writing when they do the
175  * actual updates.  This allows pure readers to access the list even
176  * while a writer is preparing to update it.
177  *
178  * To put it another way, dev_base_lock is held for writing only to
179  * protect against pure readers; the rtnl semaphore provides the
180  * protection against other writers.
181  *
182  * See, for example usages, register_netdevice() and
183  * unregister_netdevice(), which must be called with the rtnl
184  * semaphore held.
185  */
186 DEFINE_RWLOCK(dev_base_lock);
187 EXPORT_SYMBOL(dev_base_lock);
188 
189 static DEFINE_MUTEX(ifalias_mutex);
190 
191 /* protects napi_hash addition/deletion and napi_gen_id */
192 static DEFINE_SPINLOCK(napi_hash_lock);
193 
194 static unsigned int napi_gen_id = NR_CPUS;
195 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
196 
197 static seqcount_t devnet_rename_seq;
198 
dev_base_seq_inc(struct net * net)199 static inline void dev_base_seq_inc(struct net *net)
200 {
201 	while (++net->dev_base_seq == 0)
202 		;
203 }
204 
dev_name_hash(struct net * net,const char * name)205 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
206 {
207 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
208 
209 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
210 }
211 
dev_index_hash(struct net * net,int ifindex)212 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
213 {
214 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
215 }
216 
rps_lock(struct softnet_data * sd)217 static inline void rps_lock(struct softnet_data *sd)
218 {
219 #ifdef CONFIG_RPS
220 	spin_lock(&sd->input_pkt_queue.lock);
221 #endif
222 }
223 
rps_unlock(struct softnet_data * sd)224 static inline void rps_unlock(struct softnet_data *sd)
225 {
226 #ifdef CONFIG_RPS
227 	spin_unlock(&sd->input_pkt_queue.lock);
228 #endif
229 }
230 
231 /* Device list insertion */
list_netdevice(struct net_device * dev)232 static void list_netdevice(struct net_device *dev)
233 {
234 	struct net *net = dev_net(dev);
235 
236 	ASSERT_RTNL();
237 
238 	write_lock_bh(&dev_base_lock);
239 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
240 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
241 	hlist_add_head_rcu(&dev->index_hlist,
242 			   dev_index_hash(net, dev->ifindex));
243 	write_unlock_bh(&dev_base_lock);
244 
245 	dev_base_seq_inc(net);
246 }
247 
248 /* Device list removal
249  * caller must respect a RCU grace period before freeing/reusing dev
250  */
unlist_netdevice(struct net_device * dev)251 static void unlist_netdevice(struct net_device *dev)
252 {
253 	ASSERT_RTNL();
254 
255 	/* Unlink dev from the device chain */
256 	write_lock_bh(&dev_base_lock);
257 	list_del_rcu(&dev->dev_list);
258 	hlist_del_rcu(&dev->name_hlist);
259 	hlist_del_rcu(&dev->index_hlist);
260 	write_unlock_bh(&dev_base_lock);
261 
262 	dev_base_seq_inc(dev_net(dev));
263 }
264 
265 /*
266  *	Our notifier list
267  */
268 
269 static RAW_NOTIFIER_HEAD(netdev_chain);
270 
271 /*
272  *	Device drivers call our routines to queue packets here. We empty the
273  *	queue in the local softnet handler.
274  */
275 
276 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
277 EXPORT_PER_CPU_SYMBOL(softnet_data);
278 
279 #ifdef CONFIG_LOCKDEP
280 /*
281  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
282  * according to dev->type
283  */
284 static const unsigned short netdev_lock_type[] = {
285 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
286 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
287 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
288 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
289 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
290 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
291 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
292 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
293 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
294 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
295 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
296 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
297 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
298 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
299 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
300 
301 static const char *const netdev_lock_name[] = {
302 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
303 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
304 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
305 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
306 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
307 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
308 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
309 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
310 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
311 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
312 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
313 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
314 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
315 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
316 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
317 
318 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
319 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
320 
netdev_lock_pos(unsigned short dev_type)321 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
322 {
323 	int i;
324 
325 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
326 		if (netdev_lock_type[i] == dev_type)
327 			return i;
328 	/* the last key is used by default */
329 	return ARRAY_SIZE(netdev_lock_type) - 1;
330 }
331 
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)332 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
333 						 unsigned short dev_type)
334 {
335 	int i;
336 
337 	i = netdev_lock_pos(dev_type);
338 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
339 				   netdev_lock_name[i]);
340 }
341 
netdev_set_addr_lockdep_class(struct net_device * dev)342 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
343 {
344 	int i;
345 
346 	i = netdev_lock_pos(dev->type);
347 	lockdep_set_class_and_name(&dev->addr_list_lock,
348 				   &netdev_addr_lock_key[i],
349 				   netdev_lock_name[i]);
350 }
351 #else
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)352 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
353 						 unsigned short dev_type)
354 {
355 }
netdev_set_addr_lockdep_class(struct net_device * dev)356 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
357 {
358 }
359 #endif
360 
361 /*******************************************************************************
362  *
363  *		Protocol management and registration routines
364  *
365  *******************************************************************************/
366 
367 
368 /*
369  *	Add a protocol ID to the list. Now that the input handler is
370  *	smarter we can dispense with all the messy stuff that used to be
371  *	here.
372  *
373  *	BEWARE!!! Protocol handlers, mangling input packets,
374  *	MUST BE last in hash buckets and checking protocol handlers
375  *	MUST start from promiscuous ptype_all chain in net_bh.
376  *	It is true now, do not change it.
377  *	Explanation follows: if protocol handler, mangling packet, will
378  *	be the first on list, it is not able to sense, that packet
379  *	is cloned and should be copied-on-write, so that it will
380  *	change it and subsequent readers will get broken packet.
381  *							--ANK (980803)
382  */
383 
ptype_head(const struct packet_type * pt)384 static inline struct list_head *ptype_head(const struct packet_type *pt)
385 {
386 	if (pt->type == htons(ETH_P_ALL))
387 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
388 	else
389 		return pt->dev ? &pt->dev->ptype_specific :
390 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
391 }
392 
393 /**
394  *	dev_add_pack - add packet handler
395  *	@pt: packet type declaration
396  *
397  *	Add a protocol handler to the networking stack. The passed &packet_type
398  *	is linked into kernel lists and may not be freed until it has been
399  *	removed from the kernel lists.
400  *
401  *	This call does not sleep therefore it can not
402  *	guarantee all CPU's that are in middle of receiving packets
403  *	will see the new packet type (until the next received packet).
404  */
405 
dev_add_pack(struct packet_type * pt)406 void dev_add_pack(struct packet_type *pt)
407 {
408 	struct list_head *head = ptype_head(pt);
409 
410 	spin_lock(&ptype_lock);
411 	list_add_rcu(&pt->list, head);
412 	spin_unlock(&ptype_lock);
413 }
414 EXPORT_SYMBOL(dev_add_pack);
415 
416 /**
417  *	__dev_remove_pack	 - remove packet handler
418  *	@pt: packet type declaration
419  *
420  *	Remove a protocol handler that was previously added to the kernel
421  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
422  *	from the kernel lists and can be freed or reused once this function
423  *	returns.
424  *
425  *      The packet type might still be in use by receivers
426  *	and must not be freed until after all the CPU's have gone
427  *	through a quiescent state.
428  */
__dev_remove_pack(struct packet_type * pt)429 void __dev_remove_pack(struct packet_type *pt)
430 {
431 	struct list_head *head = ptype_head(pt);
432 	struct packet_type *pt1;
433 
434 	spin_lock(&ptype_lock);
435 
436 	list_for_each_entry(pt1, head, list) {
437 		if (pt == pt1) {
438 			list_del_rcu(&pt->list);
439 			goto out;
440 		}
441 	}
442 
443 	pr_warn("dev_remove_pack: %p not found\n", pt);
444 out:
445 	spin_unlock(&ptype_lock);
446 }
447 EXPORT_SYMBOL(__dev_remove_pack);
448 
449 /**
450  *	dev_remove_pack	 - remove packet handler
451  *	@pt: packet type declaration
452  *
453  *	Remove a protocol handler that was previously added to the kernel
454  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
455  *	from the kernel lists and can be freed or reused once this function
456  *	returns.
457  *
458  *	This call sleeps to guarantee that no CPU is looking at the packet
459  *	type after return.
460  */
dev_remove_pack(struct packet_type * pt)461 void dev_remove_pack(struct packet_type *pt)
462 {
463 	__dev_remove_pack(pt);
464 
465 	synchronize_net();
466 }
467 EXPORT_SYMBOL(dev_remove_pack);
468 
469 
470 /**
471  *	dev_add_offload - register offload handlers
472  *	@po: protocol offload declaration
473  *
474  *	Add protocol offload handlers to the networking stack. The passed
475  *	&proto_offload is linked into kernel lists and may not be freed until
476  *	it has been removed from the kernel lists.
477  *
478  *	This call does not sleep therefore it can not
479  *	guarantee all CPU's that are in middle of receiving packets
480  *	will see the new offload handlers (until the next received packet).
481  */
dev_add_offload(struct packet_offload * po)482 void dev_add_offload(struct packet_offload *po)
483 {
484 	struct packet_offload *elem;
485 
486 	spin_lock(&offload_lock);
487 	list_for_each_entry(elem, &offload_base, list) {
488 		if (po->priority < elem->priority)
489 			break;
490 	}
491 	list_add_rcu(&po->list, elem->list.prev);
492 	spin_unlock(&offload_lock);
493 }
494 EXPORT_SYMBOL(dev_add_offload);
495 
496 /**
497  *	__dev_remove_offload	 - remove offload handler
498  *	@po: packet offload declaration
499  *
500  *	Remove a protocol offload handler that was previously added to the
501  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
502  *	is removed from the kernel lists and can be freed or reused once this
503  *	function returns.
504  *
505  *      The packet type might still be in use by receivers
506  *	and must not be freed until after all the CPU's have gone
507  *	through a quiescent state.
508  */
__dev_remove_offload(struct packet_offload * po)509 static void __dev_remove_offload(struct packet_offload *po)
510 {
511 	struct list_head *head = &offload_base;
512 	struct packet_offload *po1;
513 
514 	spin_lock(&offload_lock);
515 
516 	list_for_each_entry(po1, head, list) {
517 		if (po == po1) {
518 			list_del_rcu(&po->list);
519 			goto out;
520 		}
521 	}
522 
523 	pr_warn("dev_remove_offload: %p not found\n", po);
524 out:
525 	spin_unlock(&offload_lock);
526 }
527 
528 /**
529  *	dev_remove_offload	 - remove packet offload handler
530  *	@po: packet offload declaration
531  *
532  *	Remove a packet offload handler that was previously added to the kernel
533  *	offload handlers by dev_add_offload(). The passed &offload_type is
534  *	removed from the kernel lists and can be freed or reused once this
535  *	function returns.
536  *
537  *	This call sleeps to guarantee that no CPU is looking at the packet
538  *	type after return.
539  */
dev_remove_offload(struct packet_offload * po)540 void dev_remove_offload(struct packet_offload *po)
541 {
542 	__dev_remove_offload(po);
543 
544 	synchronize_net();
545 }
546 EXPORT_SYMBOL(dev_remove_offload);
547 
548 /******************************************************************************
549  *
550  *		      Device Boot-time Settings Routines
551  *
552  ******************************************************************************/
553 
554 /* Boot time configuration table */
555 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
556 
557 /**
558  *	netdev_boot_setup_add	- add new setup entry
559  *	@name: name of the device
560  *	@map: configured settings for the device
561  *
562  *	Adds new setup entry to the dev_boot_setup list.  The function
563  *	returns 0 on error and 1 on success.  This is a generic routine to
564  *	all netdevices.
565  */
netdev_boot_setup_add(char * name,struct ifmap * map)566 static int netdev_boot_setup_add(char *name, struct ifmap *map)
567 {
568 	struct netdev_boot_setup *s;
569 	int i;
570 
571 	s = dev_boot_setup;
572 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
573 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
574 			memset(s[i].name, 0, sizeof(s[i].name));
575 			strlcpy(s[i].name, name, IFNAMSIZ);
576 			memcpy(&s[i].map, map, sizeof(s[i].map));
577 			break;
578 		}
579 	}
580 
581 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
582 }
583 
584 /**
585  * netdev_boot_setup_check	- check boot time settings
586  * @dev: the netdevice
587  *
588  * Check boot time settings for the device.
589  * The found settings are set for the device to be used
590  * later in the device probing.
591  * Returns 0 if no settings found, 1 if they are.
592  */
netdev_boot_setup_check(struct net_device * dev)593 int netdev_boot_setup_check(struct net_device *dev)
594 {
595 	struct netdev_boot_setup *s = dev_boot_setup;
596 	int i;
597 
598 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
599 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
600 		    !strcmp(dev->name, s[i].name)) {
601 			dev->irq = s[i].map.irq;
602 			dev->base_addr = s[i].map.base_addr;
603 			dev->mem_start = s[i].map.mem_start;
604 			dev->mem_end = s[i].map.mem_end;
605 			return 1;
606 		}
607 	}
608 	return 0;
609 }
610 EXPORT_SYMBOL(netdev_boot_setup_check);
611 
612 
613 /**
614  * netdev_boot_base	- get address from boot time settings
615  * @prefix: prefix for network device
616  * @unit: id for network device
617  *
618  * Check boot time settings for the base address of device.
619  * The found settings are set for the device to be used
620  * later in the device probing.
621  * Returns 0 if no settings found.
622  */
netdev_boot_base(const char * prefix,int unit)623 unsigned long netdev_boot_base(const char *prefix, int unit)
624 {
625 	const struct netdev_boot_setup *s = dev_boot_setup;
626 	char name[IFNAMSIZ];
627 	int i;
628 
629 	sprintf(name, "%s%d", prefix, unit);
630 
631 	/*
632 	 * If device already registered then return base of 1
633 	 * to indicate not to probe for this interface
634 	 */
635 	if (__dev_get_by_name(&init_net, name))
636 		return 1;
637 
638 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
639 		if (!strcmp(name, s[i].name))
640 			return s[i].map.base_addr;
641 	return 0;
642 }
643 
644 /*
645  * Saves at boot time configured settings for any netdevice.
646  */
netdev_boot_setup(char * str)647 int __init netdev_boot_setup(char *str)
648 {
649 	int ints[5];
650 	struct ifmap map;
651 
652 	str = get_options(str, ARRAY_SIZE(ints), ints);
653 	if (!str || !*str)
654 		return 0;
655 
656 	/* Save settings */
657 	memset(&map, 0, sizeof(map));
658 	if (ints[0] > 0)
659 		map.irq = ints[1];
660 	if (ints[0] > 1)
661 		map.base_addr = ints[2];
662 	if (ints[0] > 2)
663 		map.mem_start = ints[3];
664 	if (ints[0] > 3)
665 		map.mem_end = ints[4];
666 
667 	/* Add new entry to the list */
668 	return netdev_boot_setup_add(str, &map);
669 }
670 
671 __setup("netdev=", netdev_boot_setup);
672 
673 /*******************************************************************************
674  *
675  *			    Device Interface Subroutines
676  *
677  *******************************************************************************/
678 
679 /**
680  *	dev_get_iflink	- get 'iflink' value of a interface
681  *	@dev: targeted interface
682  *
683  *	Indicates the ifindex the interface is linked to.
684  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
685  */
686 
dev_get_iflink(const struct net_device * dev)687 int dev_get_iflink(const struct net_device *dev)
688 {
689 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
690 		return dev->netdev_ops->ndo_get_iflink(dev);
691 
692 	return dev->ifindex;
693 }
694 EXPORT_SYMBOL(dev_get_iflink);
695 
696 /**
697  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
698  *	@dev: targeted interface
699  *	@skb: The packet.
700  *
701  *	For better visibility of tunnel traffic OVS needs to retrieve
702  *	egress tunnel information for a packet. Following API allows
703  *	user to get this info.
704  */
dev_fill_metadata_dst(struct net_device * dev,struct sk_buff * skb)705 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
706 {
707 	struct ip_tunnel_info *info;
708 
709 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
710 		return -EINVAL;
711 
712 	info = skb_tunnel_info_unclone(skb);
713 	if (!info)
714 		return -ENOMEM;
715 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
716 		return -EINVAL;
717 
718 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
719 }
720 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
721 
722 /**
723  *	__dev_get_by_name	- find a device by its name
724  *	@net: the applicable net namespace
725  *	@name: name to find
726  *
727  *	Find an interface by name. Must be called under RTNL semaphore
728  *	or @dev_base_lock. If the name is found a pointer to the device
729  *	is returned. If the name is not found then %NULL is returned. The
730  *	reference counters are not incremented so the caller must be
731  *	careful with locks.
732  */
733 
__dev_get_by_name(struct net * net,const char * name)734 struct net_device *__dev_get_by_name(struct net *net, const char *name)
735 {
736 	struct net_device *dev;
737 	struct hlist_head *head = dev_name_hash(net, name);
738 
739 	hlist_for_each_entry(dev, head, name_hlist)
740 		if (!strncmp(dev->name, name, IFNAMSIZ))
741 			return dev;
742 
743 	return NULL;
744 }
745 EXPORT_SYMBOL(__dev_get_by_name);
746 
747 /**
748  * dev_get_by_name_rcu	- find a device by its name
749  * @net: the applicable net namespace
750  * @name: name to find
751  *
752  * Find an interface by name.
753  * If the name is found a pointer to the device is returned.
754  * If the name is not found then %NULL is returned.
755  * The reference counters are not incremented so the caller must be
756  * careful with locks. The caller must hold RCU lock.
757  */
758 
dev_get_by_name_rcu(struct net * net,const char * name)759 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
760 {
761 	struct net_device *dev;
762 	struct hlist_head *head = dev_name_hash(net, name);
763 
764 	hlist_for_each_entry_rcu(dev, head, name_hlist)
765 		if (!strncmp(dev->name, name, IFNAMSIZ))
766 			return dev;
767 
768 	return NULL;
769 }
770 EXPORT_SYMBOL(dev_get_by_name_rcu);
771 
772 /**
773  *	dev_get_by_name		- find a device by its name
774  *	@net: the applicable net namespace
775  *	@name: name to find
776  *
777  *	Find an interface by name. This can be called from any
778  *	context and does its own locking. The returned handle has
779  *	the usage count incremented and the caller must use dev_put() to
780  *	release it when it is no longer needed. %NULL is returned if no
781  *	matching device is found.
782  */
783 
dev_get_by_name(struct net * net,const char * name)784 struct net_device *dev_get_by_name(struct net *net, const char *name)
785 {
786 	struct net_device *dev;
787 
788 	rcu_read_lock();
789 	dev = dev_get_by_name_rcu(net, name);
790 	if (dev)
791 		dev_hold(dev);
792 	rcu_read_unlock();
793 	return dev;
794 }
795 EXPORT_SYMBOL(dev_get_by_name);
796 
797 /**
798  *	__dev_get_by_index - find a device by its ifindex
799  *	@net: the applicable net namespace
800  *	@ifindex: index of device
801  *
802  *	Search for an interface by index. Returns %NULL if the device
803  *	is not found or a pointer to the device. The device has not
804  *	had its reference counter increased so the caller must be careful
805  *	about locking. The caller must hold either the RTNL semaphore
806  *	or @dev_base_lock.
807  */
808 
__dev_get_by_index(struct net * net,int ifindex)809 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
810 {
811 	struct net_device *dev;
812 	struct hlist_head *head = dev_index_hash(net, ifindex);
813 
814 	hlist_for_each_entry(dev, head, index_hlist)
815 		if (dev->ifindex == ifindex)
816 			return dev;
817 
818 	return NULL;
819 }
820 EXPORT_SYMBOL(__dev_get_by_index);
821 
822 /**
823  *	dev_get_by_index_rcu - find a device by its ifindex
824  *	@net: the applicable net namespace
825  *	@ifindex: index of device
826  *
827  *	Search for an interface by index. Returns %NULL if the device
828  *	is not found or a pointer to the device. The device has not
829  *	had its reference counter increased so the caller must be careful
830  *	about locking. The caller must hold RCU lock.
831  */
832 
dev_get_by_index_rcu(struct net * net,int ifindex)833 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
834 {
835 	struct net_device *dev;
836 	struct hlist_head *head = dev_index_hash(net, ifindex);
837 
838 	hlist_for_each_entry_rcu(dev, head, index_hlist)
839 		if (dev->ifindex == ifindex)
840 			return dev;
841 
842 	return NULL;
843 }
844 EXPORT_SYMBOL(dev_get_by_index_rcu);
845 
846 
847 /**
848  *	dev_get_by_index - find a device by its ifindex
849  *	@net: the applicable net namespace
850  *	@ifindex: index of device
851  *
852  *	Search for an interface by index. Returns NULL if the device
853  *	is not found or a pointer to the device. The device returned has
854  *	had a reference added and the pointer is safe until the user calls
855  *	dev_put to indicate they have finished with it.
856  */
857 
dev_get_by_index(struct net * net,int ifindex)858 struct net_device *dev_get_by_index(struct net *net, int ifindex)
859 {
860 	struct net_device *dev;
861 
862 	rcu_read_lock();
863 	dev = dev_get_by_index_rcu(net, ifindex);
864 	if (dev)
865 		dev_hold(dev);
866 	rcu_read_unlock();
867 	return dev;
868 }
869 EXPORT_SYMBOL(dev_get_by_index);
870 
871 /**
872  *	dev_get_by_napi_id - find a device by napi_id
873  *	@napi_id: ID of the NAPI struct
874  *
875  *	Search for an interface by NAPI ID. Returns %NULL if the device
876  *	is not found or a pointer to the device. The device has not had
877  *	its reference counter increased so the caller must be careful
878  *	about locking. The caller must hold RCU lock.
879  */
880 
dev_get_by_napi_id(unsigned int napi_id)881 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
882 {
883 	struct napi_struct *napi;
884 
885 	WARN_ON_ONCE(!rcu_read_lock_held());
886 
887 	if (napi_id < MIN_NAPI_ID)
888 		return NULL;
889 
890 	napi = napi_by_id(napi_id);
891 
892 	return napi ? napi->dev : NULL;
893 }
894 EXPORT_SYMBOL(dev_get_by_napi_id);
895 
896 /**
897  *	netdev_get_name - get a netdevice name, knowing its ifindex.
898  *	@net: network namespace
899  *	@name: a pointer to the buffer where the name will be stored.
900  *	@ifindex: the ifindex of the interface to get the name from.
901  *
902  *	The use of raw_seqcount_begin() and cond_resched() before
903  *	retrying is required as we want to give the writers a chance
904  *	to complete when CONFIG_PREEMPT is not set.
905  */
netdev_get_name(struct net * net,char * name,int ifindex)906 int netdev_get_name(struct net *net, char *name, int ifindex)
907 {
908 	struct net_device *dev;
909 	unsigned int seq;
910 
911 retry:
912 	seq = raw_seqcount_begin(&devnet_rename_seq);
913 	rcu_read_lock();
914 	dev = dev_get_by_index_rcu(net, ifindex);
915 	if (!dev) {
916 		rcu_read_unlock();
917 		return -ENODEV;
918 	}
919 
920 	strcpy(name, dev->name);
921 	rcu_read_unlock();
922 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
923 		cond_resched();
924 		goto retry;
925 	}
926 
927 	return 0;
928 }
929 
930 /**
931  *	dev_getbyhwaddr_rcu - find a device by its hardware address
932  *	@net: the applicable net namespace
933  *	@type: media type of device
934  *	@ha: hardware address
935  *
936  *	Search for an interface by MAC address. Returns NULL if the device
937  *	is not found or a pointer to the device.
938  *	The caller must hold RCU or RTNL.
939  *	The returned device has not had its ref count increased
940  *	and the caller must therefore be careful about locking
941  *
942  */
943 
dev_getbyhwaddr_rcu(struct net * net,unsigned short type,const char * ha)944 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
945 				       const char *ha)
946 {
947 	struct net_device *dev;
948 
949 	for_each_netdev_rcu(net, dev)
950 		if (dev->type == type &&
951 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
952 			return dev;
953 
954 	return NULL;
955 }
956 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
957 
__dev_getfirstbyhwtype(struct net * net,unsigned short type)958 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
959 {
960 	struct net_device *dev;
961 
962 	ASSERT_RTNL();
963 	for_each_netdev(net, dev)
964 		if (dev->type == type)
965 			return dev;
966 
967 	return NULL;
968 }
969 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
970 
dev_getfirstbyhwtype(struct net * net,unsigned short type)971 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
972 {
973 	struct net_device *dev, *ret = NULL;
974 
975 	rcu_read_lock();
976 	for_each_netdev_rcu(net, dev)
977 		if (dev->type == type) {
978 			dev_hold(dev);
979 			ret = dev;
980 			break;
981 		}
982 	rcu_read_unlock();
983 	return ret;
984 }
985 EXPORT_SYMBOL(dev_getfirstbyhwtype);
986 
987 /**
988  *	__dev_get_by_flags - find any device with given flags
989  *	@net: the applicable net namespace
990  *	@if_flags: IFF_* values
991  *	@mask: bitmask of bits in if_flags to check
992  *
993  *	Search for any interface with the given flags. Returns NULL if a device
994  *	is not found or a pointer to the device. Must be called inside
995  *	rtnl_lock(), and result refcount is unchanged.
996  */
997 
__dev_get_by_flags(struct net * net,unsigned short if_flags,unsigned short mask)998 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
999 				      unsigned short mask)
1000 {
1001 	struct net_device *dev, *ret;
1002 
1003 	ASSERT_RTNL();
1004 
1005 	ret = NULL;
1006 	for_each_netdev(net, dev) {
1007 		if (((dev->flags ^ if_flags) & mask) == 0) {
1008 			ret = dev;
1009 			break;
1010 		}
1011 	}
1012 	return ret;
1013 }
1014 EXPORT_SYMBOL(__dev_get_by_flags);
1015 
1016 /**
1017  *	dev_valid_name - check if name is okay for network device
1018  *	@name: name string
1019  *
1020  *	Network device names need to be valid file names to
1021  *	to allow sysfs to work.  We also disallow any kind of
1022  *	whitespace.
1023  */
dev_valid_name(const char * name)1024 bool dev_valid_name(const char *name)
1025 {
1026 	if (*name == '\0')
1027 		return false;
1028 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1029 		return false;
1030 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1031 		return false;
1032 
1033 	while (*name) {
1034 		if (*name == '/' || *name == ':' || isspace(*name))
1035 			return false;
1036 		name++;
1037 	}
1038 	return true;
1039 }
1040 EXPORT_SYMBOL(dev_valid_name);
1041 
1042 /**
1043  *	__dev_alloc_name - allocate a name for a device
1044  *	@net: network namespace to allocate the device name in
1045  *	@name: name format string
1046  *	@buf:  scratch buffer and result name string
1047  *
1048  *	Passed a format string - eg "lt%d" it will try and find a suitable
1049  *	id. It scans list of devices to build up a free map, then chooses
1050  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1051  *	while allocating the name and adding the device in order to avoid
1052  *	duplicates.
1053  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1054  *	Returns the number of the unit assigned or a negative errno code.
1055  */
1056 
__dev_alloc_name(struct net * net,const char * name,char * buf)1057 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1058 {
1059 	int i = 0;
1060 	const char *p;
1061 	const int max_netdevices = 8*PAGE_SIZE;
1062 	unsigned long *inuse;
1063 	struct net_device *d;
1064 
1065 	if (!dev_valid_name(name))
1066 		return -EINVAL;
1067 
1068 	p = strchr(name, '%');
1069 	if (p) {
1070 		/*
1071 		 * Verify the string as this thing may have come from
1072 		 * the user.  There must be either one "%d" and no other "%"
1073 		 * characters.
1074 		 */
1075 		if (p[1] != 'd' || strchr(p + 2, '%'))
1076 			return -EINVAL;
1077 
1078 		/* Use one page as a bit array of possible slots */
1079 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1080 		if (!inuse)
1081 			return -ENOMEM;
1082 
1083 		for_each_netdev(net, d) {
1084 			if (!sscanf(d->name, name, &i))
1085 				continue;
1086 			if (i < 0 || i >= max_netdevices)
1087 				continue;
1088 
1089 			/*  avoid cases where sscanf is not exact inverse of printf */
1090 			snprintf(buf, IFNAMSIZ, name, i);
1091 			if (!strncmp(buf, d->name, IFNAMSIZ))
1092 				set_bit(i, inuse);
1093 		}
1094 
1095 		i = find_first_zero_bit(inuse, max_netdevices);
1096 		free_page((unsigned long) inuse);
1097 	}
1098 
1099 	snprintf(buf, IFNAMSIZ, name, i);
1100 	if (!__dev_get_by_name(net, buf))
1101 		return i;
1102 
1103 	/* It is possible to run out of possible slots
1104 	 * when the name is long and there isn't enough space left
1105 	 * for the digits, or if all bits are used.
1106 	 */
1107 	return -ENFILE;
1108 }
1109 
dev_alloc_name_ns(struct net * net,struct net_device * dev,const char * name)1110 static int dev_alloc_name_ns(struct net *net,
1111 			     struct net_device *dev,
1112 			     const char *name)
1113 {
1114 	char buf[IFNAMSIZ];
1115 	int ret;
1116 
1117 	BUG_ON(!net);
1118 	ret = __dev_alloc_name(net, name, buf);
1119 	if (ret >= 0)
1120 		strlcpy(dev->name, buf, IFNAMSIZ);
1121 	return ret;
1122 }
1123 
1124 /**
1125  *	dev_alloc_name - allocate a name for a device
1126  *	@dev: device
1127  *	@name: name format string
1128  *
1129  *	Passed a format string - eg "lt%d" it will try and find a suitable
1130  *	id. It scans list of devices to build up a free map, then chooses
1131  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1132  *	while allocating the name and adding the device in order to avoid
1133  *	duplicates.
1134  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1135  *	Returns the number of the unit assigned or a negative errno code.
1136  */
1137 
dev_alloc_name(struct net_device * dev,const char * name)1138 int dev_alloc_name(struct net_device *dev, const char *name)
1139 {
1140 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1141 }
1142 EXPORT_SYMBOL(dev_alloc_name);
1143 
dev_get_valid_name(struct net * net,struct net_device * dev,const char * name)1144 int dev_get_valid_name(struct net *net, struct net_device *dev,
1145 		       const char *name)
1146 {
1147 	BUG_ON(!net);
1148 
1149 	if (!dev_valid_name(name))
1150 		return -EINVAL;
1151 
1152 	if (strchr(name, '%'))
1153 		return dev_alloc_name_ns(net, dev, name);
1154 	else if (__dev_get_by_name(net, name))
1155 		return -EEXIST;
1156 	else if (dev->name != name)
1157 		strlcpy(dev->name, name, IFNAMSIZ);
1158 
1159 	return 0;
1160 }
1161 EXPORT_SYMBOL(dev_get_valid_name);
1162 
1163 /**
1164  *	dev_change_name - change name of a device
1165  *	@dev: device
1166  *	@newname: name (or format string) must be at least IFNAMSIZ
1167  *
1168  *	Change name of a device, can pass format strings "eth%d".
1169  *	for wildcarding.
1170  */
dev_change_name(struct net_device * dev,const char * newname)1171 int dev_change_name(struct net_device *dev, const char *newname)
1172 {
1173 	unsigned char old_assign_type;
1174 	char oldname[IFNAMSIZ];
1175 	int err = 0;
1176 	int ret;
1177 	struct net *net;
1178 
1179 	ASSERT_RTNL();
1180 	BUG_ON(!dev_net(dev));
1181 
1182 	net = dev_net(dev);
1183 	if (dev->flags & IFF_UP)
1184 		return -EBUSY;
1185 
1186 	write_seqcount_begin(&devnet_rename_seq);
1187 
1188 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1189 		write_seqcount_end(&devnet_rename_seq);
1190 		return 0;
1191 	}
1192 
1193 	memcpy(oldname, dev->name, IFNAMSIZ);
1194 
1195 	err = dev_get_valid_name(net, dev, newname);
1196 	if (err < 0) {
1197 		write_seqcount_end(&devnet_rename_seq);
1198 		return err;
1199 	}
1200 
1201 	if (oldname[0] && !strchr(oldname, '%'))
1202 		netdev_info(dev, "renamed from %s\n", oldname);
1203 
1204 	old_assign_type = dev->name_assign_type;
1205 	dev->name_assign_type = NET_NAME_RENAMED;
1206 
1207 rollback:
1208 	ret = device_rename(&dev->dev, dev->name);
1209 	if (ret) {
1210 		memcpy(dev->name, oldname, IFNAMSIZ);
1211 		dev->name_assign_type = old_assign_type;
1212 		write_seqcount_end(&devnet_rename_seq);
1213 		return ret;
1214 	}
1215 
1216 	write_seqcount_end(&devnet_rename_seq);
1217 
1218 	netdev_adjacent_rename_links(dev, oldname);
1219 
1220 	write_lock_bh(&dev_base_lock);
1221 	hlist_del_rcu(&dev->name_hlist);
1222 	write_unlock_bh(&dev_base_lock);
1223 
1224 	synchronize_rcu();
1225 
1226 	write_lock_bh(&dev_base_lock);
1227 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1228 	write_unlock_bh(&dev_base_lock);
1229 
1230 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1231 	ret = notifier_to_errno(ret);
1232 
1233 	if (ret) {
1234 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1235 		if (err >= 0) {
1236 			err = ret;
1237 			write_seqcount_begin(&devnet_rename_seq);
1238 			memcpy(dev->name, oldname, IFNAMSIZ);
1239 			memcpy(oldname, newname, IFNAMSIZ);
1240 			dev->name_assign_type = old_assign_type;
1241 			old_assign_type = NET_NAME_RENAMED;
1242 			goto rollback;
1243 		} else {
1244 			pr_err("%s: name change rollback failed: %d\n",
1245 			       dev->name, ret);
1246 		}
1247 	}
1248 
1249 	return err;
1250 }
1251 
1252 /**
1253  *	dev_set_alias - change ifalias of a device
1254  *	@dev: device
1255  *	@alias: name up to IFALIASZ
1256  *	@len: limit of bytes to copy from info
1257  *
1258  *	Set ifalias for a device,
1259  */
dev_set_alias(struct net_device * dev,const char * alias,size_t len)1260 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1261 {
1262 	struct dev_ifalias *new_alias = NULL;
1263 
1264 	if (len >= IFALIASZ)
1265 		return -EINVAL;
1266 
1267 	if (len) {
1268 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1269 		if (!new_alias)
1270 			return -ENOMEM;
1271 
1272 		memcpy(new_alias->ifalias, alias, len);
1273 		new_alias->ifalias[len] = 0;
1274 	}
1275 
1276 	mutex_lock(&ifalias_mutex);
1277 	rcu_swap_protected(dev->ifalias, new_alias,
1278 			   mutex_is_locked(&ifalias_mutex));
1279 	mutex_unlock(&ifalias_mutex);
1280 
1281 	if (new_alias)
1282 		kfree_rcu(new_alias, rcuhead);
1283 
1284 	return len;
1285 }
1286 EXPORT_SYMBOL(dev_set_alias);
1287 
1288 /**
1289  *	dev_get_alias - get ifalias of a device
1290  *	@dev: device
1291  *	@name: buffer to store name of ifalias
1292  *	@len: size of buffer
1293  *
1294  *	get ifalias for a device.  Caller must make sure dev cannot go
1295  *	away,  e.g. rcu read lock or own a reference count to device.
1296  */
dev_get_alias(const struct net_device * dev,char * name,size_t len)1297 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1298 {
1299 	const struct dev_ifalias *alias;
1300 	int ret = 0;
1301 
1302 	rcu_read_lock();
1303 	alias = rcu_dereference(dev->ifalias);
1304 	if (alias)
1305 		ret = snprintf(name, len, "%s", alias->ifalias);
1306 	rcu_read_unlock();
1307 
1308 	return ret;
1309 }
1310 
1311 /**
1312  *	netdev_features_change - device changes features
1313  *	@dev: device to cause notification
1314  *
1315  *	Called to indicate a device has changed features.
1316  */
netdev_features_change(struct net_device * dev)1317 void netdev_features_change(struct net_device *dev)
1318 {
1319 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1320 }
1321 EXPORT_SYMBOL(netdev_features_change);
1322 
1323 /**
1324  *	netdev_state_change - device changes state
1325  *	@dev: device to cause notification
1326  *
1327  *	Called to indicate a device has changed state. This function calls
1328  *	the notifier chains for netdev_chain and sends a NEWLINK message
1329  *	to the routing socket.
1330  */
netdev_state_change(struct net_device * dev)1331 void netdev_state_change(struct net_device *dev)
1332 {
1333 	if (dev->flags & IFF_UP) {
1334 		struct netdev_notifier_change_info change_info = {
1335 			.info.dev = dev,
1336 		};
1337 
1338 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1339 					      &change_info.info);
1340 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1341 	}
1342 }
1343 EXPORT_SYMBOL(netdev_state_change);
1344 
1345 /**
1346  * netdev_notify_peers - notify network peers about existence of @dev
1347  * @dev: network device
1348  *
1349  * Generate traffic such that interested network peers are aware of
1350  * @dev, such as by generating a gratuitous ARP. This may be used when
1351  * a device wants to inform the rest of the network about some sort of
1352  * reconfiguration such as a failover event or virtual machine
1353  * migration.
1354  */
netdev_notify_peers(struct net_device * dev)1355 void netdev_notify_peers(struct net_device *dev)
1356 {
1357 	rtnl_lock();
1358 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1359 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1360 	rtnl_unlock();
1361 }
1362 EXPORT_SYMBOL(netdev_notify_peers);
1363 
__dev_open(struct net_device * dev)1364 static int __dev_open(struct net_device *dev)
1365 {
1366 	const struct net_device_ops *ops = dev->netdev_ops;
1367 	int ret;
1368 
1369 	ASSERT_RTNL();
1370 
1371 	if (!netif_device_present(dev))
1372 		return -ENODEV;
1373 
1374 	/* Block netpoll from trying to do any rx path servicing.
1375 	 * If we don't do this there is a chance ndo_poll_controller
1376 	 * or ndo_poll may be running while we open the device
1377 	 */
1378 	netpoll_poll_disable(dev);
1379 
1380 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1381 	ret = notifier_to_errno(ret);
1382 	if (ret)
1383 		return ret;
1384 
1385 	set_bit(__LINK_STATE_START, &dev->state);
1386 
1387 	if (ops->ndo_validate_addr)
1388 		ret = ops->ndo_validate_addr(dev);
1389 
1390 	if (!ret && ops->ndo_open)
1391 		ret = ops->ndo_open(dev);
1392 
1393 	netpoll_poll_enable(dev);
1394 
1395 	if (ret)
1396 		clear_bit(__LINK_STATE_START, &dev->state);
1397 	else {
1398 		dev->flags |= IFF_UP;
1399 		dev_set_rx_mode(dev);
1400 		dev_activate(dev);
1401 		add_device_randomness(dev->dev_addr, dev->addr_len);
1402 	}
1403 
1404 	return ret;
1405 }
1406 
1407 /**
1408  *	dev_open	- prepare an interface for use.
1409  *	@dev:	device to open
1410  *
1411  *	Takes a device from down to up state. The device's private open
1412  *	function is invoked and then the multicast lists are loaded. Finally
1413  *	the device is moved into the up state and a %NETDEV_UP message is
1414  *	sent to the netdev notifier chain.
1415  *
1416  *	Calling this function on an active interface is a nop. On a failure
1417  *	a negative errno code is returned.
1418  */
dev_open(struct net_device * dev)1419 int dev_open(struct net_device *dev)
1420 {
1421 	int ret;
1422 
1423 	if (dev->flags & IFF_UP)
1424 		return 0;
1425 
1426 	ret = __dev_open(dev);
1427 	if (ret < 0)
1428 		return ret;
1429 
1430 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1431 	call_netdevice_notifiers(NETDEV_UP, dev);
1432 
1433 	return ret;
1434 }
1435 EXPORT_SYMBOL(dev_open);
1436 
__dev_close_many(struct list_head * head)1437 static void __dev_close_many(struct list_head *head)
1438 {
1439 	struct net_device *dev;
1440 
1441 	ASSERT_RTNL();
1442 	might_sleep();
1443 
1444 	list_for_each_entry(dev, head, close_list) {
1445 		/* Temporarily disable netpoll until the interface is down */
1446 		netpoll_poll_disable(dev);
1447 
1448 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1449 
1450 		clear_bit(__LINK_STATE_START, &dev->state);
1451 
1452 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1453 		 * can be even on different cpu. So just clear netif_running().
1454 		 *
1455 		 * dev->stop() will invoke napi_disable() on all of it's
1456 		 * napi_struct instances on this device.
1457 		 */
1458 		smp_mb__after_atomic(); /* Commit netif_running(). */
1459 	}
1460 
1461 	dev_deactivate_many(head);
1462 
1463 	list_for_each_entry(dev, head, close_list) {
1464 		const struct net_device_ops *ops = dev->netdev_ops;
1465 
1466 		/*
1467 		 *	Call the device specific close. This cannot fail.
1468 		 *	Only if device is UP
1469 		 *
1470 		 *	We allow it to be called even after a DETACH hot-plug
1471 		 *	event.
1472 		 */
1473 		if (ops->ndo_stop)
1474 			ops->ndo_stop(dev);
1475 
1476 		dev->flags &= ~IFF_UP;
1477 		netpoll_poll_enable(dev);
1478 	}
1479 }
1480 
__dev_close(struct net_device * dev)1481 static void __dev_close(struct net_device *dev)
1482 {
1483 	LIST_HEAD(single);
1484 
1485 	list_add(&dev->close_list, &single);
1486 	__dev_close_many(&single);
1487 	list_del(&single);
1488 }
1489 
dev_close_many(struct list_head * head,bool unlink)1490 void dev_close_many(struct list_head *head, bool unlink)
1491 {
1492 	struct net_device *dev, *tmp;
1493 
1494 	/* Remove the devices that don't need to be closed */
1495 	list_for_each_entry_safe(dev, tmp, head, close_list)
1496 		if (!(dev->flags & IFF_UP))
1497 			list_del_init(&dev->close_list);
1498 
1499 	__dev_close_many(head);
1500 
1501 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1502 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1503 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1504 		if (unlink)
1505 			list_del_init(&dev->close_list);
1506 	}
1507 }
1508 EXPORT_SYMBOL(dev_close_many);
1509 
1510 /**
1511  *	dev_close - shutdown an interface.
1512  *	@dev: device to shutdown
1513  *
1514  *	This function moves an active device into down state. A
1515  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1516  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1517  *	chain.
1518  */
dev_close(struct net_device * dev)1519 void dev_close(struct net_device *dev)
1520 {
1521 	if (dev->flags & IFF_UP) {
1522 		LIST_HEAD(single);
1523 
1524 		list_add(&dev->close_list, &single);
1525 		dev_close_many(&single, true);
1526 		list_del(&single);
1527 	}
1528 }
1529 EXPORT_SYMBOL(dev_close);
1530 
1531 
1532 /**
1533  *	dev_disable_lro - disable Large Receive Offload on a device
1534  *	@dev: device
1535  *
1536  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1537  *	called under RTNL.  This is needed if received packets may be
1538  *	forwarded to another interface.
1539  */
dev_disable_lro(struct net_device * dev)1540 void dev_disable_lro(struct net_device *dev)
1541 {
1542 	struct net_device *lower_dev;
1543 	struct list_head *iter;
1544 
1545 	dev->wanted_features &= ~NETIF_F_LRO;
1546 	netdev_update_features(dev);
1547 
1548 	if (unlikely(dev->features & NETIF_F_LRO))
1549 		netdev_WARN(dev, "failed to disable LRO!\n");
1550 
1551 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1552 		dev_disable_lro(lower_dev);
1553 }
1554 EXPORT_SYMBOL(dev_disable_lro);
1555 
1556 /**
1557  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1558  *	@dev: device
1559  *
1560  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1561  *	called under RTNL.  This is needed if Generic XDP is installed on
1562  *	the device.
1563  */
dev_disable_gro_hw(struct net_device * dev)1564 static void dev_disable_gro_hw(struct net_device *dev)
1565 {
1566 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1567 	netdev_update_features(dev);
1568 
1569 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1570 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1571 }
1572 
netdev_cmd_to_name(enum netdev_cmd cmd)1573 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1574 {
1575 #define N(val) 						\
1576 	case NETDEV_##val:				\
1577 		return "NETDEV_" __stringify(val);
1578 	switch (cmd) {
1579 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1580 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1581 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1582 	N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1583 	N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1584 	N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1585 	N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1586 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1587 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1588 	}
1589 #undef N
1590 	return "UNKNOWN_NETDEV_EVENT";
1591 }
1592 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1593 
call_netdevice_notifier(struct notifier_block * nb,unsigned long val,struct net_device * dev)1594 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1595 				   struct net_device *dev)
1596 {
1597 	struct netdev_notifier_info info = {
1598 		.dev = dev,
1599 	};
1600 
1601 	return nb->notifier_call(nb, val, &info);
1602 }
1603 
1604 static int dev_boot_phase = 1;
1605 
1606 /**
1607  * register_netdevice_notifier - register a network notifier block
1608  * @nb: notifier
1609  *
1610  * Register a notifier to be called when network device events occur.
1611  * The notifier passed is linked into the kernel structures and must
1612  * not be reused until it has been unregistered. A negative errno code
1613  * is returned on a failure.
1614  *
1615  * When registered all registration and up events are replayed
1616  * to the new notifier to allow device to have a race free
1617  * view of the network device list.
1618  */
1619 
register_netdevice_notifier(struct notifier_block * nb)1620 int register_netdevice_notifier(struct notifier_block *nb)
1621 {
1622 	struct net_device *dev;
1623 	struct net_device *last;
1624 	struct net *net;
1625 	int err;
1626 
1627 	/* Close race with setup_net() and cleanup_net() */
1628 	down_write(&pernet_ops_rwsem);
1629 	rtnl_lock();
1630 	err = raw_notifier_chain_register(&netdev_chain, nb);
1631 	if (err)
1632 		goto unlock;
1633 	if (dev_boot_phase)
1634 		goto unlock;
1635 	for_each_net(net) {
1636 		for_each_netdev(net, dev) {
1637 			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1638 			err = notifier_to_errno(err);
1639 			if (err)
1640 				goto rollback;
1641 
1642 			if (!(dev->flags & IFF_UP))
1643 				continue;
1644 
1645 			call_netdevice_notifier(nb, NETDEV_UP, dev);
1646 		}
1647 	}
1648 
1649 unlock:
1650 	rtnl_unlock();
1651 	up_write(&pernet_ops_rwsem);
1652 	return err;
1653 
1654 rollback:
1655 	last = dev;
1656 	for_each_net(net) {
1657 		for_each_netdev(net, dev) {
1658 			if (dev == last)
1659 				goto outroll;
1660 
1661 			if (dev->flags & IFF_UP) {
1662 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1663 							dev);
1664 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1665 			}
1666 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1667 		}
1668 	}
1669 
1670 outroll:
1671 	raw_notifier_chain_unregister(&netdev_chain, nb);
1672 	goto unlock;
1673 }
1674 EXPORT_SYMBOL(register_netdevice_notifier);
1675 
1676 /**
1677  * unregister_netdevice_notifier - unregister a network notifier block
1678  * @nb: notifier
1679  *
1680  * Unregister a notifier previously registered by
1681  * register_netdevice_notifier(). The notifier is unlinked into the
1682  * kernel structures and may then be reused. A negative errno code
1683  * is returned on a failure.
1684  *
1685  * After unregistering unregister and down device events are synthesized
1686  * for all devices on the device list to the removed notifier to remove
1687  * the need for special case cleanup code.
1688  */
1689 
unregister_netdevice_notifier(struct notifier_block * nb)1690 int unregister_netdevice_notifier(struct notifier_block *nb)
1691 {
1692 	struct net_device *dev;
1693 	struct net *net;
1694 	int err;
1695 
1696 	/* Close race with setup_net() and cleanup_net() */
1697 	down_write(&pernet_ops_rwsem);
1698 	rtnl_lock();
1699 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1700 	if (err)
1701 		goto unlock;
1702 
1703 	for_each_net(net) {
1704 		for_each_netdev(net, dev) {
1705 			if (dev->flags & IFF_UP) {
1706 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1707 							dev);
1708 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1709 			}
1710 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1711 		}
1712 	}
1713 unlock:
1714 	rtnl_unlock();
1715 	up_write(&pernet_ops_rwsem);
1716 	return err;
1717 }
1718 EXPORT_SYMBOL(unregister_netdevice_notifier);
1719 
1720 /**
1721  *	call_netdevice_notifiers_info - call all network notifier blocks
1722  *	@val: value passed unmodified to notifier function
1723  *	@info: notifier information data
1724  *
1725  *	Call all network notifier blocks.  Parameters and return value
1726  *	are as for raw_notifier_call_chain().
1727  */
1728 
call_netdevice_notifiers_info(unsigned long val,struct netdev_notifier_info * info)1729 static int call_netdevice_notifiers_info(unsigned long val,
1730 					 struct netdev_notifier_info *info)
1731 {
1732 	ASSERT_RTNL();
1733 	return raw_notifier_call_chain(&netdev_chain, val, info);
1734 }
1735 
1736 /**
1737  *	call_netdevice_notifiers - call all network notifier blocks
1738  *      @val: value passed unmodified to notifier function
1739  *      @dev: net_device pointer passed unmodified to notifier function
1740  *
1741  *	Call all network notifier blocks.  Parameters and return value
1742  *	are as for raw_notifier_call_chain().
1743  */
1744 
call_netdevice_notifiers(unsigned long val,struct net_device * dev)1745 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1746 {
1747 	struct netdev_notifier_info info = {
1748 		.dev = dev,
1749 	};
1750 
1751 	return call_netdevice_notifiers_info(val, &info);
1752 }
1753 EXPORT_SYMBOL(call_netdevice_notifiers);
1754 
1755 /**
1756  *	call_netdevice_notifiers_mtu - call all network notifier blocks
1757  *	@val: value passed unmodified to notifier function
1758  *	@dev: net_device pointer passed unmodified to notifier function
1759  *	@arg: additional u32 argument passed to the notifier function
1760  *
1761  *	Call all network notifier blocks.  Parameters and return value
1762  *	are as for raw_notifier_call_chain().
1763  */
call_netdevice_notifiers_mtu(unsigned long val,struct net_device * dev,u32 arg)1764 static int call_netdevice_notifiers_mtu(unsigned long val,
1765 					struct net_device *dev, u32 arg)
1766 {
1767 	struct netdev_notifier_info_ext info = {
1768 		.info.dev = dev,
1769 		.ext.mtu = arg,
1770 	};
1771 
1772 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1773 
1774 	return call_netdevice_notifiers_info(val, &info.info);
1775 }
1776 
1777 #ifdef CONFIG_NET_INGRESS
1778 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
1779 
net_inc_ingress_queue(void)1780 void net_inc_ingress_queue(void)
1781 {
1782 	static_branch_inc(&ingress_needed_key);
1783 }
1784 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1785 
net_dec_ingress_queue(void)1786 void net_dec_ingress_queue(void)
1787 {
1788 	static_branch_dec(&ingress_needed_key);
1789 }
1790 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1791 #endif
1792 
1793 #ifdef CONFIG_NET_EGRESS
1794 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1795 
net_inc_egress_queue(void)1796 void net_inc_egress_queue(void)
1797 {
1798 	static_branch_inc(&egress_needed_key);
1799 }
1800 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1801 
net_dec_egress_queue(void)1802 void net_dec_egress_queue(void)
1803 {
1804 	static_branch_dec(&egress_needed_key);
1805 }
1806 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1807 #endif
1808 
1809 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
1810 #ifdef HAVE_JUMP_LABEL
1811 static atomic_t netstamp_needed_deferred;
1812 static atomic_t netstamp_wanted;
netstamp_clear(struct work_struct * work)1813 static void netstamp_clear(struct work_struct *work)
1814 {
1815 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1816 	int wanted;
1817 
1818 	wanted = atomic_add_return(deferred, &netstamp_wanted);
1819 	if (wanted > 0)
1820 		static_branch_enable(&netstamp_needed_key);
1821 	else
1822 		static_branch_disable(&netstamp_needed_key);
1823 }
1824 static DECLARE_WORK(netstamp_work, netstamp_clear);
1825 #endif
1826 
net_enable_timestamp(void)1827 void net_enable_timestamp(void)
1828 {
1829 #ifdef HAVE_JUMP_LABEL
1830 	int wanted;
1831 
1832 	while (1) {
1833 		wanted = atomic_read(&netstamp_wanted);
1834 		if (wanted <= 0)
1835 			break;
1836 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1837 			return;
1838 	}
1839 	atomic_inc(&netstamp_needed_deferred);
1840 	schedule_work(&netstamp_work);
1841 #else
1842 	static_branch_inc(&netstamp_needed_key);
1843 #endif
1844 }
1845 EXPORT_SYMBOL(net_enable_timestamp);
1846 
net_disable_timestamp(void)1847 void net_disable_timestamp(void)
1848 {
1849 #ifdef HAVE_JUMP_LABEL
1850 	int wanted;
1851 
1852 	while (1) {
1853 		wanted = atomic_read(&netstamp_wanted);
1854 		if (wanted <= 1)
1855 			break;
1856 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1857 			return;
1858 	}
1859 	atomic_dec(&netstamp_needed_deferred);
1860 	schedule_work(&netstamp_work);
1861 #else
1862 	static_branch_dec(&netstamp_needed_key);
1863 #endif
1864 }
1865 EXPORT_SYMBOL(net_disable_timestamp);
1866 
net_timestamp_set(struct sk_buff * skb)1867 static inline void net_timestamp_set(struct sk_buff *skb)
1868 {
1869 	skb->tstamp = 0;
1870 	if (static_branch_unlikely(&netstamp_needed_key))
1871 		__net_timestamp(skb);
1872 }
1873 
1874 #define net_timestamp_check(COND, SKB)				\
1875 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
1876 		if ((COND) && !(SKB)->tstamp)			\
1877 			__net_timestamp(SKB);			\
1878 	}							\
1879 
is_skb_forwardable(const struct net_device * dev,const struct sk_buff * skb)1880 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1881 {
1882 	unsigned int len;
1883 
1884 	if (!(dev->flags & IFF_UP))
1885 		return false;
1886 
1887 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1888 	if (skb->len <= len)
1889 		return true;
1890 
1891 	/* if TSO is enabled, we don't care about the length as the packet
1892 	 * could be forwarded without being segmented before
1893 	 */
1894 	if (skb_is_gso(skb))
1895 		return true;
1896 
1897 	return false;
1898 }
1899 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1900 
__dev_forward_skb(struct net_device * dev,struct sk_buff * skb)1901 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1902 {
1903 	int ret = ____dev_forward_skb(dev, skb);
1904 
1905 	if (likely(!ret)) {
1906 		skb->protocol = eth_type_trans(skb, dev);
1907 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1908 	}
1909 
1910 	return ret;
1911 }
1912 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1913 
1914 /**
1915  * dev_forward_skb - loopback an skb to another netif
1916  *
1917  * @dev: destination network device
1918  * @skb: buffer to forward
1919  *
1920  * return values:
1921  *	NET_RX_SUCCESS	(no congestion)
1922  *	NET_RX_DROP     (packet was dropped, but freed)
1923  *
1924  * dev_forward_skb can be used for injecting an skb from the
1925  * start_xmit function of one device into the receive queue
1926  * of another device.
1927  *
1928  * The receiving device may be in another namespace, so
1929  * we have to clear all information in the skb that could
1930  * impact namespace isolation.
1931  */
dev_forward_skb(struct net_device * dev,struct sk_buff * skb)1932 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1933 {
1934 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1935 }
1936 EXPORT_SYMBOL_GPL(dev_forward_skb);
1937 
deliver_skb(struct sk_buff * skb,struct packet_type * pt_prev,struct net_device * orig_dev)1938 static inline int deliver_skb(struct sk_buff *skb,
1939 			      struct packet_type *pt_prev,
1940 			      struct net_device *orig_dev)
1941 {
1942 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1943 		return -ENOMEM;
1944 	refcount_inc(&skb->users);
1945 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1946 }
1947 
deliver_ptype_list_skb(struct sk_buff * skb,struct packet_type ** pt,struct net_device * orig_dev,__be16 type,struct list_head * ptype_list)1948 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1949 					  struct packet_type **pt,
1950 					  struct net_device *orig_dev,
1951 					  __be16 type,
1952 					  struct list_head *ptype_list)
1953 {
1954 	struct packet_type *ptype, *pt_prev = *pt;
1955 
1956 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1957 		if (ptype->type != type)
1958 			continue;
1959 		if (pt_prev)
1960 			deliver_skb(skb, pt_prev, orig_dev);
1961 		pt_prev = ptype;
1962 	}
1963 	*pt = pt_prev;
1964 }
1965 
skb_loop_sk(struct packet_type * ptype,struct sk_buff * skb)1966 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1967 {
1968 	if (!ptype->af_packet_priv || !skb->sk)
1969 		return false;
1970 
1971 	if (ptype->id_match)
1972 		return ptype->id_match(ptype, skb->sk);
1973 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1974 		return true;
1975 
1976 	return false;
1977 }
1978 
1979 /*
1980  *	Support routine. Sends outgoing frames to any network
1981  *	taps currently in use.
1982  */
1983 
dev_queue_xmit_nit(struct sk_buff * skb,struct net_device * dev)1984 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1985 {
1986 	struct packet_type *ptype;
1987 	struct sk_buff *skb2 = NULL;
1988 	struct packet_type *pt_prev = NULL;
1989 	struct list_head *ptype_list = &ptype_all;
1990 
1991 	rcu_read_lock();
1992 again:
1993 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1994 		/* Never send packets back to the socket
1995 		 * they originated from - MvS (miquels@drinkel.ow.org)
1996 		 */
1997 		if (skb_loop_sk(ptype, skb))
1998 			continue;
1999 
2000 		if (pt_prev) {
2001 			deliver_skb(skb2, pt_prev, skb->dev);
2002 			pt_prev = ptype;
2003 			continue;
2004 		}
2005 
2006 		/* need to clone skb, done only once */
2007 		skb2 = skb_clone(skb, GFP_ATOMIC);
2008 		if (!skb2)
2009 			goto out_unlock;
2010 
2011 		net_timestamp_set(skb2);
2012 
2013 		/* skb->nh should be correctly
2014 		 * set by sender, so that the second statement is
2015 		 * just protection against buggy protocols.
2016 		 */
2017 		skb_reset_mac_header(skb2);
2018 
2019 		if (skb_network_header(skb2) < skb2->data ||
2020 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2021 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2022 					     ntohs(skb2->protocol),
2023 					     dev->name);
2024 			skb_reset_network_header(skb2);
2025 		}
2026 
2027 		skb2->transport_header = skb2->network_header;
2028 		skb2->pkt_type = PACKET_OUTGOING;
2029 		pt_prev = ptype;
2030 	}
2031 
2032 	if (ptype_list == &ptype_all) {
2033 		ptype_list = &dev->ptype_all;
2034 		goto again;
2035 	}
2036 out_unlock:
2037 	if (pt_prev) {
2038 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2039 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2040 		else
2041 			kfree_skb(skb2);
2042 	}
2043 	rcu_read_unlock();
2044 }
2045 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2046 
2047 /**
2048  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2049  * @dev: Network device
2050  * @txq: number of queues available
2051  *
2052  * If real_num_tx_queues is changed the tc mappings may no longer be
2053  * valid. To resolve this verify the tc mapping remains valid and if
2054  * not NULL the mapping. With no priorities mapping to this
2055  * offset/count pair it will no longer be used. In the worst case TC0
2056  * is invalid nothing can be done so disable priority mappings. If is
2057  * expected that drivers will fix this mapping if they can before
2058  * calling netif_set_real_num_tx_queues.
2059  */
netif_setup_tc(struct net_device * dev,unsigned int txq)2060 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2061 {
2062 	int i;
2063 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2064 
2065 	/* If TC0 is invalidated disable TC mapping */
2066 	if (tc->offset + tc->count > txq) {
2067 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2068 		dev->num_tc = 0;
2069 		return;
2070 	}
2071 
2072 	/* Invalidated prio to tc mappings set to TC0 */
2073 	for (i = 1; i < TC_BITMASK + 1; i++) {
2074 		int q = netdev_get_prio_tc_map(dev, i);
2075 
2076 		tc = &dev->tc_to_txq[q];
2077 		if (tc->offset + tc->count > txq) {
2078 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2079 				i, q);
2080 			netdev_set_prio_tc_map(dev, i, 0);
2081 		}
2082 	}
2083 }
2084 
netdev_txq_to_tc(struct net_device * dev,unsigned int txq)2085 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2086 {
2087 	if (dev->num_tc) {
2088 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2089 		int i;
2090 
2091 		/* walk through the TCs and see if it falls into any of them */
2092 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2093 			if ((txq - tc->offset) < tc->count)
2094 				return i;
2095 		}
2096 
2097 		/* didn't find it, just return -1 to indicate no match */
2098 		return -1;
2099 	}
2100 
2101 	return 0;
2102 }
2103 EXPORT_SYMBOL(netdev_txq_to_tc);
2104 
2105 #ifdef CONFIG_XPS
2106 struct static_key xps_needed __read_mostly;
2107 EXPORT_SYMBOL(xps_needed);
2108 struct static_key xps_rxqs_needed __read_mostly;
2109 EXPORT_SYMBOL(xps_rxqs_needed);
2110 static DEFINE_MUTEX(xps_map_mutex);
2111 #define xmap_dereference(P)		\
2112 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2113 
remove_xps_queue(struct xps_dev_maps * dev_maps,int tci,u16 index)2114 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2115 			     int tci, u16 index)
2116 {
2117 	struct xps_map *map = NULL;
2118 	int pos;
2119 
2120 	if (dev_maps)
2121 		map = xmap_dereference(dev_maps->attr_map[tci]);
2122 	if (!map)
2123 		return false;
2124 
2125 	for (pos = map->len; pos--;) {
2126 		if (map->queues[pos] != index)
2127 			continue;
2128 
2129 		if (map->len > 1) {
2130 			map->queues[pos] = map->queues[--map->len];
2131 			break;
2132 		}
2133 
2134 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2135 		kfree_rcu(map, rcu);
2136 		return false;
2137 	}
2138 
2139 	return true;
2140 }
2141 
remove_xps_queue_cpu(struct net_device * dev,struct xps_dev_maps * dev_maps,int cpu,u16 offset,u16 count)2142 static bool remove_xps_queue_cpu(struct net_device *dev,
2143 				 struct xps_dev_maps *dev_maps,
2144 				 int cpu, u16 offset, u16 count)
2145 {
2146 	int num_tc = dev->num_tc ? : 1;
2147 	bool active = false;
2148 	int tci;
2149 
2150 	for (tci = cpu * num_tc; num_tc--; tci++) {
2151 		int i, j;
2152 
2153 		for (i = count, j = offset; i--; j++) {
2154 			if (!remove_xps_queue(dev_maps, tci, j))
2155 				break;
2156 		}
2157 
2158 		active |= i < 0;
2159 	}
2160 
2161 	return active;
2162 }
2163 
clean_xps_maps(struct net_device * dev,const unsigned long * mask,struct xps_dev_maps * dev_maps,unsigned int nr_ids,u16 offset,u16 count,bool is_rxqs_map)2164 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2165 			   struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2166 			   u16 offset, u16 count, bool is_rxqs_map)
2167 {
2168 	bool active = false;
2169 	int i, j;
2170 
2171 	for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2172 	     j < nr_ids;)
2173 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2174 					       count);
2175 	if (!active) {
2176 		if (is_rxqs_map) {
2177 			RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2178 		} else {
2179 			RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2180 
2181 			for (i = offset + (count - 1); count--; i--)
2182 				netdev_queue_numa_node_write(
2183 					netdev_get_tx_queue(dev, i),
2184 							NUMA_NO_NODE);
2185 		}
2186 		kfree_rcu(dev_maps, rcu);
2187 	}
2188 }
2189 
netif_reset_xps_queues(struct net_device * dev,u16 offset,u16 count)2190 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2191 				   u16 count)
2192 {
2193 	const unsigned long *possible_mask = NULL;
2194 	struct xps_dev_maps *dev_maps;
2195 	unsigned int nr_ids;
2196 
2197 	if (!static_key_false(&xps_needed))
2198 		return;
2199 
2200 	cpus_read_lock();
2201 	mutex_lock(&xps_map_mutex);
2202 
2203 	if (static_key_false(&xps_rxqs_needed)) {
2204 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2205 		if (dev_maps) {
2206 			nr_ids = dev->num_rx_queues;
2207 			clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2208 				       offset, count, true);
2209 		}
2210 	}
2211 
2212 	dev_maps = xmap_dereference(dev->xps_cpus_map);
2213 	if (!dev_maps)
2214 		goto out_no_maps;
2215 
2216 	if (num_possible_cpus() > 1)
2217 		possible_mask = cpumask_bits(cpu_possible_mask);
2218 	nr_ids = nr_cpu_ids;
2219 	clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2220 		       false);
2221 
2222 out_no_maps:
2223 	if (static_key_enabled(&xps_rxqs_needed))
2224 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2225 
2226 	static_key_slow_dec_cpuslocked(&xps_needed);
2227 	mutex_unlock(&xps_map_mutex);
2228 	cpus_read_unlock();
2229 }
2230 
netif_reset_xps_queues_gt(struct net_device * dev,u16 index)2231 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2232 {
2233 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2234 }
2235 
expand_xps_map(struct xps_map * map,int attr_index,u16 index,bool is_rxqs_map)2236 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2237 				      u16 index, bool is_rxqs_map)
2238 {
2239 	struct xps_map *new_map;
2240 	int alloc_len = XPS_MIN_MAP_ALLOC;
2241 	int i, pos;
2242 
2243 	for (pos = 0; map && pos < map->len; pos++) {
2244 		if (map->queues[pos] != index)
2245 			continue;
2246 		return map;
2247 	}
2248 
2249 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2250 	if (map) {
2251 		if (pos < map->alloc_len)
2252 			return map;
2253 
2254 		alloc_len = map->alloc_len * 2;
2255 	}
2256 
2257 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2258 	 *  map
2259 	 */
2260 	if (is_rxqs_map)
2261 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2262 	else
2263 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2264 				       cpu_to_node(attr_index));
2265 	if (!new_map)
2266 		return NULL;
2267 
2268 	for (i = 0; i < pos; i++)
2269 		new_map->queues[i] = map->queues[i];
2270 	new_map->alloc_len = alloc_len;
2271 	new_map->len = pos;
2272 
2273 	return new_map;
2274 }
2275 
2276 /* Must be called under cpus_read_lock */
__netif_set_xps_queue(struct net_device * dev,const unsigned long * mask,u16 index,bool is_rxqs_map)2277 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2278 			  u16 index, bool is_rxqs_map)
2279 {
2280 	const unsigned long *online_mask = NULL, *possible_mask = NULL;
2281 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2282 	int i, j, tci, numa_node_id = -2;
2283 	int maps_sz, num_tc = 1, tc = 0;
2284 	struct xps_map *map, *new_map;
2285 	bool active = false;
2286 	unsigned int nr_ids;
2287 
2288 	if (dev->num_tc) {
2289 		/* Do not allow XPS on subordinate device directly */
2290 		num_tc = dev->num_tc;
2291 		if (num_tc < 0)
2292 			return -EINVAL;
2293 
2294 		/* If queue belongs to subordinate dev use its map */
2295 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2296 
2297 		tc = netdev_txq_to_tc(dev, index);
2298 		if (tc < 0)
2299 			return -EINVAL;
2300 	}
2301 
2302 	mutex_lock(&xps_map_mutex);
2303 	if (is_rxqs_map) {
2304 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2305 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2306 		nr_ids = dev->num_rx_queues;
2307 	} else {
2308 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2309 		if (num_possible_cpus() > 1) {
2310 			online_mask = cpumask_bits(cpu_online_mask);
2311 			possible_mask = cpumask_bits(cpu_possible_mask);
2312 		}
2313 		dev_maps = xmap_dereference(dev->xps_cpus_map);
2314 		nr_ids = nr_cpu_ids;
2315 	}
2316 
2317 	if (maps_sz < L1_CACHE_BYTES)
2318 		maps_sz = L1_CACHE_BYTES;
2319 
2320 	/* allocate memory for queue storage */
2321 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2322 	     j < nr_ids;) {
2323 		if (!new_dev_maps)
2324 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2325 		if (!new_dev_maps) {
2326 			mutex_unlock(&xps_map_mutex);
2327 			return -ENOMEM;
2328 		}
2329 
2330 		tci = j * num_tc + tc;
2331 		map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2332 				 NULL;
2333 
2334 		map = expand_xps_map(map, j, index, is_rxqs_map);
2335 		if (!map)
2336 			goto error;
2337 
2338 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2339 	}
2340 
2341 	if (!new_dev_maps)
2342 		goto out_no_new_maps;
2343 
2344 	static_key_slow_inc_cpuslocked(&xps_needed);
2345 	if (is_rxqs_map)
2346 		static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2347 
2348 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2349 	     j < nr_ids;) {
2350 		/* copy maps belonging to foreign traffic classes */
2351 		for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2352 			/* fill in the new device map from the old device map */
2353 			map = xmap_dereference(dev_maps->attr_map[tci]);
2354 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2355 		}
2356 
2357 		/* We need to explicitly update tci as prevous loop
2358 		 * could break out early if dev_maps is NULL.
2359 		 */
2360 		tci = j * num_tc + tc;
2361 
2362 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2363 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2364 			/* add tx-queue to CPU/rx-queue maps */
2365 			int pos = 0;
2366 
2367 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2368 			while ((pos < map->len) && (map->queues[pos] != index))
2369 				pos++;
2370 
2371 			if (pos == map->len)
2372 				map->queues[map->len++] = index;
2373 #ifdef CONFIG_NUMA
2374 			if (!is_rxqs_map) {
2375 				if (numa_node_id == -2)
2376 					numa_node_id = cpu_to_node(j);
2377 				else if (numa_node_id != cpu_to_node(j))
2378 					numa_node_id = -1;
2379 			}
2380 #endif
2381 		} else if (dev_maps) {
2382 			/* fill in the new device map from the old device map */
2383 			map = xmap_dereference(dev_maps->attr_map[tci]);
2384 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2385 		}
2386 
2387 		/* copy maps belonging to foreign traffic classes */
2388 		for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2389 			/* fill in the new device map from the old device map */
2390 			map = xmap_dereference(dev_maps->attr_map[tci]);
2391 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2392 		}
2393 	}
2394 
2395 	if (is_rxqs_map)
2396 		rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2397 	else
2398 		rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2399 
2400 	/* Cleanup old maps */
2401 	if (!dev_maps)
2402 		goto out_no_old_maps;
2403 
2404 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2405 	     j < nr_ids;) {
2406 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2407 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2408 			map = xmap_dereference(dev_maps->attr_map[tci]);
2409 			if (map && map != new_map)
2410 				kfree_rcu(map, rcu);
2411 		}
2412 	}
2413 
2414 	kfree_rcu(dev_maps, rcu);
2415 
2416 out_no_old_maps:
2417 	dev_maps = new_dev_maps;
2418 	active = true;
2419 
2420 out_no_new_maps:
2421 	if (!is_rxqs_map) {
2422 		/* update Tx queue numa node */
2423 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2424 					     (numa_node_id >= 0) ?
2425 					     numa_node_id : NUMA_NO_NODE);
2426 	}
2427 
2428 	if (!dev_maps)
2429 		goto out_no_maps;
2430 
2431 	/* removes tx-queue from unused CPUs/rx-queues */
2432 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2433 	     j < nr_ids;) {
2434 		for (i = tc, tci = j * num_tc; i--; tci++)
2435 			active |= remove_xps_queue(dev_maps, tci, index);
2436 		if (!netif_attr_test_mask(j, mask, nr_ids) ||
2437 		    !netif_attr_test_online(j, online_mask, nr_ids))
2438 			active |= remove_xps_queue(dev_maps, tci, index);
2439 		for (i = num_tc - tc, tci++; --i; tci++)
2440 			active |= remove_xps_queue(dev_maps, tci, index);
2441 	}
2442 
2443 	/* free map if not active */
2444 	if (!active) {
2445 		if (is_rxqs_map)
2446 			RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2447 		else
2448 			RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2449 		kfree_rcu(dev_maps, rcu);
2450 	}
2451 
2452 out_no_maps:
2453 	mutex_unlock(&xps_map_mutex);
2454 
2455 	return 0;
2456 error:
2457 	/* remove any maps that we added */
2458 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2459 	     j < nr_ids;) {
2460 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2461 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2462 			map = dev_maps ?
2463 			      xmap_dereference(dev_maps->attr_map[tci]) :
2464 			      NULL;
2465 			if (new_map && new_map != map)
2466 				kfree(new_map);
2467 		}
2468 	}
2469 
2470 	mutex_unlock(&xps_map_mutex);
2471 
2472 	kfree(new_dev_maps);
2473 	return -ENOMEM;
2474 }
2475 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2476 
netif_set_xps_queue(struct net_device * dev,const struct cpumask * mask,u16 index)2477 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2478 			u16 index)
2479 {
2480 	int ret;
2481 
2482 	cpus_read_lock();
2483 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2484 	cpus_read_unlock();
2485 
2486 	return ret;
2487 }
2488 EXPORT_SYMBOL(netif_set_xps_queue);
2489 
2490 #endif
netdev_unbind_all_sb_channels(struct net_device * dev)2491 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2492 {
2493 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2494 
2495 	/* Unbind any subordinate channels */
2496 	while (txq-- != &dev->_tx[0]) {
2497 		if (txq->sb_dev)
2498 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2499 	}
2500 }
2501 
netdev_reset_tc(struct net_device * dev)2502 void netdev_reset_tc(struct net_device *dev)
2503 {
2504 #ifdef CONFIG_XPS
2505 	netif_reset_xps_queues_gt(dev, 0);
2506 #endif
2507 	netdev_unbind_all_sb_channels(dev);
2508 
2509 	/* Reset TC configuration of device */
2510 	dev->num_tc = 0;
2511 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2512 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2513 }
2514 EXPORT_SYMBOL(netdev_reset_tc);
2515 
netdev_set_tc_queue(struct net_device * dev,u8 tc,u16 count,u16 offset)2516 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2517 {
2518 	if (tc >= dev->num_tc)
2519 		return -EINVAL;
2520 
2521 #ifdef CONFIG_XPS
2522 	netif_reset_xps_queues(dev, offset, count);
2523 #endif
2524 	dev->tc_to_txq[tc].count = count;
2525 	dev->tc_to_txq[tc].offset = offset;
2526 	return 0;
2527 }
2528 EXPORT_SYMBOL(netdev_set_tc_queue);
2529 
netdev_set_num_tc(struct net_device * dev,u8 num_tc)2530 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2531 {
2532 	if (num_tc > TC_MAX_QUEUE)
2533 		return -EINVAL;
2534 
2535 #ifdef CONFIG_XPS
2536 	netif_reset_xps_queues_gt(dev, 0);
2537 #endif
2538 	netdev_unbind_all_sb_channels(dev);
2539 
2540 	dev->num_tc = num_tc;
2541 	return 0;
2542 }
2543 EXPORT_SYMBOL(netdev_set_num_tc);
2544 
netdev_unbind_sb_channel(struct net_device * dev,struct net_device * sb_dev)2545 void netdev_unbind_sb_channel(struct net_device *dev,
2546 			      struct net_device *sb_dev)
2547 {
2548 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2549 
2550 #ifdef CONFIG_XPS
2551 	netif_reset_xps_queues_gt(sb_dev, 0);
2552 #endif
2553 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2554 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2555 
2556 	while (txq-- != &dev->_tx[0]) {
2557 		if (txq->sb_dev == sb_dev)
2558 			txq->sb_dev = NULL;
2559 	}
2560 }
2561 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2562 
netdev_bind_sb_channel_queue(struct net_device * dev,struct net_device * sb_dev,u8 tc,u16 count,u16 offset)2563 int netdev_bind_sb_channel_queue(struct net_device *dev,
2564 				 struct net_device *sb_dev,
2565 				 u8 tc, u16 count, u16 offset)
2566 {
2567 	/* Make certain the sb_dev and dev are already configured */
2568 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2569 		return -EINVAL;
2570 
2571 	/* We cannot hand out queues we don't have */
2572 	if ((offset + count) > dev->real_num_tx_queues)
2573 		return -EINVAL;
2574 
2575 	/* Record the mapping */
2576 	sb_dev->tc_to_txq[tc].count = count;
2577 	sb_dev->tc_to_txq[tc].offset = offset;
2578 
2579 	/* Provide a way for Tx queue to find the tc_to_txq map or
2580 	 * XPS map for itself.
2581 	 */
2582 	while (count--)
2583 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2584 
2585 	return 0;
2586 }
2587 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2588 
netdev_set_sb_channel(struct net_device * dev,u16 channel)2589 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2590 {
2591 	/* Do not use a multiqueue device to represent a subordinate channel */
2592 	if (netif_is_multiqueue(dev))
2593 		return -ENODEV;
2594 
2595 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2596 	 * Channel 0 is meant to be "native" mode and used only to represent
2597 	 * the main root device. We allow writing 0 to reset the device back
2598 	 * to normal mode after being used as a subordinate channel.
2599 	 */
2600 	if (channel > S16_MAX)
2601 		return -EINVAL;
2602 
2603 	dev->num_tc = -channel;
2604 
2605 	return 0;
2606 }
2607 EXPORT_SYMBOL(netdev_set_sb_channel);
2608 
2609 /*
2610  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2611  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2612  */
netif_set_real_num_tx_queues(struct net_device * dev,unsigned int txq)2613 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2614 {
2615 	bool disabling;
2616 	int rc;
2617 
2618 	disabling = txq < dev->real_num_tx_queues;
2619 
2620 	if (txq < 1 || txq > dev->num_tx_queues)
2621 		return -EINVAL;
2622 
2623 	if (dev->reg_state == NETREG_REGISTERED ||
2624 	    dev->reg_state == NETREG_UNREGISTERING) {
2625 		ASSERT_RTNL();
2626 
2627 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2628 						  txq);
2629 		if (rc)
2630 			return rc;
2631 
2632 		if (dev->num_tc)
2633 			netif_setup_tc(dev, txq);
2634 
2635 		dev->real_num_tx_queues = txq;
2636 
2637 		if (disabling) {
2638 			synchronize_net();
2639 			qdisc_reset_all_tx_gt(dev, txq);
2640 #ifdef CONFIG_XPS
2641 			netif_reset_xps_queues_gt(dev, txq);
2642 #endif
2643 		}
2644 	} else {
2645 		dev->real_num_tx_queues = txq;
2646 	}
2647 
2648 	return 0;
2649 }
2650 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2651 
2652 #ifdef CONFIG_SYSFS
2653 /**
2654  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2655  *	@dev: Network device
2656  *	@rxq: Actual number of RX queues
2657  *
2658  *	This must be called either with the rtnl_lock held or before
2659  *	registration of the net device.  Returns 0 on success, or a
2660  *	negative error code.  If called before registration, it always
2661  *	succeeds.
2662  */
netif_set_real_num_rx_queues(struct net_device * dev,unsigned int rxq)2663 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2664 {
2665 	int rc;
2666 
2667 	if (rxq < 1 || rxq > dev->num_rx_queues)
2668 		return -EINVAL;
2669 
2670 	if (dev->reg_state == NETREG_REGISTERED) {
2671 		ASSERT_RTNL();
2672 
2673 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2674 						  rxq);
2675 		if (rc)
2676 			return rc;
2677 	}
2678 
2679 	dev->real_num_rx_queues = rxq;
2680 	return 0;
2681 }
2682 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2683 #endif
2684 
2685 /**
2686  * netif_get_num_default_rss_queues - default number of RSS queues
2687  *
2688  * This routine should set an upper limit on the number of RSS queues
2689  * used by default by multiqueue devices.
2690  */
netif_get_num_default_rss_queues(void)2691 int netif_get_num_default_rss_queues(void)
2692 {
2693 	return is_kdump_kernel() ?
2694 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2695 }
2696 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2697 
__netif_reschedule(struct Qdisc * q)2698 static void __netif_reschedule(struct Qdisc *q)
2699 {
2700 	struct softnet_data *sd;
2701 	unsigned long flags;
2702 
2703 	local_irq_save(flags);
2704 	sd = this_cpu_ptr(&softnet_data);
2705 	q->next_sched = NULL;
2706 	*sd->output_queue_tailp = q;
2707 	sd->output_queue_tailp = &q->next_sched;
2708 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2709 	local_irq_restore(flags);
2710 }
2711 
__netif_schedule(struct Qdisc * q)2712 void __netif_schedule(struct Qdisc *q)
2713 {
2714 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2715 		__netif_reschedule(q);
2716 }
2717 EXPORT_SYMBOL(__netif_schedule);
2718 
2719 struct dev_kfree_skb_cb {
2720 	enum skb_free_reason reason;
2721 };
2722 
get_kfree_skb_cb(const struct sk_buff * skb)2723 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2724 {
2725 	return (struct dev_kfree_skb_cb *)skb->cb;
2726 }
2727 
netif_schedule_queue(struct netdev_queue * txq)2728 void netif_schedule_queue(struct netdev_queue *txq)
2729 {
2730 	rcu_read_lock();
2731 	if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2732 		struct Qdisc *q = rcu_dereference(txq->qdisc);
2733 
2734 		__netif_schedule(q);
2735 	}
2736 	rcu_read_unlock();
2737 }
2738 EXPORT_SYMBOL(netif_schedule_queue);
2739 
netif_tx_wake_queue(struct netdev_queue * dev_queue)2740 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2741 {
2742 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2743 		struct Qdisc *q;
2744 
2745 		rcu_read_lock();
2746 		q = rcu_dereference(dev_queue->qdisc);
2747 		__netif_schedule(q);
2748 		rcu_read_unlock();
2749 	}
2750 }
2751 EXPORT_SYMBOL(netif_tx_wake_queue);
2752 
__dev_kfree_skb_irq(struct sk_buff * skb,enum skb_free_reason reason)2753 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2754 {
2755 	unsigned long flags;
2756 
2757 	if (unlikely(!skb))
2758 		return;
2759 
2760 	if (likely(refcount_read(&skb->users) == 1)) {
2761 		smp_rmb();
2762 		refcount_set(&skb->users, 0);
2763 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
2764 		return;
2765 	}
2766 	get_kfree_skb_cb(skb)->reason = reason;
2767 	local_irq_save(flags);
2768 	skb->next = __this_cpu_read(softnet_data.completion_queue);
2769 	__this_cpu_write(softnet_data.completion_queue, skb);
2770 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2771 	local_irq_restore(flags);
2772 }
2773 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2774 
__dev_kfree_skb_any(struct sk_buff * skb,enum skb_free_reason reason)2775 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2776 {
2777 	if (in_irq() || irqs_disabled())
2778 		__dev_kfree_skb_irq(skb, reason);
2779 	else
2780 		dev_kfree_skb(skb);
2781 }
2782 EXPORT_SYMBOL(__dev_kfree_skb_any);
2783 
2784 
2785 /**
2786  * netif_device_detach - mark device as removed
2787  * @dev: network device
2788  *
2789  * Mark device as removed from system and therefore no longer available.
2790  */
netif_device_detach(struct net_device * dev)2791 void netif_device_detach(struct net_device *dev)
2792 {
2793 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2794 	    netif_running(dev)) {
2795 		netif_tx_stop_all_queues(dev);
2796 	}
2797 }
2798 EXPORT_SYMBOL(netif_device_detach);
2799 
2800 /**
2801  * netif_device_attach - mark device as attached
2802  * @dev: network device
2803  *
2804  * Mark device as attached from system and restart if needed.
2805  */
netif_device_attach(struct net_device * dev)2806 void netif_device_attach(struct net_device *dev)
2807 {
2808 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2809 	    netif_running(dev)) {
2810 		netif_tx_wake_all_queues(dev);
2811 		__netdev_watchdog_up(dev);
2812 	}
2813 }
2814 EXPORT_SYMBOL(netif_device_attach);
2815 
2816 /*
2817  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2818  * to be used as a distribution range.
2819  */
skb_tx_hash(const struct net_device * dev,const struct net_device * sb_dev,struct sk_buff * skb)2820 static u16 skb_tx_hash(const struct net_device *dev,
2821 		       const struct net_device *sb_dev,
2822 		       struct sk_buff *skb)
2823 {
2824 	u32 hash;
2825 	u16 qoffset = 0;
2826 	u16 qcount = dev->real_num_tx_queues;
2827 
2828 	if (dev->num_tc) {
2829 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2830 
2831 		qoffset = sb_dev->tc_to_txq[tc].offset;
2832 		qcount = sb_dev->tc_to_txq[tc].count;
2833 	}
2834 
2835 	if (skb_rx_queue_recorded(skb)) {
2836 		hash = skb_get_rx_queue(skb);
2837 		while (unlikely(hash >= qcount))
2838 			hash -= qcount;
2839 		return hash + qoffset;
2840 	}
2841 
2842 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2843 }
2844 
skb_warn_bad_offload(const struct sk_buff * skb)2845 static void skb_warn_bad_offload(const struct sk_buff *skb)
2846 {
2847 	static const netdev_features_t null_features;
2848 	struct net_device *dev = skb->dev;
2849 	const char *name = "";
2850 
2851 	if (!net_ratelimit())
2852 		return;
2853 
2854 	if (dev) {
2855 		if (dev->dev.parent)
2856 			name = dev_driver_string(dev->dev.parent);
2857 		else
2858 			name = netdev_name(dev);
2859 	}
2860 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2861 	     "gso_type=%d ip_summed=%d\n",
2862 	     name, dev ? &dev->features : &null_features,
2863 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2864 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2865 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2866 }
2867 
2868 /*
2869  * Invalidate hardware checksum when packet is to be mangled, and
2870  * complete checksum manually on outgoing path.
2871  */
skb_checksum_help(struct sk_buff * skb)2872 int skb_checksum_help(struct sk_buff *skb)
2873 {
2874 	__wsum csum;
2875 	int ret = 0, offset;
2876 
2877 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2878 		goto out_set_summed;
2879 
2880 	if (unlikely(skb_shinfo(skb)->gso_size)) {
2881 		skb_warn_bad_offload(skb);
2882 		return -EINVAL;
2883 	}
2884 
2885 	/* Before computing a checksum, we should make sure no frag could
2886 	 * be modified by an external entity : checksum could be wrong.
2887 	 */
2888 	if (skb_has_shared_frag(skb)) {
2889 		ret = __skb_linearize(skb);
2890 		if (ret)
2891 			goto out;
2892 	}
2893 
2894 	offset = skb_checksum_start_offset(skb);
2895 	BUG_ON(offset >= skb_headlen(skb));
2896 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2897 
2898 	offset += skb->csum_offset;
2899 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2900 
2901 	if (skb_cloned(skb) &&
2902 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2903 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2904 		if (ret)
2905 			goto out;
2906 	}
2907 
2908 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2909 out_set_summed:
2910 	skb->ip_summed = CHECKSUM_NONE;
2911 out:
2912 	return ret;
2913 }
2914 EXPORT_SYMBOL(skb_checksum_help);
2915 
skb_crc32c_csum_help(struct sk_buff * skb)2916 int skb_crc32c_csum_help(struct sk_buff *skb)
2917 {
2918 	__le32 crc32c_csum;
2919 	int ret = 0, offset, start;
2920 
2921 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2922 		goto out;
2923 
2924 	if (unlikely(skb_is_gso(skb)))
2925 		goto out;
2926 
2927 	/* Before computing a checksum, we should make sure no frag could
2928 	 * be modified by an external entity : checksum could be wrong.
2929 	 */
2930 	if (unlikely(skb_has_shared_frag(skb))) {
2931 		ret = __skb_linearize(skb);
2932 		if (ret)
2933 			goto out;
2934 	}
2935 	start = skb_checksum_start_offset(skb);
2936 	offset = start + offsetof(struct sctphdr, checksum);
2937 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2938 		ret = -EINVAL;
2939 		goto out;
2940 	}
2941 	if (skb_cloned(skb) &&
2942 	    !skb_clone_writable(skb, offset + sizeof(__le32))) {
2943 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2944 		if (ret)
2945 			goto out;
2946 	}
2947 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2948 						  skb->len - start, ~(__u32)0,
2949 						  crc32c_csum_stub));
2950 	*(__le32 *)(skb->data + offset) = crc32c_csum;
2951 	skb->ip_summed = CHECKSUM_NONE;
2952 	skb->csum_not_inet = 0;
2953 out:
2954 	return ret;
2955 }
2956 
skb_network_protocol(struct sk_buff * skb,int * depth)2957 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2958 {
2959 	__be16 type = skb->protocol;
2960 
2961 	/* Tunnel gso handlers can set protocol to ethernet. */
2962 	if (type == htons(ETH_P_TEB)) {
2963 		struct ethhdr *eth;
2964 
2965 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2966 			return 0;
2967 
2968 		eth = (struct ethhdr *)skb->data;
2969 		type = eth->h_proto;
2970 	}
2971 
2972 	return __vlan_get_protocol(skb, type, depth);
2973 }
2974 
2975 /**
2976  *	skb_mac_gso_segment - mac layer segmentation handler.
2977  *	@skb: buffer to segment
2978  *	@features: features for the output path (see dev->features)
2979  */
skb_mac_gso_segment(struct sk_buff * skb,netdev_features_t features)2980 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2981 				    netdev_features_t features)
2982 {
2983 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2984 	struct packet_offload *ptype;
2985 	int vlan_depth = skb->mac_len;
2986 	__be16 type = skb_network_protocol(skb, &vlan_depth);
2987 
2988 	if (unlikely(!type))
2989 		return ERR_PTR(-EINVAL);
2990 
2991 	__skb_pull(skb, vlan_depth);
2992 
2993 	rcu_read_lock();
2994 	list_for_each_entry_rcu(ptype, &offload_base, list) {
2995 		if (ptype->type == type && ptype->callbacks.gso_segment) {
2996 			segs = ptype->callbacks.gso_segment(skb, features);
2997 			break;
2998 		}
2999 	}
3000 	rcu_read_unlock();
3001 
3002 	__skb_push(skb, skb->data - skb_mac_header(skb));
3003 
3004 	return segs;
3005 }
3006 EXPORT_SYMBOL(skb_mac_gso_segment);
3007 
3008 
3009 /* openvswitch calls this on rx path, so we need a different check.
3010  */
skb_needs_check(struct sk_buff * skb,bool tx_path)3011 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3012 {
3013 	if (tx_path)
3014 		return skb->ip_summed != CHECKSUM_PARTIAL &&
3015 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
3016 
3017 	return skb->ip_summed == CHECKSUM_NONE;
3018 }
3019 
3020 /**
3021  *	__skb_gso_segment - Perform segmentation on skb.
3022  *	@skb: buffer to segment
3023  *	@features: features for the output path (see dev->features)
3024  *	@tx_path: whether it is called in TX path
3025  *
3026  *	This function segments the given skb and returns a list of segments.
3027  *
3028  *	It may return NULL if the skb requires no segmentation.  This is
3029  *	only possible when GSO is used for verifying header integrity.
3030  *
3031  *	Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
3032  */
__skb_gso_segment(struct sk_buff * skb,netdev_features_t features,bool tx_path)3033 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3034 				  netdev_features_t features, bool tx_path)
3035 {
3036 	struct sk_buff *segs;
3037 
3038 	if (unlikely(skb_needs_check(skb, tx_path))) {
3039 		int err;
3040 
3041 		/* We're going to init ->check field in TCP or UDP header */
3042 		err = skb_cow_head(skb, 0);
3043 		if (err < 0)
3044 			return ERR_PTR(err);
3045 	}
3046 
3047 	/* Only report GSO partial support if it will enable us to
3048 	 * support segmentation on this frame without needing additional
3049 	 * work.
3050 	 */
3051 	if (features & NETIF_F_GSO_PARTIAL) {
3052 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3053 		struct net_device *dev = skb->dev;
3054 
3055 		partial_features |= dev->features & dev->gso_partial_features;
3056 		if (!skb_gso_ok(skb, features | partial_features))
3057 			features &= ~NETIF_F_GSO_PARTIAL;
3058 	}
3059 
3060 	BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
3061 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3062 
3063 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3064 	SKB_GSO_CB(skb)->encap_level = 0;
3065 
3066 	skb_reset_mac_header(skb);
3067 	skb_reset_mac_len(skb);
3068 
3069 	segs = skb_mac_gso_segment(skb, features);
3070 
3071 	if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3072 		skb_warn_bad_offload(skb);
3073 
3074 	return segs;
3075 }
3076 EXPORT_SYMBOL(__skb_gso_segment);
3077 
3078 /* Take action when hardware reception checksum errors are detected. */
3079 #ifdef CONFIG_BUG
netdev_rx_csum_fault(struct net_device * dev)3080 void netdev_rx_csum_fault(struct net_device *dev)
3081 {
3082 	if (net_ratelimit()) {
3083 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3084 		dump_stack();
3085 	}
3086 }
3087 EXPORT_SYMBOL(netdev_rx_csum_fault);
3088 #endif
3089 
3090 /* XXX: check that highmem exists at all on the given machine. */
illegal_highdma(struct net_device * dev,struct sk_buff * skb)3091 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3092 {
3093 #ifdef CONFIG_HIGHMEM
3094 	int i;
3095 
3096 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3097 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3098 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3099 
3100 			if (PageHighMem(skb_frag_page(frag)))
3101 				return 1;
3102 		}
3103 	}
3104 #endif
3105 	return 0;
3106 }
3107 
3108 /* If MPLS offload request, verify we are testing hardware MPLS features
3109  * instead of standard features for the netdev.
3110  */
3111 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3112 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3113 					   netdev_features_t features,
3114 					   __be16 type)
3115 {
3116 	if (eth_p_mpls(type))
3117 		features &= skb->dev->mpls_features;
3118 
3119 	return features;
3120 }
3121 #else
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3122 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3123 					   netdev_features_t features,
3124 					   __be16 type)
3125 {
3126 	return features;
3127 }
3128 #endif
3129 
harmonize_features(struct sk_buff * skb,netdev_features_t features)3130 static netdev_features_t harmonize_features(struct sk_buff *skb,
3131 	netdev_features_t features)
3132 {
3133 	int tmp;
3134 	__be16 type;
3135 
3136 	type = skb_network_protocol(skb, &tmp);
3137 	features = net_mpls_features(skb, features, type);
3138 
3139 	if (skb->ip_summed != CHECKSUM_NONE &&
3140 	    !can_checksum_protocol(features, type)) {
3141 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3142 	}
3143 	if (illegal_highdma(skb->dev, skb))
3144 		features &= ~NETIF_F_SG;
3145 
3146 	return features;
3147 }
3148 
passthru_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3149 netdev_features_t passthru_features_check(struct sk_buff *skb,
3150 					  struct net_device *dev,
3151 					  netdev_features_t features)
3152 {
3153 	return features;
3154 }
3155 EXPORT_SYMBOL(passthru_features_check);
3156 
dflt_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3157 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3158 					     struct net_device *dev,
3159 					     netdev_features_t features)
3160 {
3161 	return vlan_features_check(skb, features);
3162 }
3163 
gso_features_check(const struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3164 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3165 					    struct net_device *dev,
3166 					    netdev_features_t features)
3167 {
3168 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3169 
3170 	if (gso_segs > dev->gso_max_segs)
3171 		return features & ~NETIF_F_GSO_MASK;
3172 
3173 	/* Support for GSO partial features requires software
3174 	 * intervention before we can actually process the packets
3175 	 * so we need to strip support for any partial features now
3176 	 * and we can pull them back in after we have partially
3177 	 * segmented the frame.
3178 	 */
3179 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3180 		features &= ~dev->gso_partial_features;
3181 
3182 	/* Make sure to clear the IPv4 ID mangling feature if the
3183 	 * IPv4 header has the potential to be fragmented.
3184 	 */
3185 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3186 		struct iphdr *iph = skb->encapsulation ?
3187 				    inner_ip_hdr(skb) : ip_hdr(skb);
3188 
3189 		if (!(iph->frag_off & htons(IP_DF)))
3190 			features &= ~NETIF_F_TSO_MANGLEID;
3191 	}
3192 
3193 	return features;
3194 }
3195 
netif_skb_features(struct sk_buff * skb)3196 netdev_features_t netif_skb_features(struct sk_buff *skb)
3197 {
3198 	struct net_device *dev = skb->dev;
3199 	netdev_features_t features = dev->features;
3200 
3201 	if (skb_is_gso(skb))
3202 		features = gso_features_check(skb, dev, features);
3203 
3204 	/* If encapsulation offload request, verify we are testing
3205 	 * hardware encapsulation features instead of standard
3206 	 * features for the netdev
3207 	 */
3208 	if (skb->encapsulation)
3209 		features &= dev->hw_enc_features;
3210 
3211 	if (skb_vlan_tagged(skb))
3212 		features = netdev_intersect_features(features,
3213 						     dev->vlan_features |
3214 						     NETIF_F_HW_VLAN_CTAG_TX |
3215 						     NETIF_F_HW_VLAN_STAG_TX);
3216 
3217 	if (dev->netdev_ops->ndo_features_check)
3218 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3219 								features);
3220 	else
3221 		features &= dflt_features_check(skb, dev, features);
3222 
3223 	return harmonize_features(skb, features);
3224 }
3225 EXPORT_SYMBOL(netif_skb_features);
3226 
xmit_one(struct sk_buff * skb,struct net_device * dev,struct netdev_queue * txq,bool more)3227 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3228 		    struct netdev_queue *txq, bool more)
3229 {
3230 	unsigned int len;
3231 	int rc;
3232 
3233 	if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
3234 		dev_queue_xmit_nit(skb, dev);
3235 
3236 	len = skb->len;
3237 	trace_net_dev_start_xmit(skb, dev);
3238 	rc = netdev_start_xmit(skb, dev, txq, more);
3239 	trace_net_dev_xmit(skb, rc, dev, len);
3240 
3241 	return rc;
3242 }
3243 
dev_hard_start_xmit(struct sk_buff * first,struct net_device * dev,struct netdev_queue * txq,int * ret)3244 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3245 				    struct netdev_queue *txq, int *ret)
3246 {
3247 	struct sk_buff *skb = first;
3248 	int rc = NETDEV_TX_OK;
3249 
3250 	while (skb) {
3251 		struct sk_buff *next = skb->next;
3252 
3253 		skb->next = NULL;
3254 		rc = xmit_one(skb, dev, txq, next != NULL);
3255 		if (unlikely(!dev_xmit_complete(rc))) {
3256 			skb->next = next;
3257 			goto out;
3258 		}
3259 
3260 		skb = next;
3261 		if (netif_xmit_stopped(txq) && skb) {
3262 			rc = NETDEV_TX_BUSY;
3263 			break;
3264 		}
3265 	}
3266 
3267 out:
3268 	*ret = rc;
3269 	return skb;
3270 }
3271 
validate_xmit_vlan(struct sk_buff * skb,netdev_features_t features)3272 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3273 					  netdev_features_t features)
3274 {
3275 	if (skb_vlan_tag_present(skb) &&
3276 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3277 		skb = __vlan_hwaccel_push_inside(skb);
3278 	return skb;
3279 }
3280 
skb_csum_hwoffload_help(struct sk_buff * skb,const netdev_features_t features)3281 int skb_csum_hwoffload_help(struct sk_buff *skb,
3282 			    const netdev_features_t features)
3283 {
3284 	if (unlikely(skb->csum_not_inet))
3285 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3286 			skb_crc32c_csum_help(skb);
3287 
3288 	return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3289 }
3290 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3291 
validate_xmit_skb(struct sk_buff * skb,struct net_device * dev,bool * again)3292 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3293 {
3294 	netdev_features_t features;
3295 
3296 	features = netif_skb_features(skb);
3297 	skb = validate_xmit_vlan(skb, features);
3298 	if (unlikely(!skb))
3299 		goto out_null;
3300 
3301 	skb = sk_validate_xmit_skb(skb, dev);
3302 	if (unlikely(!skb))
3303 		goto out_null;
3304 
3305 	if (netif_needs_gso(skb, features)) {
3306 		struct sk_buff *segs;
3307 
3308 		segs = skb_gso_segment(skb, features);
3309 		if (IS_ERR(segs)) {
3310 			goto out_kfree_skb;
3311 		} else if (segs) {
3312 			consume_skb(skb);
3313 			skb = segs;
3314 		}
3315 	} else {
3316 		if (skb_needs_linearize(skb, features) &&
3317 		    __skb_linearize(skb))
3318 			goto out_kfree_skb;
3319 
3320 		/* If packet is not checksummed and device does not
3321 		 * support checksumming for this protocol, complete
3322 		 * checksumming here.
3323 		 */
3324 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3325 			if (skb->encapsulation)
3326 				skb_set_inner_transport_header(skb,
3327 							       skb_checksum_start_offset(skb));
3328 			else
3329 				skb_set_transport_header(skb,
3330 							 skb_checksum_start_offset(skb));
3331 			if (skb_csum_hwoffload_help(skb, features))
3332 				goto out_kfree_skb;
3333 		}
3334 	}
3335 
3336 	skb = validate_xmit_xfrm(skb, features, again);
3337 
3338 	return skb;
3339 
3340 out_kfree_skb:
3341 	kfree_skb(skb);
3342 out_null:
3343 	atomic_long_inc(&dev->tx_dropped);
3344 	return NULL;
3345 }
3346 
validate_xmit_skb_list(struct sk_buff * skb,struct net_device * dev,bool * again)3347 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3348 {
3349 	struct sk_buff *next, *head = NULL, *tail;
3350 
3351 	for (; skb != NULL; skb = next) {
3352 		next = skb->next;
3353 		skb->next = NULL;
3354 
3355 		/* in case skb wont be segmented, point to itself */
3356 		skb->prev = skb;
3357 
3358 		skb = validate_xmit_skb(skb, dev, again);
3359 		if (!skb)
3360 			continue;
3361 
3362 		if (!head)
3363 			head = skb;
3364 		else
3365 			tail->next = skb;
3366 		/* If skb was segmented, skb->prev points to
3367 		 * the last segment. If not, it still contains skb.
3368 		 */
3369 		tail = skb->prev;
3370 	}
3371 	return head;
3372 }
3373 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3374 
qdisc_pkt_len_init(struct sk_buff * skb)3375 static void qdisc_pkt_len_init(struct sk_buff *skb)
3376 {
3377 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3378 
3379 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3380 
3381 	/* To get more precise estimation of bytes sent on wire,
3382 	 * we add to pkt_len the headers size of all segments
3383 	 */
3384 	if (shinfo->gso_size)  {
3385 		unsigned int hdr_len;
3386 		u16 gso_segs = shinfo->gso_segs;
3387 
3388 		/* mac layer + network layer */
3389 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3390 
3391 		/* + transport layer */
3392 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3393 			const struct tcphdr *th;
3394 			struct tcphdr _tcphdr;
3395 
3396 			th = skb_header_pointer(skb, skb_transport_offset(skb),
3397 						sizeof(_tcphdr), &_tcphdr);
3398 			if (likely(th))
3399 				hdr_len += __tcp_hdrlen(th);
3400 		} else {
3401 			struct udphdr _udphdr;
3402 
3403 			if (skb_header_pointer(skb, skb_transport_offset(skb),
3404 					       sizeof(_udphdr), &_udphdr))
3405 				hdr_len += sizeof(struct udphdr);
3406 		}
3407 
3408 		if (shinfo->gso_type & SKB_GSO_DODGY)
3409 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3410 						shinfo->gso_size);
3411 
3412 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3413 	}
3414 }
3415 
__dev_xmit_skb(struct sk_buff * skb,struct Qdisc * q,struct net_device * dev,struct netdev_queue * txq)3416 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3417 				 struct net_device *dev,
3418 				 struct netdev_queue *txq)
3419 {
3420 	spinlock_t *root_lock = qdisc_lock(q);
3421 	struct sk_buff *to_free = NULL;
3422 	bool contended;
3423 	int rc;
3424 
3425 	qdisc_calculate_pkt_len(skb, q);
3426 
3427 	if (q->flags & TCQ_F_NOLOCK) {
3428 		if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3429 			__qdisc_drop(skb, &to_free);
3430 			rc = NET_XMIT_DROP;
3431 		} else {
3432 			rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3433 			qdisc_run(q);
3434 		}
3435 
3436 		if (unlikely(to_free))
3437 			kfree_skb_list(to_free);
3438 		return rc;
3439 	}
3440 
3441 	/*
3442 	 * Heuristic to force contended enqueues to serialize on a
3443 	 * separate lock before trying to get qdisc main lock.
3444 	 * This permits qdisc->running owner to get the lock more
3445 	 * often and dequeue packets faster.
3446 	 */
3447 	contended = qdisc_is_running(q);
3448 	if (unlikely(contended))
3449 		spin_lock(&q->busylock);
3450 
3451 	spin_lock(root_lock);
3452 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3453 		__qdisc_drop(skb, &to_free);
3454 		rc = NET_XMIT_DROP;
3455 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3456 		   qdisc_run_begin(q)) {
3457 		/*
3458 		 * This is a work-conserving queue; there are no old skbs
3459 		 * waiting to be sent out; and the qdisc is not running -
3460 		 * xmit the skb directly.
3461 		 */
3462 
3463 		qdisc_bstats_update(q, skb);
3464 
3465 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3466 			if (unlikely(contended)) {
3467 				spin_unlock(&q->busylock);
3468 				contended = false;
3469 			}
3470 			__qdisc_run(q);
3471 		}
3472 
3473 		qdisc_run_end(q);
3474 		rc = NET_XMIT_SUCCESS;
3475 	} else {
3476 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3477 		if (qdisc_run_begin(q)) {
3478 			if (unlikely(contended)) {
3479 				spin_unlock(&q->busylock);
3480 				contended = false;
3481 			}
3482 			__qdisc_run(q);
3483 			qdisc_run_end(q);
3484 		}
3485 	}
3486 	spin_unlock(root_lock);
3487 	if (unlikely(to_free))
3488 		kfree_skb_list(to_free);
3489 	if (unlikely(contended))
3490 		spin_unlock(&q->busylock);
3491 	return rc;
3492 }
3493 
3494 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
skb_update_prio(struct sk_buff * skb)3495 static void skb_update_prio(struct sk_buff *skb)
3496 {
3497 	const struct netprio_map *map;
3498 	const struct sock *sk;
3499 	unsigned int prioidx;
3500 
3501 	if (skb->priority)
3502 		return;
3503 	map = rcu_dereference_bh(skb->dev->priomap);
3504 	if (!map)
3505 		return;
3506 	sk = skb_to_full_sk(skb);
3507 	if (!sk)
3508 		return;
3509 
3510 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3511 
3512 	if (prioidx < map->priomap_len)
3513 		skb->priority = map->priomap[prioidx];
3514 }
3515 #else
3516 #define skb_update_prio(skb)
3517 #endif
3518 
3519 DEFINE_PER_CPU(int, xmit_recursion);
3520 EXPORT_SYMBOL(xmit_recursion);
3521 
3522 /**
3523  *	dev_loopback_xmit - loop back @skb
3524  *	@net: network namespace this loopback is happening in
3525  *	@sk:  sk needed to be a netfilter okfn
3526  *	@skb: buffer to transmit
3527  */
dev_loopback_xmit(struct net * net,struct sock * sk,struct sk_buff * skb)3528 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3529 {
3530 	skb_reset_mac_header(skb);
3531 	__skb_pull(skb, skb_network_offset(skb));
3532 	skb->pkt_type = PACKET_LOOPBACK;
3533 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3534 	WARN_ON(!skb_dst(skb));
3535 	skb_dst_force(skb);
3536 	netif_rx_ni(skb);
3537 	return 0;
3538 }
3539 EXPORT_SYMBOL(dev_loopback_xmit);
3540 
3541 #ifdef CONFIG_NET_EGRESS
3542 static struct sk_buff *
sch_handle_egress(struct sk_buff * skb,int * ret,struct net_device * dev)3543 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3544 {
3545 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3546 	struct tcf_result cl_res;
3547 
3548 	if (!miniq)
3549 		return skb;
3550 
3551 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3552 	mini_qdisc_bstats_cpu_update(miniq, skb);
3553 
3554 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3555 	case TC_ACT_OK:
3556 	case TC_ACT_RECLASSIFY:
3557 		skb->tc_index = TC_H_MIN(cl_res.classid);
3558 		break;
3559 	case TC_ACT_SHOT:
3560 		mini_qdisc_qstats_cpu_drop(miniq);
3561 		*ret = NET_XMIT_DROP;
3562 		kfree_skb(skb);
3563 		return NULL;
3564 	case TC_ACT_STOLEN:
3565 	case TC_ACT_QUEUED:
3566 	case TC_ACT_TRAP:
3567 		*ret = NET_XMIT_SUCCESS;
3568 		consume_skb(skb);
3569 		return NULL;
3570 	case TC_ACT_REDIRECT:
3571 		/* No need to push/pop skb's mac_header here on egress! */
3572 		skb_do_redirect(skb);
3573 		*ret = NET_XMIT_SUCCESS;
3574 		return NULL;
3575 	default:
3576 		break;
3577 	}
3578 
3579 	return skb;
3580 }
3581 #endif /* CONFIG_NET_EGRESS */
3582 
3583 #ifdef CONFIG_XPS
__get_xps_queue_idx(struct net_device * dev,struct sk_buff * skb,struct xps_dev_maps * dev_maps,unsigned int tci)3584 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3585 			       struct xps_dev_maps *dev_maps, unsigned int tci)
3586 {
3587 	struct xps_map *map;
3588 	int queue_index = -1;
3589 
3590 	if (dev->num_tc) {
3591 		tci *= dev->num_tc;
3592 		tci += netdev_get_prio_tc_map(dev, skb->priority);
3593 	}
3594 
3595 	map = rcu_dereference(dev_maps->attr_map[tci]);
3596 	if (map) {
3597 		if (map->len == 1)
3598 			queue_index = map->queues[0];
3599 		else
3600 			queue_index = map->queues[reciprocal_scale(
3601 						skb_get_hash(skb), map->len)];
3602 		if (unlikely(queue_index >= dev->real_num_tx_queues))
3603 			queue_index = -1;
3604 	}
3605 	return queue_index;
3606 }
3607 #endif
3608 
get_xps_queue(struct net_device * dev,struct net_device * sb_dev,struct sk_buff * skb)3609 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3610 			 struct sk_buff *skb)
3611 {
3612 #ifdef CONFIG_XPS
3613 	struct xps_dev_maps *dev_maps;
3614 	struct sock *sk = skb->sk;
3615 	int queue_index = -1;
3616 
3617 	if (!static_key_false(&xps_needed))
3618 		return -1;
3619 
3620 	rcu_read_lock();
3621 	if (!static_key_false(&xps_rxqs_needed))
3622 		goto get_cpus_map;
3623 
3624 	dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3625 	if (dev_maps) {
3626 		int tci = sk_rx_queue_get(sk);
3627 
3628 		if (tci >= 0 && tci < dev->num_rx_queues)
3629 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3630 							  tci);
3631 	}
3632 
3633 get_cpus_map:
3634 	if (queue_index < 0) {
3635 		dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3636 		if (dev_maps) {
3637 			unsigned int tci = skb->sender_cpu - 1;
3638 
3639 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3640 							  tci);
3641 		}
3642 	}
3643 	rcu_read_unlock();
3644 
3645 	return queue_index;
3646 #else
3647 	return -1;
3648 #endif
3649 }
3650 
dev_pick_tx_zero(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev,select_queue_fallback_t fallback)3651 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3652 		     struct net_device *sb_dev,
3653 		     select_queue_fallback_t fallback)
3654 {
3655 	return 0;
3656 }
3657 EXPORT_SYMBOL(dev_pick_tx_zero);
3658 
dev_pick_tx_cpu_id(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev,select_queue_fallback_t fallback)3659 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3660 		       struct net_device *sb_dev,
3661 		       select_queue_fallback_t fallback)
3662 {
3663 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3664 }
3665 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3666 
__netdev_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)3667 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3668 			    struct net_device *sb_dev)
3669 {
3670 	struct sock *sk = skb->sk;
3671 	int queue_index = sk_tx_queue_get(sk);
3672 
3673 	sb_dev = sb_dev ? : dev;
3674 
3675 	if (queue_index < 0 || skb->ooo_okay ||
3676 	    queue_index >= dev->real_num_tx_queues) {
3677 		int new_index = get_xps_queue(dev, sb_dev, skb);
3678 
3679 		if (new_index < 0)
3680 			new_index = skb_tx_hash(dev, sb_dev, skb);
3681 
3682 		if (queue_index != new_index && sk &&
3683 		    sk_fullsock(sk) &&
3684 		    rcu_access_pointer(sk->sk_dst_cache))
3685 			sk_tx_queue_set(sk, new_index);
3686 
3687 		queue_index = new_index;
3688 	}
3689 
3690 	return queue_index;
3691 }
3692 
netdev_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)3693 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3694 				    struct sk_buff *skb,
3695 				    struct net_device *sb_dev)
3696 {
3697 	int queue_index = 0;
3698 
3699 #ifdef CONFIG_XPS
3700 	u32 sender_cpu = skb->sender_cpu - 1;
3701 
3702 	if (sender_cpu >= (u32)NR_CPUS)
3703 		skb->sender_cpu = raw_smp_processor_id() + 1;
3704 #endif
3705 
3706 	if (dev->real_num_tx_queues != 1) {
3707 		const struct net_device_ops *ops = dev->netdev_ops;
3708 
3709 		if (ops->ndo_select_queue)
3710 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev,
3711 							    __netdev_pick_tx);
3712 		else
3713 			queue_index = __netdev_pick_tx(dev, skb, sb_dev);
3714 
3715 		queue_index = netdev_cap_txqueue(dev, queue_index);
3716 	}
3717 
3718 	skb_set_queue_mapping(skb, queue_index);
3719 	return netdev_get_tx_queue(dev, queue_index);
3720 }
3721 
3722 /**
3723  *	__dev_queue_xmit - transmit a buffer
3724  *	@skb: buffer to transmit
3725  *	@sb_dev: suboordinate device used for L2 forwarding offload
3726  *
3727  *	Queue a buffer for transmission to a network device. The caller must
3728  *	have set the device and priority and built the buffer before calling
3729  *	this function. The function can be called from an interrupt.
3730  *
3731  *	A negative errno code is returned on a failure. A success does not
3732  *	guarantee the frame will be transmitted as it may be dropped due
3733  *	to congestion or traffic shaping.
3734  *
3735  * -----------------------------------------------------------------------------------
3736  *      I notice this method can also return errors from the queue disciplines,
3737  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3738  *      be positive.
3739  *
3740  *      Regardless of the return value, the skb is consumed, so it is currently
3741  *      difficult to retry a send to this method.  (You can bump the ref count
3742  *      before sending to hold a reference for retry if you are careful.)
3743  *
3744  *      When calling this method, interrupts MUST be enabled.  This is because
3745  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3746  *          --BLG
3747  */
__dev_queue_xmit(struct sk_buff * skb,struct net_device * sb_dev)3748 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
3749 {
3750 	struct net_device *dev = skb->dev;
3751 	struct netdev_queue *txq;
3752 	struct Qdisc *q;
3753 	int rc = -ENOMEM;
3754 	bool again = false;
3755 
3756 	skb_reset_mac_header(skb);
3757 
3758 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3759 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3760 
3761 	/* Disable soft irqs for various locks below. Also
3762 	 * stops preemption for RCU.
3763 	 */
3764 	rcu_read_lock_bh();
3765 
3766 	skb_update_prio(skb);
3767 
3768 	qdisc_pkt_len_init(skb);
3769 #ifdef CONFIG_NET_CLS_ACT
3770 	skb->tc_at_ingress = 0;
3771 # ifdef CONFIG_NET_EGRESS
3772 	if (static_branch_unlikely(&egress_needed_key)) {
3773 		skb = sch_handle_egress(skb, &rc, dev);
3774 		if (!skb)
3775 			goto out;
3776 	}
3777 # endif
3778 #endif
3779 	/* If device/qdisc don't need skb->dst, release it right now while
3780 	 * its hot in this cpu cache.
3781 	 */
3782 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3783 		skb_dst_drop(skb);
3784 	else
3785 		skb_dst_force(skb);
3786 
3787 	txq = netdev_pick_tx(dev, skb, sb_dev);
3788 	q = rcu_dereference_bh(txq->qdisc);
3789 
3790 	trace_net_dev_queue(skb);
3791 	if (q->enqueue) {
3792 		rc = __dev_xmit_skb(skb, q, dev, txq);
3793 		goto out;
3794 	}
3795 
3796 	/* The device has no queue. Common case for software devices:
3797 	 * loopback, all the sorts of tunnels...
3798 
3799 	 * Really, it is unlikely that netif_tx_lock protection is necessary
3800 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3801 	 * counters.)
3802 	 * However, it is possible, that they rely on protection
3803 	 * made by us here.
3804 
3805 	 * Check this and shot the lock. It is not prone from deadlocks.
3806 	 *Either shot noqueue qdisc, it is even simpler 8)
3807 	 */
3808 	if (dev->flags & IFF_UP) {
3809 		int cpu = smp_processor_id(); /* ok because BHs are off */
3810 
3811 		if (txq->xmit_lock_owner != cpu) {
3812 			if (unlikely(__this_cpu_read(xmit_recursion) >
3813 				     XMIT_RECURSION_LIMIT))
3814 				goto recursion_alert;
3815 
3816 			skb = validate_xmit_skb(skb, dev, &again);
3817 			if (!skb)
3818 				goto out;
3819 
3820 			HARD_TX_LOCK(dev, txq, cpu);
3821 
3822 			if (!netif_xmit_stopped(txq)) {
3823 				__this_cpu_inc(xmit_recursion);
3824 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3825 				__this_cpu_dec(xmit_recursion);
3826 				if (dev_xmit_complete(rc)) {
3827 					HARD_TX_UNLOCK(dev, txq);
3828 					goto out;
3829 				}
3830 			}
3831 			HARD_TX_UNLOCK(dev, txq);
3832 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3833 					     dev->name);
3834 		} else {
3835 			/* Recursion is detected! It is possible,
3836 			 * unfortunately
3837 			 */
3838 recursion_alert:
3839 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3840 					     dev->name);
3841 		}
3842 	}
3843 
3844 	rc = -ENETDOWN;
3845 	rcu_read_unlock_bh();
3846 
3847 	atomic_long_inc(&dev->tx_dropped);
3848 	kfree_skb_list(skb);
3849 	return rc;
3850 out:
3851 	rcu_read_unlock_bh();
3852 	return rc;
3853 }
3854 
dev_queue_xmit(struct sk_buff * skb)3855 int dev_queue_xmit(struct sk_buff *skb)
3856 {
3857 	return __dev_queue_xmit(skb, NULL);
3858 }
3859 EXPORT_SYMBOL(dev_queue_xmit);
3860 
dev_queue_xmit_accel(struct sk_buff * skb,struct net_device * sb_dev)3861 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
3862 {
3863 	return __dev_queue_xmit(skb, sb_dev);
3864 }
3865 EXPORT_SYMBOL(dev_queue_xmit_accel);
3866 
dev_direct_xmit(struct sk_buff * skb,u16 queue_id)3867 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3868 {
3869 	struct net_device *dev = skb->dev;
3870 	struct sk_buff *orig_skb = skb;
3871 	struct netdev_queue *txq;
3872 	int ret = NETDEV_TX_BUSY;
3873 	bool again = false;
3874 
3875 	if (unlikely(!netif_running(dev) ||
3876 		     !netif_carrier_ok(dev)))
3877 		goto drop;
3878 
3879 	skb = validate_xmit_skb_list(skb, dev, &again);
3880 	if (skb != orig_skb)
3881 		goto drop;
3882 
3883 	skb_set_queue_mapping(skb, queue_id);
3884 	txq = skb_get_tx_queue(dev, skb);
3885 
3886 	local_bh_disable();
3887 
3888 	HARD_TX_LOCK(dev, txq, smp_processor_id());
3889 	if (!netif_xmit_frozen_or_drv_stopped(txq))
3890 		ret = netdev_start_xmit(skb, dev, txq, false);
3891 	HARD_TX_UNLOCK(dev, txq);
3892 
3893 	local_bh_enable();
3894 
3895 	if (!dev_xmit_complete(ret))
3896 		kfree_skb(skb);
3897 
3898 	return ret;
3899 drop:
3900 	atomic_long_inc(&dev->tx_dropped);
3901 	kfree_skb_list(skb);
3902 	return NET_XMIT_DROP;
3903 }
3904 EXPORT_SYMBOL(dev_direct_xmit);
3905 
3906 /*************************************************************************
3907  *			Receiver routines
3908  *************************************************************************/
3909 
3910 int netdev_max_backlog __read_mostly = 1000;
3911 EXPORT_SYMBOL(netdev_max_backlog);
3912 
3913 int netdev_tstamp_prequeue __read_mostly = 1;
3914 int netdev_budget __read_mostly = 300;
3915 unsigned int __read_mostly netdev_budget_usecs = 2000;
3916 int weight_p __read_mostly = 64;           /* old backlog weight */
3917 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3918 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3919 int dev_rx_weight __read_mostly = 64;
3920 int dev_tx_weight __read_mostly = 64;
3921 
3922 /* Called with irq disabled */
____napi_schedule(struct softnet_data * sd,struct napi_struct * napi)3923 static inline void ____napi_schedule(struct softnet_data *sd,
3924 				     struct napi_struct *napi)
3925 {
3926 	list_add_tail(&napi->poll_list, &sd->poll_list);
3927 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3928 }
3929 
3930 #ifdef CONFIG_RPS
3931 
3932 /* One global table that all flow-based protocols share. */
3933 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3934 EXPORT_SYMBOL(rps_sock_flow_table);
3935 u32 rps_cpu_mask __read_mostly;
3936 EXPORT_SYMBOL(rps_cpu_mask);
3937 
3938 struct static_key rps_needed __read_mostly;
3939 EXPORT_SYMBOL(rps_needed);
3940 struct static_key rfs_needed __read_mostly;
3941 EXPORT_SYMBOL(rfs_needed);
3942 
3943 static struct rps_dev_flow *
set_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow * rflow,u16 next_cpu)3944 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3945 	    struct rps_dev_flow *rflow, u16 next_cpu)
3946 {
3947 	if (next_cpu < nr_cpu_ids) {
3948 #ifdef CONFIG_RFS_ACCEL
3949 		struct netdev_rx_queue *rxqueue;
3950 		struct rps_dev_flow_table *flow_table;
3951 		struct rps_dev_flow *old_rflow;
3952 		u32 flow_id;
3953 		u16 rxq_index;
3954 		int rc;
3955 
3956 		/* Should we steer this flow to a different hardware queue? */
3957 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3958 		    !(dev->features & NETIF_F_NTUPLE))
3959 			goto out;
3960 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3961 		if (rxq_index == skb_get_rx_queue(skb))
3962 			goto out;
3963 
3964 		rxqueue = dev->_rx + rxq_index;
3965 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
3966 		if (!flow_table)
3967 			goto out;
3968 		flow_id = skb_get_hash(skb) & flow_table->mask;
3969 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3970 							rxq_index, flow_id);
3971 		if (rc < 0)
3972 			goto out;
3973 		old_rflow = rflow;
3974 		rflow = &flow_table->flows[flow_id];
3975 		rflow->filter = rc;
3976 		if (old_rflow->filter == rflow->filter)
3977 			old_rflow->filter = RPS_NO_FILTER;
3978 	out:
3979 #endif
3980 		rflow->last_qtail =
3981 			per_cpu(softnet_data, next_cpu).input_queue_head;
3982 	}
3983 
3984 	rflow->cpu = next_cpu;
3985 	return rflow;
3986 }
3987 
3988 /*
3989  * get_rps_cpu is called from netif_receive_skb and returns the target
3990  * CPU from the RPS map of the receiving queue for a given skb.
3991  * rcu_read_lock must be held on entry.
3992  */
get_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow ** rflowp)3993 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3994 		       struct rps_dev_flow **rflowp)
3995 {
3996 	const struct rps_sock_flow_table *sock_flow_table;
3997 	struct netdev_rx_queue *rxqueue = dev->_rx;
3998 	struct rps_dev_flow_table *flow_table;
3999 	struct rps_map *map;
4000 	int cpu = -1;
4001 	u32 tcpu;
4002 	u32 hash;
4003 
4004 	if (skb_rx_queue_recorded(skb)) {
4005 		u16 index = skb_get_rx_queue(skb);
4006 
4007 		if (unlikely(index >= dev->real_num_rx_queues)) {
4008 			WARN_ONCE(dev->real_num_rx_queues > 1,
4009 				  "%s received packet on queue %u, but number "
4010 				  "of RX queues is %u\n",
4011 				  dev->name, index, dev->real_num_rx_queues);
4012 			goto done;
4013 		}
4014 		rxqueue += index;
4015 	}
4016 
4017 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4018 
4019 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4020 	map = rcu_dereference(rxqueue->rps_map);
4021 	if (!flow_table && !map)
4022 		goto done;
4023 
4024 	skb_reset_network_header(skb);
4025 	hash = skb_get_hash(skb);
4026 	if (!hash)
4027 		goto done;
4028 
4029 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4030 	if (flow_table && sock_flow_table) {
4031 		struct rps_dev_flow *rflow;
4032 		u32 next_cpu;
4033 		u32 ident;
4034 
4035 		/* First check into global flow table if there is a match */
4036 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4037 		if ((ident ^ hash) & ~rps_cpu_mask)
4038 			goto try_rps;
4039 
4040 		next_cpu = ident & rps_cpu_mask;
4041 
4042 		/* OK, now we know there is a match,
4043 		 * we can look at the local (per receive queue) flow table
4044 		 */
4045 		rflow = &flow_table->flows[hash & flow_table->mask];
4046 		tcpu = rflow->cpu;
4047 
4048 		/*
4049 		 * If the desired CPU (where last recvmsg was done) is
4050 		 * different from current CPU (one in the rx-queue flow
4051 		 * table entry), switch if one of the following holds:
4052 		 *   - Current CPU is unset (>= nr_cpu_ids).
4053 		 *   - Current CPU is offline.
4054 		 *   - The current CPU's queue tail has advanced beyond the
4055 		 *     last packet that was enqueued using this table entry.
4056 		 *     This guarantees that all previous packets for the flow
4057 		 *     have been dequeued, thus preserving in order delivery.
4058 		 */
4059 		if (unlikely(tcpu != next_cpu) &&
4060 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4061 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4062 		      rflow->last_qtail)) >= 0)) {
4063 			tcpu = next_cpu;
4064 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4065 		}
4066 
4067 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4068 			*rflowp = rflow;
4069 			cpu = tcpu;
4070 			goto done;
4071 		}
4072 	}
4073 
4074 try_rps:
4075 
4076 	if (map) {
4077 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4078 		if (cpu_online(tcpu)) {
4079 			cpu = tcpu;
4080 			goto done;
4081 		}
4082 	}
4083 
4084 done:
4085 	return cpu;
4086 }
4087 
4088 #ifdef CONFIG_RFS_ACCEL
4089 
4090 /**
4091  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4092  * @dev: Device on which the filter was set
4093  * @rxq_index: RX queue index
4094  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4095  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4096  *
4097  * Drivers that implement ndo_rx_flow_steer() should periodically call
4098  * this function for each installed filter and remove the filters for
4099  * which it returns %true.
4100  */
rps_may_expire_flow(struct net_device * dev,u16 rxq_index,u32 flow_id,u16 filter_id)4101 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4102 			 u32 flow_id, u16 filter_id)
4103 {
4104 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4105 	struct rps_dev_flow_table *flow_table;
4106 	struct rps_dev_flow *rflow;
4107 	bool expire = true;
4108 	unsigned int cpu;
4109 
4110 	rcu_read_lock();
4111 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4112 	if (flow_table && flow_id <= flow_table->mask) {
4113 		rflow = &flow_table->flows[flow_id];
4114 		cpu = READ_ONCE(rflow->cpu);
4115 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4116 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4117 			   rflow->last_qtail) <
4118 		     (int)(10 * flow_table->mask)))
4119 			expire = false;
4120 	}
4121 	rcu_read_unlock();
4122 	return expire;
4123 }
4124 EXPORT_SYMBOL(rps_may_expire_flow);
4125 
4126 #endif /* CONFIG_RFS_ACCEL */
4127 
4128 /* Called from hardirq (IPI) context */
rps_trigger_softirq(void * data)4129 static void rps_trigger_softirq(void *data)
4130 {
4131 	struct softnet_data *sd = data;
4132 
4133 	____napi_schedule(sd, &sd->backlog);
4134 	sd->received_rps++;
4135 }
4136 
4137 #endif /* CONFIG_RPS */
4138 
4139 /*
4140  * Check if this softnet_data structure is another cpu one
4141  * If yes, queue it to our IPI list and return 1
4142  * If no, return 0
4143  */
rps_ipi_queued(struct softnet_data * sd)4144 static int rps_ipi_queued(struct softnet_data *sd)
4145 {
4146 #ifdef CONFIG_RPS
4147 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4148 
4149 	if (sd != mysd) {
4150 		sd->rps_ipi_next = mysd->rps_ipi_list;
4151 		mysd->rps_ipi_list = sd;
4152 
4153 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4154 		return 1;
4155 	}
4156 #endif /* CONFIG_RPS */
4157 	return 0;
4158 }
4159 
4160 #ifdef CONFIG_NET_FLOW_LIMIT
4161 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4162 #endif
4163 
skb_flow_limit(struct sk_buff * skb,unsigned int qlen)4164 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4165 {
4166 #ifdef CONFIG_NET_FLOW_LIMIT
4167 	struct sd_flow_limit *fl;
4168 	struct softnet_data *sd;
4169 	unsigned int old_flow, new_flow;
4170 
4171 	if (qlen < (netdev_max_backlog >> 1))
4172 		return false;
4173 
4174 	sd = this_cpu_ptr(&softnet_data);
4175 
4176 	rcu_read_lock();
4177 	fl = rcu_dereference(sd->flow_limit);
4178 	if (fl) {
4179 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4180 		old_flow = fl->history[fl->history_head];
4181 		fl->history[fl->history_head] = new_flow;
4182 
4183 		fl->history_head++;
4184 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4185 
4186 		if (likely(fl->buckets[old_flow]))
4187 			fl->buckets[old_flow]--;
4188 
4189 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4190 			fl->count++;
4191 			rcu_read_unlock();
4192 			return true;
4193 		}
4194 	}
4195 	rcu_read_unlock();
4196 #endif
4197 	return false;
4198 }
4199 
4200 /*
4201  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4202  * queue (may be a remote CPU queue).
4203  */
enqueue_to_backlog(struct sk_buff * skb,int cpu,unsigned int * qtail)4204 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4205 			      unsigned int *qtail)
4206 {
4207 	struct softnet_data *sd;
4208 	unsigned long flags;
4209 	unsigned int qlen;
4210 
4211 	sd = &per_cpu(softnet_data, cpu);
4212 
4213 	local_irq_save(flags);
4214 
4215 	rps_lock(sd);
4216 	if (!netif_running(skb->dev))
4217 		goto drop;
4218 	qlen = skb_queue_len(&sd->input_pkt_queue);
4219 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4220 		if (qlen) {
4221 enqueue:
4222 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4223 			input_queue_tail_incr_save(sd, qtail);
4224 			rps_unlock(sd);
4225 			local_irq_restore(flags);
4226 			return NET_RX_SUCCESS;
4227 		}
4228 
4229 		/* Schedule NAPI for backlog device
4230 		 * We can use non atomic operation since we own the queue lock
4231 		 */
4232 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4233 			if (!rps_ipi_queued(sd))
4234 				____napi_schedule(sd, &sd->backlog);
4235 		}
4236 		goto enqueue;
4237 	}
4238 
4239 drop:
4240 	sd->dropped++;
4241 	rps_unlock(sd);
4242 
4243 	local_irq_restore(flags);
4244 
4245 	atomic_long_inc(&skb->dev->rx_dropped);
4246 	kfree_skb(skb);
4247 	return NET_RX_DROP;
4248 }
4249 
netif_get_rxqueue(struct sk_buff * skb)4250 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4251 {
4252 	struct net_device *dev = skb->dev;
4253 	struct netdev_rx_queue *rxqueue;
4254 
4255 	rxqueue = dev->_rx;
4256 
4257 	if (skb_rx_queue_recorded(skb)) {
4258 		u16 index = skb_get_rx_queue(skb);
4259 
4260 		if (unlikely(index >= dev->real_num_rx_queues)) {
4261 			WARN_ONCE(dev->real_num_rx_queues > 1,
4262 				  "%s received packet on queue %u, but number "
4263 				  "of RX queues is %u\n",
4264 				  dev->name, index, dev->real_num_rx_queues);
4265 
4266 			return rxqueue; /* Return first rxqueue */
4267 		}
4268 		rxqueue += index;
4269 	}
4270 	return rxqueue;
4271 }
4272 
netif_receive_generic_xdp(struct sk_buff * skb,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)4273 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4274 				     struct xdp_buff *xdp,
4275 				     struct bpf_prog *xdp_prog)
4276 {
4277 	struct netdev_rx_queue *rxqueue;
4278 	void *orig_data, *orig_data_end;
4279 	u32 metalen, act = XDP_DROP;
4280 	int hlen, off;
4281 	u32 mac_len;
4282 
4283 	/* Reinjected packets coming from act_mirred or similar should
4284 	 * not get XDP generic processing.
4285 	 */
4286 	if (skb_cloned(skb) || skb_is_tc_redirected(skb))
4287 		return XDP_PASS;
4288 
4289 	/* XDP packets must be linear and must have sufficient headroom
4290 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4291 	 * native XDP provides, thus we need to do it here as well.
4292 	 */
4293 	if (skb_is_nonlinear(skb) ||
4294 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4295 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4296 		int troom = skb->tail + skb->data_len - skb->end;
4297 
4298 		/* In case we have to go down the path and also linearize,
4299 		 * then lets do the pskb_expand_head() work just once here.
4300 		 */
4301 		if (pskb_expand_head(skb,
4302 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4303 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4304 			goto do_drop;
4305 		if (skb_linearize(skb))
4306 			goto do_drop;
4307 	}
4308 
4309 	/* The XDP program wants to see the packet starting at the MAC
4310 	 * header.
4311 	 */
4312 	mac_len = skb->data - skb_mac_header(skb);
4313 	hlen = skb_headlen(skb) + mac_len;
4314 	xdp->data = skb->data - mac_len;
4315 	xdp->data_meta = xdp->data;
4316 	xdp->data_end = xdp->data + hlen;
4317 	xdp->data_hard_start = skb->data - skb_headroom(skb);
4318 	orig_data_end = xdp->data_end;
4319 	orig_data = xdp->data;
4320 
4321 	rxqueue = netif_get_rxqueue(skb);
4322 	xdp->rxq = &rxqueue->xdp_rxq;
4323 
4324 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4325 
4326 	off = xdp->data - orig_data;
4327 	if (off > 0)
4328 		__skb_pull(skb, off);
4329 	else if (off < 0)
4330 		__skb_push(skb, -off);
4331 	skb->mac_header += off;
4332 
4333 	/* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4334 	 * pckt.
4335 	 */
4336 	off = orig_data_end - xdp->data_end;
4337 	if (off != 0) {
4338 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4339 		skb->len -= off;
4340 
4341 	}
4342 
4343 	switch (act) {
4344 	case XDP_REDIRECT:
4345 	case XDP_TX:
4346 		__skb_push(skb, mac_len);
4347 		break;
4348 	case XDP_PASS:
4349 		metalen = xdp->data - xdp->data_meta;
4350 		if (metalen)
4351 			skb_metadata_set(skb, metalen);
4352 		break;
4353 	default:
4354 		bpf_warn_invalid_xdp_action(act);
4355 		/* fall through */
4356 	case XDP_ABORTED:
4357 		trace_xdp_exception(skb->dev, xdp_prog, act);
4358 		/* fall through */
4359 	case XDP_DROP:
4360 	do_drop:
4361 		kfree_skb(skb);
4362 		break;
4363 	}
4364 
4365 	return act;
4366 }
4367 
4368 /* When doing generic XDP we have to bypass the qdisc layer and the
4369  * network taps in order to match in-driver-XDP behavior.
4370  */
generic_xdp_tx(struct sk_buff * skb,struct bpf_prog * xdp_prog)4371 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4372 {
4373 	struct net_device *dev = skb->dev;
4374 	struct netdev_queue *txq;
4375 	bool free_skb = true;
4376 	int cpu, rc;
4377 
4378 	txq = netdev_pick_tx(dev, skb, NULL);
4379 	cpu = smp_processor_id();
4380 	HARD_TX_LOCK(dev, txq, cpu);
4381 	if (!netif_xmit_stopped(txq)) {
4382 		rc = netdev_start_xmit(skb, dev, txq, 0);
4383 		if (dev_xmit_complete(rc))
4384 			free_skb = false;
4385 	}
4386 	HARD_TX_UNLOCK(dev, txq);
4387 	if (free_skb) {
4388 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4389 		kfree_skb(skb);
4390 	}
4391 }
4392 EXPORT_SYMBOL_GPL(generic_xdp_tx);
4393 
4394 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4395 
do_xdp_generic(struct bpf_prog * xdp_prog,struct sk_buff * skb)4396 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4397 {
4398 	if (xdp_prog) {
4399 		struct xdp_buff xdp;
4400 		u32 act;
4401 		int err;
4402 
4403 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4404 		if (act != XDP_PASS) {
4405 			switch (act) {
4406 			case XDP_REDIRECT:
4407 				err = xdp_do_generic_redirect(skb->dev, skb,
4408 							      &xdp, xdp_prog);
4409 				if (err)
4410 					goto out_redir;
4411 				break;
4412 			case XDP_TX:
4413 				generic_xdp_tx(skb, xdp_prog);
4414 				break;
4415 			}
4416 			return XDP_DROP;
4417 		}
4418 	}
4419 	return XDP_PASS;
4420 out_redir:
4421 	kfree_skb(skb);
4422 	return XDP_DROP;
4423 }
4424 EXPORT_SYMBOL_GPL(do_xdp_generic);
4425 
netif_rx_internal(struct sk_buff * skb)4426 static int netif_rx_internal(struct sk_buff *skb)
4427 {
4428 	int ret;
4429 
4430 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4431 
4432 	trace_netif_rx(skb);
4433 
4434 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
4435 		int ret;
4436 
4437 		preempt_disable();
4438 		rcu_read_lock();
4439 		ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4440 		rcu_read_unlock();
4441 		preempt_enable();
4442 
4443 		/* Consider XDP consuming the packet a success from
4444 		 * the netdev point of view we do not want to count
4445 		 * this as an error.
4446 		 */
4447 		if (ret != XDP_PASS)
4448 			return NET_RX_SUCCESS;
4449 	}
4450 
4451 #ifdef CONFIG_RPS
4452 	if (static_key_false(&rps_needed)) {
4453 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4454 		int cpu;
4455 
4456 		preempt_disable();
4457 		rcu_read_lock();
4458 
4459 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4460 		if (cpu < 0)
4461 			cpu = smp_processor_id();
4462 
4463 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4464 
4465 		rcu_read_unlock();
4466 		preempt_enable();
4467 	} else
4468 #endif
4469 	{
4470 		unsigned int qtail;
4471 
4472 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4473 		put_cpu();
4474 	}
4475 	return ret;
4476 }
4477 
4478 /**
4479  *	netif_rx	-	post buffer to the network code
4480  *	@skb: buffer to post
4481  *
4482  *	This function receives a packet from a device driver and queues it for
4483  *	the upper (protocol) levels to process.  It always succeeds. The buffer
4484  *	may be dropped during processing for congestion control or by the
4485  *	protocol layers.
4486  *
4487  *	return values:
4488  *	NET_RX_SUCCESS	(no congestion)
4489  *	NET_RX_DROP     (packet was dropped)
4490  *
4491  */
4492 
netif_rx(struct sk_buff * skb)4493 int netif_rx(struct sk_buff *skb)
4494 {
4495 	trace_netif_rx_entry(skb);
4496 
4497 	return netif_rx_internal(skb);
4498 }
4499 EXPORT_SYMBOL(netif_rx);
4500 
netif_rx_ni(struct sk_buff * skb)4501 int netif_rx_ni(struct sk_buff *skb)
4502 {
4503 	int err;
4504 
4505 	trace_netif_rx_ni_entry(skb);
4506 
4507 	preempt_disable();
4508 	err = netif_rx_internal(skb);
4509 	if (local_softirq_pending())
4510 		do_softirq();
4511 	preempt_enable();
4512 
4513 	return err;
4514 }
4515 EXPORT_SYMBOL(netif_rx_ni);
4516 
net_tx_action(struct softirq_action * h)4517 static __latent_entropy void net_tx_action(struct softirq_action *h)
4518 {
4519 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4520 
4521 	if (sd->completion_queue) {
4522 		struct sk_buff *clist;
4523 
4524 		local_irq_disable();
4525 		clist = sd->completion_queue;
4526 		sd->completion_queue = NULL;
4527 		local_irq_enable();
4528 
4529 		while (clist) {
4530 			struct sk_buff *skb = clist;
4531 
4532 			clist = clist->next;
4533 
4534 			WARN_ON(refcount_read(&skb->users));
4535 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4536 				trace_consume_skb(skb);
4537 			else
4538 				trace_kfree_skb(skb, net_tx_action);
4539 
4540 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4541 				__kfree_skb(skb);
4542 			else
4543 				__kfree_skb_defer(skb);
4544 		}
4545 
4546 		__kfree_skb_flush();
4547 	}
4548 
4549 	if (sd->output_queue) {
4550 		struct Qdisc *head;
4551 
4552 		local_irq_disable();
4553 		head = sd->output_queue;
4554 		sd->output_queue = NULL;
4555 		sd->output_queue_tailp = &sd->output_queue;
4556 		local_irq_enable();
4557 
4558 		while (head) {
4559 			struct Qdisc *q = head;
4560 			spinlock_t *root_lock = NULL;
4561 
4562 			head = head->next_sched;
4563 
4564 			if (!(q->flags & TCQ_F_NOLOCK)) {
4565 				root_lock = qdisc_lock(q);
4566 				spin_lock(root_lock);
4567 			}
4568 			/* We need to make sure head->next_sched is read
4569 			 * before clearing __QDISC_STATE_SCHED
4570 			 */
4571 			smp_mb__before_atomic();
4572 			clear_bit(__QDISC_STATE_SCHED, &q->state);
4573 			qdisc_run(q);
4574 			if (root_lock)
4575 				spin_unlock(root_lock);
4576 		}
4577 	}
4578 
4579 	xfrm_dev_backlog(sd);
4580 }
4581 
4582 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4583 /* This hook is defined here for ATM LANE */
4584 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4585 			     unsigned char *addr) __read_mostly;
4586 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4587 #endif
4588 
4589 static inline struct sk_buff *
sch_handle_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev)4590 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4591 		   struct net_device *orig_dev)
4592 {
4593 #ifdef CONFIG_NET_CLS_ACT
4594 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4595 	struct tcf_result cl_res;
4596 
4597 	/* If there's at least one ingress present somewhere (so
4598 	 * we get here via enabled static key), remaining devices
4599 	 * that are not configured with an ingress qdisc will bail
4600 	 * out here.
4601 	 */
4602 	if (!miniq)
4603 		return skb;
4604 
4605 	if (*pt_prev) {
4606 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4607 		*pt_prev = NULL;
4608 	}
4609 
4610 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4611 	skb->tc_at_ingress = 1;
4612 	mini_qdisc_bstats_cpu_update(miniq, skb);
4613 
4614 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4615 	case TC_ACT_OK:
4616 	case TC_ACT_RECLASSIFY:
4617 		skb->tc_index = TC_H_MIN(cl_res.classid);
4618 		break;
4619 	case TC_ACT_SHOT:
4620 		mini_qdisc_qstats_cpu_drop(miniq);
4621 		kfree_skb(skb);
4622 		return NULL;
4623 	case TC_ACT_STOLEN:
4624 	case TC_ACT_QUEUED:
4625 	case TC_ACT_TRAP:
4626 		consume_skb(skb);
4627 		return NULL;
4628 	case TC_ACT_REDIRECT:
4629 		/* skb_mac_header check was done by cls/act_bpf, so
4630 		 * we can safely push the L2 header back before
4631 		 * redirecting to another netdev
4632 		 */
4633 		__skb_push(skb, skb->mac_len);
4634 		skb_do_redirect(skb);
4635 		return NULL;
4636 	case TC_ACT_REINSERT:
4637 		/* this does not scrub the packet, and updates stats on error */
4638 		skb_tc_reinsert(skb, &cl_res);
4639 		return NULL;
4640 	default:
4641 		break;
4642 	}
4643 #endif /* CONFIG_NET_CLS_ACT */
4644 	return skb;
4645 }
4646 
4647 /**
4648  *	netdev_is_rx_handler_busy - check if receive handler is registered
4649  *	@dev: device to check
4650  *
4651  *	Check if a receive handler is already registered for a given device.
4652  *	Return true if there one.
4653  *
4654  *	The caller must hold the rtnl_mutex.
4655  */
netdev_is_rx_handler_busy(struct net_device * dev)4656 bool netdev_is_rx_handler_busy(struct net_device *dev)
4657 {
4658 	ASSERT_RTNL();
4659 	return dev && rtnl_dereference(dev->rx_handler);
4660 }
4661 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4662 
4663 /**
4664  *	netdev_rx_handler_register - register receive handler
4665  *	@dev: device to register a handler for
4666  *	@rx_handler: receive handler to register
4667  *	@rx_handler_data: data pointer that is used by rx handler
4668  *
4669  *	Register a receive handler for a device. This handler will then be
4670  *	called from __netif_receive_skb. A negative errno code is returned
4671  *	on a failure.
4672  *
4673  *	The caller must hold the rtnl_mutex.
4674  *
4675  *	For a general description of rx_handler, see enum rx_handler_result.
4676  */
netdev_rx_handler_register(struct net_device * dev,rx_handler_func_t * rx_handler,void * rx_handler_data)4677 int netdev_rx_handler_register(struct net_device *dev,
4678 			       rx_handler_func_t *rx_handler,
4679 			       void *rx_handler_data)
4680 {
4681 	if (netdev_is_rx_handler_busy(dev))
4682 		return -EBUSY;
4683 
4684 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
4685 		return -EINVAL;
4686 
4687 	/* Note: rx_handler_data must be set before rx_handler */
4688 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4689 	rcu_assign_pointer(dev->rx_handler, rx_handler);
4690 
4691 	return 0;
4692 }
4693 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4694 
4695 /**
4696  *	netdev_rx_handler_unregister - unregister receive handler
4697  *	@dev: device to unregister a handler from
4698  *
4699  *	Unregister a receive handler from a device.
4700  *
4701  *	The caller must hold the rtnl_mutex.
4702  */
netdev_rx_handler_unregister(struct net_device * dev)4703 void netdev_rx_handler_unregister(struct net_device *dev)
4704 {
4705 
4706 	ASSERT_RTNL();
4707 	RCU_INIT_POINTER(dev->rx_handler, NULL);
4708 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4709 	 * section has a guarantee to see a non NULL rx_handler_data
4710 	 * as well.
4711 	 */
4712 	synchronize_net();
4713 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4714 }
4715 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4716 
4717 /*
4718  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4719  * the special handling of PFMEMALLOC skbs.
4720  */
skb_pfmemalloc_protocol(struct sk_buff * skb)4721 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4722 {
4723 	switch (skb->protocol) {
4724 	case htons(ETH_P_ARP):
4725 	case htons(ETH_P_IP):
4726 	case htons(ETH_P_IPV6):
4727 	case htons(ETH_P_8021Q):
4728 	case htons(ETH_P_8021AD):
4729 		return true;
4730 	default:
4731 		return false;
4732 	}
4733 }
4734 
nf_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev)4735 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4736 			     int *ret, struct net_device *orig_dev)
4737 {
4738 #ifdef CONFIG_NETFILTER_INGRESS
4739 	if (nf_hook_ingress_active(skb)) {
4740 		int ingress_retval;
4741 
4742 		if (*pt_prev) {
4743 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
4744 			*pt_prev = NULL;
4745 		}
4746 
4747 		rcu_read_lock();
4748 		ingress_retval = nf_hook_ingress(skb);
4749 		rcu_read_unlock();
4750 		return ingress_retval;
4751 	}
4752 #endif /* CONFIG_NETFILTER_INGRESS */
4753 	return 0;
4754 }
4755 
__netif_receive_skb_core(struct sk_buff * skb,bool pfmemalloc,struct packet_type ** ppt_prev)4756 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc,
4757 				    struct packet_type **ppt_prev)
4758 {
4759 	struct packet_type *ptype, *pt_prev;
4760 	rx_handler_func_t *rx_handler;
4761 	struct net_device *orig_dev;
4762 	bool deliver_exact = false;
4763 	int ret = NET_RX_DROP;
4764 	__be16 type;
4765 
4766 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
4767 
4768 	trace_netif_receive_skb(skb);
4769 
4770 	orig_dev = skb->dev;
4771 
4772 	skb_reset_network_header(skb);
4773 	if (!skb_transport_header_was_set(skb))
4774 		skb_reset_transport_header(skb);
4775 	skb_reset_mac_len(skb);
4776 
4777 	pt_prev = NULL;
4778 
4779 another_round:
4780 	skb->skb_iif = skb->dev->ifindex;
4781 
4782 	__this_cpu_inc(softnet_data.processed);
4783 
4784 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4785 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4786 		skb = skb_vlan_untag(skb);
4787 		if (unlikely(!skb))
4788 			goto out;
4789 	}
4790 
4791 	if (skb_skip_tc_classify(skb))
4792 		goto skip_classify;
4793 
4794 	if (pfmemalloc)
4795 		goto skip_taps;
4796 
4797 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
4798 		if (pt_prev)
4799 			ret = deliver_skb(skb, pt_prev, orig_dev);
4800 		pt_prev = ptype;
4801 	}
4802 
4803 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4804 		if (pt_prev)
4805 			ret = deliver_skb(skb, pt_prev, orig_dev);
4806 		pt_prev = ptype;
4807 	}
4808 
4809 skip_taps:
4810 #ifdef CONFIG_NET_INGRESS
4811 	if (static_branch_unlikely(&ingress_needed_key)) {
4812 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4813 		if (!skb)
4814 			goto out;
4815 
4816 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4817 			goto out;
4818 	}
4819 #endif
4820 	skb_reset_tc(skb);
4821 skip_classify:
4822 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4823 		goto drop;
4824 
4825 	if (skb_vlan_tag_present(skb)) {
4826 		if (pt_prev) {
4827 			ret = deliver_skb(skb, pt_prev, orig_dev);
4828 			pt_prev = NULL;
4829 		}
4830 		if (vlan_do_receive(&skb))
4831 			goto another_round;
4832 		else if (unlikely(!skb))
4833 			goto out;
4834 	}
4835 
4836 	rx_handler = rcu_dereference(skb->dev->rx_handler);
4837 	if (rx_handler) {
4838 		if (pt_prev) {
4839 			ret = deliver_skb(skb, pt_prev, orig_dev);
4840 			pt_prev = NULL;
4841 		}
4842 		switch (rx_handler(&skb)) {
4843 		case RX_HANDLER_CONSUMED:
4844 			ret = NET_RX_SUCCESS;
4845 			goto out;
4846 		case RX_HANDLER_ANOTHER:
4847 			goto another_round;
4848 		case RX_HANDLER_EXACT:
4849 			deliver_exact = true;
4850 		case RX_HANDLER_PASS:
4851 			break;
4852 		default:
4853 			BUG();
4854 		}
4855 	}
4856 
4857 	if (unlikely(skb_vlan_tag_present(skb))) {
4858 		if (skb_vlan_tag_get_id(skb))
4859 			skb->pkt_type = PACKET_OTHERHOST;
4860 		/* Note: we might in the future use prio bits
4861 		 * and set skb->priority like in vlan_do_receive()
4862 		 * For the time being, just ignore Priority Code Point
4863 		 */
4864 		skb->vlan_tci = 0;
4865 	}
4866 
4867 	type = skb->protocol;
4868 
4869 	/* deliver only exact match when indicated */
4870 	if (likely(!deliver_exact)) {
4871 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4872 				       &ptype_base[ntohs(type) &
4873 						   PTYPE_HASH_MASK]);
4874 	}
4875 
4876 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4877 			       &orig_dev->ptype_specific);
4878 
4879 	if (unlikely(skb->dev != orig_dev)) {
4880 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4881 				       &skb->dev->ptype_specific);
4882 	}
4883 
4884 	if (pt_prev) {
4885 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4886 			goto drop;
4887 		*ppt_prev = pt_prev;
4888 	} else {
4889 drop:
4890 		if (!deliver_exact)
4891 			atomic_long_inc(&skb->dev->rx_dropped);
4892 		else
4893 			atomic_long_inc(&skb->dev->rx_nohandler);
4894 		kfree_skb(skb);
4895 		/* Jamal, now you will not able to escape explaining
4896 		 * me how you were going to use this. :-)
4897 		 */
4898 		ret = NET_RX_DROP;
4899 	}
4900 
4901 out:
4902 	return ret;
4903 }
4904 
__netif_receive_skb_one_core(struct sk_buff * skb,bool pfmemalloc)4905 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
4906 {
4907 	struct net_device *orig_dev = skb->dev;
4908 	struct packet_type *pt_prev = NULL;
4909 	int ret;
4910 
4911 	ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
4912 	if (pt_prev)
4913 		ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4914 	return ret;
4915 }
4916 
4917 /**
4918  *	netif_receive_skb_core - special purpose version of netif_receive_skb
4919  *	@skb: buffer to process
4920  *
4921  *	More direct receive version of netif_receive_skb().  It should
4922  *	only be used by callers that have a need to skip RPS and Generic XDP.
4923  *	Caller must also take care of handling if (page_is_)pfmemalloc.
4924  *
4925  *	This function may only be called from softirq context and interrupts
4926  *	should be enabled.
4927  *
4928  *	Return values (usually ignored):
4929  *	NET_RX_SUCCESS: no congestion
4930  *	NET_RX_DROP: packet was dropped
4931  */
netif_receive_skb_core(struct sk_buff * skb)4932 int netif_receive_skb_core(struct sk_buff *skb)
4933 {
4934 	int ret;
4935 
4936 	rcu_read_lock();
4937 	ret = __netif_receive_skb_one_core(skb, false);
4938 	rcu_read_unlock();
4939 
4940 	return ret;
4941 }
4942 EXPORT_SYMBOL(netif_receive_skb_core);
4943 
__netif_receive_skb_list_ptype(struct list_head * head,struct packet_type * pt_prev,struct net_device * orig_dev)4944 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
4945 						  struct packet_type *pt_prev,
4946 						  struct net_device *orig_dev)
4947 {
4948 	struct sk_buff *skb, *next;
4949 
4950 	if (!pt_prev)
4951 		return;
4952 	if (list_empty(head))
4953 		return;
4954 	if (pt_prev->list_func != NULL)
4955 		pt_prev->list_func(head, pt_prev, orig_dev);
4956 	else
4957 		list_for_each_entry_safe(skb, next, head, list)
4958 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4959 }
4960 
__netif_receive_skb_list_core(struct list_head * head,bool pfmemalloc)4961 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
4962 {
4963 	/* Fast-path assumptions:
4964 	 * - There is no RX handler.
4965 	 * - Only one packet_type matches.
4966 	 * If either of these fails, we will end up doing some per-packet
4967 	 * processing in-line, then handling the 'last ptype' for the whole
4968 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
4969 	 * because the 'last ptype' must be constant across the sublist, and all
4970 	 * other ptypes are handled per-packet.
4971 	 */
4972 	/* Current (common) ptype of sublist */
4973 	struct packet_type *pt_curr = NULL;
4974 	/* Current (common) orig_dev of sublist */
4975 	struct net_device *od_curr = NULL;
4976 	struct list_head sublist;
4977 	struct sk_buff *skb, *next;
4978 
4979 	INIT_LIST_HEAD(&sublist);
4980 	list_for_each_entry_safe(skb, next, head, list) {
4981 		struct net_device *orig_dev = skb->dev;
4982 		struct packet_type *pt_prev = NULL;
4983 
4984 		list_del(&skb->list);
4985 		__netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
4986 		if (!pt_prev)
4987 			continue;
4988 		if (pt_curr != pt_prev || od_curr != orig_dev) {
4989 			/* dispatch old sublist */
4990 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
4991 			/* start new sublist */
4992 			INIT_LIST_HEAD(&sublist);
4993 			pt_curr = pt_prev;
4994 			od_curr = orig_dev;
4995 		}
4996 		list_add_tail(&skb->list, &sublist);
4997 	}
4998 
4999 	/* dispatch final sublist */
5000 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5001 }
5002 
__netif_receive_skb(struct sk_buff * skb)5003 static int __netif_receive_skb(struct sk_buff *skb)
5004 {
5005 	int ret;
5006 
5007 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5008 		unsigned int noreclaim_flag;
5009 
5010 		/*
5011 		 * PFMEMALLOC skbs are special, they should
5012 		 * - be delivered to SOCK_MEMALLOC sockets only
5013 		 * - stay away from userspace
5014 		 * - have bounded memory usage
5015 		 *
5016 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5017 		 * context down to all allocation sites.
5018 		 */
5019 		noreclaim_flag = memalloc_noreclaim_save();
5020 		ret = __netif_receive_skb_one_core(skb, true);
5021 		memalloc_noreclaim_restore(noreclaim_flag);
5022 	} else
5023 		ret = __netif_receive_skb_one_core(skb, false);
5024 
5025 	return ret;
5026 }
5027 
__netif_receive_skb_list(struct list_head * head)5028 static void __netif_receive_skb_list(struct list_head *head)
5029 {
5030 	unsigned long noreclaim_flag = 0;
5031 	struct sk_buff *skb, *next;
5032 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5033 
5034 	list_for_each_entry_safe(skb, next, head, list) {
5035 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5036 			struct list_head sublist;
5037 
5038 			/* Handle the previous sublist */
5039 			list_cut_before(&sublist, head, &skb->list);
5040 			if (!list_empty(&sublist))
5041 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5042 			pfmemalloc = !pfmemalloc;
5043 			/* See comments in __netif_receive_skb */
5044 			if (pfmemalloc)
5045 				noreclaim_flag = memalloc_noreclaim_save();
5046 			else
5047 				memalloc_noreclaim_restore(noreclaim_flag);
5048 		}
5049 	}
5050 	/* Handle the remaining sublist */
5051 	if (!list_empty(head))
5052 		__netif_receive_skb_list_core(head, pfmemalloc);
5053 	/* Restore pflags */
5054 	if (pfmemalloc)
5055 		memalloc_noreclaim_restore(noreclaim_flag);
5056 }
5057 
generic_xdp_install(struct net_device * dev,struct netdev_bpf * xdp)5058 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5059 {
5060 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5061 	struct bpf_prog *new = xdp->prog;
5062 	int ret = 0;
5063 
5064 	switch (xdp->command) {
5065 	case XDP_SETUP_PROG:
5066 		rcu_assign_pointer(dev->xdp_prog, new);
5067 		if (old)
5068 			bpf_prog_put(old);
5069 
5070 		if (old && !new) {
5071 			static_branch_dec(&generic_xdp_needed_key);
5072 		} else if (new && !old) {
5073 			static_branch_inc(&generic_xdp_needed_key);
5074 			dev_disable_lro(dev);
5075 			dev_disable_gro_hw(dev);
5076 		}
5077 		break;
5078 
5079 	case XDP_QUERY_PROG:
5080 		xdp->prog_id = old ? old->aux->id : 0;
5081 		break;
5082 
5083 	default:
5084 		ret = -EINVAL;
5085 		break;
5086 	}
5087 
5088 	return ret;
5089 }
5090 
netif_receive_skb_internal(struct sk_buff * skb)5091 static int netif_receive_skb_internal(struct sk_buff *skb)
5092 {
5093 	int ret;
5094 
5095 	net_timestamp_check(netdev_tstamp_prequeue, skb);
5096 
5097 	if (skb_defer_rx_timestamp(skb))
5098 		return NET_RX_SUCCESS;
5099 
5100 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5101 		int ret;
5102 
5103 		preempt_disable();
5104 		rcu_read_lock();
5105 		ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5106 		rcu_read_unlock();
5107 		preempt_enable();
5108 
5109 		if (ret != XDP_PASS)
5110 			return NET_RX_DROP;
5111 	}
5112 
5113 	rcu_read_lock();
5114 #ifdef CONFIG_RPS
5115 	if (static_key_false(&rps_needed)) {
5116 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5117 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5118 
5119 		if (cpu >= 0) {
5120 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5121 			rcu_read_unlock();
5122 			return ret;
5123 		}
5124 	}
5125 #endif
5126 	ret = __netif_receive_skb(skb);
5127 	rcu_read_unlock();
5128 	return ret;
5129 }
5130 
netif_receive_skb_list_internal(struct list_head * head)5131 static void netif_receive_skb_list_internal(struct list_head *head)
5132 {
5133 	struct bpf_prog *xdp_prog = NULL;
5134 	struct sk_buff *skb, *next;
5135 	struct list_head sublist;
5136 
5137 	INIT_LIST_HEAD(&sublist);
5138 	list_for_each_entry_safe(skb, next, head, list) {
5139 		net_timestamp_check(netdev_tstamp_prequeue, skb);
5140 		list_del(&skb->list);
5141 		if (!skb_defer_rx_timestamp(skb))
5142 			list_add_tail(&skb->list, &sublist);
5143 	}
5144 	list_splice_init(&sublist, head);
5145 
5146 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5147 		preempt_disable();
5148 		rcu_read_lock();
5149 		list_for_each_entry_safe(skb, next, head, list) {
5150 			xdp_prog = rcu_dereference(skb->dev->xdp_prog);
5151 			list_del(&skb->list);
5152 			if (do_xdp_generic(xdp_prog, skb) == XDP_PASS)
5153 				list_add_tail(&skb->list, &sublist);
5154 		}
5155 		rcu_read_unlock();
5156 		preempt_enable();
5157 		/* Put passed packets back on main list */
5158 		list_splice_init(&sublist, head);
5159 	}
5160 
5161 	rcu_read_lock();
5162 #ifdef CONFIG_RPS
5163 	if (static_key_false(&rps_needed)) {
5164 		list_for_each_entry_safe(skb, next, head, list) {
5165 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5166 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5167 
5168 			if (cpu >= 0) {
5169 				/* Will be handled, remove from list */
5170 				list_del(&skb->list);
5171 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5172 			}
5173 		}
5174 	}
5175 #endif
5176 	__netif_receive_skb_list(head);
5177 	rcu_read_unlock();
5178 }
5179 
5180 /**
5181  *	netif_receive_skb - process receive buffer from network
5182  *	@skb: buffer to process
5183  *
5184  *	netif_receive_skb() is the main receive data processing function.
5185  *	It always succeeds. The buffer may be dropped during processing
5186  *	for congestion control or by the protocol layers.
5187  *
5188  *	This function may only be called from softirq context and interrupts
5189  *	should be enabled.
5190  *
5191  *	Return values (usually ignored):
5192  *	NET_RX_SUCCESS: no congestion
5193  *	NET_RX_DROP: packet was dropped
5194  */
netif_receive_skb(struct sk_buff * skb)5195 int netif_receive_skb(struct sk_buff *skb)
5196 {
5197 	trace_netif_receive_skb_entry(skb);
5198 
5199 	return netif_receive_skb_internal(skb);
5200 }
5201 EXPORT_SYMBOL(netif_receive_skb);
5202 
5203 /**
5204  *	netif_receive_skb_list - process many receive buffers from network
5205  *	@head: list of skbs to process.
5206  *
5207  *	Since return value of netif_receive_skb() is normally ignored, and
5208  *	wouldn't be meaningful for a list, this function returns void.
5209  *
5210  *	This function may only be called from softirq context and interrupts
5211  *	should be enabled.
5212  */
netif_receive_skb_list(struct list_head * head)5213 void netif_receive_skb_list(struct list_head *head)
5214 {
5215 	struct sk_buff *skb;
5216 
5217 	if (list_empty(head))
5218 		return;
5219 	list_for_each_entry(skb, head, list)
5220 		trace_netif_receive_skb_list_entry(skb);
5221 	netif_receive_skb_list_internal(head);
5222 }
5223 EXPORT_SYMBOL(netif_receive_skb_list);
5224 
5225 DEFINE_PER_CPU(struct work_struct, flush_works);
5226 
5227 /* Network device is going away, flush any packets still pending */
flush_backlog(struct work_struct * work)5228 static void flush_backlog(struct work_struct *work)
5229 {
5230 	struct sk_buff *skb, *tmp;
5231 	struct softnet_data *sd;
5232 
5233 	local_bh_disable();
5234 	sd = this_cpu_ptr(&softnet_data);
5235 
5236 	local_irq_disable();
5237 	rps_lock(sd);
5238 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5239 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5240 			__skb_unlink(skb, &sd->input_pkt_queue);
5241 			kfree_skb(skb);
5242 			input_queue_head_incr(sd);
5243 		}
5244 	}
5245 	rps_unlock(sd);
5246 	local_irq_enable();
5247 
5248 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5249 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5250 			__skb_unlink(skb, &sd->process_queue);
5251 			kfree_skb(skb);
5252 			input_queue_head_incr(sd);
5253 		}
5254 	}
5255 	local_bh_enable();
5256 }
5257 
flush_all_backlogs(void)5258 static void flush_all_backlogs(void)
5259 {
5260 	unsigned int cpu;
5261 
5262 	get_online_cpus();
5263 
5264 	for_each_online_cpu(cpu)
5265 		queue_work_on(cpu, system_highpri_wq,
5266 			      per_cpu_ptr(&flush_works, cpu));
5267 
5268 	for_each_online_cpu(cpu)
5269 		flush_work(per_cpu_ptr(&flush_works, cpu));
5270 
5271 	put_online_cpus();
5272 }
5273 
napi_gro_complete(struct sk_buff * skb)5274 static int napi_gro_complete(struct sk_buff *skb)
5275 {
5276 	struct packet_offload *ptype;
5277 	__be16 type = skb->protocol;
5278 	struct list_head *head = &offload_base;
5279 	int err = -ENOENT;
5280 
5281 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5282 
5283 	if (NAPI_GRO_CB(skb)->count == 1) {
5284 		skb_shinfo(skb)->gso_size = 0;
5285 		goto out;
5286 	}
5287 
5288 	rcu_read_lock();
5289 	list_for_each_entry_rcu(ptype, head, list) {
5290 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5291 			continue;
5292 
5293 		err = ptype->callbacks.gro_complete(skb, 0);
5294 		break;
5295 	}
5296 	rcu_read_unlock();
5297 
5298 	if (err) {
5299 		WARN_ON(&ptype->list == head);
5300 		kfree_skb(skb);
5301 		return NET_RX_SUCCESS;
5302 	}
5303 
5304 out:
5305 	return netif_receive_skb_internal(skb);
5306 }
5307 
__napi_gro_flush_chain(struct napi_struct * napi,u32 index,bool flush_old)5308 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5309 				   bool flush_old)
5310 {
5311 	struct list_head *head = &napi->gro_hash[index].list;
5312 	struct sk_buff *skb, *p;
5313 
5314 	list_for_each_entry_safe_reverse(skb, p, head, list) {
5315 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5316 			return;
5317 		list_del(&skb->list);
5318 		skb->next = NULL;
5319 		napi_gro_complete(skb);
5320 		napi->gro_hash[index].count--;
5321 	}
5322 
5323 	if (!napi->gro_hash[index].count)
5324 		__clear_bit(index, &napi->gro_bitmask);
5325 }
5326 
5327 /* napi->gro_hash[].list contains packets ordered by age.
5328  * youngest packets at the head of it.
5329  * Complete skbs in reverse order to reduce latencies.
5330  */
napi_gro_flush(struct napi_struct * napi,bool flush_old)5331 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5332 {
5333 	u32 i;
5334 
5335 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
5336 		if (test_bit(i, &napi->gro_bitmask))
5337 			__napi_gro_flush_chain(napi, i, flush_old);
5338 	}
5339 }
5340 EXPORT_SYMBOL(napi_gro_flush);
5341 
gro_list_prepare(struct napi_struct * napi,struct sk_buff * skb)5342 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5343 					  struct sk_buff *skb)
5344 {
5345 	unsigned int maclen = skb->dev->hard_header_len;
5346 	u32 hash = skb_get_hash_raw(skb);
5347 	struct list_head *head;
5348 	struct sk_buff *p;
5349 
5350 	head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5351 	list_for_each_entry(p, head, list) {
5352 		unsigned long diffs;
5353 
5354 		NAPI_GRO_CB(p)->flush = 0;
5355 
5356 		if (hash != skb_get_hash_raw(p)) {
5357 			NAPI_GRO_CB(p)->same_flow = 0;
5358 			continue;
5359 		}
5360 
5361 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5362 		diffs |= p->vlan_tci ^ skb->vlan_tci;
5363 		diffs |= skb_metadata_dst_cmp(p, skb);
5364 		diffs |= skb_metadata_differs(p, skb);
5365 		if (maclen == ETH_HLEN)
5366 			diffs |= compare_ether_header(skb_mac_header(p),
5367 						      skb_mac_header(skb));
5368 		else if (!diffs)
5369 			diffs = memcmp(skb_mac_header(p),
5370 				       skb_mac_header(skb),
5371 				       maclen);
5372 		NAPI_GRO_CB(p)->same_flow = !diffs;
5373 	}
5374 
5375 	return head;
5376 }
5377 
skb_gro_reset_offset(struct sk_buff * skb)5378 static void skb_gro_reset_offset(struct sk_buff *skb)
5379 {
5380 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
5381 	const skb_frag_t *frag0 = &pinfo->frags[0];
5382 
5383 	NAPI_GRO_CB(skb)->data_offset = 0;
5384 	NAPI_GRO_CB(skb)->frag0 = NULL;
5385 	NAPI_GRO_CB(skb)->frag0_len = 0;
5386 
5387 	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
5388 	    pinfo->nr_frags &&
5389 	    !PageHighMem(skb_frag_page(frag0))) {
5390 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5391 		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5392 						    skb_frag_size(frag0),
5393 						    skb->end - skb->tail);
5394 	}
5395 }
5396 
gro_pull_from_frag0(struct sk_buff * skb,int grow)5397 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5398 {
5399 	struct skb_shared_info *pinfo = skb_shinfo(skb);
5400 
5401 	BUG_ON(skb->end - skb->tail < grow);
5402 
5403 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5404 
5405 	skb->data_len -= grow;
5406 	skb->tail += grow;
5407 
5408 	pinfo->frags[0].page_offset += grow;
5409 	skb_frag_size_sub(&pinfo->frags[0], grow);
5410 
5411 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5412 		skb_frag_unref(skb, 0);
5413 		memmove(pinfo->frags, pinfo->frags + 1,
5414 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
5415 	}
5416 }
5417 
gro_flush_oldest(struct list_head * head)5418 static void gro_flush_oldest(struct list_head *head)
5419 {
5420 	struct sk_buff *oldest;
5421 
5422 	oldest = list_last_entry(head, struct sk_buff, list);
5423 
5424 	/* We are called with head length >= MAX_GRO_SKBS, so this is
5425 	 * impossible.
5426 	 */
5427 	if (WARN_ON_ONCE(!oldest))
5428 		return;
5429 
5430 	/* Do not adjust napi->gro_hash[].count, caller is adding a new
5431 	 * SKB to the chain.
5432 	 */
5433 	list_del(&oldest->list);
5434 	napi_gro_complete(oldest);
5435 }
5436 
dev_gro_receive(struct napi_struct * napi,struct sk_buff * skb)5437 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5438 {
5439 	u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5440 	struct list_head *head = &offload_base;
5441 	struct packet_offload *ptype;
5442 	__be16 type = skb->protocol;
5443 	struct list_head *gro_head;
5444 	struct sk_buff *pp = NULL;
5445 	enum gro_result ret;
5446 	int same_flow;
5447 	int grow;
5448 
5449 	if (netif_elide_gro(skb->dev))
5450 		goto normal;
5451 
5452 	gro_head = gro_list_prepare(napi, skb);
5453 
5454 	rcu_read_lock();
5455 	list_for_each_entry_rcu(ptype, head, list) {
5456 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5457 			continue;
5458 
5459 		skb_set_network_header(skb, skb_gro_offset(skb));
5460 		skb_reset_mac_len(skb);
5461 		NAPI_GRO_CB(skb)->same_flow = 0;
5462 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5463 		NAPI_GRO_CB(skb)->free = 0;
5464 		NAPI_GRO_CB(skb)->encap_mark = 0;
5465 		NAPI_GRO_CB(skb)->recursion_counter = 0;
5466 		NAPI_GRO_CB(skb)->is_fou = 0;
5467 		NAPI_GRO_CB(skb)->is_atomic = 1;
5468 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5469 
5470 		/* Setup for GRO checksum validation */
5471 		switch (skb->ip_summed) {
5472 		case CHECKSUM_COMPLETE:
5473 			NAPI_GRO_CB(skb)->csum = skb->csum;
5474 			NAPI_GRO_CB(skb)->csum_valid = 1;
5475 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5476 			break;
5477 		case CHECKSUM_UNNECESSARY:
5478 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5479 			NAPI_GRO_CB(skb)->csum_valid = 0;
5480 			break;
5481 		default:
5482 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5483 			NAPI_GRO_CB(skb)->csum_valid = 0;
5484 		}
5485 
5486 		pp = ptype->callbacks.gro_receive(gro_head, skb);
5487 		break;
5488 	}
5489 	rcu_read_unlock();
5490 
5491 	if (&ptype->list == head)
5492 		goto normal;
5493 
5494 	if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
5495 		ret = GRO_CONSUMED;
5496 		goto ok;
5497 	}
5498 
5499 	same_flow = NAPI_GRO_CB(skb)->same_flow;
5500 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5501 
5502 	if (pp) {
5503 		list_del(&pp->list);
5504 		pp->next = NULL;
5505 		napi_gro_complete(pp);
5506 		napi->gro_hash[hash].count--;
5507 	}
5508 
5509 	if (same_flow)
5510 		goto ok;
5511 
5512 	if (NAPI_GRO_CB(skb)->flush)
5513 		goto normal;
5514 
5515 	if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5516 		gro_flush_oldest(gro_head);
5517 	} else {
5518 		napi->gro_hash[hash].count++;
5519 	}
5520 	NAPI_GRO_CB(skb)->count = 1;
5521 	NAPI_GRO_CB(skb)->age = jiffies;
5522 	NAPI_GRO_CB(skb)->last = skb;
5523 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5524 	list_add(&skb->list, gro_head);
5525 	ret = GRO_HELD;
5526 
5527 pull:
5528 	grow = skb_gro_offset(skb) - skb_headlen(skb);
5529 	if (grow > 0)
5530 		gro_pull_from_frag0(skb, grow);
5531 ok:
5532 	if (napi->gro_hash[hash].count) {
5533 		if (!test_bit(hash, &napi->gro_bitmask))
5534 			__set_bit(hash, &napi->gro_bitmask);
5535 	} else if (test_bit(hash, &napi->gro_bitmask)) {
5536 		__clear_bit(hash, &napi->gro_bitmask);
5537 	}
5538 
5539 	return ret;
5540 
5541 normal:
5542 	ret = GRO_NORMAL;
5543 	goto pull;
5544 }
5545 
gro_find_receive_by_type(__be16 type)5546 struct packet_offload *gro_find_receive_by_type(__be16 type)
5547 {
5548 	struct list_head *offload_head = &offload_base;
5549 	struct packet_offload *ptype;
5550 
5551 	list_for_each_entry_rcu(ptype, offload_head, list) {
5552 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5553 			continue;
5554 		return ptype;
5555 	}
5556 	return NULL;
5557 }
5558 EXPORT_SYMBOL(gro_find_receive_by_type);
5559 
gro_find_complete_by_type(__be16 type)5560 struct packet_offload *gro_find_complete_by_type(__be16 type)
5561 {
5562 	struct list_head *offload_head = &offload_base;
5563 	struct packet_offload *ptype;
5564 
5565 	list_for_each_entry_rcu(ptype, offload_head, list) {
5566 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5567 			continue;
5568 		return ptype;
5569 	}
5570 	return NULL;
5571 }
5572 EXPORT_SYMBOL(gro_find_complete_by_type);
5573 
napi_skb_free_stolen_head(struct sk_buff * skb)5574 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5575 {
5576 	skb_dst_drop(skb);
5577 	secpath_reset(skb);
5578 	kmem_cache_free(skbuff_head_cache, skb);
5579 }
5580 
napi_skb_finish(gro_result_t ret,struct sk_buff * skb)5581 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5582 {
5583 	switch (ret) {
5584 	case GRO_NORMAL:
5585 		if (netif_receive_skb_internal(skb))
5586 			ret = GRO_DROP;
5587 		break;
5588 
5589 	case GRO_DROP:
5590 		kfree_skb(skb);
5591 		break;
5592 
5593 	case GRO_MERGED_FREE:
5594 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5595 			napi_skb_free_stolen_head(skb);
5596 		else
5597 			__kfree_skb(skb);
5598 		break;
5599 
5600 	case GRO_HELD:
5601 	case GRO_MERGED:
5602 	case GRO_CONSUMED:
5603 		break;
5604 	}
5605 
5606 	return ret;
5607 }
5608 
napi_gro_receive(struct napi_struct * napi,struct sk_buff * skb)5609 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5610 {
5611 	skb_mark_napi_id(skb, napi);
5612 	trace_napi_gro_receive_entry(skb);
5613 
5614 	skb_gro_reset_offset(skb);
5615 
5616 	return napi_skb_finish(dev_gro_receive(napi, skb), skb);
5617 }
5618 EXPORT_SYMBOL(napi_gro_receive);
5619 
napi_reuse_skb(struct napi_struct * napi,struct sk_buff * skb)5620 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5621 {
5622 	if (unlikely(skb->pfmemalloc)) {
5623 		consume_skb(skb);
5624 		return;
5625 	}
5626 	__skb_pull(skb, skb_headlen(skb));
5627 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
5628 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5629 	skb->vlan_tci = 0;
5630 	skb->dev = napi->dev;
5631 	skb->skb_iif = 0;
5632 	skb->encapsulation = 0;
5633 	skb_shinfo(skb)->gso_type = 0;
5634 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5635 	secpath_reset(skb);
5636 
5637 	napi->skb = skb;
5638 }
5639 
napi_get_frags(struct napi_struct * napi)5640 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5641 {
5642 	struct sk_buff *skb = napi->skb;
5643 
5644 	if (!skb) {
5645 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5646 		if (skb) {
5647 			napi->skb = skb;
5648 			skb_mark_napi_id(skb, napi);
5649 		}
5650 	}
5651 	return skb;
5652 }
5653 EXPORT_SYMBOL(napi_get_frags);
5654 
napi_frags_finish(struct napi_struct * napi,struct sk_buff * skb,gro_result_t ret)5655 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5656 				      struct sk_buff *skb,
5657 				      gro_result_t ret)
5658 {
5659 	switch (ret) {
5660 	case GRO_NORMAL:
5661 	case GRO_HELD:
5662 		__skb_push(skb, ETH_HLEN);
5663 		skb->protocol = eth_type_trans(skb, skb->dev);
5664 		if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5665 			ret = GRO_DROP;
5666 		break;
5667 
5668 	case GRO_DROP:
5669 		napi_reuse_skb(napi, skb);
5670 		break;
5671 
5672 	case GRO_MERGED_FREE:
5673 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5674 			napi_skb_free_stolen_head(skb);
5675 		else
5676 			napi_reuse_skb(napi, skb);
5677 		break;
5678 
5679 	case GRO_MERGED:
5680 	case GRO_CONSUMED:
5681 		break;
5682 	}
5683 
5684 	return ret;
5685 }
5686 
5687 /* Upper GRO stack assumes network header starts at gro_offset=0
5688  * Drivers could call both napi_gro_frags() and napi_gro_receive()
5689  * We copy ethernet header into skb->data to have a common layout.
5690  */
napi_frags_skb(struct napi_struct * napi)5691 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5692 {
5693 	struct sk_buff *skb = napi->skb;
5694 	const struct ethhdr *eth;
5695 	unsigned int hlen = sizeof(*eth);
5696 
5697 	napi->skb = NULL;
5698 
5699 	skb_reset_mac_header(skb);
5700 	skb_gro_reset_offset(skb);
5701 
5702 	eth = skb_gro_header_fast(skb, 0);
5703 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
5704 		eth = skb_gro_header_slow(skb, hlen, 0);
5705 		if (unlikely(!eth)) {
5706 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5707 					     __func__, napi->dev->name);
5708 			napi_reuse_skb(napi, skb);
5709 			return NULL;
5710 		}
5711 	} else {
5712 		gro_pull_from_frag0(skb, hlen);
5713 		NAPI_GRO_CB(skb)->frag0 += hlen;
5714 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
5715 	}
5716 	__skb_pull(skb, hlen);
5717 
5718 	/*
5719 	 * This works because the only protocols we care about don't require
5720 	 * special handling.
5721 	 * We'll fix it up properly in napi_frags_finish()
5722 	 */
5723 	skb->protocol = eth->h_proto;
5724 
5725 	return skb;
5726 }
5727 
napi_gro_frags(struct napi_struct * napi)5728 gro_result_t napi_gro_frags(struct napi_struct *napi)
5729 {
5730 	struct sk_buff *skb = napi_frags_skb(napi);
5731 
5732 	if (!skb)
5733 		return GRO_DROP;
5734 
5735 	trace_napi_gro_frags_entry(skb);
5736 
5737 	return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5738 }
5739 EXPORT_SYMBOL(napi_gro_frags);
5740 
5741 /* Compute the checksum from gro_offset and return the folded value
5742  * after adding in any pseudo checksum.
5743  */
__skb_gro_checksum_complete(struct sk_buff * skb)5744 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5745 {
5746 	__wsum wsum;
5747 	__sum16 sum;
5748 
5749 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5750 
5751 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5752 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5753 	if (likely(!sum)) {
5754 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5755 		    !skb->csum_complete_sw)
5756 			netdev_rx_csum_fault(skb->dev);
5757 	}
5758 
5759 	NAPI_GRO_CB(skb)->csum = wsum;
5760 	NAPI_GRO_CB(skb)->csum_valid = 1;
5761 
5762 	return sum;
5763 }
5764 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5765 
net_rps_send_ipi(struct softnet_data * remsd)5766 static void net_rps_send_ipi(struct softnet_data *remsd)
5767 {
5768 #ifdef CONFIG_RPS
5769 	while (remsd) {
5770 		struct softnet_data *next = remsd->rps_ipi_next;
5771 
5772 		if (cpu_online(remsd->cpu))
5773 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
5774 		remsd = next;
5775 	}
5776 #endif
5777 }
5778 
5779 /*
5780  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5781  * Note: called with local irq disabled, but exits with local irq enabled.
5782  */
net_rps_action_and_irq_enable(struct softnet_data * sd)5783 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5784 {
5785 #ifdef CONFIG_RPS
5786 	struct softnet_data *remsd = sd->rps_ipi_list;
5787 
5788 	if (remsd) {
5789 		sd->rps_ipi_list = NULL;
5790 
5791 		local_irq_enable();
5792 
5793 		/* Send pending IPI's to kick RPS processing on remote cpus. */
5794 		net_rps_send_ipi(remsd);
5795 	} else
5796 #endif
5797 		local_irq_enable();
5798 }
5799 
sd_has_rps_ipi_waiting(struct softnet_data * sd)5800 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5801 {
5802 #ifdef CONFIG_RPS
5803 	return sd->rps_ipi_list != NULL;
5804 #else
5805 	return false;
5806 #endif
5807 }
5808 
process_backlog(struct napi_struct * napi,int quota)5809 static int process_backlog(struct napi_struct *napi, int quota)
5810 {
5811 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5812 	bool again = true;
5813 	int work = 0;
5814 
5815 	/* Check if we have pending ipi, its better to send them now,
5816 	 * not waiting net_rx_action() end.
5817 	 */
5818 	if (sd_has_rps_ipi_waiting(sd)) {
5819 		local_irq_disable();
5820 		net_rps_action_and_irq_enable(sd);
5821 	}
5822 
5823 	napi->weight = dev_rx_weight;
5824 	while (again) {
5825 		struct sk_buff *skb;
5826 
5827 		while ((skb = __skb_dequeue(&sd->process_queue))) {
5828 			rcu_read_lock();
5829 			__netif_receive_skb(skb);
5830 			rcu_read_unlock();
5831 			input_queue_head_incr(sd);
5832 			if (++work >= quota)
5833 				return work;
5834 
5835 		}
5836 
5837 		local_irq_disable();
5838 		rps_lock(sd);
5839 		if (skb_queue_empty(&sd->input_pkt_queue)) {
5840 			/*
5841 			 * Inline a custom version of __napi_complete().
5842 			 * only current cpu owns and manipulates this napi,
5843 			 * and NAPI_STATE_SCHED is the only possible flag set
5844 			 * on backlog.
5845 			 * We can use a plain write instead of clear_bit(),
5846 			 * and we dont need an smp_mb() memory barrier.
5847 			 */
5848 			napi->state = 0;
5849 			again = false;
5850 		} else {
5851 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
5852 						   &sd->process_queue);
5853 		}
5854 		rps_unlock(sd);
5855 		local_irq_enable();
5856 	}
5857 
5858 	return work;
5859 }
5860 
5861 /**
5862  * __napi_schedule - schedule for receive
5863  * @n: entry to schedule
5864  *
5865  * The entry's receive function will be scheduled to run.
5866  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5867  */
__napi_schedule(struct napi_struct * n)5868 void __napi_schedule(struct napi_struct *n)
5869 {
5870 	unsigned long flags;
5871 
5872 	local_irq_save(flags);
5873 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5874 	local_irq_restore(flags);
5875 }
5876 EXPORT_SYMBOL(__napi_schedule);
5877 
5878 /**
5879  *	napi_schedule_prep - check if napi can be scheduled
5880  *	@n: napi context
5881  *
5882  * Test if NAPI routine is already running, and if not mark
5883  * it as running.  This is used as a condition variable
5884  * insure only one NAPI poll instance runs.  We also make
5885  * sure there is no pending NAPI disable.
5886  */
napi_schedule_prep(struct napi_struct * n)5887 bool napi_schedule_prep(struct napi_struct *n)
5888 {
5889 	unsigned long val, new;
5890 
5891 	do {
5892 		val = READ_ONCE(n->state);
5893 		if (unlikely(val & NAPIF_STATE_DISABLE))
5894 			return false;
5895 		new = val | NAPIF_STATE_SCHED;
5896 
5897 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
5898 		 * This was suggested by Alexander Duyck, as compiler
5899 		 * emits better code than :
5900 		 * if (val & NAPIF_STATE_SCHED)
5901 		 *     new |= NAPIF_STATE_MISSED;
5902 		 */
5903 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5904 						   NAPIF_STATE_MISSED;
5905 	} while (cmpxchg(&n->state, val, new) != val);
5906 
5907 	return !(val & NAPIF_STATE_SCHED);
5908 }
5909 EXPORT_SYMBOL(napi_schedule_prep);
5910 
5911 /**
5912  * __napi_schedule_irqoff - schedule for receive
5913  * @n: entry to schedule
5914  *
5915  * Variant of __napi_schedule() assuming hard irqs are masked
5916  */
__napi_schedule_irqoff(struct napi_struct * n)5917 void __napi_schedule_irqoff(struct napi_struct *n)
5918 {
5919 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5920 }
5921 EXPORT_SYMBOL(__napi_schedule_irqoff);
5922 
napi_complete_done(struct napi_struct * n,int work_done)5923 bool napi_complete_done(struct napi_struct *n, int work_done)
5924 {
5925 	unsigned long flags, val, new;
5926 
5927 	/*
5928 	 * 1) Don't let napi dequeue from the cpu poll list
5929 	 *    just in case its running on a different cpu.
5930 	 * 2) If we are busy polling, do nothing here, we have
5931 	 *    the guarantee we will be called later.
5932 	 */
5933 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5934 				 NAPIF_STATE_IN_BUSY_POLL)))
5935 		return false;
5936 
5937 	if (n->gro_bitmask) {
5938 		unsigned long timeout = 0;
5939 
5940 		if (work_done)
5941 			timeout = n->dev->gro_flush_timeout;
5942 
5943 		if (timeout)
5944 			hrtimer_start(&n->timer, ns_to_ktime(timeout),
5945 				      HRTIMER_MODE_REL_PINNED);
5946 		else
5947 			napi_gro_flush(n, false);
5948 	}
5949 	if (unlikely(!list_empty(&n->poll_list))) {
5950 		/* If n->poll_list is not empty, we need to mask irqs */
5951 		local_irq_save(flags);
5952 		list_del_init(&n->poll_list);
5953 		local_irq_restore(flags);
5954 	}
5955 
5956 	do {
5957 		val = READ_ONCE(n->state);
5958 
5959 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5960 
5961 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5962 
5963 		/* If STATE_MISSED was set, leave STATE_SCHED set,
5964 		 * because we will call napi->poll() one more time.
5965 		 * This C code was suggested by Alexander Duyck to help gcc.
5966 		 */
5967 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5968 						    NAPIF_STATE_SCHED;
5969 	} while (cmpxchg(&n->state, val, new) != val);
5970 
5971 	if (unlikely(val & NAPIF_STATE_MISSED)) {
5972 		__napi_schedule(n);
5973 		return false;
5974 	}
5975 
5976 	return true;
5977 }
5978 EXPORT_SYMBOL(napi_complete_done);
5979 
5980 /* must be called under rcu_read_lock(), as we dont take a reference */
napi_by_id(unsigned int napi_id)5981 static struct napi_struct *napi_by_id(unsigned int napi_id)
5982 {
5983 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5984 	struct napi_struct *napi;
5985 
5986 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5987 		if (napi->napi_id == napi_id)
5988 			return napi;
5989 
5990 	return NULL;
5991 }
5992 
5993 #if defined(CONFIG_NET_RX_BUSY_POLL)
5994 
5995 #define BUSY_POLL_BUDGET 8
5996 
busy_poll_stop(struct napi_struct * napi,void * have_poll_lock)5997 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5998 {
5999 	int rc;
6000 
6001 	/* Busy polling means there is a high chance device driver hard irq
6002 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6003 	 * set in napi_schedule_prep().
6004 	 * Since we are about to call napi->poll() once more, we can safely
6005 	 * clear NAPI_STATE_MISSED.
6006 	 *
6007 	 * Note: x86 could use a single "lock and ..." instruction
6008 	 * to perform these two clear_bit()
6009 	 */
6010 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6011 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6012 
6013 	local_bh_disable();
6014 
6015 	/* All we really want here is to re-enable device interrupts.
6016 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6017 	 */
6018 	rc = napi->poll(napi, BUSY_POLL_BUDGET);
6019 	trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6020 	netpoll_poll_unlock(have_poll_lock);
6021 	if (rc == BUSY_POLL_BUDGET)
6022 		__napi_schedule(napi);
6023 	local_bh_enable();
6024 }
6025 
napi_busy_loop(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg)6026 void napi_busy_loop(unsigned int napi_id,
6027 		    bool (*loop_end)(void *, unsigned long),
6028 		    void *loop_end_arg)
6029 {
6030 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6031 	int (*napi_poll)(struct napi_struct *napi, int budget);
6032 	void *have_poll_lock = NULL;
6033 	struct napi_struct *napi;
6034 
6035 restart:
6036 	napi_poll = NULL;
6037 
6038 	rcu_read_lock();
6039 
6040 	napi = napi_by_id(napi_id);
6041 	if (!napi)
6042 		goto out;
6043 
6044 	preempt_disable();
6045 	for (;;) {
6046 		int work = 0;
6047 
6048 		local_bh_disable();
6049 		if (!napi_poll) {
6050 			unsigned long val = READ_ONCE(napi->state);
6051 
6052 			/* If multiple threads are competing for this napi,
6053 			 * we avoid dirtying napi->state as much as we can.
6054 			 */
6055 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6056 				   NAPIF_STATE_IN_BUSY_POLL))
6057 				goto count;
6058 			if (cmpxchg(&napi->state, val,
6059 				    val | NAPIF_STATE_IN_BUSY_POLL |
6060 					  NAPIF_STATE_SCHED) != val)
6061 				goto count;
6062 			have_poll_lock = netpoll_poll_lock(napi);
6063 			napi_poll = napi->poll;
6064 		}
6065 		work = napi_poll(napi, BUSY_POLL_BUDGET);
6066 		trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6067 count:
6068 		if (work > 0)
6069 			__NET_ADD_STATS(dev_net(napi->dev),
6070 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6071 		local_bh_enable();
6072 
6073 		if (!loop_end || loop_end(loop_end_arg, start_time))
6074 			break;
6075 
6076 		if (unlikely(need_resched())) {
6077 			if (napi_poll)
6078 				busy_poll_stop(napi, have_poll_lock);
6079 			preempt_enable();
6080 			rcu_read_unlock();
6081 			cond_resched();
6082 			if (loop_end(loop_end_arg, start_time))
6083 				return;
6084 			goto restart;
6085 		}
6086 		cpu_relax();
6087 	}
6088 	if (napi_poll)
6089 		busy_poll_stop(napi, have_poll_lock);
6090 	preempt_enable();
6091 out:
6092 	rcu_read_unlock();
6093 }
6094 EXPORT_SYMBOL(napi_busy_loop);
6095 
6096 #endif /* CONFIG_NET_RX_BUSY_POLL */
6097 
napi_hash_add(struct napi_struct * napi)6098 static void napi_hash_add(struct napi_struct *napi)
6099 {
6100 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6101 	    test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6102 		return;
6103 
6104 	spin_lock(&napi_hash_lock);
6105 
6106 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6107 	do {
6108 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6109 			napi_gen_id = MIN_NAPI_ID;
6110 	} while (napi_by_id(napi_gen_id));
6111 	napi->napi_id = napi_gen_id;
6112 
6113 	hlist_add_head_rcu(&napi->napi_hash_node,
6114 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6115 
6116 	spin_unlock(&napi_hash_lock);
6117 }
6118 
6119 /* Warning : caller is responsible to make sure rcu grace period
6120  * is respected before freeing memory containing @napi
6121  */
napi_hash_del(struct napi_struct * napi)6122 bool napi_hash_del(struct napi_struct *napi)
6123 {
6124 	bool rcu_sync_needed = false;
6125 
6126 	spin_lock(&napi_hash_lock);
6127 
6128 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6129 		rcu_sync_needed = true;
6130 		hlist_del_rcu(&napi->napi_hash_node);
6131 	}
6132 	spin_unlock(&napi_hash_lock);
6133 	return rcu_sync_needed;
6134 }
6135 EXPORT_SYMBOL_GPL(napi_hash_del);
6136 
napi_watchdog(struct hrtimer * timer)6137 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6138 {
6139 	struct napi_struct *napi;
6140 
6141 	napi = container_of(timer, struct napi_struct, timer);
6142 
6143 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6144 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6145 	 */
6146 	if (napi->gro_bitmask && !napi_disable_pending(napi) &&
6147 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6148 		__napi_schedule_irqoff(napi);
6149 
6150 	return HRTIMER_NORESTART;
6151 }
6152 
init_gro_hash(struct napi_struct * napi)6153 static void init_gro_hash(struct napi_struct *napi)
6154 {
6155 	int i;
6156 
6157 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6158 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6159 		napi->gro_hash[i].count = 0;
6160 	}
6161 	napi->gro_bitmask = 0;
6162 }
6163 
netif_napi_add(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int),int weight)6164 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6165 		    int (*poll)(struct napi_struct *, int), int weight)
6166 {
6167 	INIT_LIST_HEAD(&napi->poll_list);
6168 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6169 	napi->timer.function = napi_watchdog;
6170 	init_gro_hash(napi);
6171 	napi->skb = NULL;
6172 	napi->poll = poll;
6173 	if (weight > NAPI_POLL_WEIGHT)
6174 		pr_err_once("netif_napi_add() called with weight %d on device %s\n",
6175 			    weight, dev->name);
6176 	napi->weight = weight;
6177 	list_add(&napi->dev_list, &dev->napi_list);
6178 	napi->dev = dev;
6179 #ifdef CONFIG_NETPOLL
6180 	napi->poll_owner = -1;
6181 #endif
6182 	set_bit(NAPI_STATE_SCHED, &napi->state);
6183 	napi_hash_add(napi);
6184 }
6185 EXPORT_SYMBOL(netif_napi_add);
6186 
napi_disable(struct napi_struct * n)6187 void napi_disable(struct napi_struct *n)
6188 {
6189 	might_sleep();
6190 	set_bit(NAPI_STATE_DISABLE, &n->state);
6191 
6192 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6193 		msleep(1);
6194 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6195 		msleep(1);
6196 
6197 	hrtimer_cancel(&n->timer);
6198 
6199 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6200 }
6201 EXPORT_SYMBOL(napi_disable);
6202 
flush_gro_hash(struct napi_struct * napi)6203 static void flush_gro_hash(struct napi_struct *napi)
6204 {
6205 	int i;
6206 
6207 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6208 		struct sk_buff *skb, *n;
6209 
6210 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6211 			kfree_skb(skb);
6212 		napi->gro_hash[i].count = 0;
6213 	}
6214 }
6215 
6216 /* Must be called in process context */
netif_napi_del(struct napi_struct * napi)6217 void netif_napi_del(struct napi_struct *napi)
6218 {
6219 	might_sleep();
6220 	if (napi_hash_del(napi))
6221 		synchronize_net();
6222 	list_del_init(&napi->dev_list);
6223 	napi_free_frags(napi);
6224 
6225 	flush_gro_hash(napi);
6226 	napi->gro_bitmask = 0;
6227 }
6228 EXPORT_SYMBOL(netif_napi_del);
6229 
napi_poll(struct napi_struct * n,struct list_head * repoll)6230 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6231 {
6232 	void *have;
6233 	int work, weight;
6234 
6235 	list_del_init(&n->poll_list);
6236 
6237 	have = netpoll_poll_lock(n);
6238 
6239 	weight = n->weight;
6240 
6241 	/* This NAPI_STATE_SCHED test is for avoiding a race
6242 	 * with netpoll's poll_napi().  Only the entity which
6243 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6244 	 * actually make the ->poll() call.  Therefore we avoid
6245 	 * accidentally calling ->poll() when NAPI is not scheduled.
6246 	 */
6247 	work = 0;
6248 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6249 		work = n->poll(n, weight);
6250 		trace_napi_poll(n, work, weight);
6251 	}
6252 
6253 	WARN_ON_ONCE(work > weight);
6254 
6255 	if (likely(work < weight))
6256 		goto out_unlock;
6257 
6258 	/* Drivers must not modify the NAPI state if they
6259 	 * consume the entire weight.  In such cases this code
6260 	 * still "owns" the NAPI instance and therefore can
6261 	 * move the instance around on the list at-will.
6262 	 */
6263 	if (unlikely(napi_disable_pending(n))) {
6264 		napi_complete(n);
6265 		goto out_unlock;
6266 	}
6267 
6268 	if (n->gro_bitmask) {
6269 		/* flush too old packets
6270 		 * If HZ < 1000, flush all packets.
6271 		 */
6272 		napi_gro_flush(n, HZ >= 1000);
6273 	}
6274 
6275 	/* Some drivers may have called napi_schedule
6276 	 * prior to exhausting their budget.
6277 	 */
6278 	if (unlikely(!list_empty(&n->poll_list))) {
6279 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6280 			     n->dev ? n->dev->name : "backlog");
6281 		goto out_unlock;
6282 	}
6283 
6284 	list_add_tail(&n->poll_list, repoll);
6285 
6286 out_unlock:
6287 	netpoll_poll_unlock(have);
6288 
6289 	return work;
6290 }
6291 
net_rx_action(struct softirq_action * h)6292 static __latent_entropy void net_rx_action(struct softirq_action *h)
6293 {
6294 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6295 	unsigned long time_limit = jiffies +
6296 		usecs_to_jiffies(netdev_budget_usecs);
6297 	int budget = netdev_budget;
6298 	LIST_HEAD(list);
6299 	LIST_HEAD(repoll);
6300 
6301 	local_irq_disable();
6302 	list_splice_init(&sd->poll_list, &list);
6303 	local_irq_enable();
6304 
6305 	for (;;) {
6306 		struct napi_struct *n;
6307 
6308 		if (list_empty(&list)) {
6309 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6310 				goto out;
6311 			break;
6312 		}
6313 
6314 		n = list_first_entry(&list, struct napi_struct, poll_list);
6315 		budget -= napi_poll(n, &repoll);
6316 
6317 		/* If softirq window is exhausted then punt.
6318 		 * Allow this to run for 2 jiffies since which will allow
6319 		 * an average latency of 1.5/HZ.
6320 		 */
6321 		if (unlikely(budget <= 0 ||
6322 			     time_after_eq(jiffies, time_limit))) {
6323 			sd->time_squeeze++;
6324 			break;
6325 		}
6326 	}
6327 
6328 	local_irq_disable();
6329 
6330 	list_splice_tail_init(&sd->poll_list, &list);
6331 	list_splice_tail(&repoll, &list);
6332 	list_splice(&list, &sd->poll_list);
6333 	if (!list_empty(&sd->poll_list))
6334 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6335 
6336 	net_rps_action_and_irq_enable(sd);
6337 out:
6338 	__kfree_skb_flush();
6339 }
6340 
6341 struct netdev_adjacent {
6342 	struct net_device *dev;
6343 
6344 	/* upper master flag, there can only be one master device per list */
6345 	bool master;
6346 
6347 	/* counter for the number of times this device was added to us */
6348 	u16 ref_nr;
6349 
6350 	/* private field for the users */
6351 	void *private;
6352 
6353 	struct list_head list;
6354 	struct rcu_head rcu;
6355 };
6356 
__netdev_find_adj(struct net_device * adj_dev,struct list_head * adj_list)6357 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6358 						 struct list_head *adj_list)
6359 {
6360 	struct netdev_adjacent *adj;
6361 
6362 	list_for_each_entry(adj, adj_list, list) {
6363 		if (adj->dev == adj_dev)
6364 			return adj;
6365 	}
6366 	return NULL;
6367 }
6368 
__netdev_has_upper_dev(struct net_device * upper_dev,void * data)6369 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6370 {
6371 	struct net_device *dev = data;
6372 
6373 	return upper_dev == dev;
6374 }
6375 
6376 /**
6377  * netdev_has_upper_dev - Check if device is linked to an upper device
6378  * @dev: device
6379  * @upper_dev: upper device to check
6380  *
6381  * Find out if a device is linked to specified upper device and return true
6382  * in case it is. Note that this checks only immediate upper device,
6383  * not through a complete stack of devices. The caller must hold the RTNL lock.
6384  */
netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)6385 bool netdev_has_upper_dev(struct net_device *dev,
6386 			  struct net_device *upper_dev)
6387 {
6388 	ASSERT_RTNL();
6389 
6390 	return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6391 					     upper_dev);
6392 }
6393 EXPORT_SYMBOL(netdev_has_upper_dev);
6394 
6395 /**
6396  * netdev_has_upper_dev_all - Check if device is linked to an upper device
6397  * @dev: device
6398  * @upper_dev: upper device to check
6399  *
6400  * Find out if a device is linked to specified upper device and return true
6401  * in case it is. Note that this checks the entire upper device chain.
6402  * The caller must hold rcu lock.
6403  */
6404 
netdev_has_upper_dev_all_rcu(struct net_device * dev,struct net_device * upper_dev)6405 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6406 				  struct net_device *upper_dev)
6407 {
6408 	return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6409 					       upper_dev);
6410 }
6411 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6412 
6413 /**
6414  * netdev_has_any_upper_dev - Check if device is linked to some device
6415  * @dev: device
6416  *
6417  * Find out if a device is linked to an upper device and return true in case
6418  * it is. The caller must hold the RTNL lock.
6419  */
netdev_has_any_upper_dev(struct net_device * dev)6420 bool netdev_has_any_upper_dev(struct net_device *dev)
6421 {
6422 	ASSERT_RTNL();
6423 
6424 	return !list_empty(&dev->adj_list.upper);
6425 }
6426 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6427 
6428 /**
6429  * netdev_master_upper_dev_get - Get master upper device
6430  * @dev: device
6431  *
6432  * Find a master upper device and return pointer to it or NULL in case
6433  * it's not there. The caller must hold the RTNL lock.
6434  */
netdev_master_upper_dev_get(struct net_device * dev)6435 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6436 {
6437 	struct netdev_adjacent *upper;
6438 
6439 	ASSERT_RTNL();
6440 
6441 	if (list_empty(&dev->adj_list.upper))
6442 		return NULL;
6443 
6444 	upper = list_first_entry(&dev->adj_list.upper,
6445 				 struct netdev_adjacent, list);
6446 	if (likely(upper->master))
6447 		return upper->dev;
6448 	return NULL;
6449 }
6450 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6451 
6452 /**
6453  * netdev_has_any_lower_dev - Check if device is linked to some device
6454  * @dev: device
6455  *
6456  * Find out if a device is linked to a lower device and return true in case
6457  * it is. The caller must hold the RTNL lock.
6458  */
netdev_has_any_lower_dev(struct net_device * dev)6459 static bool netdev_has_any_lower_dev(struct net_device *dev)
6460 {
6461 	ASSERT_RTNL();
6462 
6463 	return !list_empty(&dev->adj_list.lower);
6464 }
6465 
netdev_adjacent_get_private(struct list_head * adj_list)6466 void *netdev_adjacent_get_private(struct list_head *adj_list)
6467 {
6468 	struct netdev_adjacent *adj;
6469 
6470 	adj = list_entry(adj_list, struct netdev_adjacent, list);
6471 
6472 	return adj->private;
6473 }
6474 EXPORT_SYMBOL(netdev_adjacent_get_private);
6475 
6476 /**
6477  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6478  * @dev: device
6479  * @iter: list_head ** of the current position
6480  *
6481  * Gets the next device from the dev's upper list, starting from iter
6482  * position. The caller must hold RCU read lock.
6483  */
netdev_upper_get_next_dev_rcu(struct net_device * dev,struct list_head ** iter)6484 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6485 						 struct list_head **iter)
6486 {
6487 	struct netdev_adjacent *upper;
6488 
6489 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6490 
6491 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6492 
6493 	if (&upper->list == &dev->adj_list.upper)
6494 		return NULL;
6495 
6496 	*iter = &upper->list;
6497 
6498 	return upper->dev;
6499 }
6500 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6501 
netdev_next_upper_dev_rcu(struct net_device * dev,struct list_head ** iter)6502 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6503 						    struct list_head **iter)
6504 {
6505 	struct netdev_adjacent *upper;
6506 
6507 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6508 
6509 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6510 
6511 	if (&upper->list == &dev->adj_list.upper)
6512 		return NULL;
6513 
6514 	*iter = &upper->list;
6515 
6516 	return upper->dev;
6517 }
6518 
netdev_walk_all_upper_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,void * data),void * data)6519 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6520 				  int (*fn)(struct net_device *dev,
6521 					    void *data),
6522 				  void *data)
6523 {
6524 	struct net_device *udev;
6525 	struct list_head *iter;
6526 	int ret;
6527 
6528 	for (iter = &dev->adj_list.upper,
6529 	     udev = netdev_next_upper_dev_rcu(dev, &iter);
6530 	     udev;
6531 	     udev = netdev_next_upper_dev_rcu(dev, &iter)) {
6532 		/* first is the upper device itself */
6533 		ret = fn(udev, data);
6534 		if (ret)
6535 			return ret;
6536 
6537 		/* then look at all of its upper devices */
6538 		ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
6539 		if (ret)
6540 			return ret;
6541 	}
6542 
6543 	return 0;
6544 }
6545 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6546 
6547 /**
6548  * netdev_lower_get_next_private - Get the next ->private from the
6549  *				   lower neighbour list
6550  * @dev: device
6551  * @iter: list_head ** of the current position
6552  *
6553  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6554  * list, starting from iter position. The caller must hold either hold the
6555  * RTNL lock or its own locking that guarantees that the neighbour lower
6556  * list will remain unchanged.
6557  */
netdev_lower_get_next_private(struct net_device * dev,struct list_head ** iter)6558 void *netdev_lower_get_next_private(struct net_device *dev,
6559 				    struct list_head **iter)
6560 {
6561 	struct netdev_adjacent *lower;
6562 
6563 	lower = list_entry(*iter, struct netdev_adjacent, list);
6564 
6565 	if (&lower->list == &dev->adj_list.lower)
6566 		return NULL;
6567 
6568 	*iter = lower->list.next;
6569 
6570 	return lower->private;
6571 }
6572 EXPORT_SYMBOL(netdev_lower_get_next_private);
6573 
6574 /**
6575  * netdev_lower_get_next_private_rcu - Get the next ->private from the
6576  *				       lower neighbour list, RCU
6577  *				       variant
6578  * @dev: device
6579  * @iter: list_head ** of the current position
6580  *
6581  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6582  * list, starting from iter position. The caller must hold RCU read lock.
6583  */
netdev_lower_get_next_private_rcu(struct net_device * dev,struct list_head ** iter)6584 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6585 					struct list_head **iter)
6586 {
6587 	struct netdev_adjacent *lower;
6588 
6589 	WARN_ON_ONCE(!rcu_read_lock_held());
6590 
6591 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6592 
6593 	if (&lower->list == &dev->adj_list.lower)
6594 		return NULL;
6595 
6596 	*iter = &lower->list;
6597 
6598 	return lower->private;
6599 }
6600 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6601 
6602 /**
6603  * netdev_lower_get_next - Get the next device from the lower neighbour
6604  *                         list
6605  * @dev: device
6606  * @iter: list_head ** of the current position
6607  *
6608  * Gets the next netdev_adjacent from the dev's lower neighbour
6609  * list, starting from iter position. The caller must hold RTNL lock or
6610  * its own locking that guarantees that the neighbour lower
6611  * list will remain unchanged.
6612  */
netdev_lower_get_next(struct net_device * dev,struct list_head ** iter)6613 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6614 {
6615 	struct netdev_adjacent *lower;
6616 
6617 	lower = list_entry(*iter, struct netdev_adjacent, list);
6618 
6619 	if (&lower->list == &dev->adj_list.lower)
6620 		return NULL;
6621 
6622 	*iter = lower->list.next;
6623 
6624 	return lower->dev;
6625 }
6626 EXPORT_SYMBOL(netdev_lower_get_next);
6627 
netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter)6628 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6629 						struct list_head **iter)
6630 {
6631 	struct netdev_adjacent *lower;
6632 
6633 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6634 
6635 	if (&lower->list == &dev->adj_list.lower)
6636 		return NULL;
6637 
6638 	*iter = &lower->list;
6639 
6640 	return lower->dev;
6641 }
6642 
netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,void * data),void * data)6643 int netdev_walk_all_lower_dev(struct net_device *dev,
6644 			      int (*fn)(struct net_device *dev,
6645 					void *data),
6646 			      void *data)
6647 {
6648 	struct net_device *ldev;
6649 	struct list_head *iter;
6650 	int ret;
6651 
6652 	for (iter = &dev->adj_list.lower,
6653 	     ldev = netdev_next_lower_dev(dev, &iter);
6654 	     ldev;
6655 	     ldev = netdev_next_lower_dev(dev, &iter)) {
6656 		/* first is the lower device itself */
6657 		ret = fn(ldev, data);
6658 		if (ret)
6659 			return ret;
6660 
6661 		/* then look at all of its lower devices */
6662 		ret = netdev_walk_all_lower_dev(ldev, fn, data);
6663 		if (ret)
6664 			return ret;
6665 	}
6666 
6667 	return 0;
6668 }
6669 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6670 
netdev_next_lower_dev_rcu(struct net_device * dev,struct list_head ** iter)6671 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6672 						    struct list_head **iter)
6673 {
6674 	struct netdev_adjacent *lower;
6675 
6676 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6677 	if (&lower->list == &dev->adj_list.lower)
6678 		return NULL;
6679 
6680 	*iter = &lower->list;
6681 
6682 	return lower->dev;
6683 }
6684 
netdev_walk_all_lower_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,void * data),void * data)6685 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6686 				  int (*fn)(struct net_device *dev,
6687 					    void *data),
6688 				  void *data)
6689 {
6690 	struct net_device *ldev;
6691 	struct list_head *iter;
6692 	int ret;
6693 
6694 	for (iter = &dev->adj_list.lower,
6695 	     ldev = netdev_next_lower_dev_rcu(dev, &iter);
6696 	     ldev;
6697 	     ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6698 		/* first is the lower device itself */
6699 		ret = fn(ldev, data);
6700 		if (ret)
6701 			return ret;
6702 
6703 		/* then look at all of its lower devices */
6704 		ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6705 		if (ret)
6706 			return ret;
6707 	}
6708 
6709 	return 0;
6710 }
6711 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6712 
6713 /**
6714  * netdev_lower_get_first_private_rcu - Get the first ->private from the
6715  *				       lower neighbour list, RCU
6716  *				       variant
6717  * @dev: device
6718  *
6719  * Gets the first netdev_adjacent->private from the dev's lower neighbour
6720  * list. The caller must hold RCU read lock.
6721  */
netdev_lower_get_first_private_rcu(struct net_device * dev)6722 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6723 {
6724 	struct netdev_adjacent *lower;
6725 
6726 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
6727 			struct netdev_adjacent, list);
6728 	if (lower)
6729 		return lower->private;
6730 	return NULL;
6731 }
6732 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6733 
6734 /**
6735  * netdev_master_upper_dev_get_rcu - Get master upper device
6736  * @dev: device
6737  *
6738  * Find a master upper device and return pointer to it or NULL in case
6739  * it's not there. The caller must hold the RCU read lock.
6740  */
netdev_master_upper_dev_get_rcu(struct net_device * dev)6741 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6742 {
6743 	struct netdev_adjacent *upper;
6744 
6745 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
6746 				       struct netdev_adjacent, list);
6747 	if (upper && likely(upper->master))
6748 		return upper->dev;
6749 	return NULL;
6750 }
6751 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6752 
netdev_adjacent_sysfs_add(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)6753 static int netdev_adjacent_sysfs_add(struct net_device *dev,
6754 			      struct net_device *adj_dev,
6755 			      struct list_head *dev_list)
6756 {
6757 	char linkname[IFNAMSIZ+7];
6758 
6759 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
6760 		"upper_%s" : "lower_%s", adj_dev->name);
6761 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6762 				 linkname);
6763 }
netdev_adjacent_sysfs_del(struct net_device * dev,char * name,struct list_head * dev_list)6764 static void netdev_adjacent_sysfs_del(struct net_device *dev,
6765 			       char *name,
6766 			       struct list_head *dev_list)
6767 {
6768 	char linkname[IFNAMSIZ+7];
6769 
6770 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
6771 		"upper_%s" : "lower_%s", name);
6772 	sysfs_remove_link(&(dev->dev.kobj), linkname);
6773 }
6774 
netdev_adjacent_is_neigh_list(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)6775 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6776 						 struct net_device *adj_dev,
6777 						 struct list_head *dev_list)
6778 {
6779 	return (dev_list == &dev->adj_list.upper ||
6780 		dev_list == &dev->adj_list.lower) &&
6781 		net_eq(dev_net(dev), dev_net(adj_dev));
6782 }
6783 
__netdev_adjacent_dev_insert(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list,void * private,bool master)6784 static int __netdev_adjacent_dev_insert(struct net_device *dev,
6785 					struct net_device *adj_dev,
6786 					struct list_head *dev_list,
6787 					void *private, bool master)
6788 {
6789 	struct netdev_adjacent *adj;
6790 	int ret;
6791 
6792 	adj = __netdev_find_adj(adj_dev, dev_list);
6793 
6794 	if (adj) {
6795 		adj->ref_nr += 1;
6796 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6797 			 dev->name, adj_dev->name, adj->ref_nr);
6798 
6799 		return 0;
6800 	}
6801 
6802 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6803 	if (!adj)
6804 		return -ENOMEM;
6805 
6806 	adj->dev = adj_dev;
6807 	adj->master = master;
6808 	adj->ref_nr = 1;
6809 	adj->private = private;
6810 	dev_hold(adj_dev);
6811 
6812 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6813 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6814 
6815 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6816 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6817 		if (ret)
6818 			goto free_adj;
6819 	}
6820 
6821 	/* Ensure that master link is always the first item in list. */
6822 	if (master) {
6823 		ret = sysfs_create_link(&(dev->dev.kobj),
6824 					&(adj_dev->dev.kobj), "master");
6825 		if (ret)
6826 			goto remove_symlinks;
6827 
6828 		list_add_rcu(&adj->list, dev_list);
6829 	} else {
6830 		list_add_tail_rcu(&adj->list, dev_list);
6831 	}
6832 
6833 	return 0;
6834 
6835 remove_symlinks:
6836 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6837 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6838 free_adj:
6839 	kfree(adj);
6840 	dev_put(adj_dev);
6841 
6842 	return ret;
6843 }
6844 
__netdev_adjacent_dev_remove(struct net_device * dev,struct net_device * adj_dev,u16 ref_nr,struct list_head * dev_list)6845 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6846 					 struct net_device *adj_dev,
6847 					 u16 ref_nr,
6848 					 struct list_head *dev_list)
6849 {
6850 	struct netdev_adjacent *adj;
6851 
6852 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6853 		 dev->name, adj_dev->name, ref_nr);
6854 
6855 	adj = __netdev_find_adj(adj_dev, dev_list);
6856 
6857 	if (!adj) {
6858 		pr_err("Adjacency does not exist for device %s from %s\n",
6859 		       dev->name, adj_dev->name);
6860 		WARN_ON(1);
6861 		return;
6862 	}
6863 
6864 	if (adj->ref_nr > ref_nr) {
6865 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6866 			 dev->name, adj_dev->name, ref_nr,
6867 			 adj->ref_nr - ref_nr);
6868 		adj->ref_nr -= ref_nr;
6869 		return;
6870 	}
6871 
6872 	if (adj->master)
6873 		sysfs_remove_link(&(dev->dev.kobj), "master");
6874 
6875 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6876 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6877 
6878 	list_del_rcu(&adj->list);
6879 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6880 		 adj_dev->name, dev->name, adj_dev->name);
6881 	dev_put(adj_dev);
6882 	kfree_rcu(adj, rcu);
6883 }
6884 
__netdev_adjacent_dev_link_lists(struct net_device * dev,struct net_device * upper_dev,struct list_head * up_list,struct list_head * down_list,void * private,bool master)6885 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6886 					    struct net_device *upper_dev,
6887 					    struct list_head *up_list,
6888 					    struct list_head *down_list,
6889 					    void *private, bool master)
6890 {
6891 	int ret;
6892 
6893 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6894 					   private, master);
6895 	if (ret)
6896 		return ret;
6897 
6898 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6899 					   private, false);
6900 	if (ret) {
6901 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6902 		return ret;
6903 	}
6904 
6905 	return 0;
6906 }
6907 
__netdev_adjacent_dev_unlink_lists(struct net_device * dev,struct net_device * upper_dev,u16 ref_nr,struct list_head * up_list,struct list_head * down_list)6908 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6909 					       struct net_device *upper_dev,
6910 					       u16 ref_nr,
6911 					       struct list_head *up_list,
6912 					       struct list_head *down_list)
6913 {
6914 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6915 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
6916 }
6917 
__netdev_adjacent_dev_link_neighbour(struct net_device * dev,struct net_device * upper_dev,void * private,bool master)6918 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6919 						struct net_device *upper_dev,
6920 						void *private, bool master)
6921 {
6922 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6923 						&dev->adj_list.upper,
6924 						&upper_dev->adj_list.lower,
6925 						private, master);
6926 }
6927 
__netdev_adjacent_dev_unlink_neighbour(struct net_device * dev,struct net_device * upper_dev)6928 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6929 						   struct net_device *upper_dev)
6930 {
6931 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
6932 					   &dev->adj_list.upper,
6933 					   &upper_dev->adj_list.lower);
6934 }
6935 
__netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,bool master,void * upper_priv,void * upper_info,struct netlink_ext_ack * extack)6936 static int __netdev_upper_dev_link(struct net_device *dev,
6937 				   struct net_device *upper_dev, bool master,
6938 				   void *upper_priv, void *upper_info,
6939 				   struct netlink_ext_ack *extack)
6940 {
6941 	struct netdev_notifier_changeupper_info changeupper_info = {
6942 		.info = {
6943 			.dev = dev,
6944 			.extack = extack,
6945 		},
6946 		.upper_dev = upper_dev,
6947 		.master = master,
6948 		.linking = true,
6949 		.upper_info = upper_info,
6950 	};
6951 	struct net_device *master_dev;
6952 	int ret = 0;
6953 
6954 	ASSERT_RTNL();
6955 
6956 	if (dev == upper_dev)
6957 		return -EBUSY;
6958 
6959 	/* To prevent loops, check if dev is not upper device to upper_dev. */
6960 	if (netdev_has_upper_dev(upper_dev, dev))
6961 		return -EBUSY;
6962 
6963 	if (!master) {
6964 		if (netdev_has_upper_dev(dev, upper_dev))
6965 			return -EEXIST;
6966 	} else {
6967 		master_dev = netdev_master_upper_dev_get(dev);
6968 		if (master_dev)
6969 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
6970 	}
6971 
6972 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6973 					    &changeupper_info.info);
6974 	ret = notifier_to_errno(ret);
6975 	if (ret)
6976 		return ret;
6977 
6978 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
6979 						   master);
6980 	if (ret)
6981 		return ret;
6982 
6983 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6984 					    &changeupper_info.info);
6985 	ret = notifier_to_errno(ret);
6986 	if (ret)
6987 		goto rollback;
6988 
6989 	return 0;
6990 
6991 rollback:
6992 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6993 
6994 	return ret;
6995 }
6996 
6997 /**
6998  * netdev_upper_dev_link - Add a link to the upper device
6999  * @dev: device
7000  * @upper_dev: new upper device
7001  * @extack: netlink extended ack
7002  *
7003  * Adds a link to device which is upper to this one. The caller must hold
7004  * the RTNL lock. On a failure a negative errno code is returned.
7005  * On success the reference counts are adjusted and the function
7006  * returns zero.
7007  */
netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,struct netlink_ext_ack * extack)7008 int netdev_upper_dev_link(struct net_device *dev,
7009 			  struct net_device *upper_dev,
7010 			  struct netlink_ext_ack *extack)
7011 {
7012 	return __netdev_upper_dev_link(dev, upper_dev, false,
7013 				       NULL, NULL, extack);
7014 }
7015 EXPORT_SYMBOL(netdev_upper_dev_link);
7016 
7017 /**
7018  * netdev_master_upper_dev_link - Add a master link to the upper device
7019  * @dev: device
7020  * @upper_dev: new upper device
7021  * @upper_priv: upper device private
7022  * @upper_info: upper info to be passed down via notifier
7023  * @extack: netlink extended ack
7024  *
7025  * Adds a link to device which is upper to this one. In this case, only
7026  * one master upper device can be linked, although other non-master devices
7027  * might be linked as well. The caller must hold the RTNL lock.
7028  * On a failure a negative errno code is returned. On success the reference
7029  * counts are adjusted and the function returns zero.
7030  */
netdev_master_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,void * upper_priv,void * upper_info,struct netlink_ext_ack * extack)7031 int netdev_master_upper_dev_link(struct net_device *dev,
7032 				 struct net_device *upper_dev,
7033 				 void *upper_priv, void *upper_info,
7034 				 struct netlink_ext_ack *extack)
7035 {
7036 	return __netdev_upper_dev_link(dev, upper_dev, true,
7037 				       upper_priv, upper_info, extack);
7038 }
7039 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7040 
7041 /**
7042  * netdev_upper_dev_unlink - Removes a link to upper device
7043  * @dev: device
7044  * @upper_dev: new upper device
7045  *
7046  * Removes a link to device which is upper to this one. The caller must hold
7047  * the RTNL lock.
7048  */
netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev)7049 void netdev_upper_dev_unlink(struct net_device *dev,
7050 			     struct net_device *upper_dev)
7051 {
7052 	struct netdev_notifier_changeupper_info changeupper_info = {
7053 		.info = {
7054 			.dev = dev,
7055 		},
7056 		.upper_dev = upper_dev,
7057 		.linking = false,
7058 	};
7059 
7060 	ASSERT_RTNL();
7061 
7062 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7063 
7064 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7065 				      &changeupper_info.info);
7066 
7067 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7068 
7069 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7070 				      &changeupper_info.info);
7071 }
7072 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7073 
7074 /**
7075  * netdev_bonding_info_change - Dispatch event about slave change
7076  * @dev: device
7077  * @bonding_info: info to dispatch
7078  *
7079  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7080  * The caller must hold the RTNL lock.
7081  */
netdev_bonding_info_change(struct net_device * dev,struct netdev_bonding_info * bonding_info)7082 void netdev_bonding_info_change(struct net_device *dev,
7083 				struct netdev_bonding_info *bonding_info)
7084 {
7085 	struct netdev_notifier_bonding_info info = {
7086 		.info.dev = dev,
7087 	};
7088 
7089 	memcpy(&info.bonding_info, bonding_info,
7090 	       sizeof(struct netdev_bonding_info));
7091 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7092 				      &info.info);
7093 }
7094 EXPORT_SYMBOL(netdev_bonding_info_change);
7095 
netdev_adjacent_add_links(struct net_device * dev)7096 static void netdev_adjacent_add_links(struct net_device *dev)
7097 {
7098 	struct netdev_adjacent *iter;
7099 
7100 	struct net *net = dev_net(dev);
7101 
7102 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7103 		if (!net_eq(net, dev_net(iter->dev)))
7104 			continue;
7105 		netdev_adjacent_sysfs_add(iter->dev, dev,
7106 					  &iter->dev->adj_list.lower);
7107 		netdev_adjacent_sysfs_add(dev, iter->dev,
7108 					  &dev->adj_list.upper);
7109 	}
7110 
7111 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7112 		if (!net_eq(net, dev_net(iter->dev)))
7113 			continue;
7114 		netdev_adjacent_sysfs_add(iter->dev, dev,
7115 					  &iter->dev->adj_list.upper);
7116 		netdev_adjacent_sysfs_add(dev, iter->dev,
7117 					  &dev->adj_list.lower);
7118 	}
7119 }
7120 
netdev_adjacent_del_links(struct net_device * dev)7121 static void netdev_adjacent_del_links(struct net_device *dev)
7122 {
7123 	struct netdev_adjacent *iter;
7124 
7125 	struct net *net = dev_net(dev);
7126 
7127 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7128 		if (!net_eq(net, dev_net(iter->dev)))
7129 			continue;
7130 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
7131 					  &iter->dev->adj_list.lower);
7132 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
7133 					  &dev->adj_list.upper);
7134 	}
7135 
7136 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7137 		if (!net_eq(net, dev_net(iter->dev)))
7138 			continue;
7139 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
7140 					  &iter->dev->adj_list.upper);
7141 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
7142 					  &dev->adj_list.lower);
7143 	}
7144 }
7145 
netdev_adjacent_rename_links(struct net_device * dev,char * oldname)7146 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7147 {
7148 	struct netdev_adjacent *iter;
7149 
7150 	struct net *net = dev_net(dev);
7151 
7152 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7153 		if (!net_eq(net, dev_net(iter->dev)))
7154 			continue;
7155 		netdev_adjacent_sysfs_del(iter->dev, oldname,
7156 					  &iter->dev->adj_list.lower);
7157 		netdev_adjacent_sysfs_add(iter->dev, dev,
7158 					  &iter->dev->adj_list.lower);
7159 	}
7160 
7161 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7162 		if (!net_eq(net, dev_net(iter->dev)))
7163 			continue;
7164 		netdev_adjacent_sysfs_del(iter->dev, oldname,
7165 					  &iter->dev->adj_list.upper);
7166 		netdev_adjacent_sysfs_add(iter->dev, dev,
7167 					  &iter->dev->adj_list.upper);
7168 	}
7169 }
7170 
netdev_lower_dev_get_private(struct net_device * dev,struct net_device * lower_dev)7171 void *netdev_lower_dev_get_private(struct net_device *dev,
7172 				   struct net_device *lower_dev)
7173 {
7174 	struct netdev_adjacent *lower;
7175 
7176 	if (!lower_dev)
7177 		return NULL;
7178 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7179 	if (!lower)
7180 		return NULL;
7181 
7182 	return lower->private;
7183 }
7184 EXPORT_SYMBOL(netdev_lower_dev_get_private);
7185 
7186 
dev_get_nest_level(struct net_device * dev)7187 int dev_get_nest_level(struct net_device *dev)
7188 {
7189 	struct net_device *lower = NULL;
7190 	struct list_head *iter;
7191 	int max_nest = -1;
7192 	int nest;
7193 
7194 	ASSERT_RTNL();
7195 
7196 	netdev_for_each_lower_dev(dev, lower, iter) {
7197 		nest = dev_get_nest_level(lower);
7198 		if (max_nest < nest)
7199 			max_nest = nest;
7200 	}
7201 
7202 	return max_nest + 1;
7203 }
7204 EXPORT_SYMBOL(dev_get_nest_level);
7205 
7206 /**
7207  * netdev_lower_change - Dispatch event about lower device state change
7208  * @lower_dev: device
7209  * @lower_state_info: state to dispatch
7210  *
7211  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7212  * The caller must hold the RTNL lock.
7213  */
netdev_lower_state_changed(struct net_device * lower_dev,void * lower_state_info)7214 void netdev_lower_state_changed(struct net_device *lower_dev,
7215 				void *lower_state_info)
7216 {
7217 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7218 		.info.dev = lower_dev,
7219 	};
7220 
7221 	ASSERT_RTNL();
7222 	changelowerstate_info.lower_state_info = lower_state_info;
7223 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7224 				      &changelowerstate_info.info);
7225 }
7226 EXPORT_SYMBOL(netdev_lower_state_changed);
7227 
dev_change_rx_flags(struct net_device * dev,int flags)7228 static void dev_change_rx_flags(struct net_device *dev, int flags)
7229 {
7230 	const struct net_device_ops *ops = dev->netdev_ops;
7231 
7232 	if (ops->ndo_change_rx_flags)
7233 		ops->ndo_change_rx_flags(dev, flags);
7234 }
7235 
__dev_set_promiscuity(struct net_device * dev,int inc,bool notify)7236 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7237 {
7238 	unsigned int old_flags = dev->flags;
7239 	kuid_t uid;
7240 	kgid_t gid;
7241 
7242 	ASSERT_RTNL();
7243 
7244 	dev->flags |= IFF_PROMISC;
7245 	dev->promiscuity += inc;
7246 	if (dev->promiscuity == 0) {
7247 		/*
7248 		 * Avoid overflow.
7249 		 * If inc causes overflow, untouch promisc and return error.
7250 		 */
7251 		if (inc < 0)
7252 			dev->flags &= ~IFF_PROMISC;
7253 		else {
7254 			dev->promiscuity -= inc;
7255 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7256 				dev->name);
7257 			return -EOVERFLOW;
7258 		}
7259 	}
7260 	if (dev->flags != old_flags) {
7261 		pr_info("device %s %s promiscuous mode\n",
7262 			dev->name,
7263 			dev->flags & IFF_PROMISC ? "entered" : "left");
7264 		if (audit_enabled) {
7265 			current_uid_gid(&uid, &gid);
7266 			audit_log(audit_context(), GFP_ATOMIC,
7267 				  AUDIT_ANOM_PROMISCUOUS,
7268 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7269 				  dev->name, (dev->flags & IFF_PROMISC),
7270 				  (old_flags & IFF_PROMISC),
7271 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
7272 				  from_kuid(&init_user_ns, uid),
7273 				  from_kgid(&init_user_ns, gid),
7274 				  audit_get_sessionid(current));
7275 		}
7276 
7277 		dev_change_rx_flags(dev, IFF_PROMISC);
7278 	}
7279 	if (notify)
7280 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
7281 	return 0;
7282 }
7283 
7284 /**
7285  *	dev_set_promiscuity	- update promiscuity count on a device
7286  *	@dev: device
7287  *	@inc: modifier
7288  *
7289  *	Add or remove promiscuity from a device. While the count in the device
7290  *	remains above zero the interface remains promiscuous. Once it hits zero
7291  *	the device reverts back to normal filtering operation. A negative inc
7292  *	value is used to drop promiscuity on the device.
7293  *	Return 0 if successful or a negative errno code on error.
7294  */
dev_set_promiscuity(struct net_device * dev,int inc)7295 int dev_set_promiscuity(struct net_device *dev, int inc)
7296 {
7297 	unsigned int old_flags = dev->flags;
7298 	int err;
7299 
7300 	err = __dev_set_promiscuity(dev, inc, true);
7301 	if (err < 0)
7302 		return err;
7303 	if (dev->flags != old_flags)
7304 		dev_set_rx_mode(dev);
7305 	return err;
7306 }
7307 EXPORT_SYMBOL(dev_set_promiscuity);
7308 
__dev_set_allmulti(struct net_device * dev,int inc,bool notify)7309 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
7310 {
7311 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
7312 
7313 	ASSERT_RTNL();
7314 
7315 	dev->flags |= IFF_ALLMULTI;
7316 	dev->allmulti += inc;
7317 	if (dev->allmulti == 0) {
7318 		/*
7319 		 * Avoid overflow.
7320 		 * If inc causes overflow, untouch allmulti and return error.
7321 		 */
7322 		if (inc < 0)
7323 			dev->flags &= ~IFF_ALLMULTI;
7324 		else {
7325 			dev->allmulti -= inc;
7326 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
7327 				dev->name);
7328 			return -EOVERFLOW;
7329 		}
7330 	}
7331 	if (dev->flags ^ old_flags) {
7332 		dev_change_rx_flags(dev, IFF_ALLMULTI);
7333 		dev_set_rx_mode(dev);
7334 		if (notify)
7335 			__dev_notify_flags(dev, old_flags,
7336 					   dev->gflags ^ old_gflags);
7337 	}
7338 	return 0;
7339 }
7340 
7341 /**
7342  *	dev_set_allmulti	- update allmulti count on a device
7343  *	@dev: device
7344  *	@inc: modifier
7345  *
7346  *	Add or remove reception of all multicast frames to a device. While the
7347  *	count in the device remains above zero the interface remains listening
7348  *	to all interfaces. Once it hits zero the device reverts back to normal
7349  *	filtering operation. A negative @inc value is used to drop the counter
7350  *	when releasing a resource needing all multicasts.
7351  *	Return 0 if successful or a negative errno code on error.
7352  */
7353 
dev_set_allmulti(struct net_device * dev,int inc)7354 int dev_set_allmulti(struct net_device *dev, int inc)
7355 {
7356 	return __dev_set_allmulti(dev, inc, true);
7357 }
7358 EXPORT_SYMBOL(dev_set_allmulti);
7359 
7360 /*
7361  *	Upload unicast and multicast address lists to device and
7362  *	configure RX filtering. When the device doesn't support unicast
7363  *	filtering it is put in promiscuous mode while unicast addresses
7364  *	are present.
7365  */
__dev_set_rx_mode(struct net_device * dev)7366 void __dev_set_rx_mode(struct net_device *dev)
7367 {
7368 	const struct net_device_ops *ops = dev->netdev_ops;
7369 
7370 	/* dev_open will call this function so the list will stay sane. */
7371 	if (!(dev->flags&IFF_UP))
7372 		return;
7373 
7374 	if (!netif_device_present(dev))
7375 		return;
7376 
7377 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
7378 		/* Unicast addresses changes may only happen under the rtnl,
7379 		 * therefore calling __dev_set_promiscuity here is safe.
7380 		 */
7381 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
7382 			__dev_set_promiscuity(dev, 1, false);
7383 			dev->uc_promisc = true;
7384 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
7385 			__dev_set_promiscuity(dev, -1, false);
7386 			dev->uc_promisc = false;
7387 		}
7388 	}
7389 
7390 	if (ops->ndo_set_rx_mode)
7391 		ops->ndo_set_rx_mode(dev);
7392 }
7393 
dev_set_rx_mode(struct net_device * dev)7394 void dev_set_rx_mode(struct net_device *dev)
7395 {
7396 	netif_addr_lock_bh(dev);
7397 	__dev_set_rx_mode(dev);
7398 	netif_addr_unlock_bh(dev);
7399 }
7400 
7401 /**
7402  *	dev_get_flags - get flags reported to userspace
7403  *	@dev: device
7404  *
7405  *	Get the combination of flag bits exported through APIs to userspace.
7406  */
dev_get_flags(const struct net_device * dev)7407 unsigned int dev_get_flags(const struct net_device *dev)
7408 {
7409 	unsigned int flags;
7410 
7411 	flags = (dev->flags & ~(IFF_PROMISC |
7412 				IFF_ALLMULTI |
7413 				IFF_RUNNING |
7414 				IFF_LOWER_UP |
7415 				IFF_DORMANT)) |
7416 		(dev->gflags & (IFF_PROMISC |
7417 				IFF_ALLMULTI));
7418 
7419 	if (netif_running(dev)) {
7420 		if (netif_oper_up(dev))
7421 			flags |= IFF_RUNNING;
7422 		if (netif_carrier_ok(dev))
7423 			flags |= IFF_LOWER_UP;
7424 		if (netif_dormant(dev))
7425 			flags |= IFF_DORMANT;
7426 	}
7427 
7428 	return flags;
7429 }
7430 EXPORT_SYMBOL(dev_get_flags);
7431 
__dev_change_flags(struct net_device * dev,unsigned int flags)7432 int __dev_change_flags(struct net_device *dev, unsigned int flags)
7433 {
7434 	unsigned int old_flags = dev->flags;
7435 	int ret;
7436 
7437 	ASSERT_RTNL();
7438 
7439 	/*
7440 	 *	Set the flags on our device.
7441 	 */
7442 
7443 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
7444 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
7445 			       IFF_AUTOMEDIA)) |
7446 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
7447 				    IFF_ALLMULTI));
7448 
7449 	/*
7450 	 *	Load in the correct multicast list now the flags have changed.
7451 	 */
7452 
7453 	if ((old_flags ^ flags) & IFF_MULTICAST)
7454 		dev_change_rx_flags(dev, IFF_MULTICAST);
7455 
7456 	dev_set_rx_mode(dev);
7457 
7458 	/*
7459 	 *	Have we downed the interface. We handle IFF_UP ourselves
7460 	 *	according to user attempts to set it, rather than blindly
7461 	 *	setting it.
7462 	 */
7463 
7464 	ret = 0;
7465 	if ((old_flags ^ flags) & IFF_UP) {
7466 		if (old_flags & IFF_UP)
7467 			__dev_close(dev);
7468 		else
7469 			ret = __dev_open(dev);
7470 	}
7471 
7472 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
7473 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
7474 		unsigned int old_flags = dev->flags;
7475 
7476 		dev->gflags ^= IFF_PROMISC;
7477 
7478 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
7479 			if (dev->flags != old_flags)
7480 				dev_set_rx_mode(dev);
7481 	}
7482 
7483 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
7484 	 * is important. Some (broken) drivers set IFF_PROMISC, when
7485 	 * IFF_ALLMULTI is requested not asking us and not reporting.
7486 	 */
7487 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
7488 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
7489 
7490 		dev->gflags ^= IFF_ALLMULTI;
7491 		__dev_set_allmulti(dev, inc, false);
7492 	}
7493 
7494 	return ret;
7495 }
7496 
__dev_notify_flags(struct net_device * dev,unsigned int old_flags,unsigned int gchanges)7497 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
7498 			unsigned int gchanges)
7499 {
7500 	unsigned int changes = dev->flags ^ old_flags;
7501 
7502 	if (gchanges)
7503 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
7504 
7505 	if (changes & IFF_UP) {
7506 		if (dev->flags & IFF_UP)
7507 			call_netdevice_notifiers(NETDEV_UP, dev);
7508 		else
7509 			call_netdevice_notifiers(NETDEV_DOWN, dev);
7510 	}
7511 
7512 	if (dev->flags & IFF_UP &&
7513 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
7514 		struct netdev_notifier_change_info change_info = {
7515 			.info = {
7516 				.dev = dev,
7517 			},
7518 			.flags_changed = changes,
7519 		};
7520 
7521 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
7522 	}
7523 }
7524 
7525 /**
7526  *	dev_change_flags - change device settings
7527  *	@dev: device
7528  *	@flags: device state flags
7529  *
7530  *	Change settings on device based state flags. The flags are
7531  *	in the userspace exported format.
7532  */
dev_change_flags(struct net_device * dev,unsigned int flags)7533 int dev_change_flags(struct net_device *dev, unsigned int flags)
7534 {
7535 	int ret;
7536 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
7537 
7538 	ret = __dev_change_flags(dev, flags);
7539 	if (ret < 0)
7540 		return ret;
7541 
7542 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
7543 	__dev_notify_flags(dev, old_flags, changes);
7544 	return ret;
7545 }
7546 EXPORT_SYMBOL(dev_change_flags);
7547 
__dev_set_mtu(struct net_device * dev,int new_mtu)7548 int __dev_set_mtu(struct net_device *dev, int new_mtu)
7549 {
7550 	const struct net_device_ops *ops = dev->netdev_ops;
7551 
7552 	if (ops->ndo_change_mtu)
7553 		return ops->ndo_change_mtu(dev, new_mtu);
7554 
7555 	dev->mtu = new_mtu;
7556 	return 0;
7557 }
7558 EXPORT_SYMBOL(__dev_set_mtu);
7559 
7560 /**
7561  *	dev_set_mtu_ext - Change maximum transfer unit
7562  *	@dev: device
7563  *	@new_mtu: new transfer unit
7564  *	@extack: netlink extended ack
7565  *
7566  *	Change the maximum transfer size of the network device.
7567  */
dev_set_mtu_ext(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)7568 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
7569 		    struct netlink_ext_ack *extack)
7570 {
7571 	int err, orig_mtu;
7572 
7573 	if (new_mtu == dev->mtu)
7574 		return 0;
7575 
7576 	/* MTU must be positive, and in range */
7577 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7578 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
7579 		return -EINVAL;
7580 	}
7581 
7582 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7583 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
7584 		return -EINVAL;
7585 	}
7586 
7587 	if (!netif_device_present(dev))
7588 		return -ENODEV;
7589 
7590 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7591 	err = notifier_to_errno(err);
7592 	if (err)
7593 		return err;
7594 
7595 	orig_mtu = dev->mtu;
7596 	err = __dev_set_mtu(dev, new_mtu);
7597 
7598 	if (!err) {
7599 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7600 						   orig_mtu);
7601 		err = notifier_to_errno(err);
7602 		if (err) {
7603 			/* setting mtu back and notifying everyone again,
7604 			 * so that they have a chance to revert changes.
7605 			 */
7606 			__dev_set_mtu(dev, orig_mtu);
7607 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7608 						     new_mtu);
7609 		}
7610 	}
7611 	return err;
7612 }
7613 
dev_set_mtu(struct net_device * dev,int new_mtu)7614 int dev_set_mtu(struct net_device *dev, int new_mtu)
7615 {
7616 	struct netlink_ext_ack extack;
7617 	int err;
7618 
7619 	memset(&extack, 0, sizeof(extack));
7620 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
7621 	if (err && extack._msg)
7622 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
7623 	return err;
7624 }
7625 EXPORT_SYMBOL(dev_set_mtu);
7626 
7627 /**
7628  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
7629  *	@dev: device
7630  *	@new_len: new tx queue length
7631  */
dev_change_tx_queue_len(struct net_device * dev,unsigned long new_len)7632 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
7633 {
7634 	unsigned int orig_len = dev->tx_queue_len;
7635 	int res;
7636 
7637 	if (new_len != (unsigned int)new_len)
7638 		return -ERANGE;
7639 
7640 	if (new_len != orig_len) {
7641 		dev->tx_queue_len = new_len;
7642 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
7643 		res = notifier_to_errno(res);
7644 		if (res)
7645 			goto err_rollback;
7646 		res = dev_qdisc_change_tx_queue_len(dev);
7647 		if (res)
7648 			goto err_rollback;
7649 	}
7650 
7651 	return 0;
7652 
7653 err_rollback:
7654 	netdev_err(dev, "refused to change device tx_queue_len\n");
7655 	dev->tx_queue_len = orig_len;
7656 	return res;
7657 }
7658 
7659 /**
7660  *	dev_set_group - Change group this device belongs to
7661  *	@dev: device
7662  *	@new_group: group this device should belong to
7663  */
dev_set_group(struct net_device * dev,int new_group)7664 void dev_set_group(struct net_device *dev, int new_group)
7665 {
7666 	dev->group = new_group;
7667 }
7668 EXPORT_SYMBOL(dev_set_group);
7669 
7670 /**
7671  *	dev_set_mac_address - Change Media Access Control Address
7672  *	@dev: device
7673  *	@sa: new address
7674  *
7675  *	Change the hardware (MAC) address of the device
7676  */
dev_set_mac_address(struct net_device * dev,struct sockaddr * sa)7677 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
7678 {
7679 	const struct net_device_ops *ops = dev->netdev_ops;
7680 	int err;
7681 
7682 	if (!ops->ndo_set_mac_address)
7683 		return -EOPNOTSUPP;
7684 	if (sa->sa_family != dev->type)
7685 		return -EINVAL;
7686 	if (!netif_device_present(dev))
7687 		return -ENODEV;
7688 	err = ops->ndo_set_mac_address(dev, sa);
7689 	if (err)
7690 		return err;
7691 	dev->addr_assign_type = NET_ADDR_SET;
7692 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7693 	add_device_randomness(dev->dev_addr, dev->addr_len);
7694 	return 0;
7695 }
7696 EXPORT_SYMBOL(dev_set_mac_address);
7697 
7698 /**
7699  *	dev_change_carrier - Change device carrier
7700  *	@dev: device
7701  *	@new_carrier: new value
7702  *
7703  *	Change device carrier
7704  */
dev_change_carrier(struct net_device * dev,bool new_carrier)7705 int dev_change_carrier(struct net_device *dev, bool new_carrier)
7706 {
7707 	const struct net_device_ops *ops = dev->netdev_ops;
7708 
7709 	if (!ops->ndo_change_carrier)
7710 		return -EOPNOTSUPP;
7711 	if (!netif_device_present(dev))
7712 		return -ENODEV;
7713 	return ops->ndo_change_carrier(dev, new_carrier);
7714 }
7715 EXPORT_SYMBOL(dev_change_carrier);
7716 
7717 /**
7718  *	dev_get_phys_port_id - Get device physical port ID
7719  *	@dev: device
7720  *	@ppid: port ID
7721  *
7722  *	Get device physical port ID
7723  */
dev_get_phys_port_id(struct net_device * dev,struct netdev_phys_item_id * ppid)7724 int dev_get_phys_port_id(struct net_device *dev,
7725 			 struct netdev_phys_item_id *ppid)
7726 {
7727 	const struct net_device_ops *ops = dev->netdev_ops;
7728 
7729 	if (!ops->ndo_get_phys_port_id)
7730 		return -EOPNOTSUPP;
7731 	return ops->ndo_get_phys_port_id(dev, ppid);
7732 }
7733 EXPORT_SYMBOL(dev_get_phys_port_id);
7734 
7735 /**
7736  *	dev_get_phys_port_name - Get device physical port name
7737  *	@dev: device
7738  *	@name: port name
7739  *	@len: limit of bytes to copy to name
7740  *
7741  *	Get device physical port name
7742  */
dev_get_phys_port_name(struct net_device * dev,char * name,size_t len)7743 int dev_get_phys_port_name(struct net_device *dev,
7744 			   char *name, size_t len)
7745 {
7746 	const struct net_device_ops *ops = dev->netdev_ops;
7747 
7748 	if (!ops->ndo_get_phys_port_name)
7749 		return -EOPNOTSUPP;
7750 	return ops->ndo_get_phys_port_name(dev, name, len);
7751 }
7752 EXPORT_SYMBOL(dev_get_phys_port_name);
7753 
7754 /**
7755  *	dev_change_proto_down - update protocol port state information
7756  *	@dev: device
7757  *	@proto_down: new value
7758  *
7759  *	This info can be used by switch drivers to set the phys state of the
7760  *	port.
7761  */
dev_change_proto_down(struct net_device * dev,bool proto_down)7762 int dev_change_proto_down(struct net_device *dev, bool proto_down)
7763 {
7764 	const struct net_device_ops *ops = dev->netdev_ops;
7765 
7766 	if (!ops->ndo_change_proto_down)
7767 		return -EOPNOTSUPP;
7768 	if (!netif_device_present(dev))
7769 		return -ENODEV;
7770 	return ops->ndo_change_proto_down(dev, proto_down);
7771 }
7772 EXPORT_SYMBOL(dev_change_proto_down);
7773 
__dev_xdp_query(struct net_device * dev,bpf_op_t bpf_op,enum bpf_netdev_command cmd)7774 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
7775 		    enum bpf_netdev_command cmd)
7776 {
7777 	struct netdev_bpf xdp;
7778 
7779 	if (!bpf_op)
7780 		return 0;
7781 
7782 	memset(&xdp, 0, sizeof(xdp));
7783 	xdp.command = cmd;
7784 
7785 	/* Query must always succeed. */
7786 	WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
7787 
7788 	return xdp.prog_id;
7789 }
7790 
dev_xdp_install(struct net_device * dev,bpf_op_t bpf_op,struct netlink_ext_ack * extack,u32 flags,struct bpf_prog * prog)7791 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
7792 			   struct netlink_ext_ack *extack, u32 flags,
7793 			   struct bpf_prog *prog)
7794 {
7795 	struct netdev_bpf xdp;
7796 
7797 	memset(&xdp, 0, sizeof(xdp));
7798 	if (flags & XDP_FLAGS_HW_MODE)
7799 		xdp.command = XDP_SETUP_PROG_HW;
7800 	else
7801 		xdp.command = XDP_SETUP_PROG;
7802 	xdp.extack = extack;
7803 	xdp.flags = flags;
7804 	xdp.prog = prog;
7805 
7806 	return bpf_op(dev, &xdp);
7807 }
7808 
dev_xdp_uninstall(struct net_device * dev)7809 static void dev_xdp_uninstall(struct net_device *dev)
7810 {
7811 	struct netdev_bpf xdp;
7812 	bpf_op_t ndo_bpf;
7813 
7814 	/* Remove generic XDP */
7815 	WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
7816 
7817 	/* Remove from the driver */
7818 	ndo_bpf = dev->netdev_ops->ndo_bpf;
7819 	if (!ndo_bpf)
7820 		return;
7821 
7822 	memset(&xdp, 0, sizeof(xdp));
7823 	xdp.command = XDP_QUERY_PROG;
7824 	WARN_ON(ndo_bpf(dev, &xdp));
7825 	if (xdp.prog_id)
7826 		WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
7827 					NULL));
7828 
7829 	/* Remove HW offload */
7830 	memset(&xdp, 0, sizeof(xdp));
7831 	xdp.command = XDP_QUERY_PROG_HW;
7832 	if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
7833 		WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
7834 					NULL));
7835 }
7836 
7837 /**
7838  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
7839  *	@dev: device
7840  *	@extack: netlink extended ack
7841  *	@fd: new program fd or negative value to clear
7842  *	@flags: xdp-related flags
7843  *
7844  *	Set or clear a bpf program for a device
7845  */
dev_change_xdp_fd(struct net_device * dev,struct netlink_ext_ack * extack,int fd,u32 flags)7846 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
7847 		      int fd, u32 flags)
7848 {
7849 	const struct net_device_ops *ops = dev->netdev_ops;
7850 	enum bpf_netdev_command query;
7851 	struct bpf_prog *prog = NULL;
7852 	bpf_op_t bpf_op, bpf_chk;
7853 	int err;
7854 
7855 	ASSERT_RTNL();
7856 
7857 	query = flags & XDP_FLAGS_HW_MODE ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
7858 
7859 	bpf_op = bpf_chk = ops->ndo_bpf;
7860 	if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
7861 		return -EOPNOTSUPP;
7862 	if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
7863 		bpf_op = generic_xdp_install;
7864 	if (bpf_op == bpf_chk)
7865 		bpf_chk = generic_xdp_install;
7866 
7867 	if (fd >= 0) {
7868 		if (__dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG) ||
7869 		    __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG_HW))
7870 			return -EEXIST;
7871 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
7872 		    __dev_xdp_query(dev, bpf_op, query))
7873 			return -EBUSY;
7874 
7875 		prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
7876 					     bpf_op == ops->ndo_bpf);
7877 		if (IS_ERR(prog))
7878 			return PTR_ERR(prog);
7879 
7880 		if (!(flags & XDP_FLAGS_HW_MODE) &&
7881 		    bpf_prog_is_dev_bound(prog->aux)) {
7882 			NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
7883 			bpf_prog_put(prog);
7884 			return -EINVAL;
7885 		}
7886 	}
7887 
7888 	err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
7889 	if (err < 0 && prog)
7890 		bpf_prog_put(prog);
7891 
7892 	return err;
7893 }
7894 
7895 /**
7896  *	dev_new_index	-	allocate an ifindex
7897  *	@net: the applicable net namespace
7898  *
7899  *	Returns a suitable unique value for a new device interface
7900  *	number.  The caller must hold the rtnl semaphore or the
7901  *	dev_base_lock to be sure it remains unique.
7902  */
dev_new_index(struct net * net)7903 static int dev_new_index(struct net *net)
7904 {
7905 	int ifindex = net->ifindex;
7906 
7907 	for (;;) {
7908 		if (++ifindex <= 0)
7909 			ifindex = 1;
7910 		if (!__dev_get_by_index(net, ifindex))
7911 			return net->ifindex = ifindex;
7912 	}
7913 }
7914 
7915 /* Delayed registration/unregisteration */
7916 static LIST_HEAD(net_todo_list);
7917 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
7918 
net_set_todo(struct net_device * dev)7919 static void net_set_todo(struct net_device *dev)
7920 {
7921 	list_add_tail(&dev->todo_list, &net_todo_list);
7922 	dev_net(dev)->dev_unreg_count++;
7923 }
7924 
rollback_registered_many(struct list_head * head)7925 static void rollback_registered_many(struct list_head *head)
7926 {
7927 	struct net_device *dev, *tmp;
7928 	LIST_HEAD(close_head);
7929 
7930 	BUG_ON(dev_boot_phase);
7931 	ASSERT_RTNL();
7932 
7933 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
7934 		/* Some devices call without registering
7935 		 * for initialization unwind. Remove those
7936 		 * devices and proceed with the remaining.
7937 		 */
7938 		if (dev->reg_state == NETREG_UNINITIALIZED) {
7939 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7940 				 dev->name, dev);
7941 
7942 			WARN_ON(1);
7943 			list_del(&dev->unreg_list);
7944 			continue;
7945 		}
7946 		dev->dismantle = true;
7947 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
7948 	}
7949 
7950 	/* If device is running, close it first. */
7951 	list_for_each_entry(dev, head, unreg_list)
7952 		list_add_tail(&dev->close_list, &close_head);
7953 	dev_close_many(&close_head, true);
7954 
7955 	list_for_each_entry(dev, head, unreg_list) {
7956 		/* And unlink it from device chain. */
7957 		unlist_netdevice(dev);
7958 
7959 		dev->reg_state = NETREG_UNREGISTERING;
7960 	}
7961 	flush_all_backlogs();
7962 
7963 	synchronize_net();
7964 
7965 	list_for_each_entry(dev, head, unreg_list) {
7966 		struct sk_buff *skb = NULL;
7967 
7968 		/* Shutdown queueing discipline. */
7969 		dev_shutdown(dev);
7970 
7971 		dev_xdp_uninstall(dev);
7972 
7973 		/* Notify protocols, that we are about to destroy
7974 		 * this device. They should clean all the things.
7975 		 */
7976 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7977 
7978 		if (!dev->rtnl_link_ops ||
7979 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7980 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
7981 						     GFP_KERNEL, NULL, 0);
7982 
7983 		/*
7984 		 *	Flush the unicast and multicast chains
7985 		 */
7986 		dev_uc_flush(dev);
7987 		dev_mc_flush(dev);
7988 
7989 		if (dev->netdev_ops->ndo_uninit)
7990 			dev->netdev_ops->ndo_uninit(dev);
7991 
7992 		if (skb)
7993 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
7994 
7995 		/* Notifier chain MUST detach us all upper devices. */
7996 		WARN_ON(netdev_has_any_upper_dev(dev));
7997 		WARN_ON(netdev_has_any_lower_dev(dev));
7998 
7999 		/* Remove entries from kobject tree */
8000 		netdev_unregister_kobject(dev);
8001 #ifdef CONFIG_XPS
8002 		/* Remove XPS queueing entries */
8003 		netif_reset_xps_queues_gt(dev, 0);
8004 #endif
8005 	}
8006 
8007 	synchronize_net();
8008 
8009 	list_for_each_entry(dev, head, unreg_list)
8010 		dev_put(dev);
8011 }
8012 
rollback_registered(struct net_device * dev)8013 static void rollback_registered(struct net_device *dev)
8014 {
8015 	LIST_HEAD(single);
8016 
8017 	list_add(&dev->unreg_list, &single);
8018 	rollback_registered_many(&single);
8019 	list_del(&single);
8020 }
8021 
netdev_sync_upper_features(struct net_device * lower,struct net_device * upper,netdev_features_t features)8022 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
8023 	struct net_device *upper, netdev_features_t features)
8024 {
8025 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8026 	netdev_features_t feature;
8027 	int feature_bit;
8028 
8029 	for_each_netdev_feature(&upper_disables, feature_bit) {
8030 		feature = __NETIF_F_BIT(feature_bit);
8031 		if (!(upper->wanted_features & feature)
8032 		    && (features & feature)) {
8033 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8034 				   &feature, upper->name);
8035 			features &= ~feature;
8036 		}
8037 	}
8038 
8039 	return features;
8040 }
8041 
netdev_sync_lower_features(struct net_device * upper,struct net_device * lower,netdev_features_t features)8042 static void netdev_sync_lower_features(struct net_device *upper,
8043 	struct net_device *lower, netdev_features_t features)
8044 {
8045 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8046 	netdev_features_t feature;
8047 	int feature_bit;
8048 
8049 	for_each_netdev_feature(&upper_disables, feature_bit) {
8050 		feature = __NETIF_F_BIT(feature_bit);
8051 		if (!(features & feature) && (lower->features & feature)) {
8052 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8053 				   &feature, lower->name);
8054 			lower->wanted_features &= ~feature;
8055 			netdev_update_features(lower);
8056 
8057 			if (unlikely(lower->features & feature))
8058 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8059 					    &feature, lower->name);
8060 		}
8061 	}
8062 }
8063 
netdev_fix_features(struct net_device * dev,netdev_features_t features)8064 static netdev_features_t netdev_fix_features(struct net_device *dev,
8065 	netdev_features_t features)
8066 {
8067 	/* Fix illegal checksum combinations */
8068 	if ((features & NETIF_F_HW_CSUM) &&
8069 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
8070 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
8071 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8072 	}
8073 
8074 	/* TSO requires that SG is present as well. */
8075 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
8076 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
8077 		features &= ~NETIF_F_ALL_TSO;
8078 	}
8079 
8080 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8081 					!(features & NETIF_F_IP_CSUM)) {
8082 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8083 		features &= ~NETIF_F_TSO;
8084 		features &= ~NETIF_F_TSO_ECN;
8085 	}
8086 
8087 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8088 					 !(features & NETIF_F_IPV6_CSUM)) {
8089 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8090 		features &= ~NETIF_F_TSO6;
8091 	}
8092 
8093 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8094 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8095 		features &= ~NETIF_F_TSO_MANGLEID;
8096 
8097 	/* TSO ECN requires that TSO is present as well. */
8098 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8099 		features &= ~NETIF_F_TSO_ECN;
8100 
8101 	/* Software GSO depends on SG. */
8102 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
8103 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
8104 		features &= ~NETIF_F_GSO;
8105 	}
8106 
8107 	/* GSO partial features require GSO partial be set */
8108 	if ((features & dev->gso_partial_features) &&
8109 	    !(features & NETIF_F_GSO_PARTIAL)) {
8110 		netdev_dbg(dev,
8111 			   "Dropping partially supported GSO features since no GSO partial.\n");
8112 		features &= ~dev->gso_partial_features;
8113 	}
8114 
8115 	if (!(features & NETIF_F_RXCSUM)) {
8116 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8117 		 * successfully merged by hardware must also have the
8118 		 * checksum verified by hardware.  If the user does not
8119 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
8120 		 */
8121 		if (features & NETIF_F_GRO_HW) {
8122 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8123 			features &= ~NETIF_F_GRO_HW;
8124 		}
8125 	}
8126 
8127 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
8128 	if (features & NETIF_F_RXFCS) {
8129 		if (features & NETIF_F_LRO) {
8130 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8131 			features &= ~NETIF_F_LRO;
8132 		}
8133 
8134 		if (features & NETIF_F_GRO_HW) {
8135 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8136 			features &= ~NETIF_F_GRO_HW;
8137 		}
8138 	}
8139 
8140 	return features;
8141 }
8142 
__netdev_update_features(struct net_device * dev)8143 int __netdev_update_features(struct net_device *dev)
8144 {
8145 	struct net_device *upper, *lower;
8146 	netdev_features_t features;
8147 	struct list_head *iter;
8148 	int err = -1;
8149 
8150 	ASSERT_RTNL();
8151 
8152 	features = netdev_get_wanted_features(dev);
8153 
8154 	if (dev->netdev_ops->ndo_fix_features)
8155 		features = dev->netdev_ops->ndo_fix_features(dev, features);
8156 
8157 	/* driver might be less strict about feature dependencies */
8158 	features = netdev_fix_features(dev, features);
8159 
8160 	/* some features can't be enabled if they're off an an upper device */
8161 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
8162 		features = netdev_sync_upper_features(dev, upper, features);
8163 
8164 	if (dev->features == features)
8165 		goto sync_lower;
8166 
8167 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
8168 		&dev->features, &features);
8169 
8170 	if (dev->netdev_ops->ndo_set_features)
8171 		err = dev->netdev_ops->ndo_set_features(dev, features);
8172 	else
8173 		err = 0;
8174 
8175 	if (unlikely(err < 0)) {
8176 		netdev_err(dev,
8177 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
8178 			err, &features, &dev->features);
8179 		/* return non-0 since some features might have changed and
8180 		 * it's better to fire a spurious notification than miss it
8181 		 */
8182 		return -1;
8183 	}
8184 
8185 sync_lower:
8186 	/* some features must be disabled on lower devices when disabled
8187 	 * on an upper device (think: bonding master or bridge)
8188 	 */
8189 	netdev_for_each_lower_dev(dev, lower, iter)
8190 		netdev_sync_lower_features(dev, lower, features);
8191 
8192 	if (!err) {
8193 		netdev_features_t diff = features ^ dev->features;
8194 
8195 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
8196 			/* udp_tunnel_{get,drop}_rx_info both need
8197 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
8198 			 * device, or they won't do anything.
8199 			 * Thus we need to update dev->features
8200 			 * *before* calling udp_tunnel_get_rx_info,
8201 			 * but *after* calling udp_tunnel_drop_rx_info.
8202 			 */
8203 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
8204 				dev->features = features;
8205 				udp_tunnel_get_rx_info(dev);
8206 			} else {
8207 				udp_tunnel_drop_rx_info(dev);
8208 			}
8209 		}
8210 
8211 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
8212 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
8213 				dev->features = features;
8214 				err |= vlan_get_rx_ctag_filter_info(dev);
8215 			} else {
8216 				vlan_drop_rx_ctag_filter_info(dev);
8217 			}
8218 		}
8219 
8220 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
8221 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
8222 				dev->features = features;
8223 				err |= vlan_get_rx_stag_filter_info(dev);
8224 			} else {
8225 				vlan_drop_rx_stag_filter_info(dev);
8226 			}
8227 		}
8228 
8229 		dev->features = features;
8230 	}
8231 
8232 	return err < 0 ? 0 : 1;
8233 }
8234 
8235 /**
8236  *	netdev_update_features - recalculate device features
8237  *	@dev: the device to check
8238  *
8239  *	Recalculate dev->features set and send notifications if it
8240  *	has changed. Should be called after driver or hardware dependent
8241  *	conditions might have changed that influence the features.
8242  */
netdev_update_features(struct net_device * dev)8243 void netdev_update_features(struct net_device *dev)
8244 {
8245 	if (__netdev_update_features(dev))
8246 		netdev_features_change(dev);
8247 }
8248 EXPORT_SYMBOL(netdev_update_features);
8249 
8250 /**
8251  *	netdev_change_features - recalculate device features
8252  *	@dev: the device to check
8253  *
8254  *	Recalculate dev->features set and send notifications even
8255  *	if they have not changed. Should be called instead of
8256  *	netdev_update_features() if also dev->vlan_features might
8257  *	have changed to allow the changes to be propagated to stacked
8258  *	VLAN devices.
8259  */
netdev_change_features(struct net_device * dev)8260 void netdev_change_features(struct net_device *dev)
8261 {
8262 	__netdev_update_features(dev);
8263 	netdev_features_change(dev);
8264 }
8265 EXPORT_SYMBOL(netdev_change_features);
8266 
8267 /**
8268  *	netif_stacked_transfer_operstate -	transfer operstate
8269  *	@rootdev: the root or lower level device to transfer state from
8270  *	@dev: the device to transfer operstate to
8271  *
8272  *	Transfer operational state from root to device. This is normally
8273  *	called when a stacking relationship exists between the root
8274  *	device and the device(a leaf device).
8275  */
netif_stacked_transfer_operstate(const struct net_device * rootdev,struct net_device * dev)8276 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
8277 					struct net_device *dev)
8278 {
8279 	if (rootdev->operstate == IF_OPER_DORMANT)
8280 		netif_dormant_on(dev);
8281 	else
8282 		netif_dormant_off(dev);
8283 
8284 	if (netif_carrier_ok(rootdev))
8285 		netif_carrier_on(dev);
8286 	else
8287 		netif_carrier_off(dev);
8288 }
8289 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
8290 
netif_alloc_rx_queues(struct net_device * dev)8291 static int netif_alloc_rx_queues(struct net_device *dev)
8292 {
8293 	unsigned int i, count = dev->num_rx_queues;
8294 	struct netdev_rx_queue *rx;
8295 	size_t sz = count * sizeof(*rx);
8296 	int err = 0;
8297 
8298 	BUG_ON(count < 1);
8299 
8300 	rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8301 	if (!rx)
8302 		return -ENOMEM;
8303 
8304 	dev->_rx = rx;
8305 
8306 	for (i = 0; i < count; i++) {
8307 		rx[i].dev = dev;
8308 
8309 		/* XDP RX-queue setup */
8310 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
8311 		if (err < 0)
8312 			goto err_rxq_info;
8313 	}
8314 	return 0;
8315 
8316 err_rxq_info:
8317 	/* Rollback successful reg's and free other resources */
8318 	while (i--)
8319 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
8320 	kvfree(dev->_rx);
8321 	dev->_rx = NULL;
8322 	return err;
8323 }
8324 
netif_free_rx_queues(struct net_device * dev)8325 static void netif_free_rx_queues(struct net_device *dev)
8326 {
8327 	unsigned int i, count = dev->num_rx_queues;
8328 
8329 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
8330 	if (!dev->_rx)
8331 		return;
8332 
8333 	for (i = 0; i < count; i++)
8334 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
8335 
8336 	kvfree(dev->_rx);
8337 }
8338 
netdev_init_one_queue(struct net_device * dev,struct netdev_queue * queue,void * _unused)8339 static void netdev_init_one_queue(struct net_device *dev,
8340 				  struct netdev_queue *queue, void *_unused)
8341 {
8342 	/* Initialize queue lock */
8343 	spin_lock_init(&queue->_xmit_lock);
8344 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
8345 	queue->xmit_lock_owner = -1;
8346 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
8347 	queue->dev = dev;
8348 #ifdef CONFIG_BQL
8349 	dql_init(&queue->dql, HZ);
8350 #endif
8351 }
8352 
netif_free_tx_queues(struct net_device * dev)8353 static void netif_free_tx_queues(struct net_device *dev)
8354 {
8355 	kvfree(dev->_tx);
8356 }
8357 
netif_alloc_netdev_queues(struct net_device * dev)8358 static int netif_alloc_netdev_queues(struct net_device *dev)
8359 {
8360 	unsigned int count = dev->num_tx_queues;
8361 	struct netdev_queue *tx;
8362 	size_t sz = count * sizeof(*tx);
8363 
8364 	if (count < 1 || count > 0xffff)
8365 		return -EINVAL;
8366 
8367 	tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8368 	if (!tx)
8369 		return -ENOMEM;
8370 
8371 	dev->_tx = tx;
8372 
8373 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
8374 	spin_lock_init(&dev->tx_global_lock);
8375 
8376 	return 0;
8377 }
8378 
netif_tx_stop_all_queues(struct net_device * dev)8379 void netif_tx_stop_all_queues(struct net_device *dev)
8380 {
8381 	unsigned int i;
8382 
8383 	for (i = 0; i < dev->num_tx_queues; i++) {
8384 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
8385 
8386 		netif_tx_stop_queue(txq);
8387 	}
8388 }
8389 EXPORT_SYMBOL(netif_tx_stop_all_queues);
8390 
8391 /**
8392  *	register_netdevice	- register a network device
8393  *	@dev: device to register
8394  *
8395  *	Take a completed network device structure and add it to the kernel
8396  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8397  *	chain. 0 is returned on success. A negative errno code is returned
8398  *	on a failure to set up the device, or if the name is a duplicate.
8399  *
8400  *	Callers must hold the rtnl semaphore. You may want
8401  *	register_netdev() instead of this.
8402  *
8403  *	BUGS:
8404  *	The locking appears insufficient to guarantee two parallel registers
8405  *	will not get the same name.
8406  */
8407 
register_netdevice(struct net_device * dev)8408 int register_netdevice(struct net_device *dev)
8409 {
8410 	int ret;
8411 	struct net *net = dev_net(dev);
8412 
8413 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
8414 		     NETDEV_FEATURE_COUNT);
8415 	BUG_ON(dev_boot_phase);
8416 	ASSERT_RTNL();
8417 
8418 	might_sleep();
8419 
8420 	/* When net_device's are persistent, this will be fatal. */
8421 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
8422 	BUG_ON(!net);
8423 
8424 	spin_lock_init(&dev->addr_list_lock);
8425 	netdev_set_addr_lockdep_class(dev);
8426 
8427 	ret = dev_get_valid_name(net, dev, dev->name);
8428 	if (ret < 0)
8429 		goto out;
8430 
8431 	/* Init, if this function is available */
8432 	if (dev->netdev_ops->ndo_init) {
8433 		ret = dev->netdev_ops->ndo_init(dev);
8434 		if (ret) {
8435 			if (ret > 0)
8436 				ret = -EIO;
8437 			goto out;
8438 		}
8439 	}
8440 
8441 	if (((dev->hw_features | dev->features) &
8442 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
8443 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
8444 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
8445 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
8446 		ret = -EINVAL;
8447 		goto err_uninit;
8448 	}
8449 
8450 	ret = -EBUSY;
8451 	if (!dev->ifindex)
8452 		dev->ifindex = dev_new_index(net);
8453 	else if (__dev_get_by_index(net, dev->ifindex))
8454 		goto err_uninit;
8455 
8456 	/* Transfer changeable features to wanted_features and enable
8457 	 * software offloads (GSO and GRO).
8458 	 */
8459 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
8460 	dev->features |= NETIF_F_SOFT_FEATURES;
8461 
8462 	if (dev->netdev_ops->ndo_udp_tunnel_add) {
8463 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8464 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8465 	}
8466 
8467 	dev->wanted_features = dev->features & dev->hw_features;
8468 
8469 	if (!(dev->flags & IFF_LOOPBACK))
8470 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
8471 
8472 	/* If IPv4 TCP segmentation offload is supported we should also
8473 	 * allow the device to enable segmenting the frame with the option
8474 	 * of ignoring a static IP ID value.  This doesn't enable the
8475 	 * feature itself but allows the user to enable it later.
8476 	 */
8477 	if (dev->hw_features & NETIF_F_TSO)
8478 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
8479 	if (dev->vlan_features & NETIF_F_TSO)
8480 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
8481 	if (dev->mpls_features & NETIF_F_TSO)
8482 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
8483 	if (dev->hw_enc_features & NETIF_F_TSO)
8484 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
8485 
8486 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
8487 	 */
8488 	dev->vlan_features |= NETIF_F_HIGHDMA;
8489 
8490 	/* Make NETIF_F_SG inheritable to tunnel devices.
8491 	 */
8492 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
8493 
8494 	/* Make NETIF_F_SG inheritable to MPLS.
8495 	 */
8496 	dev->mpls_features |= NETIF_F_SG;
8497 
8498 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
8499 	ret = notifier_to_errno(ret);
8500 	if (ret)
8501 		goto err_uninit;
8502 
8503 	ret = netdev_register_kobject(dev);
8504 	if (ret)
8505 		goto err_uninit;
8506 	dev->reg_state = NETREG_REGISTERED;
8507 
8508 	__netdev_update_features(dev);
8509 
8510 	/*
8511 	 *	Default initial state at registry is that the
8512 	 *	device is present.
8513 	 */
8514 
8515 	set_bit(__LINK_STATE_PRESENT, &dev->state);
8516 
8517 	linkwatch_init_dev(dev);
8518 
8519 	dev_init_scheduler(dev);
8520 	dev_hold(dev);
8521 	list_netdevice(dev);
8522 	add_device_randomness(dev->dev_addr, dev->addr_len);
8523 
8524 	/* If the device has permanent device address, driver should
8525 	 * set dev_addr and also addr_assign_type should be set to
8526 	 * NET_ADDR_PERM (default value).
8527 	 */
8528 	if (dev->addr_assign_type == NET_ADDR_PERM)
8529 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
8530 
8531 	/* Notify protocols, that a new device appeared. */
8532 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
8533 	ret = notifier_to_errno(ret);
8534 	if (ret) {
8535 		rollback_registered(dev);
8536 		dev->reg_state = NETREG_UNREGISTERED;
8537 	}
8538 	/*
8539 	 *	Prevent userspace races by waiting until the network
8540 	 *	device is fully setup before sending notifications.
8541 	 */
8542 	if (!dev->rtnl_link_ops ||
8543 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8544 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8545 
8546 out:
8547 	return ret;
8548 
8549 err_uninit:
8550 	if (dev->netdev_ops->ndo_uninit)
8551 		dev->netdev_ops->ndo_uninit(dev);
8552 	if (dev->priv_destructor)
8553 		dev->priv_destructor(dev);
8554 	goto out;
8555 }
8556 EXPORT_SYMBOL(register_netdevice);
8557 
8558 /**
8559  *	init_dummy_netdev	- init a dummy network device for NAPI
8560  *	@dev: device to init
8561  *
8562  *	This takes a network device structure and initialize the minimum
8563  *	amount of fields so it can be used to schedule NAPI polls without
8564  *	registering a full blown interface. This is to be used by drivers
8565  *	that need to tie several hardware interfaces to a single NAPI
8566  *	poll scheduler due to HW limitations.
8567  */
init_dummy_netdev(struct net_device * dev)8568 int init_dummy_netdev(struct net_device *dev)
8569 {
8570 	/* Clear everything. Note we don't initialize spinlocks
8571 	 * are they aren't supposed to be taken by any of the
8572 	 * NAPI code and this dummy netdev is supposed to be
8573 	 * only ever used for NAPI polls
8574 	 */
8575 	memset(dev, 0, sizeof(struct net_device));
8576 
8577 	/* make sure we BUG if trying to hit standard
8578 	 * register/unregister code path
8579 	 */
8580 	dev->reg_state = NETREG_DUMMY;
8581 
8582 	/* NAPI wants this */
8583 	INIT_LIST_HEAD(&dev->napi_list);
8584 
8585 	/* a dummy interface is started by default */
8586 	set_bit(__LINK_STATE_PRESENT, &dev->state);
8587 	set_bit(__LINK_STATE_START, &dev->state);
8588 
8589 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
8590 	 * because users of this 'device' dont need to change
8591 	 * its refcount.
8592 	 */
8593 
8594 	return 0;
8595 }
8596 EXPORT_SYMBOL_GPL(init_dummy_netdev);
8597 
8598 
8599 /**
8600  *	register_netdev	- register a network device
8601  *	@dev: device to register
8602  *
8603  *	Take a completed network device structure and add it to the kernel
8604  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8605  *	chain. 0 is returned on success. A negative errno code is returned
8606  *	on a failure to set up the device, or if the name is a duplicate.
8607  *
8608  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
8609  *	and expands the device name if you passed a format string to
8610  *	alloc_netdev.
8611  */
register_netdev(struct net_device * dev)8612 int register_netdev(struct net_device *dev)
8613 {
8614 	int err;
8615 
8616 	if (rtnl_lock_killable())
8617 		return -EINTR;
8618 	err = register_netdevice(dev);
8619 	rtnl_unlock();
8620 	return err;
8621 }
8622 EXPORT_SYMBOL(register_netdev);
8623 
netdev_refcnt_read(const struct net_device * dev)8624 int netdev_refcnt_read(const struct net_device *dev)
8625 {
8626 	int i, refcnt = 0;
8627 
8628 	for_each_possible_cpu(i)
8629 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
8630 	return refcnt;
8631 }
8632 EXPORT_SYMBOL(netdev_refcnt_read);
8633 
8634 /**
8635  * netdev_wait_allrefs - wait until all references are gone.
8636  * @dev: target net_device
8637  *
8638  * This is called when unregistering network devices.
8639  *
8640  * Any protocol or device that holds a reference should register
8641  * for netdevice notification, and cleanup and put back the
8642  * reference if they receive an UNREGISTER event.
8643  * We can get stuck here if buggy protocols don't correctly
8644  * call dev_put.
8645  */
netdev_wait_allrefs(struct net_device * dev)8646 static void netdev_wait_allrefs(struct net_device *dev)
8647 {
8648 	unsigned long rebroadcast_time, warning_time;
8649 	int refcnt;
8650 
8651 	linkwatch_forget_dev(dev);
8652 
8653 	rebroadcast_time = warning_time = jiffies;
8654 	refcnt = netdev_refcnt_read(dev);
8655 
8656 	while (refcnt != 0) {
8657 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
8658 			rtnl_lock();
8659 
8660 			/* Rebroadcast unregister notification */
8661 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8662 
8663 			__rtnl_unlock();
8664 			rcu_barrier();
8665 			rtnl_lock();
8666 
8667 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
8668 				     &dev->state)) {
8669 				/* We must not have linkwatch events
8670 				 * pending on unregister. If this
8671 				 * happens, we simply run the queue
8672 				 * unscheduled, resulting in a noop
8673 				 * for this device.
8674 				 */
8675 				linkwatch_run_queue();
8676 			}
8677 
8678 			__rtnl_unlock();
8679 
8680 			rebroadcast_time = jiffies;
8681 		}
8682 
8683 		msleep(250);
8684 
8685 		refcnt = netdev_refcnt_read(dev);
8686 
8687 		if (time_after(jiffies, warning_time + 10 * HZ)) {
8688 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8689 				 dev->name, refcnt);
8690 			warning_time = jiffies;
8691 		}
8692 	}
8693 }
8694 
8695 /* The sequence is:
8696  *
8697  *	rtnl_lock();
8698  *	...
8699  *	register_netdevice(x1);
8700  *	register_netdevice(x2);
8701  *	...
8702  *	unregister_netdevice(y1);
8703  *	unregister_netdevice(y2);
8704  *      ...
8705  *	rtnl_unlock();
8706  *	free_netdev(y1);
8707  *	free_netdev(y2);
8708  *
8709  * We are invoked by rtnl_unlock().
8710  * This allows us to deal with problems:
8711  * 1) We can delete sysfs objects which invoke hotplug
8712  *    without deadlocking with linkwatch via keventd.
8713  * 2) Since we run with the RTNL semaphore not held, we can sleep
8714  *    safely in order to wait for the netdev refcnt to drop to zero.
8715  *
8716  * We must not return until all unregister events added during
8717  * the interval the lock was held have been completed.
8718  */
netdev_run_todo(void)8719 void netdev_run_todo(void)
8720 {
8721 	struct list_head list;
8722 
8723 	/* Snapshot list, allow later requests */
8724 	list_replace_init(&net_todo_list, &list);
8725 
8726 	__rtnl_unlock();
8727 
8728 
8729 	/* Wait for rcu callbacks to finish before next phase */
8730 	if (!list_empty(&list))
8731 		rcu_barrier();
8732 
8733 	while (!list_empty(&list)) {
8734 		struct net_device *dev
8735 			= list_first_entry(&list, struct net_device, todo_list);
8736 		list_del(&dev->todo_list);
8737 
8738 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
8739 			pr_err("network todo '%s' but state %d\n",
8740 			       dev->name, dev->reg_state);
8741 			dump_stack();
8742 			continue;
8743 		}
8744 
8745 		dev->reg_state = NETREG_UNREGISTERED;
8746 
8747 		netdev_wait_allrefs(dev);
8748 
8749 		/* paranoia */
8750 		BUG_ON(netdev_refcnt_read(dev));
8751 		BUG_ON(!list_empty(&dev->ptype_all));
8752 		BUG_ON(!list_empty(&dev->ptype_specific));
8753 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
8754 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
8755 #if IS_ENABLED(CONFIG_DECNET)
8756 		WARN_ON(dev->dn_ptr);
8757 #endif
8758 		if (dev->priv_destructor)
8759 			dev->priv_destructor(dev);
8760 		if (dev->needs_free_netdev)
8761 			free_netdev(dev);
8762 
8763 		/* Report a network device has been unregistered */
8764 		rtnl_lock();
8765 		dev_net(dev)->dev_unreg_count--;
8766 		__rtnl_unlock();
8767 		wake_up(&netdev_unregistering_wq);
8768 
8769 		/* Free network device */
8770 		kobject_put(&dev->dev.kobj);
8771 	}
8772 }
8773 
8774 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
8775  * all the same fields in the same order as net_device_stats, with only
8776  * the type differing, but rtnl_link_stats64 may have additional fields
8777  * at the end for newer counters.
8778  */
netdev_stats_to_stats64(struct rtnl_link_stats64 * stats64,const struct net_device_stats * netdev_stats)8779 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
8780 			     const struct net_device_stats *netdev_stats)
8781 {
8782 #if BITS_PER_LONG == 64
8783 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
8784 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
8785 	/* zero out counters that only exist in rtnl_link_stats64 */
8786 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
8787 	       sizeof(*stats64) - sizeof(*netdev_stats));
8788 #else
8789 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
8790 	const unsigned long *src = (const unsigned long *)netdev_stats;
8791 	u64 *dst = (u64 *)stats64;
8792 
8793 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
8794 	for (i = 0; i < n; i++)
8795 		dst[i] = src[i];
8796 	/* zero out counters that only exist in rtnl_link_stats64 */
8797 	memset((char *)stats64 + n * sizeof(u64), 0,
8798 	       sizeof(*stats64) - n * sizeof(u64));
8799 #endif
8800 }
8801 EXPORT_SYMBOL(netdev_stats_to_stats64);
8802 
8803 /**
8804  *	dev_get_stats	- get network device statistics
8805  *	@dev: device to get statistics from
8806  *	@storage: place to store stats
8807  *
8808  *	Get network statistics from device. Return @storage.
8809  *	The device driver may provide its own method by setting
8810  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
8811  *	otherwise the internal statistics structure is used.
8812  */
dev_get_stats(struct net_device * dev,struct rtnl_link_stats64 * storage)8813 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
8814 					struct rtnl_link_stats64 *storage)
8815 {
8816 	const struct net_device_ops *ops = dev->netdev_ops;
8817 
8818 	if (ops->ndo_get_stats64) {
8819 		memset(storage, 0, sizeof(*storage));
8820 		ops->ndo_get_stats64(dev, storage);
8821 	} else if (ops->ndo_get_stats) {
8822 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
8823 	} else {
8824 		netdev_stats_to_stats64(storage, &dev->stats);
8825 	}
8826 	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
8827 	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
8828 	storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
8829 	return storage;
8830 }
8831 EXPORT_SYMBOL(dev_get_stats);
8832 
dev_ingress_queue_create(struct net_device * dev)8833 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
8834 {
8835 	struct netdev_queue *queue = dev_ingress_queue(dev);
8836 
8837 #ifdef CONFIG_NET_CLS_ACT
8838 	if (queue)
8839 		return queue;
8840 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
8841 	if (!queue)
8842 		return NULL;
8843 	netdev_init_one_queue(dev, queue, NULL);
8844 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
8845 	queue->qdisc_sleeping = &noop_qdisc;
8846 	rcu_assign_pointer(dev->ingress_queue, queue);
8847 #endif
8848 	return queue;
8849 }
8850 
8851 static const struct ethtool_ops default_ethtool_ops;
8852 
netdev_set_default_ethtool_ops(struct net_device * dev,const struct ethtool_ops * ops)8853 void netdev_set_default_ethtool_ops(struct net_device *dev,
8854 				    const struct ethtool_ops *ops)
8855 {
8856 	if (dev->ethtool_ops == &default_ethtool_ops)
8857 		dev->ethtool_ops = ops;
8858 }
8859 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
8860 
netdev_freemem(struct net_device * dev)8861 void netdev_freemem(struct net_device *dev)
8862 {
8863 	char *addr = (char *)dev - dev->padded;
8864 
8865 	kvfree(addr);
8866 }
8867 
8868 /**
8869  * alloc_netdev_mqs - allocate network device
8870  * @sizeof_priv: size of private data to allocate space for
8871  * @name: device name format string
8872  * @name_assign_type: origin of device name
8873  * @setup: callback to initialize device
8874  * @txqs: the number of TX subqueues to allocate
8875  * @rxqs: the number of RX subqueues to allocate
8876  *
8877  * Allocates a struct net_device with private data area for driver use
8878  * and performs basic initialization.  Also allocates subqueue structs
8879  * for each queue on the device.
8880  */
alloc_netdev_mqs(int sizeof_priv,const char * name,unsigned char name_assign_type,void (* setup)(struct net_device *),unsigned int txqs,unsigned int rxqs)8881 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
8882 		unsigned char name_assign_type,
8883 		void (*setup)(struct net_device *),
8884 		unsigned int txqs, unsigned int rxqs)
8885 {
8886 	struct net_device *dev;
8887 	unsigned int alloc_size;
8888 	struct net_device *p;
8889 
8890 	BUG_ON(strlen(name) >= sizeof(dev->name));
8891 
8892 	if (txqs < 1) {
8893 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
8894 		return NULL;
8895 	}
8896 
8897 	if (rxqs < 1) {
8898 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
8899 		return NULL;
8900 	}
8901 
8902 	alloc_size = sizeof(struct net_device);
8903 	if (sizeof_priv) {
8904 		/* ensure 32-byte alignment of private area */
8905 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
8906 		alloc_size += sizeof_priv;
8907 	}
8908 	/* ensure 32-byte alignment of whole construct */
8909 	alloc_size += NETDEV_ALIGN - 1;
8910 
8911 	p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8912 	if (!p)
8913 		return NULL;
8914 
8915 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
8916 	dev->padded = (char *)dev - (char *)p;
8917 
8918 	dev->pcpu_refcnt = alloc_percpu(int);
8919 	if (!dev->pcpu_refcnt)
8920 		goto free_dev;
8921 
8922 	if (dev_addr_init(dev))
8923 		goto free_pcpu;
8924 
8925 	dev_mc_init(dev);
8926 	dev_uc_init(dev);
8927 
8928 	dev_net_set(dev, &init_net);
8929 
8930 	dev->gso_max_size = GSO_MAX_SIZE;
8931 	dev->gso_max_segs = GSO_MAX_SEGS;
8932 
8933 	INIT_LIST_HEAD(&dev->napi_list);
8934 	INIT_LIST_HEAD(&dev->unreg_list);
8935 	INIT_LIST_HEAD(&dev->close_list);
8936 	INIT_LIST_HEAD(&dev->link_watch_list);
8937 	INIT_LIST_HEAD(&dev->adj_list.upper);
8938 	INIT_LIST_HEAD(&dev->adj_list.lower);
8939 	INIT_LIST_HEAD(&dev->ptype_all);
8940 	INIT_LIST_HEAD(&dev->ptype_specific);
8941 #ifdef CONFIG_NET_SCHED
8942 	hash_init(dev->qdisc_hash);
8943 #endif
8944 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8945 	setup(dev);
8946 
8947 	if (!dev->tx_queue_len) {
8948 		dev->priv_flags |= IFF_NO_QUEUE;
8949 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
8950 	}
8951 
8952 	dev->num_tx_queues = txqs;
8953 	dev->real_num_tx_queues = txqs;
8954 	if (netif_alloc_netdev_queues(dev))
8955 		goto free_all;
8956 
8957 	dev->num_rx_queues = rxqs;
8958 	dev->real_num_rx_queues = rxqs;
8959 	if (netif_alloc_rx_queues(dev))
8960 		goto free_all;
8961 
8962 	strcpy(dev->name, name);
8963 	dev->name_assign_type = name_assign_type;
8964 	dev->group = INIT_NETDEV_GROUP;
8965 	if (!dev->ethtool_ops)
8966 		dev->ethtool_ops = &default_ethtool_ops;
8967 
8968 	nf_hook_ingress_init(dev);
8969 
8970 	return dev;
8971 
8972 free_all:
8973 	free_netdev(dev);
8974 	return NULL;
8975 
8976 free_pcpu:
8977 	free_percpu(dev->pcpu_refcnt);
8978 free_dev:
8979 	netdev_freemem(dev);
8980 	return NULL;
8981 }
8982 EXPORT_SYMBOL(alloc_netdev_mqs);
8983 
8984 /**
8985  * free_netdev - free network device
8986  * @dev: device
8987  *
8988  * This function does the last stage of destroying an allocated device
8989  * interface. The reference to the device object is released. If this
8990  * is the last reference then it will be freed.Must be called in process
8991  * context.
8992  */
free_netdev(struct net_device * dev)8993 void free_netdev(struct net_device *dev)
8994 {
8995 	struct napi_struct *p, *n;
8996 
8997 	might_sleep();
8998 	netif_free_tx_queues(dev);
8999 	netif_free_rx_queues(dev);
9000 
9001 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
9002 
9003 	/* Flush device addresses */
9004 	dev_addr_flush(dev);
9005 
9006 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
9007 		netif_napi_del(p);
9008 
9009 	free_percpu(dev->pcpu_refcnt);
9010 	dev->pcpu_refcnt = NULL;
9011 
9012 	/*  Compatibility with error handling in drivers */
9013 	if (dev->reg_state == NETREG_UNINITIALIZED) {
9014 		netdev_freemem(dev);
9015 		return;
9016 	}
9017 
9018 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
9019 	dev->reg_state = NETREG_RELEASED;
9020 
9021 	/* will free via device release */
9022 	put_device(&dev->dev);
9023 }
9024 EXPORT_SYMBOL(free_netdev);
9025 
9026 /**
9027  *	synchronize_net -  Synchronize with packet receive processing
9028  *
9029  *	Wait for packets currently being received to be done.
9030  *	Does not block later packets from starting.
9031  */
synchronize_net(void)9032 void synchronize_net(void)
9033 {
9034 	might_sleep();
9035 	if (rtnl_is_locked())
9036 		synchronize_rcu_expedited();
9037 	else
9038 		synchronize_rcu();
9039 }
9040 EXPORT_SYMBOL(synchronize_net);
9041 
9042 /**
9043  *	unregister_netdevice_queue - remove device from the kernel
9044  *	@dev: device
9045  *	@head: list
9046  *
9047  *	This function shuts down a device interface and removes it
9048  *	from the kernel tables.
9049  *	If head not NULL, device is queued to be unregistered later.
9050  *
9051  *	Callers must hold the rtnl semaphore.  You may want
9052  *	unregister_netdev() instead of this.
9053  */
9054 
unregister_netdevice_queue(struct net_device * dev,struct list_head * head)9055 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
9056 {
9057 	ASSERT_RTNL();
9058 
9059 	if (head) {
9060 		list_move_tail(&dev->unreg_list, head);
9061 	} else {
9062 		rollback_registered(dev);
9063 		/* Finish processing unregister after unlock */
9064 		net_set_todo(dev);
9065 	}
9066 }
9067 EXPORT_SYMBOL(unregister_netdevice_queue);
9068 
9069 /**
9070  *	unregister_netdevice_many - unregister many devices
9071  *	@head: list of devices
9072  *
9073  *  Note: As most callers use a stack allocated list_head,
9074  *  we force a list_del() to make sure stack wont be corrupted later.
9075  */
unregister_netdevice_many(struct list_head * head)9076 void unregister_netdevice_many(struct list_head *head)
9077 {
9078 	struct net_device *dev;
9079 
9080 	if (!list_empty(head)) {
9081 		rollback_registered_many(head);
9082 		list_for_each_entry(dev, head, unreg_list)
9083 			net_set_todo(dev);
9084 		list_del(head);
9085 	}
9086 }
9087 EXPORT_SYMBOL(unregister_netdevice_many);
9088 
9089 /**
9090  *	unregister_netdev - remove device from the kernel
9091  *	@dev: device
9092  *
9093  *	This function shuts down a device interface and removes it
9094  *	from the kernel tables.
9095  *
9096  *	This is just a wrapper for unregister_netdevice that takes
9097  *	the rtnl semaphore.  In general you want to use this and not
9098  *	unregister_netdevice.
9099  */
unregister_netdev(struct net_device * dev)9100 void unregister_netdev(struct net_device *dev)
9101 {
9102 	rtnl_lock();
9103 	unregister_netdevice(dev);
9104 	rtnl_unlock();
9105 }
9106 EXPORT_SYMBOL(unregister_netdev);
9107 
9108 /**
9109  *	dev_change_net_namespace - move device to different nethost namespace
9110  *	@dev: device
9111  *	@net: network namespace
9112  *	@pat: If not NULL name pattern to try if the current device name
9113  *	      is already taken in the destination network namespace.
9114  *
9115  *	This function shuts down a device interface and moves it
9116  *	to a new network namespace. On success 0 is returned, on
9117  *	a failure a netagive errno code is returned.
9118  *
9119  *	Callers must hold the rtnl semaphore.
9120  */
9121 
dev_change_net_namespace(struct net_device * dev,struct net * net,const char * pat)9122 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
9123 {
9124 	int err, new_nsid, new_ifindex;
9125 
9126 	ASSERT_RTNL();
9127 
9128 	/* Don't allow namespace local devices to be moved. */
9129 	err = -EINVAL;
9130 	if (dev->features & NETIF_F_NETNS_LOCAL)
9131 		goto out;
9132 
9133 	/* Ensure the device has been registrered */
9134 	if (dev->reg_state != NETREG_REGISTERED)
9135 		goto out;
9136 
9137 	/* Get out if there is nothing todo */
9138 	err = 0;
9139 	if (net_eq(dev_net(dev), net))
9140 		goto out;
9141 
9142 	/* Pick the destination device name, and ensure
9143 	 * we can use it in the destination network namespace.
9144 	 */
9145 	err = -EEXIST;
9146 	if (__dev_get_by_name(net, dev->name)) {
9147 		/* We get here if we can't use the current device name */
9148 		if (!pat)
9149 			goto out;
9150 		err = dev_get_valid_name(net, dev, pat);
9151 		if (err < 0)
9152 			goto out;
9153 	}
9154 
9155 	/*
9156 	 * And now a mini version of register_netdevice unregister_netdevice.
9157 	 */
9158 
9159 	/* If device is running close it first. */
9160 	dev_close(dev);
9161 
9162 	/* And unlink it from device chain */
9163 	unlist_netdevice(dev);
9164 
9165 	synchronize_net();
9166 
9167 	/* Shutdown queueing discipline. */
9168 	dev_shutdown(dev);
9169 
9170 	/* Notify protocols, that we are about to destroy
9171 	 * this device. They should clean all the things.
9172 	 *
9173 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
9174 	 * This is wanted because this way 8021q and macvlan know
9175 	 * the device is just moving and can keep their slaves up.
9176 	 */
9177 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9178 	rcu_barrier();
9179 
9180 	new_nsid = peernet2id_alloc(dev_net(dev), net);
9181 	/* If there is an ifindex conflict assign a new one */
9182 	if (__dev_get_by_index(net, dev->ifindex))
9183 		new_ifindex = dev_new_index(net);
9184 	else
9185 		new_ifindex = dev->ifindex;
9186 
9187 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
9188 			    new_ifindex);
9189 
9190 	/*
9191 	 *	Flush the unicast and multicast chains
9192 	 */
9193 	dev_uc_flush(dev);
9194 	dev_mc_flush(dev);
9195 
9196 	/* Send a netdev-removed uevent to the old namespace */
9197 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
9198 	netdev_adjacent_del_links(dev);
9199 
9200 	/* Actually switch the network namespace */
9201 	dev_net_set(dev, net);
9202 	dev->ifindex = new_ifindex;
9203 
9204 	/* Send a netdev-add uevent to the new namespace */
9205 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
9206 	netdev_adjacent_add_links(dev);
9207 
9208 	/* Fixup kobjects */
9209 	err = device_rename(&dev->dev, dev->name);
9210 	WARN_ON(err);
9211 
9212 	/* Add the device back in the hashes */
9213 	list_netdevice(dev);
9214 
9215 	/* Notify protocols, that a new device appeared. */
9216 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
9217 
9218 	/*
9219 	 *	Prevent userspace races by waiting until the network
9220 	 *	device is fully setup before sending notifications.
9221 	 */
9222 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9223 
9224 	synchronize_net();
9225 	err = 0;
9226 out:
9227 	return err;
9228 }
9229 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
9230 
dev_cpu_dead(unsigned int oldcpu)9231 static int dev_cpu_dead(unsigned int oldcpu)
9232 {
9233 	struct sk_buff **list_skb;
9234 	struct sk_buff *skb;
9235 	unsigned int cpu;
9236 	struct softnet_data *sd, *oldsd, *remsd = NULL;
9237 
9238 	local_irq_disable();
9239 	cpu = smp_processor_id();
9240 	sd = &per_cpu(softnet_data, cpu);
9241 	oldsd = &per_cpu(softnet_data, oldcpu);
9242 
9243 	/* Find end of our completion_queue. */
9244 	list_skb = &sd->completion_queue;
9245 	while (*list_skb)
9246 		list_skb = &(*list_skb)->next;
9247 	/* Append completion queue from offline CPU. */
9248 	*list_skb = oldsd->completion_queue;
9249 	oldsd->completion_queue = NULL;
9250 
9251 	/* Append output queue from offline CPU. */
9252 	if (oldsd->output_queue) {
9253 		*sd->output_queue_tailp = oldsd->output_queue;
9254 		sd->output_queue_tailp = oldsd->output_queue_tailp;
9255 		oldsd->output_queue = NULL;
9256 		oldsd->output_queue_tailp = &oldsd->output_queue;
9257 	}
9258 	/* Append NAPI poll list from offline CPU, with one exception :
9259 	 * process_backlog() must be called by cpu owning percpu backlog.
9260 	 * We properly handle process_queue & input_pkt_queue later.
9261 	 */
9262 	while (!list_empty(&oldsd->poll_list)) {
9263 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
9264 							    struct napi_struct,
9265 							    poll_list);
9266 
9267 		list_del_init(&napi->poll_list);
9268 		if (napi->poll == process_backlog)
9269 			napi->state = 0;
9270 		else
9271 			____napi_schedule(sd, napi);
9272 	}
9273 
9274 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
9275 	local_irq_enable();
9276 
9277 #ifdef CONFIG_RPS
9278 	remsd = oldsd->rps_ipi_list;
9279 	oldsd->rps_ipi_list = NULL;
9280 #endif
9281 	/* send out pending IPI's on offline CPU */
9282 	net_rps_send_ipi(remsd);
9283 
9284 	/* Process offline CPU's input_pkt_queue */
9285 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
9286 		netif_rx_ni(skb);
9287 		input_queue_head_incr(oldsd);
9288 	}
9289 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
9290 		netif_rx_ni(skb);
9291 		input_queue_head_incr(oldsd);
9292 	}
9293 
9294 	return 0;
9295 }
9296 
9297 /**
9298  *	netdev_increment_features - increment feature set by one
9299  *	@all: current feature set
9300  *	@one: new feature set
9301  *	@mask: mask feature set
9302  *
9303  *	Computes a new feature set after adding a device with feature set
9304  *	@one to the master device with current feature set @all.  Will not
9305  *	enable anything that is off in @mask. Returns the new feature set.
9306  */
netdev_increment_features(netdev_features_t all,netdev_features_t one,netdev_features_t mask)9307 netdev_features_t netdev_increment_features(netdev_features_t all,
9308 	netdev_features_t one, netdev_features_t mask)
9309 {
9310 	if (mask & NETIF_F_HW_CSUM)
9311 		mask |= NETIF_F_CSUM_MASK;
9312 	mask |= NETIF_F_VLAN_CHALLENGED;
9313 
9314 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
9315 	all &= one | ~NETIF_F_ALL_FOR_ALL;
9316 
9317 	/* If one device supports hw checksumming, set for all. */
9318 	if (all & NETIF_F_HW_CSUM)
9319 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
9320 
9321 	return all;
9322 }
9323 EXPORT_SYMBOL(netdev_increment_features);
9324 
netdev_create_hash(void)9325 static struct hlist_head * __net_init netdev_create_hash(void)
9326 {
9327 	int i;
9328 	struct hlist_head *hash;
9329 
9330 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
9331 	if (hash != NULL)
9332 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
9333 			INIT_HLIST_HEAD(&hash[i]);
9334 
9335 	return hash;
9336 }
9337 
9338 /* Initialize per network namespace state */
netdev_init(struct net * net)9339 static int __net_init netdev_init(struct net *net)
9340 {
9341 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
9342 		     8 * FIELD_SIZEOF(struct napi_struct, gro_bitmask));
9343 
9344 	if (net != &init_net)
9345 		INIT_LIST_HEAD(&net->dev_base_head);
9346 
9347 	net->dev_name_head = netdev_create_hash();
9348 	if (net->dev_name_head == NULL)
9349 		goto err_name;
9350 
9351 	net->dev_index_head = netdev_create_hash();
9352 	if (net->dev_index_head == NULL)
9353 		goto err_idx;
9354 
9355 	return 0;
9356 
9357 err_idx:
9358 	kfree(net->dev_name_head);
9359 err_name:
9360 	return -ENOMEM;
9361 }
9362 
9363 /**
9364  *	netdev_drivername - network driver for the device
9365  *	@dev: network device
9366  *
9367  *	Determine network driver for device.
9368  */
netdev_drivername(const struct net_device * dev)9369 const char *netdev_drivername(const struct net_device *dev)
9370 {
9371 	const struct device_driver *driver;
9372 	const struct device *parent;
9373 	const char *empty = "";
9374 
9375 	parent = dev->dev.parent;
9376 	if (!parent)
9377 		return empty;
9378 
9379 	driver = parent->driver;
9380 	if (driver && driver->name)
9381 		return driver->name;
9382 	return empty;
9383 }
9384 
__netdev_printk(const char * level,const struct net_device * dev,struct va_format * vaf)9385 static void __netdev_printk(const char *level, const struct net_device *dev,
9386 			    struct va_format *vaf)
9387 {
9388 	if (dev && dev->dev.parent) {
9389 		dev_printk_emit(level[1] - '0',
9390 				dev->dev.parent,
9391 				"%s %s %s%s: %pV",
9392 				dev_driver_string(dev->dev.parent),
9393 				dev_name(dev->dev.parent),
9394 				netdev_name(dev), netdev_reg_state(dev),
9395 				vaf);
9396 	} else if (dev) {
9397 		printk("%s%s%s: %pV",
9398 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
9399 	} else {
9400 		printk("%s(NULL net_device): %pV", level, vaf);
9401 	}
9402 }
9403 
netdev_printk(const char * level,const struct net_device * dev,const char * format,...)9404 void netdev_printk(const char *level, const struct net_device *dev,
9405 		   const char *format, ...)
9406 {
9407 	struct va_format vaf;
9408 	va_list args;
9409 
9410 	va_start(args, format);
9411 
9412 	vaf.fmt = format;
9413 	vaf.va = &args;
9414 
9415 	__netdev_printk(level, dev, &vaf);
9416 
9417 	va_end(args);
9418 }
9419 EXPORT_SYMBOL(netdev_printk);
9420 
9421 #define define_netdev_printk_level(func, level)			\
9422 void func(const struct net_device *dev, const char *fmt, ...)	\
9423 {								\
9424 	struct va_format vaf;					\
9425 	va_list args;						\
9426 								\
9427 	va_start(args, fmt);					\
9428 								\
9429 	vaf.fmt = fmt;						\
9430 	vaf.va = &args;						\
9431 								\
9432 	__netdev_printk(level, dev, &vaf);			\
9433 								\
9434 	va_end(args);						\
9435 }								\
9436 EXPORT_SYMBOL(func);
9437 
9438 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
9439 define_netdev_printk_level(netdev_alert, KERN_ALERT);
9440 define_netdev_printk_level(netdev_crit, KERN_CRIT);
9441 define_netdev_printk_level(netdev_err, KERN_ERR);
9442 define_netdev_printk_level(netdev_warn, KERN_WARNING);
9443 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
9444 define_netdev_printk_level(netdev_info, KERN_INFO);
9445 
netdev_exit(struct net * net)9446 static void __net_exit netdev_exit(struct net *net)
9447 {
9448 	kfree(net->dev_name_head);
9449 	kfree(net->dev_index_head);
9450 	if (net != &init_net)
9451 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
9452 }
9453 
9454 static struct pernet_operations __net_initdata netdev_net_ops = {
9455 	.init = netdev_init,
9456 	.exit = netdev_exit,
9457 };
9458 
default_device_exit(struct net * net)9459 static void __net_exit default_device_exit(struct net *net)
9460 {
9461 	struct net_device *dev, *aux;
9462 	/*
9463 	 * Push all migratable network devices back to the
9464 	 * initial network namespace
9465 	 */
9466 	rtnl_lock();
9467 	for_each_netdev_safe(net, dev, aux) {
9468 		int err;
9469 		char fb_name[IFNAMSIZ];
9470 
9471 		/* Ignore unmoveable devices (i.e. loopback) */
9472 		if (dev->features & NETIF_F_NETNS_LOCAL)
9473 			continue;
9474 
9475 		/* Leave virtual devices for the generic cleanup */
9476 		if (dev->rtnl_link_ops)
9477 			continue;
9478 
9479 		/* Push remaining network devices to init_net */
9480 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
9481 		err = dev_change_net_namespace(dev, &init_net, fb_name);
9482 		if (err) {
9483 			pr_emerg("%s: failed to move %s to init_net: %d\n",
9484 				 __func__, dev->name, err);
9485 			BUG();
9486 		}
9487 	}
9488 	rtnl_unlock();
9489 }
9490 
rtnl_lock_unregistering(struct list_head * net_list)9491 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
9492 {
9493 	/* Return with the rtnl_lock held when there are no network
9494 	 * devices unregistering in any network namespace in net_list.
9495 	 */
9496 	struct net *net;
9497 	bool unregistering;
9498 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
9499 
9500 	add_wait_queue(&netdev_unregistering_wq, &wait);
9501 	for (;;) {
9502 		unregistering = false;
9503 		rtnl_lock();
9504 		list_for_each_entry(net, net_list, exit_list) {
9505 			if (net->dev_unreg_count > 0) {
9506 				unregistering = true;
9507 				break;
9508 			}
9509 		}
9510 		if (!unregistering)
9511 			break;
9512 		__rtnl_unlock();
9513 
9514 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
9515 	}
9516 	remove_wait_queue(&netdev_unregistering_wq, &wait);
9517 }
9518 
default_device_exit_batch(struct list_head * net_list)9519 static void __net_exit default_device_exit_batch(struct list_head *net_list)
9520 {
9521 	/* At exit all network devices most be removed from a network
9522 	 * namespace.  Do this in the reverse order of registration.
9523 	 * Do this across as many network namespaces as possible to
9524 	 * improve batching efficiency.
9525 	 */
9526 	struct net_device *dev;
9527 	struct net *net;
9528 	LIST_HEAD(dev_kill_list);
9529 
9530 	/* To prevent network device cleanup code from dereferencing
9531 	 * loopback devices or network devices that have been freed
9532 	 * wait here for all pending unregistrations to complete,
9533 	 * before unregistring the loopback device and allowing the
9534 	 * network namespace be freed.
9535 	 *
9536 	 * The netdev todo list containing all network devices
9537 	 * unregistrations that happen in default_device_exit_batch
9538 	 * will run in the rtnl_unlock() at the end of
9539 	 * default_device_exit_batch.
9540 	 */
9541 	rtnl_lock_unregistering(net_list);
9542 	list_for_each_entry(net, net_list, exit_list) {
9543 		for_each_netdev_reverse(net, dev) {
9544 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
9545 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
9546 			else
9547 				unregister_netdevice_queue(dev, &dev_kill_list);
9548 		}
9549 	}
9550 	unregister_netdevice_many(&dev_kill_list);
9551 	rtnl_unlock();
9552 }
9553 
9554 static struct pernet_operations __net_initdata default_device_ops = {
9555 	.exit = default_device_exit,
9556 	.exit_batch = default_device_exit_batch,
9557 };
9558 
9559 /*
9560  *	Initialize the DEV module. At boot time this walks the device list and
9561  *	unhooks any devices that fail to initialise (normally hardware not
9562  *	present) and leaves us with a valid list of present and active devices.
9563  *
9564  */
9565 
9566 /*
9567  *       This is called single threaded during boot, so no need
9568  *       to take the rtnl semaphore.
9569  */
net_dev_init(void)9570 static int __init net_dev_init(void)
9571 {
9572 	int i, rc = -ENOMEM;
9573 
9574 	BUG_ON(!dev_boot_phase);
9575 
9576 	if (dev_proc_init())
9577 		goto out;
9578 
9579 	if (netdev_kobject_init())
9580 		goto out;
9581 
9582 	INIT_LIST_HEAD(&ptype_all);
9583 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
9584 		INIT_LIST_HEAD(&ptype_base[i]);
9585 
9586 	INIT_LIST_HEAD(&offload_base);
9587 
9588 	if (register_pernet_subsys(&netdev_net_ops))
9589 		goto out;
9590 
9591 	/*
9592 	 *	Initialise the packet receive queues.
9593 	 */
9594 
9595 	for_each_possible_cpu(i) {
9596 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
9597 		struct softnet_data *sd = &per_cpu(softnet_data, i);
9598 
9599 		INIT_WORK(flush, flush_backlog);
9600 
9601 		skb_queue_head_init(&sd->input_pkt_queue);
9602 		skb_queue_head_init(&sd->process_queue);
9603 #ifdef CONFIG_XFRM_OFFLOAD
9604 		skb_queue_head_init(&sd->xfrm_backlog);
9605 #endif
9606 		INIT_LIST_HEAD(&sd->poll_list);
9607 		sd->output_queue_tailp = &sd->output_queue;
9608 #ifdef CONFIG_RPS
9609 		sd->csd.func = rps_trigger_softirq;
9610 		sd->csd.info = sd;
9611 		sd->cpu = i;
9612 #endif
9613 
9614 		init_gro_hash(&sd->backlog);
9615 		sd->backlog.poll = process_backlog;
9616 		sd->backlog.weight = weight_p;
9617 	}
9618 
9619 	dev_boot_phase = 0;
9620 
9621 	/* The loopback device is special if any other network devices
9622 	 * is present in a network namespace the loopback device must
9623 	 * be present. Since we now dynamically allocate and free the
9624 	 * loopback device ensure this invariant is maintained by
9625 	 * keeping the loopback device as the first device on the
9626 	 * list of network devices.  Ensuring the loopback devices
9627 	 * is the first device that appears and the last network device
9628 	 * that disappears.
9629 	 */
9630 	if (register_pernet_device(&loopback_net_ops))
9631 		goto out;
9632 
9633 	if (register_pernet_device(&default_device_ops))
9634 		goto out;
9635 
9636 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
9637 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
9638 
9639 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
9640 				       NULL, dev_cpu_dead);
9641 	WARN_ON(rc < 0);
9642 	rc = 0;
9643 out:
9644 	return rc;
9645 }
9646 
9647 subsys_initcall(net_dev_init);
9648