1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_PAGEMAP_H
3 #define _LINUX_PAGEMAP_H
4
5 /*
6 * Copyright 1995 Linus Torvalds
7 */
8 #include <linux/mm.h>
9 #include <linux/fs.h>
10 #include <linux/list.h>
11 #include <linux/highmem.h>
12 #include <linux/compiler.h>
13 #include <linux/uaccess.h>
14 #include <linux/gfp.h>
15 #include <linux/bitops.h>
16 #include <linux/hardirq.h> /* for in_interrupt() */
17 #include <linux/hugetlb_inline.h>
18
19 struct pagevec;
20
mapping_empty(struct address_space * mapping)21 static inline bool mapping_empty(struct address_space *mapping)
22 {
23 return xa_empty(&mapping->i_pages);
24 }
25
26 /*
27 * Bits in mapping->flags.
28 */
29 enum mapping_flags {
30 AS_EIO = 0, /* IO error on async write */
31 AS_ENOSPC = 1, /* ENOSPC on async write */
32 AS_MM_ALL_LOCKS = 2, /* under mm_take_all_locks() */
33 AS_UNEVICTABLE = 3, /* e.g., ramdisk, SHM_LOCK */
34 AS_EXITING = 4, /* final truncate in progress */
35 /* writeback related tags are not used */
36 AS_NO_WRITEBACK_TAGS = 5,
37 AS_THP_SUPPORT = 6, /* THPs supported */
38 };
39
40 /**
41 * mapping_set_error - record a writeback error in the address_space
42 * @mapping: the mapping in which an error should be set
43 * @error: the error to set in the mapping
44 *
45 * When writeback fails in some way, we must record that error so that
46 * userspace can be informed when fsync and the like are called. We endeavor
47 * to report errors on any file that was open at the time of the error. Some
48 * internal callers also need to know when writeback errors have occurred.
49 *
50 * When a writeback error occurs, most filesystems will want to call
51 * mapping_set_error to record the error in the mapping so that it can be
52 * reported when the application calls fsync(2).
53 */
mapping_set_error(struct address_space * mapping,int error)54 static inline void mapping_set_error(struct address_space *mapping, int error)
55 {
56 if (likely(!error))
57 return;
58
59 /* Record in wb_err for checkers using errseq_t based tracking */
60 __filemap_set_wb_err(mapping, error);
61
62 /* Record it in superblock */
63 if (mapping->host)
64 errseq_set(&mapping->host->i_sb->s_wb_err, error);
65
66 /* Record it in flags for now, for legacy callers */
67 if (error == -ENOSPC)
68 set_bit(AS_ENOSPC, &mapping->flags);
69 else
70 set_bit(AS_EIO, &mapping->flags);
71 }
72
mapping_set_unevictable(struct address_space * mapping)73 static inline void mapping_set_unevictable(struct address_space *mapping)
74 {
75 set_bit(AS_UNEVICTABLE, &mapping->flags);
76 }
77
mapping_clear_unevictable(struct address_space * mapping)78 static inline void mapping_clear_unevictable(struct address_space *mapping)
79 {
80 clear_bit(AS_UNEVICTABLE, &mapping->flags);
81 }
82
mapping_unevictable(struct address_space * mapping)83 static inline bool mapping_unevictable(struct address_space *mapping)
84 {
85 return mapping && test_bit(AS_UNEVICTABLE, &mapping->flags);
86 }
87
mapping_set_exiting(struct address_space * mapping)88 static inline void mapping_set_exiting(struct address_space *mapping)
89 {
90 set_bit(AS_EXITING, &mapping->flags);
91 }
92
mapping_exiting(struct address_space * mapping)93 static inline int mapping_exiting(struct address_space *mapping)
94 {
95 return test_bit(AS_EXITING, &mapping->flags);
96 }
97
mapping_set_no_writeback_tags(struct address_space * mapping)98 static inline void mapping_set_no_writeback_tags(struct address_space *mapping)
99 {
100 set_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
101 }
102
mapping_use_writeback_tags(struct address_space * mapping)103 static inline int mapping_use_writeback_tags(struct address_space *mapping)
104 {
105 return !test_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
106 }
107
mapping_gfp_mask(struct address_space * mapping)108 static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
109 {
110 return mapping->gfp_mask;
111 }
112
113 /* Restricts the given gfp_mask to what the mapping allows. */
mapping_gfp_constraint(struct address_space * mapping,gfp_t gfp_mask)114 static inline gfp_t mapping_gfp_constraint(struct address_space *mapping,
115 gfp_t gfp_mask)
116 {
117 return mapping_gfp_mask(mapping) & gfp_mask;
118 }
119
120 /*
121 * This is non-atomic. Only to be used before the mapping is activated.
122 * Probably needs a barrier...
123 */
mapping_set_gfp_mask(struct address_space * m,gfp_t mask)124 static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
125 {
126 m->gfp_mask = mask;
127 }
128
mapping_thp_support(struct address_space * mapping)129 static inline bool mapping_thp_support(struct address_space *mapping)
130 {
131 return test_bit(AS_THP_SUPPORT, &mapping->flags);
132 }
133
filemap_nr_thps(struct address_space * mapping)134 static inline int filemap_nr_thps(struct address_space *mapping)
135 {
136 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
137 return atomic_read(&mapping->nr_thps);
138 #else
139 return 0;
140 #endif
141 }
142
filemap_nr_thps_inc(struct address_space * mapping)143 static inline void filemap_nr_thps_inc(struct address_space *mapping)
144 {
145 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
146 if (!mapping_thp_support(mapping))
147 atomic_inc(&mapping->nr_thps);
148 #else
149 WARN_ON_ONCE(1);
150 #endif
151 }
152
filemap_nr_thps_dec(struct address_space * mapping)153 static inline void filemap_nr_thps_dec(struct address_space *mapping)
154 {
155 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
156 if (!mapping_thp_support(mapping))
157 atomic_dec(&mapping->nr_thps);
158 #else
159 WARN_ON_ONCE(1);
160 #endif
161 }
162
163 void release_pages(struct page **pages, int nr);
164
165 /*
166 * For file cache pages, return the address_space, otherwise return NULL
167 */
page_mapping_file(struct page * page)168 static inline struct address_space *page_mapping_file(struct page *page)
169 {
170 if (unlikely(PageSwapCache(page)))
171 return NULL;
172 return page_mapping(page);
173 }
174
175 /*
176 * speculatively take a reference to a page.
177 * If the page is free (_refcount == 0), then _refcount is untouched, and 0
178 * is returned. Otherwise, _refcount is incremented by 1 and 1 is returned.
179 *
180 * This function must be called inside the same rcu_read_lock() section as has
181 * been used to lookup the page in the pagecache radix-tree (or page table):
182 * this allows allocators to use a synchronize_rcu() to stabilize _refcount.
183 *
184 * Unless an RCU grace period has passed, the count of all pages coming out
185 * of the allocator must be considered unstable. page_count may return higher
186 * than expected, and put_page must be able to do the right thing when the
187 * page has been finished with, no matter what it is subsequently allocated
188 * for (because put_page is what is used here to drop an invalid speculative
189 * reference).
190 *
191 * This is the interesting part of the lockless pagecache (and lockless
192 * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page)
193 * has the following pattern:
194 * 1. find page in radix tree
195 * 2. conditionally increment refcount
196 * 3. check the page is still in pagecache (if no, goto 1)
197 *
198 * Remove-side that cares about stability of _refcount (eg. reclaim) has the
199 * following (with the i_pages lock held):
200 * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg)
201 * B. remove page from pagecache
202 * C. free the page
203 *
204 * There are 2 critical interleavings that matter:
205 * - 2 runs before A: in this case, A sees elevated refcount and bails out
206 * - A runs before 2: in this case, 2 sees zero refcount and retries;
207 * subsequently, B will complete and 1 will find no page, causing the
208 * lookup to return NULL.
209 *
210 * It is possible that between 1 and 2, the page is removed then the exact same
211 * page is inserted into the same position in pagecache. That's OK: the
212 * old find_get_page using a lock could equally have run before or after
213 * such a re-insertion, depending on order that locks are granted.
214 *
215 * Lookups racing against pagecache insertion isn't a big problem: either 1
216 * will find the page or it will not. Likewise, the old find_get_page could run
217 * either before the insertion or afterwards, depending on timing.
218 */
__page_cache_add_speculative(struct page * page,int count)219 static inline int __page_cache_add_speculative(struct page *page, int count)
220 {
221 #ifdef CONFIG_TINY_RCU
222 # ifdef CONFIG_PREEMPT_COUNT
223 VM_BUG_ON(!in_atomic() && !irqs_disabled());
224 # endif
225 /*
226 * Preempt must be disabled here - we rely on rcu_read_lock doing
227 * this for us.
228 *
229 * Pagecache won't be truncated from interrupt context, so if we have
230 * found a page in the radix tree here, we have pinned its refcount by
231 * disabling preempt, and hence no need for the "speculative get" that
232 * SMP requires.
233 */
234 VM_BUG_ON_PAGE(page_count(page) == 0, page);
235 page_ref_add(page, count);
236
237 #else
238 if (unlikely(!page_ref_add_unless(page, count, 0))) {
239 /*
240 * Either the page has been freed, or will be freed.
241 * In either case, retry here and the caller should
242 * do the right thing (see comments above).
243 */
244 return 0;
245 }
246 #endif
247 VM_BUG_ON_PAGE(PageTail(page), page);
248
249 return 1;
250 }
251
page_cache_get_speculative(struct page * page)252 static inline int page_cache_get_speculative(struct page *page)
253 {
254 return __page_cache_add_speculative(page, 1);
255 }
256
page_cache_add_speculative(struct page * page,int count)257 static inline int page_cache_add_speculative(struct page *page, int count)
258 {
259 return __page_cache_add_speculative(page, count);
260 }
261
262 /**
263 * attach_page_private - Attach private data to a page.
264 * @page: Page to attach data to.
265 * @data: Data to attach to page.
266 *
267 * Attaching private data to a page increments the page's reference count.
268 * The data must be detached before the page will be freed.
269 */
attach_page_private(struct page * page,void * data)270 static inline void attach_page_private(struct page *page, void *data)
271 {
272 get_page(page);
273 set_page_private(page, (unsigned long)data);
274 SetPagePrivate(page);
275 }
276
277 /**
278 * detach_page_private - Detach private data from a page.
279 * @page: Page to detach data from.
280 *
281 * Removes the data that was previously attached to the page and decrements
282 * the refcount on the page.
283 *
284 * Return: Data that was attached to the page.
285 */
detach_page_private(struct page * page)286 static inline void *detach_page_private(struct page *page)
287 {
288 void *data = (void *)page_private(page);
289
290 if (!PagePrivate(page))
291 return NULL;
292 ClearPagePrivate(page);
293 set_page_private(page, 0);
294 put_page(page);
295
296 return data;
297 }
298
299 #ifdef CONFIG_NUMA
300 extern struct page *__page_cache_alloc(gfp_t gfp);
301 #else
__page_cache_alloc(gfp_t gfp)302 static inline struct page *__page_cache_alloc(gfp_t gfp)
303 {
304 return alloc_pages(gfp, 0);
305 }
306 #endif
307
page_cache_alloc(struct address_space * x)308 static inline struct page *page_cache_alloc(struct address_space *x)
309 {
310 return __page_cache_alloc(mapping_gfp_mask(x));
311 }
312
readahead_gfp_mask(struct address_space * x)313 static inline gfp_t readahead_gfp_mask(struct address_space *x)
314 {
315 return mapping_gfp_mask(x) | __GFP_NORETRY | __GFP_NOWARN;
316 }
317
318 typedef int filler_t(void *, struct page *);
319
320 pgoff_t page_cache_next_miss(struct address_space *mapping,
321 pgoff_t index, unsigned long max_scan);
322 pgoff_t page_cache_prev_miss(struct address_space *mapping,
323 pgoff_t index, unsigned long max_scan);
324
325 #define FGP_ACCESSED 0x00000001
326 #define FGP_LOCK 0x00000002
327 #define FGP_CREAT 0x00000004
328 #define FGP_WRITE 0x00000008
329 #define FGP_NOFS 0x00000010
330 #define FGP_NOWAIT 0x00000020
331 #define FGP_FOR_MMAP 0x00000040
332 #define FGP_HEAD 0x00000080
333 #define FGP_ENTRY 0x00000100
334
335 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
336 int fgp_flags, gfp_t cache_gfp_mask);
337
338 /**
339 * find_get_page - find and get a page reference
340 * @mapping: the address_space to search
341 * @offset: the page index
342 *
343 * Looks up the page cache slot at @mapping & @offset. If there is a
344 * page cache page, it is returned with an increased refcount.
345 *
346 * Otherwise, %NULL is returned.
347 */
find_get_page(struct address_space * mapping,pgoff_t offset)348 static inline struct page *find_get_page(struct address_space *mapping,
349 pgoff_t offset)
350 {
351 return pagecache_get_page(mapping, offset, 0, 0);
352 }
353
find_get_page_flags(struct address_space * mapping,pgoff_t offset,int fgp_flags)354 static inline struct page *find_get_page_flags(struct address_space *mapping,
355 pgoff_t offset, int fgp_flags)
356 {
357 return pagecache_get_page(mapping, offset, fgp_flags, 0);
358 }
359
360 /**
361 * find_lock_page - locate, pin and lock a pagecache page
362 * @mapping: the address_space to search
363 * @index: the page index
364 *
365 * Looks up the page cache entry at @mapping & @index. If there is a
366 * page cache page, it is returned locked and with an increased
367 * refcount.
368 *
369 * Context: May sleep.
370 * Return: A struct page or %NULL if there is no page in the cache for this
371 * index.
372 */
find_lock_page(struct address_space * mapping,pgoff_t index)373 static inline struct page *find_lock_page(struct address_space *mapping,
374 pgoff_t index)
375 {
376 return pagecache_get_page(mapping, index, FGP_LOCK, 0);
377 }
378
379 /**
380 * find_lock_head - Locate, pin and lock a pagecache page.
381 * @mapping: The address_space to search.
382 * @index: The page index.
383 *
384 * Looks up the page cache entry at @mapping & @index. If there is a
385 * page cache page, its head page is returned locked and with an increased
386 * refcount.
387 *
388 * Context: May sleep.
389 * Return: A struct page which is !PageTail, or %NULL if there is no page
390 * in the cache for this index.
391 */
find_lock_head(struct address_space * mapping,pgoff_t index)392 static inline struct page *find_lock_head(struct address_space *mapping,
393 pgoff_t index)
394 {
395 return pagecache_get_page(mapping, index, FGP_LOCK | FGP_HEAD, 0);
396 }
397
398 /**
399 * find_or_create_page - locate or add a pagecache page
400 * @mapping: the page's address_space
401 * @index: the page's index into the mapping
402 * @gfp_mask: page allocation mode
403 *
404 * Looks up the page cache slot at @mapping & @offset. If there is a
405 * page cache page, it is returned locked and with an increased
406 * refcount.
407 *
408 * If the page is not present, a new page is allocated using @gfp_mask
409 * and added to the page cache and the VM's LRU list. The page is
410 * returned locked and with an increased refcount.
411 *
412 * On memory exhaustion, %NULL is returned.
413 *
414 * find_or_create_page() may sleep, even if @gfp_flags specifies an
415 * atomic allocation!
416 */
find_or_create_page(struct address_space * mapping,pgoff_t index,gfp_t gfp_mask)417 static inline struct page *find_or_create_page(struct address_space *mapping,
418 pgoff_t index, gfp_t gfp_mask)
419 {
420 return pagecache_get_page(mapping, index,
421 FGP_LOCK|FGP_ACCESSED|FGP_CREAT,
422 gfp_mask);
423 }
424
425 /**
426 * grab_cache_page_nowait - returns locked page at given index in given cache
427 * @mapping: target address_space
428 * @index: the page index
429 *
430 * Same as grab_cache_page(), but do not wait if the page is unavailable.
431 * This is intended for speculative data generators, where the data can
432 * be regenerated if the page couldn't be grabbed. This routine should
433 * be safe to call while holding the lock for another page.
434 *
435 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
436 * and deadlock against the caller's locked page.
437 */
grab_cache_page_nowait(struct address_space * mapping,pgoff_t index)438 static inline struct page *grab_cache_page_nowait(struct address_space *mapping,
439 pgoff_t index)
440 {
441 return pagecache_get_page(mapping, index,
442 FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT,
443 mapping_gfp_mask(mapping));
444 }
445
446 /* Does this page contain this index? */
thp_contains(struct page * head,pgoff_t index)447 static inline bool thp_contains(struct page *head, pgoff_t index)
448 {
449 /* HugeTLBfs indexes the page cache in units of hpage_size */
450 if (PageHuge(head))
451 return head->index == index;
452 return page_index(head) == (index & ~(thp_nr_pages(head) - 1UL));
453 }
454
455 /*
456 * Given the page we found in the page cache, return the page corresponding
457 * to this index in the file
458 */
find_subpage(struct page * head,pgoff_t index)459 static inline struct page *find_subpage(struct page *head, pgoff_t index)
460 {
461 /* HugeTLBfs wants the head page regardless */
462 if (PageHuge(head))
463 return head;
464
465 return head + (index & (thp_nr_pages(head) - 1));
466 }
467
468 unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
469 pgoff_t end, struct pagevec *pvec, pgoff_t *indices);
470 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
471 pgoff_t end, unsigned int nr_pages,
472 struct page **pages);
find_get_pages(struct address_space * mapping,pgoff_t * start,unsigned int nr_pages,struct page ** pages)473 static inline unsigned find_get_pages(struct address_space *mapping,
474 pgoff_t *start, unsigned int nr_pages,
475 struct page **pages)
476 {
477 return find_get_pages_range(mapping, start, (pgoff_t)-1, nr_pages,
478 pages);
479 }
480 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start,
481 unsigned int nr_pages, struct page **pages);
482 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
483 pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
484 struct page **pages);
find_get_pages_tag(struct address_space * mapping,pgoff_t * index,xa_mark_t tag,unsigned int nr_pages,struct page ** pages)485 static inline unsigned find_get_pages_tag(struct address_space *mapping,
486 pgoff_t *index, xa_mark_t tag, unsigned int nr_pages,
487 struct page **pages)
488 {
489 return find_get_pages_range_tag(mapping, index, (pgoff_t)-1, tag,
490 nr_pages, pages);
491 }
492
493 struct page *grab_cache_page_write_begin(struct address_space *mapping,
494 pgoff_t index, unsigned flags);
495
496 /*
497 * Returns locked page at given index in given cache, creating it if needed.
498 */
grab_cache_page(struct address_space * mapping,pgoff_t index)499 static inline struct page *grab_cache_page(struct address_space *mapping,
500 pgoff_t index)
501 {
502 return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
503 }
504
505 extern struct page * read_cache_page(struct address_space *mapping,
506 pgoff_t index, filler_t *filler, void *data);
507 extern struct page * read_cache_page_gfp(struct address_space *mapping,
508 pgoff_t index, gfp_t gfp_mask);
509 extern int read_cache_pages(struct address_space *mapping,
510 struct list_head *pages, filler_t *filler, void *data);
511
read_mapping_page(struct address_space * mapping,pgoff_t index,void * data)512 static inline struct page *read_mapping_page(struct address_space *mapping,
513 pgoff_t index, void *data)
514 {
515 return read_cache_page(mapping, index, NULL, data);
516 }
517
518 /*
519 * Get index of the page within radix-tree (but not for hugetlb pages).
520 * (TODO: remove once hugetlb pages will have ->index in PAGE_SIZE)
521 */
page_to_index(struct page * page)522 static inline pgoff_t page_to_index(struct page *page)
523 {
524 struct page *head;
525
526 if (likely(!PageTransTail(page)))
527 return page->index;
528
529 head = compound_head(page);
530 /*
531 * We don't initialize ->index for tail pages: calculate based on
532 * head page
533 */
534 return head->index + page - head;
535 }
536
537 extern pgoff_t hugetlb_basepage_index(struct page *page);
538
539 /*
540 * Get the offset in PAGE_SIZE (even for hugetlb pages).
541 * (TODO: hugetlb pages should have ->index in PAGE_SIZE)
542 */
page_to_pgoff(struct page * page)543 static inline pgoff_t page_to_pgoff(struct page *page)
544 {
545 if (unlikely(PageHuge(page)))
546 return hugetlb_basepage_index(page);
547 return page_to_index(page);
548 }
549
550 /*
551 * Return byte-offset into filesystem object for page.
552 */
page_offset(struct page * page)553 static inline loff_t page_offset(struct page *page)
554 {
555 return ((loff_t)page->index) << PAGE_SHIFT;
556 }
557
page_file_offset(struct page * page)558 static inline loff_t page_file_offset(struct page *page)
559 {
560 return ((loff_t)page_index(page)) << PAGE_SHIFT;
561 }
562
563 extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
564 unsigned long address);
565
linear_page_index(struct vm_area_struct * vma,unsigned long address)566 static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
567 unsigned long address)
568 {
569 pgoff_t pgoff;
570 if (unlikely(is_vm_hugetlb_page(vma)))
571 return linear_hugepage_index(vma, address);
572 pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
573 pgoff += vma->vm_pgoff;
574 return pgoff;
575 }
576
577 struct wait_page_key {
578 struct page *page;
579 int bit_nr;
580 int page_match;
581 };
582
583 struct wait_page_queue {
584 struct page *page;
585 int bit_nr;
586 wait_queue_entry_t wait;
587 };
588
wake_page_match(struct wait_page_queue * wait_page,struct wait_page_key * key)589 static inline bool wake_page_match(struct wait_page_queue *wait_page,
590 struct wait_page_key *key)
591 {
592 if (wait_page->page != key->page)
593 return false;
594 key->page_match = 1;
595
596 if (wait_page->bit_nr != key->bit_nr)
597 return false;
598
599 return true;
600 }
601
602 extern void __lock_page(struct page *page);
603 extern int __lock_page_killable(struct page *page);
604 extern int __lock_page_async(struct page *page, struct wait_page_queue *wait);
605 extern int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
606 unsigned int flags);
607 extern void unlock_page(struct page *page);
608
609 /*
610 * Return true if the page was successfully locked
611 */
trylock_page(struct page * page)612 static inline int trylock_page(struct page *page)
613 {
614 page = compound_head(page);
615 return (likely(!test_and_set_bit_lock(PG_locked, &page->flags)));
616 }
617
618 /*
619 * lock_page may only be called if we have the page's inode pinned.
620 */
lock_page(struct page * page)621 static inline void lock_page(struct page *page)
622 {
623 might_sleep();
624 if (!trylock_page(page))
625 __lock_page(page);
626 }
627
628 /*
629 * lock_page_killable is like lock_page but can be interrupted by fatal
630 * signals. It returns 0 if it locked the page and -EINTR if it was
631 * killed while waiting.
632 */
lock_page_killable(struct page * page)633 static inline int lock_page_killable(struct page *page)
634 {
635 might_sleep();
636 if (!trylock_page(page))
637 return __lock_page_killable(page);
638 return 0;
639 }
640
641 /*
642 * lock_page_async - Lock the page, unless this would block. If the page
643 * is already locked, then queue a callback when the page becomes unlocked.
644 * This callback can then retry the operation.
645 *
646 * Returns 0 if the page is locked successfully, or -EIOCBQUEUED if the page
647 * was already locked and the callback defined in 'wait' was queued.
648 */
lock_page_async(struct page * page,struct wait_page_queue * wait)649 static inline int lock_page_async(struct page *page,
650 struct wait_page_queue *wait)
651 {
652 if (!trylock_page(page))
653 return __lock_page_async(page, wait);
654 return 0;
655 }
656
657 /*
658 * lock_page_or_retry - Lock the page, unless this would block and the
659 * caller indicated that it can handle a retry.
660 *
661 * Return value and mmap_lock implications depend on flags; see
662 * __lock_page_or_retry().
663 */
lock_page_or_retry(struct page * page,struct mm_struct * mm,unsigned int flags)664 static inline int lock_page_or_retry(struct page *page, struct mm_struct *mm,
665 unsigned int flags)
666 {
667 might_sleep();
668 return trylock_page(page) || __lock_page_or_retry(page, mm, flags);
669 }
670
671 /*
672 * This is exported only for wait_on_page_locked/wait_on_page_writeback, etc.,
673 * and should not be used directly.
674 */
675 extern void wait_on_page_bit(struct page *page, int bit_nr);
676 extern int wait_on_page_bit_killable(struct page *page, int bit_nr);
677
678 /*
679 * Wait for a page to be unlocked.
680 *
681 * This must be called with the caller "holding" the page,
682 * ie with increased "page->count" so that the page won't
683 * go away during the wait..
684 */
wait_on_page_locked(struct page * page)685 static inline void wait_on_page_locked(struct page *page)
686 {
687 if (PageLocked(page))
688 wait_on_page_bit(compound_head(page), PG_locked);
689 }
690
wait_on_page_locked_killable(struct page * page)691 static inline int wait_on_page_locked_killable(struct page *page)
692 {
693 if (!PageLocked(page))
694 return 0;
695 return wait_on_page_bit_killable(compound_head(page), PG_locked);
696 }
697
698 int put_and_wait_on_page_locked(struct page *page, int state);
699 void wait_on_page_writeback(struct page *page);
700 int wait_on_page_writeback_killable(struct page *page);
701 extern void end_page_writeback(struct page *page);
702 void wait_for_stable_page(struct page *page);
703
704 void __set_page_dirty(struct page *, struct address_space *, int warn);
705 int __set_page_dirty_nobuffers(struct page *page);
706 int __set_page_dirty_no_writeback(struct page *page);
707
708 void page_endio(struct page *page, bool is_write, int err);
709
710 /**
711 * set_page_private_2 - Set PG_private_2 on a page and take a ref
712 * @page: The page.
713 *
714 * Set the PG_private_2 flag on a page and take the reference needed for the VM
715 * to handle its lifetime correctly. This sets the flag and takes the
716 * reference unconditionally, so care must be taken not to set the flag again
717 * if it's already set.
718 */
set_page_private_2(struct page * page)719 static inline void set_page_private_2(struct page *page)
720 {
721 page = compound_head(page);
722 get_page(page);
723 SetPagePrivate2(page);
724 }
725
726 void end_page_private_2(struct page *page);
727 void wait_on_page_private_2(struct page *page);
728 int wait_on_page_private_2_killable(struct page *page);
729
730 /*
731 * Add an arbitrary waiter to a page's wait queue
732 */
733 extern void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter);
734
735 /*
736 * Fault everything in given userspace address range in.
737 */
fault_in_pages_writeable(char __user * uaddr,size_t size)738 static inline int fault_in_pages_writeable(char __user *uaddr, size_t size)
739 {
740 char __user *end = uaddr + size - 1;
741
742 if (unlikely(size == 0))
743 return 0;
744
745 if (unlikely(uaddr > end))
746 return -EFAULT;
747 /*
748 * Writing zeroes into userspace here is OK, because we know that if
749 * the zero gets there, we'll be overwriting it.
750 */
751 do {
752 if (unlikely(__put_user(0, uaddr) != 0))
753 return -EFAULT;
754 uaddr += PAGE_SIZE;
755 } while (uaddr <= end);
756
757 /* Check whether the range spilled into the next page. */
758 if (((unsigned long)uaddr & PAGE_MASK) ==
759 ((unsigned long)end & PAGE_MASK))
760 return __put_user(0, end);
761
762 return 0;
763 }
764
fault_in_pages_readable(const char __user * uaddr,size_t size)765 static inline int fault_in_pages_readable(const char __user *uaddr, size_t size)
766 {
767 volatile char c;
768 const char __user *end = uaddr + size - 1;
769
770 if (unlikely(size == 0))
771 return 0;
772
773 if (unlikely(uaddr > end))
774 return -EFAULT;
775
776 do {
777 if (unlikely(__get_user(c, uaddr) != 0))
778 return -EFAULT;
779 uaddr += PAGE_SIZE;
780 } while (uaddr <= end);
781
782 /* Check whether the range spilled into the next page. */
783 if (((unsigned long)uaddr & PAGE_MASK) ==
784 ((unsigned long)end & PAGE_MASK)) {
785 return __get_user(c, end);
786 }
787
788 (void)c;
789 return 0;
790 }
791
792 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
793 pgoff_t index, gfp_t gfp_mask);
794 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
795 pgoff_t index, gfp_t gfp_mask);
796 extern void delete_from_page_cache(struct page *page);
797 extern void __delete_from_page_cache(struct page *page, void *shadow);
798 void replace_page_cache_page(struct page *old, struct page *new);
799 void delete_from_page_cache_batch(struct address_space *mapping,
800 struct pagevec *pvec);
801 loff_t mapping_seek_hole_data(struct address_space *, loff_t start, loff_t end,
802 int whence);
803
804 /*
805 * Like add_to_page_cache_locked, but used to add newly allocated pages:
806 * the page is new, so we can just run __SetPageLocked() against it.
807 */
add_to_page_cache(struct page * page,struct address_space * mapping,pgoff_t offset,gfp_t gfp_mask)808 static inline int add_to_page_cache(struct page *page,
809 struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask)
810 {
811 int error;
812
813 __SetPageLocked(page);
814 error = add_to_page_cache_locked(page, mapping, offset, gfp_mask);
815 if (unlikely(error))
816 __ClearPageLocked(page);
817 return error;
818 }
819
820 /**
821 * struct readahead_control - Describes a readahead request.
822 *
823 * A readahead request is for consecutive pages. Filesystems which
824 * implement the ->readahead method should call readahead_page() or
825 * readahead_page_batch() in a loop and attempt to start I/O against
826 * each page in the request.
827 *
828 * Most of the fields in this struct are private and should be accessed
829 * by the functions below.
830 *
831 * @file: The file, used primarily by network filesystems for authentication.
832 * May be NULL if invoked internally by the filesystem.
833 * @mapping: Readahead this filesystem object.
834 * @ra: File readahead state. May be NULL.
835 */
836 struct readahead_control {
837 struct file *file;
838 struct address_space *mapping;
839 struct file_ra_state *ra;
840 /* private: use the readahead_* accessors instead */
841 pgoff_t _index;
842 unsigned int _nr_pages;
843 unsigned int _batch_count;
844 };
845
846 #define DEFINE_READAHEAD(ractl, f, r, m, i) \
847 struct readahead_control ractl = { \
848 .file = f, \
849 .mapping = m, \
850 .ra = r, \
851 ._index = i, \
852 }
853
854 #define VM_READAHEAD_PAGES (SZ_128K / PAGE_SIZE)
855
856 void page_cache_ra_unbounded(struct readahead_control *,
857 unsigned long nr_to_read, unsigned long lookahead_count);
858 void page_cache_sync_ra(struct readahead_control *, unsigned long req_count);
859 void page_cache_async_ra(struct readahead_control *, struct page *,
860 unsigned long req_count);
861 void readahead_expand(struct readahead_control *ractl,
862 loff_t new_start, size_t new_len);
863
864 /**
865 * page_cache_sync_readahead - generic file readahead
866 * @mapping: address_space which holds the pagecache and I/O vectors
867 * @ra: file_ra_state which holds the readahead state
868 * @file: Used by the filesystem for authentication.
869 * @index: Index of first page to be read.
870 * @req_count: Total number of pages being read by the caller.
871 *
872 * page_cache_sync_readahead() should be called when a cache miss happened:
873 * it will submit the read. The readahead logic may decide to piggyback more
874 * pages onto the read request if access patterns suggest it will improve
875 * performance.
876 */
877 static inline
page_cache_sync_readahead(struct address_space * mapping,struct file_ra_state * ra,struct file * file,pgoff_t index,unsigned long req_count)878 void page_cache_sync_readahead(struct address_space *mapping,
879 struct file_ra_state *ra, struct file *file, pgoff_t index,
880 unsigned long req_count)
881 {
882 DEFINE_READAHEAD(ractl, file, ra, mapping, index);
883 page_cache_sync_ra(&ractl, req_count);
884 }
885
886 /**
887 * page_cache_async_readahead - file readahead for marked pages
888 * @mapping: address_space which holds the pagecache and I/O vectors
889 * @ra: file_ra_state which holds the readahead state
890 * @file: Used by the filesystem for authentication.
891 * @page: The page at @index which triggered the readahead call.
892 * @index: Index of first page to be read.
893 * @req_count: Total number of pages being read by the caller.
894 *
895 * page_cache_async_readahead() should be called when a page is used which
896 * is marked as PageReadahead; this is a marker to suggest that the application
897 * has used up enough of the readahead window that we should start pulling in
898 * more pages.
899 */
900 static inline
page_cache_async_readahead(struct address_space * mapping,struct file_ra_state * ra,struct file * file,struct page * page,pgoff_t index,unsigned long req_count)901 void page_cache_async_readahead(struct address_space *mapping,
902 struct file_ra_state *ra, struct file *file,
903 struct page *page, pgoff_t index, unsigned long req_count)
904 {
905 DEFINE_READAHEAD(ractl, file, ra, mapping, index);
906 page_cache_async_ra(&ractl, page, req_count);
907 }
908
909 /**
910 * readahead_page - Get the next page to read.
911 * @rac: The current readahead request.
912 *
913 * Context: The page is locked and has an elevated refcount. The caller
914 * should decreases the refcount once the page has been submitted for I/O
915 * and unlock the page once all I/O to that page has completed.
916 * Return: A pointer to the next page, or %NULL if we are done.
917 */
readahead_page(struct readahead_control * rac)918 static inline struct page *readahead_page(struct readahead_control *rac)
919 {
920 struct page *page;
921
922 BUG_ON(rac->_batch_count > rac->_nr_pages);
923 rac->_nr_pages -= rac->_batch_count;
924 rac->_index += rac->_batch_count;
925
926 if (!rac->_nr_pages) {
927 rac->_batch_count = 0;
928 return NULL;
929 }
930
931 page = xa_load(&rac->mapping->i_pages, rac->_index);
932 VM_BUG_ON_PAGE(!PageLocked(page), page);
933 rac->_batch_count = thp_nr_pages(page);
934
935 return page;
936 }
937
__readahead_batch(struct readahead_control * rac,struct page ** array,unsigned int array_sz)938 static inline unsigned int __readahead_batch(struct readahead_control *rac,
939 struct page **array, unsigned int array_sz)
940 {
941 unsigned int i = 0;
942 XA_STATE(xas, &rac->mapping->i_pages, 0);
943 struct page *page;
944
945 BUG_ON(rac->_batch_count > rac->_nr_pages);
946 rac->_nr_pages -= rac->_batch_count;
947 rac->_index += rac->_batch_count;
948 rac->_batch_count = 0;
949
950 xas_set(&xas, rac->_index);
951 rcu_read_lock();
952 xas_for_each(&xas, page, rac->_index + rac->_nr_pages - 1) {
953 if (xas_retry(&xas, page))
954 continue;
955 VM_BUG_ON_PAGE(!PageLocked(page), page);
956 VM_BUG_ON_PAGE(PageTail(page), page);
957 array[i++] = page;
958 rac->_batch_count += thp_nr_pages(page);
959
960 /*
961 * The page cache isn't using multi-index entries yet,
962 * so the xas cursor needs to be manually moved to the
963 * next index. This can be removed once the page cache
964 * is converted.
965 */
966 if (PageHead(page))
967 xas_set(&xas, rac->_index + rac->_batch_count);
968
969 if (i == array_sz)
970 break;
971 }
972 rcu_read_unlock();
973
974 return i;
975 }
976
977 /**
978 * readahead_page_batch - Get a batch of pages to read.
979 * @rac: The current readahead request.
980 * @array: An array of pointers to struct page.
981 *
982 * Context: The pages are locked and have an elevated refcount. The caller
983 * should decreases the refcount once the page has been submitted for I/O
984 * and unlock the page once all I/O to that page has completed.
985 * Return: The number of pages placed in the array. 0 indicates the request
986 * is complete.
987 */
988 #define readahead_page_batch(rac, array) \
989 __readahead_batch(rac, array, ARRAY_SIZE(array))
990
991 /**
992 * readahead_pos - The byte offset into the file of this readahead request.
993 * @rac: The readahead request.
994 */
readahead_pos(struct readahead_control * rac)995 static inline loff_t readahead_pos(struct readahead_control *rac)
996 {
997 return (loff_t)rac->_index * PAGE_SIZE;
998 }
999
1000 /**
1001 * readahead_length - The number of bytes in this readahead request.
1002 * @rac: The readahead request.
1003 */
readahead_length(struct readahead_control * rac)1004 static inline size_t readahead_length(struct readahead_control *rac)
1005 {
1006 return rac->_nr_pages * PAGE_SIZE;
1007 }
1008
1009 /**
1010 * readahead_index - The index of the first page in this readahead request.
1011 * @rac: The readahead request.
1012 */
readahead_index(struct readahead_control * rac)1013 static inline pgoff_t readahead_index(struct readahead_control *rac)
1014 {
1015 return rac->_index;
1016 }
1017
1018 /**
1019 * readahead_count - The number of pages in this readahead request.
1020 * @rac: The readahead request.
1021 */
readahead_count(struct readahead_control * rac)1022 static inline unsigned int readahead_count(struct readahead_control *rac)
1023 {
1024 return rac->_nr_pages;
1025 }
1026
1027 /**
1028 * readahead_batch_length - The number of bytes in the current batch.
1029 * @rac: The readahead request.
1030 */
readahead_batch_length(struct readahead_control * rac)1031 static inline size_t readahead_batch_length(struct readahead_control *rac)
1032 {
1033 return rac->_batch_count * PAGE_SIZE;
1034 }
1035
dir_pages(struct inode * inode)1036 static inline unsigned long dir_pages(struct inode *inode)
1037 {
1038 return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >>
1039 PAGE_SHIFT;
1040 }
1041
1042 /**
1043 * page_mkwrite_check_truncate - check if page was truncated
1044 * @page: the page to check
1045 * @inode: the inode to check the page against
1046 *
1047 * Returns the number of bytes in the page up to EOF,
1048 * or -EFAULT if the page was truncated.
1049 */
page_mkwrite_check_truncate(struct page * page,struct inode * inode)1050 static inline int page_mkwrite_check_truncate(struct page *page,
1051 struct inode *inode)
1052 {
1053 loff_t size = i_size_read(inode);
1054 pgoff_t index = size >> PAGE_SHIFT;
1055 int offset = offset_in_page(size);
1056
1057 if (page->mapping != inode->i_mapping)
1058 return -EFAULT;
1059
1060 /* page is wholly inside EOF */
1061 if (page->index < index)
1062 return PAGE_SIZE;
1063 /* page is wholly past EOF */
1064 if (page->index > index || !offset)
1065 return -EFAULT;
1066 /* page is partially inside EOF */
1067 return offset;
1068 }
1069
1070 /**
1071 * i_blocks_per_page - How many blocks fit in this page.
1072 * @inode: The inode which contains the blocks.
1073 * @page: The page (head page if the page is a THP).
1074 *
1075 * If the block size is larger than the size of this page, return zero.
1076 *
1077 * Context: The caller should hold a refcount on the page to prevent it
1078 * from being split.
1079 * Return: The number of filesystem blocks covered by this page.
1080 */
1081 static inline
i_blocks_per_page(struct inode * inode,struct page * page)1082 unsigned int i_blocks_per_page(struct inode *inode, struct page *page)
1083 {
1084 return thp_size(page) >> inode->i_blkbits;
1085 }
1086 #endif /* _LINUX_PAGEMAP_H */
1087