1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #ifndef BTRFS_INODE_H
7 #define BTRFS_INODE_H
8
9 #include <linux/hash.h>
10 #include <linux/refcount.h>
11 #include "extent_map.h"
12 #include "extent_io.h"
13 #include "ordered-data.h"
14 #include "delayed-inode.h"
15
16 /*
17 * ordered_data_close is set by truncate when a file that used
18 * to have good data has been truncated to zero. When it is set
19 * the btrfs file release call will add this inode to the
20 * ordered operations list so that we make sure to flush out any
21 * new data the application may have written before commit.
22 */
23 enum {
24 BTRFS_INODE_FLUSH_ON_CLOSE,
25 BTRFS_INODE_DUMMY,
26 BTRFS_INODE_IN_DEFRAG,
27 BTRFS_INODE_HAS_ASYNC_EXTENT,
28 /*
29 * Always set under the VFS' inode lock, otherwise it can cause races
30 * during fsync (we start as a fast fsync and then end up in a full
31 * fsync racing with ordered extent completion).
32 */
33 BTRFS_INODE_NEEDS_FULL_SYNC,
34 BTRFS_INODE_COPY_EVERYTHING,
35 BTRFS_INODE_IN_DELALLOC_LIST,
36 BTRFS_INODE_HAS_PROPS,
37 BTRFS_INODE_SNAPSHOT_FLUSH,
38 };
39
40 /* in memory btrfs inode */
41 struct btrfs_inode {
42 /* which subvolume this inode belongs to */
43 struct btrfs_root *root;
44
45 /* key used to find this inode on disk. This is used by the code
46 * to read in roots of subvolumes
47 */
48 struct btrfs_key location;
49
50 /*
51 * Lock for counters and all fields used to determine if the inode is in
52 * the log or not (last_trans, last_sub_trans, last_log_commit,
53 * logged_trans).
54 */
55 spinlock_t lock;
56
57 /* the extent_tree has caches of all the extent mappings to disk */
58 struct extent_map_tree extent_tree;
59
60 /* the io_tree does range state (DIRTY, LOCKED etc) */
61 struct extent_io_tree io_tree;
62
63 /* special utility tree used to record which mirrors have already been
64 * tried when checksums fail for a given block
65 */
66 struct extent_io_tree io_failure_tree;
67
68 /*
69 * Keep track of where the inode has extent items mapped in order to
70 * make sure the i_size adjustments are accurate
71 */
72 struct extent_io_tree file_extent_tree;
73
74 /* held while logging the inode in tree-log.c */
75 struct mutex log_mutex;
76
77 /* used to order data wrt metadata */
78 struct btrfs_ordered_inode_tree ordered_tree;
79
80 /* list of all the delalloc inodes in the FS. There are times we need
81 * to write all the delalloc pages to disk, and this list is used
82 * to walk them all.
83 */
84 struct list_head delalloc_inodes;
85
86 /* node for the red-black tree that links inodes in subvolume root */
87 struct rb_node rb_node;
88
89 unsigned long runtime_flags;
90
91 /* Keep track of who's O_SYNC/fsyncing currently */
92 atomic_t sync_writers;
93
94 /* full 64 bit generation number, struct vfs_inode doesn't have a big
95 * enough field for this.
96 */
97 u64 generation;
98
99 /*
100 * transid of the trans_handle that last modified this inode
101 */
102 u64 last_trans;
103
104 /*
105 * transid that last logged this inode
106 */
107 u64 logged_trans;
108
109 /*
110 * log transid when this inode was last modified
111 */
112 int last_sub_trans;
113
114 /* a local copy of root's last_log_commit */
115 int last_log_commit;
116
117 /* total number of bytes pending delalloc, used by stat to calc the
118 * real block usage of the file
119 */
120 u64 delalloc_bytes;
121
122 /*
123 * Total number of bytes pending delalloc that fall within a file
124 * range that is either a hole or beyond EOF (and no prealloc extent
125 * exists in the range). This is always <= delalloc_bytes.
126 */
127 u64 new_delalloc_bytes;
128
129 /*
130 * total number of bytes pending defrag, used by stat to check whether
131 * it needs COW.
132 */
133 u64 defrag_bytes;
134
135 /*
136 * the size of the file stored in the metadata on disk. data=ordered
137 * means the in-memory i_size might be larger than the size on disk
138 * because not all the blocks are written yet.
139 */
140 u64 disk_i_size;
141
142 /*
143 * if this is a directory then index_cnt is the counter for the index
144 * number for new files that are created
145 */
146 u64 index_cnt;
147
148 /* Cache the directory index number to speed the dir/file remove */
149 u64 dir_index;
150
151 /* the fsync log has some corner cases that mean we have to check
152 * directories to see if any unlinks have been done before
153 * the directory was logged. See tree-log.c for all the
154 * details
155 */
156 u64 last_unlink_trans;
157
158 /*
159 * The id/generation of the last transaction where this inode was
160 * either the source or the destination of a clone/dedupe operation.
161 * Used when logging an inode to know if there are shared extents that
162 * need special care when logging checksum items, to avoid duplicate
163 * checksum items in a log (which can lead to a corruption where we end
164 * up with missing checksum ranges after log replay).
165 * Protected by the vfs inode lock.
166 */
167 u64 last_reflink_trans;
168
169 /*
170 * Number of bytes outstanding that are going to need csums. This is
171 * used in ENOSPC accounting.
172 */
173 u64 csum_bytes;
174
175 /* flags field from the on disk inode */
176 u32 flags;
177
178 /*
179 * Counters to keep track of the number of extent item's we may use due
180 * to delalloc and such. outstanding_extents is the number of extent
181 * items we think we'll end up using, and reserved_extents is the number
182 * of extent items we've reserved metadata for.
183 */
184 unsigned outstanding_extents;
185
186 struct btrfs_block_rsv block_rsv;
187
188 /*
189 * Cached values of inode properties
190 */
191 unsigned prop_compress; /* per-file compression algorithm */
192 /*
193 * Force compression on the file using the defrag ioctl, could be
194 * different from prop_compress and takes precedence if set
195 */
196 unsigned defrag_compress;
197
198 struct btrfs_delayed_node *delayed_node;
199
200 /* File creation time. */
201 struct timespec64 i_otime;
202
203 /* Hook into fs_info->delayed_iputs */
204 struct list_head delayed_iput;
205
206 /*
207 * To avoid races between lockless (i_mutex not held) direct IO writes
208 * and concurrent fsync requests. Direct IO writes must acquire read
209 * access on this semaphore for creating an extent map and its
210 * corresponding ordered extent. The fast fsync path must acquire write
211 * access on this semaphore before it collects ordered extents and
212 * extent maps.
213 */
214 struct rw_semaphore dio_sem;
215
216 struct inode vfs_inode;
217 };
218
btrfs_inode_sectorsize(const struct btrfs_inode * inode)219 static inline u32 btrfs_inode_sectorsize(const struct btrfs_inode *inode)
220 {
221 return inode->root->fs_info->sectorsize;
222 }
223
BTRFS_I(const struct inode * inode)224 static inline struct btrfs_inode *BTRFS_I(const struct inode *inode)
225 {
226 return container_of(inode, struct btrfs_inode, vfs_inode);
227 }
228
btrfs_inode_hash(u64 objectid,const struct btrfs_root * root)229 static inline unsigned long btrfs_inode_hash(u64 objectid,
230 const struct btrfs_root *root)
231 {
232 u64 h = objectid ^ (root->root_key.objectid * GOLDEN_RATIO_PRIME);
233
234 #if BITS_PER_LONG == 32
235 h = (h >> 32) ^ (h & 0xffffffff);
236 #endif
237
238 return (unsigned long)h;
239 }
240
btrfs_insert_inode_hash(struct inode * inode)241 static inline void btrfs_insert_inode_hash(struct inode *inode)
242 {
243 unsigned long h = btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root);
244
245 __insert_inode_hash(inode, h);
246 }
247
btrfs_ino(const struct btrfs_inode * inode)248 static inline u64 btrfs_ino(const struct btrfs_inode *inode)
249 {
250 u64 ino = inode->location.objectid;
251
252 /*
253 * !ino: btree_inode
254 * type == BTRFS_ROOT_ITEM_KEY: subvol dir
255 */
256 if (!ino || inode->location.type == BTRFS_ROOT_ITEM_KEY)
257 ino = inode->vfs_inode.i_ino;
258 return ino;
259 }
260
btrfs_i_size_write(struct btrfs_inode * inode,u64 size)261 static inline void btrfs_i_size_write(struct btrfs_inode *inode, u64 size)
262 {
263 i_size_write(&inode->vfs_inode, size);
264 inode->disk_i_size = size;
265 }
266
btrfs_is_free_space_inode(struct btrfs_inode * inode)267 static inline bool btrfs_is_free_space_inode(struct btrfs_inode *inode)
268 {
269 struct btrfs_root *root = inode->root;
270
271 if (root == root->fs_info->tree_root &&
272 btrfs_ino(inode) != BTRFS_BTREE_INODE_OBJECTID)
273 return true;
274 if (inode->location.objectid == BTRFS_FREE_INO_OBJECTID)
275 return true;
276 return false;
277 }
278
is_data_inode(struct inode * inode)279 static inline bool is_data_inode(struct inode *inode)
280 {
281 return btrfs_ino(BTRFS_I(inode)) != BTRFS_BTREE_INODE_OBJECTID;
282 }
283
btrfs_mod_outstanding_extents(struct btrfs_inode * inode,int mod)284 static inline void btrfs_mod_outstanding_extents(struct btrfs_inode *inode,
285 int mod)
286 {
287 lockdep_assert_held(&inode->lock);
288 inode->outstanding_extents += mod;
289 if (btrfs_is_free_space_inode(inode))
290 return;
291 trace_btrfs_inode_mod_outstanding_extents(inode->root, btrfs_ino(inode),
292 mod);
293 }
294
btrfs_inode_in_log(struct btrfs_inode * inode,u64 generation)295 static inline int btrfs_inode_in_log(struct btrfs_inode *inode, u64 generation)
296 {
297 int ret = 0;
298
299 spin_lock(&inode->lock);
300 if (inode->logged_trans == generation &&
301 inode->last_sub_trans <= inode->last_log_commit &&
302 inode->last_sub_trans <= inode->root->last_log_commit) {
303 /*
304 * After a ranged fsync we might have left some extent maps
305 * (that fall outside the fsync's range). So return false
306 * here if the list isn't empty, to make sure btrfs_log_inode()
307 * will be called and process those extent maps.
308 */
309 smp_mb();
310 if (list_empty(&inode->extent_tree.modified_extents))
311 ret = 1;
312 }
313 spin_unlock(&inode->lock);
314 return ret;
315 }
316
317 struct btrfs_dio_private {
318 struct inode *inode;
319 u64 logical_offset;
320 u64 disk_bytenr;
321 u64 bytes;
322
323 /*
324 * References to this structure. There is one reference per in-flight
325 * bio plus one while we're still setting up.
326 */
327 refcount_t refs;
328
329 /* dio_bio came from fs/direct-io.c */
330 struct bio *dio_bio;
331
332 /* Array of checksums */
333 u8 csums[];
334 };
335
336 /* Array of bytes with variable length, hexadecimal format 0x1234 */
337 #define CSUM_FMT "0x%*phN"
338 #define CSUM_FMT_VALUE(size, bytes) size, bytes
339
btrfs_print_data_csum_error(struct btrfs_inode * inode,u64 logical_start,u8 * csum,u8 * csum_expected,int mirror_num)340 static inline void btrfs_print_data_csum_error(struct btrfs_inode *inode,
341 u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num)
342 {
343 struct btrfs_root *root = inode->root;
344 struct btrfs_super_block *sb = root->fs_info->super_copy;
345 const u16 csum_size = btrfs_super_csum_size(sb);
346
347 /* Output minus objectid, which is more meaningful */
348 if (root->root_key.objectid >= BTRFS_LAST_FREE_OBJECTID)
349 btrfs_warn_rl(root->fs_info,
350 "csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
351 root->root_key.objectid, btrfs_ino(inode),
352 logical_start,
353 CSUM_FMT_VALUE(csum_size, csum),
354 CSUM_FMT_VALUE(csum_size, csum_expected),
355 mirror_num);
356 else
357 btrfs_warn_rl(root->fs_info,
358 "csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
359 root->root_key.objectid, btrfs_ino(inode),
360 logical_start,
361 CSUM_FMT_VALUE(csum_size, csum),
362 CSUM_FMT_VALUE(csum_size, csum_expected),
363 mirror_num);
364 }
365
366 #endif
367