1 /*
2 * (c) 2005-2016 Advanced Micro Devices, Inc.
3 * Your use of this code is subject to the terms and conditions of the
4 * GNU general public license version 2. See "COPYING" or
5 * http://www.gnu.org/licenses/gpl.html
6 *
7 * Written by Jacob Shin - AMD, Inc.
8 * Maintained by: Borislav Petkov <bp@alien8.de>
9 *
10 * All MC4_MISCi registers are shared between cores on a node.
11 */
12 #include <linux/interrupt.h>
13 #include <linux/notifier.h>
14 #include <linux/kobject.h>
15 #include <linux/percpu.h>
16 #include <linux/errno.h>
17 #include <linux/sched.h>
18 #include <linux/sysfs.h>
19 #include <linux/slab.h>
20 #include <linux/init.h>
21 #include <linux/cpu.h>
22 #include <linux/smp.h>
23 #include <linux/string.h>
24
25 #include <asm/amd_nb.h>
26 #include <asm/apic.h>
27 #include <asm/mce.h>
28 #include <asm/msr.h>
29 #include <asm/trace/irq_vectors.h>
30
31 #include "mce-internal.h"
32
33 #define NR_BLOCKS 5
34 #define THRESHOLD_MAX 0xFFF
35 #define INT_TYPE_APIC 0x00020000
36 #define MASK_VALID_HI 0x80000000
37 #define MASK_CNTP_HI 0x40000000
38 #define MASK_LOCKED_HI 0x20000000
39 #define MASK_LVTOFF_HI 0x00F00000
40 #define MASK_COUNT_EN_HI 0x00080000
41 #define MASK_INT_TYPE_HI 0x00060000
42 #define MASK_OVERFLOW_HI 0x00010000
43 #define MASK_ERR_COUNT_HI 0x00000FFF
44 #define MASK_BLKPTR_LO 0xFF000000
45 #define MCG_XBLK_ADDR 0xC0000400
46
47 /* Deferred error settings */
48 #define MSR_CU_DEF_ERR 0xC0000410
49 #define MASK_DEF_LVTOFF 0x000000F0
50 #define MASK_DEF_INT_TYPE 0x00000006
51 #define DEF_LVT_OFF 0x2
52 #define DEF_INT_TYPE_APIC 0x2
53
54 /* Scalable MCA: */
55
56 /* Threshold LVT offset is at MSR0xC0000410[15:12] */
57 #define SMCA_THR_LVT_OFF 0xF000
58
59 static bool thresholding_en;
60
61 static const char * const th_names[] = {
62 "load_store",
63 "insn_fetch",
64 "combined_unit",
65 "decode_unit",
66 "northbridge",
67 "execution_unit",
68 };
69
70 static const char * const smca_umc_block_names[] = {
71 "dram_ecc",
72 "misc_umc"
73 };
74
75 struct smca_bank_name {
76 const char *name; /* Short name for sysfs */
77 const char *long_name; /* Long name for pretty-printing */
78 };
79
80 static struct smca_bank_name smca_names[] = {
81 [SMCA_LS] = { "load_store", "Load Store Unit" },
82 [SMCA_IF] = { "insn_fetch", "Instruction Fetch Unit" },
83 [SMCA_L2_CACHE] = { "l2_cache", "L2 Cache" },
84 [SMCA_DE] = { "decode_unit", "Decode Unit" },
85 [SMCA_RESERVED] = { "reserved", "Reserved" },
86 [SMCA_EX] = { "execution_unit", "Execution Unit" },
87 [SMCA_FP] = { "floating_point", "Floating Point Unit" },
88 [SMCA_L3_CACHE] = { "l3_cache", "L3 Cache" },
89 [SMCA_CS] = { "coherent_slave", "Coherent Slave" },
90 [SMCA_PIE] = { "pie", "Power, Interrupts, etc." },
91 [SMCA_UMC] = { "umc", "Unified Memory Controller" },
92 [SMCA_PB] = { "param_block", "Parameter Block" },
93 [SMCA_PSP] = { "psp", "Platform Security Processor" },
94 [SMCA_SMU] = { "smu", "System Management Unit" },
95 };
96
97 static u32 smca_bank_addrs[MAX_NR_BANKS][NR_BLOCKS] __ro_after_init =
98 {
99 [0 ... MAX_NR_BANKS - 1] = { [0 ... NR_BLOCKS - 1] = -1 }
100 };
101
smca_get_name(enum smca_bank_types t)102 const char *smca_get_name(enum smca_bank_types t)
103 {
104 if (t >= N_SMCA_BANK_TYPES)
105 return NULL;
106
107 return smca_names[t].name;
108 }
109
smca_get_long_name(enum smca_bank_types t)110 const char *smca_get_long_name(enum smca_bank_types t)
111 {
112 if (t >= N_SMCA_BANK_TYPES)
113 return NULL;
114
115 return smca_names[t].long_name;
116 }
117 EXPORT_SYMBOL_GPL(smca_get_long_name);
118
smca_get_bank_type(unsigned int bank)119 static enum smca_bank_types smca_get_bank_type(unsigned int bank)
120 {
121 struct smca_bank *b;
122
123 if (bank >= MAX_NR_BANKS)
124 return N_SMCA_BANK_TYPES;
125
126 b = &smca_banks[bank];
127 if (!b->hwid)
128 return N_SMCA_BANK_TYPES;
129
130 return b->hwid->bank_type;
131 }
132
133 static struct smca_hwid smca_hwid_mcatypes[] = {
134 /* { bank_type, hwid_mcatype, xec_bitmap } */
135
136 /* Reserved type */
137 { SMCA_RESERVED, HWID_MCATYPE(0x00, 0x0), 0x0 },
138
139 /* ZN Core (HWID=0xB0) MCA types */
140 { SMCA_LS, HWID_MCATYPE(0xB0, 0x0), 0x1FFFEF },
141 { SMCA_IF, HWID_MCATYPE(0xB0, 0x1), 0x3FFF },
142 { SMCA_L2_CACHE, HWID_MCATYPE(0xB0, 0x2), 0xF },
143 { SMCA_DE, HWID_MCATYPE(0xB0, 0x3), 0x1FF },
144 /* HWID 0xB0 MCATYPE 0x4 is Reserved */
145 { SMCA_EX, HWID_MCATYPE(0xB0, 0x5), 0x7FF },
146 { SMCA_FP, HWID_MCATYPE(0xB0, 0x6), 0x7F },
147 { SMCA_L3_CACHE, HWID_MCATYPE(0xB0, 0x7), 0xFF },
148
149 /* Data Fabric MCA types */
150 { SMCA_CS, HWID_MCATYPE(0x2E, 0x0), 0x1FF },
151 { SMCA_PIE, HWID_MCATYPE(0x2E, 0x1), 0xF },
152
153 /* Unified Memory Controller MCA type */
154 { SMCA_UMC, HWID_MCATYPE(0x96, 0x0), 0x3F },
155
156 /* Parameter Block MCA type */
157 { SMCA_PB, HWID_MCATYPE(0x05, 0x0), 0x1 },
158
159 /* Platform Security Processor MCA type */
160 { SMCA_PSP, HWID_MCATYPE(0xFF, 0x0), 0x1 },
161
162 /* System Management Unit MCA type */
163 { SMCA_SMU, HWID_MCATYPE(0x01, 0x0), 0x1 },
164 };
165
166 struct smca_bank smca_banks[MAX_NR_BANKS];
167 EXPORT_SYMBOL_GPL(smca_banks);
168
169 /*
170 * In SMCA enabled processors, we can have multiple banks for a given IP type.
171 * So to define a unique name for each bank, we use a temp c-string to append
172 * the MCA_IPID[InstanceId] to type's name in get_name().
173 *
174 * InstanceId is 32 bits which is 8 characters. Make sure MAX_MCATYPE_NAME_LEN
175 * is greater than 8 plus 1 (for underscore) plus length of longest type name.
176 */
177 #define MAX_MCATYPE_NAME_LEN 30
178 static char buf_mcatype[MAX_MCATYPE_NAME_LEN];
179
180 static DEFINE_PER_CPU(struct threshold_bank **, threshold_banks);
181 static DEFINE_PER_CPU(unsigned int, bank_map); /* see which banks are on */
182
183 static void amd_threshold_interrupt(void);
184 static void amd_deferred_error_interrupt(void);
185
default_deferred_error_interrupt(void)186 static void default_deferred_error_interrupt(void)
187 {
188 pr_err("Unexpected deferred interrupt at vector %x\n", DEFERRED_ERROR_VECTOR);
189 }
190 void (*deferred_error_int_vector)(void) = default_deferred_error_interrupt;
191
smca_configure(unsigned int bank,unsigned int cpu)192 static void smca_configure(unsigned int bank, unsigned int cpu)
193 {
194 unsigned int i, hwid_mcatype;
195 struct smca_hwid *s_hwid;
196 u32 high, low;
197 u32 smca_config = MSR_AMD64_SMCA_MCx_CONFIG(bank);
198
199 /* Set appropriate bits in MCA_CONFIG */
200 if (!rdmsr_safe(smca_config, &low, &high)) {
201 /*
202 * OS is required to set the MCAX bit to acknowledge that it is
203 * now using the new MSR ranges and new registers under each
204 * bank. It also means that the OS will configure deferred
205 * errors in the new MCx_CONFIG register. If the bit is not set,
206 * uncorrectable errors will cause a system panic.
207 *
208 * MCA_CONFIG[MCAX] is bit 32 (0 in the high portion of the MSR.)
209 */
210 high |= BIT(0);
211
212 /*
213 * SMCA sets the Deferred Error Interrupt type per bank.
214 *
215 * MCA_CONFIG[DeferredIntTypeSupported] is bit 5, and tells us
216 * if the DeferredIntType bit field is available.
217 *
218 * MCA_CONFIG[DeferredIntType] is bits [38:37] ([6:5] in the
219 * high portion of the MSR). OS should set this to 0x1 to enable
220 * APIC based interrupt. First, check that no interrupt has been
221 * set.
222 */
223 if ((low & BIT(5)) && !((high >> 5) & 0x3))
224 high |= BIT(5);
225
226 wrmsr(smca_config, low, high);
227 }
228
229 /* Return early if this bank was already initialized. */
230 if (smca_banks[bank].hwid)
231 return;
232
233 if (rdmsr_safe_on_cpu(cpu, MSR_AMD64_SMCA_MCx_IPID(bank), &low, &high)) {
234 pr_warn("Failed to read MCA_IPID for bank %d\n", bank);
235 return;
236 }
237
238 hwid_mcatype = HWID_MCATYPE(high & MCI_IPID_HWID,
239 (high & MCI_IPID_MCATYPE) >> 16);
240
241 for (i = 0; i < ARRAY_SIZE(smca_hwid_mcatypes); i++) {
242 s_hwid = &smca_hwid_mcatypes[i];
243 if (hwid_mcatype == s_hwid->hwid_mcatype) {
244 smca_banks[bank].hwid = s_hwid;
245 smca_banks[bank].id = low;
246 smca_banks[bank].sysfs_id = s_hwid->count++;
247 break;
248 }
249 }
250 }
251
252 struct thresh_restart {
253 struct threshold_block *b;
254 int reset;
255 int set_lvt_off;
256 int lvt_off;
257 u16 old_limit;
258 };
259
is_shared_bank(int bank)260 static inline bool is_shared_bank(int bank)
261 {
262 /*
263 * Scalable MCA provides for only one core to have access to the MSRs of
264 * a shared bank.
265 */
266 if (mce_flags.smca)
267 return false;
268
269 /* Bank 4 is for northbridge reporting and is thus shared */
270 return (bank == 4);
271 }
272
bank4_names(const struct threshold_block * b)273 static const char *bank4_names(const struct threshold_block *b)
274 {
275 switch (b->address) {
276 /* MSR4_MISC0 */
277 case 0x00000413:
278 return "dram";
279
280 case 0xc0000408:
281 return "ht_links";
282
283 case 0xc0000409:
284 return "l3_cache";
285
286 default:
287 WARN(1, "Funny MSR: 0x%08x\n", b->address);
288 return "";
289 }
290 };
291
292
lvt_interrupt_supported(unsigned int bank,u32 msr_high_bits)293 static bool lvt_interrupt_supported(unsigned int bank, u32 msr_high_bits)
294 {
295 /*
296 * bank 4 supports APIC LVT interrupts implicitly since forever.
297 */
298 if (bank == 4)
299 return true;
300
301 /*
302 * IntP: interrupt present; if this bit is set, the thresholding
303 * bank can generate APIC LVT interrupts
304 */
305 return msr_high_bits & BIT(28);
306 }
307
lvt_off_valid(struct threshold_block * b,int apic,u32 lo,u32 hi)308 static int lvt_off_valid(struct threshold_block *b, int apic, u32 lo, u32 hi)
309 {
310 int msr = (hi & MASK_LVTOFF_HI) >> 20;
311
312 if (apic < 0) {
313 pr_err(FW_BUG "cpu %d, failed to setup threshold interrupt "
314 "for bank %d, block %d (MSR%08X=0x%x%08x)\n", b->cpu,
315 b->bank, b->block, b->address, hi, lo);
316 return 0;
317 }
318
319 if (apic != msr) {
320 /*
321 * On SMCA CPUs, LVT offset is programmed at a different MSR, and
322 * the BIOS provides the value. The original field where LVT offset
323 * was set is reserved. Return early here:
324 */
325 if (mce_flags.smca)
326 return 0;
327
328 pr_err(FW_BUG "cpu %d, invalid threshold interrupt offset %d "
329 "for bank %d, block %d (MSR%08X=0x%x%08x)\n",
330 b->cpu, apic, b->bank, b->block, b->address, hi, lo);
331 return 0;
332 }
333
334 return 1;
335 };
336
337 /* Reprogram MCx_MISC MSR behind this threshold bank. */
threshold_restart_bank(void * _tr)338 static void threshold_restart_bank(void *_tr)
339 {
340 struct thresh_restart *tr = _tr;
341 u32 hi, lo;
342
343 rdmsr(tr->b->address, lo, hi);
344
345 if (tr->b->threshold_limit < (hi & THRESHOLD_MAX))
346 tr->reset = 1; /* limit cannot be lower than err count */
347
348 if (tr->reset) { /* reset err count and overflow bit */
349 hi =
350 (hi & ~(MASK_ERR_COUNT_HI | MASK_OVERFLOW_HI)) |
351 (THRESHOLD_MAX - tr->b->threshold_limit);
352 } else if (tr->old_limit) { /* change limit w/o reset */
353 int new_count = (hi & THRESHOLD_MAX) +
354 (tr->old_limit - tr->b->threshold_limit);
355
356 hi = (hi & ~MASK_ERR_COUNT_HI) |
357 (new_count & THRESHOLD_MAX);
358 }
359
360 /* clear IntType */
361 hi &= ~MASK_INT_TYPE_HI;
362
363 if (!tr->b->interrupt_capable)
364 goto done;
365
366 if (tr->set_lvt_off) {
367 if (lvt_off_valid(tr->b, tr->lvt_off, lo, hi)) {
368 /* set new lvt offset */
369 hi &= ~MASK_LVTOFF_HI;
370 hi |= tr->lvt_off << 20;
371 }
372 }
373
374 if (tr->b->interrupt_enable)
375 hi |= INT_TYPE_APIC;
376
377 done:
378
379 hi |= MASK_COUNT_EN_HI;
380 wrmsr(tr->b->address, lo, hi);
381 }
382
mce_threshold_block_init(struct threshold_block * b,int offset)383 static void mce_threshold_block_init(struct threshold_block *b, int offset)
384 {
385 struct thresh_restart tr = {
386 .b = b,
387 .set_lvt_off = 1,
388 .lvt_off = offset,
389 };
390
391 b->threshold_limit = THRESHOLD_MAX;
392 threshold_restart_bank(&tr);
393 };
394
setup_APIC_mce_threshold(int reserved,int new)395 static int setup_APIC_mce_threshold(int reserved, int new)
396 {
397 if (reserved < 0 && !setup_APIC_eilvt(new, THRESHOLD_APIC_VECTOR,
398 APIC_EILVT_MSG_FIX, 0))
399 return new;
400
401 return reserved;
402 }
403
setup_APIC_deferred_error(int reserved,int new)404 static int setup_APIC_deferred_error(int reserved, int new)
405 {
406 if (reserved < 0 && !setup_APIC_eilvt(new, DEFERRED_ERROR_VECTOR,
407 APIC_EILVT_MSG_FIX, 0))
408 return new;
409
410 return reserved;
411 }
412
deferred_error_interrupt_enable(struct cpuinfo_x86 * c)413 static void deferred_error_interrupt_enable(struct cpuinfo_x86 *c)
414 {
415 u32 low = 0, high = 0;
416 int def_offset = -1, def_new;
417
418 if (rdmsr_safe(MSR_CU_DEF_ERR, &low, &high))
419 return;
420
421 def_new = (low & MASK_DEF_LVTOFF) >> 4;
422 if (!(low & MASK_DEF_LVTOFF)) {
423 pr_err(FW_BUG "Your BIOS is not setting up LVT offset 0x2 for deferred error IRQs correctly.\n");
424 def_new = DEF_LVT_OFF;
425 low = (low & ~MASK_DEF_LVTOFF) | (DEF_LVT_OFF << 4);
426 }
427
428 def_offset = setup_APIC_deferred_error(def_offset, def_new);
429 if ((def_offset == def_new) &&
430 (deferred_error_int_vector != amd_deferred_error_interrupt))
431 deferred_error_int_vector = amd_deferred_error_interrupt;
432
433 if (!mce_flags.smca)
434 low = (low & ~MASK_DEF_INT_TYPE) | DEF_INT_TYPE_APIC;
435
436 wrmsr(MSR_CU_DEF_ERR, low, high);
437 }
438
smca_get_block_address(unsigned int bank,unsigned int block)439 static u32 smca_get_block_address(unsigned int bank, unsigned int block)
440 {
441 u32 low, high;
442 u32 addr = 0;
443
444 if (smca_get_bank_type(bank) == SMCA_RESERVED)
445 return addr;
446
447 if (!block)
448 return MSR_AMD64_SMCA_MCx_MISC(bank);
449
450 /* Check our cache first: */
451 if (smca_bank_addrs[bank][block] != -1)
452 return smca_bank_addrs[bank][block];
453
454 /*
455 * For SMCA enabled processors, BLKPTR field of the first MISC register
456 * (MCx_MISC0) indicates presence of additional MISC regs set (MISC1-4).
457 */
458 if (rdmsr_safe(MSR_AMD64_SMCA_MCx_CONFIG(bank), &low, &high))
459 goto out;
460
461 if (!(low & MCI_CONFIG_MCAX))
462 goto out;
463
464 if (!rdmsr_safe(MSR_AMD64_SMCA_MCx_MISC(bank), &low, &high) &&
465 (low & MASK_BLKPTR_LO))
466 addr = MSR_AMD64_SMCA_MCx_MISCy(bank, block - 1);
467
468 out:
469 smca_bank_addrs[bank][block] = addr;
470 return addr;
471 }
472
get_block_address(u32 current_addr,u32 low,u32 high,unsigned int bank,unsigned int block)473 static u32 get_block_address(u32 current_addr, u32 low, u32 high,
474 unsigned int bank, unsigned int block)
475 {
476 u32 addr = 0, offset = 0;
477
478 if ((bank >= mca_cfg.banks) || (block >= NR_BLOCKS))
479 return addr;
480
481 if (mce_flags.smca)
482 return smca_get_block_address(bank, block);
483
484 /* Fall back to method we used for older processors: */
485 switch (block) {
486 case 0:
487 addr = msr_ops.misc(bank);
488 break;
489 case 1:
490 offset = ((low & MASK_BLKPTR_LO) >> 21);
491 if (offset)
492 addr = MCG_XBLK_ADDR + offset;
493 break;
494 default:
495 addr = ++current_addr;
496 }
497 return addr;
498 }
499
500 static int
prepare_threshold_block(unsigned int bank,unsigned int block,u32 addr,int offset,u32 misc_high)501 prepare_threshold_block(unsigned int bank, unsigned int block, u32 addr,
502 int offset, u32 misc_high)
503 {
504 unsigned int cpu = smp_processor_id();
505 u32 smca_low, smca_high;
506 struct threshold_block b;
507 int new;
508
509 if (!block)
510 per_cpu(bank_map, cpu) |= (1 << bank);
511
512 memset(&b, 0, sizeof(b));
513 b.cpu = cpu;
514 b.bank = bank;
515 b.block = block;
516 b.address = addr;
517 b.interrupt_capable = lvt_interrupt_supported(bank, misc_high);
518
519 if (!b.interrupt_capable)
520 goto done;
521
522 b.interrupt_enable = 1;
523
524 if (!mce_flags.smca) {
525 new = (misc_high & MASK_LVTOFF_HI) >> 20;
526 goto set_offset;
527 }
528
529 /* Gather LVT offset for thresholding: */
530 if (rdmsr_safe(MSR_CU_DEF_ERR, &smca_low, &smca_high))
531 goto out;
532
533 new = (smca_low & SMCA_THR_LVT_OFF) >> 12;
534
535 set_offset:
536 offset = setup_APIC_mce_threshold(offset, new);
537
538 if ((offset == new) && (mce_threshold_vector != amd_threshold_interrupt))
539 mce_threshold_vector = amd_threshold_interrupt;
540
541 done:
542 mce_threshold_block_init(&b, offset);
543
544 out:
545 return offset;
546 }
547
548 /* cpu init entry point, called from mce.c with preempt off */
mce_amd_feature_init(struct cpuinfo_x86 * c)549 void mce_amd_feature_init(struct cpuinfo_x86 *c)
550 {
551 u32 low = 0, high = 0, address = 0;
552 unsigned int bank, block, cpu = smp_processor_id();
553 int offset = -1;
554
555 for (bank = 0; bank < mca_cfg.banks; ++bank) {
556 if (mce_flags.smca)
557 smca_configure(bank, cpu);
558
559 for (block = 0; block < NR_BLOCKS; ++block) {
560 address = get_block_address(address, low, high, bank, block);
561 if (!address)
562 break;
563
564 if (rdmsr_safe(address, &low, &high))
565 break;
566
567 if (!(high & MASK_VALID_HI))
568 continue;
569
570 if (!(high & MASK_CNTP_HI) ||
571 (high & MASK_LOCKED_HI))
572 continue;
573
574 offset = prepare_threshold_block(bank, block, address, offset, high);
575 }
576 }
577
578 if (mce_flags.succor)
579 deferred_error_interrupt_enable(c);
580 }
581
umc_normaddr_to_sysaddr(u64 norm_addr,u16 nid,u8 umc,u64 * sys_addr)582 int umc_normaddr_to_sysaddr(u64 norm_addr, u16 nid, u8 umc, u64 *sys_addr)
583 {
584 u64 dram_base_addr, dram_limit_addr, dram_hole_base;
585 /* We start from the normalized address */
586 u64 ret_addr = norm_addr;
587
588 u32 tmp;
589
590 u8 die_id_shift, die_id_mask, socket_id_shift, socket_id_mask;
591 u8 intlv_num_dies, intlv_num_chan, intlv_num_sockets;
592 u8 intlv_addr_sel, intlv_addr_bit;
593 u8 num_intlv_bits, hashed_bit;
594 u8 lgcy_mmio_hole_en, base = 0;
595 u8 cs_mask, cs_id = 0;
596 bool hash_enabled = false;
597
598 /* Read D18F0x1B4 (DramOffset), check if base 1 is used. */
599 if (amd_df_indirect_read(nid, 0, 0x1B4, umc, &tmp))
600 goto out_err;
601
602 /* Remove HiAddrOffset from normalized address, if enabled: */
603 if (tmp & BIT(0)) {
604 u64 hi_addr_offset = (tmp & GENMASK_ULL(31, 20)) << 8;
605
606 if (norm_addr >= hi_addr_offset) {
607 ret_addr -= hi_addr_offset;
608 base = 1;
609 }
610 }
611
612 /* Read D18F0x110 (DramBaseAddress). */
613 if (amd_df_indirect_read(nid, 0, 0x110 + (8 * base), umc, &tmp))
614 goto out_err;
615
616 /* Check if address range is valid. */
617 if (!(tmp & BIT(0))) {
618 pr_err("%s: Invalid DramBaseAddress range: 0x%x.\n",
619 __func__, tmp);
620 goto out_err;
621 }
622
623 lgcy_mmio_hole_en = tmp & BIT(1);
624 intlv_num_chan = (tmp >> 4) & 0xF;
625 intlv_addr_sel = (tmp >> 8) & 0x7;
626 dram_base_addr = (tmp & GENMASK_ULL(31, 12)) << 16;
627
628 /* {0, 1, 2, 3} map to address bits {8, 9, 10, 11} respectively */
629 if (intlv_addr_sel > 3) {
630 pr_err("%s: Invalid interleave address select %d.\n",
631 __func__, intlv_addr_sel);
632 goto out_err;
633 }
634
635 /* Read D18F0x114 (DramLimitAddress). */
636 if (amd_df_indirect_read(nid, 0, 0x114 + (8 * base), umc, &tmp))
637 goto out_err;
638
639 intlv_num_sockets = (tmp >> 8) & 0x1;
640 intlv_num_dies = (tmp >> 10) & 0x3;
641 dram_limit_addr = ((tmp & GENMASK_ULL(31, 12)) << 16) | GENMASK_ULL(27, 0);
642
643 intlv_addr_bit = intlv_addr_sel + 8;
644
645 /* Re-use intlv_num_chan by setting it equal to log2(#channels) */
646 switch (intlv_num_chan) {
647 case 0: intlv_num_chan = 0; break;
648 case 1: intlv_num_chan = 1; break;
649 case 3: intlv_num_chan = 2; break;
650 case 5: intlv_num_chan = 3; break;
651 case 7: intlv_num_chan = 4; break;
652
653 case 8: intlv_num_chan = 1;
654 hash_enabled = true;
655 break;
656 default:
657 pr_err("%s: Invalid number of interleaved channels %d.\n",
658 __func__, intlv_num_chan);
659 goto out_err;
660 }
661
662 num_intlv_bits = intlv_num_chan;
663
664 if (intlv_num_dies > 2) {
665 pr_err("%s: Invalid number of interleaved nodes/dies %d.\n",
666 __func__, intlv_num_dies);
667 goto out_err;
668 }
669
670 num_intlv_bits += intlv_num_dies;
671
672 /* Add a bit if sockets are interleaved. */
673 num_intlv_bits += intlv_num_sockets;
674
675 /* Assert num_intlv_bits <= 4 */
676 if (num_intlv_bits > 4) {
677 pr_err("%s: Invalid interleave bits %d.\n",
678 __func__, num_intlv_bits);
679 goto out_err;
680 }
681
682 if (num_intlv_bits > 0) {
683 u64 temp_addr_x, temp_addr_i, temp_addr_y;
684 u8 die_id_bit, sock_id_bit, cs_fabric_id;
685
686 /*
687 * Read FabricBlockInstanceInformation3_CS[BlockFabricID].
688 * This is the fabric id for this coherent slave. Use
689 * umc/channel# as instance id of the coherent slave
690 * for FICAA.
691 */
692 if (amd_df_indirect_read(nid, 0, 0x50, umc, &tmp))
693 goto out_err;
694
695 cs_fabric_id = (tmp >> 8) & 0xFF;
696 die_id_bit = 0;
697
698 /* If interleaved over more than 1 channel: */
699 if (intlv_num_chan) {
700 die_id_bit = intlv_num_chan;
701 cs_mask = (1 << die_id_bit) - 1;
702 cs_id = cs_fabric_id & cs_mask;
703 }
704
705 sock_id_bit = die_id_bit;
706
707 /* Read D18F1x208 (SystemFabricIdMask). */
708 if (intlv_num_dies || intlv_num_sockets)
709 if (amd_df_indirect_read(nid, 1, 0x208, umc, &tmp))
710 goto out_err;
711
712 /* If interleaved over more than 1 die. */
713 if (intlv_num_dies) {
714 sock_id_bit = die_id_bit + intlv_num_dies;
715 die_id_shift = (tmp >> 24) & 0xF;
716 die_id_mask = (tmp >> 8) & 0xFF;
717
718 cs_id |= ((cs_fabric_id & die_id_mask) >> die_id_shift) << die_id_bit;
719 }
720
721 /* If interleaved over more than 1 socket. */
722 if (intlv_num_sockets) {
723 socket_id_shift = (tmp >> 28) & 0xF;
724 socket_id_mask = (tmp >> 16) & 0xFF;
725
726 cs_id |= ((cs_fabric_id & socket_id_mask) >> socket_id_shift) << sock_id_bit;
727 }
728
729 /*
730 * The pre-interleaved address consists of XXXXXXIIIYYYYY
731 * where III is the ID for this CS, and XXXXXXYYYYY are the
732 * address bits from the post-interleaved address.
733 * "num_intlv_bits" has been calculated to tell us how many "I"
734 * bits there are. "intlv_addr_bit" tells us how many "Y" bits
735 * there are (where "I" starts).
736 */
737 temp_addr_y = ret_addr & GENMASK_ULL(intlv_addr_bit-1, 0);
738 temp_addr_i = (cs_id << intlv_addr_bit);
739 temp_addr_x = (ret_addr & GENMASK_ULL(63, intlv_addr_bit)) << num_intlv_bits;
740 ret_addr = temp_addr_x | temp_addr_i | temp_addr_y;
741 }
742
743 /* Add dram base address */
744 ret_addr += dram_base_addr;
745
746 /* If legacy MMIO hole enabled */
747 if (lgcy_mmio_hole_en) {
748 if (amd_df_indirect_read(nid, 0, 0x104, umc, &tmp))
749 goto out_err;
750
751 dram_hole_base = tmp & GENMASK(31, 24);
752 if (ret_addr >= dram_hole_base)
753 ret_addr += (BIT_ULL(32) - dram_hole_base);
754 }
755
756 if (hash_enabled) {
757 /* Save some parentheses and grab ls-bit at the end. */
758 hashed_bit = (ret_addr >> 12) ^
759 (ret_addr >> 18) ^
760 (ret_addr >> 21) ^
761 (ret_addr >> 30) ^
762 cs_id;
763
764 hashed_bit &= BIT(0);
765
766 if (hashed_bit != ((ret_addr >> intlv_addr_bit) & BIT(0)))
767 ret_addr ^= BIT(intlv_addr_bit);
768 }
769
770 /* Is calculated system address is above DRAM limit address? */
771 if (ret_addr > dram_limit_addr)
772 goto out_err;
773
774 *sys_addr = ret_addr;
775 return 0;
776
777 out_err:
778 return -EINVAL;
779 }
780 EXPORT_SYMBOL_GPL(umc_normaddr_to_sysaddr);
781
amd_mce_is_memory_error(struct mce * m)782 bool amd_mce_is_memory_error(struct mce *m)
783 {
784 /* ErrCodeExt[20:16] */
785 u8 xec = (m->status >> 16) & 0x1f;
786
787 if (mce_flags.smca)
788 return smca_get_bank_type(m->bank) == SMCA_UMC && xec == 0x0;
789
790 return m->bank == 4 && xec == 0x8;
791 }
792
__log_error(unsigned int bank,u64 status,u64 addr,u64 misc)793 static void __log_error(unsigned int bank, u64 status, u64 addr, u64 misc)
794 {
795 struct mce m;
796
797 mce_setup(&m);
798
799 m.status = status;
800 m.misc = misc;
801 m.bank = bank;
802 m.tsc = rdtsc();
803
804 if (m.status & MCI_STATUS_ADDRV) {
805 m.addr = addr;
806
807 /*
808 * Extract [55:<lsb>] where lsb is the least significant
809 * *valid* bit of the address bits.
810 */
811 if (mce_flags.smca) {
812 u8 lsb = (m.addr >> 56) & 0x3f;
813
814 m.addr &= GENMASK_ULL(55, lsb);
815 }
816 }
817
818 if (mce_flags.smca) {
819 rdmsrl(MSR_AMD64_SMCA_MCx_IPID(bank), m.ipid);
820
821 if (m.status & MCI_STATUS_SYNDV)
822 rdmsrl(MSR_AMD64_SMCA_MCx_SYND(bank), m.synd);
823 }
824
825 mce_log(&m);
826 }
827
smp_deferred_error_interrupt(void)828 asmlinkage __visible void __irq_entry smp_deferred_error_interrupt(void)
829 {
830 entering_irq();
831 trace_deferred_error_apic_entry(DEFERRED_ERROR_VECTOR);
832 inc_irq_stat(irq_deferred_error_count);
833 deferred_error_int_vector();
834 trace_deferred_error_apic_exit(DEFERRED_ERROR_VECTOR);
835 exiting_ack_irq();
836 }
837
838 /*
839 * Returns true if the logged error is deferred. False, otherwise.
840 */
841 static inline bool
_log_error_bank(unsigned int bank,u32 msr_stat,u32 msr_addr,u64 misc)842 _log_error_bank(unsigned int bank, u32 msr_stat, u32 msr_addr, u64 misc)
843 {
844 u64 status, addr = 0;
845
846 rdmsrl(msr_stat, status);
847 if (!(status & MCI_STATUS_VAL))
848 return false;
849
850 if (status & MCI_STATUS_ADDRV)
851 rdmsrl(msr_addr, addr);
852
853 __log_error(bank, status, addr, misc);
854
855 wrmsrl(msr_stat, 0);
856
857 return status & MCI_STATUS_DEFERRED;
858 }
859
860 /*
861 * We have three scenarios for checking for Deferred errors:
862 *
863 * 1) Non-SMCA systems check MCA_STATUS and log error if found.
864 * 2) SMCA systems check MCA_STATUS. If error is found then log it and also
865 * clear MCA_DESTAT.
866 * 3) SMCA systems check MCA_DESTAT, if error was not found in MCA_STATUS, and
867 * log it.
868 */
log_error_deferred(unsigned int bank)869 static void log_error_deferred(unsigned int bank)
870 {
871 bool defrd;
872
873 defrd = _log_error_bank(bank, msr_ops.status(bank),
874 msr_ops.addr(bank), 0);
875
876 if (!mce_flags.smca)
877 return;
878
879 /* Clear MCA_DESTAT if we logged the deferred error from MCA_STATUS. */
880 if (defrd) {
881 wrmsrl(MSR_AMD64_SMCA_MCx_DESTAT(bank), 0);
882 return;
883 }
884
885 /*
886 * Only deferred errors are logged in MCA_DE{STAT,ADDR} so just check
887 * for a valid error.
888 */
889 _log_error_bank(bank, MSR_AMD64_SMCA_MCx_DESTAT(bank),
890 MSR_AMD64_SMCA_MCx_DEADDR(bank), 0);
891 }
892
893 /* APIC interrupt handler for deferred errors */
amd_deferred_error_interrupt(void)894 static void amd_deferred_error_interrupt(void)
895 {
896 unsigned int bank;
897
898 for (bank = 0; bank < mca_cfg.banks; ++bank)
899 log_error_deferred(bank);
900 }
901
log_error_thresholding(unsigned int bank,u64 misc)902 static void log_error_thresholding(unsigned int bank, u64 misc)
903 {
904 _log_error_bank(bank, msr_ops.status(bank), msr_ops.addr(bank), misc);
905 }
906
log_and_reset_block(struct threshold_block * block)907 static void log_and_reset_block(struct threshold_block *block)
908 {
909 struct thresh_restart tr;
910 u32 low = 0, high = 0;
911
912 if (!block)
913 return;
914
915 if (rdmsr_safe(block->address, &low, &high))
916 return;
917
918 if (!(high & MASK_OVERFLOW_HI))
919 return;
920
921 /* Log the MCE which caused the threshold event. */
922 log_error_thresholding(block->bank, ((u64)high << 32) | low);
923
924 /* Reset threshold block after logging error. */
925 memset(&tr, 0, sizeof(tr));
926 tr.b = block;
927 threshold_restart_bank(&tr);
928 }
929
930 /*
931 * Threshold interrupt handler will service THRESHOLD_APIC_VECTOR. The interrupt
932 * goes off when error_count reaches threshold_limit.
933 */
amd_threshold_interrupt(void)934 static void amd_threshold_interrupt(void)
935 {
936 struct threshold_block *first_block = NULL, *block = NULL, *tmp = NULL;
937 unsigned int bank, cpu = smp_processor_id();
938
939 for (bank = 0; bank < mca_cfg.banks; ++bank) {
940 if (!(per_cpu(bank_map, cpu) & (1 << bank)))
941 continue;
942
943 first_block = per_cpu(threshold_banks, cpu)[bank]->blocks;
944 if (!first_block)
945 continue;
946
947 /*
948 * The first block is also the head of the list. Check it first
949 * before iterating over the rest.
950 */
951 log_and_reset_block(first_block);
952 list_for_each_entry_safe(block, tmp, &first_block->miscj, miscj)
953 log_and_reset_block(block);
954 }
955 }
956
957 /*
958 * Sysfs Interface
959 */
960
961 struct threshold_attr {
962 struct attribute attr;
963 ssize_t (*show) (struct threshold_block *, char *);
964 ssize_t (*store) (struct threshold_block *, const char *, size_t count);
965 };
966
967 #define SHOW_FIELDS(name) \
968 static ssize_t show_ ## name(struct threshold_block *b, char *buf) \
969 { \
970 return sprintf(buf, "%lu\n", (unsigned long) b->name); \
971 }
972 SHOW_FIELDS(interrupt_enable)
SHOW_FIELDS(threshold_limit)973 SHOW_FIELDS(threshold_limit)
974
975 static ssize_t
976 store_interrupt_enable(struct threshold_block *b, const char *buf, size_t size)
977 {
978 struct thresh_restart tr;
979 unsigned long new;
980
981 if (!b->interrupt_capable)
982 return -EINVAL;
983
984 if (kstrtoul(buf, 0, &new) < 0)
985 return -EINVAL;
986
987 b->interrupt_enable = !!new;
988
989 memset(&tr, 0, sizeof(tr));
990 tr.b = b;
991
992 smp_call_function_single(b->cpu, threshold_restart_bank, &tr, 1);
993
994 return size;
995 }
996
997 static ssize_t
store_threshold_limit(struct threshold_block * b,const char * buf,size_t size)998 store_threshold_limit(struct threshold_block *b, const char *buf, size_t size)
999 {
1000 struct thresh_restart tr;
1001 unsigned long new;
1002
1003 if (kstrtoul(buf, 0, &new) < 0)
1004 return -EINVAL;
1005
1006 if (new > THRESHOLD_MAX)
1007 new = THRESHOLD_MAX;
1008 if (new < 1)
1009 new = 1;
1010
1011 memset(&tr, 0, sizeof(tr));
1012 tr.old_limit = b->threshold_limit;
1013 b->threshold_limit = new;
1014 tr.b = b;
1015
1016 smp_call_function_single(b->cpu, threshold_restart_bank, &tr, 1);
1017
1018 return size;
1019 }
1020
show_error_count(struct threshold_block * b,char * buf)1021 static ssize_t show_error_count(struct threshold_block *b, char *buf)
1022 {
1023 u32 lo, hi;
1024
1025 rdmsr_on_cpu(b->cpu, b->address, &lo, &hi);
1026
1027 return sprintf(buf, "%u\n", ((hi & THRESHOLD_MAX) -
1028 (THRESHOLD_MAX - b->threshold_limit)));
1029 }
1030
1031 static struct threshold_attr error_count = {
1032 .attr = {.name = __stringify(error_count), .mode = 0444 },
1033 .show = show_error_count,
1034 };
1035
1036 #define RW_ATTR(val) \
1037 static struct threshold_attr val = { \
1038 .attr = {.name = __stringify(val), .mode = 0644 }, \
1039 .show = show_## val, \
1040 .store = store_## val, \
1041 };
1042
1043 RW_ATTR(interrupt_enable);
1044 RW_ATTR(threshold_limit);
1045
1046 static struct attribute *default_attrs[] = {
1047 &threshold_limit.attr,
1048 &error_count.attr,
1049 NULL, /* possibly interrupt_enable if supported, see below */
1050 NULL,
1051 };
1052
1053 #define to_block(k) container_of(k, struct threshold_block, kobj)
1054 #define to_attr(a) container_of(a, struct threshold_attr, attr)
1055
show(struct kobject * kobj,struct attribute * attr,char * buf)1056 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
1057 {
1058 struct threshold_block *b = to_block(kobj);
1059 struct threshold_attr *a = to_attr(attr);
1060 ssize_t ret;
1061
1062 ret = a->show ? a->show(b, buf) : -EIO;
1063
1064 return ret;
1065 }
1066
store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t count)1067 static ssize_t store(struct kobject *kobj, struct attribute *attr,
1068 const char *buf, size_t count)
1069 {
1070 struct threshold_block *b = to_block(kobj);
1071 struct threshold_attr *a = to_attr(attr);
1072 ssize_t ret;
1073
1074 ret = a->store ? a->store(b, buf, count) : -EIO;
1075
1076 return ret;
1077 }
1078
1079 static const struct sysfs_ops threshold_ops = {
1080 .show = show,
1081 .store = store,
1082 };
1083
1084 static struct kobj_type threshold_ktype = {
1085 .sysfs_ops = &threshold_ops,
1086 .default_attrs = default_attrs,
1087 };
1088
get_name(unsigned int bank,struct threshold_block * b)1089 static const char *get_name(unsigned int bank, struct threshold_block *b)
1090 {
1091 enum smca_bank_types bank_type;
1092
1093 if (!mce_flags.smca) {
1094 if (b && bank == 4)
1095 return bank4_names(b);
1096
1097 return th_names[bank];
1098 }
1099
1100 bank_type = smca_get_bank_type(bank);
1101 if (bank_type >= N_SMCA_BANK_TYPES)
1102 return NULL;
1103
1104 if (b && bank_type == SMCA_UMC) {
1105 if (b->block < ARRAY_SIZE(smca_umc_block_names))
1106 return smca_umc_block_names[b->block];
1107 return NULL;
1108 }
1109
1110 if (smca_banks[bank].hwid->count == 1)
1111 return smca_get_name(bank_type);
1112
1113 snprintf(buf_mcatype, MAX_MCATYPE_NAME_LEN,
1114 "%s_%x", smca_get_name(bank_type),
1115 smca_banks[bank].sysfs_id);
1116 return buf_mcatype;
1117 }
1118
allocate_threshold_blocks(unsigned int cpu,unsigned int bank,unsigned int block,u32 address)1119 static int allocate_threshold_blocks(unsigned int cpu, unsigned int bank,
1120 unsigned int block, u32 address)
1121 {
1122 struct threshold_block *b = NULL;
1123 u32 low, high;
1124 int err;
1125
1126 if ((bank >= mca_cfg.banks) || (block >= NR_BLOCKS))
1127 return 0;
1128
1129 if (rdmsr_safe_on_cpu(cpu, address, &low, &high))
1130 return 0;
1131
1132 if (!(high & MASK_VALID_HI)) {
1133 if (block)
1134 goto recurse;
1135 else
1136 return 0;
1137 }
1138
1139 if (!(high & MASK_CNTP_HI) ||
1140 (high & MASK_LOCKED_HI))
1141 goto recurse;
1142
1143 b = kzalloc(sizeof(struct threshold_block), GFP_KERNEL);
1144 if (!b)
1145 return -ENOMEM;
1146
1147 b->block = block;
1148 b->bank = bank;
1149 b->cpu = cpu;
1150 b->address = address;
1151 b->interrupt_enable = 0;
1152 b->interrupt_capable = lvt_interrupt_supported(bank, high);
1153 b->threshold_limit = THRESHOLD_MAX;
1154
1155 if (b->interrupt_capable) {
1156 threshold_ktype.default_attrs[2] = &interrupt_enable.attr;
1157 b->interrupt_enable = 1;
1158 } else {
1159 threshold_ktype.default_attrs[2] = NULL;
1160 }
1161
1162 INIT_LIST_HEAD(&b->miscj);
1163
1164 if (per_cpu(threshold_banks, cpu)[bank]->blocks) {
1165 list_add(&b->miscj,
1166 &per_cpu(threshold_banks, cpu)[bank]->blocks->miscj);
1167 } else {
1168 per_cpu(threshold_banks, cpu)[bank]->blocks = b;
1169 }
1170
1171 err = kobject_init_and_add(&b->kobj, &threshold_ktype,
1172 per_cpu(threshold_banks, cpu)[bank]->kobj,
1173 get_name(bank, b));
1174 if (err)
1175 goto out_free;
1176 recurse:
1177 address = get_block_address(address, low, high, bank, ++block);
1178 if (!address)
1179 return 0;
1180
1181 err = allocate_threshold_blocks(cpu, bank, block, address);
1182 if (err)
1183 goto out_free;
1184
1185 if (b)
1186 kobject_uevent(&b->kobj, KOBJ_ADD);
1187
1188 return err;
1189
1190 out_free:
1191 if (b) {
1192 kobject_put(&b->kobj);
1193 list_del(&b->miscj);
1194 kfree(b);
1195 }
1196 return err;
1197 }
1198
__threshold_add_blocks(struct threshold_bank * b)1199 static int __threshold_add_blocks(struct threshold_bank *b)
1200 {
1201 struct list_head *head = &b->blocks->miscj;
1202 struct threshold_block *pos = NULL;
1203 struct threshold_block *tmp = NULL;
1204 int err = 0;
1205
1206 err = kobject_add(&b->blocks->kobj, b->kobj, b->blocks->kobj.name);
1207 if (err)
1208 return err;
1209
1210 list_for_each_entry_safe(pos, tmp, head, miscj) {
1211
1212 err = kobject_add(&pos->kobj, b->kobj, pos->kobj.name);
1213 if (err) {
1214 list_for_each_entry_safe_reverse(pos, tmp, head, miscj)
1215 kobject_del(&pos->kobj);
1216
1217 return err;
1218 }
1219 }
1220 return err;
1221 }
1222
threshold_create_bank(unsigned int cpu,unsigned int bank)1223 static int threshold_create_bank(unsigned int cpu, unsigned int bank)
1224 {
1225 struct device *dev = per_cpu(mce_device, cpu);
1226 struct amd_northbridge *nb = NULL;
1227 struct threshold_bank *b = NULL;
1228 const char *name = get_name(bank, NULL);
1229 int err = 0;
1230
1231 if (!dev)
1232 return -ENODEV;
1233
1234 if (is_shared_bank(bank)) {
1235 nb = node_to_amd_nb(amd_get_nb_id(cpu));
1236
1237 /* threshold descriptor already initialized on this node? */
1238 if (nb && nb->bank4) {
1239 /* yes, use it */
1240 b = nb->bank4;
1241 err = kobject_add(b->kobj, &dev->kobj, name);
1242 if (err)
1243 goto out;
1244
1245 per_cpu(threshold_banks, cpu)[bank] = b;
1246 refcount_inc(&b->cpus);
1247
1248 err = __threshold_add_blocks(b);
1249
1250 goto out;
1251 }
1252 }
1253
1254 b = kzalloc(sizeof(struct threshold_bank), GFP_KERNEL);
1255 if (!b) {
1256 err = -ENOMEM;
1257 goto out;
1258 }
1259
1260 b->kobj = kobject_create_and_add(name, &dev->kobj);
1261 if (!b->kobj) {
1262 err = -EINVAL;
1263 goto out_free;
1264 }
1265
1266 per_cpu(threshold_banks, cpu)[bank] = b;
1267
1268 if (is_shared_bank(bank)) {
1269 refcount_set(&b->cpus, 1);
1270
1271 /* nb is already initialized, see above */
1272 if (nb) {
1273 WARN_ON(nb->bank4);
1274 nb->bank4 = b;
1275 }
1276 }
1277
1278 err = allocate_threshold_blocks(cpu, bank, 0, msr_ops.misc(bank));
1279 if (!err)
1280 goto out;
1281
1282 out_free:
1283 kfree(b);
1284
1285 out:
1286 return err;
1287 }
1288
deallocate_threshold_block(unsigned int cpu,unsigned int bank)1289 static void deallocate_threshold_block(unsigned int cpu,
1290 unsigned int bank)
1291 {
1292 struct threshold_block *pos = NULL;
1293 struct threshold_block *tmp = NULL;
1294 struct threshold_bank *head = per_cpu(threshold_banks, cpu)[bank];
1295
1296 if (!head)
1297 return;
1298
1299 list_for_each_entry_safe(pos, tmp, &head->blocks->miscj, miscj) {
1300 kobject_put(&pos->kobj);
1301 list_del(&pos->miscj);
1302 kfree(pos);
1303 }
1304
1305 kfree(per_cpu(threshold_banks, cpu)[bank]->blocks);
1306 per_cpu(threshold_banks, cpu)[bank]->blocks = NULL;
1307 }
1308
__threshold_remove_blocks(struct threshold_bank * b)1309 static void __threshold_remove_blocks(struct threshold_bank *b)
1310 {
1311 struct threshold_block *pos = NULL;
1312 struct threshold_block *tmp = NULL;
1313
1314 kobject_del(b->kobj);
1315
1316 list_for_each_entry_safe(pos, tmp, &b->blocks->miscj, miscj)
1317 kobject_del(&pos->kobj);
1318 }
1319
threshold_remove_bank(unsigned int cpu,int bank)1320 static void threshold_remove_bank(unsigned int cpu, int bank)
1321 {
1322 struct amd_northbridge *nb;
1323 struct threshold_bank *b;
1324
1325 b = per_cpu(threshold_banks, cpu)[bank];
1326 if (!b)
1327 return;
1328
1329 if (!b->blocks)
1330 goto free_out;
1331
1332 if (is_shared_bank(bank)) {
1333 if (!refcount_dec_and_test(&b->cpus)) {
1334 __threshold_remove_blocks(b);
1335 per_cpu(threshold_banks, cpu)[bank] = NULL;
1336 return;
1337 } else {
1338 /*
1339 * the last CPU on this node using the shared bank is
1340 * going away, remove that bank now.
1341 */
1342 nb = node_to_amd_nb(amd_get_nb_id(cpu));
1343 nb->bank4 = NULL;
1344 }
1345 }
1346
1347 deallocate_threshold_block(cpu, bank);
1348
1349 free_out:
1350 kobject_del(b->kobj);
1351 kobject_put(b->kobj);
1352 kfree(b);
1353 per_cpu(threshold_banks, cpu)[bank] = NULL;
1354 }
1355
mce_threshold_remove_device(unsigned int cpu)1356 int mce_threshold_remove_device(unsigned int cpu)
1357 {
1358 unsigned int bank;
1359
1360 if (!thresholding_en)
1361 return 0;
1362
1363 for (bank = 0; bank < mca_cfg.banks; ++bank) {
1364 if (!(per_cpu(bank_map, cpu) & (1 << bank)))
1365 continue;
1366 threshold_remove_bank(cpu, bank);
1367 }
1368 kfree(per_cpu(threshold_banks, cpu));
1369 per_cpu(threshold_banks, cpu) = NULL;
1370 return 0;
1371 }
1372
1373 /* create dir/files for all valid threshold banks */
mce_threshold_create_device(unsigned int cpu)1374 int mce_threshold_create_device(unsigned int cpu)
1375 {
1376 unsigned int bank;
1377 struct threshold_bank **bp;
1378 int err = 0;
1379
1380 if (!thresholding_en)
1381 return 0;
1382
1383 bp = per_cpu(threshold_banks, cpu);
1384 if (bp)
1385 return 0;
1386
1387 bp = kcalloc(mca_cfg.banks, sizeof(struct threshold_bank *),
1388 GFP_KERNEL);
1389 if (!bp)
1390 return -ENOMEM;
1391
1392 per_cpu(threshold_banks, cpu) = bp;
1393
1394 for (bank = 0; bank < mca_cfg.banks; ++bank) {
1395 if (!(per_cpu(bank_map, cpu) & (1 << bank)))
1396 continue;
1397 err = threshold_create_bank(cpu, bank);
1398 if (err)
1399 goto err;
1400 }
1401 return err;
1402 err:
1403 mce_threshold_remove_device(cpu);
1404 return err;
1405 }
1406
threshold_init_device(void)1407 static __init int threshold_init_device(void)
1408 {
1409 unsigned lcpu = 0;
1410
1411 if (mce_threshold_vector == amd_threshold_interrupt)
1412 thresholding_en = true;
1413
1414 /* to hit CPUs online before the notifier is up */
1415 for_each_online_cpu(lcpu) {
1416 int err = mce_threshold_create_device(lcpu);
1417
1418 if (err)
1419 return err;
1420 }
1421
1422 return 0;
1423 }
1424 /*
1425 * there are 3 funcs which need to be _initcalled in a logic sequence:
1426 * 1. xen_late_init_mcelog
1427 * 2. mcheck_init_device
1428 * 3. threshold_init_device
1429 *
1430 * xen_late_init_mcelog must register xen_mce_chrdev_device before
1431 * native mce_chrdev_device registration if running under xen platform;
1432 *
1433 * mcheck_init_device should be inited before threshold_init_device to
1434 * initialize mce_device, otherwise a NULL ptr dereference will cause panic.
1435 *
1436 * so we use following _initcalls
1437 * 1. device_initcall(xen_late_init_mcelog);
1438 * 2. device_initcall_sync(mcheck_init_device);
1439 * 3. late_initcall(threshold_init_device);
1440 *
1441 * when running under xen, the initcall order is 1,2,3;
1442 * on baremetal, we skip 1 and we do only 2 and 3.
1443 */
1444 late_initcall(threshold_init_device);
1445