1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * PCI Message Signaled Interrupt (MSI)
4  *
5  * Copyright (C) 2003-2004 Intel
6  * Copyright (C) Tom Long Nguyen (tom.l.nguyen@intel.com)
7  * Copyright (C) 2016 Christoph Hellwig.
8  */
9 
10 #include <linux/err.h>
11 #include <linux/mm.h>
12 #include <linux/irq.h>
13 #include <linux/interrupt.h>
14 #include <linux/export.h>
15 #include <linux/ioport.h>
16 #include <linux/pci.h>
17 #include <linux/proc_fs.h>
18 #include <linux/msi.h>
19 #include <linux/smp.h>
20 #include <linux/errno.h>
21 #include <linux/io.h>
22 #include <linux/acpi_iort.h>
23 #include <linux/slab.h>
24 #include <linux/irqdomain.h>
25 #include <linux/of_irq.h>
26 
27 #include "pci.h"
28 
29 static int pci_msi_enable = 1;
30 int pci_msi_ignore_mask;
31 
32 #define msix_table_size(flags)	((flags & PCI_MSIX_FLAGS_QSIZE) + 1)
33 
34 #ifdef CONFIG_PCI_MSI_IRQ_DOMAIN
pci_msi_setup_msi_irqs(struct pci_dev * dev,int nvec,int type)35 static int pci_msi_setup_msi_irqs(struct pci_dev *dev, int nvec, int type)
36 {
37 	struct irq_domain *domain;
38 
39 	domain = dev_get_msi_domain(&dev->dev);
40 	if (domain && irq_domain_is_hierarchy(domain))
41 		return msi_domain_alloc_irqs(domain, &dev->dev, nvec);
42 
43 	return arch_setup_msi_irqs(dev, nvec, type);
44 }
45 
pci_msi_teardown_msi_irqs(struct pci_dev * dev)46 static void pci_msi_teardown_msi_irqs(struct pci_dev *dev)
47 {
48 	struct irq_domain *domain;
49 
50 	domain = dev_get_msi_domain(&dev->dev);
51 	if (domain && irq_domain_is_hierarchy(domain))
52 		msi_domain_free_irqs(domain, &dev->dev);
53 	else
54 		arch_teardown_msi_irqs(dev);
55 }
56 #else
57 #define pci_msi_setup_msi_irqs		arch_setup_msi_irqs
58 #define pci_msi_teardown_msi_irqs	arch_teardown_msi_irqs
59 #endif
60 
61 /* Arch hooks */
62 
arch_setup_msi_irq(struct pci_dev * dev,struct msi_desc * desc)63 int __weak arch_setup_msi_irq(struct pci_dev *dev, struct msi_desc *desc)
64 {
65 	struct msi_controller *chip = dev->bus->msi;
66 	int err;
67 
68 	if (!chip || !chip->setup_irq)
69 		return -EINVAL;
70 
71 	err = chip->setup_irq(chip, dev, desc);
72 	if (err < 0)
73 		return err;
74 
75 	irq_set_chip_data(desc->irq, chip);
76 
77 	return 0;
78 }
79 
arch_teardown_msi_irq(unsigned int irq)80 void __weak arch_teardown_msi_irq(unsigned int irq)
81 {
82 	struct msi_controller *chip = irq_get_chip_data(irq);
83 
84 	if (!chip || !chip->teardown_irq)
85 		return;
86 
87 	chip->teardown_irq(chip, irq);
88 }
89 
arch_setup_msi_irqs(struct pci_dev * dev,int nvec,int type)90 int __weak arch_setup_msi_irqs(struct pci_dev *dev, int nvec, int type)
91 {
92 	struct msi_controller *chip = dev->bus->msi;
93 	struct msi_desc *entry;
94 	int ret;
95 
96 	if (chip && chip->setup_irqs)
97 		return chip->setup_irqs(chip, dev, nvec, type);
98 	/*
99 	 * If an architecture wants to support multiple MSI, it needs to
100 	 * override arch_setup_msi_irqs()
101 	 */
102 	if (type == PCI_CAP_ID_MSI && nvec > 1)
103 		return 1;
104 
105 	for_each_pci_msi_entry(entry, dev) {
106 		ret = arch_setup_msi_irq(dev, entry);
107 		if (ret < 0)
108 			return ret;
109 		if (ret > 0)
110 			return -ENOSPC;
111 	}
112 
113 	return 0;
114 }
115 
116 /*
117  * We have a default implementation available as a separate non-weak
118  * function, as it is used by the Xen x86 PCI code
119  */
default_teardown_msi_irqs(struct pci_dev * dev)120 void default_teardown_msi_irqs(struct pci_dev *dev)
121 {
122 	int i;
123 	struct msi_desc *entry;
124 
125 	for_each_pci_msi_entry(entry, dev)
126 		if (entry->irq)
127 			for (i = 0; i < entry->nvec_used; i++)
128 				arch_teardown_msi_irq(entry->irq + i);
129 }
130 
arch_teardown_msi_irqs(struct pci_dev * dev)131 void __weak arch_teardown_msi_irqs(struct pci_dev *dev)
132 {
133 	return default_teardown_msi_irqs(dev);
134 }
135 
default_restore_msi_irq(struct pci_dev * dev,int irq)136 static void default_restore_msi_irq(struct pci_dev *dev, int irq)
137 {
138 	struct msi_desc *entry;
139 
140 	entry = NULL;
141 	if (dev->msix_enabled) {
142 		for_each_pci_msi_entry(entry, dev) {
143 			if (irq == entry->irq)
144 				break;
145 		}
146 	} else if (dev->msi_enabled)  {
147 		entry = irq_get_msi_desc(irq);
148 	}
149 
150 	if (entry)
151 		__pci_write_msi_msg(entry, &entry->msg);
152 }
153 
arch_restore_msi_irqs(struct pci_dev * dev)154 void __weak arch_restore_msi_irqs(struct pci_dev *dev)
155 {
156 	return default_restore_msi_irqs(dev);
157 }
158 
msi_mask(unsigned x)159 static inline __attribute_const__ u32 msi_mask(unsigned x)
160 {
161 	/* Don't shift by >= width of type */
162 	if (x >= 5)
163 		return 0xffffffff;
164 	return (1 << (1 << x)) - 1;
165 }
166 
167 /*
168  * PCI 2.3 does not specify mask bits for each MSI interrupt.  Attempting to
169  * mask all MSI interrupts by clearing the MSI enable bit does not work
170  * reliably as devices without an INTx disable bit will then generate a
171  * level IRQ which will never be cleared.
172  */
__pci_msi_desc_mask_irq(struct msi_desc * desc,u32 mask,u32 flag)173 u32 __pci_msi_desc_mask_irq(struct msi_desc *desc, u32 mask, u32 flag)
174 {
175 	u32 mask_bits = desc->masked;
176 
177 	if (pci_msi_ignore_mask || !desc->msi_attrib.maskbit)
178 		return 0;
179 
180 	mask_bits &= ~mask;
181 	mask_bits |= flag;
182 	pci_write_config_dword(msi_desc_to_pci_dev(desc), desc->mask_pos,
183 			       mask_bits);
184 
185 	return mask_bits;
186 }
187 
msi_mask_irq(struct msi_desc * desc,u32 mask,u32 flag)188 static void msi_mask_irq(struct msi_desc *desc, u32 mask, u32 flag)
189 {
190 	desc->masked = __pci_msi_desc_mask_irq(desc, mask, flag);
191 }
192 
pci_msix_desc_addr(struct msi_desc * desc)193 static void __iomem *pci_msix_desc_addr(struct msi_desc *desc)
194 {
195 	if (desc->msi_attrib.is_virtual)
196 		return NULL;
197 
198 	return desc->mask_base +
199 		desc->msi_attrib.entry_nr * PCI_MSIX_ENTRY_SIZE;
200 }
201 
202 /*
203  * This internal function does not flush PCI writes to the device.
204  * All users must ensure that they read from the device before either
205  * assuming that the device state is up to date, or returning out of this
206  * file.  This saves a few milliseconds when initialising devices with lots
207  * of MSI-X interrupts.
208  */
__pci_msix_desc_mask_irq(struct msi_desc * desc,u32 flag)209 u32 __pci_msix_desc_mask_irq(struct msi_desc *desc, u32 flag)
210 {
211 	u32 mask_bits = desc->masked;
212 	void __iomem *desc_addr;
213 
214 	if (pci_msi_ignore_mask)
215 		return 0;
216 	desc_addr = pci_msix_desc_addr(desc);
217 	if (!desc_addr)
218 		return 0;
219 
220 	mask_bits &= ~PCI_MSIX_ENTRY_CTRL_MASKBIT;
221 	if (flag)
222 		mask_bits |= PCI_MSIX_ENTRY_CTRL_MASKBIT;
223 
224 	writel(mask_bits, desc_addr + PCI_MSIX_ENTRY_VECTOR_CTRL);
225 
226 	return mask_bits;
227 }
228 
msix_mask_irq(struct msi_desc * desc,u32 flag)229 static void msix_mask_irq(struct msi_desc *desc, u32 flag)
230 {
231 	desc->masked = __pci_msix_desc_mask_irq(desc, flag);
232 }
233 
msi_set_mask_bit(struct irq_data * data,u32 flag)234 static void msi_set_mask_bit(struct irq_data *data, u32 flag)
235 {
236 	struct msi_desc *desc = irq_data_get_msi_desc(data);
237 
238 	if (desc->msi_attrib.is_msix) {
239 		msix_mask_irq(desc, flag);
240 		readl(desc->mask_base);		/* Flush write to device */
241 	} else {
242 		unsigned offset = data->irq - desc->irq;
243 		msi_mask_irq(desc, 1 << offset, flag << offset);
244 	}
245 }
246 
247 /**
248  * pci_msi_mask_irq - Generic IRQ chip callback to mask PCI/MSI interrupts
249  * @data:	pointer to irqdata associated to that interrupt
250  */
pci_msi_mask_irq(struct irq_data * data)251 void pci_msi_mask_irq(struct irq_data *data)
252 {
253 	msi_set_mask_bit(data, 1);
254 }
255 EXPORT_SYMBOL_GPL(pci_msi_mask_irq);
256 
257 /**
258  * pci_msi_unmask_irq - Generic IRQ chip callback to unmask PCI/MSI interrupts
259  * @data:	pointer to irqdata associated to that interrupt
260  */
pci_msi_unmask_irq(struct irq_data * data)261 void pci_msi_unmask_irq(struct irq_data *data)
262 {
263 	msi_set_mask_bit(data, 0);
264 }
265 EXPORT_SYMBOL_GPL(pci_msi_unmask_irq);
266 
default_restore_msi_irqs(struct pci_dev * dev)267 void default_restore_msi_irqs(struct pci_dev *dev)
268 {
269 	struct msi_desc *entry;
270 
271 	for_each_pci_msi_entry(entry, dev)
272 		default_restore_msi_irq(dev, entry->irq);
273 }
274 
__pci_read_msi_msg(struct msi_desc * entry,struct msi_msg * msg)275 void __pci_read_msi_msg(struct msi_desc *entry, struct msi_msg *msg)
276 {
277 	struct pci_dev *dev = msi_desc_to_pci_dev(entry);
278 
279 	BUG_ON(dev->current_state != PCI_D0);
280 
281 	if (entry->msi_attrib.is_msix) {
282 		void __iomem *base = pci_msix_desc_addr(entry);
283 
284 		if (!base) {
285 			WARN_ON(1);
286 			return;
287 		}
288 
289 		msg->address_lo = readl(base + PCI_MSIX_ENTRY_LOWER_ADDR);
290 		msg->address_hi = readl(base + PCI_MSIX_ENTRY_UPPER_ADDR);
291 		msg->data = readl(base + PCI_MSIX_ENTRY_DATA);
292 	} else {
293 		int pos = dev->msi_cap;
294 		u16 data;
295 
296 		pci_read_config_dword(dev, pos + PCI_MSI_ADDRESS_LO,
297 				      &msg->address_lo);
298 		if (entry->msi_attrib.is_64) {
299 			pci_read_config_dword(dev, pos + PCI_MSI_ADDRESS_HI,
300 					      &msg->address_hi);
301 			pci_read_config_word(dev, pos + PCI_MSI_DATA_64, &data);
302 		} else {
303 			msg->address_hi = 0;
304 			pci_read_config_word(dev, pos + PCI_MSI_DATA_32, &data);
305 		}
306 		msg->data = data;
307 	}
308 }
309 
__pci_write_msi_msg(struct msi_desc * entry,struct msi_msg * msg)310 void __pci_write_msi_msg(struct msi_desc *entry, struct msi_msg *msg)
311 {
312 	struct pci_dev *dev = msi_desc_to_pci_dev(entry);
313 
314 	if (dev->current_state != PCI_D0 || pci_dev_is_disconnected(dev)) {
315 		/* Don't touch the hardware now */
316 	} else if (entry->msi_attrib.is_msix) {
317 		void __iomem *base = pci_msix_desc_addr(entry);
318 
319 		if (!base)
320 			goto skip;
321 
322 		writel(msg->address_lo, base + PCI_MSIX_ENTRY_LOWER_ADDR);
323 		writel(msg->address_hi, base + PCI_MSIX_ENTRY_UPPER_ADDR);
324 		writel(msg->data, base + PCI_MSIX_ENTRY_DATA);
325 	} else {
326 		int pos = dev->msi_cap;
327 		u16 msgctl;
328 
329 		pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &msgctl);
330 		msgctl &= ~PCI_MSI_FLAGS_QSIZE;
331 		msgctl |= entry->msi_attrib.multiple << 4;
332 		pci_write_config_word(dev, pos + PCI_MSI_FLAGS, msgctl);
333 
334 		pci_write_config_dword(dev, pos + PCI_MSI_ADDRESS_LO,
335 				       msg->address_lo);
336 		if (entry->msi_attrib.is_64) {
337 			pci_write_config_dword(dev, pos + PCI_MSI_ADDRESS_HI,
338 					       msg->address_hi);
339 			pci_write_config_word(dev, pos + PCI_MSI_DATA_64,
340 					      msg->data);
341 		} else {
342 			pci_write_config_word(dev, pos + PCI_MSI_DATA_32,
343 					      msg->data);
344 		}
345 	}
346 
347 skip:
348 	entry->msg = *msg;
349 
350 	if (entry->write_msi_msg)
351 		entry->write_msi_msg(entry, entry->write_msi_msg_data);
352 
353 }
354 
pci_write_msi_msg(unsigned int irq,struct msi_msg * msg)355 void pci_write_msi_msg(unsigned int irq, struct msi_msg *msg)
356 {
357 	struct msi_desc *entry = irq_get_msi_desc(irq);
358 
359 	__pci_write_msi_msg(entry, msg);
360 }
361 EXPORT_SYMBOL_GPL(pci_write_msi_msg);
362 
free_msi_irqs(struct pci_dev * dev)363 static void free_msi_irqs(struct pci_dev *dev)
364 {
365 	struct list_head *msi_list = dev_to_msi_list(&dev->dev);
366 	struct msi_desc *entry, *tmp;
367 	struct attribute **msi_attrs;
368 	struct device_attribute *dev_attr;
369 	int i, count = 0;
370 
371 	for_each_pci_msi_entry(entry, dev)
372 		if (entry->irq)
373 			for (i = 0; i < entry->nvec_used; i++)
374 				BUG_ON(irq_has_action(entry->irq + i));
375 
376 	pci_msi_teardown_msi_irqs(dev);
377 
378 	list_for_each_entry_safe(entry, tmp, msi_list, list) {
379 		if (entry->msi_attrib.is_msix) {
380 			if (list_is_last(&entry->list, msi_list))
381 				iounmap(entry->mask_base);
382 		}
383 
384 		list_del(&entry->list);
385 		free_msi_entry(entry);
386 	}
387 
388 	if (dev->msi_irq_groups) {
389 		sysfs_remove_groups(&dev->dev.kobj, dev->msi_irq_groups);
390 		msi_attrs = dev->msi_irq_groups[0]->attrs;
391 		while (msi_attrs[count]) {
392 			dev_attr = container_of(msi_attrs[count],
393 						struct device_attribute, attr);
394 			kfree(dev_attr->attr.name);
395 			kfree(dev_attr);
396 			++count;
397 		}
398 		kfree(msi_attrs);
399 		kfree(dev->msi_irq_groups[0]);
400 		kfree(dev->msi_irq_groups);
401 		dev->msi_irq_groups = NULL;
402 	}
403 }
404 
pci_intx_for_msi(struct pci_dev * dev,int enable)405 static void pci_intx_for_msi(struct pci_dev *dev, int enable)
406 {
407 	if (!(dev->dev_flags & PCI_DEV_FLAGS_MSI_INTX_DISABLE_BUG))
408 		pci_intx(dev, enable);
409 }
410 
__pci_restore_msi_state(struct pci_dev * dev)411 static void __pci_restore_msi_state(struct pci_dev *dev)
412 {
413 	u16 control;
414 	struct msi_desc *entry;
415 
416 	if (!dev->msi_enabled)
417 		return;
418 
419 	entry = irq_get_msi_desc(dev->irq);
420 
421 	pci_intx_for_msi(dev, 0);
422 	pci_msi_set_enable(dev, 0);
423 	arch_restore_msi_irqs(dev);
424 
425 	pci_read_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, &control);
426 	msi_mask_irq(entry, msi_mask(entry->msi_attrib.multi_cap),
427 		     entry->masked);
428 	control &= ~PCI_MSI_FLAGS_QSIZE;
429 	control |= (entry->msi_attrib.multiple << 4) | PCI_MSI_FLAGS_ENABLE;
430 	pci_write_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, control);
431 }
432 
__pci_restore_msix_state(struct pci_dev * dev)433 static void __pci_restore_msix_state(struct pci_dev *dev)
434 {
435 	struct msi_desc *entry;
436 
437 	if (!dev->msix_enabled)
438 		return;
439 	BUG_ON(list_empty(dev_to_msi_list(&dev->dev)));
440 
441 	/* route the table */
442 	pci_intx_for_msi(dev, 0);
443 	pci_msix_clear_and_set_ctrl(dev, 0,
444 				PCI_MSIX_FLAGS_ENABLE | PCI_MSIX_FLAGS_MASKALL);
445 
446 	arch_restore_msi_irqs(dev);
447 	for_each_pci_msi_entry(entry, dev)
448 		msix_mask_irq(entry, entry->masked);
449 
450 	pci_msix_clear_and_set_ctrl(dev, PCI_MSIX_FLAGS_MASKALL, 0);
451 }
452 
pci_restore_msi_state(struct pci_dev * dev)453 void pci_restore_msi_state(struct pci_dev *dev)
454 {
455 	__pci_restore_msi_state(dev);
456 	__pci_restore_msix_state(dev);
457 }
458 EXPORT_SYMBOL_GPL(pci_restore_msi_state);
459 
msi_mode_show(struct device * dev,struct device_attribute * attr,char * buf)460 static ssize_t msi_mode_show(struct device *dev, struct device_attribute *attr,
461 			     char *buf)
462 {
463 	struct msi_desc *entry;
464 	unsigned long irq;
465 	int retval;
466 
467 	retval = kstrtoul(attr->attr.name, 10, &irq);
468 	if (retval)
469 		return retval;
470 
471 	entry = irq_get_msi_desc(irq);
472 	if (entry)
473 		return sprintf(buf, "%s\n",
474 				entry->msi_attrib.is_msix ? "msix" : "msi");
475 
476 	return -ENODEV;
477 }
478 
populate_msi_sysfs(struct pci_dev * pdev)479 static int populate_msi_sysfs(struct pci_dev *pdev)
480 {
481 	struct attribute **msi_attrs;
482 	struct attribute *msi_attr;
483 	struct device_attribute *msi_dev_attr;
484 	struct attribute_group *msi_irq_group;
485 	const struct attribute_group **msi_irq_groups;
486 	struct msi_desc *entry;
487 	int ret = -ENOMEM;
488 	int num_msi = 0;
489 	int count = 0;
490 	int i;
491 
492 	/* Determine how many msi entries we have */
493 	for_each_pci_msi_entry(entry, pdev)
494 		num_msi += entry->nvec_used;
495 	if (!num_msi)
496 		return 0;
497 
498 	/* Dynamically create the MSI attributes for the PCI device */
499 	msi_attrs = kcalloc(num_msi + 1, sizeof(void *), GFP_KERNEL);
500 	if (!msi_attrs)
501 		return -ENOMEM;
502 	for_each_pci_msi_entry(entry, pdev) {
503 		for (i = 0; i < entry->nvec_used; i++) {
504 			msi_dev_attr = kzalloc(sizeof(*msi_dev_attr), GFP_KERNEL);
505 			if (!msi_dev_attr)
506 				goto error_attrs;
507 			msi_attrs[count] = &msi_dev_attr->attr;
508 
509 			sysfs_attr_init(&msi_dev_attr->attr);
510 			msi_dev_attr->attr.name = kasprintf(GFP_KERNEL, "%d",
511 							    entry->irq + i);
512 			if (!msi_dev_attr->attr.name)
513 				goto error_attrs;
514 			msi_dev_attr->attr.mode = S_IRUGO;
515 			msi_dev_attr->show = msi_mode_show;
516 			++count;
517 		}
518 	}
519 
520 	msi_irq_group = kzalloc(sizeof(*msi_irq_group), GFP_KERNEL);
521 	if (!msi_irq_group)
522 		goto error_attrs;
523 	msi_irq_group->name = "msi_irqs";
524 	msi_irq_group->attrs = msi_attrs;
525 
526 	msi_irq_groups = kcalloc(2, sizeof(void *), GFP_KERNEL);
527 	if (!msi_irq_groups)
528 		goto error_irq_group;
529 	msi_irq_groups[0] = msi_irq_group;
530 
531 	ret = sysfs_create_groups(&pdev->dev.kobj, msi_irq_groups);
532 	if (ret)
533 		goto error_irq_groups;
534 	pdev->msi_irq_groups = msi_irq_groups;
535 
536 	return 0;
537 
538 error_irq_groups:
539 	kfree(msi_irq_groups);
540 error_irq_group:
541 	kfree(msi_irq_group);
542 error_attrs:
543 	count = 0;
544 	msi_attr = msi_attrs[count];
545 	while (msi_attr) {
546 		msi_dev_attr = container_of(msi_attr, struct device_attribute, attr);
547 		kfree(msi_attr->name);
548 		kfree(msi_dev_attr);
549 		++count;
550 		msi_attr = msi_attrs[count];
551 	}
552 	kfree(msi_attrs);
553 	return ret;
554 }
555 
556 static struct msi_desc *
msi_setup_entry(struct pci_dev * dev,int nvec,struct irq_affinity * affd)557 msi_setup_entry(struct pci_dev *dev, int nvec, struct irq_affinity *affd)
558 {
559 	struct irq_affinity_desc *masks = NULL;
560 	struct msi_desc *entry;
561 	u16 control;
562 
563 	if (affd)
564 		masks = irq_create_affinity_masks(nvec, affd);
565 
566 	/* MSI Entry Initialization */
567 	entry = alloc_msi_entry(&dev->dev, nvec, masks);
568 	if (!entry)
569 		goto out;
570 
571 	pci_read_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, &control);
572 
573 	entry->msi_attrib.is_msix	= 0;
574 	entry->msi_attrib.is_64		= !!(control & PCI_MSI_FLAGS_64BIT);
575 	entry->msi_attrib.is_virtual    = 0;
576 	entry->msi_attrib.entry_nr	= 0;
577 	entry->msi_attrib.maskbit	= !!(control & PCI_MSI_FLAGS_MASKBIT);
578 	entry->msi_attrib.default_irq	= dev->irq;	/* Save IOAPIC IRQ */
579 	entry->msi_attrib.multi_cap	= (control & PCI_MSI_FLAGS_QMASK) >> 1;
580 	entry->msi_attrib.multiple	= ilog2(__roundup_pow_of_two(nvec));
581 
582 	if (control & PCI_MSI_FLAGS_64BIT)
583 		entry->mask_pos = dev->msi_cap + PCI_MSI_MASK_64;
584 	else
585 		entry->mask_pos = dev->msi_cap + PCI_MSI_MASK_32;
586 
587 	/* Save the initial mask status */
588 	if (entry->msi_attrib.maskbit)
589 		pci_read_config_dword(dev, entry->mask_pos, &entry->masked);
590 
591 out:
592 	kfree(masks);
593 	return entry;
594 }
595 
msi_verify_entries(struct pci_dev * dev)596 static int msi_verify_entries(struct pci_dev *dev)
597 {
598 	struct msi_desc *entry;
599 
600 	for_each_pci_msi_entry(entry, dev) {
601 		if (!dev->no_64bit_msi || !entry->msg.address_hi)
602 			continue;
603 		pci_err(dev, "Device has broken 64-bit MSI but arch"
604 			" tried to assign one above 4G\n");
605 		return -EIO;
606 	}
607 	return 0;
608 }
609 
610 /**
611  * msi_capability_init - configure device's MSI capability structure
612  * @dev: pointer to the pci_dev data structure of MSI device function
613  * @nvec: number of interrupts to allocate
614  * @affd: description of automatic IRQ affinity assignments (may be %NULL)
615  *
616  * Setup the MSI capability structure of the device with the requested
617  * number of interrupts.  A return value of zero indicates the successful
618  * setup of an entry with the new MSI IRQ.  A negative return value indicates
619  * an error, and a positive return value indicates the number of interrupts
620  * which could have been allocated.
621  */
msi_capability_init(struct pci_dev * dev,int nvec,struct irq_affinity * affd)622 static int msi_capability_init(struct pci_dev *dev, int nvec,
623 			       struct irq_affinity *affd)
624 {
625 	struct msi_desc *entry;
626 	int ret;
627 	unsigned mask;
628 
629 	pci_msi_set_enable(dev, 0);	/* Disable MSI during set up */
630 
631 	entry = msi_setup_entry(dev, nvec, affd);
632 	if (!entry)
633 		return -ENOMEM;
634 
635 	/* All MSIs are unmasked by default; mask them all */
636 	mask = msi_mask(entry->msi_attrib.multi_cap);
637 	msi_mask_irq(entry, mask, mask);
638 
639 	list_add_tail(&entry->list, dev_to_msi_list(&dev->dev));
640 
641 	/* Configure MSI capability structure */
642 	ret = pci_msi_setup_msi_irqs(dev, nvec, PCI_CAP_ID_MSI);
643 	if (ret) {
644 		msi_mask_irq(entry, mask, ~mask);
645 		free_msi_irqs(dev);
646 		return ret;
647 	}
648 
649 	ret = msi_verify_entries(dev);
650 	if (ret) {
651 		msi_mask_irq(entry, mask, ~mask);
652 		free_msi_irqs(dev);
653 		return ret;
654 	}
655 
656 	ret = populate_msi_sysfs(dev);
657 	if (ret) {
658 		msi_mask_irq(entry, mask, ~mask);
659 		free_msi_irqs(dev);
660 		return ret;
661 	}
662 
663 	/* Set MSI enabled bits	*/
664 	pci_intx_for_msi(dev, 0);
665 	pci_msi_set_enable(dev, 1);
666 	dev->msi_enabled = 1;
667 
668 	pcibios_free_irq(dev);
669 	dev->irq = entry->irq;
670 	return 0;
671 }
672 
msix_map_region(struct pci_dev * dev,unsigned nr_entries)673 static void __iomem *msix_map_region(struct pci_dev *dev, unsigned nr_entries)
674 {
675 	resource_size_t phys_addr;
676 	u32 table_offset;
677 	unsigned long flags;
678 	u8 bir;
679 
680 	pci_read_config_dword(dev, dev->msix_cap + PCI_MSIX_TABLE,
681 			      &table_offset);
682 	bir = (u8)(table_offset & PCI_MSIX_TABLE_BIR);
683 	flags = pci_resource_flags(dev, bir);
684 	if (!flags || (flags & IORESOURCE_UNSET))
685 		return NULL;
686 
687 	table_offset &= PCI_MSIX_TABLE_OFFSET;
688 	phys_addr = pci_resource_start(dev, bir) + table_offset;
689 
690 	return ioremap_nocache(phys_addr, nr_entries * PCI_MSIX_ENTRY_SIZE);
691 }
692 
msix_setup_entries(struct pci_dev * dev,void __iomem * base,struct msix_entry * entries,int nvec,struct irq_affinity * affd)693 static int msix_setup_entries(struct pci_dev *dev, void __iomem *base,
694 			      struct msix_entry *entries, int nvec,
695 			      struct irq_affinity *affd)
696 {
697 	struct irq_affinity_desc *curmsk, *masks = NULL;
698 	struct msi_desc *entry;
699 	int ret, i;
700 	int vec_count = pci_msix_vec_count(dev);
701 
702 	if (affd)
703 		masks = irq_create_affinity_masks(nvec, affd);
704 
705 	for (i = 0, curmsk = masks; i < nvec; i++) {
706 		entry = alloc_msi_entry(&dev->dev, 1, curmsk);
707 		if (!entry) {
708 			if (!i)
709 				iounmap(base);
710 			else
711 				free_msi_irqs(dev);
712 			/* No enough memory. Don't try again */
713 			ret = -ENOMEM;
714 			goto out;
715 		}
716 
717 		entry->msi_attrib.is_msix	= 1;
718 		entry->msi_attrib.is_64		= 1;
719 		if (entries)
720 			entry->msi_attrib.entry_nr = entries[i].entry;
721 		else
722 			entry->msi_attrib.entry_nr = i;
723 
724 		entry->msi_attrib.is_virtual =
725 			entry->msi_attrib.entry_nr >= vec_count;
726 
727 		entry->msi_attrib.default_irq	= dev->irq;
728 		entry->mask_base		= base;
729 
730 		list_add_tail(&entry->list, dev_to_msi_list(&dev->dev));
731 		if (masks)
732 			curmsk++;
733 	}
734 	ret = 0;
735 out:
736 	kfree(masks);
737 	return ret;
738 }
739 
msix_program_entries(struct pci_dev * dev,struct msix_entry * entries)740 static void msix_program_entries(struct pci_dev *dev,
741 				 struct msix_entry *entries)
742 {
743 	struct msi_desc *entry;
744 	int i = 0;
745 	void __iomem *desc_addr;
746 
747 	for_each_pci_msi_entry(entry, dev) {
748 		if (entries)
749 			entries[i++].vector = entry->irq;
750 
751 		desc_addr = pci_msix_desc_addr(entry);
752 		if (desc_addr)
753 			entry->masked = readl(desc_addr +
754 					      PCI_MSIX_ENTRY_VECTOR_CTRL);
755 		else
756 			entry->masked = 0;
757 
758 		msix_mask_irq(entry, 1);
759 	}
760 }
761 
762 /**
763  * msix_capability_init - configure device's MSI-X capability
764  * @dev: pointer to the pci_dev data structure of MSI-X device function
765  * @entries: pointer to an array of struct msix_entry entries
766  * @nvec: number of @entries
767  * @affd: Optional pointer to enable automatic affinity assignment
768  *
769  * Setup the MSI-X capability structure of device function with a
770  * single MSI-X IRQ. A return of zero indicates the successful setup of
771  * requested MSI-X entries with allocated IRQs or non-zero for otherwise.
772  **/
msix_capability_init(struct pci_dev * dev,struct msix_entry * entries,int nvec,struct irq_affinity * affd)773 static int msix_capability_init(struct pci_dev *dev, struct msix_entry *entries,
774 				int nvec, struct irq_affinity *affd)
775 {
776 	int ret;
777 	u16 control;
778 	void __iomem *base;
779 
780 	/* Ensure MSI-X is disabled while it is set up */
781 	pci_msix_clear_and_set_ctrl(dev, PCI_MSIX_FLAGS_ENABLE, 0);
782 
783 	pci_read_config_word(dev, dev->msix_cap + PCI_MSIX_FLAGS, &control);
784 	/* Request & Map MSI-X table region */
785 	base = msix_map_region(dev, msix_table_size(control));
786 	if (!base)
787 		return -ENOMEM;
788 
789 	ret = msix_setup_entries(dev, base, entries, nvec, affd);
790 	if (ret)
791 		return ret;
792 
793 	ret = pci_msi_setup_msi_irqs(dev, nvec, PCI_CAP_ID_MSIX);
794 	if (ret)
795 		goto out_avail;
796 
797 	/* Check if all MSI entries honor device restrictions */
798 	ret = msi_verify_entries(dev);
799 	if (ret)
800 		goto out_free;
801 
802 	/*
803 	 * Some devices require MSI-X to be enabled before we can touch the
804 	 * MSI-X registers.  We need to mask all the vectors to prevent
805 	 * interrupts coming in before they're fully set up.
806 	 */
807 	pci_msix_clear_and_set_ctrl(dev, 0,
808 				PCI_MSIX_FLAGS_MASKALL | PCI_MSIX_FLAGS_ENABLE);
809 
810 	msix_program_entries(dev, entries);
811 
812 	ret = populate_msi_sysfs(dev);
813 	if (ret)
814 		goto out_free;
815 
816 	/* Set MSI-X enabled bits and unmask the function */
817 	pci_intx_for_msi(dev, 0);
818 	dev->msix_enabled = 1;
819 	pci_msix_clear_and_set_ctrl(dev, PCI_MSIX_FLAGS_MASKALL, 0);
820 
821 	pcibios_free_irq(dev);
822 	return 0;
823 
824 out_avail:
825 	if (ret < 0) {
826 		/*
827 		 * If we had some success, report the number of IRQs
828 		 * we succeeded in setting up.
829 		 */
830 		struct msi_desc *entry;
831 		int avail = 0;
832 
833 		for_each_pci_msi_entry(entry, dev) {
834 			if (entry->irq != 0)
835 				avail++;
836 		}
837 		if (avail != 0)
838 			ret = avail;
839 	}
840 
841 out_free:
842 	free_msi_irqs(dev);
843 
844 	return ret;
845 }
846 
847 /**
848  * pci_msi_supported - check whether MSI may be enabled on a device
849  * @dev: pointer to the pci_dev data structure of MSI device function
850  * @nvec: how many MSIs have been requested?
851  *
852  * Look at global flags, the device itself, and its parent buses
853  * to determine if MSI/-X are supported for the device. If MSI/-X is
854  * supported return 1, else return 0.
855  **/
pci_msi_supported(struct pci_dev * dev,int nvec)856 static int pci_msi_supported(struct pci_dev *dev, int nvec)
857 {
858 	struct pci_bus *bus;
859 
860 	/* MSI must be globally enabled and supported by the device */
861 	if (!pci_msi_enable)
862 		return 0;
863 
864 	if (!dev || dev->no_msi || dev->current_state != PCI_D0)
865 		return 0;
866 
867 	/*
868 	 * You can't ask to have 0 or less MSIs configured.
869 	 *  a) it's stupid ..
870 	 *  b) the list manipulation code assumes nvec >= 1.
871 	 */
872 	if (nvec < 1)
873 		return 0;
874 
875 	/*
876 	 * Any bridge which does NOT route MSI transactions from its
877 	 * secondary bus to its primary bus must set NO_MSI flag on
878 	 * the secondary pci_bus.
879 	 * We expect only arch-specific PCI host bus controller driver
880 	 * or quirks for specific PCI bridges to be setting NO_MSI.
881 	 */
882 	for (bus = dev->bus; bus; bus = bus->parent)
883 		if (bus->bus_flags & PCI_BUS_FLAGS_NO_MSI)
884 			return 0;
885 
886 	return 1;
887 }
888 
889 /**
890  * pci_msi_vec_count - Return the number of MSI vectors a device can send
891  * @dev: device to report about
892  *
893  * This function returns the number of MSI vectors a device requested via
894  * Multiple Message Capable register. It returns a negative errno if the
895  * device is not capable sending MSI interrupts. Otherwise, the call succeeds
896  * and returns a power of two, up to a maximum of 2^5 (32), according to the
897  * MSI specification.
898  **/
pci_msi_vec_count(struct pci_dev * dev)899 int pci_msi_vec_count(struct pci_dev *dev)
900 {
901 	int ret;
902 	u16 msgctl;
903 
904 	if (!dev->msi_cap)
905 		return -EINVAL;
906 
907 	pci_read_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, &msgctl);
908 	ret = 1 << ((msgctl & PCI_MSI_FLAGS_QMASK) >> 1);
909 
910 	return ret;
911 }
912 EXPORT_SYMBOL(pci_msi_vec_count);
913 
pci_msi_shutdown(struct pci_dev * dev)914 static void pci_msi_shutdown(struct pci_dev *dev)
915 {
916 	struct msi_desc *desc;
917 	u32 mask;
918 
919 	if (!pci_msi_enable || !dev || !dev->msi_enabled)
920 		return;
921 
922 	BUG_ON(list_empty(dev_to_msi_list(&dev->dev)));
923 	desc = first_pci_msi_entry(dev);
924 
925 	pci_msi_set_enable(dev, 0);
926 	pci_intx_for_msi(dev, 1);
927 	dev->msi_enabled = 0;
928 
929 	/* Return the device with MSI unmasked as initial states */
930 	mask = msi_mask(desc->msi_attrib.multi_cap);
931 	/* Keep cached state to be restored */
932 	__pci_msi_desc_mask_irq(desc, mask, ~mask);
933 
934 	/* Restore dev->irq to its default pin-assertion IRQ */
935 	dev->irq = desc->msi_attrib.default_irq;
936 	pcibios_alloc_irq(dev);
937 }
938 
pci_disable_msi(struct pci_dev * dev)939 void pci_disable_msi(struct pci_dev *dev)
940 {
941 	if (!pci_msi_enable || !dev || !dev->msi_enabled)
942 		return;
943 
944 	pci_msi_shutdown(dev);
945 	free_msi_irqs(dev);
946 }
947 EXPORT_SYMBOL(pci_disable_msi);
948 
949 /**
950  * pci_msix_vec_count - return the number of device's MSI-X table entries
951  * @dev: pointer to the pci_dev data structure of MSI-X device function
952  * This function returns the number of device's MSI-X table entries and
953  * therefore the number of MSI-X vectors device is capable of sending.
954  * It returns a negative errno if the device is not capable of sending MSI-X
955  * interrupts.
956  **/
pci_msix_vec_count(struct pci_dev * dev)957 int pci_msix_vec_count(struct pci_dev *dev)
958 {
959 	u16 control;
960 
961 	if (!dev->msix_cap)
962 		return -EINVAL;
963 
964 	pci_read_config_word(dev, dev->msix_cap + PCI_MSIX_FLAGS, &control);
965 	return msix_table_size(control);
966 }
967 EXPORT_SYMBOL(pci_msix_vec_count);
968 
__pci_enable_msix(struct pci_dev * dev,struct msix_entry * entries,int nvec,struct irq_affinity * affd,int flags)969 static int __pci_enable_msix(struct pci_dev *dev, struct msix_entry *entries,
970 			     int nvec, struct irq_affinity *affd, int flags)
971 {
972 	int nr_entries;
973 	int i, j;
974 
975 	if (!pci_msi_supported(dev, nvec))
976 		return -EINVAL;
977 
978 	nr_entries = pci_msix_vec_count(dev);
979 	if (nr_entries < 0)
980 		return nr_entries;
981 	if (nvec > nr_entries && !(flags & PCI_IRQ_VIRTUAL))
982 		return nr_entries;
983 
984 	if (entries) {
985 		/* Check for any invalid entries */
986 		for (i = 0; i < nvec; i++) {
987 			if (entries[i].entry >= nr_entries)
988 				return -EINVAL;		/* invalid entry */
989 			for (j = i + 1; j < nvec; j++) {
990 				if (entries[i].entry == entries[j].entry)
991 					return -EINVAL;	/* duplicate entry */
992 			}
993 		}
994 	}
995 
996 	/* Check whether driver already requested for MSI IRQ */
997 	if (dev->msi_enabled) {
998 		pci_info(dev, "can't enable MSI-X (MSI IRQ already assigned)\n");
999 		return -EINVAL;
1000 	}
1001 	return msix_capability_init(dev, entries, nvec, affd);
1002 }
1003 
pci_msix_shutdown(struct pci_dev * dev)1004 static void pci_msix_shutdown(struct pci_dev *dev)
1005 {
1006 	struct msi_desc *entry;
1007 
1008 	if (!pci_msi_enable || !dev || !dev->msix_enabled)
1009 		return;
1010 
1011 	if (pci_dev_is_disconnected(dev)) {
1012 		dev->msix_enabled = 0;
1013 		return;
1014 	}
1015 
1016 	/* Return the device with MSI-X masked as initial states */
1017 	for_each_pci_msi_entry(entry, dev) {
1018 		/* Keep cached states to be restored */
1019 		__pci_msix_desc_mask_irq(entry, 1);
1020 	}
1021 
1022 	pci_msix_clear_and_set_ctrl(dev, PCI_MSIX_FLAGS_ENABLE, 0);
1023 	pci_intx_for_msi(dev, 1);
1024 	dev->msix_enabled = 0;
1025 	pcibios_alloc_irq(dev);
1026 }
1027 
pci_disable_msix(struct pci_dev * dev)1028 void pci_disable_msix(struct pci_dev *dev)
1029 {
1030 	if (!pci_msi_enable || !dev || !dev->msix_enabled)
1031 		return;
1032 
1033 	pci_msix_shutdown(dev);
1034 	free_msi_irqs(dev);
1035 }
1036 EXPORT_SYMBOL(pci_disable_msix);
1037 
pci_no_msi(void)1038 void pci_no_msi(void)
1039 {
1040 	pci_msi_enable = 0;
1041 }
1042 
1043 /**
1044  * pci_msi_enabled - is MSI enabled?
1045  *
1046  * Returns true if MSI has not been disabled by the command-line option
1047  * pci=nomsi.
1048  **/
pci_msi_enabled(void)1049 int pci_msi_enabled(void)
1050 {
1051 	return pci_msi_enable;
1052 }
1053 EXPORT_SYMBOL(pci_msi_enabled);
1054 
__pci_enable_msi_range(struct pci_dev * dev,int minvec,int maxvec,struct irq_affinity * affd)1055 static int __pci_enable_msi_range(struct pci_dev *dev, int minvec, int maxvec,
1056 				  struct irq_affinity *affd)
1057 {
1058 	int nvec;
1059 	int rc;
1060 
1061 	if (!pci_msi_supported(dev, minvec))
1062 		return -EINVAL;
1063 
1064 	/* Check whether driver already requested MSI-X IRQs */
1065 	if (dev->msix_enabled) {
1066 		pci_info(dev, "can't enable MSI (MSI-X already enabled)\n");
1067 		return -EINVAL;
1068 	}
1069 
1070 	if (maxvec < minvec)
1071 		return -ERANGE;
1072 
1073 	if (WARN_ON_ONCE(dev->msi_enabled))
1074 		return -EINVAL;
1075 
1076 	nvec = pci_msi_vec_count(dev);
1077 	if (nvec < 0)
1078 		return nvec;
1079 	if (nvec < minvec)
1080 		return -ENOSPC;
1081 
1082 	if (nvec > maxvec)
1083 		nvec = maxvec;
1084 
1085 	for (;;) {
1086 		if (affd) {
1087 			nvec = irq_calc_affinity_vectors(minvec, nvec, affd);
1088 			if (nvec < minvec)
1089 				return -ENOSPC;
1090 		}
1091 
1092 		rc = msi_capability_init(dev, nvec, affd);
1093 		if (rc == 0)
1094 			return nvec;
1095 
1096 		if (rc < 0)
1097 			return rc;
1098 		if (rc < minvec)
1099 			return -ENOSPC;
1100 
1101 		nvec = rc;
1102 	}
1103 }
1104 
1105 /* deprecated, don't use */
pci_enable_msi(struct pci_dev * dev)1106 int pci_enable_msi(struct pci_dev *dev)
1107 {
1108 	int rc = __pci_enable_msi_range(dev, 1, 1, NULL);
1109 	if (rc < 0)
1110 		return rc;
1111 	return 0;
1112 }
1113 EXPORT_SYMBOL(pci_enable_msi);
1114 
__pci_enable_msix_range(struct pci_dev * dev,struct msix_entry * entries,int minvec,int maxvec,struct irq_affinity * affd,int flags)1115 static int __pci_enable_msix_range(struct pci_dev *dev,
1116 				   struct msix_entry *entries, int minvec,
1117 				   int maxvec, struct irq_affinity *affd,
1118 				   int flags)
1119 {
1120 	int rc, nvec = maxvec;
1121 
1122 	if (maxvec < minvec)
1123 		return -ERANGE;
1124 
1125 	if (WARN_ON_ONCE(dev->msix_enabled))
1126 		return -EINVAL;
1127 
1128 	for (;;) {
1129 		if (affd) {
1130 			nvec = irq_calc_affinity_vectors(minvec, nvec, affd);
1131 			if (nvec < minvec)
1132 				return -ENOSPC;
1133 		}
1134 
1135 		rc = __pci_enable_msix(dev, entries, nvec, affd, flags);
1136 		if (rc == 0)
1137 			return nvec;
1138 
1139 		if (rc < 0)
1140 			return rc;
1141 		if (rc < minvec)
1142 			return -ENOSPC;
1143 
1144 		nvec = rc;
1145 	}
1146 }
1147 
1148 /**
1149  * pci_enable_msix_range - configure device's MSI-X capability structure
1150  * @dev: pointer to the pci_dev data structure of MSI-X device function
1151  * @entries: pointer to an array of MSI-X entries
1152  * @minvec: minimum number of MSI-X IRQs requested
1153  * @maxvec: maximum number of MSI-X IRQs requested
1154  *
1155  * Setup the MSI-X capability structure of device function with a maximum
1156  * possible number of interrupts in the range between @minvec and @maxvec
1157  * upon its software driver call to request for MSI-X mode enabled on its
1158  * hardware device function. It returns a negative errno if an error occurs.
1159  * If it succeeds, it returns the actual number of interrupts allocated and
1160  * indicates the successful configuration of MSI-X capability structure
1161  * with new allocated MSI-X interrupts.
1162  **/
pci_enable_msix_range(struct pci_dev * dev,struct msix_entry * entries,int minvec,int maxvec)1163 int pci_enable_msix_range(struct pci_dev *dev, struct msix_entry *entries,
1164 		int minvec, int maxvec)
1165 {
1166 	return __pci_enable_msix_range(dev, entries, minvec, maxvec, NULL, 0);
1167 }
1168 EXPORT_SYMBOL(pci_enable_msix_range);
1169 
1170 /**
1171  * pci_alloc_irq_vectors_affinity - allocate multiple IRQs for a device
1172  * @dev:		PCI device to operate on
1173  * @min_vecs:		minimum number of vectors required (must be >= 1)
1174  * @max_vecs:		maximum (desired) number of vectors
1175  * @flags:		flags or quirks for the allocation
1176  * @affd:		optional description of the affinity requirements
1177  *
1178  * Allocate up to @max_vecs interrupt vectors for @dev, using MSI-X or MSI
1179  * vectors if available, and fall back to a single legacy vector
1180  * if neither is available.  Return the number of vectors allocated,
1181  * (which might be smaller than @max_vecs) if successful, or a negative
1182  * error code on error. If less than @min_vecs interrupt vectors are
1183  * available for @dev the function will fail with -ENOSPC.
1184  *
1185  * To get the Linux IRQ number used for a vector that can be passed to
1186  * request_irq() use the pci_irq_vector() helper.
1187  */
pci_alloc_irq_vectors_affinity(struct pci_dev * dev,unsigned int min_vecs,unsigned int max_vecs,unsigned int flags,struct irq_affinity * affd)1188 int pci_alloc_irq_vectors_affinity(struct pci_dev *dev, unsigned int min_vecs,
1189 				   unsigned int max_vecs, unsigned int flags,
1190 				   struct irq_affinity *affd)
1191 {
1192 	struct irq_affinity msi_default_affd = {0};
1193 	int msix_vecs = -ENOSPC;
1194 	int msi_vecs = -ENOSPC;
1195 
1196 	if (flags & PCI_IRQ_AFFINITY) {
1197 		if (!affd)
1198 			affd = &msi_default_affd;
1199 	} else {
1200 		if (WARN_ON(affd))
1201 			affd = NULL;
1202 	}
1203 
1204 	if (flags & PCI_IRQ_MSIX) {
1205 		msix_vecs = __pci_enable_msix_range(dev, NULL, min_vecs,
1206 						    max_vecs, affd, flags);
1207 		if (msix_vecs > 0)
1208 			return msix_vecs;
1209 	}
1210 
1211 	if (flags & PCI_IRQ_MSI) {
1212 		msi_vecs = __pci_enable_msi_range(dev, min_vecs, max_vecs,
1213 						  affd);
1214 		if (msi_vecs > 0)
1215 			return msi_vecs;
1216 	}
1217 
1218 	/* use legacy IRQ if allowed */
1219 	if (flags & PCI_IRQ_LEGACY) {
1220 		if (min_vecs == 1 && dev->irq) {
1221 			/*
1222 			 * Invoke the affinity spreading logic to ensure that
1223 			 * the device driver can adjust queue configuration
1224 			 * for the single interrupt case.
1225 			 */
1226 			if (affd)
1227 				irq_create_affinity_masks(1, affd);
1228 			pci_intx(dev, 1);
1229 			return 1;
1230 		}
1231 	}
1232 
1233 	if (msix_vecs == -ENOSPC)
1234 		return -ENOSPC;
1235 	return msi_vecs;
1236 }
1237 EXPORT_SYMBOL(pci_alloc_irq_vectors_affinity);
1238 
1239 /**
1240  * pci_free_irq_vectors - free previously allocated IRQs for a device
1241  * @dev:		PCI device to operate on
1242  *
1243  * Undoes the allocations and enabling in pci_alloc_irq_vectors().
1244  */
pci_free_irq_vectors(struct pci_dev * dev)1245 void pci_free_irq_vectors(struct pci_dev *dev)
1246 {
1247 	pci_disable_msix(dev);
1248 	pci_disable_msi(dev);
1249 }
1250 EXPORT_SYMBOL(pci_free_irq_vectors);
1251 
1252 /**
1253  * pci_irq_vector - return Linux IRQ number of a device vector
1254  * @dev: PCI device to operate on
1255  * @nr: device-relative interrupt vector index (0-based).
1256  */
pci_irq_vector(struct pci_dev * dev,unsigned int nr)1257 int pci_irq_vector(struct pci_dev *dev, unsigned int nr)
1258 {
1259 	if (dev->msix_enabled) {
1260 		struct msi_desc *entry;
1261 		int i = 0;
1262 
1263 		for_each_pci_msi_entry(entry, dev) {
1264 			if (i == nr)
1265 				return entry->irq;
1266 			i++;
1267 		}
1268 		WARN_ON_ONCE(1);
1269 		return -EINVAL;
1270 	}
1271 
1272 	if (dev->msi_enabled) {
1273 		struct msi_desc *entry = first_pci_msi_entry(dev);
1274 
1275 		if (WARN_ON_ONCE(nr >= entry->nvec_used))
1276 			return -EINVAL;
1277 	} else {
1278 		if (WARN_ON_ONCE(nr > 0))
1279 			return -EINVAL;
1280 	}
1281 
1282 	return dev->irq + nr;
1283 }
1284 EXPORT_SYMBOL(pci_irq_vector);
1285 
1286 /**
1287  * pci_irq_get_affinity - return the affinity of a particular MSI vector
1288  * @dev:	PCI device to operate on
1289  * @nr:		device-relative interrupt vector index (0-based).
1290  */
pci_irq_get_affinity(struct pci_dev * dev,int nr)1291 const struct cpumask *pci_irq_get_affinity(struct pci_dev *dev, int nr)
1292 {
1293 	if (dev->msix_enabled) {
1294 		struct msi_desc *entry;
1295 		int i = 0;
1296 
1297 		for_each_pci_msi_entry(entry, dev) {
1298 			if (i == nr)
1299 				return &entry->affinity->mask;
1300 			i++;
1301 		}
1302 		WARN_ON_ONCE(1);
1303 		return NULL;
1304 	} else if (dev->msi_enabled) {
1305 		struct msi_desc *entry = first_pci_msi_entry(dev);
1306 
1307 		if (WARN_ON_ONCE(!entry || !entry->affinity ||
1308 				 nr >= entry->nvec_used))
1309 			return NULL;
1310 
1311 		return &entry->affinity[nr].mask;
1312 	} else {
1313 		return cpu_possible_mask;
1314 	}
1315 }
1316 EXPORT_SYMBOL(pci_irq_get_affinity);
1317 
1318 /**
1319  * pci_irq_get_node - return the NUMA node of a particular MSI vector
1320  * @pdev:	PCI device to operate on
1321  * @vec:	device-relative interrupt vector index (0-based).
1322  */
pci_irq_get_node(struct pci_dev * pdev,int vec)1323 int pci_irq_get_node(struct pci_dev *pdev, int vec)
1324 {
1325 	const struct cpumask *mask;
1326 
1327 	mask = pci_irq_get_affinity(pdev, vec);
1328 	if (mask)
1329 		return local_memory_node(cpu_to_node(cpumask_first(mask)));
1330 	return dev_to_node(&pdev->dev);
1331 }
1332 EXPORT_SYMBOL(pci_irq_get_node);
1333 
msi_desc_to_pci_dev(struct msi_desc * desc)1334 struct pci_dev *msi_desc_to_pci_dev(struct msi_desc *desc)
1335 {
1336 	return to_pci_dev(desc->dev);
1337 }
1338 EXPORT_SYMBOL(msi_desc_to_pci_dev);
1339 
msi_desc_to_pci_sysdata(struct msi_desc * desc)1340 void *msi_desc_to_pci_sysdata(struct msi_desc *desc)
1341 {
1342 	struct pci_dev *dev = msi_desc_to_pci_dev(desc);
1343 
1344 	return dev->bus->sysdata;
1345 }
1346 EXPORT_SYMBOL_GPL(msi_desc_to_pci_sysdata);
1347 
1348 #ifdef CONFIG_PCI_MSI_IRQ_DOMAIN
1349 /**
1350  * pci_msi_domain_write_msg - Helper to write MSI message to PCI config space
1351  * @irq_data:	Pointer to interrupt data of the MSI interrupt
1352  * @msg:	Pointer to the message
1353  */
pci_msi_domain_write_msg(struct irq_data * irq_data,struct msi_msg * msg)1354 void pci_msi_domain_write_msg(struct irq_data *irq_data, struct msi_msg *msg)
1355 {
1356 	struct msi_desc *desc = irq_data_get_msi_desc(irq_data);
1357 
1358 	/*
1359 	 * For MSI-X desc->irq is always equal to irq_data->irq. For
1360 	 * MSI only the first interrupt of MULTI MSI passes the test.
1361 	 */
1362 	if (desc->irq == irq_data->irq)
1363 		__pci_write_msi_msg(desc, msg);
1364 }
1365 
1366 /**
1367  * pci_msi_domain_calc_hwirq - Generate a unique ID for an MSI source
1368  * @dev:	Pointer to the PCI device
1369  * @desc:	Pointer to the MSI descriptor
1370  *
1371  * The ID number is only used within the irqdomain.
1372  */
pci_msi_domain_calc_hwirq(struct pci_dev * dev,struct msi_desc * desc)1373 irq_hw_number_t pci_msi_domain_calc_hwirq(struct pci_dev *dev,
1374 					  struct msi_desc *desc)
1375 {
1376 	return (irq_hw_number_t)desc->msi_attrib.entry_nr |
1377 		pci_dev_id(dev) << 11 |
1378 		(pci_domain_nr(dev->bus) & 0xFFFFFFFF) << 27;
1379 }
1380 
pci_msi_desc_is_multi_msi(struct msi_desc * desc)1381 static inline bool pci_msi_desc_is_multi_msi(struct msi_desc *desc)
1382 {
1383 	return !desc->msi_attrib.is_msix && desc->nvec_used > 1;
1384 }
1385 
1386 /**
1387  * pci_msi_domain_check_cap - Verify that @domain supports the capabilities
1388  * 			      for @dev
1389  * @domain:	The interrupt domain to check
1390  * @info:	The domain info for verification
1391  * @dev:	The device to check
1392  *
1393  * Returns:
1394  *  0 if the functionality is supported
1395  *  1 if Multi MSI is requested, but the domain does not support it
1396  *  -ENOTSUPP otherwise
1397  */
pci_msi_domain_check_cap(struct irq_domain * domain,struct msi_domain_info * info,struct device * dev)1398 int pci_msi_domain_check_cap(struct irq_domain *domain,
1399 			     struct msi_domain_info *info, struct device *dev)
1400 {
1401 	struct msi_desc *desc = first_pci_msi_entry(to_pci_dev(dev));
1402 
1403 	/* Special handling to support __pci_enable_msi_range() */
1404 	if (pci_msi_desc_is_multi_msi(desc) &&
1405 	    !(info->flags & MSI_FLAG_MULTI_PCI_MSI))
1406 		return 1;
1407 	else if (desc->msi_attrib.is_msix && !(info->flags & MSI_FLAG_PCI_MSIX))
1408 		return -ENOTSUPP;
1409 
1410 	return 0;
1411 }
1412 
pci_msi_domain_handle_error(struct irq_domain * domain,struct msi_desc * desc,int error)1413 static int pci_msi_domain_handle_error(struct irq_domain *domain,
1414 				       struct msi_desc *desc, int error)
1415 {
1416 	/* Special handling to support __pci_enable_msi_range() */
1417 	if (pci_msi_desc_is_multi_msi(desc) && error == -ENOSPC)
1418 		return 1;
1419 
1420 	return error;
1421 }
1422 
1423 #ifdef GENERIC_MSI_DOMAIN_OPS
pci_msi_domain_set_desc(msi_alloc_info_t * arg,struct msi_desc * desc)1424 static void pci_msi_domain_set_desc(msi_alloc_info_t *arg,
1425 				    struct msi_desc *desc)
1426 {
1427 	arg->desc = desc;
1428 	arg->hwirq = pci_msi_domain_calc_hwirq(msi_desc_to_pci_dev(desc),
1429 					       desc);
1430 }
1431 #else
1432 #define pci_msi_domain_set_desc		NULL
1433 #endif
1434 
1435 static struct msi_domain_ops pci_msi_domain_ops_default = {
1436 	.set_desc	= pci_msi_domain_set_desc,
1437 	.msi_check	= pci_msi_domain_check_cap,
1438 	.handle_error	= pci_msi_domain_handle_error,
1439 };
1440 
pci_msi_domain_update_dom_ops(struct msi_domain_info * info)1441 static void pci_msi_domain_update_dom_ops(struct msi_domain_info *info)
1442 {
1443 	struct msi_domain_ops *ops = info->ops;
1444 
1445 	if (ops == NULL) {
1446 		info->ops = &pci_msi_domain_ops_default;
1447 	} else {
1448 		if (ops->set_desc == NULL)
1449 			ops->set_desc = pci_msi_domain_set_desc;
1450 		if (ops->msi_check == NULL)
1451 			ops->msi_check = pci_msi_domain_check_cap;
1452 		if (ops->handle_error == NULL)
1453 			ops->handle_error = pci_msi_domain_handle_error;
1454 	}
1455 }
1456 
pci_msi_domain_update_chip_ops(struct msi_domain_info * info)1457 static void pci_msi_domain_update_chip_ops(struct msi_domain_info *info)
1458 {
1459 	struct irq_chip *chip = info->chip;
1460 
1461 	BUG_ON(!chip);
1462 	if (!chip->irq_write_msi_msg)
1463 		chip->irq_write_msi_msg = pci_msi_domain_write_msg;
1464 	if (!chip->irq_mask)
1465 		chip->irq_mask = pci_msi_mask_irq;
1466 	if (!chip->irq_unmask)
1467 		chip->irq_unmask = pci_msi_unmask_irq;
1468 }
1469 
1470 /**
1471  * pci_msi_create_irq_domain - Create a MSI interrupt domain
1472  * @fwnode:	Optional fwnode of the interrupt controller
1473  * @info:	MSI domain info
1474  * @parent:	Parent irq domain
1475  *
1476  * Updates the domain and chip ops and creates a MSI interrupt domain.
1477  *
1478  * Returns:
1479  * A domain pointer or NULL in case of failure.
1480  */
pci_msi_create_irq_domain(struct fwnode_handle * fwnode,struct msi_domain_info * info,struct irq_domain * parent)1481 struct irq_domain *pci_msi_create_irq_domain(struct fwnode_handle *fwnode,
1482 					     struct msi_domain_info *info,
1483 					     struct irq_domain *parent)
1484 {
1485 	struct irq_domain *domain;
1486 
1487 	if (WARN_ON(info->flags & MSI_FLAG_LEVEL_CAPABLE))
1488 		info->flags &= ~MSI_FLAG_LEVEL_CAPABLE;
1489 
1490 	if (info->flags & MSI_FLAG_USE_DEF_DOM_OPS)
1491 		pci_msi_domain_update_dom_ops(info);
1492 	if (info->flags & MSI_FLAG_USE_DEF_CHIP_OPS)
1493 		pci_msi_domain_update_chip_ops(info);
1494 
1495 	info->flags |= MSI_FLAG_ACTIVATE_EARLY;
1496 	if (IS_ENABLED(CONFIG_GENERIC_IRQ_RESERVATION_MODE))
1497 		info->flags |= MSI_FLAG_MUST_REACTIVATE;
1498 
1499 	/* PCI-MSI is oneshot-safe */
1500 	info->chip->flags |= IRQCHIP_ONESHOT_SAFE;
1501 
1502 	domain = msi_create_irq_domain(fwnode, info, parent);
1503 	if (!domain)
1504 		return NULL;
1505 
1506 	irq_domain_update_bus_token(domain, DOMAIN_BUS_PCI_MSI);
1507 	return domain;
1508 }
1509 EXPORT_SYMBOL_GPL(pci_msi_create_irq_domain);
1510 
1511 /*
1512  * Users of the generic MSI infrastructure expect a device to have a single ID,
1513  * so with DMA aliases we have to pick the least-worst compromise. Devices with
1514  * DMA phantom functions tend to still emit MSIs from the real function number,
1515  * so we ignore those and only consider topological aliases where either the
1516  * alias device or RID appears on a different bus number. We also make the
1517  * reasonable assumption that bridges are walked in an upstream direction (so
1518  * the last one seen wins), and the much braver assumption that the most likely
1519  * case is that of PCI->PCIe so we should always use the alias RID. This echoes
1520  * the logic from intel_irq_remapping's set_msi_sid(), which presumably works
1521  * well enough in practice; in the face of the horrible PCIe<->PCI-X conditions
1522  * for taking ownership all we can really do is close our eyes and hope...
1523  */
get_msi_id_cb(struct pci_dev * pdev,u16 alias,void * data)1524 static int get_msi_id_cb(struct pci_dev *pdev, u16 alias, void *data)
1525 {
1526 	u32 *pa = data;
1527 	u8 bus = PCI_BUS_NUM(*pa);
1528 
1529 	if (pdev->bus->number != bus || PCI_BUS_NUM(alias) != bus)
1530 		*pa = alias;
1531 
1532 	return 0;
1533 }
1534 
1535 /**
1536  * pci_msi_domain_get_msi_rid - Get the MSI requester id (RID)
1537  * @domain:	The interrupt domain
1538  * @pdev:	The PCI device.
1539  *
1540  * The RID for a device is formed from the alias, with a firmware
1541  * supplied mapping applied
1542  *
1543  * Returns: The RID.
1544  */
pci_msi_domain_get_msi_rid(struct irq_domain * domain,struct pci_dev * pdev)1545 u32 pci_msi_domain_get_msi_rid(struct irq_domain *domain, struct pci_dev *pdev)
1546 {
1547 	struct device_node *of_node;
1548 	u32 rid = pci_dev_id(pdev);
1549 
1550 	pci_for_each_dma_alias(pdev, get_msi_id_cb, &rid);
1551 
1552 	of_node = irq_domain_get_of_node(domain);
1553 	rid = of_node ? of_msi_map_rid(&pdev->dev, of_node, rid) :
1554 			iort_msi_map_rid(&pdev->dev, rid);
1555 
1556 	return rid;
1557 }
1558 
1559 /**
1560  * pci_msi_get_device_domain - Get the MSI domain for a given PCI device
1561  * @pdev:	The PCI device
1562  *
1563  * Use the firmware data to find a device-specific MSI domain
1564  * (i.e. not one that is set as a default).
1565  *
1566  * Returns: The corresponding MSI domain or NULL if none has been found.
1567  */
pci_msi_get_device_domain(struct pci_dev * pdev)1568 struct irq_domain *pci_msi_get_device_domain(struct pci_dev *pdev)
1569 {
1570 	struct irq_domain *dom;
1571 	u32 rid = pci_dev_id(pdev);
1572 
1573 	pci_for_each_dma_alias(pdev, get_msi_id_cb, &rid);
1574 	dom = of_msi_map_get_device_domain(&pdev->dev, rid);
1575 	if (!dom)
1576 		dom = iort_get_device_domain(&pdev->dev, rid);
1577 	return dom;
1578 }
1579 #endif /* CONFIG_PCI_MSI_IRQ_DOMAIN */
1580