1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2
3 /*
4 * BTF-to-C type converter.
5 *
6 * Copyright (c) 2019 Facebook
7 */
8
9 #include <stdbool.h>
10 #include <stddef.h>
11 #include <stdlib.h>
12 #include <string.h>
13 #include <ctype.h>
14 #include <endian.h>
15 #include <errno.h>
16 #include <linux/err.h>
17 #include <linux/btf.h>
18 #include <linux/kernel.h>
19 #include "btf.h"
20 #include "hashmap.h"
21 #include "libbpf.h"
22 #include "libbpf_internal.h"
23
24 static const char PREFIXES[] = "\t\t\t\t\t\t\t\t\t\t\t\t\t";
25 static const size_t PREFIX_CNT = sizeof(PREFIXES) - 1;
26
pfx(int lvl)27 static const char *pfx(int lvl)
28 {
29 return lvl >= PREFIX_CNT ? PREFIXES : &PREFIXES[PREFIX_CNT - lvl];
30 }
31
32 enum btf_dump_type_order_state {
33 NOT_ORDERED,
34 ORDERING,
35 ORDERED,
36 };
37
38 enum btf_dump_type_emit_state {
39 NOT_EMITTED,
40 EMITTING,
41 EMITTED,
42 };
43
44 /* per-type auxiliary state */
45 struct btf_dump_type_aux_state {
46 /* topological sorting state */
47 enum btf_dump_type_order_state order_state: 2;
48 /* emitting state used to determine the need for forward declaration */
49 enum btf_dump_type_emit_state emit_state: 2;
50 /* whether forward declaration was already emitted */
51 __u8 fwd_emitted: 1;
52 /* whether unique non-duplicate name was already assigned */
53 __u8 name_resolved: 1;
54 /* whether type is referenced from any other type */
55 __u8 referenced: 1;
56 };
57
58 /* indent string length; one indent string is added for each indent level */
59 #define BTF_DATA_INDENT_STR_LEN 32
60
61 /*
62 * Common internal data for BTF type data dump operations.
63 */
64 struct btf_dump_data {
65 const void *data_end; /* end of valid data to show */
66 bool compact;
67 bool skip_names;
68 bool emit_zeroes;
69 __u8 indent_lvl; /* base indent level */
70 char indent_str[BTF_DATA_INDENT_STR_LEN];
71 /* below are used during iteration */
72 int depth;
73 bool is_array_member;
74 bool is_array_terminated;
75 bool is_array_char;
76 };
77
78 struct btf_dump {
79 const struct btf *btf;
80 const struct btf_ext *btf_ext;
81 btf_dump_printf_fn_t printf_fn;
82 struct btf_dump_opts opts;
83 int ptr_sz;
84 bool strip_mods;
85 bool skip_anon_defs;
86 int last_id;
87
88 /* per-type auxiliary state */
89 struct btf_dump_type_aux_state *type_states;
90 size_t type_states_cap;
91 /* per-type optional cached unique name, must be freed, if present */
92 const char **cached_names;
93 size_t cached_names_cap;
94
95 /* topo-sorted list of dependent type definitions */
96 __u32 *emit_queue;
97 int emit_queue_cap;
98 int emit_queue_cnt;
99
100 /*
101 * stack of type declarations (e.g., chain of modifiers, arrays,
102 * funcs, etc)
103 */
104 __u32 *decl_stack;
105 int decl_stack_cap;
106 int decl_stack_cnt;
107
108 /* maps struct/union/enum name to a number of name occurrences */
109 struct hashmap *type_names;
110 /*
111 * maps typedef identifiers and enum value names to a number of such
112 * name occurrences
113 */
114 struct hashmap *ident_names;
115 /*
116 * data for typed display; allocated if needed.
117 */
118 struct btf_dump_data *typed_dump;
119 };
120
str_hash_fn(const void * key,void * ctx)121 static size_t str_hash_fn(const void *key, void *ctx)
122 {
123 return str_hash(key);
124 }
125
str_equal_fn(const void * a,const void * b,void * ctx)126 static bool str_equal_fn(const void *a, const void *b, void *ctx)
127 {
128 return strcmp(a, b) == 0;
129 }
130
btf_name_of(const struct btf_dump * d,__u32 name_off)131 static const char *btf_name_of(const struct btf_dump *d, __u32 name_off)
132 {
133 return btf__name_by_offset(d->btf, name_off);
134 }
135
btf_dump_printf(const struct btf_dump * d,const char * fmt,...)136 static void btf_dump_printf(const struct btf_dump *d, const char *fmt, ...)
137 {
138 va_list args;
139
140 va_start(args, fmt);
141 d->printf_fn(d->opts.ctx, fmt, args);
142 va_end(args);
143 }
144
145 static int btf_dump_mark_referenced(struct btf_dump *d);
146 static int btf_dump_resize(struct btf_dump *d);
147
btf_dump__new(const struct btf * btf,const struct btf_ext * btf_ext,const struct btf_dump_opts * opts,btf_dump_printf_fn_t printf_fn)148 struct btf_dump *btf_dump__new(const struct btf *btf,
149 const struct btf_ext *btf_ext,
150 const struct btf_dump_opts *opts,
151 btf_dump_printf_fn_t printf_fn)
152 {
153 struct btf_dump *d;
154 int err;
155
156 d = calloc(1, sizeof(struct btf_dump));
157 if (!d)
158 return libbpf_err_ptr(-ENOMEM);
159
160 d->btf = btf;
161 d->btf_ext = btf_ext;
162 d->printf_fn = printf_fn;
163 d->opts.ctx = opts ? opts->ctx : NULL;
164 d->ptr_sz = btf__pointer_size(btf) ? : sizeof(void *);
165
166 d->type_names = hashmap__new(str_hash_fn, str_equal_fn, NULL);
167 if (IS_ERR(d->type_names)) {
168 err = PTR_ERR(d->type_names);
169 d->type_names = NULL;
170 goto err;
171 }
172 d->ident_names = hashmap__new(str_hash_fn, str_equal_fn, NULL);
173 if (IS_ERR(d->ident_names)) {
174 err = PTR_ERR(d->ident_names);
175 d->ident_names = NULL;
176 goto err;
177 }
178
179 err = btf_dump_resize(d);
180 if (err)
181 goto err;
182
183 return d;
184 err:
185 btf_dump__free(d);
186 return libbpf_err_ptr(err);
187 }
188
btf_dump_resize(struct btf_dump * d)189 static int btf_dump_resize(struct btf_dump *d)
190 {
191 int err, last_id = btf__get_nr_types(d->btf);
192
193 if (last_id <= d->last_id)
194 return 0;
195
196 if (libbpf_ensure_mem((void **)&d->type_states, &d->type_states_cap,
197 sizeof(*d->type_states), last_id + 1))
198 return -ENOMEM;
199 if (libbpf_ensure_mem((void **)&d->cached_names, &d->cached_names_cap,
200 sizeof(*d->cached_names), last_id + 1))
201 return -ENOMEM;
202
203 if (d->last_id == 0) {
204 /* VOID is special */
205 d->type_states[0].order_state = ORDERED;
206 d->type_states[0].emit_state = EMITTED;
207 }
208
209 /* eagerly determine referenced types for anon enums */
210 err = btf_dump_mark_referenced(d);
211 if (err)
212 return err;
213
214 d->last_id = last_id;
215 return 0;
216 }
217
btf_dump__free(struct btf_dump * d)218 void btf_dump__free(struct btf_dump *d)
219 {
220 int i;
221
222 if (IS_ERR_OR_NULL(d))
223 return;
224
225 free(d->type_states);
226 if (d->cached_names) {
227 /* any set cached name is owned by us and should be freed */
228 for (i = 0; i <= d->last_id; i++) {
229 if (d->cached_names[i])
230 free((void *)d->cached_names[i]);
231 }
232 }
233 free(d->cached_names);
234 free(d->emit_queue);
235 free(d->decl_stack);
236 hashmap__free(d->type_names);
237 hashmap__free(d->ident_names);
238
239 free(d);
240 }
241
242 static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr);
243 static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id);
244
245 /*
246 * Dump BTF type in a compilable C syntax, including all the necessary
247 * dependent types, necessary for compilation. If some of the dependent types
248 * were already emitted as part of previous btf_dump__dump_type() invocation
249 * for another type, they won't be emitted again. This API allows callers to
250 * filter out BTF types according to user-defined criterias and emitted only
251 * minimal subset of types, necessary to compile everything. Full struct/union
252 * definitions will still be emitted, even if the only usage is through
253 * pointer and could be satisfied with just a forward declaration.
254 *
255 * Dumping is done in two high-level passes:
256 * 1. Topologically sort type definitions to satisfy C rules of compilation.
257 * 2. Emit type definitions in C syntax.
258 *
259 * Returns 0 on success; <0, otherwise.
260 */
btf_dump__dump_type(struct btf_dump * d,__u32 id)261 int btf_dump__dump_type(struct btf_dump *d, __u32 id)
262 {
263 int err, i;
264
265 if (id > btf__get_nr_types(d->btf))
266 return libbpf_err(-EINVAL);
267
268 err = btf_dump_resize(d);
269 if (err)
270 return libbpf_err(err);
271
272 d->emit_queue_cnt = 0;
273 err = btf_dump_order_type(d, id, false);
274 if (err < 0)
275 return libbpf_err(err);
276
277 for (i = 0; i < d->emit_queue_cnt; i++)
278 btf_dump_emit_type(d, d->emit_queue[i], 0 /*top-level*/);
279
280 return 0;
281 }
282
283 /*
284 * Mark all types that are referenced from any other type. This is used to
285 * determine top-level anonymous enums that need to be emitted as an
286 * independent type declarations.
287 * Anonymous enums come in two flavors: either embedded in a struct's field
288 * definition, in which case they have to be declared inline as part of field
289 * type declaration; or as a top-level anonymous enum, typically used for
290 * declaring global constants. It's impossible to distinguish between two
291 * without knowning whether given enum type was referenced from other type:
292 * top-level anonymous enum won't be referenced by anything, while embedded
293 * one will.
294 */
btf_dump_mark_referenced(struct btf_dump * d)295 static int btf_dump_mark_referenced(struct btf_dump *d)
296 {
297 int i, j, n = btf__get_nr_types(d->btf);
298 const struct btf_type *t;
299 __u16 vlen;
300
301 for (i = d->last_id + 1; i <= n; i++) {
302 t = btf__type_by_id(d->btf, i);
303 vlen = btf_vlen(t);
304
305 switch (btf_kind(t)) {
306 case BTF_KIND_INT:
307 case BTF_KIND_ENUM:
308 case BTF_KIND_FWD:
309 case BTF_KIND_FLOAT:
310 break;
311
312 case BTF_KIND_VOLATILE:
313 case BTF_KIND_CONST:
314 case BTF_KIND_RESTRICT:
315 case BTF_KIND_PTR:
316 case BTF_KIND_TYPEDEF:
317 case BTF_KIND_FUNC:
318 case BTF_KIND_VAR:
319 d->type_states[t->type].referenced = 1;
320 break;
321
322 case BTF_KIND_ARRAY: {
323 const struct btf_array *a = btf_array(t);
324
325 d->type_states[a->index_type].referenced = 1;
326 d->type_states[a->type].referenced = 1;
327 break;
328 }
329 case BTF_KIND_STRUCT:
330 case BTF_KIND_UNION: {
331 const struct btf_member *m = btf_members(t);
332
333 for (j = 0; j < vlen; j++, m++)
334 d->type_states[m->type].referenced = 1;
335 break;
336 }
337 case BTF_KIND_FUNC_PROTO: {
338 const struct btf_param *p = btf_params(t);
339
340 for (j = 0; j < vlen; j++, p++)
341 d->type_states[p->type].referenced = 1;
342 break;
343 }
344 case BTF_KIND_DATASEC: {
345 const struct btf_var_secinfo *v = btf_var_secinfos(t);
346
347 for (j = 0; j < vlen; j++, v++)
348 d->type_states[v->type].referenced = 1;
349 break;
350 }
351 default:
352 return -EINVAL;
353 }
354 }
355 return 0;
356 }
357
btf_dump_add_emit_queue_id(struct btf_dump * d,__u32 id)358 static int btf_dump_add_emit_queue_id(struct btf_dump *d, __u32 id)
359 {
360 __u32 *new_queue;
361 size_t new_cap;
362
363 if (d->emit_queue_cnt >= d->emit_queue_cap) {
364 new_cap = max(16, d->emit_queue_cap * 3 / 2);
365 new_queue = libbpf_reallocarray(d->emit_queue, new_cap, sizeof(new_queue[0]));
366 if (!new_queue)
367 return -ENOMEM;
368 d->emit_queue = new_queue;
369 d->emit_queue_cap = new_cap;
370 }
371
372 d->emit_queue[d->emit_queue_cnt++] = id;
373 return 0;
374 }
375
376 /*
377 * Determine order of emitting dependent types and specified type to satisfy
378 * C compilation rules. This is done through topological sorting with an
379 * additional complication which comes from C rules. The main idea for C is
380 * that if some type is "embedded" into a struct/union, it's size needs to be
381 * known at the time of definition of containing type. E.g., for:
382 *
383 * struct A {};
384 * struct B { struct A x; }
385 *
386 * struct A *HAS* to be defined before struct B, because it's "embedded",
387 * i.e., it is part of struct B layout. But in the following case:
388 *
389 * struct A;
390 * struct B { struct A *x; }
391 * struct A {};
392 *
393 * it's enough to just have a forward declaration of struct A at the time of
394 * struct B definition, as struct B has a pointer to struct A, so the size of
395 * field x is known without knowing struct A size: it's sizeof(void *).
396 *
397 * Unfortunately, there are some trickier cases we need to handle, e.g.:
398 *
399 * struct A {}; // if this was forward-declaration: compilation error
400 * struct B {
401 * struct { // anonymous struct
402 * struct A y;
403 * } *x;
404 * };
405 *
406 * In this case, struct B's field x is a pointer, so it's size is known
407 * regardless of the size of (anonymous) struct it points to. But because this
408 * struct is anonymous and thus defined inline inside struct B, *and* it
409 * embeds struct A, compiler requires full definition of struct A to be known
410 * before struct B can be defined. This creates a transitive dependency
411 * between struct A and struct B. If struct A was forward-declared before
412 * struct B definition and fully defined after struct B definition, that would
413 * trigger compilation error.
414 *
415 * All this means that while we are doing topological sorting on BTF type
416 * graph, we need to determine relationships between different types (graph
417 * nodes):
418 * - weak link (relationship) between X and Y, if Y *CAN* be
419 * forward-declared at the point of X definition;
420 * - strong link, if Y *HAS* to be fully-defined before X can be defined.
421 *
422 * The rule is as follows. Given a chain of BTF types from X to Y, if there is
423 * BTF_KIND_PTR type in the chain and at least one non-anonymous type
424 * Z (excluding X, including Y), then link is weak. Otherwise, it's strong.
425 * Weak/strong relationship is determined recursively during DFS traversal and
426 * is returned as a result from btf_dump_order_type().
427 *
428 * btf_dump_order_type() is trying to avoid unnecessary forward declarations,
429 * but it is not guaranteeing that no extraneous forward declarations will be
430 * emitted.
431 *
432 * To avoid extra work, algorithm marks some of BTF types as ORDERED, when
433 * it's done with them, but not for all (e.g., VOLATILE, CONST, RESTRICT,
434 * ARRAY, FUNC_PROTO), as weak/strong semantics for those depends on the
435 * entire graph path, so depending where from one came to that BTF type, it
436 * might cause weak or strong ordering. For types like STRUCT/UNION/INT/ENUM,
437 * once they are processed, there is no need to do it again, so they are
438 * marked as ORDERED. We can mark PTR as ORDERED as well, as it semi-forces
439 * weak link, unless subsequent referenced STRUCT/UNION/ENUM is anonymous. But
440 * in any case, once those are processed, no need to do it again, as the
441 * result won't change.
442 *
443 * Returns:
444 * - 1, if type is part of strong link (so there is strong topological
445 * ordering requirements);
446 * - 0, if type is part of weak link (so can be satisfied through forward
447 * declaration);
448 * - <0, on error (e.g., unsatisfiable type loop detected).
449 */
btf_dump_order_type(struct btf_dump * d,__u32 id,bool through_ptr)450 static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr)
451 {
452 /*
453 * Order state is used to detect strong link cycles, but only for BTF
454 * kinds that are or could be an independent definition (i.e.,
455 * stand-alone fwd decl, enum, typedef, struct, union). Ptrs, arrays,
456 * func_protos, modifiers are just means to get to these definitions.
457 * Int/void don't need definitions, they are assumed to be always
458 * properly defined. We also ignore datasec, var, and funcs for now.
459 * So for all non-defining kinds, we never even set ordering state,
460 * for defining kinds we set ORDERING and subsequently ORDERED if it
461 * forms a strong link.
462 */
463 struct btf_dump_type_aux_state *tstate = &d->type_states[id];
464 const struct btf_type *t;
465 __u16 vlen;
466 int err, i;
467
468 /* return true, letting typedefs know that it's ok to be emitted */
469 if (tstate->order_state == ORDERED)
470 return 1;
471
472 t = btf__type_by_id(d->btf, id);
473
474 if (tstate->order_state == ORDERING) {
475 /* type loop, but resolvable through fwd declaration */
476 if (btf_is_composite(t) && through_ptr && t->name_off != 0)
477 return 0;
478 pr_warn("unsatisfiable type cycle, id:[%u]\n", id);
479 return -ELOOP;
480 }
481
482 switch (btf_kind(t)) {
483 case BTF_KIND_INT:
484 case BTF_KIND_FLOAT:
485 tstate->order_state = ORDERED;
486 return 0;
487
488 case BTF_KIND_PTR:
489 err = btf_dump_order_type(d, t->type, true);
490 tstate->order_state = ORDERED;
491 return err;
492
493 case BTF_KIND_ARRAY:
494 return btf_dump_order_type(d, btf_array(t)->type, false);
495
496 case BTF_KIND_STRUCT:
497 case BTF_KIND_UNION: {
498 const struct btf_member *m = btf_members(t);
499 /*
500 * struct/union is part of strong link, only if it's embedded
501 * (so no ptr in a path) or it's anonymous (so has to be
502 * defined inline, even if declared through ptr)
503 */
504 if (through_ptr && t->name_off != 0)
505 return 0;
506
507 tstate->order_state = ORDERING;
508
509 vlen = btf_vlen(t);
510 for (i = 0; i < vlen; i++, m++) {
511 err = btf_dump_order_type(d, m->type, false);
512 if (err < 0)
513 return err;
514 }
515
516 if (t->name_off != 0) {
517 err = btf_dump_add_emit_queue_id(d, id);
518 if (err < 0)
519 return err;
520 }
521
522 tstate->order_state = ORDERED;
523 return 1;
524 }
525 case BTF_KIND_ENUM:
526 case BTF_KIND_FWD:
527 /*
528 * non-anonymous or non-referenced enums are top-level
529 * declarations and should be emitted. Same logic can be
530 * applied to FWDs, it won't hurt anyways.
531 */
532 if (t->name_off != 0 || !tstate->referenced) {
533 err = btf_dump_add_emit_queue_id(d, id);
534 if (err)
535 return err;
536 }
537 tstate->order_state = ORDERED;
538 return 1;
539
540 case BTF_KIND_TYPEDEF: {
541 int is_strong;
542
543 is_strong = btf_dump_order_type(d, t->type, through_ptr);
544 if (is_strong < 0)
545 return is_strong;
546
547 /* typedef is similar to struct/union w.r.t. fwd-decls */
548 if (through_ptr && !is_strong)
549 return 0;
550
551 /* typedef is always a named definition */
552 err = btf_dump_add_emit_queue_id(d, id);
553 if (err)
554 return err;
555
556 d->type_states[id].order_state = ORDERED;
557 return 1;
558 }
559 case BTF_KIND_VOLATILE:
560 case BTF_KIND_CONST:
561 case BTF_KIND_RESTRICT:
562 return btf_dump_order_type(d, t->type, through_ptr);
563
564 case BTF_KIND_FUNC_PROTO: {
565 const struct btf_param *p = btf_params(t);
566 bool is_strong;
567
568 err = btf_dump_order_type(d, t->type, through_ptr);
569 if (err < 0)
570 return err;
571 is_strong = err > 0;
572
573 vlen = btf_vlen(t);
574 for (i = 0; i < vlen; i++, p++) {
575 err = btf_dump_order_type(d, p->type, through_ptr);
576 if (err < 0)
577 return err;
578 if (err > 0)
579 is_strong = true;
580 }
581 return is_strong;
582 }
583 case BTF_KIND_FUNC:
584 case BTF_KIND_VAR:
585 case BTF_KIND_DATASEC:
586 d->type_states[id].order_state = ORDERED;
587 return 0;
588
589 default:
590 return -EINVAL;
591 }
592 }
593
594 static void btf_dump_emit_missing_aliases(struct btf_dump *d, __u32 id,
595 const struct btf_type *t);
596
597 static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id,
598 const struct btf_type *t);
599 static void btf_dump_emit_struct_def(struct btf_dump *d, __u32 id,
600 const struct btf_type *t, int lvl);
601
602 static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id,
603 const struct btf_type *t);
604 static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id,
605 const struct btf_type *t, int lvl);
606
607 static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id,
608 const struct btf_type *t);
609
610 static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id,
611 const struct btf_type *t, int lvl);
612
613 /* a local view into a shared stack */
614 struct id_stack {
615 const __u32 *ids;
616 int cnt;
617 };
618
619 static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id,
620 const char *fname, int lvl);
621 static void btf_dump_emit_type_chain(struct btf_dump *d,
622 struct id_stack *decl_stack,
623 const char *fname, int lvl);
624
625 static const char *btf_dump_type_name(struct btf_dump *d, __u32 id);
626 static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id);
627 static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map,
628 const char *orig_name);
629
btf_dump_is_blacklisted(struct btf_dump * d,__u32 id)630 static bool btf_dump_is_blacklisted(struct btf_dump *d, __u32 id)
631 {
632 const struct btf_type *t = btf__type_by_id(d->btf, id);
633
634 /* __builtin_va_list is a compiler built-in, which causes compilation
635 * errors, when compiling w/ different compiler, then used to compile
636 * original code (e.g., GCC to compile kernel, Clang to use generated
637 * C header from BTF). As it is built-in, it should be already defined
638 * properly internally in compiler.
639 */
640 if (t->name_off == 0)
641 return false;
642 return strcmp(btf_name_of(d, t->name_off), "__builtin_va_list") == 0;
643 }
644
645 /*
646 * Emit C-syntax definitions of types from chains of BTF types.
647 *
648 * High-level handling of determining necessary forward declarations are handled
649 * by btf_dump_emit_type() itself, but all nitty-gritty details of emitting type
650 * declarations/definitions in C syntax are handled by a combo of
651 * btf_dump_emit_type_decl()/btf_dump_emit_type_chain() w/ delegation to
652 * corresponding btf_dump_emit_*_{def,fwd}() functions.
653 *
654 * We also keep track of "containing struct/union type ID" to determine when
655 * we reference it from inside and thus can avoid emitting unnecessary forward
656 * declaration.
657 *
658 * This algorithm is designed in such a way, that even if some error occurs
659 * (either technical, e.g., out of memory, or logical, i.e., malformed BTF
660 * that doesn't comply to C rules completely), algorithm will try to proceed
661 * and produce as much meaningful output as possible.
662 */
btf_dump_emit_type(struct btf_dump * d,__u32 id,__u32 cont_id)663 static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id)
664 {
665 struct btf_dump_type_aux_state *tstate = &d->type_states[id];
666 bool top_level_def = cont_id == 0;
667 const struct btf_type *t;
668 __u16 kind;
669
670 if (tstate->emit_state == EMITTED)
671 return;
672
673 t = btf__type_by_id(d->btf, id);
674 kind = btf_kind(t);
675
676 if (tstate->emit_state == EMITTING) {
677 if (tstate->fwd_emitted)
678 return;
679
680 switch (kind) {
681 case BTF_KIND_STRUCT:
682 case BTF_KIND_UNION:
683 /*
684 * if we are referencing a struct/union that we are
685 * part of - then no need for fwd declaration
686 */
687 if (id == cont_id)
688 return;
689 if (t->name_off == 0) {
690 pr_warn("anonymous struct/union loop, id:[%u]\n",
691 id);
692 return;
693 }
694 btf_dump_emit_struct_fwd(d, id, t);
695 btf_dump_printf(d, ";\n\n");
696 tstate->fwd_emitted = 1;
697 break;
698 case BTF_KIND_TYPEDEF:
699 /*
700 * for typedef fwd_emitted means typedef definition
701 * was emitted, but it can be used only for "weak"
702 * references through pointer only, not for embedding
703 */
704 if (!btf_dump_is_blacklisted(d, id)) {
705 btf_dump_emit_typedef_def(d, id, t, 0);
706 btf_dump_printf(d, ";\n\n");
707 }
708 tstate->fwd_emitted = 1;
709 break;
710 default:
711 break;
712 }
713
714 return;
715 }
716
717 switch (kind) {
718 case BTF_KIND_INT:
719 /* Emit type alias definitions if necessary */
720 btf_dump_emit_missing_aliases(d, id, t);
721
722 tstate->emit_state = EMITTED;
723 break;
724 case BTF_KIND_ENUM:
725 if (top_level_def) {
726 btf_dump_emit_enum_def(d, id, t, 0);
727 btf_dump_printf(d, ";\n\n");
728 }
729 tstate->emit_state = EMITTED;
730 break;
731 case BTF_KIND_PTR:
732 case BTF_KIND_VOLATILE:
733 case BTF_KIND_CONST:
734 case BTF_KIND_RESTRICT:
735 btf_dump_emit_type(d, t->type, cont_id);
736 break;
737 case BTF_KIND_ARRAY:
738 btf_dump_emit_type(d, btf_array(t)->type, cont_id);
739 break;
740 case BTF_KIND_FWD:
741 btf_dump_emit_fwd_def(d, id, t);
742 btf_dump_printf(d, ";\n\n");
743 tstate->emit_state = EMITTED;
744 break;
745 case BTF_KIND_TYPEDEF:
746 tstate->emit_state = EMITTING;
747 btf_dump_emit_type(d, t->type, id);
748 /*
749 * typedef can server as both definition and forward
750 * declaration; at this stage someone depends on
751 * typedef as a forward declaration (refers to it
752 * through pointer), so unless we already did it,
753 * emit typedef as a forward declaration
754 */
755 if (!tstate->fwd_emitted && !btf_dump_is_blacklisted(d, id)) {
756 btf_dump_emit_typedef_def(d, id, t, 0);
757 btf_dump_printf(d, ";\n\n");
758 }
759 tstate->emit_state = EMITTED;
760 break;
761 case BTF_KIND_STRUCT:
762 case BTF_KIND_UNION:
763 tstate->emit_state = EMITTING;
764 /* if it's a top-level struct/union definition or struct/union
765 * is anonymous, then in C we'll be emitting all fields and
766 * their types (as opposed to just `struct X`), so we need to
767 * make sure that all types, referenced from struct/union
768 * members have necessary forward-declarations, where
769 * applicable
770 */
771 if (top_level_def || t->name_off == 0) {
772 const struct btf_member *m = btf_members(t);
773 __u16 vlen = btf_vlen(t);
774 int i, new_cont_id;
775
776 new_cont_id = t->name_off == 0 ? cont_id : id;
777 for (i = 0; i < vlen; i++, m++)
778 btf_dump_emit_type(d, m->type, new_cont_id);
779 } else if (!tstate->fwd_emitted && id != cont_id) {
780 btf_dump_emit_struct_fwd(d, id, t);
781 btf_dump_printf(d, ";\n\n");
782 tstate->fwd_emitted = 1;
783 }
784
785 if (top_level_def) {
786 btf_dump_emit_struct_def(d, id, t, 0);
787 btf_dump_printf(d, ";\n\n");
788 tstate->emit_state = EMITTED;
789 } else {
790 tstate->emit_state = NOT_EMITTED;
791 }
792 break;
793 case BTF_KIND_FUNC_PROTO: {
794 const struct btf_param *p = btf_params(t);
795 __u16 n = btf_vlen(t);
796 int i;
797
798 btf_dump_emit_type(d, t->type, cont_id);
799 for (i = 0; i < n; i++, p++)
800 btf_dump_emit_type(d, p->type, cont_id);
801
802 break;
803 }
804 default:
805 break;
806 }
807 }
808
btf_is_struct_packed(const struct btf * btf,__u32 id,const struct btf_type * t)809 static bool btf_is_struct_packed(const struct btf *btf, __u32 id,
810 const struct btf_type *t)
811 {
812 const struct btf_member *m;
813 int align, i, bit_sz;
814 __u16 vlen;
815
816 align = btf__align_of(btf, id);
817 /* size of a non-packed struct has to be a multiple of its alignment*/
818 if (align && t->size % align)
819 return true;
820
821 m = btf_members(t);
822 vlen = btf_vlen(t);
823 /* all non-bitfield fields have to be naturally aligned */
824 for (i = 0; i < vlen; i++, m++) {
825 align = btf__align_of(btf, m->type);
826 bit_sz = btf_member_bitfield_size(t, i);
827 if (align && bit_sz == 0 && m->offset % (8 * align) != 0)
828 return true;
829 }
830
831 /*
832 * if original struct was marked as packed, but its layout is
833 * naturally aligned, we'll detect that it's not packed
834 */
835 return false;
836 }
837
chip_away_bits(int total,int at_most)838 static int chip_away_bits(int total, int at_most)
839 {
840 return total % at_most ? : at_most;
841 }
842
btf_dump_emit_bit_padding(const struct btf_dump * d,int cur_off,int m_off,int m_bit_sz,int align,int lvl)843 static void btf_dump_emit_bit_padding(const struct btf_dump *d,
844 int cur_off, int m_off, int m_bit_sz,
845 int align, int lvl)
846 {
847 int off_diff = m_off - cur_off;
848 int ptr_bits = d->ptr_sz * 8;
849
850 if (off_diff <= 0)
851 /* no gap */
852 return;
853 if (m_bit_sz == 0 && off_diff < align * 8)
854 /* natural padding will take care of a gap */
855 return;
856
857 while (off_diff > 0) {
858 const char *pad_type;
859 int pad_bits;
860
861 if (ptr_bits > 32 && off_diff > 32) {
862 pad_type = "long";
863 pad_bits = chip_away_bits(off_diff, ptr_bits);
864 } else if (off_diff > 16) {
865 pad_type = "int";
866 pad_bits = chip_away_bits(off_diff, 32);
867 } else if (off_diff > 8) {
868 pad_type = "short";
869 pad_bits = chip_away_bits(off_diff, 16);
870 } else {
871 pad_type = "char";
872 pad_bits = chip_away_bits(off_diff, 8);
873 }
874 btf_dump_printf(d, "\n%s%s: %d;", pfx(lvl), pad_type, pad_bits);
875 off_diff -= pad_bits;
876 }
877 }
878
btf_dump_emit_struct_fwd(struct btf_dump * d,__u32 id,const struct btf_type * t)879 static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id,
880 const struct btf_type *t)
881 {
882 btf_dump_printf(d, "%s%s%s",
883 btf_is_struct(t) ? "struct" : "union",
884 t->name_off ? " " : "",
885 btf_dump_type_name(d, id));
886 }
887
btf_dump_emit_struct_def(struct btf_dump * d,__u32 id,const struct btf_type * t,int lvl)888 static void btf_dump_emit_struct_def(struct btf_dump *d,
889 __u32 id,
890 const struct btf_type *t,
891 int lvl)
892 {
893 const struct btf_member *m = btf_members(t);
894 bool is_struct = btf_is_struct(t);
895 int align, i, packed, off = 0;
896 __u16 vlen = btf_vlen(t);
897
898 packed = is_struct ? btf_is_struct_packed(d->btf, id, t) : 0;
899
900 btf_dump_printf(d, "%s%s%s {",
901 is_struct ? "struct" : "union",
902 t->name_off ? " " : "",
903 btf_dump_type_name(d, id));
904
905 for (i = 0; i < vlen; i++, m++) {
906 const char *fname;
907 int m_off, m_sz;
908
909 fname = btf_name_of(d, m->name_off);
910 m_sz = btf_member_bitfield_size(t, i);
911 m_off = btf_member_bit_offset(t, i);
912 align = packed ? 1 : btf__align_of(d->btf, m->type);
913
914 btf_dump_emit_bit_padding(d, off, m_off, m_sz, align, lvl + 1);
915 btf_dump_printf(d, "\n%s", pfx(lvl + 1));
916 btf_dump_emit_type_decl(d, m->type, fname, lvl + 1);
917
918 if (m_sz) {
919 btf_dump_printf(d, ": %d", m_sz);
920 off = m_off + m_sz;
921 } else {
922 m_sz = max((__s64)0, btf__resolve_size(d->btf, m->type));
923 off = m_off + m_sz * 8;
924 }
925 btf_dump_printf(d, ";");
926 }
927
928 /* pad at the end, if necessary */
929 if (is_struct) {
930 align = packed ? 1 : btf__align_of(d->btf, id);
931 btf_dump_emit_bit_padding(d, off, t->size * 8, 0, align,
932 lvl + 1);
933 }
934
935 if (vlen)
936 btf_dump_printf(d, "\n");
937 btf_dump_printf(d, "%s}", pfx(lvl));
938 if (packed)
939 btf_dump_printf(d, " __attribute__((packed))");
940 }
941
942 static const char *missing_base_types[][2] = {
943 /*
944 * GCC emits typedefs to its internal __PolyX_t types when compiling Arm
945 * SIMD intrinsics. Alias them to standard base types.
946 */
947 { "__Poly8_t", "unsigned char" },
948 { "__Poly16_t", "unsigned short" },
949 { "__Poly64_t", "unsigned long long" },
950 { "__Poly128_t", "unsigned __int128" },
951 };
952
btf_dump_emit_missing_aliases(struct btf_dump * d,__u32 id,const struct btf_type * t)953 static void btf_dump_emit_missing_aliases(struct btf_dump *d, __u32 id,
954 const struct btf_type *t)
955 {
956 const char *name = btf_dump_type_name(d, id);
957 int i;
958
959 for (i = 0; i < ARRAY_SIZE(missing_base_types); i++) {
960 if (strcmp(name, missing_base_types[i][0]) == 0) {
961 btf_dump_printf(d, "typedef %s %s;\n\n",
962 missing_base_types[i][1], name);
963 break;
964 }
965 }
966 }
967
btf_dump_emit_enum_fwd(struct btf_dump * d,__u32 id,const struct btf_type * t)968 static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id,
969 const struct btf_type *t)
970 {
971 btf_dump_printf(d, "enum %s", btf_dump_type_name(d, id));
972 }
973
btf_dump_emit_enum_def(struct btf_dump * d,__u32 id,const struct btf_type * t,int lvl)974 static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id,
975 const struct btf_type *t,
976 int lvl)
977 {
978 const struct btf_enum *v = btf_enum(t);
979 __u16 vlen = btf_vlen(t);
980 const char *name;
981 size_t dup_cnt;
982 int i;
983
984 btf_dump_printf(d, "enum%s%s",
985 t->name_off ? " " : "",
986 btf_dump_type_name(d, id));
987
988 if (vlen) {
989 btf_dump_printf(d, " {");
990 for (i = 0; i < vlen; i++, v++) {
991 name = btf_name_of(d, v->name_off);
992 /* enumerators share namespace with typedef idents */
993 dup_cnt = btf_dump_name_dups(d, d->ident_names, name);
994 if (dup_cnt > 1) {
995 btf_dump_printf(d, "\n%s%s___%zu = %u,",
996 pfx(lvl + 1), name, dup_cnt,
997 (__u32)v->val);
998 } else {
999 btf_dump_printf(d, "\n%s%s = %u,",
1000 pfx(lvl + 1), name,
1001 (__u32)v->val);
1002 }
1003 }
1004 btf_dump_printf(d, "\n%s}", pfx(lvl));
1005 }
1006 }
1007
btf_dump_emit_fwd_def(struct btf_dump * d,__u32 id,const struct btf_type * t)1008 static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id,
1009 const struct btf_type *t)
1010 {
1011 const char *name = btf_dump_type_name(d, id);
1012
1013 if (btf_kflag(t))
1014 btf_dump_printf(d, "union %s", name);
1015 else
1016 btf_dump_printf(d, "struct %s", name);
1017 }
1018
btf_dump_emit_typedef_def(struct btf_dump * d,__u32 id,const struct btf_type * t,int lvl)1019 static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id,
1020 const struct btf_type *t, int lvl)
1021 {
1022 const char *name = btf_dump_ident_name(d, id);
1023
1024 /*
1025 * Old GCC versions are emitting invalid typedef for __gnuc_va_list
1026 * pointing to VOID. This generates warnings from btf_dump() and
1027 * results in uncompilable header file, so we are fixing it up here
1028 * with valid typedef into __builtin_va_list.
1029 */
1030 if (t->type == 0 && strcmp(name, "__gnuc_va_list") == 0) {
1031 btf_dump_printf(d, "typedef __builtin_va_list __gnuc_va_list");
1032 return;
1033 }
1034
1035 btf_dump_printf(d, "typedef ");
1036 btf_dump_emit_type_decl(d, t->type, name, lvl);
1037 }
1038
btf_dump_push_decl_stack_id(struct btf_dump * d,__u32 id)1039 static int btf_dump_push_decl_stack_id(struct btf_dump *d, __u32 id)
1040 {
1041 __u32 *new_stack;
1042 size_t new_cap;
1043
1044 if (d->decl_stack_cnt >= d->decl_stack_cap) {
1045 new_cap = max(16, d->decl_stack_cap * 3 / 2);
1046 new_stack = libbpf_reallocarray(d->decl_stack, new_cap, sizeof(new_stack[0]));
1047 if (!new_stack)
1048 return -ENOMEM;
1049 d->decl_stack = new_stack;
1050 d->decl_stack_cap = new_cap;
1051 }
1052
1053 d->decl_stack[d->decl_stack_cnt++] = id;
1054
1055 return 0;
1056 }
1057
1058 /*
1059 * Emit type declaration (e.g., field type declaration in a struct or argument
1060 * declaration in function prototype) in correct C syntax.
1061 *
1062 * For most types it's trivial, but there are few quirky type declaration
1063 * cases worth mentioning:
1064 * - function prototypes (especially nesting of function prototypes);
1065 * - arrays;
1066 * - const/volatile/restrict for pointers vs other types.
1067 *
1068 * For a good discussion of *PARSING* C syntax (as a human), see
1069 * Peter van der Linden's "Expert C Programming: Deep C Secrets",
1070 * Ch.3 "Unscrambling Declarations in C".
1071 *
1072 * It won't help with BTF to C conversion much, though, as it's an opposite
1073 * problem. So we came up with this algorithm in reverse to van der Linden's
1074 * parsing algorithm. It goes from structured BTF representation of type
1075 * declaration to a valid compilable C syntax.
1076 *
1077 * For instance, consider this C typedef:
1078 * typedef const int * const * arr[10] arr_t;
1079 * It will be represented in BTF with this chain of BTF types:
1080 * [typedef] -> [array] -> [ptr] -> [const] -> [ptr] -> [const] -> [int]
1081 *
1082 * Notice how [const] modifier always goes before type it modifies in BTF type
1083 * graph, but in C syntax, const/volatile/restrict modifiers are written to
1084 * the right of pointers, but to the left of other types. There are also other
1085 * quirks, like function pointers, arrays of them, functions returning other
1086 * functions, etc.
1087 *
1088 * We handle that by pushing all the types to a stack, until we hit "terminal"
1089 * type (int/enum/struct/union/fwd). Then depending on the kind of a type on
1090 * top of a stack, modifiers are handled differently. Array/function pointers
1091 * have also wildly different syntax and how nesting of them are done. See
1092 * code for authoritative definition.
1093 *
1094 * To avoid allocating new stack for each independent chain of BTF types, we
1095 * share one bigger stack, with each chain working only on its own local view
1096 * of a stack frame. Some care is required to "pop" stack frames after
1097 * processing type declaration chain.
1098 */
btf_dump__emit_type_decl(struct btf_dump * d,__u32 id,const struct btf_dump_emit_type_decl_opts * opts)1099 int btf_dump__emit_type_decl(struct btf_dump *d, __u32 id,
1100 const struct btf_dump_emit_type_decl_opts *opts)
1101 {
1102 const char *fname;
1103 int lvl, err;
1104
1105 if (!OPTS_VALID(opts, btf_dump_emit_type_decl_opts))
1106 return libbpf_err(-EINVAL);
1107
1108 err = btf_dump_resize(d);
1109 if (err)
1110 return libbpf_err(err);
1111
1112 fname = OPTS_GET(opts, field_name, "");
1113 lvl = OPTS_GET(opts, indent_level, 0);
1114 d->strip_mods = OPTS_GET(opts, strip_mods, false);
1115 btf_dump_emit_type_decl(d, id, fname, lvl);
1116 d->strip_mods = false;
1117 return 0;
1118 }
1119
btf_dump_emit_type_decl(struct btf_dump * d,__u32 id,const char * fname,int lvl)1120 static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id,
1121 const char *fname, int lvl)
1122 {
1123 struct id_stack decl_stack;
1124 const struct btf_type *t;
1125 int err, stack_start;
1126
1127 stack_start = d->decl_stack_cnt;
1128 for (;;) {
1129 t = btf__type_by_id(d->btf, id);
1130 if (d->strip_mods && btf_is_mod(t))
1131 goto skip_mod;
1132
1133 err = btf_dump_push_decl_stack_id(d, id);
1134 if (err < 0) {
1135 /*
1136 * if we don't have enough memory for entire type decl
1137 * chain, restore stack, emit warning, and try to
1138 * proceed nevertheless
1139 */
1140 pr_warn("not enough memory for decl stack:%d", err);
1141 d->decl_stack_cnt = stack_start;
1142 return;
1143 }
1144 skip_mod:
1145 /* VOID */
1146 if (id == 0)
1147 break;
1148
1149 switch (btf_kind(t)) {
1150 case BTF_KIND_PTR:
1151 case BTF_KIND_VOLATILE:
1152 case BTF_KIND_CONST:
1153 case BTF_KIND_RESTRICT:
1154 case BTF_KIND_FUNC_PROTO:
1155 id = t->type;
1156 break;
1157 case BTF_KIND_ARRAY:
1158 id = btf_array(t)->type;
1159 break;
1160 case BTF_KIND_INT:
1161 case BTF_KIND_ENUM:
1162 case BTF_KIND_FWD:
1163 case BTF_KIND_STRUCT:
1164 case BTF_KIND_UNION:
1165 case BTF_KIND_TYPEDEF:
1166 case BTF_KIND_FLOAT:
1167 goto done;
1168 default:
1169 pr_warn("unexpected type in decl chain, kind:%u, id:[%u]\n",
1170 btf_kind(t), id);
1171 goto done;
1172 }
1173 }
1174 done:
1175 /*
1176 * We might be inside a chain of declarations (e.g., array of function
1177 * pointers returning anonymous (so inlined) structs, having another
1178 * array field). Each of those needs its own "stack frame" to handle
1179 * emitting of declarations. Those stack frames are non-overlapping
1180 * portions of shared btf_dump->decl_stack. To make it a bit nicer to
1181 * handle this set of nested stacks, we create a view corresponding to
1182 * our own "stack frame" and work with it as an independent stack.
1183 * We'll need to clean up after emit_type_chain() returns, though.
1184 */
1185 decl_stack.ids = d->decl_stack + stack_start;
1186 decl_stack.cnt = d->decl_stack_cnt - stack_start;
1187 btf_dump_emit_type_chain(d, &decl_stack, fname, lvl);
1188 /*
1189 * emit_type_chain() guarantees that it will pop its entire decl_stack
1190 * frame before returning. But it works with a read-only view into
1191 * decl_stack, so it doesn't actually pop anything from the
1192 * perspective of shared btf_dump->decl_stack, per se. We need to
1193 * reset decl_stack state to how it was before us to avoid it growing
1194 * all the time.
1195 */
1196 d->decl_stack_cnt = stack_start;
1197 }
1198
btf_dump_emit_mods(struct btf_dump * d,struct id_stack * decl_stack)1199 static void btf_dump_emit_mods(struct btf_dump *d, struct id_stack *decl_stack)
1200 {
1201 const struct btf_type *t;
1202 __u32 id;
1203
1204 while (decl_stack->cnt) {
1205 id = decl_stack->ids[decl_stack->cnt - 1];
1206 t = btf__type_by_id(d->btf, id);
1207
1208 switch (btf_kind(t)) {
1209 case BTF_KIND_VOLATILE:
1210 btf_dump_printf(d, "volatile ");
1211 break;
1212 case BTF_KIND_CONST:
1213 btf_dump_printf(d, "const ");
1214 break;
1215 case BTF_KIND_RESTRICT:
1216 btf_dump_printf(d, "restrict ");
1217 break;
1218 default:
1219 return;
1220 }
1221 decl_stack->cnt--;
1222 }
1223 }
1224
btf_dump_drop_mods(struct btf_dump * d,struct id_stack * decl_stack)1225 static void btf_dump_drop_mods(struct btf_dump *d, struct id_stack *decl_stack)
1226 {
1227 const struct btf_type *t;
1228 __u32 id;
1229
1230 while (decl_stack->cnt) {
1231 id = decl_stack->ids[decl_stack->cnt - 1];
1232 t = btf__type_by_id(d->btf, id);
1233 if (!btf_is_mod(t))
1234 return;
1235 decl_stack->cnt--;
1236 }
1237 }
1238
btf_dump_emit_name(const struct btf_dump * d,const char * name,bool last_was_ptr)1239 static void btf_dump_emit_name(const struct btf_dump *d,
1240 const char *name, bool last_was_ptr)
1241 {
1242 bool separate = name[0] && !last_was_ptr;
1243
1244 btf_dump_printf(d, "%s%s", separate ? " " : "", name);
1245 }
1246
btf_dump_emit_type_chain(struct btf_dump * d,struct id_stack * decls,const char * fname,int lvl)1247 static void btf_dump_emit_type_chain(struct btf_dump *d,
1248 struct id_stack *decls,
1249 const char *fname, int lvl)
1250 {
1251 /*
1252 * last_was_ptr is used to determine if we need to separate pointer
1253 * asterisk (*) from previous part of type signature with space, so
1254 * that we get `int ***`, instead of `int * * *`. We default to true
1255 * for cases where we have single pointer in a chain. E.g., in ptr ->
1256 * func_proto case. func_proto will start a new emit_type_chain call
1257 * with just ptr, which should be emitted as (*) or (*<fname>), so we
1258 * don't want to prepend space for that last pointer.
1259 */
1260 bool last_was_ptr = true;
1261 const struct btf_type *t;
1262 const char *name;
1263 __u16 kind;
1264 __u32 id;
1265
1266 while (decls->cnt) {
1267 id = decls->ids[--decls->cnt];
1268 if (id == 0) {
1269 /* VOID is a special snowflake */
1270 btf_dump_emit_mods(d, decls);
1271 btf_dump_printf(d, "void");
1272 last_was_ptr = false;
1273 continue;
1274 }
1275
1276 t = btf__type_by_id(d->btf, id);
1277 kind = btf_kind(t);
1278
1279 switch (kind) {
1280 case BTF_KIND_INT:
1281 case BTF_KIND_FLOAT:
1282 btf_dump_emit_mods(d, decls);
1283 name = btf_name_of(d, t->name_off);
1284 btf_dump_printf(d, "%s", name);
1285 break;
1286 case BTF_KIND_STRUCT:
1287 case BTF_KIND_UNION:
1288 btf_dump_emit_mods(d, decls);
1289 /* inline anonymous struct/union */
1290 if (t->name_off == 0 && !d->skip_anon_defs)
1291 btf_dump_emit_struct_def(d, id, t, lvl);
1292 else
1293 btf_dump_emit_struct_fwd(d, id, t);
1294 break;
1295 case BTF_KIND_ENUM:
1296 btf_dump_emit_mods(d, decls);
1297 /* inline anonymous enum */
1298 if (t->name_off == 0 && !d->skip_anon_defs)
1299 btf_dump_emit_enum_def(d, id, t, lvl);
1300 else
1301 btf_dump_emit_enum_fwd(d, id, t);
1302 break;
1303 case BTF_KIND_FWD:
1304 btf_dump_emit_mods(d, decls);
1305 btf_dump_emit_fwd_def(d, id, t);
1306 break;
1307 case BTF_KIND_TYPEDEF:
1308 btf_dump_emit_mods(d, decls);
1309 btf_dump_printf(d, "%s", btf_dump_ident_name(d, id));
1310 break;
1311 case BTF_KIND_PTR:
1312 btf_dump_printf(d, "%s", last_was_ptr ? "*" : " *");
1313 break;
1314 case BTF_KIND_VOLATILE:
1315 btf_dump_printf(d, " volatile");
1316 break;
1317 case BTF_KIND_CONST:
1318 btf_dump_printf(d, " const");
1319 break;
1320 case BTF_KIND_RESTRICT:
1321 btf_dump_printf(d, " restrict");
1322 break;
1323 case BTF_KIND_ARRAY: {
1324 const struct btf_array *a = btf_array(t);
1325 const struct btf_type *next_t;
1326 __u32 next_id;
1327 bool multidim;
1328 /*
1329 * GCC has a bug
1330 * (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=8354)
1331 * which causes it to emit extra const/volatile
1332 * modifiers for an array, if array's element type has
1333 * const/volatile modifiers. Clang doesn't do that.
1334 * In general, it doesn't seem very meaningful to have
1335 * a const/volatile modifier for array, so we are
1336 * going to silently skip them here.
1337 */
1338 btf_dump_drop_mods(d, decls);
1339
1340 if (decls->cnt == 0) {
1341 btf_dump_emit_name(d, fname, last_was_ptr);
1342 btf_dump_printf(d, "[%u]", a->nelems);
1343 return;
1344 }
1345
1346 next_id = decls->ids[decls->cnt - 1];
1347 next_t = btf__type_by_id(d->btf, next_id);
1348 multidim = btf_is_array(next_t);
1349 /* we need space if we have named non-pointer */
1350 if (fname[0] && !last_was_ptr)
1351 btf_dump_printf(d, " ");
1352 /* no parentheses for multi-dimensional array */
1353 if (!multidim)
1354 btf_dump_printf(d, "(");
1355 btf_dump_emit_type_chain(d, decls, fname, lvl);
1356 if (!multidim)
1357 btf_dump_printf(d, ")");
1358 btf_dump_printf(d, "[%u]", a->nelems);
1359 return;
1360 }
1361 case BTF_KIND_FUNC_PROTO: {
1362 const struct btf_param *p = btf_params(t);
1363 __u16 vlen = btf_vlen(t);
1364 int i;
1365
1366 /*
1367 * GCC emits extra volatile qualifier for
1368 * __attribute__((noreturn)) function pointers. Clang
1369 * doesn't do it. It's a GCC quirk for backwards
1370 * compatibility with code written for GCC <2.5. So,
1371 * similarly to extra qualifiers for array, just drop
1372 * them, instead of handling them.
1373 */
1374 btf_dump_drop_mods(d, decls);
1375 if (decls->cnt) {
1376 btf_dump_printf(d, " (");
1377 btf_dump_emit_type_chain(d, decls, fname, lvl);
1378 btf_dump_printf(d, ")");
1379 } else {
1380 btf_dump_emit_name(d, fname, last_was_ptr);
1381 }
1382 btf_dump_printf(d, "(");
1383 /*
1384 * Clang for BPF target generates func_proto with no
1385 * args as a func_proto with a single void arg (e.g.,
1386 * `int (*f)(void)` vs just `int (*f)()`). We are
1387 * going to pretend there are no args for such case.
1388 */
1389 if (vlen == 1 && p->type == 0) {
1390 btf_dump_printf(d, ")");
1391 return;
1392 }
1393
1394 for (i = 0; i < vlen; i++, p++) {
1395 if (i > 0)
1396 btf_dump_printf(d, ", ");
1397
1398 /* last arg of type void is vararg */
1399 if (i == vlen - 1 && p->type == 0) {
1400 btf_dump_printf(d, "...");
1401 break;
1402 }
1403
1404 name = btf_name_of(d, p->name_off);
1405 btf_dump_emit_type_decl(d, p->type, name, lvl);
1406 }
1407
1408 btf_dump_printf(d, ")");
1409 return;
1410 }
1411 default:
1412 pr_warn("unexpected type in decl chain, kind:%u, id:[%u]\n",
1413 kind, id);
1414 return;
1415 }
1416
1417 last_was_ptr = kind == BTF_KIND_PTR;
1418 }
1419
1420 btf_dump_emit_name(d, fname, last_was_ptr);
1421 }
1422
1423 /* show type name as (type_name) */
btf_dump_emit_type_cast(struct btf_dump * d,__u32 id,bool top_level)1424 static void btf_dump_emit_type_cast(struct btf_dump *d, __u32 id,
1425 bool top_level)
1426 {
1427 const struct btf_type *t;
1428
1429 /* for array members, we don't bother emitting type name for each
1430 * member to avoid the redundancy of
1431 * .name = (char[4])[(char)'f',(char)'o',(char)'o',]
1432 */
1433 if (d->typed_dump->is_array_member)
1434 return;
1435
1436 /* avoid type name specification for variable/section; it will be done
1437 * for the associated variable value(s).
1438 */
1439 t = btf__type_by_id(d->btf, id);
1440 if (btf_is_var(t) || btf_is_datasec(t))
1441 return;
1442
1443 if (top_level)
1444 btf_dump_printf(d, "(");
1445
1446 d->skip_anon_defs = true;
1447 d->strip_mods = true;
1448 btf_dump_emit_type_decl(d, id, "", 0);
1449 d->strip_mods = false;
1450 d->skip_anon_defs = false;
1451
1452 if (top_level)
1453 btf_dump_printf(d, ")");
1454 }
1455
1456 /* return number of duplicates (occurrences) of a given name */
btf_dump_name_dups(struct btf_dump * d,struct hashmap * name_map,const char * orig_name)1457 static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map,
1458 const char *orig_name)
1459 {
1460 size_t dup_cnt = 0;
1461
1462 hashmap__find(name_map, orig_name, (void **)&dup_cnt);
1463 dup_cnt++;
1464 hashmap__set(name_map, orig_name, (void *)dup_cnt, NULL, NULL);
1465
1466 return dup_cnt;
1467 }
1468
btf_dump_resolve_name(struct btf_dump * d,__u32 id,struct hashmap * name_map)1469 static const char *btf_dump_resolve_name(struct btf_dump *d, __u32 id,
1470 struct hashmap *name_map)
1471 {
1472 struct btf_dump_type_aux_state *s = &d->type_states[id];
1473 const struct btf_type *t = btf__type_by_id(d->btf, id);
1474 const char *orig_name = btf_name_of(d, t->name_off);
1475 const char **cached_name = &d->cached_names[id];
1476 size_t dup_cnt;
1477
1478 if (t->name_off == 0)
1479 return "";
1480
1481 if (s->name_resolved)
1482 return *cached_name ? *cached_name : orig_name;
1483
1484 dup_cnt = btf_dump_name_dups(d, name_map, orig_name);
1485 if (dup_cnt > 1) {
1486 const size_t max_len = 256;
1487 char new_name[max_len];
1488
1489 snprintf(new_name, max_len, "%s___%zu", orig_name, dup_cnt);
1490 *cached_name = strdup(new_name);
1491 }
1492
1493 s->name_resolved = 1;
1494 return *cached_name ? *cached_name : orig_name;
1495 }
1496
btf_dump_type_name(struct btf_dump * d,__u32 id)1497 static const char *btf_dump_type_name(struct btf_dump *d, __u32 id)
1498 {
1499 return btf_dump_resolve_name(d, id, d->type_names);
1500 }
1501
btf_dump_ident_name(struct btf_dump * d,__u32 id)1502 static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id)
1503 {
1504 return btf_dump_resolve_name(d, id, d->ident_names);
1505 }
1506
1507 static int btf_dump_dump_type_data(struct btf_dump *d,
1508 const char *fname,
1509 const struct btf_type *t,
1510 __u32 id,
1511 const void *data,
1512 __u8 bits_offset,
1513 __u8 bit_sz);
1514
btf_dump_data_newline(struct btf_dump * d)1515 static const char *btf_dump_data_newline(struct btf_dump *d)
1516 {
1517 return d->typed_dump->compact || d->typed_dump->depth == 0 ? "" : "\n";
1518 }
1519
btf_dump_data_delim(struct btf_dump * d)1520 static const char *btf_dump_data_delim(struct btf_dump *d)
1521 {
1522 return d->typed_dump->depth == 0 ? "" : ",";
1523 }
1524
btf_dump_data_pfx(struct btf_dump * d)1525 static void btf_dump_data_pfx(struct btf_dump *d)
1526 {
1527 int i, lvl = d->typed_dump->indent_lvl + d->typed_dump->depth;
1528
1529 if (d->typed_dump->compact)
1530 return;
1531
1532 for (i = 0; i < lvl; i++)
1533 btf_dump_printf(d, "%s", d->typed_dump->indent_str);
1534 }
1535
1536 /* A macro is used here as btf_type_value[s]() appends format specifiers
1537 * to the format specifier passed in; these do the work of appending
1538 * delimiters etc while the caller simply has to specify the type values
1539 * in the format specifier + value(s).
1540 */
1541 #define btf_dump_type_values(d, fmt, ...) \
1542 btf_dump_printf(d, fmt "%s%s", \
1543 ##__VA_ARGS__, \
1544 btf_dump_data_delim(d), \
1545 btf_dump_data_newline(d))
1546
btf_dump_unsupported_data(struct btf_dump * d,const struct btf_type * t,__u32 id)1547 static int btf_dump_unsupported_data(struct btf_dump *d,
1548 const struct btf_type *t,
1549 __u32 id)
1550 {
1551 btf_dump_printf(d, "<unsupported kind:%u>", btf_kind(t));
1552 return -ENOTSUP;
1553 }
1554
btf_dump_get_bitfield_value(struct btf_dump * d,const struct btf_type * t,const void * data,__u8 bits_offset,__u8 bit_sz,__u64 * value)1555 static int btf_dump_get_bitfield_value(struct btf_dump *d,
1556 const struct btf_type *t,
1557 const void *data,
1558 __u8 bits_offset,
1559 __u8 bit_sz,
1560 __u64 *value)
1561 {
1562 __u16 left_shift_bits, right_shift_bits;
1563 __u8 nr_copy_bits, nr_copy_bytes;
1564 const __u8 *bytes = data;
1565 int sz = t->size;
1566 __u64 num = 0;
1567 int i;
1568
1569 /* Maximum supported bitfield size is 64 bits */
1570 if (sz > 8) {
1571 pr_warn("unexpected bitfield size %d\n", sz);
1572 return -EINVAL;
1573 }
1574
1575 /* Bitfield value retrieval is done in two steps; first relevant bytes are
1576 * stored in num, then we left/right shift num to eliminate irrelevant bits.
1577 */
1578 nr_copy_bits = bit_sz + bits_offset;
1579 nr_copy_bytes = t->size;
1580 #if __BYTE_ORDER == __LITTLE_ENDIAN
1581 for (i = nr_copy_bytes - 1; i >= 0; i--)
1582 num = num * 256 + bytes[i];
1583 #elif __BYTE_ORDER == __BIG_ENDIAN
1584 for (i = 0; i < nr_copy_bytes; i++)
1585 num = num * 256 + bytes[i];
1586 #else
1587 # error "Unrecognized __BYTE_ORDER__"
1588 #endif
1589 left_shift_bits = 64 - nr_copy_bits;
1590 right_shift_bits = 64 - bit_sz;
1591
1592 *value = (num << left_shift_bits) >> right_shift_bits;
1593
1594 return 0;
1595 }
1596
btf_dump_bitfield_check_zero(struct btf_dump * d,const struct btf_type * t,const void * data,__u8 bits_offset,__u8 bit_sz)1597 static int btf_dump_bitfield_check_zero(struct btf_dump *d,
1598 const struct btf_type *t,
1599 const void *data,
1600 __u8 bits_offset,
1601 __u8 bit_sz)
1602 {
1603 __u64 check_num;
1604 int err;
1605
1606 err = btf_dump_get_bitfield_value(d, t, data, bits_offset, bit_sz, &check_num);
1607 if (err)
1608 return err;
1609 if (check_num == 0)
1610 return -ENODATA;
1611 return 0;
1612 }
1613
btf_dump_bitfield_data(struct btf_dump * d,const struct btf_type * t,const void * data,__u8 bits_offset,__u8 bit_sz)1614 static int btf_dump_bitfield_data(struct btf_dump *d,
1615 const struct btf_type *t,
1616 const void *data,
1617 __u8 bits_offset,
1618 __u8 bit_sz)
1619 {
1620 __u64 print_num;
1621 int err;
1622
1623 err = btf_dump_get_bitfield_value(d, t, data, bits_offset, bit_sz, &print_num);
1624 if (err)
1625 return err;
1626
1627 btf_dump_type_values(d, "0x%llx", (unsigned long long)print_num);
1628
1629 return 0;
1630 }
1631
1632 /* ints, floats and ptrs */
btf_dump_base_type_check_zero(struct btf_dump * d,const struct btf_type * t,__u32 id,const void * data)1633 static int btf_dump_base_type_check_zero(struct btf_dump *d,
1634 const struct btf_type *t,
1635 __u32 id,
1636 const void *data)
1637 {
1638 static __u8 bytecmp[16] = {};
1639 int nr_bytes;
1640
1641 /* For pointer types, pointer size is not defined on a per-type basis.
1642 * On dump creation however, we store the pointer size.
1643 */
1644 if (btf_kind(t) == BTF_KIND_PTR)
1645 nr_bytes = d->ptr_sz;
1646 else
1647 nr_bytes = t->size;
1648
1649 if (nr_bytes < 1 || nr_bytes > 16) {
1650 pr_warn("unexpected size %d for id [%u]\n", nr_bytes, id);
1651 return -EINVAL;
1652 }
1653
1654 if (memcmp(data, bytecmp, nr_bytes) == 0)
1655 return -ENODATA;
1656 return 0;
1657 }
1658
ptr_is_aligned(const void * data,int data_sz)1659 static bool ptr_is_aligned(const void *data, int data_sz)
1660 {
1661 return ((uintptr_t)data) % data_sz == 0;
1662 }
1663
btf_dump_int_data(struct btf_dump * d,const struct btf_type * t,__u32 type_id,const void * data,__u8 bits_offset)1664 static int btf_dump_int_data(struct btf_dump *d,
1665 const struct btf_type *t,
1666 __u32 type_id,
1667 const void *data,
1668 __u8 bits_offset)
1669 {
1670 __u8 encoding = btf_int_encoding(t);
1671 bool sign = encoding & BTF_INT_SIGNED;
1672 int sz = t->size;
1673
1674 if (sz == 0) {
1675 pr_warn("unexpected size %d for id [%u]\n", sz, type_id);
1676 return -EINVAL;
1677 }
1678
1679 /* handle packed int data - accesses of integers not aligned on
1680 * int boundaries can cause problems on some platforms.
1681 */
1682 if (!ptr_is_aligned(data, sz))
1683 return btf_dump_bitfield_data(d, t, data, 0, 0);
1684
1685 switch (sz) {
1686 case 16: {
1687 const __u64 *ints = data;
1688 __u64 lsi, msi;
1689
1690 /* avoid use of __int128 as some 32-bit platforms do not
1691 * support it.
1692 */
1693 #if __BYTE_ORDER == __LITTLE_ENDIAN
1694 lsi = ints[0];
1695 msi = ints[1];
1696 #elif __BYTE_ORDER == __BIG_ENDIAN
1697 lsi = ints[1];
1698 msi = ints[0];
1699 #else
1700 # error "Unrecognized __BYTE_ORDER__"
1701 #endif
1702 if (msi == 0)
1703 btf_dump_type_values(d, "0x%llx", (unsigned long long)lsi);
1704 else
1705 btf_dump_type_values(d, "0x%llx%016llx", (unsigned long long)msi,
1706 (unsigned long long)lsi);
1707 break;
1708 }
1709 case 8:
1710 if (sign)
1711 btf_dump_type_values(d, "%lld", *(long long *)data);
1712 else
1713 btf_dump_type_values(d, "%llu", *(unsigned long long *)data);
1714 break;
1715 case 4:
1716 if (sign)
1717 btf_dump_type_values(d, "%d", *(__s32 *)data);
1718 else
1719 btf_dump_type_values(d, "%u", *(__u32 *)data);
1720 break;
1721 case 2:
1722 if (sign)
1723 btf_dump_type_values(d, "%d", *(__s16 *)data);
1724 else
1725 btf_dump_type_values(d, "%u", *(__u16 *)data);
1726 break;
1727 case 1:
1728 if (d->typed_dump->is_array_char) {
1729 /* check for null terminator */
1730 if (d->typed_dump->is_array_terminated)
1731 break;
1732 if (*(char *)data == '\0') {
1733 d->typed_dump->is_array_terminated = true;
1734 break;
1735 }
1736 if (isprint(*(char *)data)) {
1737 btf_dump_type_values(d, "'%c'", *(char *)data);
1738 break;
1739 }
1740 }
1741 if (sign)
1742 btf_dump_type_values(d, "%d", *(__s8 *)data);
1743 else
1744 btf_dump_type_values(d, "%u", *(__u8 *)data);
1745 break;
1746 default:
1747 pr_warn("unexpected sz %d for id [%u]\n", sz, type_id);
1748 return -EINVAL;
1749 }
1750 return 0;
1751 }
1752
1753 union float_data {
1754 long double ld;
1755 double d;
1756 float f;
1757 };
1758
btf_dump_float_data(struct btf_dump * d,const struct btf_type * t,__u32 type_id,const void * data)1759 static int btf_dump_float_data(struct btf_dump *d,
1760 const struct btf_type *t,
1761 __u32 type_id,
1762 const void *data)
1763 {
1764 const union float_data *flp = data;
1765 union float_data fl;
1766 int sz = t->size;
1767
1768 /* handle unaligned data; copy to local union */
1769 if (!ptr_is_aligned(data, sz)) {
1770 memcpy(&fl, data, sz);
1771 flp = &fl;
1772 }
1773
1774 switch (sz) {
1775 case 16:
1776 btf_dump_type_values(d, "%Lf", flp->ld);
1777 break;
1778 case 8:
1779 btf_dump_type_values(d, "%lf", flp->d);
1780 break;
1781 case 4:
1782 btf_dump_type_values(d, "%f", flp->f);
1783 break;
1784 default:
1785 pr_warn("unexpected size %d for id [%u]\n", sz, type_id);
1786 return -EINVAL;
1787 }
1788 return 0;
1789 }
1790
btf_dump_var_data(struct btf_dump * d,const struct btf_type * v,__u32 id,const void * data)1791 static int btf_dump_var_data(struct btf_dump *d,
1792 const struct btf_type *v,
1793 __u32 id,
1794 const void *data)
1795 {
1796 enum btf_func_linkage linkage = btf_var(v)->linkage;
1797 const struct btf_type *t;
1798 const char *l;
1799 __u32 type_id;
1800
1801 switch (linkage) {
1802 case BTF_FUNC_STATIC:
1803 l = "static ";
1804 break;
1805 case BTF_FUNC_EXTERN:
1806 l = "extern ";
1807 break;
1808 case BTF_FUNC_GLOBAL:
1809 default:
1810 l = "";
1811 break;
1812 }
1813
1814 /* format of output here is [linkage] [type] [varname] = (type)value,
1815 * for example "static int cpu_profile_flip = (int)1"
1816 */
1817 btf_dump_printf(d, "%s", l);
1818 type_id = v->type;
1819 t = btf__type_by_id(d->btf, type_id);
1820 btf_dump_emit_type_cast(d, type_id, false);
1821 btf_dump_printf(d, " %s = ", btf_name_of(d, v->name_off));
1822 return btf_dump_dump_type_data(d, NULL, t, type_id, data, 0, 0);
1823 }
1824
btf_dump_array_data(struct btf_dump * d,const struct btf_type * t,__u32 id,const void * data)1825 static int btf_dump_array_data(struct btf_dump *d,
1826 const struct btf_type *t,
1827 __u32 id,
1828 const void *data)
1829 {
1830 const struct btf_array *array = btf_array(t);
1831 const struct btf_type *elem_type;
1832 __u32 i, elem_size = 0, elem_type_id;
1833 bool is_array_member;
1834
1835 elem_type_id = array->type;
1836 elem_type = skip_mods_and_typedefs(d->btf, elem_type_id, NULL);
1837 elem_size = btf__resolve_size(d->btf, elem_type_id);
1838 if (elem_size <= 0) {
1839 pr_warn("unexpected elem size %d for array type [%u]\n", elem_size, id);
1840 return -EINVAL;
1841 }
1842
1843 if (btf_is_int(elem_type)) {
1844 /*
1845 * BTF_INT_CHAR encoding never seems to be set for
1846 * char arrays, so if size is 1 and element is
1847 * printable as a char, we'll do that.
1848 */
1849 if (elem_size == 1)
1850 d->typed_dump->is_array_char = true;
1851 }
1852
1853 /* note that we increment depth before calling btf_dump_print() below;
1854 * this is intentional. btf_dump_data_newline() will not print a
1855 * newline for depth 0 (since this leaves us with trailing newlines
1856 * at the end of typed display), so depth is incremented first.
1857 * For similar reasons, we decrement depth before showing the closing
1858 * parenthesis.
1859 */
1860 d->typed_dump->depth++;
1861 btf_dump_printf(d, "[%s", btf_dump_data_newline(d));
1862
1863 /* may be a multidimensional array, so store current "is array member"
1864 * status so we can restore it correctly later.
1865 */
1866 is_array_member = d->typed_dump->is_array_member;
1867 d->typed_dump->is_array_member = true;
1868 for (i = 0; i < array->nelems; i++, data += elem_size) {
1869 if (d->typed_dump->is_array_terminated)
1870 break;
1871 btf_dump_dump_type_data(d, NULL, elem_type, elem_type_id, data, 0, 0);
1872 }
1873 d->typed_dump->is_array_member = is_array_member;
1874 d->typed_dump->depth--;
1875 btf_dump_data_pfx(d);
1876 btf_dump_type_values(d, "]");
1877
1878 return 0;
1879 }
1880
btf_dump_struct_data(struct btf_dump * d,const struct btf_type * t,__u32 id,const void * data)1881 static int btf_dump_struct_data(struct btf_dump *d,
1882 const struct btf_type *t,
1883 __u32 id,
1884 const void *data)
1885 {
1886 const struct btf_member *m = btf_members(t);
1887 __u16 n = btf_vlen(t);
1888 int i, err;
1889
1890 /* note that we increment depth before calling btf_dump_print() below;
1891 * this is intentional. btf_dump_data_newline() will not print a
1892 * newline for depth 0 (since this leaves us with trailing newlines
1893 * at the end of typed display), so depth is incremented first.
1894 * For similar reasons, we decrement depth before showing the closing
1895 * parenthesis.
1896 */
1897 d->typed_dump->depth++;
1898 btf_dump_printf(d, "{%s", btf_dump_data_newline(d));
1899
1900 for (i = 0; i < n; i++, m++) {
1901 const struct btf_type *mtype;
1902 const char *mname;
1903 __u32 moffset;
1904 __u8 bit_sz;
1905
1906 mtype = btf__type_by_id(d->btf, m->type);
1907 mname = btf_name_of(d, m->name_off);
1908 moffset = btf_member_bit_offset(t, i);
1909
1910 bit_sz = btf_member_bitfield_size(t, i);
1911 err = btf_dump_dump_type_data(d, mname, mtype, m->type, data + moffset / 8,
1912 moffset % 8, bit_sz);
1913 if (err < 0)
1914 return err;
1915 }
1916 d->typed_dump->depth--;
1917 btf_dump_data_pfx(d);
1918 btf_dump_type_values(d, "}");
1919 return err;
1920 }
1921
1922 union ptr_data {
1923 unsigned int p;
1924 unsigned long long lp;
1925 };
1926
btf_dump_ptr_data(struct btf_dump * d,const struct btf_type * t,__u32 id,const void * data)1927 static int btf_dump_ptr_data(struct btf_dump *d,
1928 const struct btf_type *t,
1929 __u32 id,
1930 const void *data)
1931 {
1932 if (ptr_is_aligned(data, d->ptr_sz) && d->ptr_sz == sizeof(void *)) {
1933 btf_dump_type_values(d, "%p", *(void **)data);
1934 } else {
1935 union ptr_data pt;
1936
1937 memcpy(&pt, data, d->ptr_sz);
1938 if (d->ptr_sz == 4)
1939 btf_dump_type_values(d, "0x%x", pt.p);
1940 else
1941 btf_dump_type_values(d, "0x%llx", pt.lp);
1942 }
1943 return 0;
1944 }
1945
btf_dump_get_enum_value(struct btf_dump * d,const struct btf_type * t,const void * data,__u32 id,__s64 * value)1946 static int btf_dump_get_enum_value(struct btf_dump *d,
1947 const struct btf_type *t,
1948 const void *data,
1949 __u32 id,
1950 __s64 *value)
1951 {
1952 int sz = t->size;
1953
1954 /* handle unaligned enum value */
1955 if (!ptr_is_aligned(data, sz)) {
1956 __u64 val;
1957 int err;
1958
1959 err = btf_dump_get_bitfield_value(d, t, data, 0, 0, &val);
1960 if (err)
1961 return err;
1962 *value = (__s64)val;
1963 return 0;
1964 }
1965
1966 switch (t->size) {
1967 case 8:
1968 *value = *(__s64 *)data;
1969 return 0;
1970 case 4:
1971 *value = *(__s32 *)data;
1972 return 0;
1973 case 2:
1974 *value = *(__s16 *)data;
1975 return 0;
1976 case 1:
1977 *value = *(__s8 *)data;
1978 return 0;
1979 default:
1980 pr_warn("unexpected size %d for enum, id:[%u]\n", t->size, id);
1981 return -EINVAL;
1982 }
1983 }
1984
btf_dump_enum_data(struct btf_dump * d,const struct btf_type * t,__u32 id,const void * data)1985 static int btf_dump_enum_data(struct btf_dump *d,
1986 const struct btf_type *t,
1987 __u32 id,
1988 const void *data)
1989 {
1990 const struct btf_enum *e;
1991 __s64 value;
1992 int i, err;
1993
1994 err = btf_dump_get_enum_value(d, t, data, id, &value);
1995 if (err)
1996 return err;
1997
1998 for (i = 0, e = btf_enum(t); i < btf_vlen(t); i++, e++) {
1999 if (value != e->val)
2000 continue;
2001 btf_dump_type_values(d, "%s", btf_name_of(d, e->name_off));
2002 return 0;
2003 }
2004
2005 btf_dump_type_values(d, "%d", value);
2006 return 0;
2007 }
2008
btf_dump_datasec_data(struct btf_dump * d,const struct btf_type * t,__u32 id,const void * data)2009 static int btf_dump_datasec_data(struct btf_dump *d,
2010 const struct btf_type *t,
2011 __u32 id,
2012 const void *data)
2013 {
2014 const struct btf_var_secinfo *vsi;
2015 const struct btf_type *var;
2016 __u32 i;
2017 int err;
2018
2019 btf_dump_type_values(d, "SEC(\"%s\") ", btf_name_of(d, t->name_off));
2020
2021 for (i = 0, vsi = btf_var_secinfos(t); i < btf_vlen(t); i++, vsi++) {
2022 var = btf__type_by_id(d->btf, vsi->type);
2023 err = btf_dump_dump_type_data(d, NULL, var, vsi->type, data + vsi->offset, 0, 0);
2024 if (err < 0)
2025 return err;
2026 btf_dump_printf(d, ";");
2027 }
2028 return 0;
2029 }
2030
2031 /* return size of type, or if base type overflows, return -E2BIG. */
btf_dump_type_data_check_overflow(struct btf_dump * d,const struct btf_type * t,__u32 id,const void * data,__u8 bits_offset)2032 static int btf_dump_type_data_check_overflow(struct btf_dump *d,
2033 const struct btf_type *t,
2034 __u32 id,
2035 const void *data,
2036 __u8 bits_offset)
2037 {
2038 __s64 size = btf__resolve_size(d->btf, id);
2039
2040 if (size < 0 || size >= INT_MAX) {
2041 pr_warn("unexpected size [%zu] for id [%u]\n",
2042 (size_t)size, id);
2043 return -EINVAL;
2044 }
2045
2046 /* Only do overflow checking for base types; we do not want to
2047 * avoid showing part of a struct, union or array, even if we
2048 * do not have enough data to show the full object. By
2049 * restricting overflow checking to base types we can ensure
2050 * that partial display succeeds, while avoiding overflowing
2051 * and using bogus data for display.
2052 */
2053 t = skip_mods_and_typedefs(d->btf, id, NULL);
2054 if (!t) {
2055 pr_warn("unexpected error skipping mods/typedefs for id [%u]\n",
2056 id);
2057 return -EINVAL;
2058 }
2059
2060 switch (btf_kind(t)) {
2061 case BTF_KIND_INT:
2062 case BTF_KIND_FLOAT:
2063 case BTF_KIND_PTR:
2064 case BTF_KIND_ENUM:
2065 if (data + bits_offset / 8 + size > d->typed_dump->data_end)
2066 return -E2BIG;
2067 break;
2068 default:
2069 break;
2070 }
2071 return (int)size;
2072 }
2073
btf_dump_type_data_check_zero(struct btf_dump * d,const struct btf_type * t,__u32 id,const void * data,__u8 bits_offset,__u8 bit_sz)2074 static int btf_dump_type_data_check_zero(struct btf_dump *d,
2075 const struct btf_type *t,
2076 __u32 id,
2077 const void *data,
2078 __u8 bits_offset,
2079 __u8 bit_sz)
2080 {
2081 __s64 value;
2082 int i, err;
2083
2084 /* toplevel exceptions; we show zero values if
2085 * - we ask for them (emit_zeros)
2086 * - if we are at top-level so we see "struct empty { }"
2087 * - or if we are an array member and the array is non-empty and
2088 * not a char array; we don't want to be in a situation where we
2089 * have an integer array 0, 1, 0, 1 and only show non-zero values.
2090 * If the array contains zeroes only, or is a char array starting
2091 * with a '\0', the array-level check_zero() will prevent showing it;
2092 * we are concerned with determining zero value at the array member
2093 * level here.
2094 */
2095 if (d->typed_dump->emit_zeroes || d->typed_dump->depth == 0 ||
2096 (d->typed_dump->is_array_member &&
2097 !d->typed_dump->is_array_char))
2098 return 0;
2099
2100 t = skip_mods_and_typedefs(d->btf, id, NULL);
2101
2102 switch (btf_kind(t)) {
2103 case BTF_KIND_INT:
2104 if (bit_sz)
2105 return btf_dump_bitfield_check_zero(d, t, data, bits_offset, bit_sz);
2106 return btf_dump_base_type_check_zero(d, t, id, data);
2107 case BTF_KIND_FLOAT:
2108 case BTF_KIND_PTR:
2109 return btf_dump_base_type_check_zero(d, t, id, data);
2110 case BTF_KIND_ARRAY: {
2111 const struct btf_array *array = btf_array(t);
2112 const struct btf_type *elem_type;
2113 __u32 elem_type_id, elem_size;
2114 bool ischar;
2115
2116 elem_type_id = array->type;
2117 elem_size = btf__resolve_size(d->btf, elem_type_id);
2118 elem_type = skip_mods_and_typedefs(d->btf, elem_type_id, NULL);
2119
2120 ischar = btf_is_int(elem_type) && elem_size == 1;
2121
2122 /* check all elements; if _any_ element is nonzero, all
2123 * of array is displayed. We make an exception however
2124 * for char arrays where the first element is 0; these
2125 * are considered zeroed also, even if later elements are
2126 * non-zero because the string is terminated.
2127 */
2128 for (i = 0; i < array->nelems; i++) {
2129 if (i == 0 && ischar && *(char *)data == 0)
2130 return -ENODATA;
2131 err = btf_dump_type_data_check_zero(d, elem_type,
2132 elem_type_id,
2133 data +
2134 (i * elem_size),
2135 bits_offset, 0);
2136 if (err != -ENODATA)
2137 return err;
2138 }
2139 return -ENODATA;
2140 }
2141 case BTF_KIND_STRUCT:
2142 case BTF_KIND_UNION: {
2143 const struct btf_member *m = btf_members(t);
2144 __u16 n = btf_vlen(t);
2145
2146 /* if any struct/union member is non-zero, the struct/union
2147 * is considered non-zero and dumped.
2148 */
2149 for (i = 0; i < n; i++, m++) {
2150 const struct btf_type *mtype;
2151 __u32 moffset;
2152
2153 mtype = btf__type_by_id(d->btf, m->type);
2154 moffset = btf_member_bit_offset(t, i);
2155
2156 /* btf_int_bits() does not store member bitfield size;
2157 * bitfield size needs to be stored here so int display
2158 * of member can retrieve it.
2159 */
2160 bit_sz = btf_member_bitfield_size(t, i);
2161 err = btf_dump_type_data_check_zero(d, mtype, m->type, data + moffset / 8,
2162 moffset % 8, bit_sz);
2163 if (err != ENODATA)
2164 return err;
2165 }
2166 return -ENODATA;
2167 }
2168 case BTF_KIND_ENUM:
2169 err = btf_dump_get_enum_value(d, t, data, id, &value);
2170 if (err)
2171 return err;
2172 if (value == 0)
2173 return -ENODATA;
2174 return 0;
2175 default:
2176 return 0;
2177 }
2178 }
2179
2180 /* returns size of data dumped, or error. */
btf_dump_dump_type_data(struct btf_dump * d,const char * fname,const struct btf_type * t,__u32 id,const void * data,__u8 bits_offset,__u8 bit_sz)2181 static int btf_dump_dump_type_data(struct btf_dump *d,
2182 const char *fname,
2183 const struct btf_type *t,
2184 __u32 id,
2185 const void *data,
2186 __u8 bits_offset,
2187 __u8 bit_sz)
2188 {
2189 int size, err;
2190
2191 size = btf_dump_type_data_check_overflow(d, t, id, data, bits_offset);
2192 if (size < 0)
2193 return size;
2194 err = btf_dump_type_data_check_zero(d, t, id, data, bits_offset, bit_sz);
2195 if (err) {
2196 /* zeroed data is expected and not an error, so simply skip
2197 * dumping such data. Record other errors however.
2198 */
2199 if (err == -ENODATA)
2200 return size;
2201 return err;
2202 }
2203 btf_dump_data_pfx(d);
2204
2205 if (!d->typed_dump->skip_names) {
2206 if (fname && strlen(fname) > 0)
2207 btf_dump_printf(d, ".%s = ", fname);
2208 btf_dump_emit_type_cast(d, id, true);
2209 }
2210
2211 t = skip_mods_and_typedefs(d->btf, id, NULL);
2212
2213 switch (btf_kind(t)) {
2214 case BTF_KIND_UNKN:
2215 case BTF_KIND_FWD:
2216 case BTF_KIND_FUNC:
2217 case BTF_KIND_FUNC_PROTO:
2218 err = btf_dump_unsupported_data(d, t, id);
2219 break;
2220 case BTF_KIND_INT:
2221 if (bit_sz)
2222 err = btf_dump_bitfield_data(d, t, data, bits_offset, bit_sz);
2223 else
2224 err = btf_dump_int_data(d, t, id, data, bits_offset);
2225 break;
2226 case BTF_KIND_FLOAT:
2227 err = btf_dump_float_data(d, t, id, data);
2228 break;
2229 case BTF_KIND_PTR:
2230 err = btf_dump_ptr_data(d, t, id, data);
2231 break;
2232 case BTF_KIND_ARRAY:
2233 err = btf_dump_array_data(d, t, id, data);
2234 break;
2235 case BTF_KIND_STRUCT:
2236 case BTF_KIND_UNION:
2237 err = btf_dump_struct_data(d, t, id, data);
2238 break;
2239 case BTF_KIND_ENUM:
2240 /* handle bitfield and int enum values */
2241 if (bit_sz) {
2242 __u64 print_num;
2243 __s64 enum_val;
2244
2245 err = btf_dump_get_bitfield_value(d, t, data, bits_offset, bit_sz,
2246 &print_num);
2247 if (err)
2248 break;
2249 enum_val = (__s64)print_num;
2250 err = btf_dump_enum_data(d, t, id, &enum_val);
2251 } else
2252 err = btf_dump_enum_data(d, t, id, data);
2253 break;
2254 case BTF_KIND_VAR:
2255 err = btf_dump_var_data(d, t, id, data);
2256 break;
2257 case BTF_KIND_DATASEC:
2258 err = btf_dump_datasec_data(d, t, id, data);
2259 break;
2260 default:
2261 pr_warn("unexpected kind [%u] for id [%u]\n",
2262 BTF_INFO_KIND(t->info), id);
2263 return -EINVAL;
2264 }
2265 if (err < 0)
2266 return err;
2267 return size;
2268 }
2269
btf_dump__dump_type_data(struct btf_dump * d,__u32 id,const void * data,size_t data_sz,const struct btf_dump_type_data_opts * opts)2270 int btf_dump__dump_type_data(struct btf_dump *d, __u32 id,
2271 const void *data, size_t data_sz,
2272 const struct btf_dump_type_data_opts *opts)
2273 {
2274 struct btf_dump_data typed_dump = {};
2275 const struct btf_type *t;
2276 int ret;
2277
2278 if (!OPTS_VALID(opts, btf_dump_type_data_opts))
2279 return libbpf_err(-EINVAL);
2280
2281 t = btf__type_by_id(d->btf, id);
2282 if (!t)
2283 return libbpf_err(-ENOENT);
2284
2285 d->typed_dump = &typed_dump;
2286 d->typed_dump->data_end = data + data_sz;
2287 d->typed_dump->indent_lvl = OPTS_GET(opts, indent_level, 0);
2288
2289 /* default indent string is a tab */
2290 if (!opts->indent_str)
2291 d->typed_dump->indent_str[0] = '\t';
2292 else
2293 strncat(d->typed_dump->indent_str, opts->indent_str,
2294 sizeof(d->typed_dump->indent_str) - 1);
2295
2296 d->typed_dump->compact = OPTS_GET(opts, compact, false);
2297 d->typed_dump->skip_names = OPTS_GET(opts, skip_names, false);
2298 d->typed_dump->emit_zeroes = OPTS_GET(opts, emit_zeroes, false);
2299
2300 ret = btf_dump_dump_type_data(d, NULL, t, id, data, 0, 0);
2301
2302 d->typed_dump = NULL;
2303
2304 return libbpf_err(ret);
2305 }
2306