1 /*
2 * Copyright 2012-15 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: AMD
23 *
24 */
25
26 #include "dm_services.h"
27
28 #include "dce/dce_12_0_offset.h"
29 #include "dce/dce_12_0_sh_mask.h"
30 #include "soc15_hw_ip.h"
31 #include "vega10_ip_offset.h"
32
33 #include "dc_types.h"
34 #include "dc_bios_types.h"
35
36 #include "include/grph_object_id.h"
37 #include "include/logger_interface.h"
38 #include "dce120_timing_generator.h"
39
40 #include "timing_generator.h"
41
42 #define CRTC_REG_UPDATE_N(reg_name, n, ...) \
43 generic_reg_update_soc15(tg110->base.ctx, tg110->offsets.crtc, reg_name, n, __VA_ARGS__)
44
45 #define CRTC_REG_SET_N(reg_name, n, ...) \
46 generic_reg_set_soc15(tg110->base.ctx, tg110->offsets.crtc, reg_name, n, __VA_ARGS__)
47
48 #define CRTC_REG_UPDATE(reg, field, val) \
49 CRTC_REG_UPDATE_N(reg, 1, FD(reg##__##field), val)
50
51 #define CRTC_REG_UPDATE_2(reg, field1, val1, field2, val2) \
52 CRTC_REG_UPDATE_N(reg, 2, FD(reg##__##field1), val1, FD(reg##__##field2), val2)
53
54 #define CRTC_REG_UPDATE_3(reg, field1, val1, field2, val2, field3, val3) \
55 CRTC_REG_UPDATE_N(reg, 3, FD(reg##__##field1), val1, FD(reg##__##field2), val2, FD(reg##__##field3), val3)
56
57 #define CRTC_REG_UPDATE_4(reg, field1, val1, field2, val2, field3, val3, field4, val4) \
58 CRTC_REG_UPDATE_N(reg, 3, FD(reg##__##field1), val1, FD(reg##__##field2), val2, FD(reg##__##field3), val3, FD(reg##__##field4), val4)
59
60 #define CRTC_REG_UPDATE_5(reg, field1, val1, field2, val2, field3, val3, field4, val4, field5, val5) \
61 CRTC_REG_UPDATE_N(reg, 3, FD(reg##__##field1), val1, FD(reg##__##field2), val2, FD(reg##__##field3), val3, FD(reg##__##field4), val4, FD(reg##__##field5), val5)
62
63 #define CRTC_REG_SET(reg, field, val) \
64 CRTC_REG_SET_N(reg, 1, FD(reg##__##field), val)
65
66 #define CRTC_REG_SET_2(reg, field1, val1, field2, val2) \
67 CRTC_REG_SET_N(reg, 2, FD(reg##__##field1), val1, FD(reg##__##field2), val2)
68
69 #define CRTC_REG_SET_3(reg, field1, val1, field2, val2, field3, val3) \
70 CRTC_REG_SET_N(reg, 3, FD(reg##__##field1), val1, FD(reg##__##field2), val2, FD(reg##__##field3), val3)
71
72 /**
73 *****************************************************************************
74 * Function: is_in_vertical_blank
75 *
76 * @brief
77 * check the current status of CRTC to check if we are in Vertical Blank
78 * regioneased" state
79 *
80 * @return
81 * true if currently in blank region, false otherwise
82 *
83 *****************************************************************************
84 */
dce120_timing_generator_is_in_vertical_blank(struct timing_generator * tg)85 static bool dce120_timing_generator_is_in_vertical_blank(
86 struct timing_generator *tg)
87 {
88 uint32_t field = 0;
89 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
90 uint32_t value = dm_read_reg_soc15(
91 tg->ctx,
92 mmCRTC0_CRTC_STATUS,
93 tg110->offsets.crtc);
94
95 field = get_reg_field_value(value, CRTC0_CRTC_STATUS, CRTC_V_BLANK);
96 return field == 1;
97 }
98
99
100 /* determine if given timing can be supported by TG */
dce120_timing_generator_validate_timing(struct timing_generator * tg,const struct dc_crtc_timing * timing,enum signal_type signal)101 bool dce120_timing_generator_validate_timing(
102 struct timing_generator *tg,
103 const struct dc_crtc_timing *timing,
104 enum signal_type signal)
105 {
106 uint32_t interlace_factor = timing->flags.INTERLACE ? 2 : 1;
107 uint32_t v_blank =
108 (timing->v_total - timing->v_addressable -
109 timing->v_border_top - timing->v_border_bottom) *
110 interlace_factor;
111 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
112
113 if (!dce110_timing_generator_validate_timing(
114 tg,
115 timing,
116 signal))
117 return false;
118
119
120 if (v_blank < tg110->min_v_blank ||
121 timing->h_sync_width < tg110->min_h_sync_width ||
122 timing->v_sync_width < tg110->min_v_sync_width)
123 return false;
124
125 return true;
126 }
127
dce120_tg_validate_timing(struct timing_generator * tg,const struct dc_crtc_timing * timing)128 bool dce120_tg_validate_timing(struct timing_generator *tg,
129 const struct dc_crtc_timing *timing)
130 {
131 return dce120_timing_generator_validate_timing(tg, timing, SIGNAL_TYPE_NONE);
132 }
133
134 /******** HW programming ************/
135 /* Disable/Enable Timing Generator */
dce120_timing_generator_enable_crtc(struct timing_generator * tg)136 bool dce120_timing_generator_enable_crtc(struct timing_generator *tg)
137 {
138 enum bp_result result;
139 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
140
141 /* Set MASTER_UPDATE_MODE to 0
142 * This is needed for DRR, and also suggested to be default value by Syed.*/
143
144 CRTC_REG_UPDATE(CRTC0_CRTC_MASTER_UPDATE_MODE,
145 MASTER_UPDATE_MODE, 0);
146
147 CRTC_REG_UPDATE(CRTC0_CRTC_MASTER_UPDATE_LOCK,
148 UNDERFLOW_UPDATE_LOCK, 0);
149
150 /* TODO API for AtomFirmware didn't change*/
151 result = tg->bp->funcs->enable_crtc(tg->bp, tg110->controller_id, true);
152
153 return result == BP_RESULT_OK;
154 }
155
dce120_timing_generator_set_early_control(struct timing_generator * tg,uint32_t early_cntl)156 void dce120_timing_generator_set_early_control(
157 struct timing_generator *tg,
158 uint32_t early_cntl)
159 {
160 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
161
162 CRTC_REG_UPDATE(CRTC0_CRTC_CONTROL,
163 CRTC_HBLANK_EARLY_CONTROL, early_cntl);
164 }
165
166 /**************** TG current status ******************/
167
168 /* return the current frame counter. Used by Linux kernel DRM */
dce120_timing_generator_get_vblank_counter(struct timing_generator * tg)169 uint32_t dce120_timing_generator_get_vblank_counter(
170 struct timing_generator *tg)
171 {
172 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
173 uint32_t value = dm_read_reg_soc15(
174 tg->ctx,
175 mmCRTC0_CRTC_STATUS_FRAME_COUNT,
176 tg110->offsets.crtc);
177 uint32_t field = get_reg_field_value(
178 value, CRTC0_CRTC_STATUS_FRAME_COUNT, CRTC_FRAME_COUNT);
179
180 return field;
181 }
182
183 /* Get current H and V position */
dce120_timing_generator_get_crtc_position(struct timing_generator * tg,struct crtc_position * position)184 void dce120_timing_generator_get_crtc_position(
185 struct timing_generator *tg,
186 struct crtc_position *position)
187 {
188 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
189 uint32_t value = dm_read_reg_soc15(
190 tg->ctx,
191 mmCRTC0_CRTC_STATUS_POSITION,
192 tg110->offsets.crtc);
193
194 position->horizontal_count = get_reg_field_value(value,
195 CRTC0_CRTC_STATUS_POSITION, CRTC_HORZ_COUNT);
196
197 position->vertical_count = get_reg_field_value(value,
198 CRTC0_CRTC_STATUS_POSITION, CRTC_VERT_COUNT);
199
200 value = dm_read_reg_soc15(
201 tg->ctx,
202 mmCRTC0_CRTC_NOM_VERT_POSITION,
203 tg110->offsets.crtc);
204
205 position->nominal_vcount = get_reg_field_value(value,
206 CRTC0_CRTC_NOM_VERT_POSITION, CRTC_VERT_COUNT_NOM);
207 }
208
209 /* wait until TG is in beginning of vertical blank region */
dce120_timing_generator_wait_for_vblank(struct timing_generator * tg)210 void dce120_timing_generator_wait_for_vblank(struct timing_generator *tg)
211 {
212 /* We want to catch beginning of VBlank here, so if the first try are
213 * in VBlank, we might be very close to Active, in this case wait for
214 * another frame
215 */
216 while (dce120_timing_generator_is_in_vertical_blank(tg)) {
217 if (!tg->funcs->is_counter_moving(tg)) {
218 /* error - no point to wait if counter is not moving */
219 break;
220 }
221 }
222
223 while (!dce120_timing_generator_is_in_vertical_blank(tg)) {
224 if (!tg->funcs->is_counter_moving(tg)) {
225 /* error - no point to wait if counter is not moving */
226 break;
227 }
228 }
229 }
230
231 /* wait until TG is in beginning of active region */
dce120_timing_generator_wait_for_vactive(struct timing_generator * tg)232 void dce120_timing_generator_wait_for_vactive(struct timing_generator *tg)
233 {
234 while (dce120_timing_generator_is_in_vertical_blank(tg)) {
235 if (!tg->funcs->is_counter_moving(tg)) {
236 /* error - no point to wait if counter is not moving */
237 break;
238 }
239 }
240 }
241
242 /*********** Timing Generator Synchronization routines ****/
243
244 /* Setups Global Swap Lock group, TimingServer or TimingClient*/
dce120_timing_generator_setup_global_swap_lock(struct timing_generator * tg,const struct dcp_gsl_params * gsl_params)245 void dce120_timing_generator_setup_global_swap_lock(
246 struct timing_generator *tg,
247 const struct dcp_gsl_params *gsl_params)
248 {
249 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
250 uint32_t value_crtc_vtotal =
251 dm_read_reg_soc15(tg->ctx,
252 mmCRTC0_CRTC_V_TOTAL,
253 tg110->offsets.crtc);
254 /* Checkpoint relative to end of frame */
255 uint32_t check_point =
256 get_reg_field_value(value_crtc_vtotal,
257 CRTC0_CRTC_V_TOTAL,
258 CRTC_V_TOTAL);
259
260
261 dm_write_reg_soc15(tg->ctx, mmCRTC0_CRTC_GSL_WINDOW, tg110->offsets.crtc, 0);
262
263 CRTC_REG_UPDATE_N(DCP0_DCP_GSL_CONTROL, 6,
264 /* This pipe will belong to GSL Group zero. */
265 FD(DCP0_DCP_GSL_CONTROL__DCP_GSL0_EN), 1,
266 FD(DCP0_DCP_GSL_CONTROL__DCP_GSL_MASTER_EN), gsl_params->gsl_master == tg->inst,
267 FD(DCP0_DCP_GSL_CONTROL__DCP_GSL_HSYNC_FLIP_FORCE_DELAY), HFLIP_READY_DELAY,
268 /* Keep signal low (pending high) during 6 lines.
269 * Also defines minimum interval before re-checking signal. */
270 FD(DCP0_DCP_GSL_CONTROL__DCP_GSL_HSYNC_FLIP_CHECK_DELAY), HFLIP_CHECK_DELAY,
271 /* DCP_GSL_PURPOSE_SURFACE_FLIP */
272 FD(DCP0_DCP_GSL_CONTROL__DCP_GSL_SYNC_SOURCE), 0,
273 FD(DCP0_DCP_GSL_CONTROL__DCP_GSL_DELAY_SURFACE_UPDATE_PENDING), 1);
274
275 CRTC_REG_SET_2(
276 CRTC0_CRTC_GSL_CONTROL,
277 CRTC_GSL_CHECK_LINE_NUM, check_point - FLIP_READY_BACK_LOOKUP,
278 CRTC_GSL_FORCE_DELAY, VFLIP_READY_DELAY);
279 }
280
281 /* Clear all the register writes done by setup_global_swap_lock */
dce120_timing_generator_tear_down_global_swap_lock(struct timing_generator * tg)282 void dce120_timing_generator_tear_down_global_swap_lock(
283 struct timing_generator *tg)
284 {
285 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
286
287 /* Settig HW default values from reg specs */
288 CRTC_REG_SET_N(DCP0_DCP_GSL_CONTROL, 6,
289 FD(DCP0_DCP_GSL_CONTROL__DCP_GSL0_EN), 0,
290 FD(DCP0_DCP_GSL_CONTROL__DCP_GSL_MASTER_EN), 0,
291 FD(DCP0_DCP_GSL_CONTROL__DCP_GSL_HSYNC_FLIP_FORCE_DELAY), HFLIP_READY_DELAY,
292 FD(DCP0_DCP_GSL_CONTROL__DCP_GSL_HSYNC_FLIP_CHECK_DELAY), HFLIP_CHECK_DELAY,
293 /* DCP_GSL_PURPOSE_SURFACE_FLIP */
294 FD(DCP0_DCP_GSL_CONTROL__DCP_GSL_SYNC_SOURCE), 0,
295 FD(DCP0_DCP_GSL_CONTROL__DCP_GSL_DELAY_SURFACE_UPDATE_PENDING), 0);
296
297 CRTC_REG_SET_2(CRTC0_CRTC_GSL_CONTROL,
298 CRTC_GSL_CHECK_LINE_NUM, 0,
299 CRTC_GSL_FORCE_DELAY, 0x2); /*TODO Why this value here ?*/
300 }
301
302 /* Reset slave controllers on master VSync */
dce120_timing_generator_enable_reset_trigger(struct timing_generator * tg,int source)303 void dce120_timing_generator_enable_reset_trigger(
304 struct timing_generator *tg,
305 int source)
306 {
307 enum trigger_source_select trig_src_select = TRIGGER_SOURCE_SELECT_LOGIC_ZERO;
308 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
309 uint32_t rising_edge = 0;
310 uint32_t falling_edge = 0;
311 /* Setup trigger edge */
312 uint32_t pol_value = dm_read_reg_soc15(
313 tg->ctx,
314 mmCRTC0_CRTC_V_SYNC_A_CNTL,
315 tg110->offsets.crtc);
316
317 /* Register spec has reversed definition:
318 * 0 for positive, 1 for negative */
319 if (get_reg_field_value(pol_value,
320 CRTC0_CRTC_V_SYNC_A_CNTL,
321 CRTC_V_SYNC_A_POL) == 0) {
322 rising_edge = 1;
323 } else {
324 falling_edge = 1;
325 }
326
327 /* TODO What about other sources ?*/
328 trig_src_select = TRIGGER_SOURCE_SELECT_GSL_GROUP0;
329
330 CRTC_REG_UPDATE_N(CRTC0_CRTC_TRIGB_CNTL, 7,
331 FD(CRTC0_CRTC_TRIGB_CNTL__CRTC_TRIGB_SOURCE_SELECT), trig_src_select,
332 FD(CRTC0_CRTC_TRIGB_CNTL__CRTC_TRIGB_POLARITY_SELECT), TRIGGER_POLARITY_SELECT_LOGIC_ZERO,
333 FD(CRTC0_CRTC_TRIGB_CNTL__CRTC_TRIGB_RISING_EDGE_DETECT_CNTL), rising_edge,
334 FD(CRTC0_CRTC_TRIGB_CNTL__CRTC_TRIGB_FALLING_EDGE_DETECT_CNTL), falling_edge,
335 /* send every signal */
336 FD(CRTC0_CRTC_TRIGB_CNTL__CRTC_TRIGB_FREQUENCY_SELECT), 0,
337 /* no delay */
338 FD(CRTC0_CRTC_TRIGB_CNTL__CRTC_TRIGB_DELAY), 0,
339 /* clear trigger status */
340 FD(CRTC0_CRTC_TRIGB_CNTL__CRTC_TRIGB_CLEAR), 1);
341
342 CRTC_REG_UPDATE_3(
343 CRTC0_CRTC_FORCE_COUNT_NOW_CNTL,
344 CRTC_FORCE_COUNT_NOW_MODE, 2,
345 CRTC_FORCE_COUNT_NOW_TRIG_SEL, 1,
346 CRTC_FORCE_COUNT_NOW_CLEAR, 1);
347 }
348
349 /* disabling trigger-reset */
dce120_timing_generator_disable_reset_trigger(struct timing_generator * tg)350 void dce120_timing_generator_disable_reset_trigger(
351 struct timing_generator *tg)
352 {
353 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
354
355 CRTC_REG_UPDATE_2(
356 CRTC0_CRTC_FORCE_COUNT_NOW_CNTL,
357 CRTC_FORCE_COUNT_NOW_MODE, 0,
358 CRTC_FORCE_COUNT_NOW_CLEAR, 1);
359
360 CRTC_REG_UPDATE_3(
361 CRTC0_CRTC_TRIGB_CNTL,
362 CRTC_TRIGB_SOURCE_SELECT, TRIGGER_SOURCE_SELECT_LOGIC_ZERO,
363 CRTC_TRIGB_POLARITY_SELECT, TRIGGER_POLARITY_SELECT_LOGIC_ZERO,
364 /* clear trigger status */
365 CRTC_TRIGB_CLEAR, 1);
366
367 }
368
369 /* Checks whether CRTC triggered reset occurred */
dce120_timing_generator_did_triggered_reset_occur(struct timing_generator * tg)370 bool dce120_timing_generator_did_triggered_reset_occur(
371 struct timing_generator *tg)
372 {
373 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
374 uint32_t value = dm_read_reg_soc15(
375 tg->ctx,
376 mmCRTC0_CRTC_FORCE_COUNT_NOW_CNTL,
377 tg110->offsets.crtc);
378
379 return get_reg_field_value(value,
380 CRTC0_CRTC_FORCE_COUNT_NOW_CNTL,
381 CRTC_FORCE_COUNT_NOW_OCCURRED) != 0;
382 }
383
384
385 /******** Stuff to move to other virtual HW objects *****************/
386 /* Move to enable accelerated mode */
dce120_timing_generator_disable_vga(struct timing_generator * tg)387 void dce120_timing_generator_disable_vga(struct timing_generator *tg)
388 {
389 uint32_t offset = 0;
390 uint32_t value = 0;
391 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
392
393 switch (tg110->controller_id) {
394 case CONTROLLER_ID_D0:
395 offset = 0;
396 break;
397 case CONTROLLER_ID_D1:
398 offset = mmD2VGA_CONTROL - mmD1VGA_CONTROL;
399 break;
400 case CONTROLLER_ID_D2:
401 offset = mmD3VGA_CONTROL - mmD1VGA_CONTROL;
402 break;
403 case CONTROLLER_ID_D3:
404 offset = mmD4VGA_CONTROL - mmD1VGA_CONTROL;
405 break;
406 case CONTROLLER_ID_D4:
407 offset = mmD5VGA_CONTROL - mmD1VGA_CONTROL;
408 break;
409 case CONTROLLER_ID_D5:
410 offset = mmD6VGA_CONTROL - mmD1VGA_CONTROL;
411 break;
412 default:
413 break;
414 }
415
416 value = dm_read_reg_soc15(tg->ctx, mmD1VGA_CONTROL, offset);
417
418 set_reg_field_value(value, 0, D1VGA_CONTROL, D1VGA_MODE_ENABLE);
419 set_reg_field_value(value, 0, D1VGA_CONTROL, D1VGA_TIMING_SELECT);
420 set_reg_field_value(
421 value, 0, D1VGA_CONTROL, D1VGA_SYNC_POLARITY_SELECT);
422 set_reg_field_value(value, 0, D1VGA_CONTROL, D1VGA_OVERSCAN_COLOR_EN);
423
424 dm_write_reg_soc15(tg->ctx, mmD1VGA_CONTROL, offset, value);
425 }
426 /* TODO: Should we move it to transform */
427 /* Fully program CRTC timing in timing generator */
dce120_timing_generator_program_blanking(struct timing_generator * tg,const struct dc_crtc_timing * timing)428 void dce120_timing_generator_program_blanking(
429 struct timing_generator *tg,
430 const struct dc_crtc_timing *timing)
431 {
432 uint32_t tmp1 = 0;
433 uint32_t tmp2 = 0;
434 uint32_t vsync_offset = timing->v_border_bottom +
435 timing->v_front_porch;
436 uint32_t v_sync_start = timing->v_addressable + vsync_offset;
437
438 uint32_t hsync_offset = timing->h_border_right +
439 timing->h_front_porch;
440 uint32_t h_sync_start = timing->h_addressable + hsync_offset;
441 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
442
443 CRTC_REG_UPDATE(
444 CRTC0_CRTC_H_TOTAL,
445 CRTC_H_TOTAL,
446 timing->h_total - 1);
447
448 CRTC_REG_UPDATE(
449 CRTC0_CRTC_V_TOTAL,
450 CRTC_V_TOTAL,
451 timing->v_total - 1);
452
453 /* In case of V_TOTAL_CONTROL is on, make sure V_TOTAL_MAX and
454 * V_TOTAL_MIN are equal to V_TOTAL.
455 */
456 CRTC_REG_UPDATE(
457 CRTC0_CRTC_V_TOTAL_MAX,
458 CRTC_V_TOTAL_MAX,
459 timing->v_total - 1);
460
461 CRTC_REG_UPDATE(
462 CRTC0_CRTC_V_TOTAL_MIN,
463 CRTC_V_TOTAL_MIN,
464 timing->v_total - 1);
465
466 tmp1 = timing->h_total -
467 (h_sync_start + timing->h_border_left);
468 tmp2 = tmp1 + timing->h_addressable +
469 timing->h_border_left + timing->h_border_right;
470
471 CRTC_REG_UPDATE_2(
472 CRTC0_CRTC_H_BLANK_START_END,
473 CRTC_H_BLANK_END, tmp1,
474 CRTC_H_BLANK_START, tmp2);
475
476 tmp1 = timing->v_total - (v_sync_start + timing->v_border_top);
477 tmp2 = tmp1 + timing->v_addressable + timing->v_border_top +
478 timing->v_border_bottom;
479
480 CRTC_REG_UPDATE_2(
481 CRTC0_CRTC_V_BLANK_START_END,
482 CRTC_V_BLANK_END, tmp1,
483 CRTC_V_BLANK_START, tmp2);
484 }
485
486 /* TODO: Should we move it to opp? */
487 /* Combine with below and move YUV/RGB color conversion to SW layer */
dce120_timing_generator_program_blank_color(struct timing_generator * tg,const struct tg_color * black_color)488 void dce120_timing_generator_program_blank_color(
489 struct timing_generator *tg,
490 const struct tg_color *black_color)
491 {
492 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
493
494 CRTC_REG_UPDATE_3(
495 CRTC0_CRTC_BLACK_COLOR,
496 CRTC_BLACK_COLOR_B_CB, black_color->color_b_cb,
497 CRTC_BLACK_COLOR_G_Y, black_color->color_g_y,
498 CRTC_BLACK_COLOR_R_CR, black_color->color_r_cr);
499 }
500 /* Combine with above and move YUV/RGB color conversion to SW layer */
dce120_timing_generator_set_overscan_color_black(struct timing_generator * tg,const struct tg_color * color)501 void dce120_timing_generator_set_overscan_color_black(
502 struct timing_generator *tg,
503 const struct tg_color *color)
504 {
505 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
506 uint32_t value = 0;
507 CRTC_REG_SET_3(
508 CRTC0_CRTC_OVERSCAN_COLOR,
509 CRTC_OVERSCAN_COLOR_BLUE, color->color_b_cb,
510 CRTC_OVERSCAN_COLOR_GREEN, color->color_g_y,
511 CRTC_OVERSCAN_COLOR_RED, color->color_r_cr);
512
513 value = dm_read_reg_soc15(
514 tg->ctx,
515 mmCRTC0_CRTC_OVERSCAN_COLOR,
516 tg110->offsets.crtc);
517
518 dm_write_reg_soc15(
519 tg->ctx,
520 mmCRTC0_CRTC_BLACK_COLOR,
521 tg110->offsets.crtc,
522 value);
523
524 /* This is desirable to have a constant DAC output voltage during the
525 * blank time that is higher than the 0 volt reference level that the
526 * DAC outputs when the NBLANK signal
527 * is asserted low, such as for output to an analog TV. */
528 dm_write_reg_soc15(
529 tg->ctx,
530 mmCRTC0_CRTC_BLANK_DATA_COLOR,
531 tg110->offsets.crtc,
532 value);
533
534 /* TO DO we have to program EXT registers and we need to know LB DATA
535 * format because it is used when more 10 , i.e. 12 bits per color
536 *
537 * m_mmDxCRTC_OVERSCAN_COLOR_EXT
538 * m_mmDxCRTC_BLACK_COLOR_EXT
539 * m_mmDxCRTC_BLANK_DATA_COLOR_EXT
540 */
541 }
542
dce120_timing_generator_set_drr(struct timing_generator * tg,const struct drr_params * params)543 void dce120_timing_generator_set_drr(
544 struct timing_generator *tg,
545 const struct drr_params *params)
546 {
547
548 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
549
550 if (params != NULL &&
551 params->vertical_total_max > 0 &&
552 params->vertical_total_min > 0) {
553
554 CRTC_REG_UPDATE(
555 CRTC0_CRTC_V_TOTAL_MIN,
556 CRTC_V_TOTAL_MIN, params->vertical_total_min - 1);
557 CRTC_REG_UPDATE(
558 CRTC0_CRTC_V_TOTAL_MAX,
559 CRTC_V_TOTAL_MAX, params->vertical_total_max - 1);
560 CRTC_REG_SET_N(CRTC0_CRTC_V_TOTAL_CONTROL, 6,
561 FD(CRTC0_CRTC_V_TOTAL_CONTROL__CRTC_V_TOTAL_MIN_SEL), 1,
562 FD(CRTC0_CRTC_V_TOTAL_CONTROL__CRTC_V_TOTAL_MAX_SEL), 1,
563 FD(CRTC0_CRTC_V_TOTAL_CONTROL__CRTC_FORCE_LOCK_ON_EVENT), 0,
564 FD(CRTC0_CRTC_V_TOTAL_CONTROL__CRTC_FORCE_LOCK_TO_MASTER_VSYNC), 0,
565 FD(CRTC0_CRTC_V_TOTAL_CONTROL__CRTC_SET_V_TOTAL_MIN_MASK_EN), 0,
566 FD(CRTC0_CRTC_V_TOTAL_CONTROL__CRTC_SET_V_TOTAL_MIN_MASK), 0);
567 CRTC_REG_UPDATE(
568 CRTC0_CRTC_STATIC_SCREEN_CONTROL,
569 CRTC_STATIC_SCREEN_EVENT_MASK,
570 0x180);
571
572 } else {
573 CRTC_REG_SET_N(CRTC0_CRTC_V_TOTAL_CONTROL, 5,
574 FD(CRTC0_CRTC_V_TOTAL_CONTROL__CRTC_V_TOTAL_MIN_SEL), 0,
575 FD(CRTC0_CRTC_V_TOTAL_CONTROL__CRTC_V_TOTAL_MAX_SEL), 0,
576 FD(CRTC0_CRTC_V_TOTAL_CONTROL__CRTC_FORCE_LOCK_ON_EVENT), 0,
577 FD(CRTC0_CRTC_V_TOTAL_CONTROL__CRTC_FORCE_LOCK_TO_MASTER_VSYNC), 0,
578 FD(CRTC0_CRTC_V_TOTAL_CONTROL__CRTC_SET_V_TOTAL_MIN_MASK), 0);
579 CRTC_REG_UPDATE(
580 CRTC0_CRTC_V_TOTAL_MIN,
581 CRTC_V_TOTAL_MIN, 0);
582 CRTC_REG_UPDATE(
583 CRTC0_CRTC_V_TOTAL_MAX,
584 CRTC_V_TOTAL_MAX, 0);
585 CRTC_REG_UPDATE(
586 CRTC0_CRTC_STATIC_SCREEN_CONTROL,
587 CRTC_STATIC_SCREEN_EVENT_MASK,
588 0);
589 }
590 }
591
592 /**
593 *****************************************************************************
594 * Function: dce120_timing_generator_get_position
595 *
596 * @brief
597 * Returns CRTC vertical/horizontal counters
598 *
599 * @param [out] position
600 *****************************************************************************
601 */
dce120_timing_generator_get_position(struct timing_generator * tg,struct crtc_position * position)602 void dce120_timing_generator_get_position(struct timing_generator *tg,
603 struct crtc_position *position)
604 {
605 uint32_t value;
606 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
607
608 value = dm_read_reg_soc15(
609 tg->ctx,
610 mmCRTC0_CRTC_STATUS_POSITION,
611 tg110->offsets.crtc);
612
613 position->horizontal_count = get_reg_field_value(
614 value,
615 CRTC0_CRTC_STATUS_POSITION,
616 CRTC_HORZ_COUNT);
617
618 position->vertical_count = get_reg_field_value(
619 value,
620 CRTC0_CRTC_STATUS_POSITION,
621 CRTC_VERT_COUNT);
622
623 value = dm_read_reg_soc15(
624 tg->ctx,
625 mmCRTC0_CRTC_NOM_VERT_POSITION,
626 tg110->offsets.crtc);
627
628 position->nominal_vcount = get_reg_field_value(
629 value,
630 CRTC0_CRTC_NOM_VERT_POSITION,
631 CRTC_VERT_COUNT_NOM);
632 }
633
634
dce120_timing_generator_get_crtc_scanoutpos(struct timing_generator * tg,uint32_t * v_blank_start,uint32_t * v_blank_end,uint32_t * h_position,uint32_t * v_position)635 void dce120_timing_generator_get_crtc_scanoutpos(
636 struct timing_generator *tg,
637 uint32_t *v_blank_start,
638 uint32_t *v_blank_end,
639 uint32_t *h_position,
640 uint32_t *v_position)
641 {
642 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
643 struct crtc_position position;
644
645 uint32_t v_blank_start_end = dm_read_reg_soc15(
646 tg->ctx,
647 mmCRTC0_CRTC_V_BLANK_START_END,
648 tg110->offsets.crtc);
649
650 *v_blank_start = get_reg_field_value(v_blank_start_end,
651 CRTC0_CRTC_V_BLANK_START_END,
652 CRTC_V_BLANK_START);
653 *v_blank_end = get_reg_field_value(v_blank_start_end,
654 CRTC0_CRTC_V_BLANK_START_END,
655 CRTC_V_BLANK_END);
656
657 dce120_timing_generator_get_crtc_position(
658 tg, &position);
659
660 *h_position = position.horizontal_count;
661 *v_position = position.vertical_count;
662 }
663
dce120_timing_generator_enable_advanced_request(struct timing_generator * tg,bool enable,const struct dc_crtc_timing * timing)664 void dce120_timing_generator_enable_advanced_request(
665 struct timing_generator *tg,
666 bool enable,
667 const struct dc_crtc_timing *timing)
668 {
669 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
670 uint32_t v_sync_width_and_b_porch =
671 timing->v_total - timing->v_addressable -
672 timing->v_border_bottom - timing->v_front_porch;
673 uint32_t value = dm_read_reg_soc15(
674 tg->ctx,
675 mmCRTC0_CRTC_START_LINE_CONTROL,
676 tg110->offsets.crtc);
677
678 set_reg_field_value(
679 value,
680 enable ? 0 : 1,
681 CRTC0_CRTC_START_LINE_CONTROL,
682 CRTC_LEGACY_REQUESTOR_EN);
683
684 /* Program advanced line position acc.to the best case from fetching data perspective to hide MC latency
685 * and prefilling Line Buffer in V Blank (to 10 lines as LB can store max 10 lines)
686 */
687 if (v_sync_width_and_b_porch > 10)
688 v_sync_width_and_b_porch = 10;
689
690 set_reg_field_value(
691 value,
692 v_sync_width_and_b_porch,
693 CRTC0_CRTC_START_LINE_CONTROL,
694 CRTC_ADVANCED_START_LINE_POSITION);
695
696 dm_write_reg_soc15(tg->ctx,
697 mmCRTC0_CRTC_START_LINE_CONTROL,
698 tg110->offsets.crtc,
699 value);
700 }
701
dce120_tg_program_blank_color(struct timing_generator * tg,const struct tg_color * black_color)702 void dce120_tg_program_blank_color(struct timing_generator *tg,
703 const struct tg_color *black_color)
704 {
705 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
706 uint32_t value = 0;
707
708 CRTC_REG_UPDATE_3(
709 CRTC0_CRTC_BLACK_COLOR,
710 CRTC_BLACK_COLOR_B_CB, black_color->color_b_cb,
711 CRTC_BLACK_COLOR_G_Y, black_color->color_g_y,
712 CRTC_BLACK_COLOR_R_CR, black_color->color_r_cr);
713
714 value = dm_read_reg_soc15(
715 tg->ctx,
716 mmCRTC0_CRTC_BLACK_COLOR,
717 tg110->offsets.crtc);
718 dm_write_reg_soc15(
719 tg->ctx,
720 mmCRTC0_CRTC_BLANK_DATA_COLOR,
721 tg110->offsets.crtc,
722 value);
723 }
724
dce120_tg_set_overscan_color(struct timing_generator * tg,const struct tg_color * overscan_color)725 void dce120_tg_set_overscan_color(struct timing_generator *tg,
726 const struct tg_color *overscan_color)
727 {
728 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
729
730 CRTC_REG_SET_3(
731 CRTC0_CRTC_OVERSCAN_COLOR,
732 CRTC_OVERSCAN_COLOR_BLUE, overscan_color->color_b_cb,
733 CRTC_OVERSCAN_COLOR_GREEN, overscan_color->color_g_y,
734 CRTC_OVERSCAN_COLOR_RED, overscan_color->color_r_cr);
735 }
736
dce120_tg_program_timing(struct timing_generator * tg,const struct dc_crtc_timing * timing,bool use_vbios)737 void dce120_tg_program_timing(struct timing_generator *tg,
738 const struct dc_crtc_timing *timing,
739 bool use_vbios)
740 {
741 if (use_vbios)
742 dce110_timing_generator_program_timing_generator(tg, timing);
743 else
744 dce120_timing_generator_program_blanking(tg, timing);
745 }
746
dce120_tg_is_blanked(struct timing_generator * tg)747 bool dce120_tg_is_blanked(struct timing_generator *tg)
748 {
749 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
750 uint32_t value = dm_read_reg_soc15(
751 tg->ctx,
752 mmCRTC0_CRTC_BLANK_CONTROL,
753 tg110->offsets.crtc);
754
755 if (get_reg_field_value(
756 value,
757 CRTC0_CRTC_BLANK_CONTROL,
758 CRTC_BLANK_DATA_EN) == 1 &&
759 get_reg_field_value(
760 value,
761 CRTC0_CRTC_BLANK_CONTROL,
762 CRTC_CURRENT_BLANK_STATE) == 1)
763 return true;
764
765 return false;
766 }
767
dce120_tg_set_blank(struct timing_generator * tg,bool enable_blanking)768 void dce120_tg_set_blank(struct timing_generator *tg,
769 bool enable_blanking)
770 {
771 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
772
773 CRTC_REG_SET(
774 CRTC0_CRTC_DOUBLE_BUFFER_CONTROL,
775 CRTC_BLANK_DATA_DOUBLE_BUFFER_EN, 1);
776
777 if (enable_blanking)
778 CRTC_REG_SET(CRTC0_CRTC_BLANK_CONTROL, CRTC_BLANK_DATA_EN, 1);
779 else
780 dm_write_reg_soc15(tg->ctx, mmCRTC0_CRTC_BLANK_CONTROL,
781 tg110->offsets.crtc, 0);
782 }
783
784 bool dce120_tg_validate_timing(struct timing_generator *tg,
785 const struct dc_crtc_timing *timing);
786
dce120_tg_wait_for_state(struct timing_generator * tg,enum crtc_state state)787 void dce120_tg_wait_for_state(struct timing_generator *tg,
788 enum crtc_state state)
789 {
790 switch (state) {
791 case CRTC_STATE_VBLANK:
792 dce120_timing_generator_wait_for_vblank(tg);
793 break;
794
795 case CRTC_STATE_VACTIVE:
796 dce120_timing_generator_wait_for_vactive(tg);
797 break;
798
799 default:
800 break;
801 }
802 }
803
dce120_tg_set_colors(struct timing_generator * tg,const struct tg_color * blank_color,const struct tg_color * overscan_color)804 void dce120_tg_set_colors(struct timing_generator *tg,
805 const struct tg_color *blank_color,
806 const struct tg_color *overscan_color)
807 {
808 if (blank_color != NULL)
809 dce120_tg_program_blank_color(tg, blank_color);
810
811 if (overscan_color != NULL)
812 dce120_tg_set_overscan_color(tg, overscan_color);
813 }
814
dce120_timing_generator_set_static_screen_control(struct timing_generator * tg,uint32_t value)815 static void dce120_timing_generator_set_static_screen_control(
816 struct timing_generator *tg,
817 uint32_t value)
818 {
819 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
820
821 CRTC_REG_UPDATE_2(CRTC0_CRTC_STATIC_SCREEN_CONTROL,
822 CRTC_STATIC_SCREEN_EVENT_MASK, value,
823 CRTC_STATIC_SCREEN_FRAME_COUNT, 2);
824 }
825
dce120_timing_generator_set_test_pattern(struct timing_generator * tg,enum controller_dp_test_pattern test_pattern,enum dc_color_depth color_depth)826 void dce120_timing_generator_set_test_pattern(
827 struct timing_generator *tg,
828 /* TODO: replace 'controller_dp_test_pattern' by 'test_pattern_mode'
829 * because this is not DP-specific (which is probably somewhere in DP
830 * encoder) */
831 enum controller_dp_test_pattern test_pattern,
832 enum dc_color_depth color_depth)
833 {
834 struct dc_context *ctx = tg->ctx;
835 uint32_t value;
836 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
837 enum test_pattern_color_format bit_depth;
838 enum test_pattern_dyn_range dyn_range;
839 enum test_pattern_mode mode;
840 /* color ramp generator mixes 16-bits color */
841 uint32_t src_bpc = 16;
842 /* requested bpc */
843 uint32_t dst_bpc;
844 uint32_t index;
845 /* RGB values of the color bars.
846 * Produce two RGB colors: RGB0 - white (all Fs)
847 * and RGB1 - black (all 0s)
848 * (three RGB components for two colors)
849 */
850 uint16_t src_color[6] = {0xFFFF, 0xFFFF, 0xFFFF, 0x0000,
851 0x0000, 0x0000};
852 /* dest color (converted to the specified color format) */
853 uint16_t dst_color[6];
854 uint32_t inc_base;
855
856 /* translate to bit depth */
857 switch (color_depth) {
858 case COLOR_DEPTH_666:
859 bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_6;
860 break;
861 case COLOR_DEPTH_888:
862 bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8;
863 break;
864 case COLOR_DEPTH_101010:
865 bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_10;
866 break;
867 case COLOR_DEPTH_121212:
868 bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_12;
869 break;
870 default:
871 bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8;
872 break;
873 }
874
875 switch (test_pattern) {
876 case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES:
877 case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA:
878 {
879 dyn_range = (test_pattern ==
880 CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA ?
881 TEST_PATTERN_DYN_RANGE_CEA :
882 TEST_PATTERN_DYN_RANGE_VESA);
883 mode = TEST_PATTERN_MODE_COLORSQUARES_RGB;
884
885 CRTC_REG_UPDATE_2(CRTC0_CRTC_TEST_PATTERN_PARAMETERS,
886 CRTC_TEST_PATTERN_VRES, 6,
887 CRTC_TEST_PATTERN_HRES, 6);
888
889 CRTC_REG_UPDATE_4(CRTC0_CRTC_TEST_PATTERN_CONTROL,
890 CRTC_TEST_PATTERN_EN, 1,
891 CRTC_TEST_PATTERN_MODE, mode,
892 CRTC_TEST_PATTERN_DYNAMIC_RANGE, dyn_range,
893 CRTC_TEST_PATTERN_COLOR_FORMAT, bit_depth);
894 }
895 break;
896
897 case CONTROLLER_DP_TEST_PATTERN_VERTICALBARS:
898 case CONTROLLER_DP_TEST_PATTERN_HORIZONTALBARS:
899 {
900 mode = (test_pattern ==
901 CONTROLLER_DP_TEST_PATTERN_VERTICALBARS ?
902 TEST_PATTERN_MODE_VERTICALBARS :
903 TEST_PATTERN_MODE_HORIZONTALBARS);
904
905 switch (bit_depth) {
906 case TEST_PATTERN_COLOR_FORMAT_BPC_6:
907 dst_bpc = 6;
908 break;
909 case TEST_PATTERN_COLOR_FORMAT_BPC_8:
910 dst_bpc = 8;
911 break;
912 case TEST_PATTERN_COLOR_FORMAT_BPC_10:
913 dst_bpc = 10;
914 break;
915 default:
916 dst_bpc = 8;
917 break;
918 }
919
920 /* adjust color to the required colorFormat */
921 for (index = 0; index < 6; index++) {
922 /* dst = 2^dstBpc * src / 2^srcBpc = src >>
923 * (srcBpc - dstBpc);
924 */
925 dst_color[index] =
926 src_color[index] >> (src_bpc - dst_bpc);
927 /* CRTC_TEST_PATTERN_DATA has 16 bits,
928 * lowest 6 are hardwired to ZERO
929 * color bits should be left aligned aligned to MSB
930 * XXXXXXXXXX000000 for 10 bit,
931 * XXXXXXXX00000000 for 8 bit and XXXXXX0000000000 for 6
932 */
933 dst_color[index] <<= (16 - dst_bpc);
934 }
935
936 dm_write_reg_soc15(ctx, mmCRTC0_CRTC_TEST_PATTERN_PARAMETERS, tg110->offsets.crtc, 0);
937
938 /* We have to write the mask before data, similar to pipeline.
939 * For example, for 8 bpc, if we want RGB0 to be magenta,
940 * and RGB1 to be cyan,
941 * we need to make 7 writes:
942 * MASK DATA
943 * 000001 00000000 00000000 set mask to R0
944 * 000010 11111111 00000000 R0 255, 0xFF00, set mask to G0
945 * 000100 00000000 00000000 G0 0, 0x0000, set mask to B0
946 * 001000 11111111 00000000 B0 255, 0xFF00, set mask to R1
947 * 010000 00000000 00000000 R1 0, 0x0000, set mask to G1
948 * 100000 11111111 00000000 G1 255, 0xFF00, set mask to B1
949 * 100000 11111111 00000000 B1 255, 0xFF00
950 *
951 * we will make a loop of 6 in which we prepare the mask,
952 * then write, then prepare the color for next write.
953 * first iteration will write mask only,
954 * but each next iteration color prepared in
955 * previous iteration will be written within new mask,
956 * the last component will written separately,
957 * mask is not changing between 6th and 7th write
958 * and color will be prepared by last iteration
959 */
960
961 /* write color, color values mask in CRTC_TEST_PATTERN_MASK
962 * is B1, G1, R1, B0, G0, R0
963 */
964 value = 0;
965 for (index = 0; index < 6; index++) {
966 /* prepare color mask, first write PATTERN_DATA
967 * will have all zeros
968 */
969 set_reg_field_value(
970 value,
971 (1 << index),
972 CRTC0_CRTC_TEST_PATTERN_COLOR,
973 CRTC_TEST_PATTERN_MASK);
974 /* write color component */
975 dm_write_reg_soc15(ctx, mmCRTC0_CRTC_TEST_PATTERN_COLOR, tg110->offsets.crtc, value);
976 /* prepare next color component,
977 * will be written in the next iteration
978 */
979 set_reg_field_value(
980 value,
981 dst_color[index],
982 CRTC0_CRTC_TEST_PATTERN_COLOR,
983 CRTC_TEST_PATTERN_DATA);
984 }
985 /* write last color component,
986 * it's been already prepared in the loop
987 */
988 dm_write_reg_soc15(ctx, mmCRTC0_CRTC_TEST_PATTERN_COLOR, tg110->offsets.crtc, value);
989
990 /* enable test pattern */
991 CRTC_REG_UPDATE_4(CRTC0_CRTC_TEST_PATTERN_CONTROL,
992 CRTC_TEST_PATTERN_EN, 1,
993 CRTC_TEST_PATTERN_MODE, mode,
994 CRTC_TEST_PATTERN_DYNAMIC_RANGE, 0,
995 CRTC_TEST_PATTERN_COLOR_FORMAT, bit_depth);
996 }
997 break;
998
999 case CONTROLLER_DP_TEST_PATTERN_COLORRAMP:
1000 {
1001 mode = (bit_depth ==
1002 TEST_PATTERN_COLOR_FORMAT_BPC_10 ?
1003 TEST_PATTERN_MODE_DUALRAMP_RGB :
1004 TEST_PATTERN_MODE_SINGLERAMP_RGB);
1005
1006 switch (bit_depth) {
1007 case TEST_PATTERN_COLOR_FORMAT_BPC_6:
1008 dst_bpc = 6;
1009 break;
1010 case TEST_PATTERN_COLOR_FORMAT_BPC_8:
1011 dst_bpc = 8;
1012 break;
1013 case TEST_PATTERN_COLOR_FORMAT_BPC_10:
1014 dst_bpc = 10;
1015 break;
1016 default:
1017 dst_bpc = 8;
1018 break;
1019 }
1020
1021 /* increment for the first ramp for one color gradation
1022 * 1 gradation for 6-bit color is 2^10
1023 * gradations in 16-bit color
1024 */
1025 inc_base = (src_bpc - dst_bpc);
1026
1027 switch (bit_depth) {
1028 case TEST_PATTERN_COLOR_FORMAT_BPC_6:
1029 {
1030 CRTC_REG_UPDATE_5(CRTC0_CRTC_TEST_PATTERN_PARAMETERS,
1031 CRTC_TEST_PATTERN_INC0, inc_base,
1032 CRTC_TEST_PATTERN_INC1, 0,
1033 CRTC_TEST_PATTERN_HRES, 6,
1034 CRTC_TEST_PATTERN_VRES, 6,
1035 CRTC_TEST_PATTERN_RAMP0_OFFSET, 0);
1036 }
1037 break;
1038 case TEST_PATTERN_COLOR_FORMAT_BPC_8:
1039 {
1040 CRTC_REG_UPDATE_5(CRTC0_CRTC_TEST_PATTERN_PARAMETERS,
1041 CRTC_TEST_PATTERN_INC0, inc_base,
1042 CRTC_TEST_PATTERN_INC1, 0,
1043 CRTC_TEST_PATTERN_HRES, 8,
1044 CRTC_TEST_PATTERN_VRES, 6,
1045 CRTC_TEST_PATTERN_RAMP0_OFFSET, 0);
1046 }
1047 break;
1048 case TEST_PATTERN_COLOR_FORMAT_BPC_10:
1049 {
1050 CRTC_REG_UPDATE_5(CRTC0_CRTC_TEST_PATTERN_PARAMETERS,
1051 CRTC_TEST_PATTERN_INC0, inc_base,
1052 CRTC_TEST_PATTERN_INC1, inc_base + 2,
1053 CRTC_TEST_PATTERN_HRES, 8,
1054 CRTC_TEST_PATTERN_VRES, 5,
1055 CRTC_TEST_PATTERN_RAMP0_OFFSET, 384 << 6);
1056 }
1057 break;
1058 default:
1059 break;
1060 }
1061
1062 dm_write_reg_soc15(ctx, mmCRTC0_CRTC_TEST_PATTERN_COLOR, tg110->offsets.crtc, 0);
1063
1064 /* enable test pattern */
1065 dm_write_reg_soc15(ctx, mmCRTC0_CRTC_TEST_PATTERN_CONTROL, tg110->offsets.crtc, 0);
1066
1067 CRTC_REG_UPDATE_4(CRTC0_CRTC_TEST_PATTERN_CONTROL,
1068 CRTC_TEST_PATTERN_EN, 1,
1069 CRTC_TEST_PATTERN_MODE, mode,
1070 CRTC_TEST_PATTERN_DYNAMIC_RANGE, 0,
1071 CRTC_TEST_PATTERN_COLOR_FORMAT, bit_depth);
1072 }
1073 break;
1074 case CONTROLLER_DP_TEST_PATTERN_VIDEOMODE:
1075 {
1076 value = 0;
1077 dm_write_reg_soc15(ctx, mmCRTC0_CRTC_TEST_PATTERN_CONTROL, tg110->offsets.crtc, value);
1078 dm_write_reg_soc15(ctx, mmCRTC0_CRTC_TEST_PATTERN_COLOR, tg110->offsets.crtc, value);
1079 dm_write_reg_soc15(ctx, mmCRTC0_CRTC_TEST_PATTERN_PARAMETERS, tg110->offsets.crtc, value);
1080 }
1081 break;
1082 default:
1083 break;
1084 }
1085 }
1086
dce120_arm_vert_intr(struct timing_generator * tg,uint8_t width)1087 static bool dce120_arm_vert_intr(
1088 struct timing_generator *tg,
1089 uint8_t width)
1090 {
1091 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1092 uint32_t v_blank_start, v_blank_end, h_position, v_position;
1093
1094 tg->funcs->get_scanoutpos(
1095 tg,
1096 &v_blank_start,
1097 &v_blank_end,
1098 &h_position,
1099 &v_position);
1100
1101 if (v_blank_start == 0 || v_blank_end == 0)
1102 return false;
1103
1104 CRTC_REG_SET_2(
1105 CRTC0_CRTC_VERTICAL_INTERRUPT0_POSITION,
1106 CRTC_VERTICAL_INTERRUPT0_LINE_START, v_blank_start,
1107 CRTC_VERTICAL_INTERRUPT0_LINE_END, v_blank_start + width);
1108
1109 return true;
1110 }
1111
1112 static const struct timing_generator_funcs dce120_tg_funcs = {
1113 .validate_timing = dce120_tg_validate_timing,
1114 .program_timing = dce120_tg_program_timing,
1115 .enable_crtc = dce120_timing_generator_enable_crtc,
1116 .disable_crtc = dce110_timing_generator_disable_crtc,
1117 /* used by enable_timing_synchronization. Not need for FPGA */
1118 .is_counter_moving = dce110_timing_generator_is_counter_moving,
1119 /* never be called */
1120 .get_position = dce120_timing_generator_get_crtc_position,
1121 .get_frame_count = dce120_timing_generator_get_vblank_counter,
1122 .get_scanoutpos = dce120_timing_generator_get_crtc_scanoutpos,
1123 .set_early_control = dce120_timing_generator_set_early_control,
1124 /* used by enable_timing_synchronization. Not need for FPGA */
1125 .wait_for_state = dce120_tg_wait_for_state,
1126 .set_blank = dce120_tg_set_blank,
1127 .is_blanked = dce120_tg_is_blanked,
1128 /* never be called */
1129 .set_colors = dce120_tg_set_colors,
1130 .set_overscan_blank_color = dce120_timing_generator_set_overscan_color_black,
1131 .set_blank_color = dce120_timing_generator_program_blank_color,
1132 .disable_vga = dce120_timing_generator_disable_vga,
1133 .did_triggered_reset_occur = dce120_timing_generator_did_triggered_reset_occur,
1134 .setup_global_swap_lock = dce120_timing_generator_setup_global_swap_lock,
1135 .enable_reset_trigger = dce120_timing_generator_enable_reset_trigger,
1136 .disable_reset_trigger = dce120_timing_generator_disable_reset_trigger,
1137 .tear_down_global_swap_lock = dce120_timing_generator_tear_down_global_swap_lock,
1138 .enable_advanced_request = dce120_timing_generator_enable_advanced_request,
1139 .set_drr = dce120_timing_generator_set_drr,
1140 .set_static_screen_control = dce120_timing_generator_set_static_screen_control,
1141 .set_test_pattern = dce120_timing_generator_set_test_pattern,
1142 .arm_vert_intr = dce120_arm_vert_intr,
1143 };
1144
1145
dce120_timing_generator_construct(struct dce110_timing_generator * tg110,struct dc_context * ctx,uint32_t instance,const struct dce110_timing_generator_offsets * offsets)1146 void dce120_timing_generator_construct(
1147 struct dce110_timing_generator *tg110,
1148 struct dc_context *ctx,
1149 uint32_t instance,
1150 const struct dce110_timing_generator_offsets *offsets)
1151 {
1152 tg110->controller_id = CONTROLLER_ID_D0 + instance;
1153 tg110->base.inst = instance;
1154
1155 tg110->offsets = *offsets;
1156
1157 tg110->base.funcs = &dce120_tg_funcs;
1158
1159 tg110->base.ctx = ctx;
1160 tg110->base.bp = ctx->dc_bios;
1161
1162 tg110->max_h_total = CRTC0_CRTC_H_TOTAL__CRTC_H_TOTAL_MASK + 1;
1163 tg110->max_v_total = CRTC0_CRTC_V_TOTAL__CRTC_V_TOTAL_MASK + 1;
1164
1165 /*//CRTC requires a minimum HBLANK = 32 pixels and o
1166 * Minimum HSYNC = 8 pixels*/
1167 tg110->min_h_blank = 32;
1168 /*DCE12_CRTC_Block_ARch.doc*/
1169 tg110->min_h_front_porch = 0;
1170 tg110->min_h_back_porch = 0;
1171
1172 tg110->min_h_sync_width = 8;
1173 tg110->min_v_sync_width = 1;
1174 tg110->min_v_blank = 3;
1175 }
1176