1 /*
2  * Copyright 2012-15 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25 
26 #include "dm_services.h"
27 
28 #include "dce/dce_12_0_offset.h"
29 #include "dce/dce_12_0_sh_mask.h"
30 #include "soc15_hw_ip.h"
31 #include "vega10_ip_offset.h"
32 
33 #include "dc_types.h"
34 #include "dc_bios_types.h"
35 
36 #include "include/grph_object_id.h"
37 #include "include/logger_interface.h"
38 #include "dce120_timing_generator.h"
39 
40 #include "timing_generator.h"
41 
42 #define CRTC_REG_UPDATE_N(reg_name, n, ...)	\
43 		generic_reg_update_soc15(tg110->base.ctx, tg110->offsets.crtc, reg_name, n, __VA_ARGS__)
44 
45 #define CRTC_REG_SET_N(reg_name, n, ...)	\
46 		generic_reg_set_soc15(tg110->base.ctx, tg110->offsets.crtc, reg_name, n, __VA_ARGS__)
47 
48 #define CRTC_REG_UPDATE(reg, field, val)	\
49 		CRTC_REG_UPDATE_N(reg, 1, FD(reg##__##field), val)
50 
51 #define CRTC_REG_UPDATE_2(reg, field1, val1, field2, val2)	\
52 		CRTC_REG_UPDATE_N(reg, 2, FD(reg##__##field1), val1, FD(reg##__##field2), val2)
53 
54 #define CRTC_REG_UPDATE_3(reg, field1, val1, field2, val2, field3, val3)	\
55 		CRTC_REG_UPDATE_N(reg, 3, FD(reg##__##field1), val1, FD(reg##__##field2), val2, FD(reg##__##field3), val3)
56 
57 #define CRTC_REG_UPDATE_4(reg, field1, val1, field2, val2, field3, val3, field4, val4)	\
58 		CRTC_REG_UPDATE_N(reg, 3, FD(reg##__##field1), val1, FD(reg##__##field2), val2, FD(reg##__##field3), val3, FD(reg##__##field4), val4)
59 
60 #define CRTC_REG_UPDATE_5(reg, field1, val1, field2, val2, field3, val3, field4, val4, field5, val5)	\
61 		CRTC_REG_UPDATE_N(reg, 3, FD(reg##__##field1), val1, FD(reg##__##field2), val2, FD(reg##__##field3), val3, FD(reg##__##field4), val4, FD(reg##__##field5), val5)
62 
63 #define CRTC_REG_SET(reg, field, val)	\
64 		CRTC_REG_SET_N(reg, 1, FD(reg##__##field), val)
65 
66 #define CRTC_REG_SET_2(reg, field1, val1, field2, val2)	\
67 		CRTC_REG_SET_N(reg, 2, FD(reg##__##field1), val1, FD(reg##__##field2), val2)
68 
69 #define CRTC_REG_SET_3(reg, field1, val1, field2, val2, field3, val3)	\
70 		CRTC_REG_SET_N(reg, 3, FD(reg##__##field1), val1, FD(reg##__##field2), val2, FD(reg##__##field3), val3)
71 
72 /**
73  *****************************************************************************
74  *  Function: is_in_vertical_blank
75  *
76  *  @brief
77  *     check the current status of CRTC to check if we are in Vertical Blank
78  *     regioneased" state
79  *
80  *  @return
81  *     true if currently in blank region, false otherwise
82  *
83  *****************************************************************************
84  */
dce120_timing_generator_is_in_vertical_blank(struct timing_generator * tg)85 static bool dce120_timing_generator_is_in_vertical_blank(
86 		struct timing_generator *tg)
87 {
88 	uint32_t field = 0;
89 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
90 	uint32_t value = dm_read_reg_soc15(
91 					tg->ctx,
92 					mmCRTC0_CRTC_STATUS,
93 					tg110->offsets.crtc);
94 
95 	field = get_reg_field_value(value, CRTC0_CRTC_STATUS, CRTC_V_BLANK);
96 	return field == 1;
97 }
98 
99 
100 /* determine if given timing can be supported by TG */
dce120_timing_generator_validate_timing(struct timing_generator * tg,const struct dc_crtc_timing * timing,enum signal_type signal)101 bool dce120_timing_generator_validate_timing(
102 	struct timing_generator *tg,
103 	const struct dc_crtc_timing *timing,
104 	enum signal_type signal)
105 {
106 	uint32_t interlace_factor = timing->flags.INTERLACE ? 2 : 1;
107 	uint32_t v_blank =
108 					(timing->v_total - timing->v_addressable -
109 					timing->v_border_top - timing->v_border_bottom) *
110 					interlace_factor;
111 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
112 
113 	if (!dce110_timing_generator_validate_timing(
114 					tg,
115 					timing,
116 					signal))
117 		return false;
118 
119 
120 	if (v_blank < tg110->min_v_blank	||
121 		 timing->h_sync_width  < tg110->min_h_sync_width ||
122 		 timing->v_sync_width  < tg110->min_v_sync_width)
123 		return false;
124 
125 	return true;
126 }
127 
dce120_tg_validate_timing(struct timing_generator * tg,const struct dc_crtc_timing * timing)128 bool dce120_tg_validate_timing(struct timing_generator *tg,
129 	const struct dc_crtc_timing *timing)
130 {
131 	return dce120_timing_generator_validate_timing(tg, timing, SIGNAL_TYPE_NONE);
132 }
133 
134 /******** HW programming ************/
135 /* Disable/Enable Timing Generator */
dce120_timing_generator_enable_crtc(struct timing_generator * tg)136 bool dce120_timing_generator_enable_crtc(struct timing_generator *tg)
137 {
138 	enum bp_result result;
139 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
140 
141 	/* Set MASTER_UPDATE_MODE to 0
142 	 * This is needed for DRR, and also suggested to be default value by Syed.*/
143 
144 	CRTC_REG_UPDATE(CRTC0_CRTC_MASTER_UPDATE_MODE,
145 			MASTER_UPDATE_MODE, 0);
146 
147 	CRTC_REG_UPDATE(CRTC0_CRTC_MASTER_UPDATE_LOCK,
148 			UNDERFLOW_UPDATE_LOCK, 0);
149 
150 	/* TODO API for AtomFirmware didn't change*/
151 	result = tg->bp->funcs->enable_crtc(tg->bp, tg110->controller_id, true);
152 
153 	return result == BP_RESULT_OK;
154 }
155 
dce120_timing_generator_set_early_control(struct timing_generator * tg,uint32_t early_cntl)156 void dce120_timing_generator_set_early_control(
157 		struct timing_generator *tg,
158 		uint32_t early_cntl)
159 {
160 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
161 
162 	CRTC_REG_UPDATE(CRTC0_CRTC_CONTROL,
163 			CRTC_HBLANK_EARLY_CONTROL, early_cntl);
164 }
165 
166 /**************** TG current status ******************/
167 
168 /* return the current frame counter. Used by Linux kernel DRM */
dce120_timing_generator_get_vblank_counter(struct timing_generator * tg)169 uint32_t dce120_timing_generator_get_vblank_counter(
170 		struct timing_generator *tg)
171 {
172 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
173 	uint32_t value = dm_read_reg_soc15(
174 				tg->ctx,
175 				mmCRTC0_CRTC_STATUS_FRAME_COUNT,
176 				tg110->offsets.crtc);
177 	uint32_t field = get_reg_field_value(
178 				value, CRTC0_CRTC_STATUS_FRAME_COUNT, CRTC_FRAME_COUNT);
179 
180 	return field;
181 }
182 
183 /* Get current H and V position */
dce120_timing_generator_get_crtc_position(struct timing_generator * tg,struct crtc_position * position)184 void dce120_timing_generator_get_crtc_position(
185 	struct timing_generator *tg,
186 	struct crtc_position *position)
187 {
188 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
189 	uint32_t value = dm_read_reg_soc15(
190 				tg->ctx,
191 				mmCRTC0_CRTC_STATUS_POSITION,
192 				tg110->offsets.crtc);
193 
194 	position->horizontal_count = get_reg_field_value(value,
195 			CRTC0_CRTC_STATUS_POSITION, CRTC_HORZ_COUNT);
196 
197 	position->vertical_count = get_reg_field_value(value,
198 			CRTC0_CRTC_STATUS_POSITION, CRTC_VERT_COUNT);
199 
200 	value = dm_read_reg_soc15(
201 				tg->ctx,
202 				mmCRTC0_CRTC_NOM_VERT_POSITION,
203 				tg110->offsets.crtc);
204 
205 	position->nominal_vcount = get_reg_field_value(value,
206 			CRTC0_CRTC_NOM_VERT_POSITION, CRTC_VERT_COUNT_NOM);
207 }
208 
209 /* wait until TG is in beginning of vertical blank region */
dce120_timing_generator_wait_for_vblank(struct timing_generator * tg)210 void dce120_timing_generator_wait_for_vblank(struct timing_generator *tg)
211 {
212 	/* We want to catch beginning of VBlank here, so if the first try are
213 	 * in VBlank, we might be very close to Active, in this case wait for
214 	 * another frame
215 	 */
216 	while (dce120_timing_generator_is_in_vertical_blank(tg)) {
217 		if (!tg->funcs->is_counter_moving(tg)) {
218 			/* error - no point to wait if counter is not moving */
219 			break;
220 		}
221 	}
222 
223 	while (!dce120_timing_generator_is_in_vertical_blank(tg)) {
224 		if (!tg->funcs->is_counter_moving(tg)) {
225 			/* error - no point to wait if counter is not moving */
226 			break;
227 		}
228 	}
229 }
230 
231 /* wait until TG is in beginning of active region */
dce120_timing_generator_wait_for_vactive(struct timing_generator * tg)232 void dce120_timing_generator_wait_for_vactive(struct timing_generator *tg)
233 {
234 	while (dce120_timing_generator_is_in_vertical_blank(tg)) {
235 		if (!tg->funcs->is_counter_moving(tg)) {
236 			/* error - no point to wait if counter is not moving */
237 			break;
238 		}
239 	}
240 }
241 
242 /*********** Timing Generator Synchronization routines ****/
243 
244 /* Setups Global Swap Lock group, TimingServer or TimingClient*/
dce120_timing_generator_setup_global_swap_lock(struct timing_generator * tg,const struct dcp_gsl_params * gsl_params)245 void dce120_timing_generator_setup_global_swap_lock(
246 	struct timing_generator *tg,
247 	const struct dcp_gsl_params *gsl_params)
248 {
249 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
250 	uint32_t value_crtc_vtotal =
251 							dm_read_reg_soc15(tg->ctx,
252 							mmCRTC0_CRTC_V_TOTAL,
253 							tg110->offsets.crtc);
254 	/* Checkpoint relative to end of frame */
255 	uint32_t check_point =
256 							get_reg_field_value(value_crtc_vtotal,
257 							CRTC0_CRTC_V_TOTAL,
258 							CRTC_V_TOTAL);
259 
260 
261 	dm_write_reg_soc15(tg->ctx, mmCRTC0_CRTC_GSL_WINDOW, tg110->offsets.crtc, 0);
262 
263 	CRTC_REG_UPDATE_N(DCP0_DCP_GSL_CONTROL, 6,
264 		/* This pipe will belong to GSL Group zero. */
265 		FD(DCP0_DCP_GSL_CONTROL__DCP_GSL0_EN), 1,
266 		FD(DCP0_DCP_GSL_CONTROL__DCP_GSL_MASTER_EN), gsl_params->gsl_master == tg->inst,
267 		FD(DCP0_DCP_GSL_CONTROL__DCP_GSL_HSYNC_FLIP_FORCE_DELAY), HFLIP_READY_DELAY,
268 		/* Keep signal low (pending high) during 6 lines.
269 		 * Also defines minimum interval before re-checking signal. */
270 		FD(DCP0_DCP_GSL_CONTROL__DCP_GSL_HSYNC_FLIP_CHECK_DELAY), HFLIP_CHECK_DELAY,
271 		/* DCP_GSL_PURPOSE_SURFACE_FLIP */
272 		FD(DCP0_DCP_GSL_CONTROL__DCP_GSL_SYNC_SOURCE), 0,
273 		FD(DCP0_DCP_GSL_CONTROL__DCP_GSL_DELAY_SURFACE_UPDATE_PENDING), 1);
274 
275 	CRTC_REG_SET_2(
276 			CRTC0_CRTC_GSL_CONTROL,
277 			CRTC_GSL_CHECK_LINE_NUM, check_point - FLIP_READY_BACK_LOOKUP,
278 			CRTC_GSL_FORCE_DELAY, VFLIP_READY_DELAY);
279 }
280 
281 /* Clear all the register writes done by setup_global_swap_lock */
dce120_timing_generator_tear_down_global_swap_lock(struct timing_generator * tg)282 void dce120_timing_generator_tear_down_global_swap_lock(
283 	struct timing_generator *tg)
284 {
285 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
286 
287 	/* Settig HW default values from reg specs */
288 	CRTC_REG_SET_N(DCP0_DCP_GSL_CONTROL, 6,
289 			FD(DCP0_DCP_GSL_CONTROL__DCP_GSL0_EN), 0,
290 			FD(DCP0_DCP_GSL_CONTROL__DCP_GSL_MASTER_EN), 0,
291 			FD(DCP0_DCP_GSL_CONTROL__DCP_GSL_HSYNC_FLIP_FORCE_DELAY), HFLIP_READY_DELAY,
292 			FD(DCP0_DCP_GSL_CONTROL__DCP_GSL_HSYNC_FLIP_CHECK_DELAY), HFLIP_CHECK_DELAY,
293 			/* DCP_GSL_PURPOSE_SURFACE_FLIP */
294 			FD(DCP0_DCP_GSL_CONTROL__DCP_GSL_SYNC_SOURCE), 0,
295 			FD(DCP0_DCP_GSL_CONTROL__DCP_GSL_DELAY_SURFACE_UPDATE_PENDING), 0);
296 
297 	CRTC_REG_SET_2(CRTC0_CRTC_GSL_CONTROL,
298 		       CRTC_GSL_CHECK_LINE_NUM, 0,
299 		       CRTC_GSL_FORCE_DELAY, 0x2); /*TODO Why this value here ?*/
300 }
301 
302 /* Reset slave controllers on master VSync */
dce120_timing_generator_enable_reset_trigger(struct timing_generator * tg,int source)303 void dce120_timing_generator_enable_reset_trigger(
304 	struct timing_generator *tg,
305 	int source)
306 {
307 	enum trigger_source_select trig_src_select = TRIGGER_SOURCE_SELECT_LOGIC_ZERO;
308 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
309 	uint32_t rising_edge = 0;
310 	uint32_t falling_edge = 0;
311 	/* Setup trigger edge */
312 	uint32_t pol_value = dm_read_reg_soc15(
313 									tg->ctx,
314 									mmCRTC0_CRTC_V_SYNC_A_CNTL,
315 									tg110->offsets.crtc);
316 
317 	/* Register spec has reversed definition:
318 	 *	0 for positive, 1 for negative */
319 	if (get_reg_field_value(pol_value,
320 			CRTC0_CRTC_V_SYNC_A_CNTL,
321 			CRTC_V_SYNC_A_POL) == 0) {
322 		rising_edge = 1;
323 	} else {
324 		falling_edge = 1;
325 	}
326 
327 	/* TODO What about other sources ?*/
328 	trig_src_select = TRIGGER_SOURCE_SELECT_GSL_GROUP0;
329 
330 	CRTC_REG_UPDATE_N(CRTC0_CRTC_TRIGB_CNTL, 7,
331 		FD(CRTC0_CRTC_TRIGB_CNTL__CRTC_TRIGB_SOURCE_SELECT), trig_src_select,
332 		FD(CRTC0_CRTC_TRIGB_CNTL__CRTC_TRIGB_POLARITY_SELECT), TRIGGER_POLARITY_SELECT_LOGIC_ZERO,
333 		FD(CRTC0_CRTC_TRIGB_CNTL__CRTC_TRIGB_RISING_EDGE_DETECT_CNTL), rising_edge,
334 		FD(CRTC0_CRTC_TRIGB_CNTL__CRTC_TRIGB_FALLING_EDGE_DETECT_CNTL), falling_edge,
335 		/* send every signal */
336 		FD(CRTC0_CRTC_TRIGB_CNTL__CRTC_TRIGB_FREQUENCY_SELECT), 0,
337 		/* no delay */
338 		FD(CRTC0_CRTC_TRIGB_CNTL__CRTC_TRIGB_DELAY), 0,
339 		/* clear trigger status */
340 		FD(CRTC0_CRTC_TRIGB_CNTL__CRTC_TRIGB_CLEAR), 1);
341 
342 	CRTC_REG_UPDATE_3(
343 			CRTC0_CRTC_FORCE_COUNT_NOW_CNTL,
344 			CRTC_FORCE_COUNT_NOW_MODE, 2,
345 			CRTC_FORCE_COUNT_NOW_TRIG_SEL, 1,
346 			CRTC_FORCE_COUNT_NOW_CLEAR, 1);
347 }
348 
349 /* disabling trigger-reset */
dce120_timing_generator_disable_reset_trigger(struct timing_generator * tg)350 void dce120_timing_generator_disable_reset_trigger(
351 	struct timing_generator *tg)
352 {
353 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
354 
355 	CRTC_REG_UPDATE_2(
356 		CRTC0_CRTC_FORCE_COUNT_NOW_CNTL,
357 		CRTC_FORCE_COUNT_NOW_MODE, 0,
358 		CRTC_FORCE_COUNT_NOW_CLEAR, 1);
359 
360 	CRTC_REG_UPDATE_3(
361 		CRTC0_CRTC_TRIGB_CNTL,
362 		CRTC_TRIGB_SOURCE_SELECT, TRIGGER_SOURCE_SELECT_LOGIC_ZERO,
363 		CRTC_TRIGB_POLARITY_SELECT, TRIGGER_POLARITY_SELECT_LOGIC_ZERO,
364 		/* clear trigger status */
365 		CRTC_TRIGB_CLEAR, 1);
366 
367 }
368 
369 /* Checks whether CRTC triggered reset occurred */
dce120_timing_generator_did_triggered_reset_occur(struct timing_generator * tg)370 bool dce120_timing_generator_did_triggered_reset_occur(
371 	struct timing_generator *tg)
372 {
373 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
374 	uint32_t value = dm_read_reg_soc15(
375 			tg->ctx,
376 			mmCRTC0_CRTC_FORCE_COUNT_NOW_CNTL,
377 			tg110->offsets.crtc);
378 
379 	return get_reg_field_value(value,
380 			CRTC0_CRTC_FORCE_COUNT_NOW_CNTL,
381 			CRTC_FORCE_COUNT_NOW_OCCURRED) != 0;
382 }
383 
384 
385 /******** Stuff to move to other virtual HW objects *****************/
386 /* Move to enable accelerated mode */
dce120_timing_generator_disable_vga(struct timing_generator * tg)387 void dce120_timing_generator_disable_vga(struct timing_generator *tg)
388 {
389 	uint32_t offset = 0;
390 	uint32_t value = 0;
391 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
392 
393 	switch (tg110->controller_id) {
394 	case CONTROLLER_ID_D0:
395 		offset = 0;
396 		break;
397 	case CONTROLLER_ID_D1:
398 		offset = mmD2VGA_CONTROL - mmD1VGA_CONTROL;
399 		break;
400 	case CONTROLLER_ID_D2:
401 		offset = mmD3VGA_CONTROL - mmD1VGA_CONTROL;
402 		break;
403 	case CONTROLLER_ID_D3:
404 		offset = mmD4VGA_CONTROL - mmD1VGA_CONTROL;
405 		break;
406 	case CONTROLLER_ID_D4:
407 		offset = mmD5VGA_CONTROL - mmD1VGA_CONTROL;
408 		break;
409 	case CONTROLLER_ID_D5:
410 		offset = mmD6VGA_CONTROL - mmD1VGA_CONTROL;
411 		break;
412 	default:
413 		break;
414 	}
415 
416 	value = dm_read_reg_soc15(tg->ctx, mmD1VGA_CONTROL, offset);
417 
418 	set_reg_field_value(value, 0, D1VGA_CONTROL, D1VGA_MODE_ENABLE);
419 	set_reg_field_value(value, 0, D1VGA_CONTROL, D1VGA_TIMING_SELECT);
420 	set_reg_field_value(
421 			value, 0, D1VGA_CONTROL, D1VGA_SYNC_POLARITY_SELECT);
422 	set_reg_field_value(value, 0, D1VGA_CONTROL, D1VGA_OVERSCAN_COLOR_EN);
423 
424 	dm_write_reg_soc15(tg->ctx, mmD1VGA_CONTROL, offset, value);
425 }
426 /* TODO: Should we move it to transform */
427 /* Fully program CRTC timing in timing generator */
dce120_timing_generator_program_blanking(struct timing_generator * tg,const struct dc_crtc_timing * timing)428 void dce120_timing_generator_program_blanking(
429 	struct timing_generator *tg,
430 	const struct dc_crtc_timing *timing)
431 {
432 	uint32_t tmp1 = 0;
433 	uint32_t tmp2 = 0;
434 	uint32_t vsync_offset = timing->v_border_bottom +
435 			timing->v_front_porch;
436 	uint32_t v_sync_start = timing->v_addressable + vsync_offset;
437 
438 	uint32_t hsync_offset = timing->h_border_right +
439 			timing->h_front_porch;
440 	uint32_t h_sync_start = timing->h_addressable + hsync_offset;
441 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
442 
443 	CRTC_REG_UPDATE(
444 		CRTC0_CRTC_H_TOTAL,
445 		CRTC_H_TOTAL,
446 		timing->h_total - 1);
447 
448 	CRTC_REG_UPDATE(
449 		CRTC0_CRTC_V_TOTAL,
450 		CRTC_V_TOTAL,
451 		timing->v_total - 1);
452 
453 	/* In case of V_TOTAL_CONTROL is on, make sure V_TOTAL_MAX and
454 	 * V_TOTAL_MIN are equal to V_TOTAL.
455 	 */
456 	CRTC_REG_UPDATE(
457 		CRTC0_CRTC_V_TOTAL_MAX,
458 		CRTC_V_TOTAL_MAX,
459 		timing->v_total - 1);
460 
461 	CRTC_REG_UPDATE(
462 		CRTC0_CRTC_V_TOTAL_MIN,
463 		CRTC_V_TOTAL_MIN,
464 		timing->v_total - 1);
465 
466 	tmp1 = timing->h_total -
467 			(h_sync_start + timing->h_border_left);
468 	tmp2 = tmp1 + timing->h_addressable +
469 			timing->h_border_left + timing->h_border_right;
470 
471 	CRTC_REG_UPDATE_2(
472 			CRTC0_CRTC_H_BLANK_START_END,
473 			CRTC_H_BLANK_END, tmp1,
474 			CRTC_H_BLANK_START, tmp2);
475 
476 	tmp1 = timing->v_total - (v_sync_start + timing->v_border_top);
477 	tmp2 = tmp1 + timing->v_addressable + timing->v_border_top +
478 			timing->v_border_bottom;
479 
480 	CRTC_REG_UPDATE_2(
481 		CRTC0_CRTC_V_BLANK_START_END,
482 		CRTC_V_BLANK_END, tmp1,
483 		CRTC_V_BLANK_START, tmp2);
484 }
485 
486 /* TODO: Should we move it to opp? */
487 /* Combine with below and move YUV/RGB color conversion to SW layer */
dce120_timing_generator_program_blank_color(struct timing_generator * tg,const struct tg_color * black_color)488 void dce120_timing_generator_program_blank_color(
489 	struct timing_generator *tg,
490 	const struct tg_color *black_color)
491 {
492 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
493 
494 	CRTC_REG_UPDATE_3(
495 		CRTC0_CRTC_BLACK_COLOR,
496 		CRTC_BLACK_COLOR_B_CB, black_color->color_b_cb,
497 		CRTC_BLACK_COLOR_G_Y, black_color->color_g_y,
498 		CRTC_BLACK_COLOR_R_CR, black_color->color_r_cr);
499 }
500 /* Combine with above and move YUV/RGB color conversion to SW layer */
dce120_timing_generator_set_overscan_color_black(struct timing_generator * tg,const struct tg_color * color)501 void dce120_timing_generator_set_overscan_color_black(
502 	struct timing_generator *tg,
503 	const struct tg_color *color)
504 {
505 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
506 	uint32_t value = 0;
507 	CRTC_REG_SET_3(
508 		CRTC0_CRTC_OVERSCAN_COLOR,
509 		CRTC_OVERSCAN_COLOR_BLUE, color->color_b_cb,
510 		CRTC_OVERSCAN_COLOR_GREEN, color->color_g_y,
511 		CRTC_OVERSCAN_COLOR_RED, color->color_r_cr);
512 
513 	value = dm_read_reg_soc15(
514 			tg->ctx,
515 			mmCRTC0_CRTC_OVERSCAN_COLOR,
516 			tg110->offsets.crtc);
517 
518 	dm_write_reg_soc15(
519 			tg->ctx,
520 			mmCRTC0_CRTC_BLACK_COLOR,
521 			tg110->offsets.crtc,
522 			value);
523 
524 	/* This is desirable to have a constant DAC output voltage during the
525 	 * blank time that is higher than the 0 volt reference level that the
526 	 * DAC outputs when the NBLANK signal
527 	 * is asserted low, such as for output to an analog TV. */
528 	dm_write_reg_soc15(
529 		tg->ctx,
530 		mmCRTC0_CRTC_BLANK_DATA_COLOR,
531 		tg110->offsets.crtc,
532 		value);
533 
534 	/* TO DO we have to program EXT registers and we need to know LB DATA
535 	 * format because it is used when more 10 , i.e. 12 bits per color
536 	 *
537 	 * m_mmDxCRTC_OVERSCAN_COLOR_EXT
538 	 * m_mmDxCRTC_BLACK_COLOR_EXT
539 	 * m_mmDxCRTC_BLANK_DATA_COLOR_EXT
540 	 */
541 }
542 
dce120_timing_generator_set_drr(struct timing_generator * tg,const struct drr_params * params)543 void dce120_timing_generator_set_drr(
544 	struct timing_generator *tg,
545 	const struct drr_params *params)
546 {
547 
548 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
549 
550 	if (params != NULL &&
551 		params->vertical_total_max > 0 &&
552 		params->vertical_total_min > 0) {
553 
554 		CRTC_REG_UPDATE(
555 				CRTC0_CRTC_V_TOTAL_MIN,
556 				CRTC_V_TOTAL_MIN, params->vertical_total_min - 1);
557 		CRTC_REG_UPDATE(
558 				CRTC0_CRTC_V_TOTAL_MAX,
559 				CRTC_V_TOTAL_MAX, params->vertical_total_max - 1);
560 		CRTC_REG_SET_N(CRTC0_CRTC_V_TOTAL_CONTROL, 6,
561 				FD(CRTC0_CRTC_V_TOTAL_CONTROL__CRTC_V_TOTAL_MIN_SEL), 1,
562 				FD(CRTC0_CRTC_V_TOTAL_CONTROL__CRTC_V_TOTAL_MAX_SEL), 1,
563 				FD(CRTC0_CRTC_V_TOTAL_CONTROL__CRTC_FORCE_LOCK_ON_EVENT), 0,
564 				FD(CRTC0_CRTC_V_TOTAL_CONTROL__CRTC_FORCE_LOCK_TO_MASTER_VSYNC), 0,
565 				FD(CRTC0_CRTC_V_TOTAL_CONTROL__CRTC_SET_V_TOTAL_MIN_MASK_EN), 0,
566 				FD(CRTC0_CRTC_V_TOTAL_CONTROL__CRTC_SET_V_TOTAL_MIN_MASK), 0);
567 		CRTC_REG_UPDATE(
568 				CRTC0_CRTC_STATIC_SCREEN_CONTROL,
569 				CRTC_STATIC_SCREEN_EVENT_MASK,
570 				0x180);
571 
572 	} else {
573 		CRTC_REG_SET_N(CRTC0_CRTC_V_TOTAL_CONTROL, 5,
574 				FD(CRTC0_CRTC_V_TOTAL_CONTROL__CRTC_V_TOTAL_MIN_SEL), 0,
575 				FD(CRTC0_CRTC_V_TOTAL_CONTROL__CRTC_V_TOTAL_MAX_SEL), 0,
576 				FD(CRTC0_CRTC_V_TOTAL_CONTROL__CRTC_FORCE_LOCK_ON_EVENT), 0,
577 				FD(CRTC0_CRTC_V_TOTAL_CONTROL__CRTC_FORCE_LOCK_TO_MASTER_VSYNC), 0,
578 				FD(CRTC0_CRTC_V_TOTAL_CONTROL__CRTC_SET_V_TOTAL_MIN_MASK), 0);
579 		CRTC_REG_UPDATE(
580 				CRTC0_CRTC_V_TOTAL_MIN,
581 				CRTC_V_TOTAL_MIN, 0);
582 		CRTC_REG_UPDATE(
583 				CRTC0_CRTC_V_TOTAL_MAX,
584 				CRTC_V_TOTAL_MAX, 0);
585 		CRTC_REG_UPDATE(
586 				CRTC0_CRTC_STATIC_SCREEN_CONTROL,
587 				CRTC_STATIC_SCREEN_EVENT_MASK,
588 				0);
589 	}
590 }
591 
592 /**
593  *****************************************************************************
594  *  Function: dce120_timing_generator_get_position
595  *
596  *  @brief
597  *     Returns CRTC vertical/horizontal counters
598  *
599  *  @param [out] position
600  *****************************************************************************
601  */
dce120_timing_generator_get_position(struct timing_generator * tg,struct crtc_position * position)602 void dce120_timing_generator_get_position(struct timing_generator *tg,
603 	struct crtc_position *position)
604 {
605 	uint32_t value;
606 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
607 
608 	value = dm_read_reg_soc15(
609 			tg->ctx,
610 			mmCRTC0_CRTC_STATUS_POSITION,
611 			tg110->offsets.crtc);
612 
613 	position->horizontal_count = get_reg_field_value(
614 			value,
615 			CRTC0_CRTC_STATUS_POSITION,
616 			CRTC_HORZ_COUNT);
617 
618 	position->vertical_count = get_reg_field_value(
619 			value,
620 			CRTC0_CRTC_STATUS_POSITION,
621 			CRTC_VERT_COUNT);
622 
623 	value = dm_read_reg_soc15(
624 			tg->ctx,
625 			mmCRTC0_CRTC_NOM_VERT_POSITION,
626 			tg110->offsets.crtc);
627 
628 	position->nominal_vcount = get_reg_field_value(
629 			value,
630 			CRTC0_CRTC_NOM_VERT_POSITION,
631 			CRTC_VERT_COUNT_NOM);
632 }
633 
634 
dce120_timing_generator_get_crtc_scanoutpos(struct timing_generator * tg,uint32_t * v_blank_start,uint32_t * v_blank_end,uint32_t * h_position,uint32_t * v_position)635 void dce120_timing_generator_get_crtc_scanoutpos(
636 	struct timing_generator *tg,
637 	uint32_t *v_blank_start,
638 	uint32_t *v_blank_end,
639 	uint32_t *h_position,
640 	uint32_t *v_position)
641 {
642 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
643 	struct crtc_position position;
644 
645 	uint32_t v_blank_start_end = dm_read_reg_soc15(
646 			tg->ctx,
647 			mmCRTC0_CRTC_V_BLANK_START_END,
648 			tg110->offsets.crtc);
649 
650 	*v_blank_start = get_reg_field_value(v_blank_start_end,
651 					     CRTC0_CRTC_V_BLANK_START_END,
652 					     CRTC_V_BLANK_START);
653 	*v_blank_end = get_reg_field_value(v_blank_start_end,
654 					   CRTC0_CRTC_V_BLANK_START_END,
655 					   CRTC_V_BLANK_END);
656 
657 	dce120_timing_generator_get_crtc_position(
658 			tg, &position);
659 
660 	*h_position = position.horizontal_count;
661 	*v_position = position.vertical_count;
662 }
663 
dce120_timing_generator_enable_advanced_request(struct timing_generator * tg,bool enable,const struct dc_crtc_timing * timing)664 void dce120_timing_generator_enable_advanced_request(
665 	struct timing_generator *tg,
666 	bool enable,
667 	const struct dc_crtc_timing *timing)
668 {
669 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
670 	uint32_t v_sync_width_and_b_porch =
671 				timing->v_total - timing->v_addressable -
672 				timing->v_border_bottom - timing->v_front_porch;
673 	uint32_t value = dm_read_reg_soc15(
674 				tg->ctx,
675 				mmCRTC0_CRTC_START_LINE_CONTROL,
676 				tg110->offsets.crtc);
677 
678 	set_reg_field_value(
679 		value,
680 		enable ? 0 : 1,
681 		CRTC0_CRTC_START_LINE_CONTROL,
682 		CRTC_LEGACY_REQUESTOR_EN);
683 
684 	/* Program advanced line position acc.to the best case from fetching data perspective to hide MC latency
685 	 * and prefilling Line Buffer in V Blank (to 10 lines as LB can store max 10 lines)
686 	 */
687 	if (v_sync_width_and_b_porch > 10)
688 		v_sync_width_and_b_porch = 10;
689 
690 	set_reg_field_value(
691 		value,
692 		v_sync_width_and_b_porch,
693 		CRTC0_CRTC_START_LINE_CONTROL,
694 		CRTC_ADVANCED_START_LINE_POSITION);
695 
696 	dm_write_reg_soc15(tg->ctx,
697 			mmCRTC0_CRTC_START_LINE_CONTROL,
698 			tg110->offsets.crtc,
699 			value);
700 }
701 
dce120_tg_program_blank_color(struct timing_generator * tg,const struct tg_color * black_color)702 void dce120_tg_program_blank_color(struct timing_generator *tg,
703 	const struct tg_color *black_color)
704 {
705 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
706 	uint32_t value = 0;
707 
708 	CRTC_REG_UPDATE_3(
709 		CRTC0_CRTC_BLACK_COLOR,
710 		CRTC_BLACK_COLOR_B_CB, black_color->color_b_cb,
711 		CRTC_BLACK_COLOR_G_Y, black_color->color_g_y,
712 		CRTC_BLACK_COLOR_R_CR, black_color->color_r_cr);
713 
714 	value = dm_read_reg_soc15(
715 				tg->ctx,
716 				mmCRTC0_CRTC_BLACK_COLOR,
717 				tg110->offsets.crtc);
718 	dm_write_reg_soc15(
719 		tg->ctx,
720 		mmCRTC0_CRTC_BLANK_DATA_COLOR,
721 		tg110->offsets.crtc,
722 		value);
723 }
724 
dce120_tg_set_overscan_color(struct timing_generator * tg,const struct tg_color * overscan_color)725 void dce120_tg_set_overscan_color(struct timing_generator *tg,
726 	const struct tg_color *overscan_color)
727 {
728 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
729 
730 	CRTC_REG_SET_3(
731 		CRTC0_CRTC_OVERSCAN_COLOR,
732 		CRTC_OVERSCAN_COLOR_BLUE, overscan_color->color_b_cb,
733 		CRTC_OVERSCAN_COLOR_GREEN, overscan_color->color_g_y,
734 		CRTC_OVERSCAN_COLOR_RED, overscan_color->color_r_cr);
735 }
736 
dce120_tg_program_timing(struct timing_generator * tg,const struct dc_crtc_timing * timing,bool use_vbios)737 void dce120_tg_program_timing(struct timing_generator *tg,
738 	const struct dc_crtc_timing *timing,
739 	bool use_vbios)
740 {
741 	if (use_vbios)
742 		dce110_timing_generator_program_timing_generator(tg, timing);
743 	else
744 		dce120_timing_generator_program_blanking(tg, timing);
745 }
746 
dce120_tg_is_blanked(struct timing_generator * tg)747 bool dce120_tg_is_blanked(struct timing_generator *tg)
748 {
749 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
750 	uint32_t value = dm_read_reg_soc15(
751 			tg->ctx,
752 			mmCRTC0_CRTC_BLANK_CONTROL,
753 			tg110->offsets.crtc);
754 
755 	if (get_reg_field_value(
756 		value,
757 		CRTC0_CRTC_BLANK_CONTROL,
758 		CRTC_BLANK_DATA_EN) == 1 &&
759 	    get_reg_field_value(
760 		value,
761 		CRTC0_CRTC_BLANK_CONTROL,
762 		CRTC_CURRENT_BLANK_STATE) == 1)
763 			return true;
764 
765 	return false;
766 }
767 
dce120_tg_set_blank(struct timing_generator * tg,bool enable_blanking)768 void dce120_tg_set_blank(struct timing_generator *tg,
769 		bool enable_blanking)
770 {
771 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
772 
773 	CRTC_REG_SET(
774 		CRTC0_CRTC_DOUBLE_BUFFER_CONTROL,
775 		CRTC_BLANK_DATA_DOUBLE_BUFFER_EN, 1);
776 
777 	if (enable_blanking)
778 		CRTC_REG_SET(CRTC0_CRTC_BLANK_CONTROL, CRTC_BLANK_DATA_EN, 1);
779 	else
780 		dm_write_reg_soc15(tg->ctx, mmCRTC0_CRTC_BLANK_CONTROL,
781 			tg110->offsets.crtc, 0);
782 }
783 
784 bool dce120_tg_validate_timing(struct timing_generator *tg,
785 	const struct dc_crtc_timing *timing);
786 
dce120_tg_wait_for_state(struct timing_generator * tg,enum crtc_state state)787 void dce120_tg_wait_for_state(struct timing_generator *tg,
788 	enum crtc_state state)
789 {
790 	switch (state) {
791 	case CRTC_STATE_VBLANK:
792 		dce120_timing_generator_wait_for_vblank(tg);
793 		break;
794 
795 	case CRTC_STATE_VACTIVE:
796 		dce120_timing_generator_wait_for_vactive(tg);
797 		break;
798 
799 	default:
800 		break;
801 	}
802 }
803 
dce120_tg_set_colors(struct timing_generator * tg,const struct tg_color * blank_color,const struct tg_color * overscan_color)804 void dce120_tg_set_colors(struct timing_generator *tg,
805 	const struct tg_color *blank_color,
806 	const struct tg_color *overscan_color)
807 {
808 	if (blank_color != NULL)
809 		dce120_tg_program_blank_color(tg, blank_color);
810 
811 	if (overscan_color != NULL)
812 		dce120_tg_set_overscan_color(tg, overscan_color);
813 }
814 
dce120_timing_generator_set_static_screen_control(struct timing_generator * tg,uint32_t value)815 static void dce120_timing_generator_set_static_screen_control(
816 	struct timing_generator *tg,
817 	uint32_t value)
818 {
819 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
820 
821 	CRTC_REG_UPDATE_2(CRTC0_CRTC_STATIC_SCREEN_CONTROL,
822 			CRTC_STATIC_SCREEN_EVENT_MASK, value,
823 			CRTC_STATIC_SCREEN_FRAME_COUNT, 2);
824 }
825 
dce120_timing_generator_set_test_pattern(struct timing_generator * tg,enum controller_dp_test_pattern test_pattern,enum dc_color_depth color_depth)826 void dce120_timing_generator_set_test_pattern(
827 	struct timing_generator *tg,
828 	/* TODO: replace 'controller_dp_test_pattern' by 'test_pattern_mode'
829 	 * because this is not DP-specific (which is probably somewhere in DP
830 	 * encoder) */
831 	enum controller_dp_test_pattern test_pattern,
832 	enum dc_color_depth color_depth)
833 {
834 	struct dc_context *ctx = tg->ctx;
835 	uint32_t value;
836 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
837 	enum test_pattern_color_format bit_depth;
838 	enum test_pattern_dyn_range dyn_range;
839 	enum test_pattern_mode mode;
840 	/* color ramp generator mixes 16-bits color */
841 	uint32_t src_bpc = 16;
842 	/* requested bpc */
843 	uint32_t dst_bpc;
844 	uint32_t index;
845 	/* RGB values of the color bars.
846 	 * Produce two RGB colors: RGB0 - white (all Fs)
847 	 * and RGB1 - black (all 0s)
848 	 * (three RGB components for two colors)
849 	 */
850 	uint16_t src_color[6] = {0xFFFF, 0xFFFF, 0xFFFF, 0x0000,
851 						0x0000, 0x0000};
852 	/* dest color (converted to the specified color format) */
853 	uint16_t dst_color[6];
854 	uint32_t inc_base;
855 
856 	/* translate to bit depth */
857 	switch (color_depth) {
858 	case COLOR_DEPTH_666:
859 		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_6;
860 	break;
861 	case COLOR_DEPTH_888:
862 		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8;
863 	break;
864 	case COLOR_DEPTH_101010:
865 		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_10;
866 	break;
867 	case COLOR_DEPTH_121212:
868 		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_12;
869 	break;
870 	default:
871 		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8;
872 	break;
873 	}
874 
875 	switch (test_pattern) {
876 	case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES:
877 	case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA:
878 	{
879 		dyn_range = (test_pattern ==
880 				CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA ?
881 				TEST_PATTERN_DYN_RANGE_CEA :
882 				TEST_PATTERN_DYN_RANGE_VESA);
883 		mode = TEST_PATTERN_MODE_COLORSQUARES_RGB;
884 
885 		CRTC_REG_UPDATE_2(CRTC0_CRTC_TEST_PATTERN_PARAMETERS,
886 				CRTC_TEST_PATTERN_VRES, 6,
887 				CRTC_TEST_PATTERN_HRES, 6);
888 
889 		CRTC_REG_UPDATE_4(CRTC0_CRTC_TEST_PATTERN_CONTROL,
890 				CRTC_TEST_PATTERN_EN, 1,
891 				CRTC_TEST_PATTERN_MODE, mode,
892 				CRTC_TEST_PATTERN_DYNAMIC_RANGE, dyn_range,
893 				CRTC_TEST_PATTERN_COLOR_FORMAT, bit_depth);
894 	}
895 	break;
896 
897 	case CONTROLLER_DP_TEST_PATTERN_VERTICALBARS:
898 	case CONTROLLER_DP_TEST_PATTERN_HORIZONTALBARS:
899 	{
900 		mode = (test_pattern ==
901 			CONTROLLER_DP_TEST_PATTERN_VERTICALBARS ?
902 			TEST_PATTERN_MODE_VERTICALBARS :
903 			TEST_PATTERN_MODE_HORIZONTALBARS);
904 
905 		switch (bit_depth) {
906 		case TEST_PATTERN_COLOR_FORMAT_BPC_6:
907 			dst_bpc = 6;
908 		break;
909 		case TEST_PATTERN_COLOR_FORMAT_BPC_8:
910 			dst_bpc = 8;
911 		break;
912 		case TEST_PATTERN_COLOR_FORMAT_BPC_10:
913 			dst_bpc = 10;
914 		break;
915 		default:
916 			dst_bpc = 8;
917 		break;
918 		}
919 
920 		/* adjust color to the required colorFormat */
921 		for (index = 0; index < 6; index++) {
922 			/* dst = 2^dstBpc * src / 2^srcBpc = src >>
923 			 * (srcBpc - dstBpc);
924 			 */
925 			dst_color[index] =
926 				src_color[index] >> (src_bpc - dst_bpc);
927 		/* CRTC_TEST_PATTERN_DATA has 16 bits,
928 		 * lowest 6 are hardwired to ZERO
929 		 * color bits should be left aligned aligned to MSB
930 		 * XXXXXXXXXX000000 for 10 bit,
931 		 * XXXXXXXX00000000 for 8 bit and XXXXXX0000000000 for 6
932 		 */
933 			dst_color[index] <<= (16 - dst_bpc);
934 		}
935 
936 		dm_write_reg_soc15(ctx, mmCRTC0_CRTC_TEST_PATTERN_PARAMETERS, tg110->offsets.crtc, 0);
937 
938 		/* We have to write the mask before data, similar to pipeline.
939 		 * For example, for 8 bpc, if we want RGB0 to be magenta,
940 		 * and RGB1 to be cyan,
941 		 * we need to make 7 writes:
942 		 * MASK   DATA
943 		 * 000001 00000000 00000000                     set mask to R0
944 		 * 000010 11111111 00000000     R0 255, 0xFF00, set mask to G0
945 		 * 000100 00000000 00000000     G0 0,   0x0000, set mask to B0
946 		 * 001000 11111111 00000000     B0 255, 0xFF00, set mask to R1
947 		 * 010000 00000000 00000000     R1 0,   0x0000, set mask to G1
948 		 * 100000 11111111 00000000     G1 255, 0xFF00, set mask to B1
949 		 * 100000 11111111 00000000     B1 255, 0xFF00
950 		 *
951 		 * we will make a loop of 6 in which we prepare the mask,
952 		 * then write, then prepare the color for next write.
953 		 * first iteration will write mask only,
954 		 * but each next iteration color prepared in
955 		 * previous iteration will be written within new mask,
956 		 * the last component will written separately,
957 		 * mask is not changing between 6th and 7th write
958 		 * and color will be prepared by last iteration
959 		 */
960 
961 		/* write color, color values mask in CRTC_TEST_PATTERN_MASK
962 		 * is B1, G1, R1, B0, G0, R0
963 		 */
964 		value = 0;
965 		for (index = 0; index < 6; index++) {
966 			/* prepare color mask, first write PATTERN_DATA
967 			 * will have all zeros
968 			 */
969 			set_reg_field_value(
970 				value,
971 				(1 << index),
972 				CRTC0_CRTC_TEST_PATTERN_COLOR,
973 				CRTC_TEST_PATTERN_MASK);
974 			/* write color component */
975 			dm_write_reg_soc15(ctx, mmCRTC0_CRTC_TEST_PATTERN_COLOR, tg110->offsets.crtc, value);
976 			/* prepare next color component,
977 			 * will be written in the next iteration
978 			 */
979 			set_reg_field_value(
980 				value,
981 				dst_color[index],
982 				CRTC0_CRTC_TEST_PATTERN_COLOR,
983 				CRTC_TEST_PATTERN_DATA);
984 		}
985 		/* write last color component,
986 		 * it's been already prepared in the loop
987 		 */
988 		dm_write_reg_soc15(ctx, mmCRTC0_CRTC_TEST_PATTERN_COLOR, tg110->offsets.crtc, value);
989 
990 		/* enable test pattern */
991 		CRTC_REG_UPDATE_4(CRTC0_CRTC_TEST_PATTERN_CONTROL,
992 				CRTC_TEST_PATTERN_EN, 1,
993 				CRTC_TEST_PATTERN_MODE, mode,
994 				CRTC_TEST_PATTERN_DYNAMIC_RANGE, 0,
995 				CRTC_TEST_PATTERN_COLOR_FORMAT, bit_depth);
996 	}
997 	break;
998 
999 	case CONTROLLER_DP_TEST_PATTERN_COLORRAMP:
1000 	{
1001 		mode = (bit_depth ==
1002 			TEST_PATTERN_COLOR_FORMAT_BPC_10 ?
1003 			TEST_PATTERN_MODE_DUALRAMP_RGB :
1004 			TEST_PATTERN_MODE_SINGLERAMP_RGB);
1005 
1006 		switch (bit_depth) {
1007 		case TEST_PATTERN_COLOR_FORMAT_BPC_6:
1008 			dst_bpc = 6;
1009 		break;
1010 		case TEST_PATTERN_COLOR_FORMAT_BPC_8:
1011 			dst_bpc = 8;
1012 		break;
1013 		case TEST_PATTERN_COLOR_FORMAT_BPC_10:
1014 			dst_bpc = 10;
1015 		break;
1016 		default:
1017 			dst_bpc = 8;
1018 		break;
1019 		}
1020 
1021 		/* increment for the first ramp for one color gradation
1022 		 * 1 gradation for 6-bit color is 2^10
1023 		 * gradations in 16-bit color
1024 		 */
1025 		inc_base = (src_bpc - dst_bpc);
1026 
1027 		switch (bit_depth) {
1028 		case TEST_PATTERN_COLOR_FORMAT_BPC_6:
1029 		{
1030 			CRTC_REG_UPDATE_5(CRTC0_CRTC_TEST_PATTERN_PARAMETERS,
1031 					CRTC_TEST_PATTERN_INC0, inc_base,
1032 					CRTC_TEST_PATTERN_INC1, 0,
1033 					CRTC_TEST_PATTERN_HRES, 6,
1034 					CRTC_TEST_PATTERN_VRES, 6,
1035 					CRTC_TEST_PATTERN_RAMP0_OFFSET, 0);
1036 		}
1037 		break;
1038 		case TEST_PATTERN_COLOR_FORMAT_BPC_8:
1039 		{
1040 			CRTC_REG_UPDATE_5(CRTC0_CRTC_TEST_PATTERN_PARAMETERS,
1041 					CRTC_TEST_PATTERN_INC0, inc_base,
1042 					CRTC_TEST_PATTERN_INC1, 0,
1043 					CRTC_TEST_PATTERN_HRES, 8,
1044 					CRTC_TEST_PATTERN_VRES, 6,
1045 					CRTC_TEST_PATTERN_RAMP0_OFFSET, 0);
1046 		}
1047 		break;
1048 		case TEST_PATTERN_COLOR_FORMAT_BPC_10:
1049 		{
1050 			CRTC_REG_UPDATE_5(CRTC0_CRTC_TEST_PATTERN_PARAMETERS,
1051 					CRTC_TEST_PATTERN_INC0, inc_base,
1052 					CRTC_TEST_PATTERN_INC1, inc_base + 2,
1053 					CRTC_TEST_PATTERN_HRES, 8,
1054 					CRTC_TEST_PATTERN_VRES, 5,
1055 					CRTC_TEST_PATTERN_RAMP0_OFFSET, 384 << 6);
1056 		}
1057 		break;
1058 		default:
1059 		break;
1060 		}
1061 
1062 		dm_write_reg_soc15(ctx, mmCRTC0_CRTC_TEST_PATTERN_COLOR, tg110->offsets.crtc, 0);
1063 
1064 		/* enable test pattern */
1065 		dm_write_reg_soc15(ctx, mmCRTC0_CRTC_TEST_PATTERN_CONTROL, tg110->offsets.crtc, 0);
1066 
1067 		CRTC_REG_UPDATE_4(CRTC0_CRTC_TEST_PATTERN_CONTROL,
1068 				CRTC_TEST_PATTERN_EN, 1,
1069 				CRTC_TEST_PATTERN_MODE, mode,
1070 				CRTC_TEST_PATTERN_DYNAMIC_RANGE, 0,
1071 				CRTC_TEST_PATTERN_COLOR_FORMAT, bit_depth);
1072 	}
1073 	break;
1074 	case CONTROLLER_DP_TEST_PATTERN_VIDEOMODE:
1075 	{
1076 		value = 0;
1077 		dm_write_reg_soc15(ctx, mmCRTC0_CRTC_TEST_PATTERN_CONTROL, tg110->offsets.crtc,  value);
1078 		dm_write_reg_soc15(ctx, mmCRTC0_CRTC_TEST_PATTERN_COLOR, tg110->offsets.crtc, value);
1079 		dm_write_reg_soc15(ctx, mmCRTC0_CRTC_TEST_PATTERN_PARAMETERS, tg110->offsets.crtc, value);
1080 	}
1081 	break;
1082 	default:
1083 	break;
1084 	}
1085 }
1086 
dce120_arm_vert_intr(struct timing_generator * tg,uint8_t width)1087 static bool dce120_arm_vert_intr(
1088 		struct timing_generator *tg,
1089 		uint8_t width)
1090 {
1091 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1092 	uint32_t v_blank_start, v_blank_end, h_position, v_position;
1093 
1094 	tg->funcs->get_scanoutpos(
1095 				tg,
1096 				&v_blank_start,
1097 				&v_blank_end,
1098 				&h_position,
1099 				&v_position);
1100 
1101 	if (v_blank_start == 0 || v_blank_end == 0)
1102 		return false;
1103 
1104 	CRTC_REG_SET_2(
1105 			CRTC0_CRTC_VERTICAL_INTERRUPT0_POSITION,
1106 			CRTC_VERTICAL_INTERRUPT0_LINE_START, v_blank_start,
1107 			CRTC_VERTICAL_INTERRUPT0_LINE_END, v_blank_start + width);
1108 
1109 	return true;
1110 }
1111 
1112 static const struct timing_generator_funcs dce120_tg_funcs = {
1113 		.validate_timing = dce120_tg_validate_timing,
1114 		.program_timing = dce120_tg_program_timing,
1115 		.enable_crtc = dce120_timing_generator_enable_crtc,
1116 		.disable_crtc = dce110_timing_generator_disable_crtc,
1117 		/* used by enable_timing_synchronization. Not need for FPGA */
1118 		.is_counter_moving = dce110_timing_generator_is_counter_moving,
1119 		/* never be called */
1120 		.get_position = dce120_timing_generator_get_crtc_position,
1121 		.get_frame_count = dce120_timing_generator_get_vblank_counter,
1122 		.get_scanoutpos = dce120_timing_generator_get_crtc_scanoutpos,
1123 		.set_early_control = dce120_timing_generator_set_early_control,
1124 		/* used by enable_timing_synchronization. Not need for FPGA */
1125 		.wait_for_state = dce120_tg_wait_for_state,
1126 		.set_blank = dce120_tg_set_blank,
1127 		.is_blanked = dce120_tg_is_blanked,
1128 		/* never be called */
1129 		.set_colors = dce120_tg_set_colors,
1130 		.set_overscan_blank_color = dce120_timing_generator_set_overscan_color_black,
1131 		.set_blank_color = dce120_timing_generator_program_blank_color,
1132 		.disable_vga = dce120_timing_generator_disable_vga,
1133 		.did_triggered_reset_occur = dce120_timing_generator_did_triggered_reset_occur,
1134 		.setup_global_swap_lock = dce120_timing_generator_setup_global_swap_lock,
1135 		.enable_reset_trigger = dce120_timing_generator_enable_reset_trigger,
1136 		.disable_reset_trigger = dce120_timing_generator_disable_reset_trigger,
1137 		.tear_down_global_swap_lock = dce120_timing_generator_tear_down_global_swap_lock,
1138 		.enable_advanced_request = dce120_timing_generator_enable_advanced_request,
1139 		.set_drr = dce120_timing_generator_set_drr,
1140 		.set_static_screen_control = dce120_timing_generator_set_static_screen_control,
1141 		.set_test_pattern = dce120_timing_generator_set_test_pattern,
1142 		.arm_vert_intr = dce120_arm_vert_intr,
1143 };
1144 
1145 
dce120_timing_generator_construct(struct dce110_timing_generator * tg110,struct dc_context * ctx,uint32_t instance,const struct dce110_timing_generator_offsets * offsets)1146 void dce120_timing_generator_construct(
1147 	struct dce110_timing_generator *tg110,
1148 	struct dc_context *ctx,
1149 	uint32_t instance,
1150 	const struct dce110_timing_generator_offsets *offsets)
1151 {
1152 	tg110->controller_id = CONTROLLER_ID_D0 + instance;
1153 	tg110->base.inst = instance;
1154 
1155 	tg110->offsets = *offsets;
1156 
1157 	tg110->base.funcs = &dce120_tg_funcs;
1158 
1159 	tg110->base.ctx = ctx;
1160 	tg110->base.bp = ctx->dc_bios;
1161 
1162 	tg110->max_h_total = CRTC0_CRTC_H_TOTAL__CRTC_H_TOTAL_MASK + 1;
1163 	tg110->max_v_total = CRTC0_CRTC_V_TOTAL__CRTC_V_TOTAL_MASK + 1;
1164 
1165 	/*//CRTC requires a minimum HBLANK = 32 pixels and o
1166 	 * Minimum HSYNC = 8 pixels*/
1167 	tg110->min_h_blank = 32;
1168 	/*DCE12_CRTC_Block_ARch.doc*/
1169 	tg110->min_h_front_porch = 0;
1170 	tg110->min_h_back_porch = 0;
1171 
1172 	tg110->min_h_sync_width = 8;
1173 	tg110->min_v_sync_width = 1;
1174 	tg110->min_v_blank = 3;
1175 }
1176