1 /*
2  * Copyright 2012-15 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25 
26 #include "dm_services.h"
27 
28 /* include DCE11 register header files */
29 #include "dce/dce_11_0_d.h"
30 #include "dce/dce_11_0_sh_mask.h"
31 
32 #include "dc_types.h"
33 #include "dc_bios_types.h"
34 #include "dc.h"
35 
36 #include "include/grph_object_id.h"
37 #include "include/logger_interface.h"
38 #include "dce110_timing_generator.h"
39 
40 #include "timing_generator.h"
41 
42 
43 #define NUMBER_OF_FRAME_TO_WAIT_ON_TRIGGERED_RESET 10
44 
45 #define MAX_H_TOTAL (CRTC_H_TOTAL__CRTC_H_TOTAL_MASK + 1)
46 #define MAX_V_TOTAL (CRTC_V_TOTAL__CRTC_V_TOTAL_MASKhw + 1)
47 
48 #define CRTC_REG(reg) (reg + tg110->offsets.crtc)
49 #define DCP_REG(reg) (reg + tg110->offsets.dcp)
50 
51 /* Flowing register offsets are same in files of
52  * dce/dce_11_0_d.h
53  * dce/vi_polaris10_p/vi_polaris10_d.h
54  *
55  * So we can create dce110 timing generator to use it.
56  */
57 
58 
59 /*
60 * apply_front_porch_workaround
61 *
62 * This is a workaround for a bug that has existed since R5xx and has not been
63 * fixed keep Front porch at minimum 2 for Interlaced mode or 1 for progressive.
64 */
dce110_timing_generator_apply_front_porch_workaround(struct timing_generator * tg,struct dc_crtc_timing * timing)65 static void dce110_timing_generator_apply_front_porch_workaround(
66 	struct timing_generator *tg,
67 	struct dc_crtc_timing *timing)
68 {
69 	if (timing->flags.INTERLACE == 1) {
70 		if (timing->v_front_porch < 2)
71 			timing->v_front_porch = 2;
72 	} else {
73 		if (timing->v_front_porch < 1)
74 			timing->v_front_porch = 1;
75 	}
76 }
77 
78 /**
79  *****************************************************************************
80  *  Function: is_in_vertical_blank
81  *
82  *  @brief
83  *     check the current status of CRTC to check if we are in Vertical Blank
84  *     regioneased" state
85  *
86  *  @return
87  *     true if currently in blank region, false otherwise
88  *
89  *****************************************************************************
90  */
dce110_timing_generator_is_in_vertical_blank(struct timing_generator * tg)91 static bool dce110_timing_generator_is_in_vertical_blank(
92 		struct timing_generator *tg)
93 {
94 	uint32_t addr = 0;
95 	uint32_t value = 0;
96 	uint32_t field = 0;
97 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
98 
99 	addr = CRTC_REG(mmCRTC_STATUS);
100 	value = dm_read_reg(tg->ctx, addr);
101 	field = get_reg_field_value(value, CRTC_STATUS, CRTC_V_BLANK);
102 	return field == 1;
103 }
104 
dce110_timing_generator_set_early_control(struct timing_generator * tg,uint32_t early_cntl)105 void dce110_timing_generator_set_early_control(
106 		struct timing_generator *tg,
107 		uint32_t early_cntl)
108 {
109 	uint32_t regval;
110 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
111 	uint32_t address = CRTC_REG(mmCRTC_CONTROL);
112 
113 	regval = dm_read_reg(tg->ctx, address);
114 	set_reg_field_value(regval, early_cntl,
115 			CRTC_CONTROL, CRTC_HBLANK_EARLY_CONTROL);
116 	dm_write_reg(tg->ctx, address, regval);
117 }
118 
119 /**
120  * Enable CRTC
121  * Enable CRTC - call ASIC Control Object to enable Timing generator.
122  */
dce110_timing_generator_enable_crtc(struct timing_generator * tg)123 bool dce110_timing_generator_enable_crtc(struct timing_generator *tg)
124 {
125 	enum bp_result result;
126 
127 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
128 	uint32_t value = 0;
129 
130 	/*
131 	 * 3 is used to make sure V_UPDATE occurs at the beginning of the first
132 	 * line of vertical front porch
133 	 */
134 	set_reg_field_value(
135 		value,
136 		0,
137 		CRTC_MASTER_UPDATE_MODE,
138 		MASTER_UPDATE_MODE);
139 
140 	dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_MASTER_UPDATE_MODE), value);
141 
142 	/* TODO: may want this on to catch underflow */
143 	value = 0;
144 	dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_MASTER_UPDATE_LOCK), value);
145 
146 	result = tg->bp->funcs->enable_crtc(tg->bp, tg110->controller_id, true);
147 
148 	return result == BP_RESULT_OK;
149 }
150 
dce110_timing_generator_program_blank_color(struct timing_generator * tg,const struct tg_color * black_color)151 void dce110_timing_generator_program_blank_color(
152 		struct timing_generator *tg,
153 		const struct tg_color *black_color)
154 {
155 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
156 	uint32_t addr = CRTC_REG(mmCRTC_BLACK_COLOR);
157 	uint32_t value = dm_read_reg(tg->ctx, addr);
158 
159 	set_reg_field_value(
160 		value,
161 		black_color->color_b_cb,
162 		CRTC_BLACK_COLOR,
163 		CRTC_BLACK_COLOR_B_CB);
164 	set_reg_field_value(
165 		value,
166 		black_color->color_g_y,
167 		CRTC_BLACK_COLOR,
168 		CRTC_BLACK_COLOR_G_Y);
169 	set_reg_field_value(
170 		value,
171 		black_color->color_r_cr,
172 		CRTC_BLACK_COLOR,
173 		CRTC_BLACK_COLOR_R_CR);
174 
175 	dm_write_reg(tg->ctx, addr, value);
176 }
177 
178 /**
179  *****************************************************************************
180  *  Function: disable_stereo
181  *
182  *  @brief
183  *     Disables active stereo on controller
184  *     Frame Packing need to be disabled in vBlank or when CRTC not running
185  *****************************************************************************
186  */
187 #if 0
188 @TODOSTEREO
189 static void disable_stereo(struct timing_generator *tg)
190 {
191 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
192 	uint32_t addr = CRTC_REG(mmCRTC_3D_STRUCTURE_CONTROL);
193 	uint32_t value = 0;
194 	uint32_t test = 0;
195 	uint32_t field = 0;
196 	uint32_t struc_en = 0;
197 	uint32_t struc_stereo_sel_ovr = 0;
198 
199 	value = dm_read_reg(tg->ctx, addr);
200 	struc_en = get_reg_field_value(
201 			value,
202 			CRTC_3D_STRUCTURE_CONTROL,
203 			CRTC_3D_STRUCTURE_EN);
204 
205 	struc_stereo_sel_ovr = get_reg_field_value(
206 			value,
207 			CRTC_3D_STRUCTURE_CONTROL,
208 			CRTC_3D_STRUCTURE_STEREO_SEL_OVR);
209 
210 	/*
211 	 * When disabling Frame Packing in 2 step mode, we need to program both
212 	 * registers at the same frame
213 	 * Programming it in the beginning of VActive makes sure we are ok
214 	 */
215 
216 	if (struc_en != 0 && struc_stereo_sel_ovr == 0) {
217 		tg->funcs->wait_for_vblank(tg);
218 		tg->funcs->wait_for_vactive(tg);
219 	}
220 
221 	value = 0;
222 	dm_write_reg(tg->ctx, addr, value);
223 
224 	addr = tg->regs[IDX_CRTC_STEREO_CONTROL];
225 	dm_write_reg(tg->ctx, addr, value);
226 }
227 #endif
228 
229 /**
230  * disable_crtc - call ASIC Control Object to disable Timing generator.
231  */
dce110_timing_generator_disable_crtc(struct timing_generator * tg)232 bool dce110_timing_generator_disable_crtc(struct timing_generator *tg)
233 {
234 	enum bp_result result;
235 
236 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
237 
238 	result = tg->bp->funcs->enable_crtc(tg->bp, tg110->controller_id, false);
239 
240 	/* Need to make sure stereo is disabled according to the DCE5.0 spec */
241 
242 	/*
243 	 * @TODOSTEREO call this when adding stereo support
244 	 * tg->funcs->disable_stereo(tg);
245 	 */
246 
247 	return result == BP_RESULT_OK;
248 }
249 
250 /**
251 * program_horz_count_by_2
252 * Programs DxCRTC_HORZ_COUNT_BY2_EN - 1 for DVI 30bpp mode, 0 otherwise
253 *
254 */
program_horz_count_by_2(struct timing_generator * tg,const struct dc_crtc_timing * timing)255 static void program_horz_count_by_2(
256 	struct timing_generator *tg,
257 	const struct dc_crtc_timing *timing)
258 {
259 	uint32_t regval;
260 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
261 
262 	regval = dm_read_reg(tg->ctx,
263 			CRTC_REG(mmCRTC_COUNT_CONTROL));
264 
265 	set_reg_field_value(regval, 0, CRTC_COUNT_CONTROL,
266 			CRTC_HORZ_COUNT_BY2_EN);
267 
268 	if (timing->flags.HORZ_COUNT_BY_TWO)
269 		set_reg_field_value(regval, 1, CRTC_COUNT_CONTROL,
270 					CRTC_HORZ_COUNT_BY2_EN);
271 
272 	dm_write_reg(tg->ctx,
273 			CRTC_REG(mmCRTC_COUNT_CONTROL), regval);
274 }
275 
276 /**
277  * program_timing_generator
278  * Program CRTC Timing Registers - DxCRTC_H_*, DxCRTC_V_*, Pixel repetition.
279  * Call ASIC Control Object to program Timings.
280  */
dce110_timing_generator_program_timing_generator(struct timing_generator * tg,const struct dc_crtc_timing * dc_crtc_timing)281 bool dce110_timing_generator_program_timing_generator(
282 	struct timing_generator *tg,
283 	const struct dc_crtc_timing *dc_crtc_timing)
284 {
285 	enum bp_result result;
286 	struct bp_hw_crtc_timing_parameters bp_params;
287 	struct dc_crtc_timing patched_crtc_timing;
288 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
289 
290 	uint32_t vsync_offset = dc_crtc_timing->v_border_bottom +
291 			dc_crtc_timing->v_front_porch;
292 	uint32_t v_sync_start =dc_crtc_timing->v_addressable + vsync_offset;
293 
294 	uint32_t hsync_offset = dc_crtc_timing->h_border_right +
295 			dc_crtc_timing->h_front_porch;
296 	uint32_t h_sync_start = dc_crtc_timing->h_addressable + hsync_offset;
297 
298 	memset(&bp_params, 0, sizeof(struct bp_hw_crtc_timing_parameters));
299 
300 	/* Due to an asic bug we need to apply the Front Porch workaround prior
301 	 * to programming the timing.
302 	 */
303 
304 	patched_crtc_timing = *dc_crtc_timing;
305 
306 	dce110_timing_generator_apply_front_porch_workaround(tg, &patched_crtc_timing);
307 
308 	bp_params.controller_id = tg110->controller_id;
309 
310 	bp_params.h_total = patched_crtc_timing.h_total;
311 	bp_params.h_addressable =
312 		patched_crtc_timing.h_addressable;
313 	bp_params.v_total = patched_crtc_timing.v_total;
314 	bp_params.v_addressable = patched_crtc_timing.v_addressable;
315 
316 	bp_params.h_sync_start = h_sync_start;
317 	bp_params.h_sync_width = patched_crtc_timing.h_sync_width;
318 	bp_params.v_sync_start = v_sync_start;
319 	bp_params.v_sync_width = patched_crtc_timing.v_sync_width;
320 
321 	/* Set overscan */
322 	bp_params.h_overscan_left =
323 		patched_crtc_timing.h_border_left;
324 	bp_params.h_overscan_right =
325 		patched_crtc_timing.h_border_right;
326 	bp_params.v_overscan_top = patched_crtc_timing.v_border_top;
327 	bp_params.v_overscan_bottom =
328 		patched_crtc_timing.v_border_bottom;
329 
330 	/* Set flags */
331 	if (patched_crtc_timing.flags.HSYNC_POSITIVE_POLARITY == 1)
332 		bp_params.flags.HSYNC_POSITIVE_POLARITY = 1;
333 
334 	if (patched_crtc_timing.flags.VSYNC_POSITIVE_POLARITY == 1)
335 		bp_params.flags.VSYNC_POSITIVE_POLARITY = 1;
336 
337 	if (patched_crtc_timing.flags.INTERLACE == 1)
338 		bp_params.flags.INTERLACE = 1;
339 
340 	if (patched_crtc_timing.flags.HORZ_COUNT_BY_TWO == 1)
341 		bp_params.flags.HORZ_COUNT_BY_TWO = 1;
342 
343 	result = tg->bp->funcs->program_crtc_timing(tg->bp, &bp_params);
344 
345 	program_horz_count_by_2(tg, &patched_crtc_timing);
346 
347 	tg110->base.funcs->enable_advanced_request(tg, true, &patched_crtc_timing);
348 
349 	/* Enable stereo - only when we need to pack 3D frame. Other types
350 	 * of stereo handled in explicit call */
351 
352 	return result == BP_RESULT_OK;
353 }
354 
355 /**
356  *****************************************************************************
357  *  Function: set_drr
358  *
359  *  @brief
360  *     Program dynamic refresh rate registers m_DxCRTC_V_TOTAL_*.
361  *
362  *  @param [in] pHwCrtcTiming: point to H
363  *  wCrtcTiming struct
364  *****************************************************************************
365  */
dce110_timing_generator_set_drr(struct timing_generator * tg,const struct drr_params * params)366 void dce110_timing_generator_set_drr(
367 	struct timing_generator *tg,
368 	const struct drr_params *params)
369 {
370 	/* register values */
371 	uint32_t v_total_min = 0;
372 	uint32_t v_total_max = 0;
373 	uint32_t v_total_cntl = 0;
374 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
375 
376 	uint32_t addr = 0;
377 
378 	addr = CRTC_REG(mmCRTC_V_TOTAL_MIN);
379 	v_total_min = dm_read_reg(tg->ctx, addr);
380 
381 	addr = CRTC_REG(mmCRTC_V_TOTAL_MAX);
382 	v_total_max = dm_read_reg(tg->ctx, addr);
383 
384 	addr = CRTC_REG(mmCRTC_V_TOTAL_CONTROL);
385 	v_total_cntl = dm_read_reg(tg->ctx, addr);
386 
387 	if (params != NULL &&
388 		params->vertical_total_max > 0 &&
389 		params->vertical_total_min > 0) {
390 
391 		set_reg_field_value(v_total_max,
392 				params->vertical_total_max - 1,
393 				CRTC_V_TOTAL_MAX,
394 				CRTC_V_TOTAL_MAX);
395 
396 		set_reg_field_value(v_total_min,
397 				params->vertical_total_min - 1,
398 				CRTC_V_TOTAL_MIN,
399 				CRTC_V_TOTAL_MIN);
400 
401 		set_reg_field_value(v_total_cntl,
402 				1,
403 				CRTC_V_TOTAL_CONTROL,
404 				CRTC_V_TOTAL_MIN_SEL);
405 
406 		set_reg_field_value(v_total_cntl,
407 				1,
408 				CRTC_V_TOTAL_CONTROL,
409 				CRTC_V_TOTAL_MAX_SEL);
410 
411 		set_reg_field_value(v_total_cntl,
412 				0,
413 				CRTC_V_TOTAL_CONTROL,
414 				CRTC_FORCE_LOCK_ON_EVENT);
415 		set_reg_field_value(v_total_cntl,
416 				0,
417 				CRTC_V_TOTAL_CONTROL,
418 				CRTC_FORCE_LOCK_TO_MASTER_VSYNC);
419 
420 		set_reg_field_value(v_total_cntl,
421 				0,
422 				CRTC_V_TOTAL_CONTROL,
423 				CRTC_SET_V_TOTAL_MIN_MASK_EN);
424 
425 		set_reg_field_value(v_total_cntl,
426 				0,
427 				CRTC_V_TOTAL_CONTROL,
428 				CRTC_SET_V_TOTAL_MIN_MASK);
429 	} else {
430 		set_reg_field_value(v_total_cntl,
431 			0,
432 			CRTC_V_TOTAL_CONTROL,
433 			CRTC_SET_V_TOTAL_MIN_MASK);
434 		set_reg_field_value(v_total_cntl,
435 				0,
436 				CRTC_V_TOTAL_CONTROL,
437 				CRTC_V_TOTAL_MIN_SEL);
438 		set_reg_field_value(v_total_cntl,
439 				0,
440 				CRTC_V_TOTAL_CONTROL,
441 				CRTC_V_TOTAL_MAX_SEL);
442 		set_reg_field_value(v_total_min,
443 				0,
444 				CRTC_V_TOTAL_MIN,
445 				CRTC_V_TOTAL_MIN);
446 		set_reg_field_value(v_total_max,
447 				0,
448 				CRTC_V_TOTAL_MAX,
449 				CRTC_V_TOTAL_MAX);
450 		set_reg_field_value(v_total_cntl,
451 				0,
452 				CRTC_V_TOTAL_CONTROL,
453 				CRTC_FORCE_LOCK_ON_EVENT);
454 		set_reg_field_value(v_total_cntl,
455 				0,
456 				CRTC_V_TOTAL_CONTROL,
457 				CRTC_FORCE_LOCK_TO_MASTER_VSYNC);
458 	}
459 
460 	addr = CRTC_REG(mmCRTC_V_TOTAL_MIN);
461 	dm_write_reg(tg->ctx, addr, v_total_min);
462 
463 	addr = CRTC_REG(mmCRTC_V_TOTAL_MAX);
464 	dm_write_reg(tg->ctx, addr, v_total_max);
465 
466 	addr = CRTC_REG(mmCRTC_V_TOTAL_CONTROL);
467 	dm_write_reg(tg->ctx, addr, v_total_cntl);
468 }
469 
dce110_timing_generator_set_static_screen_control(struct timing_generator * tg,uint32_t event_triggers,uint32_t num_frames)470 void dce110_timing_generator_set_static_screen_control(
471 	struct timing_generator *tg,
472 	uint32_t event_triggers,
473 	uint32_t num_frames)
474 {
475 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
476 	uint32_t static_screen_cntl = 0;
477 	uint32_t addr = 0;
478 
479 	// By register spec, it only takes 8 bit value
480 	if (num_frames > 0xFF)
481 		num_frames = 0xFF;
482 
483 	addr = CRTC_REG(mmCRTC_STATIC_SCREEN_CONTROL);
484 	static_screen_cntl = dm_read_reg(tg->ctx, addr);
485 
486 	set_reg_field_value(static_screen_cntl,
487 				event_triggers,
488 				CRTC_STATIC_SCREEN_CONTROL,
489 				CRTC_STATIC_SCREEN_EVENT_MASK);
490 
491 	set_reg_field_value(static_screen_cntl,
492 				num_frames,
493 				CRTC_STATIC_SCREEN_CONTROL,
494 				CRTC_STATIC_SCREEN_FRAME_COUNT);
495 
496 	dm_write_reg(tg->ctx, addr, static_screen_cntl);
497 }
498 
499 /*
500  * get_vblank_counter
501  *
502  * @brief
503  * Get counter for vertical blanks. use register CRTC_STATUS_FRAME_COUNT which
504  * holds the counter of frames.
505  *
506  * @param
507  * struct timing_generator *tg - [in] timing generator which controls the
508  * desired CRTC
509  *
510  * @return
511  * Counter of frames, which should equal to number of vblanks.
512  */
dce110_timing_generator_get_vblank_counter(struct timing_generator * tg)513 uint32_t dce110_timing_generator_get_vblank_counter(struct timing_generator *tg)
514 {
515 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
516 	uint32_t addr = CRTC_REG(mmCRTC_STATUS_FRAME_COUNT);
517 	uint32_t value = dm_read_reg(tg->ctx, addr);
518 	uint32_t field = get_reg_field_value(
519 			value, CRTC_STATUS_FRAME_COUNT, CRTC_FRAME_COUNT);
520 
521 	return field;
522 }
523 
524 /**
525  *****************************************************************************
526  *  Function: dce110_timing_generator_get_position
527  *
528  *  @brief
529  *     Returns CRTC vertical/horizontal counters
530  *
531  *  @param [out] position
532  *****************************************************************************
533  */
dce110_timing_generator_get_position(struct timing_generator * tg,struct crtc_position * position)534 void dce110_timing_generator_get_position(struct timing_generator *tg,
535 	struct crtc_position *position)
536 {
537 	uint32_t value;
538 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
539 
540 	value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_STATUS_POSITION));
541 
542 	position->horizontal_count = get_reg_field_value(
543 			value,
544 			CRTC_STATUS_POSITION,
545 			CRTC_HORZ_COUNT);
546 
547 	position->vertical_count = get_reg_field_value(
548 			value,
549 			CRTC_STATUS_POSITION,
550 			CRTC_VERT_COUNT);
551 
552 	value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_NOM_VERT_POSITION));
553 
554 	position->nominal_vcount = get_reg_field_value(
555 			value,
556 			CRTC_NOM_VERT_POSITION,
557 			CRTC_VERT_COUNT_NOM);
558 }
559 
560 /**
561  *****************************************************************************
562  *  Function: get_crtc_scanoutpos
563  *
564  *  @brief
565  *     Returns CRTC vertical/horizontal counters
566  *
567  *  @param [out] vpos, hpos
568  *****************************************************************************
569  */
dce110_timing_generator_get_crtc_scanoutpos(struct timing_generator * tg,uint32_t * v_blank_start,uint32_t * v_blank_end,uint32_t * h_position,uint32_t * v_position)570 void dce110_timing_generator_get_crtc_scanoutpos(
571 	struct timing_generator *tg,
572 	uint32_t *v_blank_start,
573 	uint32_t *v_blank_end,
574 	uint32_t *h_position,
575 	uint32_t *v_position)
576 {
577 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
578 	struct crtc_position position;
579 
580 	uint32_t value  = dm_read_reg(tg->ctx,
581 			CRTC_REG(mmCRTC_V_BLANK_START_END));
582 
583 	*v_blank_start = get_reg_field_value(value,
584 					     CRTC_V_BLANK_START_END,
585 					     CRTC_V_BLANK_START);
586 	*v_blank_end = get_reg_field_value(value,
587 					   CRTC_V_BLANK_START_END,
588 					   CRTC_V_BLANK_END);
589 
590 	dce110_timing_generator_get_position(
591 			tg, &position);
592 
593 	*h_position = position.horizontal_count;
594 	*v_position = position.vertical_count;
595 }
596 
597 /* TODO: is it safe to assume that mask/shift of Primary and Underlay
598  * are the same?
599  * For example: today CRTC_H_TOTAL == CRTCV_H_TOTAL but is it always
600  * guaranteed? */
dce110_timing_generator_program_blanking(struct timing_generator * tg,const struct dc_crtc_timing * timing)601 void dce110_timing_generator_program_blanking(
602 	struct timing_generator *tg,
603 	const struct dc_crtc_timing *timing)
604 {
605 	uint32_t vsync_offset = timing->v_border_bottom +
606 			timing->v_front_porch;
607 	uint32_t v_sync_start =timing->v_addressable + vsync_offset;
608 
609 	uint32_t hsync_offset = timing->h_border_right +
610 			timing->h_front_porch;
611 	uint32_t h_sync_start = timing->h_addressable + hsync_offset;
612 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
613 
614 	struct dc_context *ctx = tg->ctx;
615 	uint32_t value = 0;
616 	uint32_t addr = 0;
617 	uint32_t tmp = 0;
618 
619 	addr = CRTC_REG(mmCRTC_H_TOTAL);
620 	value = dm_read_reg(ctx, addr);
621 	set_reg_field_value(
622 		value,
623 		timing->h_total - 1,
624 		CRTC_H_TOTAL,
625 		CRTC_H_TOTAL);
626 	dm_write_reg(ctx, addr, value);
627 
628 	addr = CRTC_REG(mmCRTC_V_TOTAL);
629 	value = dm_read_reg(ctx, addr);
630 	set_reg_field_value(
631 		value,
632 		timing->v_total - 1,
633 		CRTC_V_TOTAL,
634 		CRTC_V_TOTAL);
635 	dm_write_reg(ctx, addr, value);
636 
637 	/* In case of V_TOTAL_CONTROL is on, make sure V_TOTAL_MAX and
638 	 * V_TOTAL_MIN are equal to V_TOTAL.
639 	 */
640 	addr = CRTC_REG(mmCRTC_V_TOTAL_MAX);
641 	value = dm_read_reg(ctx, addr);
642 	set_reg_field_value(
643 		value,
644 		timing->v_total - 1,
645 		CRTC_V_TOTAL_MAX,
646 		CRTC_V_TOTAL_MAX);
647 	dm_write_reg(ctx, addr, value);
648 
649 	addr = CRTC_REG(mmCRTC_V_TOTAL_MIN);
650 	value = dm_read_reg(ctx, addr);
651 	set_reg_field_value(
652 		value,
653 		timing->v_total - 1,
654 		CRTC_V_TOTAL_MIN,
655 		CRTC_V_TOTAL_MIN);
656 	dm_write_reg(ctx, addr, value);
657 
658 	addr = CRTC_REG(mmCRTC_H_BLANK_START_END);
659 	value = dm_read_reg(ctx, addr);
660 
661 	tmp = timing->h_total -
662 		(h_sync_start + timing->h_border_left);
663 
664 	set_reg_field_value(
665 		value,
666 		tmp,
667 		CRTC_H_BLANK_START_END,
668 		CRTC_H_BLANK_END);
669 
670 	tmp = tmp + timing->h_addressable +
671 		timing->h_border_left + timing->h_border_right;
672 
673 	set_reg_field_value(
674 		value,
675 		tmp,
676 		CRTC_H_BLANK_START_END,
677 		CRTC_H_BLANK_START);
678 
679 	dm_write_reg(ctx, addr, value);
680 
681 	addr = CRTC_REG(mmCRTC_V_BLANK_START_END);
682 	value = dm_read_reg(ctx, addr);
683 
684 	tmp = timing->v_total - (v_sync_start + timing->v_border_top);
685 
686 	set_reg_field_value(
687 		value,
688 		tmp,
689 		CRTC_V_BLANK_START_END,
690 		CRTC_V_BLANK_END);
691 
692 	tmp = tmp + timing->v_addressable + timing->v_border_top +
693 		timing->v_border_bottom;
694 
695 	set_reg_field_value(
696 		value,
697 		tmp,
698 		CRTC_V_BLANK_START_END,
699 		CRTC_V_BLANK_START);
700 
701 	dm_write_reg(ctx, addr, value);
702 }
703 
dce110_timing_generator_set_test_pattern(struct timing_generator * tg,enum controller_dp_test_pattern test_pattern,enum dc_color_depth color_depth)704 void dce110_timing_generator_set_test_pattern(
705 	struct timing_generator *tg,
706 	/* TODO: replace 'controller_dp_test_pattern' by 'test_pattern_mode'
707 	 * because this is not DP-specific (which is probably somewhere in DP
708 	 * encoder) */
709 	enum controller_dp_test_pattern test_pattern,
710 	enum dc_color_depth color_depth)
711 {
712 	struct dc_context *ctx = tg->ctx;
713 	uint32_t value;
714 	uint32_t addr;
715 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
716 	enum test_pattern_color_format bit_depth;
717 	enum test_pattern_dyn_range dyn_range;
718 	enum test_pattern_mode mode;
719 	/* color ramp generator mixes 16-bits color */
720 	uint32_t src_bpc = 16;
721 	/* requested bpc */
722 	uint32_t dst_bpc;
723 	uint32_t index;
724 	/* RGB values of the color bars.
725 	 * Produce two RGB colors: RGB0 - white (all Fs)
726 	 * and RGB1 - black (all 0s)
727 	 * (three RGB components for two colors)
728 	 */
729 	uint16_t src_color[6] = {0xFFFF, 0xFFFF, 0xFFFF, 0x0000,
730 						0x0000, 0x0000};
731 	/* dest color (converted to the specified color format) */
732 	uint16_t dst_color[6];
733 	uint32_t inc_base;
734 
735 	/* translate to bit depth */
736 	switch (color_depth) {
737 	case COLOR_DEPTH_666:
738 		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_6;
739 	break;
740 	case COLOR_DEPTH_888:
741 		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8;
742 	break;
743 	case COLOR_DEPTH_101010:
744 		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_10;
745 	break;
746 	case COLOR_DEPTH_121212:
747 		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_12;
748 	break;
749 	default:
750 		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8;
751 	break;
752 	}
753 
754 	switch (test_pattern) {
755 	case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES:
756 	case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA:
757 	{
758 		dyn_range = (test_pattern ==
759 				CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA ?
760 				TEST_PATTERN_DYN_RANGE_CEA :
761 				TEST_PATTERN_DYN_RANGE_VESA);
762 		mode = TEST_PATTERN_MODE_COLORSQUARES_RGB;
763 		value = 0;
764 		addr = CRTC_REG(mmCRTC_TEST_PATTERN_PARAMETERS);
765 
766 		set_reg_field_value(
767 			value,
768 			6,
769 			CRTC_TEST_PATTERN_PARAMETERS,
770 			CRTC_TEST_PATTERN_VRES);
771 		set_reg_field_value(
772 			value,
773 			6,
774 			CRTC_TEST_PATTERN_PARAMETERS,
775 			CRTC_TEST_PATTERN_HRES);
776 
777 		dm_write_reg(ctx, addr, value);
778 
779 		addr = CRTC_REG(mmCRTC_TEST_PATTERN_CONTROL);
780 		value = 0;
781 
782 		set_reg_field_value(
783 			value,
784 			1,
785 			CRTC_TEST_PATTERN_CONTROL,
786 			CRTC_TEST_PATTERN_EN);
787 
788 		set_reg_field_value(
789 			value,
790 			mode,
791 			CRTC_TEST_PATTERN_CONTROL,
792 			CRTC_TEST_PATTERN_MODE);
793 
794 		set_reg_field_value(
795 			value,
796 			dyn_range,
797 			CRTC_TEST_PATTERN_CONTROL,
798 			CRTC_TEST_PATTERN_DYNAMIC_RANGE);
799 		set_reg_field_value(
800 			value,
801 			bit_depth,
802 			CRTC_TEST_PATTERN_CONTROL,
803 			CRTC_TEST_PATTERN_COLOR_FORMAT);
804 		dm_write_reg(ctx, addr, value);
805 	}
806 	break;
807 
808 	case CONTROLLER_DP_TEST_PATTERN_VERTICALBARS:
809 	case CONTROLLER_DP_TEST_PATTERN_HORIZONTALBARS:
810 	{
811 		mode = (test_pattern ==
812 			CONTROLLER_DP_TEST_PATTERN_VERTICALBARS ?
813 			TEST_PATTERN_MODE_VERTICALBARS :
814 			TEST_PATTERN_MODE_HORIZONTALBARS);
815 
816 		switch (bit_depth) {
817 		case TEST_PATTERN_COLOR_FORMAT_BPC_6:
818 			dst_bpc = 6;
819 		break;
820 		case TEST_PATTERN_COLOR_FORMAT_BPC_8:
821 			dst_bpc = 8;
822 		break;
823 		case TEST_PATTERN_COLOR_FORMAT_BPC_10:
824 			dst_bpc = 10;
825 		break;
826 		default:
827 			dst_bpc = 8;
828 		break;
829 		}
830 
831 		/* adjust color to the required colorFormat */
832 		for (index = 0; index < 6; index++) {
833 			/* dst = 2^dstBpc * src / 2^srcBpc = src >>
834 			 * (srcBpc - dstBpc);
835 			 */
836 			dst_color[index] =
837 				src_color[index] >> (src_bpc - dst_bpc);
838 		/* CRTC_TEST_PATTERN_DATA has 16 bits,
839 		 * lowest 6 are hardwired to ZERO
840 		 * color bits should be left aligned aligned to MSB
841 		 * XXXXXXXXXX000000 for 10 bit,
842 		 * XXXXXXXX00000000 for 8 bit and XXXXXX0000000000 for 6
843 		 */
844 			dst_color[index] <<= (16 - dst_bpc);
845 		}
846 
847 		value = 0;
848 		addr = CRTC_REG(mmCRTC_TEST_PATTERN_PARAMETERS);
849 		dm_write_reg(ctx, addr, value);
850 
851 		/* We have to write the mask before data, similar to pipeline.
852 		 * For example, for 8 bpc, if we want RGB0 to be magenta,
853 		 * and RGB1 to be cyan,
854 		 * we need to make 7 writes:
855 		 * MASK   DATA
856 		 * 000001 00000000 00000000                     set mask to R0
857 		 * 000010 11111111 00000000     R0 255, 0xFF00, set mask to G0
858 		 * 000100 00000000 00000000     G0 0,   0x0000, set mask to B0
859 		 * 001000 11111111 00000000     B0 255, 0xFF00, set mask to R1
860 		 * 010000 00000000 00000000     R1 0,   0x0000, set mask to G1
861 		 * 100000 11111111 00000000     G1 255, 0xFF00, set mask to B1
862 		 * 100000 11111111 00000000     B1 255, 0xFF00
863 		 *
864 		 * we will make a loop of 6 in which we prepare the mask,
865 		 * then write, then prepare the color for next write.
866 		 * first iteration will write mask only,
867 		 * but each next iteration color prepared in
868 		 * previous iteration will be written within new mask,
869 		 * the last component will written separately,
870 		 * mask is not changing between 6th and 7th write
871 		 * and color will be prepared by last iteration
872 		 */
873 
874 		/* write color, color values mask in CRTC_TEST_PATTERN_MASK
875 		 * is B1, G1, R1, B0, G0, R0
876 		 */
877 		value = 0;
878 		addr = CRTC_REG(mmCRTC_TEST_PATTERN_COLOR);
879 		for (index = 0; index < 6; index++) {
880 			/* prepare color mask, first write PATTERN_DATA
881 			 * will have all zeros
882 			 */
883 			set_reg_field_value(
884 				value,
885 				(1 << index),
886 				CRTC_TEST_PATTERN_COLOR,
887 				CRTC_TEST_PATTERN_MASK);
888 			/* write color component */
889 			dm_write_reg(ctx, addr, value);
890 			/* prepare next color component,
891 			 * will be written in the next iteration
892 			 */
893 			set_reg_field_value(
894 				value,
895 				dst_color[index],
896 				CRTC_TEST_PATTERN_COLOR,
897 				CRTC_TEST_PATTERN_DATA);
898 		}
899 		/* write last color component,
900 		 * it's been already prepared in the loop
901 		 */
902 		dm_write_reg(ctx, addr, value);
903 
904 		/* enable test pattern */
905 		addr = CRTC_REG(mmCRTC_TEST_PATTERN_CONTROL);
906 		value = 0;
907 
908 		set_reg_field_value(
909 			value,
910 			1,
911 			CRTC_TEST_PATTERN_CONTROL,
912 			CRTC_TEST_PATTERN_EN);
913 
914 		set_reg_field_value(
915 			value,
916 			mode,
917 			CRTC_TEST_PATTERN_CONTROL,
918 			CRTC_TEST_PATTERN_MODE);
919 
920 		set_reg_field_value(
921 			value,
922 			0,
923 			CRTC_TEST_PATTERN_CONTROL,
924 			CRTC_TEST_PATTERN_DYNAMIC_RANGE);
925 
926 		set_reg_field_value(
927 			value,
928 			bit_depth,
929 			CRTC_TEST_PATTERN_CONTROL,
930 			CRTC_TEST_PATTERN_COLOR_FORMAT);
931 
932 		dm_write_reg(ctx, addr, value);
933 	}
934 	break;
935 
936 	case CONTROLLER_DP_TEST_PATTERN_COLORRAMP:
937 	{
938 		mode = (bit_depth ==
939 			TEST_PATTERN_COLOR_FORMAT_BPC_10 ?
940 			TEST_PATTERN_MODE_DUALRAMP_RGB :
941 			TEST_PATTERN_MODE_SINGLERAMP_RGB);
942 
943 		switch (bit_depth) {
944 		case TEST_PATTERN_COLOR_FORMAT_BPC_6:
945 			dst_bpc = 6;
946 		break;
947 		case TEST_PATTERN_COLOR_FORMAT_BPC_8:
948 			dst_bpc = 8;
949 		break;
950 		case TEST_PATTERN_COLOR_FORMAT_BPC_10:
951 			dst_bpc = 10;
952 		break;
953 		default:
954 			dst_bpc = 8;
955 		break;
956 		}
957 
958 		/* increment for the first ramp for one color gradation
959 		 * 1 gradation for 6-bit color is 2^10
960 		 * gradations in 16-bit color
961 		 */
962 		inc_base = (src_bpc - dst_bpc);
963 
964 		value = 0;
965 		addr = CRTC_REG(mmCRTC_TEST_PATTERN_PARAMETERS);
966 
967 		switch (bit_depth) {
968 		case TEST_PATTERN_COLOR_FORMAT_BPC_6:
969 		{
970 			set_reg_field_value(
971 				value,
972 				inc_base,
973 				CRTC_TEST_PATTERN_PARAMETERS,
974 				CRTC_TEST_PATTERN_INC0);
975 			set_reg_field_value(
976 				value,
977 				0,
978 				CRTC_TEST_PATTERN_PARAMETERS,
979 				CRTC_TEST_PATTERN_INC1);
980 			set_reg_field_value(
981 				value,
982 				6,
983 				CRTC_TEST_PATTERN_PARAMETERS,
984 				CRTC_TEST_PATTERN_HRES);
985 			set_reg_field_value(
986 				value,
987 				6,
988 				CRTC_TEST_PATTERN_PARAMETERS,
989 				CRTC_TEST_PATTERN_VRES);
990 			set_reg_field_value(
991 				value,
992 				0,
993 				CRTC_TEST_PATTERN_PARAMETERS,
994 				CRTC_TEST_PATTERN_RAMP0_OFFSET);
995 		}
996 		break;
997 		case TEST_PATTERN_COLOR_FORMAT_BPC_8:
998 		{
999 			set_reg_field_value(
1000 				value,
1001 				inc_base,
1002 				CRTC_TEST_PATTERN_PARAMETERS,
1003 				CRTC_TEST_PATTERN_INC0);
1004 			set_reg_field_value(
1005 				value,
1006 				0,
1007 				CRTC_TEST_PATTERN_PARAMETERS,
1008 				CRTC_TEST_PATTERN_INC1);
1009 			set_reg_field_value(
1010 				value,
1011 				8,
1012 				CRTC_TEST_PATTERN_PARAMETERS,
1013 				CRTC_TEST_PATTERN_HRES);
1014 			set_reg_field_value(
1015 				value,
1016 				6,
1017 				CRTC_TEST_PATTERN_PARAMETERS,
1018 				CRTC_TEST_PATTERN_VRES);
1019 			set_reg_field_value(
1020 				value,
1021 				0,
1022 				CRTC_TEST_PATTERN_PARAMETERS,
1023 				CRTC_TEST_PATTERN_RAMP0_OFFSET);
1024 		}
1025 		break;
1026 		case TEST_PATTERN_COLOR_FORMAT_BPC_10:
1027 		{
1028 			set_reg_field_value(
1029 				value,
1030 				inc_base,
1031 				CRTC_TEST_PATTERN_PARAMETERS,
1032 				CRTC_TEST_PATTERN_INC0);
1033 			set_reg_field_value(
1034 				value,
1035 				inc_base + 2,
1036 				CRTC_TEST_PATTERN_PARAMETERS,
1037 				CRTC_TEST_PATTERN_INC1);
1038 			set_reg_field_value(
1039 				value,
1040 				8,
1041 				CRTC_TEST_PATTERN_PARAMETERS,
1042 				CRTC_TEST_PATTERN_HRES);
1043 			set_reg_field_value(
1044 				value,
1045 				5,
1046 				CRTC_TEST_PATTERN_PARAMETERS,
1047 				CRTC_TEST_PATTERN_VRES);
1048 			set_reg_field_value(
1049 				value,
1050 				384 << 6,
1051 				CRTC_TEST_PATTERN_PARAMETERS,
1052 				CRTC_TEST_PATTERN_RAMP0_OFFSET);
1053 		}
1054 		break;
1055 		default:
1056 		break;
1057 		}
1058 		dm_write_reg(ctx, addr, value);
1059 
1060 		value = 0;
1061 		addr = CRTC_REG(mmCRTC_TEST_PATTERN_COLOR);
1062 		dm_write_reg(ctx, addr, value);
1063 
1064 		/* enable test pattern */
1065 		addr = CRTC_REG(mmCRTC_TEST_PATTERN_CONTROL);
1066 		value = 0;
1067 
1068 		set_reg_field_value(
1069 			value,
1070 			1,
1071 			CRTC_TEST_PATTERN_CONTROL,
1072 			CRTC_TEST_PATTERN_EN);
1073 
1074 		set_reg_field_value(
1075 			value,
1076 			mode,
1077 			CRTC_TEST_PATTERN_CONTROL,
1078 			CRTC_TEST_PATTERN_MODE);
1079 
1080 		set_reg_field_value(
1081 			value,
1082 			0,
1083 			CRTC_TEST_PATTERN_CONTROL,
1084 			CRTC_TEST_PATTERN_DYNAMIC_RANGE);
1085 		/* add color depth translation here */
1086 		set_reg_field_value(
1087 			value,
1088 			bit_depth,
1089 			CRTC_TEST_PATTERN_CONTROL,
1090 			CRTC_TEST_PATTERN_COLOR_FORMAT);
1091 
1092 		dm_write_reg(ctx, addr, value);
1093 	}
1094 	break;
1095 	case CONTROLLER_DP_TEST_PATTERN_VIDEOMODE:
1096 	{
1097 		value = 0;
1098 		dm_write_reg(ctx, CRTC_REG(mmCRTC_TEST_PATTERN_CONTROL), value);
1099 		dm_write_reg(ctx, CRTC_REG(mmCRTC_TEST_PATTERN_COLOR), value);
1100 		dm_write_reg(ctx, CRTC_REG(mmCRTC_TEST_PATTERN_PARAMETERS),
1101 				value);
1102 	}
1103 	break;
1104 	default:
1105 	break;
1106 	}
1107 }
1108 
1109 /**
1110 * dce110_timing_generator_validate_timing
1111 * The timing generators support a maximum display size of is 8192 x 8192 pixels,
1112 * including both active display and blanking periods. Check H Total and V Total.
1113 */
dce110_timing_generator_validate_timing(struct timing_generator * tg,const struct dc_crtc_timing * timing,enum signal_type signal)1114 bool dce110_timing_generator_validate_timing(
1115 	struct timing_generator *tg,
1116 	const struct dc_crtc_timing *timing,
1117 	enum signal_type signal)
1118 {
1119 	uint32_t h_blank;
1120 	uint32_t h_back_porch, hsync_offset, h_sync_start;
1121 
1122 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1123 
1124 	ASSERT(timing != NULL);
1125 
1126 	if (!timing)
1127 		return false;
1128 
1129 	hsync_offset = timing->h_border_right + timing->h_front_porch;
1130 	h_sync_start = timing->h_addressable + hsync_offset;
1131 
1132 	/* Currently we don't support 3D, so block all 3D timings */
1133 	if (timing->timing_3d_format != TIMING_3D_FORMAT_NONE)
1134 		return false;
1135 
1136 	/* Temporarily blocking interlacing mode until it's supported */
1137 	if (timing->flags.INTERLACE == 1)
1138 		return false;
1139 
1140 	/* Check maximum number of pixels supported by Timing Generator
1141 	 * (Currently will never fail, in order to fail needs display which
1142 	 * needs more than 8192 horizontal and
1143 	 * more than 8192 vertical total pixels)
1144 	 */
1145 	if (timing->h_total > tg110->max_h_total ||
1146 		timing->v_total > tg110->max_v_total)
1147 		return false;
1148 
1149 	h_blank = (timing->h_total - timing->h_addressable -
1150 		timing->h_border_right -
1151 		timing->h_border_left);
1152 
1153 	if (h_blank < tg110->min_h_blank)
1154 		return false;
1155 
1156 	if (timing->h_front_porch < tg110->min_h_front_porch)
1157 		return false;
1158 
1159 	h_back_porch = h_blank - (h_sync_start -
1160 		timing->h_addressable -
1161 		timing->h_border_right -
1162 		timing->h_sync_width);
1163 
1164 	if (h_back_porch < tg110->min_h_back_porch)
1165 		return false;
1166 
1167 	return true;
1168 }
1169 
1170 /**
1171 * Wait till we are at the beginning of VBlank.
1172 */
dce110_timing_generator_wait_for_vblank(struct timing_generator * tg)1173 void dce110_timing_generator_wait_for_vblank(struct timing_generator *tg)
1174 {
1175 	/* We want to catch beginning of VBlank here, so if the first try are
1176 	 * in VBlank, we might be very close to Active, in this case wait for
1177 	 * another frame
1178 	 */
1179 	while (dce110_timing_generator_is_in_vertical_blank(tg)) {
1180 		if (!dce110_timing_generator_is_counter_moving(tg)) {
1181 			/* error - no point to wait if counter is not moving */
1182 			break;
1183 		}
1184 	}
1185 
1186 	while (!dce110_timing_generator_is_in_vertical_blank(tg)) {
1187 		if (!dce110_timing_generator_is_counter_moving(tg)) {
1188 			/* error - no point to wait if counter is not moving */
1189 			break;
1190 		}
1191 	}
1192 }
1193 
1194 /**
1195 * Wait till we are in VActive (anywhere in VActive)
1196 */
dce110_timing_generator_wait_for_vactive(struct timing_generator * tg)1197 void dce110_timing_generator_wait_for_vactive(struct timing_generator *tg)
1198 {
1199 	while (dce110_timing_generator_is_in_vertical_blank(tg)) {
1200 		if (!dce110_timing_generator_is_counter_moving(tg)) {
1201 			/* error - no point to wait if counter is not moving */
1202 			break;
1203 		}
1204 	}
1205 }
1206 
1207 /**
1208  *****************************************************************************
1209  *  Function: dce110_timing_generator_setup_global_swap_lock
1210  *
1211  *  @brief
1212  *     Setups Global Swap Lock group for current pipe
1213  *     Pipe can join or leave GSL group, become a TimingServer or TimingClient
1214  *
1215  *  @param [in] gsl_params: setup data
1216  *****************************************************************************
1217  */
1218 
dce110_timing_generator_setup_global_swap_lock(struct timing_generator * tg,const struct dcp_gsl_params * gsl_params)1219 void dce110_timing_generator_setup_global_swap_lock(
1220 	struct timing_generator *tg,
1221 	const struct dcp_gsl_params *gsl_params)
1222 {
1223 	uint32_t value;
1224 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1225 	uint32_t address = DCP_REG(mmDCP_GSL_CONTROL);
1226 	uint32_t check_point = FLIP_READY_BACK_LOOKUP;
1227 
1228 	value = dm_read_reg(tg->ctx, address);
1229 
1230 	/* This pipe will belong to GSL Group zero. */
1231 	set_reg_field_value(value,
1232 			    1,
1233 			    DCP_GSL_CONTROL,
1234 			    DCP_GSL0_EN);
1235 
1236 	set_reg_field_value(value,
1237 			    gsl_params->gsl_master == tg->inst,
1238 			    DCP_GSL_CONTROL,
1239 			    DCP_GSL_MASTER_EN);
1240 
1241 	set_reg_field_value(value,
1242 			    HFLIP_READY_DELAY,
1243 			    DCP_GSL_CONTROL,
1244 			    DCP_GSL_HSYNC_FLIP_FORCE_DELAY);
1245 
1246 	/* Keep signal low (pending high) during 6 lines.
1247 	 * Also defines minimum interval before re-checking signal. */
1248 	set_reg_field_value(value,
1249 			    HFLIP_CHECK_DELAY,
1250 			    DCP_GSL_CONTROL,
1251 			    DCP_GSL_HSYNC_FLIP_CHECK_DELAY);
1252 
1253 	dm_write_reg(tg->ctx, CRTC_REG(mmDCP_GSL_CONTROL), value);
1254 	value = 0;
1255 
1256 	set_reg_field_value(value,
1257 			    gsl_params->gsl_master,
1258 			    DCIO_GSL0_CNTL,
1259 			    DCIO_GSL0_VSYNC_SEL);
1260 
1261 	set_reg_field_value(value,
1262 			    0,
1263 			    DCIO_GSL0_CNTL,
1264 			    DCIO_GSL0_TIMING_SYNC_SEL);
1265 
1266 	set_reg_field_value(value,
1267 			    0,
1268 			    DCIO_GSL0_CNTL,
1269 			    DCIO_GSL0_GLOBAL_UNLOCK_SEL);
1270 
1271 	dm_write_reg(tg->ctx, CRTC_REG(mmDCIO_GSL0_CNTL), value);
1272 
1273 
1274 	{
1275 		uint32_t value_crtc_vtotal;
1276 
1277 		value_crtc_vtotal = dm_read_reg(tg->ctx,
1278 				CRTC_REG(mmCRTC_V_TOTAL));
1279 
1280 		set_reg_field_value(value,
1281 				    0,/* DCP_GSL_PURPOSE_SURFACE_FLIP */
1282 				    DCP_GSL_CONTROL,
1283 				    DCP_GSL_SYNC_SOURCE);
1284 
1285 		/* Checkpoint relative to end of frame */
1286 		check_point = get_reg_field_value(value_crtc_vtotal,
1287 						  CRTC_V_TOTAL,
1288 						  CRTC_V_TOTAL);
1289 
1290 		dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_GSL_WINDOW), 0);
1291 	}
1292 
1293 	set_reg_field_value(value,
1294 			    1,
1295 			    DCP_GSL_CONTROL,
1296 			    DCP_GSL_DELAY_SURFACE_UPDATE_PENDING);
1297 
1298 	dm_write_reg(tg->ctx, address, value);
1299 
1300 	/********************************************************************/
1301 	address = CRTC_REG(mmCRTC_GSL_CONTROL);
1302 
1303 	value = dm_read_reg(tg->ctx, address);
1304 	set_reg_field_value(value,
1305 			    check_point - FLIP_READY_BACK_LOOKUP,
1306 			    CRTC_GSL_CONTROL,
1307 			    CRTC_GSL_CHECK_LINE_NUM);
1308 
1309 	set_reg_field_value(value,
1310 			    VFLIP_READY_DELAY,
1311 			    CRTC_GSL_CONTROL,
1312 			    CRTC_GSL_FORCE_DELAY);
1313 
1314 	dm_write_reg(tg->ctx, address, value);
1315 }
1316 
dce110_timing_generator_tear_down_global_swap_lock(struct timing_generator * tg)1317 void dce110_timing_generator_tear_down_global_swap_lock(
1318 	struct timing_generator *tg)
1319 {
1320 	/* Clear all the register writes done by
1321 	 * dce110_timing_generator_setup_global_swap_lock
1322 	 */
1323 
1324 	uint32_t value;
1325 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1326 	uint32_t address = DCP_REG(mmDCP_GSL_CONTROL);
1327 
1328 	value = 0;
1329 
1330 	/* This pipe will belong to GSL Group zero. */
1331 	/* Settig HW default values from reg specs */
1332 	set_reg_field_value(value,
1333 			0,
1334 			DCP_GSL_CONTROL,
1335 			DCP_GSL0_EN);
1336 
1337 	set_reg_field_value(value,
1338 			0,
1339 			DCP_GSL_CONTROL,
1340 			DCP_GSL_MASTER_EN);
1341 
1342 	set_reg_field_value(value,
1343 			0x2,
1344 			DCP_GSL_CONTROL,
1345 			DCP_GSL_HSYNC_FLIP_FORCE_DELAY);
1346 
1347 	set_reg_field_value(value,
1348 			0x6,
1349 			DCP_GSL_CONTROL,
1350 			DCP_GSL_HSYNC_FLIP_CHECK_DELAY);
1351 
1352 	/* Restore DCP_GSL_PURPOSE_SURFACE_FLIP */
1353 	{
1354 		uint32_t value_crtc_vtotal;
1355 
1356 		value_crtc_vtotal = dm_read_reg(tg->ctx,
1357 				CRTC_REG(mmCRTC_V_TOTAL));
1358 
1359 		set_reg_field_value(value,
1360 				0,
1361 				DCP_GSL_CONTROL,
1362 				DCP_GSL_SYNC_SOURCE);
1363 	}
1364 
1365 	set_reg_field_value(value,
1366 			0,
1367 			DCP_GSL_CONTROL,
1368 			DCP_GSL_DELAY_SURFACE_UPDATE_PENDING);
1369 
1370 	dm_write_reg(tg->ctx, address, value);
1371 
1372 	/********************************************************************/
1373 	address = CRTC_REG(mmCRTC_GSL_CONTROL);
1374 
1375 	value = 0;
1376 	set_reg_field_value(value,
1377 			0,
1378 			CRTC_GSL_CONTROL,
1379 			CRTC_GSL_CHECK_LINE_NUM);
1380 
1381 	set_reg_field_value(value,
1382 			0x2,
1383 			CRTC_GSL_CONTROL,
1384 			CRTC_GSL_FORCE_DELAY);
1385 
1386 	dm_write_reg(tg->ctx, address, value);
1387 }
1388 /**
1389  *****************************************************************************
1390  *  Function: is_counter_moving
1391  *
1392  *  @brief
1393  *     check if the timing generator is currently going
1394  *
1395  *  @return
1396  *     true if currently going, false if currently paused or stopped.
1397  *
1398  *****************************************************************************
1399  */
dce110_timing_generator_is_counter_moving(struct timing_generator * tg)1400 bool dce110_timing_generator_is_counter_moving(struct timing_generator *tg)
1401 {
1402 	struct crtc_position position1, position2;
1403 
1404 	tg->funcs->get_position(tg, &position1);
1405 	tg->funcs->get_position(tg, &position2);
1406 
1407 	if (position1.horizontal_count == position2.horizontal_count &&
1408 		position1.vertical_count == position2.vertical_count)
1409 		return false;
1410 	else
1411 		return true;
1412 }
1413 
dce110_timing_generator_enable_advanced_request(struct timing_generator * tg,bool enable,const struct dc_crtc_timing * timing)1414 void dce110_timing_generator_enable_advanced_request(
1415 	struct timing_generator *tg,
1416 	bool enable,
1417 	const struct dc_crtc_timing *timing)
1418 {
1419 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1420 	uint32_t addr = CRTC_REG(mmCRTC_START_LINE_CONTROL);
1421 	uint32_t value = dm_read_reg(tg->ctx, addr);
1422 
1423 	if (enable) {
1424 		set_reg_field_value(
1425 			value,
1426 			0,
1427 			CRTC_START_LINE_CONTROL,
1428 			CRTC_LEGACY_REQUESTOR_EN);
1429 	} else {
1430 		set_reg_field_value(
1431 			value,
1432 			1,
1433 			CRTC_START_LINE_CONTROL,
1434 			CRTC_LEGACY_REQUESTOR_EN);
1435 	}
1436 
1437 	if ((timing->v_sync_width + timing->v_front_porch) <= 3) {
1438 		set_reg_field_value(
1439 			value,
1440 			3,
1441 			CRTC_START_LINE_CONTROL,
1442 			CRTC_ADVANCED_START_LINE_POSITION);
1443 		set_reg_field_value(
1444 			value,
1445 			0,
1446 			CRTC_START_LINE_CONTROL,
1447 			CRTC_PREFETCH_EN);
1448 	} else {
1449 		set_reg_field_value(
1450 			value,
1451 			4,
1452 			CRTC_START_LINE_CONTROL,
1453 			CRTC_ADVANCED_START_LINE_POSITION);
1454 		set_reg_field_value(
1455 			value,
1456 			1,
1457 			CRTC_START_LINE_CONTROL,
1458 			CRTC_PREFETCH_EN);
1459 	}
1460 
1461 	set_reg_field_value(
1462 		value,
1463 		1,
1464 		CRTC_START_LINE_CONTROL,
1465 		CRTC_PROGRESSIVE_START_LINE_EARLY);
1466 
1467 	set_reg_field_value(
1468 		value,
1469 		1,
1470 		CRTC_START_LINE_CONTROL,
1471 		CRTC_INTERLACE_START_LINE_EARLY);
1472 
1473 	dm_write_reg(tg->ctx, addr, value);
1474 }
1475 
1476 /*TODO: Figure out if we need this function. */
dce110_timing_generator_set_lock_master(struct timing_generator * tg,bool lock)1477 void dce110_timing_generator_set_lock_master(struct timing_generator *tg,
1478 		bool lock)
1479 {
1480 	struct dc_context *ctx = tg->ctx;
1481 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1482 	uint32_t addr = CRTC_REG(mmCRTC_MASTER_UPDATE_LOCK);
1483 	uint32_t value = dm_read_reg(ctx, addr);
1484 
1485 	set_reg_field_value(
1486 		value,
1487 		lock ? 1 : 0,
1488 		CRTC_MASTER_UPDATE_LOCK,
1489 		MASTER_UPDATE_LOCK);
1490 
1491 	dm_write_reg(ctx, addr, value);
1492 }
1493 
dce110_timing_generator_enable_reset_trigger(struct timing_generator * tg,int source_tg_inst)1494 void dce110_timing_generator_enable_reset_trigger(
1495 	struct timing_generator *tg,
1496 	int source_tg_inst)
1497 {
1498 	uint32_t value;
1499 	uint32_t rising_edge = 0;
1500 	uint32_t falling_edge = 0;
1501 	enum trigger_source_select trig_src_select = TRIGGER_SOURCE_SELECT_LOGIC_ZERO;
1502 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1503 
1504 	/* Setup trigger edge */
1505 	{
1506 		uint32_t pol_value = dm_read_reg(tg->ctx,
1507 				CRTC_REG(mmCRTC_V_SYNC_A_CNTL));
1508 
1509 		/* Register spec has reversed definition:
1510 		 *	0 for positive, 1 for negative */
1511 		if (get_reg_field_value(pol_value,
1512 				CRTC_V_SYNC_A_CNTL,
1513 				CRTC_V_SYNC_A_POL) == 0) {
1514 			rising_edge = 1;
1515 		} else {
1516 			falling_edge = 1;
1517 		}
1518 	}
1519 
1520 	value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_TRIGB_CNTL));
1521 
1522 	trig_src_select = TRIGGER_SOURCE_SELECT_GSL_GROUP0;
1523 
1524 	set_reg_field_value(value,
1525 			trig_src_select,
1526 			CRTC_TRIGB_CNTL,
1527 			CRTC_TRIGB_SOURCE_SELECT);
1528 
1529 	set_reg_field_value(value,
1530 			TRIGGER_POLARITY_SELECT_LOGIC_ZERO,
1531 			CRTC_TRIGB_CNTL,
1532 			CRTC_TRIGB_POLARITY_SELECT);
1533 
1534 	set_reg_field_value(value,
1535 			rising_edge,
1536 			CRTC_TRIGB_CNTL,
1537 			CRTC_TRIGB_RISING_EDGE_DETECT_CNTL);
1538 
1539 	set_reg_field_value(value,
1540 			falling_edge,
1541 			CRTC_TRIGB_CNTL,
1542 			CRTC_TRIGB_FALLING_EDGE_DETECT_CNTL);
1543 
1544 	set_reg_field_value(value,
1545 			0, /* send every signal */
1546 			CRTC_TRIGB_CNTL,
1547 			CRTC_TRIGB_FREQUENCY_SELECT);
1548 
1549 	set_reg_field_value(value,
1550 			0, /* no delay */
1551 			CRTC_TRIGB_CNTL,
1552 			CRTC_TRIGB_DELAY);
1553 
1554 	set_reg_field_value(value,
1555 			1, /* clear trigger status */
1556 			CRTC_TRIGB_CNTL,
1557 			CRTC_TRIGB_CLEAR);
1558 
1559 	dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_TRIGB_CNTL), value);
1560 
1561 	/**************************************************************/
1562 
1563 	value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_FORCE_COUNT_NOW_CNTL));
1564 
1565 	set_reg_field_value(value,
1566 			2, /* force H count to H_TOTAL and V count to V_TOTAL */
1567 			CRTC_FORCE_COUNT_NOW_CNTL,
1568 			CRTC_FORCE_COUNT_NOW_MODE);
1569 
1570 	set_reg_field_value(value,
1571 			1, /* TriggerB - we never use TriggerA */
1572 			CRTC_FORCE_COUNT_NOW_CNTL,
1573 			CRTC_FORCE_COUNT_NOW_TRIG_SEL);
1574 
1575 	set_reg_field_value(value,
1576 			1, /* clear trigger status */
1577 			CRTC_FORCE_COUNT_NOW_CNTL,
1578 			CRTC_FORCE_COUNT_NOW_CLEAR);
1579 
1580 	dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_FORCE_COUNT_NOW_CNTL), value);
1581 }
1582 
dce110_timing_generator_enable_crtc_reset(struct timing_generator * tg,int source_tg_inst,struct crtc_trigger_info * crtc_tp)1583 void dce110_timing_generator_enable_crtc_reset(
1584 		struct timing_generator *tg,
1585 		int source_tg_inst,
1586 		struct crtc_trigger_info *crtc_tp)
1587 {
1588 	uint32_t value = 0;
1589 	uint32_t rising_edge = 0;
1590 	uint32_t falling_edge = 0;
1591 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1592 
1593 	/* Setup trigger edge */
1594 	switch (crtc_tp->event) {
1595 	case CRTC_EVENT_VSYNC_RISING:
1596 			rising_edge = 1;
1597 			break;
1598 
1599 	case CRTC_EVENT_VSYNC_FALLING:
1600 		falling_edge = 1;
1601 		break;
1602 	}
1603 
1604 	value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_TRIGB_CNTL));
1605 
1606 	set_reg_field_value(value,
1607 			    source_tg_inst,
1608 			    CRTC_TRIGB_CNTL,
1609 			    CRTC_TRIGB_SOURCE_SELECT);
1610 
1611 	set_reg_field_value(value,
1612 			    TRIGGER_POLARITY_SELECT_LOGIC_ZERO,
1613 			    CRTC_TRIGB_CNTL,
1614 			    CRTC_TRIGB_POLARITY_SELECT);
1615 
1616 	set_reg_field_value(value,
1617 			    rising_edge,
1618 			    CRTC_TRIGB_CNTL,
1619 			    CRTC_TRIGB_RISING_EDGE_DETECT_CNTL);
1620 
1621 	set_reg_field_value(value,
1622 			    falling_edge,
1623 			    CRTC_TRIGB_CNTL,
1624 			    CRTC_TRIGB_FALLING_EDGE_DETECT_CNTL);
1625 
1626 	set_reg_field_value(value,
1627 			    1, /* clear trigger status */
1628 			    CRTC_TRIGB_CNTL,
1629 			    CRTC_TRIGB_CLEAR);
1630 
1631 	dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_TRIGB_CNTL), value);
1632 
1633 	/**************************************************************/
1634 
1635 	switch (crtc_tp->delay) {
1636 	case TRIGGER_DELAY_NEXT_LINE:
1637 		value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_FORCE_COUNT_NOW_CNTL));
1638 
1639 		set_reg_field_value(value,
1640 				    0, /* force H count to H_TOTAL and V count to V_TOTAL */
1641 				    CRTC_FORCE_COUNT_NOW_CNTL,
1642 				    CRTC_FORCE_COUNT_NOW_MODE);
1643 
1644 		set_reg_field_value(value,
1645 				    0, /* TriggerB - we never use TriggerA */
1646 				    CRTC_FORCE_COUNT_NOW_CNTL,
1647 				    CRTC_FORCE_COUNT_NOW_TRIG_SEL);
1648 
1649 		set_reg_field_value(value,
1650 				    1, /* clear trigger status */
1651 				    CRTC_FORCE_COUNT_NOW_CNTL,
1652 				    CRTC_FORCE_COUNT_NOW_CLEAR);
1653 
1654 		dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_FORCE_COUNT_NOW_CNTL), value);
1655 
1656 		value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_VERT_SYNC_CONTROL));
1657 
1658 		set_reg_field_value(value,
1659 				    1,
1660 				    CRTC_VERT_SYNC_CONTROL,
1661 				    CRTC_FORCE_VSYNC_NEXT_LINE_CLEAR);
1662 
1663 		set_reg_field_value(value,
1664 				    2,
1665 				    CRTC_VERT_SYNC_CONTROL,
1666 				    CRTC_AUTO_FORCE_VSYNC_MODE);
1667 
1668 		break;
1669 
1670 	case TRIGGER_DELAY_NEXT_PIXEL:
1671 		value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_VERT_SYNC_CONTROL));
1672 
1673 		set_reg_field_value(value,
1674 				    1,
1675 				    CRTC_VERT_SYNC_CONTROL,
1676 				    CRTC_FORCE_VSYNC_NEXT_LINE_CLEAR);
1677 
1678 		set_reg_field_value(value,
1679 				    0,
1680 				    CRTC_VERT_SYNC_CONTROL,
1681 				    CRTC_AUTO_FORCE_VSYNC_MODE);
1682 
1683 		dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_VERT_SYNC_CONTROL), value);
1684 
1685 		value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_FORCE_COUNT_NOW_CNTL));
1686 
1687 		set_reg_field_value(value,
1688 				    2, /* force H count to H_TOTAL and V count to V_TOTAL */
1689 				    CRTC_FORCE_COUNT_NOW_CNTL,
1690 				    CRTC_FORCE_COUNT_NOW_MODE);
1691 
1692 		set_reg_field_value(value,
1693 				    1, /* TriggerB - we never use TriggerA */
1694 				    CRTC_FORCE_COUNT_NOW_CNTL,
1695 				    CRTC_FORCE_COUNT_NOW_TRIG_SEL);
1696 
1697 		set_reg_field_value(value,
1698 				    1, /* clear trigger status */
1699 				    CRTC_FORCE_COUNT_NOW_CNTL,
1700 				    CRTC_FORCE_COUNT_NOW_CLEAR);
1701 
1702 		dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_FORCE_COUNT_NOW_CNTL), value);
1703 		break;
1704 	}
1705 
1706 	value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_MASTER_UPDATE_MODE));
1707 
1708 	set_reg_field_value(value,
1709 			    2,
1710 			    CRTC_MASTER_UPDATE_MODE,
1711 			    MASTER_UPDATE_MODE);
1712 
1713 	dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_MASTER_UPDATE_MODE), value);
1714 }
dce110_timing_generator_disable_reset_trigger(struct timing_generator * tg)1715 void dce110_timing_generator_disable_reset_trigger(
1716 	struct timing_generator *tg)
1717 {
1718 	uint32_t value;
1719 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1720 
1721 	value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_FORCE_COUNT_NOW_CNTL));
1722 
1723 	set_reg_field_value(value,
1724 			    0, /* force counter now mode is disabled */
1725 			    CRTC_FORCE_COUNT_NOW_CNTL,
1726 			    CRTC_FORCE_COUNT_NOW_MODE);
1727 
1728 	set_reg_field_value(value,
1729 			    1, /* clear trigger status */
1730 			    CRTC_FORCE_COUNT_NOW_CNTL,
1731 			    CRTC_FORCE_COUNT_NOW_CLEAR);
1732 
1733 	dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_FORCE_COUNT_NOW_CNTL), value);
1734 
1735 	value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_VERT_SYNC_CONTROL));
1736 
1737 	set_reg_field_value(value,
1738 			    1,
1739 			    CRTC_VERT_SYNC_CONTROL,
1740 			    CRTC_FORCE_VSYNC_NEXT_LINE_CLEAR);
1741 
1742 	set_reg_field_value(value,
1743 			    0,
1744 			    CRTC_VERT_SYNC_CONTROL,
1745 			    CRTC_AUTO_FORCE_VSYNC_MODE);
1746 
1747 	dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_VERT_SYNC_CONTROL), value);
1748 
1749 	/********************************************************************/
1750 	value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_TRIGB_CNTL));
1751 
1752 	set_reg_field_value(value,
1753 			    TRIGGER_SOURCE_SELECT_LOGIC_ZERO,
1754 			    CRTC_TRIGB_CNTL,
1755 			    CRTC_TRIGB_SOURCE_SELECT);
1756 
1757 	set_reg_field_value(value,
1758 			    TRIGGER_POLARITY_SELECT_LOGIC_ZERO,
1759 			    CRTC_TRIGB_CNTL,
1760 			    CRTC_TRIGB_POLARITY_SELECT);
1761 
1762 	set_reg_field_value(value,
1763 			    1, /* clear trigger status */
1764 			    CRTC_TRIGB_CNTL,
1765 			    CRTC_TRIGB_CLEAR);
1766 
1767 	dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_TRIGB_CNTL), value);
1768 }
1769 
1770 /**
1771  *****************************************************************************
1772  *  @brief
1773  *     Checks whether CRTC triggered reset occurred
1774  *
1775  *  @return
1776  *     true if triggered reset occurred, false otherwise
1777  *****************************************************************************
1778  */
dce110_timing_generator_did_triggered_reset_occur(struct timing_generator * tg)1779 bool dce110_timing_generator_did_triggered_reset_occur(
1780 	struct timing_generator *tg)
1781 {
1782 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1783 	uint32_t value = dm_read_reg(tg->ctx,
1784 			CRTC_REG(mmCRTC_FORCE_COUNT_NOW_CNTL));
1785 	uint32_t value1 = dm_read_reg(tg->ctx,
1786 			CRTC_REG(mmCRTC_VERT_SYNC_CONTROL));
1787 	bool force = get_reg_field_value(value,
1788 					 CRTC_FORCE_COUNT_NOW_CNTL,
1789 					 CRTC_FORCE_COUNT_NOW_OCCURRED) != 0;
1790 	bool vert_sync = get_reg_field_value(value1,
1791 					     CRTC_VERT_SYNC_CONTROL,
1792 					     CRTC_FORCE_VSYNC_NEXT_LINE_OCCURRED) != 0;
1793 
1794 	return (force || vert_sync);
1795 }
1796 
1797 /**
1798  * dce110_timing_generator_disable_vga
1799  * Turn OFF VGA Mode and Timing  - DxVGA_CONTROL
1800  * VGA Mode and VGA Timing is used by VBIOS on CRT Monitors;
1801  */
dce110_timing_generator_disable_vga(struct timing_generator * tg)1802 void dce110_timing_generator_disable_vga(
1803 	struct timing_generator *tg)
1804 {
1805 	uint32_t addr = 0;
1806 	uint32_t value = 0;
1807 
1808 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1809 
1810 	switch (tg110->controller_id) {
1811 	case CONTROLLER_ID_D0:
1812 		addr = mmD1VGA_CONTROL;
1813 		break;
1814 	case CONTROLLER_ID_D1:
1815 		addr = mmD2VGA_CONTROL;
1816 		break;
1817 	case CONTROLLER_ID_D2:
1818 		addr = mmD3VGA_CONTROL;
1819 		break;
1820 	case CONTROLLER_ID_D3:
1821 		addr = mmD4VGA_CONTROL;
1822 		break;
1823 	case CONTROLLER_ID_D4:
1824 		addr = mmD5VGA_CONTROL;
1825 		break;
1826 	case CONTROLLER_ID_D5:
1827 		addr = mmD6VGA_CONTROL;
1828 		break;
1829 	default:
1830 		break;
1831 	}
1832 	value = dm_read_reg(tg->ctx, addr);
1833 
1834 	set_reg_field_value(value, 0, D1VGA_CONTROL, D1VGA_MODE_ENABLE);
1835 	set_reg_field_value(value, 0, D1VGA_CONTROL, D1VGA_TIMING_SELECT);
1836 	set_reg_field_value(
1837 			value, 0, D1VGA_CONTROL, D1VGA_SYNC_POLARITY_SELECT);
1838 	set_reg_field_value(value, 0, D1VGA_CONTROL, D1VGA_OVERSCAN_COLOR_EN);
1839 
1840 	dm_write_reg(tg->ctx, addr, value);
1841 }
1842 
1843 /**
1844 * set_overscan_color_black
1845 *
1846 * @param :black_color is one of the color space
1847 *    :this routine will set overscan black color according to the color space.
1848 * @return none
1849 */
1850 
dce110_timing_generator_set_overscan_color_black(struct timing_generator * tg,const struct tg_color * color)1851 void dce110_timing_generator_set_overscan_color_black(
1852 	struct timing_generator *tg,
1853 	const struct tg_color *color)
1854 {
1855 	struct dc_context *ctx = tg->ctx;
1856 	uint32_t addr;
1857 	uint32_t value = 0;
1858 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1859 
1860 	set_reg_field_value(
1861 			value,
1862 			color->color_b_cb,
1863 			CRTC_OVERSCAN_COLOR,
1864 			CRTC_OVERSCAN_COLOR_BLUE);
1865 
1866 	set_reg_field_value(
1867 			value,
1868 			color->color_r_cr,
1869 			CRTC_OVERSCAN_COLOR,
1870 			CRTC_OVERSCAN_COLOR_RED);
1871 
1872 	set_reg_field_value(
1873 			value,
1874 			color->color_g_y,
1875 			CRTC_OVERSCAN_COLOR,
1876 			CRTC_OVERSCAN_COLOR_GREEN);
1877 
1878 	addr = CRTC_REG(mmCRTC_OVERSCAN_COLOR);
1879 	dm_write_reg(ctx, addr, value);
1880 	addr = CRTC_REG(mmCRTC_BLACK_COLOR);
1881 	dm_write_reg(ctx, addr, value);
1882 	/* This is desirable to have a constant DAC output voltage during the
1883 	 * blank time that is higher than the 0 volt reference level that the
1884 	 * DAC outputs when the NBLANK signal
1885 	 * is asserted low, such as for output to an analog TV. */
1886 	addr = CRTC_REG(mmCRTC_BLANK_DATA_COLOR);
1887 	dm_write_reg(ctx, addr, value);
1888 
1889 	/* TO DO we have to program EXT registers and we need to know LB DATA
1890 	 * format because it is used when more 10 , i.e. 12 bits per color
1891 	 *
1892 	 * m_mmDxCRTC_OVERSCAN_COLOR_EXT
1893 	 * m_mmDxCRTC_BLACK_COLOR_EXT
1894 	 * m_mmDxCRTC_BLANK_DATA_COLOR_EXT
1895 	 */
1896 
1897 }
1898 
dce110_tg_program_blank_color(struct timing_generator * tg,const struct tg_color * black_color)1899 void dce110_tg_program_blank_color(struct timing_generator *tg,
1900 		const struct tg_color *black_color)
1901 {
1902 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1903 	uint32_t addr = CRTC_REG(mmCRTC_BLACK_COLOR);
1904 	uint32_t value = dm_read_reg(tg->ctx, addr);
1905 
1906 	set_reg_field_value(
1907 		value,
1908 		black_color->color_b_cb,
1909 		CRTC_BLACK_COLOR,
1910 		CRTC_BLACK_COLOR_B_CB);
1911 	set_reg_field_value(
1912 		value,
1913 		black_color->color_g_y,
1914 		CRTC_BLACK_COLOR,
1915 		CRTC_BLACK_COLOR_G_Y);
1916 	set_reg_field_value(
1917 		value,
1918 		black_color->color_r_cr,
1919 		CRTC_BLACK_COLOR,
1920 		CRTC_BLACK_COLOR_R_CR);
1921 
1922 	dm_write_reg(tg->ctx, addr, value);
1923 
1924 	addr = CRTC_REG(mmCRTC_BLANK_DATA_COLOR);
1925 	dm_write_reg(tg->ctx, addr, value);
1926 }
1927 
dce110_tg_set_overscan_color(struct timing_generator * tg,const struct tg_color * overscan_color)1928 void dce110_tg_set_overscan_color(struct timing_generator *tg,
1929 	const struct tg_color *overscan_color)
1930 {
1931 	struct dc_context *ctx = tg->ctx;
1932 	uint32_t value = 0;
1933 	uint32_t addr;
1934 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1935 
1936 	set_reg_field_value(
1937 		value,
1938 		overscan_color->color_b_cb,
1939 		CRTC_OVERSCAN_COLOR,
1940 		CRTC_OVERSCAN_COLOR_BLUE);
1941 
1942 	set_reg_field_value(
1943 		value,
1944 		overscan_color->color_g_y,
1945 		CRTC_OVERSCAN_COLOR,
1946 		CRTC_OVERSCAN_COLOR_GREEN);
1947 
1948 	set_reg_field_value(
1949 		value,
1950 		overscan_color->color_r_cr,
1951 		CRTC_OVERSCAN_COLOR,
1952 		CRTC_OVERSCAN_COLOR_RED);
1953 
1954 	addr = CRTC_REG(mmCRTC_OVERSCAN_COLOR);
1955 	dm_write_reg(ctx, addr, value);
1956 }
1957 
dce110_tg_program_timing(struct timing_generator * tg,const struct dc_crtc_timing * timing,int vready_offset,int vstartup_start,int vupdate_offset,int vupdate_width,const enum signal_type signal,bool use_vbios)1958 void dce110_tg_program_timing(struct timing_generator *tg,
1959 	const struct dc_crtc_timing *timing,
1960 	int vready_offset,
1961 	int vstartup_start,
1962 	int vupdate_offset,
1963 	int vupdate_width,
1964 	const enum signal_type signal,
1965 	bool use_vbios)
1966 {
1967 	if (use_vbios)
1968 		dce110_timing_generator_program_timing_generator(tg, timing);
1969 	else
1970 		dce110_timing_generator_program_blanking(tg, timing);
1971 }
1972 
dce110_tg_is_blanked(struct timing_generator * tg)1973 bool dce110_tg_is_blanked(struct timing_generator *tg)
1974 {
1975 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1976 	uint32_t value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_BLANK_CONTROL));
1977 
1978 	if (get_reg_field_value(
1979 			value,
1980 			CRTC_BLANK_CONTROL,
1981 			CRTC_BLANK_DATA_EN) == 1 &&
1982 		get_reg_field_value(
1983 			value,
1984 			CRTC_BLANK_CONTROL,
1985 			CRTC_CURRENT_BLANK_STATE) == 1)
1986 		return true;
1987 	return false;
1988 }
1989 
dce110_tg_set_blank(struct timing_generator * tg,bool enable_blanking)1990 void dce110_tg_set_blank(struct timing_generator *tg,
1991 		bool enable_blanking)
1992 {
1993 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1994 	uint32_t value = 0;
1995 
1996 	set_reg_field_value(
1997 		value,
1998 		1,
1999 		CRTC_DOUBLE_BUFFER_CONTROL,
2000 		CRTC_BLANK_DATA_DOUBLE_BUFFER_EN);
2001 
2002 	dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_DOUBLE_BUFFER_CONTROL), value);
2003 	value = 0;
2004 
2005 	if (enable_blanking) {
2006 		set_reg_field_value(
2007 			value,
2008 			1,
2009 			CRTC_BLANK_CONTROL,
2010 			CRTC_BLANK_DATA_EN);
2011 
2012 		dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_BLANK_CONTROL), value);
2013 
2014 	} else
2015 		dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_BLANK_CONTROL), 0);
2016 }
2017 
dce110_tg_validate_timing(struct timing_generator * tg,const struct dc_crtc_timing * timing)2018 bool dce110_tg_validate_timing(struct timing_generator *tg,
2019 	const struct dc_crtc_timing *timing)
2020 {
2021 	return dce110_timing_generator_validate_timing(tg, timing, SIGNAL_TYPE_NONE);
2022 }
2023 
dce110_tg_wait_for_state(struct timing_generator * tg,enum crtc_state state)2024 void dce110_tg_wait_for_state(struct timing_generator *tg,
2025 	enum crtc_state state)
2026 {
2027 	switch (state) {
2028 	case CRTC_STATE_VBLANK:
2029 		dce110_timing_generator_wait_for_vblank(tg);
2030 		break;
2031 
2032 	case CRTC_STATE_VACTIVE:
2033 		dce110_timing_generator_wait_for_vactive(tg);
2034 		break;
2035 
2036 	default:
2037 		break;
2038 	}
2039 }
2040 
dce110_tg_set_colors(struct timing_generator * tg,const struct tg_color * blank_color,const struct tg_color * overscan_color)2041 void dce110_tg_set_colors(struct timing_generator *tg,
2042 	const struct tg_color *blank_color,
2043 	const struct tg_color *overscan_color)
2044 {
2045 	if (blank_color != NULL)
2046 		dce110_tg_program_blank_color(tg, blank_color);
2047 	if (overscan_color != NULL)
2048 		dce110_tg_set_overscan_color(tg, overscan_color);
2049 }
2050 
2051 /* Gets first line of blank region of the display timing for CRTC
2052  * and programms is as a trigger to fire vertical interrupt
2053  */
dce110_arm_vert_intr(struct timing_generator * tg,uint8_t width)2054 bool dce110_arm_vert_intr(struct timing_generator *tg, uint8_t width)
2055 {
2056 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
2057 	uint32_t v_blank_start = 0;
2058 	uint32_t v_blank_end = 0;
2059 	uint32_t val = 0;
2060 	uint32_t h_position, v_position;
2061 
2062 	tg->funcs->get_scanoutpos(
2063 			tg,
2064 			&v_blank_start,
2065 			&v_blank_end,
2066 			&h_position,
2067 			&v_position);
2068 
2069 	if (v_blank_start == 0 || v_blank_end == 0)
2070 		return false;
2071 
2072 	set_reg_field_value(
2073 		val,
2074 		v_blank_start,
2075 		CRTC_VERTICAL_INTERRUPT0_POSITION,
2076 		CRTC_VERTICAL_INTERRUPT0_LINE_START);
2077 
2078 	/* Set interval width for interrupt to fire to 1 scanline */
2079 	set_reg_field_value(
2080 		val,
2081 		v_blank_start + width,
2082 		CRTC_VERTICAL_INTERRUPT0_POSITION,
2083 		CRTC_VERTICAL_INTERRUPT0_LINE_END);
2084 
2085 	dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_VERTICAL_INTERRUPT0_POSITION), val);
2086 
2087 	return true;
2088 }
2089 
dce110_is_tg_enabled(struct timing_generator * tg)2090 static bool dce110_is_tg_enabled(struct timing_generator *tg)
2091 {
2092 	uint32_t addr = 0;
2093 	uint32_t value = 0;
2094 	uint32_t field = 0;
2095 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
2096 
2097 	addr = CRTC_REG(mmCRTC_CONTROL);
2098 	value = dm_read_reg(tg->ctx, addr);
2099 	field = get_reg_field_value(value, CRTC_CONTROL,
2100 				    CRTC_CURRENT_MASTER_EN_STATE);
2101 	return field == 1;
2102 }
2103 
dce110_configure_crc(struct timing_generator * tg,const struct crc_params * params)2104 bool dce110_configure_crc(struct timing_generator *tg,
2105 			  const struct crc_params *params)
2106 {
2107 	uint32_t cntl_addr = 0;
2108 	uint32_t addr = 0;
2109 	uint32_t value;
2110 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
2111 
2112 	/* Cannot configure crc on a CRTC that is disabled */
2113 	if (!dce110_is_tg_enabled(tg))
2114 		return false;
2115 
2116 	cntl_addr = CRTC_REG(mmCRTC_CRC_CNTL);
2117 
2118 	/* First, disable CRC before we configure it. */
2119 	dm_write_reg(tg->ctx, cntl_addr, 0);
2120 
2121 	if (!params->enable)
2122 		return true;
2123 
2124 	/* Program frame boundaries */
2125 	/* Window A x axis start and end. */
2126 	value = 0;
2127 	addr = CRTC_REG(mmCRTC_CRC0_WINDOWA_X_CONTROL);
2128 	set_reg_field_value(value, params->windowa_x_start,
2129 			    CRTC_CRC0_WINDOWA_X_CONTROL,
2130 			    CRTC_CRC0_WINDOWA_X_START);
2131 	set_reg_field_value(value, params->windowa_x_end,
2132 			    CRTC_CRC0_WINDOWA_X_CONTROL,
2133 			    CRTC_CRC0_WINDOWA_X_END);
2134 	dm_write_reg(tg->ctx, addr, value);
2135 
2136 	/* Window A y axis start and end. */
2137 	value = 0;
2138 	addr = CRTC_REG(mmCRTC_CRC0_WINDOWA_Y_CONTROL);
2139 	set_reg_field_value(value, params->windowa_y_start,
2140 			    CRTC_CRC0_WINDOWA_Y_CONTROL,
2141 			    CRTC_CRC0_WINDOWA_Y_START);
2142 	set_reg_field_value(value, params->windowa_y_end,
2143 			    CRTC_CRC0_WINDOWA_Y_CONTROL,
2144 			    CRTC_CRC0_WINDOWA_Y_END);
2145 	dm_write_reg(tg->ctx, addr, value);
2146 
2147 	/* Window B x axis start and end. */
2148 	value = 0;
2149 	addr = CRTC_REG(mmCRTC_CRC0_WINDOWB_X_CONTROL);
2150 	set_reg_field_value(value, params->windowb_x_start,
2151 			    CRTC_CRC0_WINDOWB_X_CONTROL,
2152 			    CRTC_CRC0_WINDOWB_X_START);
2153 	set_reg_field_value(value, params->windowb_x_end,
2154 			    CRTC_CRC0_WINDOWB_X_CONTROL,
2155 			    CRTC_CRC0_WINDOWB_X_END);
2156 	dm_write_reg(tg->ctx, addr, value);
2157 
2158 	/* Window B y axis start and end. */
2159 	value = 0;
2160 	addr = CRTC_REG(mmCRTC_CRC0_WINDOWB_Y_CONTROL);
2161 	set_reg_field_value(value, params->windowb_y_start,
2162 			    CRTC_CRC0_WINDOWB_Y_CONTROL,
2163 			    CRTC_CRC0_WINDOWB_Y_START);
2164 	set_reg_field_value(value, params->windowb_y_end,
2165 			    CRTC_CRC0_WINDOWB_Y_CONTROL,
2166 			    CRTC_CRC0_WINDOWB_Y_END);
2167 	dm_write_reg(tg->ctx, addr, value);
2168 
2169 	/* Set crc mode and selection, and enable. Only using CRC0*/
2170 	value = 0;
2171 	set_reg_field_value(value, params->continuous_mode ? 1 : 0,
2172 			    CRTC_CRC_CNTL, CRTC_CRC_CONT_EN);
2173 	set_reg_field_value(value, params->selection,
2174 			    CRTC_CRC_CNTL, CRTC_CRC0_SELECT);
2175 	set_reg_field_value(value, 1, CRTC_CRC_CNTL, CRTC_CRC_EN);
2176 	dm_write_reg(tg->ctx, cntl_addr, value);
2177 
2178 	return true;
2179 }
2180 
dce110_get_crc(struct timing_generator * tg,uint32_t * r_cr,uint32_t * g_y,uint32_t * b_cb)2181 bool dce110_get_crc(struct timing_generator *tg,
2182 		    uint32_t *r_cr, uint32_t *g_y, uint32_t *b_cb)
2183 {
2184 	uint32_t addr = 0;
2185 	uint32_t value = 0;
2186 	uint32_t field = 0;
2187 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
2188 
2189 	addr = CRTC_REG(mmCRTC_CRC_CNTL);
2190 	value = dm_read_reg(tg->ctx, addr);
2191 	field = get_reg_field_value(value, CRTC_CRC_CNTL, CRTC_CRC_EN);
2192 
2193 	/* Early return if CRC is not enabled for this CRTC */
2194 	if (!field)
2195 		return false;
2196 
2197 	addr = CRTC_REG(mmCRTC_CRC0_DATA_RG);
2198 	value = dm_read_reg(tg->ctx, addr);
2199 	*r_cr = get_reg_field_value(value, CRTC_CRC0_DATA_RG, CRC0_R_CR);
2200 	*g_y = get_reg_field_value(value, CRTC_CRC0_DATA_RG, CRC0_G_Y);
2201 
2202 	addr = CRTC_REG(mmCRTC_CRC0_DATA_B);
2203 	value = dm_read_reg(tg->ctx, addr);
2204 	*b_cb = get_reg_field_value(value, CRTC_CRC0_DATA_B, CRC0_B_CB);
2205 
2206 	return true;
2207 }
2208 
2209 static const struct timing_generator_funcs dce110_tg_funcs = {
2210 		.validate_timing = dce110_tg_validate_timing,
2211 		.program_timing = dce110_tg_program_timing,
2212 		.enable_crtc = dce110_timing_generator_enable_crtc,
2213 		.disable_crtc = dce110_timing_generator_disable_crtc,
2214 		.is_counter_moving = dce110_timing_generator_is_counter_moving,
2215 		.get_position = dce110_timing_generator_get_position,
2216 		.get_frame_count = dce110_timing_generator_get_vblank_counter,
2217 		.get_scanoutpos = dce110_timing_generator_get_crtc_scanoutpos,
2218 		.set_early_control = dce110_timing_generator_set_early_control,
2219 		.wait_for_state = dce110_tg_wait_for_state,
2220 		.set_blank = dce110_tg_set_blank,
2221 		.is_blanked = dce110_tg_is_blanked,
2222 		.set_colors = dce110_tg_set_colors,
2223 		.set_overscan_blank_color =
2224 				dce110_timing_generator_set_overscan_color_black,
2225 		.set_blank_color = dce110_timing_generator_program_blank_color,
2226 		.disable_vga = dce110_timing_generator_disable_vga,
2227 		.did_triggered_reset_occur =
2228 				dce110_timing_generator_did_triggered_reset_occur,
2229 		.setup_global_swap_lock =
2230 				dce110_timing_generator_setup_global_swap_lock,
2231 		.enable_reset_trigger = dce110_timing_generator_enable_reset_trigger,
2232 		.enable_crtc_reset = dce110_timing_generator_enable_crtc_reset,
2233 		.disable_reset_trigger = dce110_timing_generator_disable_reset_trigger,
2234 		.tear_down_global_swap_lock =
2235 				dce110_timing_generator_tear_down_global_swap_lock,
2236 		.enable_advanced_request =
2237 				dce110_timing_generator_enable_advanced_request,
2238 		.set_drr =
2239 				dce110_timing_generator_set_drr,
2240 		.set_static_screen_control =
2241 			dce110_timing_generator_set_static_screen_control,
2242 		.set_test_pattern = dce110_timing_generator_set_test_pattern,
2243 		.arm_vert_intr = dce110_arm_vert_intr,
2244 		.is_tg_enabled = dce110_is_tg_enabled,
2245 		.configure_crc = dce110_configure_crc,
2246 		.get_crc = dce110_get_crc,
2247 };
2248 
dce110_timing_generator_construct(struct dce110_timing_generator * tg110,struct dc_context * ctx,uint32_t instance,const struct dce110_timing_generator_offsets * offsets)2249 void dce110_timing_generator_construct(
2250 	struct dce110_timing_generator *tg110,
2251 	struct dc_context *ctx,
2252 	uint32_t instance,
2253 	const struct dce110_timing_generator_offsets *offsets)
2254 {
2255 	tg110->controller_id = CONTROLLER_ID_D0 + instance;
2256 	tg110->base.inst = instance;
2257 
2258 	tg110->offsets = *offsets;
2259 
2260 	tg110->base.funcs = &dce110_tg_funcs;
2261 
2262 	tg110->base.ctx = ctx;
2263 	tg110->base.bp = ctx->dc_bios;
2264 
2265 	tg110->max_h_total = CRTC_H_TOTAL__CRTC_H_TOTAL_MASK + 1;
2266 	tg110->max_v_total = CRTC_V_TOTAL__CRTC_V_TOTAL_MASK + 1;
2267 
2268 	tg110->min_h_blank = 56;
2269 	tg110->min_h_front_porch = 4;
2270 	tg110->min_h_back_porch = 4;
2271 }
2272