1 /*
2  * Copyright 2015 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25 
26 #include <linux/delay.h>
27 
28 #include "dm_services.h"
29 #include "dc.h"
30 #include "dc_bios_types.h"
31 #include "core_types.h"
32 #include "core_status.h"
33 #include "resource.h"
34 #include "dm_helpers.h"
35 #include "dce110_timing_generator.h"
36 #include "dce/dce_hwseq.h"
37 #include "gpio_service_interface.h"
38 
39 #include "dce110_compressor.h"
40 
41 #include "bios/bios_parser_helper.h"
42 #include "timing_generator.h"
43 #include "mem_input.h"
44 #include "opp.h"
45 #include "ipp.h"
46 #include "transform.h"
47 #include "stream_encoder.h"
48 #include "link_encoder.h"
49 #include "link_hwss.h"
50 #include "dc_link_dp.h"
51 #if defined(CONFIG_DRM_AMD_DC_DCN)
52 #include "dccg.h"
53 #endif
54 #include "clock_source.h"
55 #include "clk_mgr.h"
56 #include "abm.h"
57 #include "audio.h"
58 #include "reg_helper.h"
59 #include "panel_cntl.h"
60 
61 /* include DCE11 register header files */
62 #include "dce/dce_11_0_d.h"
63 #include "dce/dce_11_0_sh_mask.h"
64 #include "custom_float.h"
65 
66 #include "atomfirmware.h"
67 
68 #include "dcn10/dcn10_hw_sequencer.h"
69 
70 #define GAMMA_HW_POINTS_NUM 256
71 
72 /*
73  * All values are in milliseconds;
74  * For eDP, after power-up/power/down,
75  * 300/500 msec max. delay from LCDVCC to black video generation
76  */
77 #define PANEL_POWER_UP_TIMEOUT 300
78 #define PANEL_POWER_DOWN_TIMEOUT 500
79 #define HPD_CHECK_INTERVAL 10
80 #define OLED_POST_T7_DELAY 100
81 #define OLED_PRE_T11_DELAY 150
82 
83 #define CTX \
84 	hws->ctx
85 
86 #define DC_LOGGER_INIT()
87 
88 #define REG(reg)\
89 	hws->regs->reg
90 
91 #undef FN
92 #define FN(reg_name, field_name) \
93 	hws->shifts->field_name, hws->masks->field_name
94 
95 struct dce110_hw_seq_reg_offsets {
96 	uint32_t crtc;
97 };
98 
99 static const struct dce110_hw_seq_reg_offsets reg_offsets[] = {
100 {
101 	.crtc = (mmCRTC0_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
102 },
103 {
104 	.crtc = (mmCRTC1_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
105 },
106 {
107 	.crtc = (mmCRTC2_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
108 },
109 {
110 	.crtc = (mmCRTCV_GSL_CONTROL - mmCRTC_GSL_CONTROL),
111 }
112 };
113 
114 #define HW_REG_BLND(reg, id)\
115 	(reg + reg_offsets[id].blnd)
116 
117 #define HW_REG_CRTC(reg, id)\
118 	(reg + reg_offsets[id].crtc)
119 
120 #define MAX_WATERMARK 0xFFFF
121 #define SAFE_NBP_MARK 0x7FFF
122 
123 /*******************************************************************************
124  * Private definitions
125  ******************************************************************************/
126 /***************************PIPE_CONTROL***********************************/
dce110_init_pte(struct dc_context * ctx)127 static void dce110_init_pte(struct dc_context *ctx)
128 {
129 	uint32_t addr;
130 	uint32_t value = 0;
131 	uint32_t chunk_int = 0;
132 	uint32_t chunk_mul = 0;
133 
134 	addr = mmUNP_DVMM_PTE_CONTROL;
135 	value = dm_read_reg(ctx, addr);
136 
137 	set_reg_field_value(
138 		value,
139 		0,
140 		DVMM_PTE_CONTROL,
141 		DVMM_USE_SINGLE_PTE);
142 
143 	set_reg_field_value(
144 		value,
145 		1,
146 		DVMM_PTE_CONTROL,
147 		DVMM_PTE_BUFFER_MODE0);
148 
149 	set_reg_field_value(
150 		value,
151 		1,
152 		DVMM_PTE_CONTROL,
153 		DVMM_PTE_BUFFER_MODE1);
154 
155 	dm_write_reg(ctx, addr, value);
156 
157 	addr = mmDVMM_PTE_REQ;
158 	value = dm_read_reg(ctx, addr);
159 
160 	chunk_int = get_reg_field_value(
161 		value,
162 		DVMM_PTE_REQ,
163 		HFLIP_PTEREQ_PER_CHUNK_INT);
164 
165 	chunk_mul = get_reg_field_value(
166 		value,
167 		DVMM_PTE_REQ,
168 		HFLIP_PTEREQ_PER_CHUNK_MULTIPLIER);
169 
170 	if (chunk_int != 0x4 || chunk_mul != 0x4) {
171 
172 		set_reg_field_value(
173 			value,
174 			255,
175 			DVMM_PTE_REQ,
176 			MAX_PTEREQ_TO_ISSUE);
177 
178 		set_reg_field_value(
179 			value,
180 			4,
181 			DVMM_PTE_REQ,
182 			HFLIP_PTEREQ_PER_CHUNK_INT);
183 
184 		set_reg_field_value(
185 			value,
186 			4,
187 			DVMM_PTE_REQ,
188 			HFLIP_PTEREQ_PER_CHUNK_MULTIPLIER);
189 
190 		dm_write_reg(ctx, addr, value);
191 	}
192 }
193 /**************************************************************************/
194 
enable_display_pipe_clock_gating(struct dc_context * ctx,bool clock_gating)195 static void enable_display_pipe_clock_gating(
196 	struct dc_context *ctx,
197 	bool clock_gating)
198 {
199 	/*TODO*/
200 }
201 
dce110_enable_display_power_gating(struct dc * dc,uint8_t controller_id,struct dc_bios * dcb,enum pipe_gating_control power_gating)202 static bool dce110_enable_display_power_gating(
203 	struct dc *dc,
204 	uint8_t controller_id,
205 	struct dc_bios *dcb,
206 	enum pipe_gating_control power_gating)
207 {
208 	enum bp_result bp_result = BP_RESULT_OK;
209 	enum bp_pipe_control_action cntl;
210 	struct dc_context *ctx = dc->ctx;
211 	unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
212 
213 	if (IS_FPGA_MAXIMUS_DC(ctx->dce_environment))
214 		return true;
215 
216 	if (power_gating == PIPE_GATING_CONTROL_INIT)
217 		cntl = ASIC_PIPE_INIT;
218 	else if (power_gating == PIPE_GATING_CONTROL_ENABLE)
219 		cntl = ASIC_PIPE_ENABLE;
220 	else
221 		cntl = ASIC_PIPE_DISABLE;
222 
223 	if (controller_id == underlay_idx)
224 		controller_id = CONTROLLER_ID_UNDERLAY0 - 1;
225 
226 	if (power_gating != PIPE_GATING_CONTROL_INIT || controller_id == 0){
227 
228 		bp_result = dcb->funcs->enable_disp_power_gating(
229 						dcb, controller_id + 1, cntl);
230 
231 		/* Revert MASTER_UPDATE_MODE to 0 because bios sets it 2
232 		 * by default when command table is called
233 		 *
234 		 * Bios parser accepts controller_id = 6 as indicative of
235 		 * underlay pipe in dce110. But we do not support more
236 		 * than 3.
237 		 */
238 		if (controller_id < CONTROLLER_ID_MAX - 1)
239 			dm_write_reg(ctx,
240 				HW_REG_CRTC(mmCRTC_MASTER_UPDATE_MODE, controller_id),
241 				0);
242 	}
243 
244 	if (power_gating != PIPE_GATING_CONTROL_ENABLE)
245 		dce110_init_pte(ctx);
246 
247 	if (bp_result == BP_RESULT_OK)
248 		return true;
249 	else
250 		return false;
251 }
252 
build_prescale_params(struct ipp_prescale_params * prescale_params,const struct dc_plane_state * plane_state)253 static void build_prescale_params(struct ipp_prescale_params *prescale_params,
254 		const struct dc_plane_state *plane_state)
255 {
256 	prescale_params->mode = IPP_PRESCALE_MODE_FIXED_UNSIGNED;
257 
258 	switch (plane_state->format) {
259 	case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
260 		prescale_params->scale = 0x2082;
261 		break;
262 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
263 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
264 		prescale_params->scale = 0x2020;
265 		break;
266 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
267 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
268 		prescale_params->scale = 0x2008;
269 		break;
270 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
271 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616:
272 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
273 		prescale_params->scale = 0x2000;
274 		break;
275 	default:
276 		ASSERT(false);
277 		break;
278 	}
279 }
280 
281 static bool
dce110_set_input_transfer_func(struct dc * dc,struct pipe_ctx * pipe_ctx,const struct dc_plane_state * plane_state)282 dce110_set_input_transfer_func(struct dc *dc, struct pipe_ctx *pipe_ctx,
283 			       const struct dc_plane_state *plane_state)
284 {
285 	struct input_pixel_processor *ipp = pipe_ctx->plane_res.ipp;
286 	const struct dc_transfer_func *tf = NULL;
287 	struct ipp_prescale_params prescale_params = { 0 };
288 	bool result = true;
289 
290 	if (ipp == NULL)
291 		return false;
292 
293 	if (plane_state->in_transfer_func)
294 		tf = plane_state->in_transfer_func;
295 
296 	build_prescale_params(&prescale_params, plane_state);
297 	ipp->funcs->ipp_program_prescale(ipp, &prescale_params);
298 
299 	if (plane_state->gamma_correction &&
300 			!plane_state->gamma_correction->is_identity &&
301 			dce_use_lut(plane_state->format))
302 		ipp->funcs->ipp_program_input_lut(ipp, plane_state->gamma_correction);
303 
304 	if (tf == NULL) {
305 		/* Default case if no input transfer function specified */
306 		ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_HW_sRGB);
307 	} else if (tf->type == TF_TYPE_PREDEFINED) {
308 		switch (tf->tf) {
309 		case TRANSFER_FUNCTION_SRGB:
310 			ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_HW_sRGB);
311 			break;
312 		case TRANSFER_FUNCTION_BT709:
313 			ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_HW_xvYCC);
314 			break;
315 		case TRANSFER_FUNCTION_LINEAR:
316 			ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_BYPASS);
317 			break;
318 		case TRANSFER_FUNCTION_PQ:
319 		default:
320 			result = false;
321 			break;
322 		}
323 	} else if (tf->type == TF_TYPE_BYPASS) {
324 		ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_BYPASS);
325 	} else {
326 		/*TF_TYPE_DISTRIBUTED_POINTS - Not supported in DCE 11*/
327 		result = false;
328 	}
329 
330 	return result;
331 }
332 
convert_to_custom_float(struct pwl_result_data * rgb_resulted,struct curve_points * arr_points,uint32_t hw_points_num)333 static bool convert_to_custom_float(struct pwl_result_data *rgb_resulted,
334 				    struct curve_points *arr_points,
335 				    uint32_t hw_points_num)
336 {
337 	struct custom_float_format fmt;
338 
339 	struct pwl_result_data *rgb = rgb_resulted;
340 
341 	uint32_t i = 0;
342 
343 	fmt.exponenta_bits = 6;
344 	fmt.mantissa_bits = 12;
345 	fmt.sign = true;
346 
347 	if (!convert_to_custom_float_format(arr_points[0].x, &fmt,
348 					    &arr_points[0].custom_float_x)) {
349 		BREAK_TO_DEBUGGER();
350 		return false;
351 	}
352 
353 	if (!convert_to_custom_float_format(arr_points[0].offset, &fmt,
354 					    &arr_points[0].custom_float_offset)) {
355 		BREAK_TO_DEBUGGER();
356 		return false;
357 	}
358 
359 	if (!convert_to_custom_float_format(arr_points[0].slope, &fmt,
360 					    &arr_points[0].custom_float_slope)) {
361 		BREAK_TO_DEBUGGER();
362 		return false;
363 	}
364 
365 	fmt.mantissa_bits = 10;
366 	fmt.sign = false;
367 
368 	if (!convert_to_custom_float_format(arr_points[1].x, &fmt,
369 					    &arr_points[1].custom_float_x)) {
370 		BREAK_TO_DEBUGGER();
371 		return false;
372 	}
373 
374 	if (!convert_to_custom_float_format(arr_points[1].y, &fmt,
375 					    &arr_points[1].custom_float_y)) {
376 		BREAK_TO_DEBUGGER();
377 		return false;
378 	}
379 
380 	if (!convert_to_custom_float_format(arr_points[1].slope, &fmt,
381 					    &arr_points[1].custom_float_slope)) {
382 		BREAK_TO_DEBUGGER();
383 		return false;
384 	}
385 
386 	fmt.mantissa_bits = 12;
387 	fmt.sign = true;
388 
389 	while (i != hw_points_num) {
390 		if (!convert_to_custom_float_format(rgb->red, &fmt,
391 						    &rgb->red_reg)) {
392 			BREAK_TO_DEBUGGER();
393 			return false;
394 		}
395 
396 		if (!convert_to_custom_float_format(rgb->green, &fmt,
397 						    &rgb->green_reg)) {
398 			BREAK_TO_DEBUGGER();
399 			return false;
400 		}
401 
402 		if (!convert_to_custom_float_format(rgb->blue, &fmt,
403 						    &rgb->blue_reg)) {
404 			BREAK_TO_DEBUGGER();
405 			return false;
406 		}
407 
408 		if (!convert_to_custom_float_format(rgb->delta_red, &fmt,
409 						    &rgb->delta_red_reg)) {
410 			BREAK_TO_DEBUGGER();
411 			return false;
412 		}
413 
414 		if (!convert_to_custom_float_format(rgb->delta_green, &fmt,
415 						    &rgb->delta_green_reg)) {
416 			BREAK_TO_DEBUGGER();
417 			return false;
418 		}
419 
420 		if (!convert_to_custom_float_format(rgb->delta_blue, &fmt,
421 						    &rgb->delta_blue_reg)) {
422 			BREAK_TO_DEBUGGER();
423 			return false;
424 		}
425 
426 		++rgb;
427 		++i;
428 	}
429 
430 	return true;
431 }
432 
433 #define MAX_LOW_POINT      25
434 #define NUMBER_REGIONS     16
435 #define NUMBER_SW_SEGMENTS 16
436 
437 static bool
dce110_translate_regamma_to_hw_format(const struct dc_transfer_func * output_tf,struct pwl_params * regamma_params)438 dce110_translate_regamma_to_hw_format(const struct dc_transfer_func *output_tf,
439 				      struct pwl_params *regamma_params)
440 {
441 	struct curve_points *arr_points;
442 	struct pwl_result_data *rgb_resulted;
443 	struct pwl_result_data *rgb;
444 	struct pwl_result_data *rgb_plus_1;
445 	struct fixed31_32 y_r;
446 	struct fixed31_32 y_g;
447 	struct fixed31_32 y_b;
448 	struct fixed31_32 y1_min;
449 	struct fixed31_32 y3_max;
450 
451 	int32_t region_start, region_end;
452 	uint32_t i, j, k, seg_distr[NUMBER_REGIONS], increment, start_index, hw_points;
453 
454 	if (output_tf == NULL || regamma_params == NULL || output_tf->type == TF_TYPE_BYPASS)
455 		return false;
456 
457 	arr_points = regamma_params->arr_points;
458 	rgb_resulted = regamma_params->rgb_resulted;
459 	hw_points = 0;
460 
461 	memset(regamma_params, 0, sizeof(struct pwl_params));
462 
463 	if (output_tf->tf == TRANSFER_FUNCTION_PQ) {
464 		/* 16 segments
465 		 * segments are from 2^-11 to 2^5
466 		 */
467 		region_start = -11;
468 		region_end = region_start + NUMBER_REGIONS;
469 
470 		for (i = 0; i < NUMBER_REGIONS; i++)
471 			seg_distr[i] = 4;
472 
473 	} else {
474 		/* 10 segments
475 		 * segment is from 2^-10 to 2^1
476 		 * We include an extra segment for range [2^0, 2^1). This is to
477 		 * ensure that colors with normalized values of 1 don't miss the
478 		 * LUT.
479 		 */
480 		region_start = -10;
481 		region_end = 1;
482 
483 		seg_distr[0] = 4;
484 		seg_distr[1] = 4;
485 		seg_distr[2] = 4;
486 		seg_distr[3] = 4;
487 		seg_distr[4] = 4;
488 		seg_distr[5] = 4;
489 		seg_distr[6] = 4;
490 		seg_distr[7] = 4;
491 		seg_distr[8] = 4;
492 		seg_distr[9] = 4;
493 		seg_distr[10] = 0;
494 		seg_distr[11] = -1;
495 		seg_distr[12] = -1;
496 		seg_distr[13] = -1;
497 		seg_distr[14] = -1;
498 		seg_distr[15] = -1;
499 	}
500 
501 	for (k = 0; k < 16; k++) {
502 		if (seg_distr[k] != -1)
503 			hw_points += (1 << seg_distr[k]);
504 	}
505 
506 	j = 0;
507 	for (k = 0; k < (region_end - region_start); k++) {
508 		increment = NUMBER_SW_SEGMENTS / (1 << seg_distr[k]);
509 		start_index = (region_start + k + MAX_LOW_POINT) *
510 				NUMBER_SW_SEGMENTS;
511 		for (i = start_index; i < start_index + NUMBER_SW_SEGMENTS;
512 				i += increment) {
513 			if (j == hw_points - 1)
514 				break;
515 			rgb_resulted[j].red = output_tf->tf_pts.red[i];
516 			rgb_resulted[j].green = output_tf->tf_pts.green[i];
517 			rgb_resulted[j].blue = output_tf->tf_pts.blue[i];
518 			j++;
519 		}
520 	}
521 
522 	/* last point */
523 	start_index = (region_end + MAX_LOW_POINT) * NUMBER_SW_SEGMENTS;
524 	rgb_resulted[hw_points - 1].red = output_tf->tf_pts.red[start_index];
525 	rgb_resulted[hw_points - 1].green = output_tf->tf_pts.green[start_index];
526 	rgb_resulted[hw_points - 1].blue = output_tf->tf_pts.blue[start_index];
527 
528 	arr_points[0].x = dc_fixpt_pow(dc_fixpt_from_int(2),
529 					     dc_fixpt_from_int(region_start));
530 	arr_points[1].x = dc_fixpt_pow(dc_fixpt_from_int(2),
531 					     dc_fixpt_from_int(region_end));
532 
533 	y_r = rgb_resulted[0].red;
534 	y_g = rgb_resulted[0].green;
535 	y_b = rgb_resulted[0].blue;
536 
537 	y1_min = dc_fixpt_min(y_r, dc_fixpt_min(y_g, y_b));
538 
539 	arr_points[0].y = y1_min;
540 	arr_points[0].slope = dc_fixpt_div(arr_points[0].y,
541 						 arr_points[0].x);
542 
543 	y_r = rgb_resulted[hw_points - 1].red;
544 	y_g = rgb_resulted[hw_points - 1].green;
545 	y_b = rgb_resulted[hw_points - 1].blue;
546 
547 	/* see comment above, m_arrPoints[1].y should be the Y value for the
548 	 * region end (m_numOfHwPoints), not last HW point(m_numOfHwPoints - 1)
549 	 */
550 	y3_max = dc_fixpt_max(y_r, dc_fixpt_max(y_g, y_b));
551 
552 	arr_points[1].y = y3_max;
553 
554 	arr_points[1].slope = dc_fixpt_zero;
555 
556 	if (output_tf->tf == TRANSFER_FUNCTION_PQ) {
557 		/* for PQ, we want to have a straight line from last HW X point,
558 		 * and the slope to be such that we hit 1.0 at 10000 nits.
559 		 */
560 		const struct fixed31_32 end_value = dc_fixpt_from_int(125);
561 
562 		arr_points[1].slope = dc_fixpt_div(
563 				dc_fixpt_sub(dc_fixpt_one, arr_points[1].y),
564 				dc_fixpt_sub(end_value, arr_points[1].x));
565 	}
566 
567 	regamma_params->hw_points_num = hw_points;
568 
569 	k = 0;
570 	for (i = 1; i < 16; i++) {
571 		if (seg_distr[k] != -1) {
572 			regamma_params->arr_curve_points[k].segments_num = seg_distr[k];
573 			regamma_params->arr_curve_points[i].offset =
574 					regamma_params->arr_curve_points[k].offset + (1 << seg_distr[k]);
575 		}
576 		k++;
577 	}
578 
579 	if (seg_distr[k] != -1)
580 		regamma_params->arr_curve_points[k].segments_num = seg_distr[k];
581 
582 	rgb = rgb_resulted;
583 	rgb_plus_1 = rgb_resulted + 1;
584 
585 	i = 1;
586 
587 	while (i != hw_points + 1) {
588 		if (dc_fixpt_lt(rgb_plus_1->red, rgb->red))
589 			rgb_plus_1->red = rgb->red;
590 		if (dc_fixpt_lt(rgb_plus_1->green, rgb->green))
591 			rgb_plus_1->green = rgb->green;
592 		if (dc_fixpt_lt(rgb_plus_1->blue, rgb->blue))
593 			rgb_plus_1->blue = rgb->blue;
594 
595 		rgb->delta_red = dc_fixpt_sub(rgb_plus_1->red, rgb->red);
596 		rgb->delta_green = dc_fixpt_sub(rgb_plus_1->green, rgb->green);
597 		rgb->delta_blue = dc_fixpt_sub(rgb_plus_1->blue, rgb->blue);
598 
599 		++rgb_plus_1;
600 		++rgb;
601 		++i;
602 	}
603 
604 	convert_to_custom_float(rgb_resulted, arr_points, hw_points);
605 
606 	return true;
607 }
608 
609 static bool
dce110_set_output_transfer_func(struct dc * dc,struct pipe_ctx * pipe_ctx,const struct dc_stream_state * stream)610 dce110_set_output_transfer_func(struct dc *dc, struct pipe_ctx *pipe_ctx,
611 				const struct dc_stream_state *stream)
612 {
613 	struct transform *xfm = pipe_ctx->plane_res.xfm;
614 
615 	xfm->funcs->opp_power_on_regamma_lut(xfm, true);
616 	xfm->regamma_params.hw_points_num = GAMMA_HW_POINTS_NUM;
617 
618 	if (stream->out_transfer_func &&
619 	    stream->out_transfer_func->type == TF_TYPE_PREDEFINED &&
620 	    stream->out_transfer_func->tf == TRANSFER_FUNCTION_SRGB) {
621 		xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_SRGB);
622 	} else if (dce110_translate_regamma_to_hw_format(stream->out_transfer_func,
623 							 &xfm->regamma_params)) {
624 		xfm->funcs->opp_program_regamma_pwl(xfm, &xfm->regamma_params);
625 		xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_USER);
626 	} else {
627 		xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_BYPASS);
628 	}
629 
630 	xfm->funcs->opp_power_on_regamma_lut(xfm, false);
631 
632 	return true;
633 }
634 
dce110_update_info_frame(struct pipe_ctx * pipe_ctx)635 void dce110_update_info_frame(struct pipe_ctx *pipe_ctx)
636 {
637 	bool is_hdmi_tmds;
638 	bool is_dp;
639 
640 	ASSERT(pipe_ctx->stream);
641 
642 	if (pipe_ctx->stream_res.stream_enc == NULL)
643 		return;  /* this is not root pipe */
644 
645 	is_hdmi_tmds = dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal);
646 	is_dp = dc_is_dp_signal(pipe_ctx->stream->signal);
647 
648 	if (!is_hdmi_tmds && !is_dp)
649 		return;
650 
651 	if (is_hdmi_tmds)
652 		pipe_ctx->stream_res.stream_enc->funcs->update_hdmi_info_packets(
653 			pipe_ctx->stream_res.stream_enc,
654 			&pipe_ctx->stream_res.encoder_info_frame);
655 	else
656 		pipe_ctx->stream_res.stream_enc->funcs->update_dp_info_packets(
657 			pipe_ctx->stream_res.stream_enc,
658 			&pipe_ctx->stream_res.encoder_info_frame);
659 }
660 
dce110_enable_stream(struct pipe_ctx * pipe_ctx)661 void dce110_enable_stream(struct pipe_ctx *pipe_ctx)
662 {
663 	enum dc_lane_count lane_count =
664 		pipe_ctx->stream->link->cur_link_settings.lane_count;
665 	struct dc_crtc_timing *timing = &pipe_ctx->stream->timing;
666 	struct dc_link *link = pipe_ctx->stream->link;
667 	const struct dc *dc = link->dc;
668 
669 	uint32_t active_total_with_borders;
670 	uint32_t early_control = 0;
671 	struct timing_generator *tg = pipe_ctx->stream_res.tg;
672 
673 	/* For MST, there are multiply stream go to only one link.
674 	 * connect DIG back_end to front_end while enable_stream and
675 	 * disconnect them during disable_stream
676 	 * BY this, it is logic clean to separate stream and link */
677 	link->link_enc->funcs->connect_dig_be_to_fe(link->link_enc,
678 						    pipe_ctx->stream_res.stream_enc->id, true);
679 
680 	dc->hwss.update_info_frame(pipe_ctx);
681 
682 	/* enable early control to avoid corruption on DP monitor*/
683 	active_total_with_borders =
684 			timing->h_addressable
685 				+ timing->h_border_left
686 				+ timing->h_border_right;
687 
688 	if (lane_count != 0)
689 		early_control = active_total_with_borders % lane_count;
690 
691 	if (early_control == 0)
692 		early_control = lane_count;
693 
694 	tg->funcs->set_early_control(tg, early_control);
695 
696 	/* enable audio only within mode set */
697 	if (pipe_ctx->stream_res.audio != NULL) {
698 		if (dc_is_dp_signal(pipe_ctx->stream->signal))
699 			pipe_ctx->stream_res.stream_enc->funcs->dp_audio_enable(pipe_ctx->stream_res.stream_enc);
700 	}
701 
702 
703 
704 
705 }
706 
link_transmitter_control(struct dc_bios * bios,struct bp_transmitter_control * cntl)707 static enum bp_result link_transmitter_control(
708 		struct dc_bios *bios,
709 	struct bp_transmitter_control *cntl)
710 {
711 	enum bp_result result;
712 
713 	result = bios->funcs->transmitter_control(bios, cntl);
714 
715 	return result;
716 }
717 
718 /*
719  * @brief
720  * eDP only.
721  */
dce110_edp_wait_for_hpd_ready(struct dc_link * link,bool power_up)722 void dce110_edp_wait_for_hpd_ready(
723 		struct dc_link *link,
724 		bool power_up)
725 {
726 	struct dc_context *ctx = link->ctx;
727 	struct graphics_object_id connector = link->link_enc->connector;
728 	struct gpio *hpd;
729 	struct dc_sink *sink = link->local_sink;
730 	bool edp_hpd_high = false;
731 	uint32_t time_elapsed = 0;
732 	uint32_t timeout = power_up ?
733 		PANEL_POWER_UP_TIMEOUT : PANEL_POWER_DOWN_TIMEOUT;
734 
735 	if (dal_graphics_object_id_get_connector_id(connector)
736 			!= CONNECTOR_ID_EDP) {
737 		BREAK_TO_DEBUGGER();
738 		return;
739 	}
740 
741 	if (!power_up)
742 		/*
743 		 * From KV, we will not HPD low after turning off VCC -
744 		 * instead, we will check the SW timer in power_up().
745 		 */
746 		return;
747 
748 	/*
749 	 * When we power on/off the eDP panel,
750 	 * we need to wait until SENSE bit is high/low.
751 	 */
752 
753 	/* obtain HPD */
754 	/* TODO what to do with this? */
755 	hpd = get_hpd_gpio(ctx->dc_bios, connector, ctx->gpio_service);
756 
757 	if (!hpd) {
758 		BREAK_TO_DEBUGGER();
759 		return;
760 	}
761 
762 	if (sink != NULL) {
763 		if (sink->edid_caps.panel_patch.extra_t3_ms > 0) {
764 			int extra_t3_in_ms = sink->edid_caps.panel_patch.extra_t3_ms;
765 
766 			msleep(extra_t3_in_ms);
767 		}
768 	}
769 
770 	dal_gpio_open(hpd, GPIO_MODE_INTERRUPT);
771 
772 	/* wait until timeout or panel detected */
773 
774 	do {
775 		uint32_t detected = 0;
776 
777 		dal_gpio_get_value(hpd, &detected);
778 
779 		if (!(detected ^ power_up)) {
780 			edp_hpd_high = true;
781 			break;
782 		}
783 
784 		msleep(HPD_CHECK_INTERVAL);
785 
786 		time_elapsed += HPD_CHECK_INTERVAL;
787 	} while (time_elapsed < timeout);
788 
789 	dal_gpio_close(hpd);
790 
791 	dal_gpio_destroy_irq(&hpd);
792 
793 	if (false == edp_hpd_high) {
794 		DC_LOG_ERROR(
795 				"%s: wait timed out!\n", __func__);
796 	}
797 }
798 
dce110_edp_power_control(struct dc_link * link,bool power_up)799 void dce110_edp_power_control(
800 		struct dc_link *link,
801 		bool power_up)
802 {
803 	struct dc_context *ctx = link->ctx;
804 	struct bp_transmitter_control cntl = { 0 };
805 	enum bp_result bp_result;
806 	uint8_t panel_instance;
807 
808 
809 	if (dal_graphics_object_id_get_connector_id(link->link_enc->connector)
810 			!= CONNECTOR_ID_EDP) {
811 		BREAK_TO_DEBUGGER();
812 		return;
813 	}
814 
815 	if (!link->panel_cntl)
816 		return;
817 	if (power_up !=
818 		link->panel_cntl->funcs->is_panel_powered_on(link->panel_cntl)) {
819 
820 		unsigned long long current_ts = dm_get_timestamp(ctx);
821 		unsigned long long time_since_edp_poweroff_ms =
822 				div64_u64(dm_get_elapse_time_in_ns(
823 						ctx,
824 						current_ts,
825 						link->link_trace.time_stamp.edp_poweroff), 1000000);
826 		unsigned long long time_since_edp_poweron_ms =
827 				div64_u64(dm_get_elapse_time_in_ns(
828 						ctx,
829 						current_ts,
830 						link->link_trace.time_stamp.edp_poweron), 1000000);
831 		DC_LOG_HW_RESUME_S3(
832 				"%s: transition: power_up=%d current_ts=%llu edp_poweroff=%llu edp_poweron=%llu time_since_edp_poweroff_ms=%llu time_since_edp_poweron_ms=%llu",
833 				__func__,
834 				power_up,
835 				current_ts,
836 				link->link_trace.time_stamp.edp_poweroff,
837 				link->link_trace.time_stamp.edp_poweron,
838 				time_since_edp_poweroff_ms,
839 				time_since_edp_poweron_ms);
840 
841 		/* Send VBIOS command to prompt eDP panel power */
842 		if (power_up) {
843 			/* edp requires a min of 500ms from LCDVDD off to on */
844 			unsigned long long remaining_min_edp_poweroff_time_ms = 500;
845 
846 			/* add time defined by a patch, if any (usually patch extra_t12_ms is 0) */
847 			if (link->local_sink != NULL)
848 				remaining_min_edp_poweroff_time_ms +=
849 					link->local_sink->edid_caps.panel_patch.extra_t12_ms;
850 
851 			/* Adjust remaining_min_edp_poweroff_time_ms if this is not the first time. */
852 			if (link->link_trace.time_stamp.edp_poweroff != 0) {
853 				if (time_since_edp_poweroff_ms < remaining_min_edp_poweroff_time_ms)
854 					remaining_min_edp_poweroff_time_ms =
855 						remaining_min_edp_poweroff_time_ms - time_since_edp_poweroff_ms;
856 				else
857 					remaining_min_edp_poweroff_time_ms = 0;
858 			}
859 
860 			if (remaining_min_edp_poweroff_time_ms) {
861 				DC_LOG_HW_RESUME_S3(
862 						"%s: remaining_min_edp_poweroff_time_ms=%llu: begin wait.\n",
863 						__func__, remaining_min_edp_poweroff_time_ms);
864 				msleep(remaining_min_edp_poweroff_time_ms);
865 				DC_LOG_HW_RESUME_S3(
866 						"%s: remaining_min_edp_poweroff_time_ms=%llu: end wait.\n",
867 						__func__, remaining_min_edp_poweroff_time_ms);
868 				dm_output_to_console("%s: wait %lld ms to power on eDP.\n",
869 						__func__, remaining_min_edp_poweroff_time_ms);
870 			} else {
871 				DC_LOG_HW_RESUME_S3(
872 						"%s: remaining_min_edp_poweroff_time_ms=%llu: no wait required.\n",
873 						__func__, remaining_min_edp_poweroff_time_ms);
874 			}
875 		}
876 
877 		DC_LOG_HW_RESUME_S3(
878 				"%s: BEGIN: Panel Power action: %s\n",
879 				__func__, (power_up ? "On":"Off"));
880 
881 		cntl.action = power_up ?
882 			TRANSMITTER_CONTROL_POWER_ON :
883 			TRANSMITTER_CONTROL_POWER_OFF;
884 		cntl.transmitter = link->link_enc->transmitter;
885 		cntl.connector_obj_id = link->link_enc->connector;
886 		cntl.coherent = false;
887 		cntl.lanes_number = LANE_COUNT_FOUR;
888 		cntl.hpd_sel = link->link_enc->hpd_source;
889 		panel_instance = link->panel_cntl->inst;
890 
891 		if (ctx->dc->ctx->dmub_srv &&
892 				ctx->dc->debug.dmub_command_table) {
893 			if (cntl.action == TRANSMITTER_CONTROL_POWER_ON)
894 				bp_result = ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
895 						LVTMA_CONTROL_POWER_ON,
896 						panel_instance);
897 			else
898 				bp_result = ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
899 						LVTMA_CONTROL_POWER_OFF,
900 						panel_instance);
901 		}
902 
903 		bp_result = link_transmitter_control(ctx->dc_bios, &cntl);
904 
905 		DC_LOG_HW_RESUME_S3(
906 				"%s: END: Panel Power action: %s bp_result=%u\n",
907 				__func__, (power_up ? "On":"Off"),
908 				bp_result);
909 
910 		if (!power_up)
911 			/*save driver power off time stamp*/
912 			link->link_trace.time_stamp.edp_poweroff = dm_get_timestamp(ctx);
913 		else
914 			link->link_trace.time_stamp.edp_poweron = dm_get_timestamp(ctx);
915 
916 		DC_LOG_HW_RESUME_S3(
917 				"%s: updated values: edp_poweroff=%llu edp_poweron=%llu\n",
918 				__func__,
919 				link->link_trace.time_stamp.edp_poweroff,
920 				link->link_trace.time_stamp.edp_poweron);
921 
922 		if (bp_result != BP_RESULT_OK)
923 			DC_LOG_ERROR(
924 					"%s: Panel Power bp_result: %d\n",
925 					__func__, bp_result);
926 	} else {
927 		DC_LOG_HW_RESUME_S3(
928 				"%s: Skipping Panel Power action: %s\n",
929 				__func__, (power_up ? "On":"Off"));
930 	}
931 }
932 
dce110_edp_wait_for_T12(struct dc_link * link)933 void dce110_edp_wait_for_T12(
934 		struct dc_link *link)
935 {
936 	struct dc_context *ctx = link->ctx;
937 
938 	if (dal_graphics_object_id_get_connector_id(link->link_enc->connector)
939 			!= CONNECTOR_ID_EDP) {
940 		BREAK_TO_DEBUGGER();
941 		return;
942 	}
943 
944 	if (!link->panel_cntl)
945 		return;
946 
947 	if (!link->panel_cntl->funcs->is_panel_powered_on(link->panel_cntl) &&
948 			link->link_trace.time_stamp.edp_poweroff != 0) {
949 		unsigned int t12_duration = 500; // Default T12 as per spec
950 		unsigned long long current_ts = dm_get_timestamp(ctx);
951 		unsigned long long time_since_edp_poweroff_ms =
952 				div64_u64(dm_get_elapse_time_in_ns(
953 						ctx,
954 						current_ts,
955 						link->link_trace.time_stamp.edp_poweroff), 1000000);
956 
957 		t12_duration += link->local_sink->edid_caps.panel_patch.extra_t12_ms; // Add extra T12
958 
959 		if (time_since_edp_poweroff_ms < t12_duration)
960 			msleep(t12_duration - time_since_edp_poweroff_ms);
961 	}
962 }
963 
964 /*todo: cloned in stream enc, fix*/
965 /*
966  * @brief
967  * eDP only. Control the backlight of the eDP panel
968  */
dce110_edp_backlight_control(struct dc_link * link,bool enable)969 void dce110_edp_backlight_control(
970 		struct dc_link *link,
971 		bool enable)
972 {
973 	struct dc_context *ctx = link->ctx;
974 	struct bp_transmitter_control cntl = { 0 };
975 	uint8_t panel_instance;
976 
977 	if (dal_graphics_object_id_get_connector_id(link->link_enc->connector)
978 		!= CONNECTOR_ID_EDP) {
979 		BREAK_TO_DEBUGGER();
980 		return;
981 	}
982 
983 	if (link->panel_cntl) {
984 		bool is_backlight_on = link->panel_cntl->funcs->is_panel_backlight_on(link->panel_cntl);
985 
986 		if ((enable && is_backlight_on) || (!enable && !is_backlight_on)) {
987 			DC_LOG_HW_RESUME_S3(
988 				"%s: panel already powered up/off. Do nothing.\n",
989 				__func__);
990 			return;
991 		}
992 	}
993 
994 	/* Send VBIOS command to control eDP panel backlight */
995 
996 	DC_LOG_HW_RESUME_S3(
997 			"%s: backlight action: %s\n",
998 			__func__, (enable ? "On":"Off"));
999 
1000 	cntl.action = enable ?
1001 		TRANSMITTER_CONTROL_BACKLIGHT_ON :
1002 		TRANSMITTER_CONTROL_BACKLIGHT_OFF;
1003 
1004 	/*cntl.engine_id = ctx->engine;*/
1005 	cntl.transmitter = link->link_enc->transmitter;
1006 	cntl.connector_obj_id = link->link_enc->connector;
1007 	/*todo: unhardcode*/
1008 	cntl.lanes_number = LANE_COUNT_FOUR;
1009 	cntl.hpd_sel = link->link_enc->hpd_source;
1010 	cntl.signal = SIGNAL_TYPE_EDP;
1011 
1012 	/* For eDP, the following delays might need to be considered
1013 	 * after link training completed:
1014 	 * idle period - min. accounts for required BS-Idle pattern,
1015 	 * max. allows for source frame synchronization);
1016 	 * 50 msec max. delay from valid video data from source
1017 	 * to video on dislpay or backlight enable.
1018 	 *
1019 	 * Disable the delay for now.
1020 	 * Enable it in the future if necessary.
1021 	 */
1022 	/* dc_service_sleep_in_milliseconds(50); */
1023 		/*edp 1.2*/
1024 	panel_instance = link->panel_cntl->inst;
1025 
1026 	if (cntl.action == TRANSMITTER_CONTROL_BACKLIGHT_ON) {
1027 		if (!link->dc->config.edp_no_power_sequencing)
1028 		/*
1029 		 * Sometimes, DP receiver chip power-controlled externally by an
1030 		 * Embedded Controller could be treated and used as eDP,
1031 		 * if it drives mobile display. In this case,
1032 		 * we shouldn't be doing power-sequencing, hence we can skip
1033 		 * waiting for T7-ready.
1034 		 */
1035 			edp_receiver_ready_T7(link);
1036 		else
1037 			DC_LOG_DC("edp_receiver_ready_T7 skipped\n");
1038 	}
1039 
1040 	if (ctx->dc->ctx->dmub_srv &&
1041 			ctx->dc->debug.dmub_command_table) {
1042 		if (cntl.action == TRANSMITTER_CONTROL_BACKLIGHT_ON)
1043 			ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
1044 					LVTMA_CONTROL_LCD_BLON,
1045 					panel_instance);
1046 		else
1047 			ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
1048 					LVTMA_CONTROL_LCD_BLOFF,
1049 					panel_instance);
1050 	}
1051 
1052 	link_transmitter_control(ctx->dc_bios, &cntl);
1053 
1054 	if (enable && link->dpcd_sink_ext_caps.bits.oled)
1055 		msleep(OLED_POST_T7_DELAY);
1056 
1057 	if (link->dpcd_sink_ext_caps.bits.oled ||
1058 		link->dpcd_sink_ext_caps.bits.hdr_aux_backlight_control == 1 ||
1059 		link->dpcd_sink_ext_caps.bits.sdr_aux_backlight_control == 1)
1060 		dc_link_backlight_enable_aux(link, enable);
1061 
1062 	/*edp 1.2*/
1063 	if (cntl.action == TRANSMITTER_CONTROL_BACKLIGHT_OFF) {
1064 		if (!link->dc->config.edp_no_power_sequencing)
1065 		/*
1066 		 * Sometimes, DP receiver chip power-controlled externally by an
1067 		 * Embedded Controller could be treated and used as eDP,
1068 		 * if it drives mobile display. In this case,
1069 		 * we shouldn't be doing power-sequencing, hence we can skip
1070 		 * waiting for T9-ready.
1071 		 */
1072 			edp_add_delay_for_T9(link);
1073 		else
1074 			DC_LOG_DC("edp_receiver_ready_T9 skipped\n");
1075 	}
1076 
1077 	if (!enable && link->dpcd_sink_ext_caps.bits.oled)
1078 		msleep(OLED_PRE_T11_DELAY);
1079 }
1080 
dce110_enable_audio_stream(struct pipe_ctx * pipe_ctx)1081 void dce110_enable_audio_stream(struct pipe_ctx *pipe_ctx)
1082 {
1083 	/* notify audio driver for audio modes of monitor */
1084 	struct dc *dc;
1085 	struct clk_mgr *clk_mgr;
1086 	unsigned int i, num_audio = 1;
1087 
1088 	if (!pipe_ctx->stream)
1089 		return;
1090 
1091 	dc = pipe_ctx->stream->ctx->dc;
1092 	clk_mgr = dc->clk_mgr;
1093 
1094 	if (pipe_ctx->stream_res.audio && pipe_ctx->stream_res.audio->enabled == true)
1095 		return;
1096 
1097 	if (pipe_ctx->stream_res.audio) {
1098 		for (i = 0; i < MAX_PIPES; i++) {
1099 			/*current_state not updated yet*/
1100 			if (dc->current_state->res_ctx.pipe_ctx[i].stream_res.audio != NULL)
1101 				num_audio++;
1102 		}
1103 
1104 		pipe_ctx->stream_res.audio->funcs->az_enable(pipe_ctx->stream_res.audio);
1105 
1106 		if (num_audio >= 1 && clk_mgr->funcs->enable_pme_wa)
1107 			/*this is the first audio. apply the PME w/a in order to wake AZ from D3*/
1108 			clk_mgr->funcs->enable_pme_wa(clk_mgr);
1109 		/* un-mute audio */
1110 		/* TODO: audio should be per stream rather than per link */
1111 		pipe_ctx->stream_res.stream_enc->funcs->audio_mute_control(
1112 					pipe_ctx->stream_res.stream_enc, false);
1113 		if (pipe_ctx->stream_res.audio)
1114 			pipe_ctx->stream_res.audio->enabled = true;
1115 	}
1116 }
1117 
dce110_disable_audio_stream(struct pipe_ctx * pipe_ctx)1118 void dce110_disable_audio_stream(struct pipe_ctx *pipe_ctx)
1119 {
1120 	struct dc *dc;
1121 	struct clk_mgr *clk_mgr;
1122 
1123 	if (!pipe_ctx || !pipe_ctx->stream)
1124 		return;
1125 
1126 	dc = pipe_ctx->stream->ctx->dc;
1127 	clk_mgr = dc->clk_mgr;
1128 
1129 	if (pipe_ctx->stream_res.audio && pipe_ctx->stream_res.audio->enabled == false)
1130 		return;
1131 
1132 	pipe_ctx->stream_res.stream_enc->funcs->audio_mute_control(
1133 			pipe_ctx->stream_res.stream_enc, true);
1134 	if (pipe_ctx->stream_res.audio) {
1135 		pipe_ctx->stream_res.audio->enabled = false;
1136 
1137 		if (dc_is_dp_signal(pipe_ctx->stream->signal))
1138 			pipe_ctx->stream_res.stream_enc->funcs->dp_audio_disable(
1139 					pipe_ctx->stream_res.stream_enc);
1140 		else
1141 			pipe_ctx->stream_res.stream_enc->funcs->hdmi_audio_disable(
1142 					pipe_ctx->stream_res.stream_enc);
1143 
1144 		if (clk_mgr->funcs->enable_pme_wa)
1145 			/*this is the first audio. apply the PME w/a in order to wake AZ from D3*/
1146 			clk_mgr->funcs->enable_pme_wa(clk_mgr);
1147 
1148 		/* TODO: notify audio driver for if audio modes list changed
1149 		 * add audio mode list change flag */
1150 		/* dal_audio_disable_azalia_audio_jack_presence(stream->audio,
1151 		 * stream->stream_engine_id);
1152 		 */
1153 	}
1154 }
1155 
dce110_disable_stream(struct pipe_ctx * pipe_ctx)1156 void dce110_disable_stream(struct pipe_ctx *pipe_ctx)
1157 {
1158 	struct dc_stream_state *stream = pipe_ctx->stream;
1159 	struct dc_link *link = stream->link;
1160 	struct dc *dc = pipe_ctx->stream->ctx->dc;
1161 
1162 	if (dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal)) {
1163 		pipe_ctx->stream_res.stream_enc->funcs->stop_hdmi_info_packets(
1164 			pipe_ctx->stream_res.stream_enc);
1165 		pipe_ctx->stream_res.stream_enc->funcs->hdmi_reset_stream_attribute(
1166 			pipe_ctx->stream_res.stream_enc);
1167 	}
1168 
1169 	if (dc_is_dp_signal(pipe_ctx->stream->signal))
1170 		pipe_ctx->stream_res.stream_enc->funcs->stop_dp_info_packets(
1171 			pipe_ctx->stream_res.stream_enc);
1172 
1173 	dc->hwss.disable_audio_stream(pipe_ctx);
1174 
1175 	link->link_enc->funcs->connect_dig_be_to_fe(
1176 			link->link_enc,
1177 			pipe_ctx->stream_res.stream_enc->id,
1178 			false);
1179 
1180 }
1181 
dce110_unblank_stream(struct pipe_ctx * pipe_ctx,struct dc_link_settings * link_settings)1182 void dce110_unblank_stream(struct pipe_ctx *pipe_ctx,
1183 		struct dc_link_settings *link_settings)
1184 {
1185 	struct encoder_unblank_param params = { { 0 } };
1186 	struct dc_stream_state *stream = pipe_ctx->stream;
1187 	struct dc_link *link = stream->link;
1188 	struct dce_hwseq *hws = link->dc->hwseq;
1189 
1190 	/* only 3 items below are used by unblank */
1191 	params.timing = pipe_ctx->stream->timing;
1192 	params.link_settings.link_rate = link_settings->link_rate;
1193 
1194 	if (dc_is_dp_signal(pipe_ctx->stream->signal))
1195 		pipe_ctx->stream_res.stream_enc->funcs->dp_unblank(pipe_ctx->stream_res.stream_enc, &params);
1196 
1197 	if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1198 		hws->funcs.edp_backlight_control(link, true);
1199 	}
1200 }
1201 
dce110_blank_stream(struct pipe_ctx * pipe_ctx)1202 void dce110_blank_stream(struct pipe_ctx *pipe_ctx)
1203 {
1204 	struct dc_stream_state *stream = pipe_ctx->stream;
1205 	struct dc_link *link = stream->link;
1206 	struct dce_hwseq *hws = link->dc->hwseq;
1207 
1208 	if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1209 		hws->funcs.edp_backlight_control(link, false);
1210 		link->dc->hwss.set_abm_immediate_disable(pipe_ctx);
1211 	}
1212 
1213 	if (dc_is_dp_signal(pipe_ctx->stream->signal)) {
1214 		pipe_ctx->stream_res.stream_enc->funcs->dp_blank(pipe_ctx->stream_res.stream_enc);
1215 
1216 		if (!dc_is_embedded_signal(pipe_ctx->stream->signal)) {
1217 			/*
1218 			 * After output is idle pattern some sinks need time to recognize the stream
1219 			 * has changed or they enter protection state and hang.
1220 			 */
1221 			msleep(60);
1222 		} else if (pipe_ctx->stream->signal == SIGNAL_TYPE_EDP)
1223 			edp_receiver_ready_T9(link);
1224 	}
1225 
1226 }
1227 
1228 
dce110_set_avmute(struct pipe_ctx * pipe_ctx,bool enable)1229 void dce110_set_avmute(struct pipe_ctx *pipe_ctx, bool enable)
1230 {
1231 	if (pipe_ctx != NULL && pipe_ctx->stream_res.stream_enc != NULL)
1232 		pipe_ctx->stream_res.stream_enc->funcs->set_avmute(pipe_ctx->stream_res.stream_enc, enable);
1233 }
1234 
translate_to_dto_source(enum controller_id crtc_id)1235 static enum audio_dto_source translate_to_dto_source(enum controller_id crtc_id)
1236 {
1237 	switch (crtc_id) {
1238 	case CONTROLLER_ID_D0:
1239 		return DTO_SOURCE_ID0;
1240 	case CONTROLLER_ID_D1:
1241 		return DTO_SOURCE_ID1;
1242 	case CONTROLLER_ID_D2:
1243 		return DTO_SOURCE_ID2;
1244 	case CONTROLLER_ID_D3:
1245 		return DTO_SOURCE_ID3;
1246 	case CONTROLLER_ID_D4:
1247 		return DTO_SOURCE_ID4;
1248 	case CONTROLLER_ID_D5:
1249 		return DTO_SOURCE_ID5;
1250 	default:
1251 		return DTO_SOURCE_UNKNOWN;
1252 	}
1253 }
1254 
build_audio_output(struct dc_state * state,const struct pipe_ctx * pipe_ctx,struct audio_output * audio_output)1255 static void build_audio_output(
1256 	struct dc_state *state,
1257 	const struct pipe_ctx *pipe_ctx,
1258 	struct audio_output *audio_output)
1259 {
1260 	const struct dc_stream_state *stream = pipe_ctx->stream;
1261 	audio_output->engine_id = pipe_ctx->stream_res.stream_enc->id;
1262 
1263 	audio_output->signal = pipe_ctx->stream->signal;
1264 
1265 	/* audio_crtc_info  */
1266 
1267 	audio_output->crtc_info.h_total =
1268 		stream->timing.h_total;
1269 
1270 	/*
1271 	 * Audio packets are sent during actual CRTC blank physical signal, we
1272 	 * need to specify actual active signal portion
1273 	 */
1274 	audio_output->crtc_info.h_active =
1275 			stream->timing.h_addressable
1276 			+ stream->timing.h_border_left
1277 			+ stream->timing.h_border_right;
1278 
1279 	audio_output->crtc_info.v_active =
1280 			stream->timing.v_addressable
1281 			+ stream->timing.v_border_top
1282 			+ stream->timing.v_border_bottom;
1283 
1284 	audio_output->crtc_info.pixel_repetition = 1;
1285 
1286 	audio_output->crtc_info.interlaced =
1287 			stream->timing.flags.INTERLACE;
1288 
1289 	audio_output->crtc_info.refresh_rate =
1290 		(stream->timing.pix_clk_100hz*100)/
1291 		(stream->timing.h_total*stream->timing.v_total);
1292 
1293 	audio_output->crtc_info.color_depth =
1294 		stream->timing.display_color_depth;
1295 
1296 	audio_output->crtc_info.requested_pixel_clock_100Hz =
1297 			pipe_ctx->stream_res.pix_clk_params.requested_pix_clk_100hz;
1298 
1299 	audio_output->crtc_info.calculated_pixel_clock_100Hz =
1300 			pipe_ctx->stream_res.pix_clk_params.requested_pix_clk_100hz;
1301 
1302 /*for HDMI, audio ACR is with deep color ratio factor*/
1303 	if (dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal) &&
1304 		audio_output->crtc_info.requested_pixel_clock_100Hz ==
1305 				(stream->timing.pix_clk_100hz)) {
1306 		if (pipe_ctx->stream_res.pix_clk_params.pixel_encoding == PIXEL_ENCODING_YCBCR420) {
1307 			audio_output->crtc_info.requested_pixel_clock_100Hz =
1308 					audio_output->crtc_info.requested_pixel_clock_100Hz/2;
1309 			audio_output->crtc_info.calculated_pixel_clock_100Hz =
1310 					pipe_ctx->stream_res.pix_clk_params.requested_pix_clk_100hz/2;
1311 
1312 		}
1313 	}
1314 
1315 	if (state->clk_mgr &&
1316 		(pipe_ctx->stream->signal == SIGNAL_TYPE_DISPLAY_PORT ||
1317 			pipe_ctx->stream->signal == SIGNAL_TYPE_DISPLAY_PORT_MST)) {
1318 		audio_output->pll_info.dp_dto_source_clock_in_khz =
1319 				state->clk_mgr->funcs->get_dp_ref_clk_frequency(
1320 						state->clk_mgr);
1321 	}
1322 
1323 	audio_output->pll_info.feed_back_divider =
1324 			pipe_ctx->pll_settings.feedback_divider;
1325 
1326 	audio_output->pll_info.dto_source =
1327 		translate_to_dto_source(
1328 			pipe_ctx->stream_res.tg->inst + 1);
1329 
1330 	/* TODO hard code to enable for now. Need get from stream */
1331 	audio_output->pll_info.ss_enabled = true;
1332 
1333 	audio_output->pll_info.ss_percentage =
1334 			pipe_ctx->pll_settings.ss_percentage;
1335 }
1336 
program_scaler(const struct dc * dc,const struct pipe_ctx * pipe_ctx)1337 static void program_scaler(const struct dc *dc,
1338 		const struct pipe_ctx *pipe_ctx)
1339 {
1340 	struct tg_color color = {0};
1341 
1342 #if defined(CONFIG_DRM_AMD_DC_DCN)
1343 	/* TOFPGA */
1344 	if (pipe_ctx->plane_res.xfm->funcs->transform_set_pixel_storage_depth == NULL)
1345 		return;
1346 #endif
1347 
1348 	if (dc->debug.visual_confirm == VISUAL_CONFIRM_SURFACE)
1349 		get_surface_visual_confirm_color(pipe_ctx, &color);
1350 	else
1351 		color_space_to_black_color(dc,
1352 				pipe_ctx->stream->output_color_space,
1353 				&color);
1354 
1355 	pipe_ctx->plane_res.xfm->funcs->transform_set_pixel_storage_depth(
1356 		pipe_ctx->plane_res.xfm,
1357 		pipe_ctx->plane_res.scl_data.lb_params.depth,
1358 		&pipe_ctx->stream->bit_depth_params);
1359 
1360 	if (pipe_ctx->stream_res.tg->funcs->set_overscan_blank_color) {
1361 		/*
1362 		 * The way 420 is packed, 2 channels carry Y component, 1 channel
1363 		 * alternate between Cb and Cr, so both channels need the pixel
1364 		 * value for Y
1365 		 */
1366 		if (pipe_ctx->stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR420)
1367 			color.color_r_cr = color.color_g_y;
1368 
1369 		pipe_ctx->stream_res.tg->funcs->set_overscan_blank_color(
1370 				pipe_ctx->stream_res.tg,
1371 				&color);
1372 	}
1373 
1374 	pipe_ctx->plane_res.xfm->funcs->transform_set_scaler(pipe_ctx->plane_res.xfm,
1375 		&pipe_ctx->plane_res.scl_data);
1376 }
1377 
dce110_enable_stream_timing(struct pipe_ctx * pipe_ctx,struct dc_state * context,struct dc * dc)1378 static enum dc_status dce110_enable_stream_timing(
1379 		struct pipe_ctx *pipe_ctx,
1380 		struct dc_state *context,
1381 		struct dc *dc)
1382 {
1383 	struct dc_stream_state *stream = pipe_ctx->stream;
1384 	struct pipe_ctx *pipe_ctx_old = &dc->current_state->res_ctx.
1385 			pipe_ctx[pipe_ctx->pipe_idx];
1386 	struct tg_color black_color = {0};
1387 
1388 	if (!pipe_ctx_old->stream) {
1389 
1390 		/* program blank color */
1391 		color_space_to_black_color(dc,
1392 				stream->output_color_space, &black_color);
1393 		pipe_ctx->stream_res.tg->funcs->set_blank_color(
1394 				pipe_ctx->stream_res.tg,
1395 				&black_color);
1396 
1397 		/*
1398 		 * Must blank CRTC after disabling power gating and before any
1399 		 * programming, otherwise CRTC will be hung in bad state
1400 		 */
1401 		pipe_ctx->stream_res.tg->funcs->set_blank(pipe_ctx->stream_res.tg, true);
1402 
1403 		if (false == pipe_ctx->clock_source->funcs->program_pix_clk(
1404 				pipe_ctx->clock_source,
1405 				&pipe_ctx->stream_res.pix_clk_params,
1406 				&pipe_ctx->pll_settings)) {
1407 			BREAK_TO_DEBUGGER();
1408 			return DC_ERROR_UNEXPECTED;
1409 		}
1410 
1411 		pipe_ctx->stream_res.tg->funcs->program_timing(
1412 				pipe_ctx->stream_res.tg,
1413 				&stream->timing,
1414 				0,
1415 				0,
1416 				0,
1417 				0,
1418 				pipe_ctx->stream->signal,
1419 				true);
1420 	}
1421 
1422 	if (!pipe_ctx_old->stream) {
1423 		if (false == pipe_ctx->stream_res.tg->funcs->enable_crtc(
1424 				pipe_ctx->stream_res.tg)) {
1425 			BREAK_TO_DEBUGGER();
1426 			return DC_ERROR_UNEXPECTED;
1427 		}
1428 	}
1429 
1430 	return DC_OK;
1431 }
1432 
apply_single_controller_ctx_to_hw(struct pipe_ctx * pipe_ctx,struct dc_state * context,struct dc * dc)1433 static enum dc_status apply_single_controller_ctx_to_hw(
1434 		struct pipe_ctx *pipe_ctx,
1435 		struct dc_state *context,
1436 		struct dc *dc)
1437 {
1438 	struct dc_stream_state *stream = pipe_ctx->stream;
1439 	struct drr_params params = {0};
1440 	unsigned int event_triggers = 0;
1441 	struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe;
1442 	struct dce_hwseq *hws = dc->hwseq;
1443 
1444 	if (hws->funcs.disable_stream_gating) {
1445 		hws->funcs.disable_stream_gating(dc, pipe_ctx);
1446 	}
1447 
1448 	if (pipe_ctx->stream_res.audio != NULL) {
1449 		struct audio_output audio_output;
1450 
1451 		build_audio_output(context, pipe_ctx, &audio_output);
1452 
1453 		if (dc_is_dp_signal(pipe_ctx->stream->signal))
1454 			pipe_ctx->stream_res.stream_enc->funcs->dp_audio_setup(
1455 					pipe_ctx->stream_res.stream_enc,
1456 					pipe_ctx->stream_res.audio->inst,
1457 					&pipe_ctx->stream->audio_info);
1458 		else
1459 			pipe_ctx->stream_res.stream_enc->funcs->hdmi_audio_setup(
1460 					pipe_ctx->stream_res.stream_enc,
1461 					pipe_ctx->stream_res.audio->inst,
1462 					&pipe_ctx->stream->audio_info,
1463 					&audio_output.crtc_info);
1464 
1465 		pipe_ctx->stream_res.audio->funcs->az_configure(
1466 				pipe_ctx->stream_res.audio,
1467 				pipe_ctx->stream->signal,
1468 				&audio_output.crtc_info,
1469 				&pipe_ctx->stream->audio_info);
1470 	}
1471 
1472 	/*  */
1473 	/* Do not touch stream timing on seamless boot optimization. */
1474 	if (!pipe_ctx->stream->apply_seamless_boot_optimization)
1475 		hws->funcs.enable_stream_timing(pipe_ctx, context, dc);
1476 
1477 	if (hws->funcs.setup_vupdate_interrupt)
1478 		hws->funcs.setup_vupdate_interrupt(dc, pipe_ctx);
1479 
1480 	params.vertical_total_min = stream->adjust.v_total_min;
1481 	params.vertical_total_max = stream->adjust.v_total_max;
1482 	if (pipe_ctx->stream_res.tg->funcs->set_drr)
1483 		pipe_ctx->stream_res.tg->funcs->set_drr(
1484 			pipe_ctx->stream_res.tg, &params);
1485 
1486 	// DRR should set trigger event to monitor surface update event
1487 	if (stream->adjust.v_total_min != 0 && stream->adjust.v_total_max != 0)
1488 		event_triggers = 0x80;
1489 	/* Event triggers and num frames initialized for DRR, but can be
1490 	 * later updated for PSR use. Note DRR trigger events are generated
1491 	 * regardless of whether num frames met.
1492 	 */
1493 	if (pipe_ctx->stream_res.tg->funcs->set_static_screen_control)
1494 		pipe_ctx->stream_res.tg->funcs->set_static_screen_control(
1495 				pipe_ctx->stream_res.tg, event_triggers, 2);
1496 
1497 	if (!dc_is_virtual_signal(pipe_ctx->stream->signal))
1498 		pipe_ctx->stream_res.stream_enc->funcs->dig_connect_to_otg(
1499 			pipe_ctx->stream_res.stream_enc,
1500 			pipe_ctx->stream_res.tg->inst);
1501 
1502 	pipe_ctx->stream_res.opp->funcs->opp_set_dyn_expansion(
1503 			pipe_ctx->stream_res.opp,
1504 			COLOR_SPACE_YCBCR601,
1505 			stream->timing.display_color_depth,
1506 			stream->signal);
1507 
1508 	pipe_ctx->stream_res.opp->funcs->opp_program_fmt(
1509 		pipe_ctx->stream_res.opp,
1510 		&stream->bit_depth_params,
1511 		&stream->clamping);
1512 	while (odm_pipe) {
1513 		odm_pipe->stream_res.opp->funcs->opp_set_dyn_expansion(
1514 				odm_pipe->stream_res.opp,
1515 				COLOR_SPACE_YCBCR601,
1516 				stream->timing.display_color_depth,
1517 				stream->signal);
1518 
1519 		odm_pipe->stream_res.opp->funcs->opp_program_fmt(
1520 				odm_pipe->stream_res.opp,
1521 				&stream->bit_depth_params,
1522 				&stream->clamping);
1523 		odm_pipe = odm_pipe->next_odm_pipe;
1524 	}
1525 
1526 	if (!stream->dpms_off)
1527 		core_link_enable_stream(context, pipe_ctx);
1528 
1529 	pipe_ctx->plane_res.scl_data.lb_params.alpha_en = pipe_ctx->bottom_pipe != 0;
1530 
1531 	pipe_ctx->stream->link->psr_settings.psr_feature_enabled = false;
1532 
1533 	return DC_OK;
1534 }
1535 
1536 /******************************************************************************/
1537 
power_down_encoders(struct dc * dc)1538 static void power_down_encoders(struct dc *dc)
1539 {
1540 	int i;
1541 
1542 	/* do not know BIOS back-front mapping, simply blank all. It will not
1543 	 * hurt for non-DP
1544 	 */
1545 	for (i = 0; i < dc->res_pool->stream_enc_count; i++) {
1546 		dc->res_pool->stream_enc[i]->funcs->dp_blank(
1547 					dc->res_pool->stream_enc[i]);
1548 	}
1549 
1550 	for (i = 0; i < dc->link_count; i++) {
1551 		enum signal_type signal = dc->links[i]->connector_signal;
1552 
1553 		if ((signal == SIGNAL_TYPE_EDP) ||
1554 			(signal == SIGNAL_TYPE_DISPLAY_PORT))
1555 			if (!dc->links[i]->wa_flags.dp_keep_receiver_powered)
1556 				dp_receiver_power_ctrl(dc->links[i], false);
1557 
1558 		if (signal != SIGNAL_TYPE_EDP)
1559 			signal = SIGNAL_TYPE_NONE;
1560 
1561 		dc->links[i]->link_enc->funcs->disable_output(
1562 				dc->links[i]->link_enc, signal);
1563 
1564 		dc->links[i]->link_status.link_active = false;
1565 		memset(&dc->links[i]->cur_link_settings, 0,
1566 				sizeof(dc->links[i]->cur_link_settings));
1567 	}
1568 }
1569 
power_down_controllers(struct dc * dc)1570 static void power_down_controllers(struct dc *dc)
1571 {
1572 	int i;
1573 
1574 	for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
1575 		dc->res_pool->timing_generators[i]->funcs->disable_crtc(
1576 				dc->res_pool->timing_generators[i]);
1577 	}
1578 }
1579 
power_down_clock_sources(struct dc * dc)1580 static void power_down_clock_sources(struct dc *dc)
1581 {
1582 	int i;
1583 
1584 	if (dc->res_pool->dp_clock_source->funcs->cs_power_down(
1585 		dc->res_pool->dp_clock_source) == false)
1586 		dm_error("Failed to power down pll! (dp clk src)\n");
1587 
1588 	for (i = 0; i < dc->res_pool->clk_src_count; i++) {
1589 		if (dc->res_pool->clock_sources[i]->funcs->cs_power_down(
1590 				dc->res_pool->clock_sources[i]) == false)
1591 			dm_error("Failed to power down pll! (clk src index=%d)\n", i);
1592 	}
1593 }
1594 
power_down_all_hw_blocks(struct dc * dc)1595 static void power_down_all_hw_blocks(struct dc *dc)
1596 {
1597 	power_down_encoders(dc);
1598 
1599 	power_down_controllers(dc);
1600 
1601 	power_down_clock_sources(dc);
1602 
1603 	if (dc->fbc_compressor)
1604 		dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
1605 }
1606 
disable_vga_and_power_gate_all_controllers(struct dc * dc)1607 static void disable_vga_and_power_gate_all_controllers(
1608 		struct dc *dc)
1609 {
1610 	int i;
1611 	struct timing_generator *tg;
1612 	struct dc_context *ctx = dc->ctx;
1613 
1614 	for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
1615 		tg = dc->res_pool->timing_generators[i];
1616 
1617 		if (tg->funcs->disable_vga)
1618 			tg->funcs->disable_vga(tg);
1619 	}
1620 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1621 		/* Enable CLOCK gating for each pipe BEFORE controller
1622 		 * powergating. */
1623 		enable_display_pipe_clock_gating(ctx,
1624 				true);
1625 
1626 		dc->current_state->res_ctx.pipe_ctx[i].pipe_idx = i;
1627 		dc->hwss.disable_plane(dc,
1628 			&dc->current_state->res_ctx.pipe_ctx[i]);
1629 	}
1630 }
1631 
1632 
get_edp_streams(struct dc_state * context,struct dc_stream_state ** edp_streams,int * edp_stream_num)1633 static void get_edp_streams(struct dc_state *context,
1634 		struct dc_stream_state **edp_streams,
1635 		int *edp_stream_num)
1636 {
1637 	int i;
1638 
1639 	*edp_stream_num = 0;
1640 	for (i = 0; i < context->stream_count; i++) {
1641 		if (context->streams[i]->signal == SIGNAL_TYPE_EDP) {
1642 			edp_streams[*edp_stream_num] = context->streams[i];
1643 			if (++(*edp_stream_num) == MAX_NUM_EDP)
1644 				return;
1645 		}
1646 	}
1647 }
1648 
get_edp_links_with_sink(struct dc * dc,struct dc_link ** edp_links_with_sink,int * edp_with_sink_num)1649 static void get_edp_links_with_sink(
1650 		struct dc *dc,
1651 		struct dc_link **edp_links_with_sink,
1652 		int *edp_with_sink_num)
1653 {
1654 	int i;
1655 
1656 	/* check if there is an eDP panel not in use */
1657 	*edp_with_sink_num = 0;
1658 	for (i = 0; i < dc->link_count; i++) {
1659 		if (dc->links[i]->local_sink &&
1660 			dc->links[i]->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1661 			edp_links_with_sink[*edp_with_sink_num] = dc->links[i];
1662 			if (++(*edp_with_sink_num) == MAX_NUM_EDP)
1663 				return;
1664 		}
1665 	}
1666 }
1667 
1668 /*
1669  * When ASIC goes from VBIOS/VGA mode to driver/accelerated mode we need:
1670  *  1. Power down all DC HW blocks
1671  *  2. Disable VGA engine on all controllers
1672  *  3. Enable power gating for controller
1673  *  4. Set acc_mode_change bit (VBIOS will clear this bit when going to FSDOS)
1674  */
dce110_enable_accelerated_mode(struct dc * dc,struct dc_state * context)1675 void dce110_enable_accelerated_mode(struct dc *dc, struct dc_state *context)
1676 {
1677 	struct dc_link *edp_links_with_sink[MAX_NUM_EDP];
1678 	struct dc_link *edp_links[MAX_NUM_EDP];
1679 	struct dc_stream_state *edp_streams[MAX_NUM_EDP];
1680 	struct dc_link *edp_link_with_sink = NULL;
1681 	struct dc_link *edp_link = NULL;
1682 	struct dc_stream_state *edp_stream = NULL;
1683 	struct dce_hwseq *hws = dc->hwseq;
1684 	int edp_with_sink_num;
1685 	int edp_num;
1686 	int edp_stream_num;
1687 	int i;
1688 	bool can_apply_edp_fast_boot = false;
1689 	bool can_apply_seamless_boot = false;
1690 	bool keep_edp_vdd_on = false;
1691 	DC_LOGGER_INIT();
1692 
1693 
1694 	get_edp_links_with_sink(dc, edp_links_with_sink, &edp_with_sink_num);
1695 	get_edp_links(dc, edp_links, &edp_num);
1696 
1697 	if (hws->funcs.init_pipes)
1698 		hws->funcs.init_pipes(dc, context);
1699 
1700 	get_edp_streams(context, edp_streams, &edp_stream_num);
1701 
1702 	// Check fastboot support, disable on DCE8 because of blank screens
1703 	if (edp_num && dc->ctx->dce_version != DCE_VERSION_8_0 &&
1704 		    dc->ctx->dce_version != DCE_VERSION_8_1 &&
1705 		    dc->ctx->dce_version != DCE_VERSION_8_3) {
1706 		for (i = 0; i < edp_num; i++) {
1707 			edp_link = edp_links[i];
1708 			// enable fastboot if backend is enabled on eDP
1709 			if (edp_link->link_enc->funcs->is_dig_enabled(edp_link->link_enc)) {
1710 				/* Set optimization flag on eDP stream*/
1711 				if (edp_stream_num && edp_link->link_status.link_active) {
1712 					edp_stream = edp_streams[0];
1713 					can_apply_edp_fast_boot = !is_edp_ilr_optimization_required(edp_stream->link, &edp_stream->timing);
1714 					edp_stream->apply_edp_fast_boot_optimization = can_apply_edp_fast_boot;
1715 					if (can_apply_edp_fast_boot)
1716 						DC_LOG_EVENT_LINK_TRAINING("eDP fast boot disabled to optimize link rate\n");
1717 
1718 					break;
1719 				}
1720 			}
1721 		}
1722 		// We are trying to enable eDP, don't power down VDD
1723 		if (edp_stream_num)
1724 			keep_edp_vdd_on = true;
1725 	}
1726 
1727 	// Check seamless boot support
1728 	for (i = 0; i < context->stream_count; i++) {
1729 		if (context->streams[i]->apply_seamless_boot_optimization) {
1730 			can_apply_seamless_boot = true;
1731 			break;
1732 		}
1733 	}
1734 
1735 	/* eDP should not have stream in resume from S4 and so even with VBios post
1736 	 * it should get turned off
1737 	 */
1738 	if (edp_with_sink_num)
1739 		edp_link_with_sink = edp_links_with_sink[0];
1740 
1741 	if (!can_apply_edp_fast_boot && !can_apply_seamless_boot) {
1742 		if (edp_link_with_sink && !keep_edp_vdd_on) {
1743 			/*turn off backlight before DP_blank and encoder powered down*/
1744 			hws->funcs.edp_backlight_control(edp_link_with_sink, false);
1745 		}
1746 		/*resume from S3, no vbios posting, no need to power down again*/
1747 		power_down_all_hw_blocks(dc);
1748 		disable_vga_and_power_gate_all_controllers(dc);
1749 		if (edp_link_with_sink && !keep_edp_vdd_on)
1750 			dc->hwss.edp_power_control(edp_link_with_sink, false);
1751 	}
1752 	bios_set_scratch_acc_mode_change(dc->ctx->dc_bios, 1);
1753 }
1754 
compute_pstate_blackout_duration(struct bw_fixed blackout_duration,const struct dc_stream_state * stream)1755 static uint32_t compute_pstate_blackout_duration(
1756 	struct bw_fixed blackout_duration,
1757 	const struct dc_stream_state *stream)
1758 {
1759 	uint32_t total_dest_line_time_ns;
1760 	uint32_t pstate_blackout_duration_ns;
1761 
1762 	pstate_blackout_duration_ns = 1000 * blackout_duration.value >> 24;
1763 
1764 	total_dest_line_time_ns = 1000000UL *
1765 		(stream->timing.h_total * 10) /
1766 		stream->timing.pix_clk_100hz +
1767 		pstate_blackout_duration_ns;
1768 
1769 	return total_dest_line_time_ns;
1770 }
1771 
dce110_set_displaymarks(const struct dc * dc,struct dc_state * context)1772 static void dce110_set_displaymarks(
1773 	const struct dc *dc,
1774 	struct dc_state *context)
1775 {
1776 	uint8_t i, num_pipes;
1777 	unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
1778 
1779 	for (i = 0, num_pipes = 0; i < MAX_PIPES; i++) {
1780 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1781 		uint32_t total_dest_line_time_ns;
1782 
1783 		if (pipe_ctx->stream == NULL)
1784 			continue;
1785 
1786 		total_dest_line_time_ns = compute_pstate_blackout_duration(
1787 			dc->bw_vbios->blackout_duration, pipe_ctx->stream);
1788 		pipe_ctx->plane_res.mi->funcs->mem_input_program_display_marks(
1789 			pipe_ctx->plane_res.mi,
1790 			context->bw_ctx.bw.dce.nbp_state_change_wm_ns[num_pipes],
1791 			context->bw_ctx.bw.dce.stutter_exit_wm_ns[num_pipes],
1792 			context->bw_ctx.bw.dce.stutter_entry_wm_ns[num_pipes],
1793 			context->bw_ctx.bw.dce.urgent_wm_ns[num_pipes],
1794 			total_dest_line_time_ns);
1795 		if (i == underlay_idx) {
1796 			num_pipes++;
1797 			pipe_ctx->plane_res.mi->funcs->mem_input_program_chroma_display_marks(
1798 				pipe_ctx->plane_res.mi,
1799 				context->bw_ctx.bw.dce.nbp_state_change_wm_ns[num_pipes],
1800 				context->bw_ctx.bw.dce.stutter_exit_wm_ns[num_pipes],
1801 				context->bw_ctx.bw.dce.urgent_wm_ns[num_pipes],
1802 				total_dest_line_time_ns);
1803 		}
1804 		num_pipes++;
1805 	}
1806 }
1807 
dce110_set_safe_displaymarks(struct resource_context * res_ctx,const struct resource_pool * pool)1808 void dce110_set_safe_displaymarks(
1809 		struct resource_context *res_ctx,
1810 		const struct resource_pool *pool)
1811 {
1812 	int i;
1813 	int underlay_idx = pool->underlay_pipe_index;
1814 	struct dce_watermarks max_marks = {
1815 		MAX_WATERMARK, MAX_WATERMARK, MAX_WATERMARK, MAX_WATERMARK };
1816 	struct dce_watermarks nbp_marks = {
1817 		SAFE_NBP_MARK, SAFE_NBP_MARK, SAFE_NBP_MARK, SAFE_NBP_MARK };
1818 	struct dce_watermarks min_marks = { 0, 0, 0, 0};
1819 
1820 	for (i = 0; i < MAX_PIPES; i++) {
1821 		if (res_ctx->pipe_ctx[i].stream == NULL || res_ctx->pipe_ctx[i].plane_res.mi == NULL)
1822 			continue;
1823 
1824 		res_ctx->pipe_ctx[i].plane_res.mi->funcs->mem_input_program_display_marks(
1825 				res_ctx->pipe_ctx[i].plane_res.mi,
1826 				nbp_marks,
1827 				max_marks,
1828 				min_marks,
1829 				max_marks,
1830 				MAX_WATERMARK);
1831 
1832 		if (i == underlay_idx)
1833 			res_ctx->pipe_ctx[i].plane_res.mi->funcs->mem_input_program_chroma_display_marks(
1834 				res_ctx->pipe_ctx[i].plane_res.mi,
1835 				nbp_marks,
1836 				max_marks,
1837 				max_marks,
1838 				MAX_WATERMARK);
1839 
1840 	}
1841 }
1842 
1843 /*******************************************************************************
1844  * Public functions
1845  ******************************************************************************/
1846 
set_drr(struct pipe_ctx ** pipe_ctx,int num_pipes,struct dc_crtc_timing_adjust adjust)1847 static void set_drr(struct pipe_ctx **pipe_ctx,
1848 		int num_pipes, struct dc_crtc_timing_adjust adjust)
1849 {
1850 	int i = 0;
1851 	struct drr_params params = {0};
1852 	// DRR should set trigger event to monitor surface update event
1853 	unsigned int event_triggers = 0x80;
1854 	// Note DRR trigger events are generated regardless of whether num frames met.
1855 	unsigned int num_frames = 2;
1856 
1857 	params.vertical_total_max = adjust.v_total_max;
1858 	params.vertical_total_min = adjust.v_total_min;
1859 
1860 	/* TODO: If multiple pipes are to be supported, you need
1861 	 * some GSL stuff. Static screen triggers may be programmed differently
1862 	 * as well.
1863 	 */
1864 	for (i = 0; i < num_pipes; i++) {
1865 		pipe_ctx[i]->stream_res.tg->funcs->set_drr(
1866 			pipe_ctx[i]->stream_res.tg, &params);
1867 
1868 		if (adjust.v_total_max != 0 && adjust.v_total_min != 0)
1869 			pipe_ctx[i]->stream_res.tg->funcs->set_static_screen_control(
1870 					pipe_ctx[i]->stream_res.tg,
1871 					event_triggers, num_frames);
1872 	}
1873 }
1874 
get_position(struct pipe_ctx ** pipe_ctx,int num_pipes,struct crtc_position * position)1875 static void get_position(struct pipe_ctx **pipe_ctx,
1876 		int num_pipes,
1877 		struct crtc_position *position)
1878 {
1879 	int i = 0;
1880 
1881 	/* TODO: handle pipes > 1
1882 	 */
1883 	for (i = 0; i < num_pipes; i++)
1884 		pipe_ctx[i]->stream_res.tg->funcs->get_position(pipe_ctx[i]->stream_res.tg, position);
1885 }
1886 
set_static_screen_control(struct pipe_ctx ** pipe_ctx,int num_pipes,const struct dc_static_screen_params * params)1887 static void set_static_screen_control(struct pipe_ctx **pipe_ctx,
1888 		int num_pipes, const struct dc_static_screen_params *params)
1889 {
1890 	unsigned int i;
1891 	unsigned int triggers = 0;
1892 
1893 	if (params->triggers.overlay_update)
1894 		triggers |= 0x100;
1895 	if (params->triggers.surface_update)
1896 		triggers |= 0x80;
1897 	if (params->triggers.cursor_update)
1898 		triggers |= 0x2;
1899 	if (params->triggers.force_trigger)
1900 		triggers |= 0x1;
1901 
1902 	if (num_pipes) {
1903 		struct dc *dc = pipe_ctx[0]->stream->ctx->dc;
1904 
1905 		if (dc->fbc_compressor)
1906 			triggers |= 0x84;
1907 	}
1908 
1909 	for (i = 0; i < num_pipes; i++)
1910 		pipe_ctx[i]->stream_res.tg->funcs->
1911 			set_static_screen_control(pipe_ctx[i]->stream_res.tg,
1912 					triggers, params->num_frames);
1913 }
1914 
1915 /*
1916  *  Check if FBC can be enabled
1917  */
should_enable_fbc(struct dc * dc,struct dc_state * context,uint32_t * pipe_idx)1918 static bool should_enable_fbc(struct dc *dc,
1919 		struct dc_state *context,
1920 		uint32_t *pipe_idx)
1921 {
1922 	uint32_t i;
1923 	struct pipe_ctx *pipe_ctx = NULL;
1924 	struct resource_context *res_ctx = &context->res_ctx;
1925 	unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
1926 
1927 
1928 	ASSERT(dc->fbc_compressor);
1929 
1930 	/* FBC memory should be allocated */
1931 	if (!dc->ctx->fbc_gpu_addr)
1932 		return false;
1933 
1934 	/* Only supports single display */
1935 	if (context->stream_count != 1)
1936 		return false;
1937 
1938 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1939 		if (res_ctx->pipe_ctx[i].stream) {
1940 
1941 			pipe_ctx = &res_ctx->pipe_ctx[i];
1942 
1943 			if (!pipe_ctx)
1944 				continue;
1945 
1946 			/* fbc not applicable on underlay pipe */
1947 			if (pipe_ctx->pipe_idx != underlay_idx) {
1948 				*pipe_idx = i;
1949 				break;
1950 			}
1951 		}
1952 	}
1953 
1954 	if (i == dc->res_pool->pipe_count)
1955 		return false;
1956 
1957 	if (!pipe_ctx->stream->link)
1958 		return false;
1959 
1960 	/* Only supports eDP */
1961 	if (pipe_ctx->stream->link->connector_signal != SIGNAL_TYPE_EDP)
1962 		return false;
1963 
1964 	/* PSR should not be enabled */
1965 	if (pipe_ctx->stream->link->psr_settings.psr_feature_enabled)
1966 		return false;
1967 
1968 	/* Nothing to compress */
1969 	if (!pipe_ctx->plane_state)
1970 		return false;
1971 
1972 	/* Only for non-linear tiling */
1973 	if (pipe_ctx->plane_state->tiling_info.gfx8.array_mode == DC_ARRAY_LINEAR_GENERAL)
1974 		return false;
1975 
1976 	return true;
1977 }
1978 
1979 /*
1980  *  Enable FBC
1981  */
enable_fbc(struct dc * dc,struct dc_state * context)1982 static void enable_fbc(
1983 		struct dc *dc,
1984 		struct dc_state *context)
1985 {
1986 	uint32_t pipe_idx = 0;
1987 
1988 	if (should_enable_fbc(dc, context, &pipe_idx)) {
1989 		/* Program GRPH COMPRESSED ADDRESS and PITCH */
1990 		struct compr_addr_and_pitch_params params = {0, 0, 0};
1991 		struct compressor *compr = dc->fbc_compressor;
1992 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[pipe_idx];
1993 
1994 		params.source_view_width = pipe_ctx->stream->timing.h_addressable;
1995 		params.source_view_height = pipe_ctx->stream->timing.v_addressable;
1996 		params.inst = pipe_ctx->stream_res.tg->inst;
1997 		compr->compr_surface_address.quad_part = dc->ctx->fbc_gpu_addr;
1998 
1999 		compr->funcs->surface_address_and_pitch(compr, &params);
2000 		compr->funcs->set_fbc_invalidation_triggers(compr, 1);
2001 
2002 		compr->funcs->enable_fbc(compr, &params);
2003 	}
2004 }
2005 
dce110_reset_hw_ctx_wrap(struct dc * dc,struct dc_state * context)2006 static void dce110_reset_hw_ctx_wrap(
2007 		struct dc *dc,
2008 		struct dc_state *context)
2009 {
2010 	int i;
2011 
2012 	/* Reset old context */
2013 	/* look up the targets that have been removed since last commit */
2014 	for (i = 0; i < MAX_PIPES; i++) {
2015 		struct pipe_ctx *pipe_ctx_old =
2016 			&dc->current_state->res_ctx.pipe_ctx[i];
2017 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2018 
2019 		/* Note: We need to disable output if clock sources change,
2020 		 * since bios does optimization and doesn't apply if changing
2021 		 * PHY when not already disabled.
2022 		 */
2023 
2024 		/* Skip underlay pipe since it will be handled in commit surface*/
2025 		if (!pipe_ctx_old->stream || pipe_ctx_old->top_pipe)
2026 			continue;
2027 
2028 		if (!pipe_ctx->stream ||
2029 				pipe_need_reprogram(pipe_ctx_old, pipe_ctx)) {
2030 			struct clock_source *old_clk = pipe_ctx_old->clock_source;
2031 
2032 			/* Disable if new stream is null. O/w, if stream is
2033 			 * disabled already, no need to disable again.
2034 			 */
2035 			if (!pipe_ctx->stream || !pipe_ctx->stream->dpms_off) {
2036 				core_link_disable_stream(pipe_ctx_old);
2037 
2038 				/* free acquired resources*/
2039 				if (pipe_ctx_old->stream_res.audio) {
2040 					/*disable az_endpoint*/
2041 					pipe_ctx_old->stream_res.audio->funcs->
2042 							az_disable(pipe_ctx_old->stream_res.audio);
2043 
2044 					/*free audio*/
2045 					if (dc->caps.dynamic_audio == true) {
2046 						/*we have to dynamic arbitrate the audio endpoints*/
2047 						/*we free the resource, need reset is_audio_acquired*/
2048 						update_audio_usage(&dc->current_state->res_ctx, dc->res_pool,
2049 								pipe_ctx_old->stream_res.audio, false);
2050 						pipe_ctx_old->stream_res.audio = NULL;
2051 					}
2052 				}
2053 			}
2054 
2055 			pipe_ctx_old->stream_res.tg->funcs->set_blank(pipe_ctx_old->stream_res.tg, true);
2056 			if (!hwss_wait_for_blank_complete(pipe_ctx_old->stream_res.tg)) {
2057 				dm_error("DC: failed to blank crtc!\n");
2058 				BREAK_TO_DEBUGGER();
2059 			}
2060 			pipe_ctx_old->stream_res.tg->funcs->disable_crtc(pipe_ctx_old->stream_res.tg);
2061 			pipe_ctx_old->plane_res.mi->funcs->free_mem_input(
2062 					pipe_ctx_old->plane_res.mi, dc->current_state->stream_count);
2063 
2064 			if (old_clk && 0 == resource_get_clock_source_reference(&context->res_ctx,
2065 										dc->res_pool,
2066 										old_clk))
2067 				old_clk->funcs->cs_power_down(old_clk);
2068 
2069 			dc->hwss.disable_plane(dc, pipe_ctx_old);
2070 
2071 			pipe_ctx_old->stream = NULL;
2072 		}
2073 	}
2074 }
2075 
dce110_setup_audio_dto(struct dc * dc,struct dc_state * context)2076 static void dce110_setup_audio_dto(
2077 		struct dc *dc,
2078 		struct dc_state *context)
2079 {
2080 	int i;
2081 
2082 	/* program audio wall clock. use HDMI as clock source if HDMI
2083 	 * audio active. Otherwise, use DP as clock source
2084 	 * first, loop to find any HDMI audio, if not, loop find DP audio
2085 	 */
2086 	/* Setup audio rate clock source */
2087 	/* Issue:
2088 	* Audio lag happened on DP monitor when unplug a HDMI monitor
2089 	*
2090 	* Cause:
2091 	* In case of DP and HDMI connected or HDMI only, DCCG_AUDIO_DTO_SEL
2092 	* is set to either dto0 or dto1, audio should work fine.
2093 	* In case of DP connected only, DCCG_AUDIO_DTO_SEL should be dto1,
2094 	* set to dto0 will cause audio lag.
2095 	*
2096 	* Solution:
2097 	* Not optimized audio wall dto setup. When mode set, iterate pipe_ctx,
2098 	* find first available pipe with audio, setup audio wall DTO per topology
2099 	* instead of per pipe.
2100 	*/
2101 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2102 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2103 
2104 		if (pipe_ctx->stream == NULL)
2105 			continue;
2106 
2107 		if (pipe_ctx->top_pipe)
2108 			continue;
2109 		if (pipe_ctx->stream->signal != SIGNAL_TYPE_HDMI_TYPE_A)
2110 			continue;
2111 		if (pipe_ctx->stream_res.audio != NULL) {
2112 			struct audio_output audio_output;
2113 
2114 			build_audio_output(context, pipe_ctx, &audio_output);
2115 
2116 #if defined(CONFIG_DRM_AMD_DC_DCN)
2117 			/* For DCN3.1, audio to HPO FRL encoder is using audio DTBCLK DTO */
2118 			if (dc->res_pool->dccg && dc->res_pool->dccg->funcs->set_audio_dtbclk_dto) {
2119 				/* disable audio DTBCLK DTO */
2120 				dc->res_pool->dccg->funcs->set_audio_dtbclk_dto(
2121 					dc->res_pool->dccg, 0);
2122 
2123 				pipe_ctx->stream_res.audio->funcs->wall_dto_setup(
2124 						pipe_ctx->stream_res.audio,
2125 						pipe_ctx->stream->signal,
2126 						&audio_output.crtc_info,
2127 						&audio_output.pll_info);
2128 			} else
2129 				pipe_ctx->stream_res.audio->funcs->wall_dto_setup(
2130 					pipe_ctx->stream_res.audio,
2131 					pipe_ctx->stream->signal,
2132 					&audio_output.crtc_info,
2133 					&audio_output.pll_info);
2134 #else
2135 			pipe_ctx->stream_res.audio->funcs->wall_dto_setup(
2136 				pipe_ctx->stream_res.audio,
2137 				pipe_ctx->stream->signal,
2138 				&audio_output.crtc_info,
2139 				&audio_output.pll_info);
2140 #endif
2141 			break;
2142 		}
2143 	}
2144 
2145 	/* no HDMI audio is found, try DP audio */
2146 	if (i == dc->res_pool->pipe_count) {
2147 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
2148 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2149 
2150 			if (pipe_ctx->stream == NULL)
2151 				continue;
2152 
2153 			if (pipe_ctx->top_pipe)
2154 				continue;
2155 
2156 			if (!dc_is_dp_signal(pipe_ctx->stream->signal))
2157 				continue;
2158 
2159 			if (pipe_ctx->stream_res.audio != NULL) {
2160 				struct audio_output audio_output;
2161 
2162 				build_audio_output(context, pipe_ctx, &audio_output);
2163 
2164 				pipe_ctx->stream_res.audio->funcs->wall_dto_setup(
2165 					pipe_ctx->stream_res.audio,
2166 					pipe_ctx->stream->signal,
2167 					&audio_output.crtc_info,
2168 					&audio_output.pll_info);
2169 				break;
2170 			}
2171 		}
2172 	}
2173 }
2174 
dce110_apply_ctx_to_hw(struct dc * dc,struct dc_state * context)2175 enum dc_status dce110_apply_ctx_to_hw(
2176 		struct dc *dc,
2177 		struct dc_state *context)
2178 {
2179 	struct dce_hwseq *hws = dc->hwseq;
2180 	struct dc_bios *dcb = dc->ctx->dc_bios;
2181 	enum dc_status status;
2182 	int i;
2183 
2184 	/* Reset old context */
2185 	/* look up the targets that have been removed since last commit */
2186 	hws->funcs.reset_hw_ctx_wrap(dc, context);
2187 
2188 	/* Skip applying if no targets */
2189 	if (context->stream_count <= 0)
2190 		return DC_OK;
2191 
2192 	/* Apply new context */
2193 	dcb->funcs->set_scratch_critical_state(dcb, true);
2194 
2195 	/* below is for real asic only */
2196 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2197 		struct pipe_ctx *pipe_ctx_old =
2198 					&dc->current_state->res_ctx.pipe_ctx[i];
2199 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2200 
2201 		if (pipe_ctx->stream == NULL || pipe_ctx->top_pipe)
2202 			continue;
2203 
2204 		if (pipe_ctx->stream == pipe_ctx_old->stream) {
2205 			if (pipe_ctx_old->clock_source != pipe_ctx->clock_source)
2206 				dce_crtc_switch_to_clk_src(dc->hwseq,
2207 						pipe_ctx->clock_source, i);
2208 			continue;
2209 		}
2210 
2211 		hws->funcs.enable_display_power_gating(
2212 				dc, i, dc->ctx->dc_bios,
2213 				PIPE_GATING_CONTROL_DISABLE);
2214 	}
2215 
2216 	if (dc->fbc_compressor)
2217 		dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
2218 
2219 	dce110_setup_audio_dto(dc, context);
2220 
2221 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2222 		struct pipe_ctx *pipe_ctx_old =
2223 					&dc->current_state->res_ctx.pipe_ctx[i];
2224 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2225 
2226 		if (pipe_ctx->stream == NULL)
2227 			continue;
2228 
2229 		if (pipe_ctx->stream == pipe_ctx_old->stream &&
2230 			pipe_ctx->stream->link->link_state_valid) {
2231 			continue;
2232 		}
2233 
2234 		if (pipe_ctx_old->stream && !pipe_need_reprogram(pipe_ctx_old, pipe_ctx))
2235 			continue;
2236 
2237 		if (pipe_ctx->top_pipe || pipe_ctx->prev_odm_pipe)
2238 			continue;
2239 
2240 		status = apply_single_controller_ctx_to_hw(
2241 				pipe_ctx,
2242 				context,
2243 				dc);
2244 
2245 		if (DC_OK != status)
2246 			return status;
2247 	}
2248 
2249 	if (dc->fbc_compressor)
2250 		enable_fbc(dc, dc->current_state);
2251 
2252 	dcb->funcs->set_scratch_critical_state(dcb, false);
2253 
2254 	return DC_OK;
2255 }
2256 
2257 /*******************************************************************************
2258  * Front End programming
2259  ******************************************************************************/
set_default_colors(struct pipe_ctx * pipe_ctx)2260 static void set_default_colors(struct pipe_ctx *pipe_ctx)
2261 {
2262 	struct default_adjustment default_adjust = { 0 };
2263 
2264 	default_adjust.force_hw_default = false;
2265 	default_adjust.in_color_space = pipe_ctx->plane_state->color_space;
2266 	default_adjust.out_color_space = pipe_ctx->stream->output_color_space;
2267 	default_adjust.csc_adjust_type = GRAPHICS_CSC_ADJUST_TYPE_SW;
2268 	default_adjust.surface_pixel_format = pipe_ctx->plane_res.scl_data.format;
2269 
2270 	/* display color depth */
2271 	default_adjust.color_depth =
2272 		pipe_ctx->stream->timing.display_color_depth;
2273 
2274 	/* Lb color depth */
2275 	default_adjust.lb_color_depth = pipe_ctx->plane_res.scl_data.lb_params.depth;
2276 
2277 	pipe_ctx->plane_res.xfm->funcs->opp_set_csc_default(
2278 					pipe_ctx->plane_res.xfm, &default_adjust);
2279 }
2280 
2281 
2282 /*******************************************************************************
2283  * In order to turn on/off specific surface we will program
2284  * Blender + CRTC
2285  *
2286  * In case that we have two surfaces and they have a different visibility
2287  * we can't turn off the CRTC since it will turn off the entire display
2288  *
2289  * |----------------------------------------------- |
2290  * |bottom pipe|curr pipe  |              |         |
2291  * |Surface    |Surface    | Blender      |  CRCT   |
2292  * |visibility |visibility | Configuration|         |
2293  * |------------------------------------------------|
2294  * |   off     |    off    | CURRENT_PIPE | blank   |
2295  * |   off     |    on     | CURRENT_PIPE | unblank |
2296  * |   on      |    off    | OTHER_PIPE   | unblank |
2297  * |   on      |    on     | BLENDING     | unblank |
2298  * -------------------------------------------------|
2299  *
2300  ******************************************************************************/
program_surface_visibility(const struct dc * dc,struct pipe_ctx * pipe_ctx)2301 static void program_surface_visibility(const struct dc *dc,
2302 		struct pipe_ctx *pipe_ctx)
2303 {
2304 	enum blnd_mode blender_mode = BLND_MODE_CURRENT_PIPE;
2305 	bool blank_target = false;
2306 
2307 	if (pipe_ctx->bottom_pipe) {
2308 
2309 		/* For now we are supporting only two pipes */
2310 		ASSERT(pipe_ctx->bottom_pipe->bottom_pipe == NULL);
2311 
2312 		if (pipe_ctx->bottom_pipe->plane_state->visible) {
2313 			if (pipe_ctx->plane_state->visible)
2314 				blender_mode = BLND_MODE_BLENDING;
2315 			else
2316 				blender_mode = BLND_MODE_OTHER_PIPE;
2317 
2318 		} else if (!pipe_ctx->plane_state->visible)
2319 			blank_target = true;
2320 
2321 	} else if (!pipe_ctx->plane_state->visible)
2322 		blank_target = true;
2323 
2324 	dce_set_blender_mode(dc->hwseq, pipe_ctx->stream_res.tg->inst, blender_mode);
2325 	pipe_ctx->stream_res.tg->funcs->set_blank(pipe_ctx->stream_res.tg, blank_target);
2326 
2327 }
2328 
program_gamut_remap(struct pipe_ctx * pipe_ctx)2329 static void program_gamut_remap(struct pipe_ctx *pipe_ctx)
2330 {
2331 	int i = 0;
2332 	struct xfm_grph_csc_adjustment adjust;
2333 	memset(&adjust, 0, sizeof(adjust));
2334 	adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_BYPASS;
2335 
2336 
2337 	if (pipe_ctx->stream->gamut_remap_matrix.enable_remap == true) {
2338 		adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_SW;
2339 
2340 		for (i = 0; i < CSC_TEMPERATURE_MATRIX_SIZE; i++)
2341 			adjust.temperature_matrix[i] =
2342 				pipe_ctx->stream->gamut_remap_matrix.matrix[i];
2343 	}
2344 
2345 	pipe_ctx->plane_res.xfm->funcs->transform_set_gamut_remap(pipe_ctx->plane_res.xfm, &adjust);
2346 }
update_plane_addr(const struct dc * dc,struct pipe_ctx * pipe_ctx)2347 static void update_plane_addr(const struct dc *dc,
2348 		struct pipe_ctx *pipe_ctx)
2349 {
2350 	struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2351 
2352 	if (plane_state == NULL)
2353 		return;
2354 
2355 	pipe_ctx->plane_res.mi->funcs->mem_input_program_surface_flip_and_addr(
2356 			pipe_ctx->plane_res.mi,
2357 			&plane_state->address,
2358 			plane_state->flip_immediate);
2359 
2360 	plane_state->status.requested_address = plane_state->address;
2361 }
2362 
dce110_update_pending_status(struct pipe_ctx * pipe_ctx)2363 static void dce110_update_pending_status(struct pipe_ctx *pipe_ctx)
2364 {
2365 	struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2366 
2367 	if (plane_state == NULL)
2368 		return;
2369 
2370 	plane_state->status.is_flip_pending =
2371 			pipe_ctx->plane_res.mi->funcs->mem_input_is_flip_pending(
2372 					pipe_ctx->plane_res.mi);
2373 
2374 	if (plane_state->status.is_flip_pending && !plane_state->visible)
2375 		pipe_ctx->plane_res.mi->current_address = pipe_ctx->plane_res.mi->request_address;
2376 
2377 	plane_state->status.current_address = pipe_ctx->plane_res.mi->current_address;
2378 	if (pipe_ctx->plane_res.mi->current_address.type == PLN_ADDR_TYPE_GRPH_STEREO &&
2379 			pipe_ctx->stream_res.tg->funcs->is_stereo_left_eye) {
2380 		plane_state->status.is_right_eye =\
2381 				!pipe_ctx->stream_res.tg->funcs->is_stereo_left_eye(pipe_ctx->stream_res.tg);
2382 	}
2383 }
2384 
dce110_power_down(struct dc * dc)2385 void dce110_power_down(struct dc *dc)
2386 {
2387 	power_down_all_hw_blocks(dc);
2388 	disable_vga_and_power_gate_all_controllers(dc);
2389 }
2390 
wait_for_reset_trigger_to_occur(struct dc_context * dc_ctx,struct timing_generator * tg)2391 static bool wait_for_reset_trigger_to_occur(
2392 	struct dc_context *dc_ctx,
2393 	struct timing_generator *tg)
2394 {
2395 	bool rc = false;
2396 
2397 	/* To avoid endless loop we wait at most
2398 	 * frames_to_wait_on_triggered_reset frames for the reset to occur. */
2399 	const uint32_t frames_to_wait_on_triggered_reset = 10;
2400 	uint32_t i;
2401 
2402 	for (i = 0; i < frames_to_wait_on_triggered_reset; i++) {
2403 
2404 		if (!tg->funcs->is_counter_moving(tg)) {
2405 			DC_ERROR("TG counter is not moving!\n");
2406 			break;
2407 		}
2408 
2409 		if (tg->funcs->did_triggered_reset_occur(tg)) {
2410 			rc = true;
2411 			/* usually occurs at i=1 */
2412 			DC_SYNC_INFO("GSL: reset occurred at wait count: %d\n",
2413 					i);
2414 			break;
2415 		}
2416 
2417 		/* Wait for one frame. */
2418 		tg->funcs->wait_for_state(tg, CRTC_STATE_VACTIVE);
2419 		tg->funcs->wait_for_state(tg, CRTC_STATE_VBLANK);
2420 	}
2421 
2422 	if (false == rc)
2423 		DC_ERROR("GSL: Timeout on reset trigger!\n");
2424 
2425 	return rc;
2426 }
2427 
2428 /* Enable timing synchronization for a group of Timing Generators. */
dce110_enable_timing_synchronization(struct dc * dc,int group_index,int group_size,struct pipe_ctx * grouped_pipes[])2429 static void dce110_enable_timing_synchronization(
2430 		struct dc *dc,
2431 		int group_index,
2432 		int group_size,
2433 		struct pipe_ctx *grouped_pipes[])
2434 {
2435 	struct dc_context *dc_ctx = dc->ctx;
2436 	struct dcp_gsl_params gsl_params = { 0 };
2437 	int i;
2438 
2439 	DC_SYNC_INFO("GSL: Setting-up...\n");
2440 
2441 	/* Designate a single TG in the group as a master.
2442 	 * Since HW doesn't care which one, we always assign
2443 	 * the 1st one in the group. */
2444 	gsl_params.gsl_group = 0;
2445 	gsl_params.gsl_master = grouped_pipes[0]->stream_res.tg->inst;
2446 
2447 	for (i = 0; i < group_size; i++)
2448 		grouped_pipes[i]->stream_res.tg->funcs->setup_global_swap_lock(
2449 					grouped_pipes[i]->stream_res.tg, &gsl_params);
2450 
2451 	/* Reset slave controllers on master VSync */
2452 	DC_SYNC_INFO("GSL: enabling trigger-reset\n");
2453 
2454 	for (i = 1 /* skip the master */; i < group_size; i++)
2455 		grouped_pipes[i]->stream_res.tg->funcs->enable_reset_trigger(
2456 				grouped_pipes[i]->stream_res.tg,
2457 				gsl_params.gsl_group);
2458 
2459 	for (i = 1 /* skip the master */; i < group_size; i++) {
2460 		DC_SYNC_INFO("GSL: waiting for reset to occur.\n");
2461 		wait_for_reset_trigger_to_occur(dc_ctx, grouped_pipes[i]->stream_res.tg);
2462 		grouped_pipes[i]->stream_res.tg->funcs->disable_reset_trigger(
2463 				grouped_pipes[i]->stream_res.tg);
2464 	}
2465 
2466 	/* GSL Vblank synchronization is a one time sync mechanism, assumption
2467 	 * is that the sync'ed displays will not drift out of sync over time*/
2468 	DC_SYNC_INFO("GSL: Restoring register states.\n");
2469 	for (i = 0; i < group_size; i++)
2470 		grouped_pipes[i]->stream_res.tg->funcs->tear_down_global_swap_lock(grouped_pipes[i]->stream_res.tg);
2471 
2472 	DC_SYNC_INFO("GSL: Set-up complete.\n");
2473 }
2474 
dce110_enable_per_frame_crtc_position_reset(struct dc * dc,int group_size,struct pipe_ctx * grouped_pipes[])2475 static void dce110_enable_per_frame_crtc_position_reset(
2476 		struct dc *dc,
2477 		int group_size,
2478 		struct pipe_ctx *grouped_pipes[])
2479 {
2480 	struct dc_context *dc_ctx = dc->ctx;
2481 	struct dcp_gsl_params gsl_params = { 0 };
2482 	int i;
2483 
2484 	gsl_params.gsl_group = 0;
2485 	gsl_params.gsl_master = 0;
2486 
2487 	for (i = 0; i < group_size; i++)
2488 		grouped_pipes[i]->stream_res.tg->funcs->setup_global_swap_lock(
2489 					grouped_pipes[i]->stream_res.tg, &gsl_params);
2490 
2491 	DC_SYNC_INFO("GSL: enabling trigger-reset\n");
2492 
2493 	for (i = 1; i < group_size; i++)
2494 		grouped_pipes[i]->stream_res.tg->funcs->enable_crtc_reset(
2495 				grouped_pipes[i]->stream_res.tg,
2496 				gsl_params.gsl_master,
2497 				&grouped_pipes[i]->stream->triggered_crtc_reset);
2498 
2499 	DC_SYNC_INFO("GSL: waiting for reset to occur.\n");
2500 	for (i = 1; i < group_size; i++)
2501 		wait_for_reset_trigger_to_occur(dc_ctx, grouped_pipes[i]->stream_res.tg);
2502 
2503 	for (i = 0; i < group_size; i++)
2504 		grouped_pipes[i]->stream_res.tg->funcs->tear_down_global_swap_lock(grouped_pipes[i]->stream_res.tg);
2505 
2506 }
2507 
init_pipes(struct dc * dc,struct dc_state * context)2508 static void init_pipes(struct dc *dc, struct dc_state *context)
2509 {
2510 	// Do nothing
2511 }
2512 
init_hw(struct dc * dc)2513 static void init_hw(struct dc *dc)
2514 {
2515 	int i;
2516 	struct dc_bios *bp;
2517 	struct transform *xfm;
2518 	struct abm *abm;
2519 	struct dmcu *dmcu;
2520 	struct dce_hwseq *hws = dc->hwseq;
2521 	uint32_t backlight = MAX_BACKLIGHT_LEVEL;
2522 
2523 	bp = dc->ctx->dc_bios;
2524 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2525 		xfm = dc->res_pool->transforms[i];
2526 		xfm->funcs->transform_reset(xfm);
2527 
2528 		hws->funcs.enable_display_power_gating(
2529 				dc, i, bp,
2530 				PIPE_GATING_CONTROL_INIT);
2531 		hws->funcs.enable_display_power_gating(
2532 				dc, i, bp,
2533 				PIPE_GATING_CONTROL_DISABLE);
2534 		hws->funcs.enable_display_pipe_clock_gating(
2535 			dc->ctx,
2536 			true);
2537 	}
2538 
2539 	dce_clock_gating_power_up(dc->hwseq, false);
2540 	/***************************************/
2541 
2542 	for (i = 0; i < dc->link_count; i++) {
2543 		/****************************************/
2544 		/* Power up AND update implementation according to the
2545 		 * required signal (which may be different from the
2546 		 * default signal on connector). */
2547 		struct dc_link *link = dc->links[i];
2548 
2549 		link->link_enc->funcs->hw_init(link->link_enc);
2550 	}
2551 
2552 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2553 		struct timing_generator *tg = dc->res_pool->timing_generators[i];
2554 
2555 		tg->funcs->disable_vga(tg);
2556 
2557 		/* Blank controller using driver code instead of
2558 		 * command table. */
2559 		tg->funcs->set_blank(tg, true);
2560 		hwss_wait_for_blank_complete(tg);
2561 	}
2562 
2563 	for (i = 0; i < dc->res_pool->audio_count; i++) {
2564 		struct audio *audio = dc->res_pool->audios[i];
2565 		audio->funcs->hw_init(audio);
2566 	}
2567 
2568 	for (i = 0; i < dc->link_count; i++) {
2569 		struct dc_link *link = dc->links[i];
2570 
2571 		if (link->panel_cntl)
2572 			backlight = link->panel_cntl->funcs->hw_init(link->panel_cntl);
2573 	}
2574 
2575 	abm = dc->res_pool->abm;
2576 	if (abm != NULL)
2577 		abm->funcs->abm_init(abm, backlight);
2578 
2579 	dmcu = dc->res_pool->dmcu;
2580 	if (dmcu != NULL && abm != NULL)
2581 		abm->dmcu_is_running = dmcu->funcs->is_dmcu_initialized(dmcu);
2582 
2583 	if (dc->fbc_compressor)
2584 		dc->fbc_compressor->funcs->power_up_fbc(dc->fbc_compressor);
2585 
2586 }
2587 
2588 
dce110_prepare_bandwidth(struct dc * dc,struct dc_state * context)2589 void dce110_prepare_bandwidth(
2590 		struct dc *dc,
2591 		struct dc_state *context)
2592 {
2593 	struct clk_mgr *dccg = dc->clk_mgr;
2594 
2595 	dce110_set_safe_displaymarks(&context->res_ctx, dc->res_pool);
2596 
2597 	dccg->funcs->update_clocks(
2598 			dccg,
2599 			context,
2600 			false);
2601 }
2602 
dce110_optimize_bandwidth(struct dc * dc,struct dc_state * context)2603 void dce110_optimize_bandwidth(
2604 		struct dc *dc,
2605 		struct dc_state *context)
2606 {
2607 	struct clk_mgr *dccg = dc->clk_mgr;
2608 
2609 	dce110_set_displaymarks(dc, context);
2610 
2611 	dccg->funcs->update_clocks(
2612 			dccg,
2613 			context,
2614 			true);
2615 }
2616 
dce110_program_front_end_for_pipe(struct dc * dc,struct pipe_ctx * pipe_ctx)2617 static void dce110_program_front_end_for_pipe(
2618 		struct dc *dc, struct pipe_ctx *pipe_ctx)
2619 {
2620 	struct mem_input *mi = pipe_ctx->plane_res.mi;
2621 	struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2622 	struct xfm_grph_csc_adjustment adjust;
2623 	struct out_csc_color_matrix tbl_entry;
2624 	unsigned int i;
2625 	struct dce_hwseq *hws = dc->hwseq;
2626 
2627 	DC_LOGGER_INIT();
2628 	memset(&tbl_entry, 0, sizeof(tbl_entry));
2629 
2630 	memset(&adjust, 0, sizeof(adjust));
2631 	adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_BYPASS;
2632 
2633 	dce_enable_fe_clock(dc->hwseq, mi->inst, true);
2634 
2635 	set_default_colors(pipe_ctx);
2636 	if (pipe_ctx->stream->csc_color_matrix.enable_adjustment
2637 			== true) {
2638 		tbl_entry.color_space =
2639 			pipe_ctx->stream->output_color_space;
2640 
2641 		for (i = 0; i < 12; i++)
2642 			tbl_entry.regval[i] =
2643 			pipe_ctx->stream->csc_color_matrix.matrix[i];
2644 
2645 		pipe_ctx->plane_res.xfm->funcs->opp_set_csc_adjustment
2646 				(pipe_ctx->plane_res.xfm, &tbl_entry);
2647 	}
2648 
2649 	if (pipe_ctx->stream->gamut_remap_matrix.enable_remap == true) {
2650 		adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_SW;
2651 
2652 		for (i = 0; i < CSC_TEMPERATURE_MATRIX_SIZE; i++)
2653 			adjust.temperature_matrix[i] =
2654 				pipe_ctx->stream->gamut_remap_matrix.matrix[i];
2655 	}
2656 
2657 	pipe_ctx->plane_res.xfm->funcs->transform_set_gamut_remap(pipe_ctx->plane_res.xfm, &adjust);
2658 
2659 	pipe_ctx->plane_res.scl_data.lb_params.alpha_en = pipe_ctx->bottom_pipe != 0;
2660 
2661 	program_scaler(dc, pipe_ctx);
2662 
2663 	mi->funcs->mem_input_program_surface_config(
2664 			mi,
2665 			plane_state->format,
2666 			&plane_state->tiling_info,
2667 			&plane_state->plane_size,
2668 			plane_state->rotation,
2669 			NULL,
2670 			false);
2671 	if (mi->funcs->set_blank)
2672 		mi->funcs->set_blank(mi, pipe_ctx->plane_state->visible);
2673 
2674 	if (dc->config.gpu_vm_support)
2675 		mi->funcs->mem_input_program_pte_vm(
2676 				pipe_ctx->plane_res.mi,
2677 				plane_state->format,
2678 				&plane_state->tiling_info,
2679 				plane_state->rotation);
2680 
2681 	/* Moved programming gamma from dc to hwss */
2682 	if (pipe_ctx->plane_state->update_flags.bits.full_update ||
2683 			pipe_ctx->plane_state->update_flags.bits.in_transfer_func_change ||
2684 			pipe_ctx->plane_state->update_flags.bits.gamma_change)
2685 		hws->funcs.set_input_transfer_func(dc, pipe_ctx, pipe_ctx->plane_state);
2686 
2687 	if (pipe_ctx->plane_state->update_flags.bits.full_update)
2688 		hws->funcs.set_output_transfer_func(dc, pipe_ctx, pipe_ctx->stream);
2689 
2690 	DC_LOG_SURFACE(
2691 			"Pipe:%d %p: addr hi:0x%x, "
2692 			"addr low:0x%x, "
2693 			"src: %d, %d, %d,"
2694 			" %d; dst: %d, %d, %d, %d;"
2695 			"clip: %d, %d, %d, %d\n",
2696 			pipe_ctx->pipe_idx,
2697 			(void *) pipe_ctx->plane_state,
2698 			pipe_ctx->plane_state->address.grph.addr.high_part,
2699 			pipe_ctx->plane_state->address.grph.addr.low_part,
2700 			pipe_ctx->plane_state->src_rect.x,
2701 			pipe_ctx->plane_state->src_rect.y,
2702 			pipe_ctx->plane_state->src_rect.width,
2703 			pipe_ctx->plane_state->src_rect.height,
2704 			pipe_ctx->plane_state->dst_rect.x,
2705 			pipe_ctx->plane_state->dst_rect.y,
2706 			pipe_ctx->plane_state->dst_rect.width,
2707 			pipe_ctx->plane_state->dst_rect.height,
2708 			pipe_ctx->plane_state->clip_rect.x,
2709 			pipe_ctx->plane_state->clip_rect.y,
2710 			pipe_ctx->plane_state->clip_rect.width,
2711 			pipe_ctx->plane_state->clip_rect.height);
2712 
2713 	DC_LOG_SURFACE(
2714 			"Pipe %d: width, height, x, y\n"
2715 			"viewport:%d, %d, %d, %d\n"
2716 			"recout:  %d, %d, %d, %d\n",
2717 			pipe_ctx->pipe_idx,
2718 			pipe_ctx->plane_res.scl_data.viewport.width,
2719 			pipe_ctx->plane_res.scl_data.viewport.height,
2720 			pipe_ctx->plane_res.scl_data.viewport.x,
2721 			pipe_ctx->plane_res.scl_data.viewport.y,
2722 			pipe_ctx->plane_res.scl_data.recout.width,
2723 			pipe_ctx->plane_res.scl_data.recout.height,
2724 			pipe_ctx->plane_res.scl_data.recout.x,
2725 			pipe_ctx->plane_res.scl_data.recout.y);
2726 }
2727 
dce110_apply_ctx_for_surface(struct dc * dc,const struct dc_stream_state * stream,int num_planes,struct dc_state * context)2728 static void dce110_apply_ctx_for_surface(
2729 		struct dc *dc,
2730 		const struct dc_stream_state *stream,
2731 		int num_planes,
2732 		struct dc_state *context)
2733 {
2734 	int i;
2735 
2736 	if (num_planes == 0)
2737 		return;
2738 
2739 	if (dc->fbc_compressor)
2740 		dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
2741 
2742 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2743 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2744 
2745 		if (pipe_ctx->stream != stream)
2746 			continue;
2747 
2748 		/* Need to allocate mem before program front end for Fiji */
2749 		pipe_ctx->plane_res.mi->funcs->allocate_mem_input(
2750 				pipe_ctx->plane_res.mi,
2751 				pipe_ctx->stream->timing.h_total,
2752 				pipe_ctx->stream->timing.v_total,
2753 				pipe_ctx->stream->timing.pix_clk_100hz / 10,
2754 				context->stream_count);
2755 
2756 		dce110_program_front_end_for_pipe(dc, pipe_ctx);
2757 
2758 		dc->hwss.update_plane_addr(dc, pipe_ctx);
2759 
2760 		program_surface_visibility(dc, pipe_ctx);
2761 
2762 	}
2763 
2764 	if (dc->fbc_compressor)
2765 		enable_fbc(dc, context);
2766 }
2767 
dce110_post_unlock_program_front_end(struct dc * dc,struct dc_state * context)2768 static void dce110_post_unlock_program_front_end(
2769 		struct dc *dc,
2770 		struct dc_state *context)
2771 {
2772 }
2773 
dce110_power_down_fe(struct dc * dc,struct pipe_ctx * pipe_ctx)2774 static void dce110_power_down_fe(struct dc *dc, struct pipe_ctx *pipe_ctx)
2775 {
2776 	struct dce_hwseq *hws = dc->hwseq;
2777 	int fe_idx = pipe_ctx->plane_res.mi ?
2778 		pipe_ctx->plane_res.mi->inst : pipe_ctx->pipe_idx;
2779 
2780 	/* Do not power down fe when stream is active on dce*/
2781 	if (dc->current_state->res_ctx.pipe_ctx[fe_idx].stream)
2782 		return;
2783 
2784 	hws->funcs.enable_display_power_gating(
2785 		dc, fe_idx, dc->ctx->dc_bios, PIPE_GATING_CONTROL_ENABLE);
2786 
2787 	dc->res_pool->transforms[fe_idx]->funcs->transform_reset(
2788 				dc->res_pool->transforms[fe_idx]);
2789 }
2790 
dce110_wait_for_mpcc_disconnect(struct dc * dc,struct resource_pool * res_pool,struct pipe_ctx * pipe_ctx)2791 static void dce110_wait_for_mpcc_disconnect(
2792 		struct dc *dc,
2793 		struct resource_pool *res_pool,
2794 		struct pipe_ctx *pipe_ctx)
2795 {
2796 	/* do nothing*/
2797 }
2798 
program_output_csc(struct dc * dc,struct pipe_ctx * pipe_ctx,enum dc_color_space colorspace,uint16_t * matrix,int opp_id)2799 static void program_output_csc(struct dc *dc,
2800 		struct pipe_ctx *pipe_ctx,
2801 		enum dc_color_space colorspace,
2802 		uint16_t *matrix,
2803 		int opp_id)
2804 {
2805 	int i;
2806 	struct out_csc_color_matrix tbl_entry;
2807 
2808 	if (pipe_ctx->stream->csc_color_matrix.enable_adjustment == true) {
2809 		enum dc_color_space color_space = pipe_ctx->stream->output_color_space;
2810 
2811 		for (i = 0; i < 12; i++)
2812 			tbl_entry.regval[i] = pipe_ctx->stream->csc_color_matrix.matrix[i];
2813 
2814 		tbl_entry.color_space = color_space;
2815 
2816 		pipe_ctx->plane_res.xfm->funcs->opp_set_csc_adjustment(
2817 				pipe_ctx->plane_res.xfm, &tbl_entry);
2818 	}
2819 }
2820 
dce110_set_cursor_position(struct pipe_ctx * pipe_ctx)2821 static void dce110_set_cursor_position(struct pipe_ctx *pipe_ctx)
2822 {
2823 	struct dc_cursor_position pos_cpy = pipe_ctx->stream->cursor_position;
2824 	struct input_pixel_processor *ipp = pipe_ctx->plane_res.ipp;
2825 	struct mem_input *mi = pipe_ctx->plane_res.mi;
2826 	struct dc_cursor_mi_param param = {
2827 		.pixel_clk_khz = pipe_ctx->stream->timing.pix_clk_100hz / 10,
2828 		.ref_clk_khz = pipe_ctx->stream->ctx->dc->res_pool->ref_clocks.xtalin_clock_inKhz,
2829 		.viewport = pipe_ctx->plane_res.scl_data.viewport,
2830 		.h_scale_ratio = pipe_ctx->plane_res.scl_data.ratios.horz,
2831 		.v_scale_ratio = pipe_ctx->plane_res.scl_data.ratios.vert,
2832 		.rotation = pipe_ctx->plane_state->rotation,
2833 		.mirror = pipe_ctx->plane_state->horizontal_mirror
2834 	};
2835 
2836 	/**
2837 	 * If the cursor's source viewport is clipped then we need to
2838 	 * translate the cursor to appear in the correct position on
2839 	 * the screen.
2840 	 *
2841 	 * This translation isn't affected by scaling so it needs to be
2842 	 * done *after* we adjust the position for the scale factor.
2843 	 *
2844 	 * This is only done by opt-in for now since there are still
2845 	 * some usecases like tiled display that might enable the
2846 	 * cursor on both streams while expecting dc to clip it.
2847 	 */
2848 	if (pos_cpy.translate_by_source) {
2849 		pos_cpy.x += pipe_ctx->plane_state->src_rect.x;
2850 		pos_cpy.y += pipe_ctx->plane_state->src_rect.y;
2851 	}
2852 
2853 	if (pipe_ctx->plane_state->address.type
2854 			== PLN_ADDR_TYPE_VIDEO_PROGRESSIVE)
2855 		pos_cpy.enable = false;
2856 
2857 	if (pipe_ctx->top_pipe && pipe_ctx->plane_state != pipe_ctx->top_pipe->plane_state)
2858 		pos_cpy.enable = false;
2859 
2860 	if (ipp->funcs->ipp_cursor_set_position)
2861 		ipp->funcs->ipp_cursor_set_position(ipp, &pos_cpy, &param);
2862 	if (mi->funcs->set_cursor_position)
2863 		mi->funcs->set_cursor_position(mi, &pos_cpy, &param);
2864 }
2865 
dce110_set_cursor_attribute(struct pipe_ctx * pipe_ctx)2866 static void dce110_set_cursor_attribute(struct pipe_ctx *pipe_ctx)
2867 {
2868 	struct dc_cursor_attributes *attributes = &pipe_ctx->stream->cursor_attributes;
2869 
2870 	if (pipe_ctx->plane_res.ipp &&
2871 	    pipe_ctx->plane_res.ipp->funcs->ipp_cursor_set_attributes)
2872 		pipe_ctx->plane_res.ipp->funcs->ipp_cursor_set_attributes(
2873 				pipe_ctx->plane_res.ipp, attributes);
2874 
2875 	if (pipe_ctx->plane_res.mi &&
2876 	    pipe_ctx->plane_res.mi->funcs->set_cursor_attributes)
2877 		pipe_ctx->plane_res.mi->funcs->set_cursor_attributes(
2878 				pipe_ctx->plane_res.mi, attributes);
2879 
2880 	if (pipe_ctx->plane_res.xfm &&
2881 	    pipe_ctx->plane_res.xfm->funcs->set_cursor_attributes)
2882 		pipe_ctx->plane_res.xfm->funcs->set_cursor_attributes(
2883 				pipe_ctx->plane_res.xfm, attributes);
2884 }
2885 
dce110_set_backlight_level(struct pipe_ctx * pipe_ctx,uint32_t backlight_pwm_u16_16,uint32_t frame_ramp)2886 bool dce110_set_backlight_level(struct pipe_ctx *pipe_ctx,
2887 		uint32_t backlight_pwm_u16_16,
2888 		uint32_t frame_ramp)
2889 {
2890 	struct dc_link *link = pipe_ctx->stream->link;
2891 	struct dc  *dc = link->ctx->dc;
2892 	struct abm *abm = pipe_ctx->stream_res.abm;
2893 	struct panel_cntl *panel_cntl = link->panel_cntl;
2894 	struct dmcu *dmcu = dc->res_pool->dmcu;
2895 	bool fw_set_brightness = true;
2896 	/* DMCU -1 for all controller id values,
2897 	 * therefore +1 here
2898 	 */
2899 	uint32_t controller_id = pipe_ctx->stream_res.tg->inst + 1;
2900 
2901 	if (abm == NULL || panel_cntl == NULL || (abm->funcs->set_backlight_level_pwm == NULL))
2902 		return false;
2903 
2904 	if (dmcu)
2905 		fw_set_brightness = dmcu->funcs->is_dmcu_initialized(dmcu);
2906 
2907 	if (!fw_set_brightness && panel_cntl->funcs->driver_set_backlight)
2908 		panel_cntl->funcs->driver_set_backlight(panel_cntl, backlight_pwm_u16_16);
2909 	else
2910 		abm->funcs->set_backlight_level_pwm(
2911 				abm,
2912 				backlight_pwm_u16_16,
2913 				frame_ramp,
2914 				controller_id,
2915 				link->panel_cntl->inst);
2916 
2917 	return true;
2918 }
2919 
dce110_set_abm_immediate_disable(struct pipe_ctx * pipe_ctx)2920 void dce110_set_abm_immediate_disable(struct pipe_ctx *pipe_ctx)
2921 {
2922 	struct abm *abm = pipe_ctx->stream_res.abm;
2923 	struct panel_cntl *panel_cntl = pipe_ctx->stream->link->panel_cntl;
2924 
2925 	if (abm)
2926 		abm->funcs->set_abm_immediate_disable(abm,
2927 				pipe_ctx->stream->link->panel_cntl->inst);
2928 
2929 	if (panel_cntl)
2930 		panel_cntl->funcs->store_backlight_level(panel_cntl);
2931 }
2932 
dce110_set_pipe(struct pipe_ctx * pipe_ctx)2933 void dce110_set_pipe(struct pipe_ctx *pipe_ctx)
2934 {
2935 	struct abm *abm = pipe_ctx->stream_res.abm;
2936 	struct panel_cntl *panel_cntl = pipe_ctx->stream->link->panel_cntl;
2937 	uint32_t otg_inst = pipe_ctx->stream_res.tg->inst + 1;
2938 
2939 	if (abm && panel_cntl)
2940 		abm->funcs->set_pipe(abm, otg_inst, panel_cntl->inst);
2941 }
2942 
2943 static const struct hw_sequencer_funcs dce110_funcs = {
2944 	.program_gamut_remap = program_gamut_remap,
2945 	.program_output_csc = program_output_csc,
2946 	.init_hw = init_hw,
2947 	.apply_ctx_to_hw = dce110_apply_ctx_to_hw,
2948 	.apply_ctx_for_surface = dce110_apply_ctx_for_surface,
2949 	.post_unlock_program_front_end = dce110_post_unlock_program_front_end,
2950 	.update_plane_addr = update_plane_addr,
2951 	.update_pending_status = dce110_update_pending_status,
2952 	.enable_accelerated_mode = dce110_enable_accelerated_mode,
2953 	.enable_timing_synchronization = dce110_enable_timing_synchronization,
2954 	.enable_per_frame_crtc_position_reset = dce110_enable_per_frame_crtc_position_reset,
2955 	.update_info_frame = dce110_update_info_frame,
2956 	.enable_stream = dce110_enable_stream,
2957 	.disable_stream = dce110_disable_stream,
2958 	.unblank_stream = dce110_unblank_stream,
2959 	.blank_stream = dce110_blank_stream,
2960 	.enable_audio_stream = dce110_enable_audio_stream,
2961 	.disable_audio_stream = dce110_disable_audio_stream,
2962 	.disable_plane = dce110_power_down_fe,
2963 	.pipe_control_lock = dce_pipe_control_lock,
2964 	.interdependent_update_lock = NULL,
2965 	.cursor_lock = dce_pipe_control_lock,
2966 	.prepare_bandwidth = dce110_prepare_bandwidth,
2967 	.optimize_bandwidth = dce110_optimize_bandwidth,
2968 	.set_drr = set_drr,
2969 	.get_position = get_position,
2970 	.set_static_screen_control = set_static_screen_control,
2971 	.setup_stereo = NULL,
2972 	.set_avmute = dce110_set_avmute,
2973 	.wait_for_mpcc_disconnect = dce110_wait_for_mpcc_disconnect,
2974 	.edp_backlight_control = dce110_edp_backlight_control,
2975 	.edp_power_control = dce110_edp_power_control,
2976 	.edp_wait_for_hpd_ready = dce110_edp_wait_for_hpd_ready,
2977 	.set_cursor_position = dce110_set_cursor_position,
2978 	.set_cursor_attribute = dce110_set_cursor_attribute,
2979 	.set_backlight_level = dce110_set_backlight_level,
2980 	.set_abm_immediate_disable = dce110_set_abm_immediate_disable,
2981 	.set_pipe = dce110_set_pipe,
2982 };
2983 
2984 static const struct hwseq_private_funcs dce110_private_funcs = {
2985 	.init_pipes = init_pipes,
2986 	.update_plane_addr = update_plane_addr,
2987 	.set_input_transfer_func = dce110_set_input_transfer_func,
2988 	.set_output_transfer_func = dce110_set_output_transfer_func,
2989 	.power_down = dce110_power_down,
2990 	.enable_display_pipe_clock_gating = enable_display_pipe_clock_gating,
2991 	.enable_display_power_gating = dce110_enable_display_power_gating,
2992 	.reset_hw_ctx_wrap = dce110_reset_hw_ctx_wrap,
2993 	.enable_stream_timing = dce110_enable_stream_timing,
2994 	.disable_stream_gating = NULL,
2995 	.enable_stream_gating = NULL,
2996 	.edp_backlight_control = dce110_edp_backlight_control,
2997 };
2998 
dce110_hw_sequencer_construct(struct dc * dc)2999 void dce110_hw_sequencer_construct(struct dc *dc)
3000 {
3001 	dc->hwss = dce110_funcs;
3002 	dc->hwseq->funcs = dce110_private_funcs;
3003 }
3004 
3005