1 /*
2  * Copyright 2015 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  */
24 
25 #include "dm_services.h"
26 
27 #include "dc.h"
28 
29 #include "core_status.h"
30 #include "core_types.h"
31 #include "hw_sequencer.h"
32 #include "dce/dce_hwseq.h"
33 
34 #include "resource.h"
35 
36 #include "gpio_service_interface.h"
37 #include "clk_mgr.h"
38 #include "clock_source.h"
39 #include "dc_bios_types.h"
40 
41 #include "bios_parser_interface.h"
42 #include "bios/bios_parser_helper.h"
43 #include "include/irq_service_interface.h"
44 #include "transform.h"
45 #include "dmcu.h"
46 #include "dpp.h"
47 #include "timing_generator.h"
48 #include "abm.h"
49 #include "virtual/virtual_link_encoder.h"
50 #include "hubp.h"
51 
52 #include "link_hwss.h"
53 #include "link_encoder.h"
54 #include "link_enc_cfg.h"
55 
56 #include "link.h"
57 #include "dm_helpers.h"
58 #include "mem_input.h"
59 
60 #include "dc_dmub_srv.h"
61 
62 #include "dsc.h"
63 
64 #include "vm_helper.h"
65 
66 #include "dce/dce_i2c.h"
67 
68 #include "dmub/dmub_srv.h"
69 
70 #include "dce/dmub_psr.h"
71 
72 #include "dce/dmub_hw_lock_mgr.h"
73 
74 #include "dc_trace.h"
75 
76 #include "hw_sequencer_private.h"
77 
78 #include "dce/dmub_outbox.h"
79 
80 #define CTX \
81 	dc->ctx
82 
83 #define DC_LOGGER \
84 	dc->ctx->logger
85 
86 static const char DC_BUILD_ID[] = "production-build";
87 
88 /**
89  * DOC: Overview
90  *
91  * DC is the OS-agnostic component of the amdgpu DC driver.
92  *
93  * DC maintains and validates a set of structs representing the state of the
94  * driver and writes that state to AMD hardware
95  *
96  * Main DC HW structs:
97  *
98  * struct dc - The central struct.  One per driver.  Created on driver load,
99  * destroyed on driver unload.
100  *
101  * struct dc_context - One per driver.
102  * Used as a backpointer by most other structs in dc.
103  *
104  * struct dc_link - One per connector (the physical DP, HDMI, miniDP, or eDP
105  * plugpoints).  Created on driver load, destroyed on driver unload.
106  *
107  * struct dc_sink - One per display.  Created on boot or hotplug.
108  * Destroyed on shutdown or hotunplug.  A dc_link can have a local sink
109  * (the display directly attached).  It may also have one or more remote
110  * sinks (in the Multi-Stream Transport case)
111  *
112  * struct resource_pool - One per driver.  Represents the hw blocks not in the
113  * main pipeline.  Not directly accessible by dm.
114  *
115  * Main dc state structs:
116  *
117  * These structs can be created and destroyed as needed.  There is a full set of
118  * these structs in dc->current_state representing the currently programmed state.
119  *
120  * struct dc_state - The global DC state to track global state information,
121  * such as bandwidth values.
122  *
123  * struct dc_stream_state - Represents the hw configuration for the pipeline from
124  * a framebuffer to a display.  Maps one-to-one with dc_sink.
125  *
126  * struct dc_plane_state - Represents a framebuffer.  Each stream has at least one,
127  * and may have more in the Multi-Plane Overlay case.
128  *
129  * struct resource_context - Represents the programmable state of everything in
130  * the resource_pool.  Not directly accessible by dm.
131  *
132  * struct pipe_ctx - A member of struct resource_context.  Represents the
133  * internal hardware pipeline components.  Each dc_plane_state has either
134  * one or two (in the pipe-split case).
135  */
136 
137 /* Private functions */
138 
elevate_update_type(enum surface_update_type * original,enum surface_update_type new)139 static inline void elevate_update_type(enum surface_update_type *original, enum surface_update_type new)
140 {
141 	if (new > *original)
142 		*original = new;
143 }
144 
destroy_links(struct dc * dc)145 static void destroy_links(struct dc *dc)
146 {
147 	uint32_t i;
148 
149 	for (i = 0; i < dc->link_count; i++) {
150 		if (NULL != dc->links[i])
151 			dc->link_srv->destroy_link(&dc->links[i]);
152 	}
153 }
154 
get_num_of_internal_disp(struct dc_link ** links,uint32_t num_links)155 static uint32_t get_num_of_internal_disp(struct dc_link **links, uint32_t num_links)
156 {
157 	int i;
158 	uint32_t count = 0;
159 
160 	for (i = 0; i < num_links; i++) {
161 		if (links[i]->connector_signal == SIGNAL_TYPE_EDP ||
162 				links[i]->is_internal_display)
163 			count++;
164 	}
165 
166 	return count;
167 }
168 
get_seamless_boot_stream_count(struct dc_state * ctx)169 static int get_seamless_boot_stream_count(struct dc_state *ctx)
170 {
171 	uint8_t i;
172 	uint8_t seamless_boot_stream_count = 0;
173 
174 	for (i = 0; i < ctx->stream_count; i++)
175 		if (ctx->streams[i]->apply_seamless_boot_optimization)
176 			seamless_boot_stream_count++;
177 
178 	return seamless_boot_stream_count;
179 }
180 
create_links(struct dc * dc,uint32_t num_virtual_links)181 static bool create_links(
182 		struct dc *dc,
183 		uint32_t num_virtual_links)
184 {
185 	int i;
186 	int connectors_num;
187 	struct dc_bios *bios = dc->ctx->dc_bios;
188 
189 	dc->link_count = 0;
190 
191 	connectors_num = bios->funcs->get_connectors_number(bios);
192 
193 	DC_LOG_DC("BIOS object table - number of connectors: %d", connectors_num);
194 
195 	if (connectors_num > ENUM_ID_COUNT) {
196 		dm_error(
197 			"DC: Number of connectors %d exceeds maximum of %d!\n",
198 			connectors_num,
199 			ENUM_ID_COUNT);
200 		return false;
201 	}
202 
203 	dm_output_to_console(
204 		"DC: %s: connectors_num: physical:%d, virtual:%d\n",
205 		__func__,
206 		connectors_num,
207 		num_virtual_links);
208 
209 	for (i = 0; i < connectors_num; i++) {
210 		struct link_init_data link_init_params = {0};
211 		struct dc_link *link;
212 
213 		DC_LOG_DC("BIOS object table - printing link object info for connector number: %d, link_index: %d", i, dc->link_count);
214 
215 		link_init_params.ctx = dc->ctx;
216 		/* next BIOS object table connector */
217 		link_init_params.connector_index = i;
218 		link_init_params.link_index = dc->link_count;
219 		link_init_params.dc = dc;
220 		link = dc->link_srv->create_link(&link_init_params);
221 
222 		if (link) {
223 			dc->links[dc->link_count] = link;
224 			link->dc = dc;
225 			++dc->link_count;
226 		}
227 	}
228 
229 	DC_LOG_DC("BIOS object table - end");
230 
231 	/* Create a link for each usb4 dpia port */
232 	for (i = 0; i < dc->res_pool->usb4_dpia_count; i++) {
233 		struct link_init_data link_init_params = {0};
234 		struct dc_link *link;
235 
236 		link_init_params.ctx = dc->ctx;
237 		link_init_params.connector_index = i;
238 		link_init_params.link_index = dc->link_count;
239 		link_init_params.dc = dc;
240 		link_init_params.is_dpia_link = true;
241 
242 		link = dc->link_srv->create_link(&link_init_params);
243 		if (link) {
244 			dc->links[dc->link_count] = link;
245 			link->dc = dc;
246 			++dc->link_count;
247 		}
248 	}
249 
250 	for (i = 0; i < num_virtual_links; i++) {
251 		struct dc_link *link = kzalloc(sizeof(*link), GFP_KERNEL);
252 		struct encoder_init_data enc_init = {0};
253 
254 		if (link == NULL) {
255 			BREAK_TO_DEBUGGER();
256 			goto failed_alloc;
257 		}
258 
259 		link->link_index = dc->link_count;
260 		dc->links[dc->link_count] = link;
261 		dc->link_count++;
262 
263 		link->ctx = dc->ctx;
264 		link->dc = dc;
265 		link->connector_signal = SIGNAL_TYPE_VIRTUAL;
266 		link->link_id.type = OBJECT_TYPE_CONNECTOR;
267 		link->link_id.id = CONNECTOR_ID_VIRTUAL;
268 		link->link_id.enum_id = ENUM_ID_1;
269 		link->link_enc = kzalloc(sizeof(*link->link_enc), GFP_KERNEL);
270 
271 		if (!link->link_enc) {
272 			BREAK_TO_DEBUGGER();
273 			goto failed_alloc;
274 		}
275 
276 		link->link_status.dpcd_caps = &link->dpcd_caps;
277 
278 		enc_init.ctx = dc->ctx;
279 		enc_init.channel = CHANNEL_ID_UNKNOWN;
280 		enc_init.hpd_source = HPD_SOURCEID_UNKNOWN;
281 		enc_init.transmitter = TRANSMITTER_UNKNOWN;
282 		enc_init.connector = link->link_id;
283 		enc_init.encoder.type = OBJECT_TYPE_ENCODER;
284 		enc_init.encoder.id = ENCODER_ID_INTERNAL_VIRTUAL;
285 		enc_init.encoder.enum_id = ENUM_ID_1;
286 		virtual_link_encoder_construct(link->link_enc, &enc_init);
287 	}
288 
289 	dc->caps.num_of_internal_disp = get_num_of_internal_disp(dc->links, dc->link_count);
290 
291 	return true;
292 
293 failed_alloc:
294 	return false;
295 }
296 
297 /* Create additional DIG link encoder objects if fewer than the platform
298  * supports were created during link construction. This can happen if the
299  * number of physical connectors is less than the number of DIGs.
300  */
create_link_encoders(struct dc * dc)301 static bool create_link_encoders(struct dc *dc)
302 {
303 	bool res = true;
304 	unsigned int num_usb4_dpia = dc->res_pool->res_cap->num_usb4_dpia;
305 	unsigned int num_dig_link_enc = dc->res_pool->res_cap->num_dig_link_enc;
306 	int i;
307 
308 	/* A platform without USB4 DPIA endpoints has a fixed mapping between DIG
309 	 * link encoders and physical display endpoints and does not require
310 	 * additional link encoder objects.
311 	 */
312 	if (num_usb4_dpia == 0)
313 		return res;
314 
315 	/* Create as many link encoder objects as the platform supports. DPIA
316 	 * endpoints can be programmably mapped to any DIG.
317 	 */
318 	if (num_dig_link_enc > dc->res_pool->dig_link_enc_count) {
319 		for (i = 0; i < num_dig_link_enc; i++) {
320 			struct link_encoder *link_enc = dc->res_pool->link_encoders[i];
321 
322 			if (!link_enc && dc->res_pool->funcs->link_enc_create_minimal) {
323 				link_enc = dc->res_pool->funcs->link_enc_create_minimal(dc->ctx,
324 						(enum engine_id)(ENGINE_ID_DIGA + i));
325 				if (link_enc) {
326 					dc->res_pool->link_encoders[i] = link_enc;
327 					dc->res_pool->dig_link_enc_count++;
328 				} else {
329 					res = false;
330 				}
331 			}
332 		}
333 	}
334 
335 	return res;
336 }
337 
338 /* Destroy any additional DIG link encoder objects created by
339  * create_link_encoders().
340  * NB: Must only be called after destroy_links().
341  */
destroy_link_encoders(struct dc * dc)342 static void destroy_link_encoders(struct dc *dc)
343 {
344 	unsigned int num_usb4_dpia;
345 	unsigned int num_dig_link_enc;
346 	int i;
347 
348 	if (!dc->res_pool)
349 		return;
350 
351 	num_usb4_dpia = dc->res_pool->res_cap->num_usb4_dpia;
352 	num_dig_link_enc = dc->res_pool->res_cap->num_dig_link_enc;
353 
354 	/* A platform without USB4 DPIA endpoints has a fixed mapping between DIG
355 	 * link encoders and physical display endpoints and does not require
356 	 * additional link encoder objects.
357 	 */
358 	if (num_usb4_dpia == 0)
359 		return;
360 
361 	for (i = 0; i < num_dig_link_enc; i++) {
362 		struct link_encoder *link_enc = dc->res_pool->link_encoders[i];
363 
364 		if (link_enc) {
365 			link_enc->funcs->destroy(&link_enc);
366 			dc->res_pool->link_encoders[i] = NULL;
367 			dc->res_pool->dig_link_enc_count--;
368 		}
369 	}
370 }
371 
dc_perf_trace_create(void)372 static struct dc_perf_trace *dc_perf_trace_create(void)
373 {
374 	return kzalloc(sizeof(struct dc_perf_trace), GFP_KERNEL);
375 }
376 
dc_perf_trace_destroy(struct dc_perf_trace ** perf_trace)377 static void dc_perf_trace_destroy(struct dc_perf_trace **perf_trace)
378 {
379 	kfree(*perf_trace);
380 	*perf_trace = NULL;
381 }
382 
383 /**
384  *  dc_stream_adjust_vmin_vmax - look up pipe context & update parts of DRR
385  *  @dc:     dc reference
386  *  @stream: Initial dc stream state
387  *  @adjust: Updated parameters for vertical_total_min and vertical_total_max
388  *
389  *  Looks up the pipe context of dc_stream_state and updates the
390  *  vertical_total_min and vertical_total_max of the DRR, Dynamic Refresh
391  *  Rate, which is a power-saving feature that targets reducing panel
392  *  refresh rate while the screen is static
393  *
394  *  Return: %true if the pipe context is found and adjusted;
395  *          %false if the pipe context is not found.
396  */
dc_stream_adjust_vmin_vmax(struct dc * dc,struct dc_stream_state * stream,struct dc_crtc_timing_adjust * adjust)397 bool dc_stream_adjust_vmin_vmax(struct dc *dc,
398 		struct dc_stream_state *stream,
399 		struct dc_crtc_timing_adjust *adjust)
400 {
401 	int i;
402 
403 	/*
404 	 * Don't adjust DRR while there's bandwidth optimizations pending to
405 	 * avoid conflicting with firmware updates.
406 	 */
407 	if (dc->ctx->dce_version > DCE_VERSION_MAX)
408 		if (dc->optimized_required || dc->wm_optimized_required)
409 			return false;
410 
411 	stream->adjust.v_total_max = adjust->v_total_max;
412 	stream->adjust.v_total_mid = adjust->v_total_mid;
413 	stream->adjust.v_total_mid_frame_num = adjust->v_total_mid_frame_num;
414 	stream->adjust.v_total_min = adjust->v_total_min;
415 
416 	for (i = 0; i < MAX_PIPES; i++) {
417 		struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
418 
419 		if (pipe->stream == stream && pipe->stream_res.tg) {
420 			dc->hwss.set_drr(&pipe,
421 					1,
422 					*adjust);
423 
424 			return true;
425 		}
426 	}
427 	return false;
428 }
429 
430 /**
431  * dc_stream_get_last_used_drr_vtotal - Looks up the pipe context of
432  * dc_stream_state and gets the last VTOTAL used by DRR (Dynamic Refresh Rate)
433  *
434  * @dc: [in] dc reference
435  * @stream: [in] Initial dc stream state
436  * @refresh_rate: [in] new refresh_rate
437  *
438  * Return: %true if the pipe context is found and there is an associated
439  *         timing_generator for the DC;
440  *         %false if the pipe context is not found or there is no
441  *         timing_generator for the DC.
442  */
dc_stream_get_last_used_drr_vtotal(struct dc * dc,struct dc_stream_state * stream,uint32_t * refresh_rate)443 bool dc_stream_get_last_used_drr_vtotal(struct dc *dc,
444 		struct dc_stream_state *stream,
445 		uint32_t *refresh_rate)
446 {
447 	bool status = false;
448 
449 	int i = 0;
450 
451 	for (i = 0; i < MAX_PIPES; i++) {
452 		struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
453 
454 		if (pipe->stream == stream && pipe->stream_res.tg) {
455 			/* Only execute if a function pointer has been defined for
456 			 * the DC version in question
457 			 */
458 			if (pipe->stream_res.tg->funcs->get_last_used_drr_vtotal) {
459 				pipe->stream_res.tg->funcs->get_last_used_drr_vtotal(pipe->stream_res.tg, refresh_rate);
460 
461 				status = true;
462 
463 				break;
464 			}
465 		}
466 	}
467 
468 	return status;
469 }
470 
dc_stream_get_crtc_position(struct dc * dc,struct dc_stream_state ** streams,int num_streams,unsigned int * v_pos,unsigned int * nom_v_pos)471 bool dc_stream_get_crtc_position(struct dc *dc,
472 		struct dc_stream_state **streams, int num_streams,
473 		unsigned int *v_pos, unsigned int *nom_v_pos)
474 {
475 	/* TODO: Support multiple streams */
476 	const struct dc_stream_state *stream = streams[0];
477 	int i;
478 	bool ret = false;
479 	struct crtc_position position;
480 
481 	for (i = 0; i < MAX_PIPES; i++) {
482 		struct pipe_ctx *pipe =
483 				&dc->current_state->res_ctx.pipe_ctx[i];
484 
485 		if (pipe->stream == stream && pipe->stream_res.stream_enc) {
486 			dc->hwss.get_position(&pipe, 1, &position);
487 
488 			*v_pos = position.vertical_count;
489 			*nom_v_pos = position.nominal_vcount;
490 			ret = true;
491 		}
492 	}
493 	return ret;
494 }
495 
496 #if defined(CONFIG_DRM_AMD_SECURE_DISPLAY)
497 static inline void
dc_stream_forward_dmub_crc_window(struct dc_dmub_srv * dmub_srv,struct rect * rect,struct otg_phy_mux * mux_mapping,bool is_stop)498 dc_stream_forward_dmub_crc_window(struct dc_dmub_srv *dmub_srv,
499 		struct rect *rect, struct otg_phy_mux *mux_mapping, bool is_stop)
500 {
501 	union dmub_rb_cmd cmd = {0};
502 
503 	cmd.secure_display.roi_info.phy_id = mux_mapping->phy_output_num;
504 	cmd.secure_display.roi_info.otg_id = mux_mapping->otg_output_num;
505 
506 	if (is_stop) {
507 		cmd.secure_display.header.type = DMUB_CMD__SECURE_DISPLAY;
508 		cmd.secure_display.header.sub_type = DMUB_CMD__SECURE_DISPLAY_CRC_STOP_UPDATE;
509 	} else {
510 		cmd.secure_display.header.type = DMUB_CMD__SECURE_DISPLAY;
511 		cmd.secure_display.header.sub_type = DMUB_CMD__SECURE_DISPLAY_CRC_WIN_NOTIFY;
512 		cmd.secure_display.roi_info.x_start = rect->x;
513 		cmd.secure_display.roi_info.y_start = rect->y;
514 		cmd.secure_display.roi_info.x_end = rect->x + rect->width;
515 		cmd.secure_display.roi_info.y_end = rect->y + rect->height;
516 	}
517 
518 	dm_execute_dmub_cmd(dmub_srv->ctx, &cmd, DM_DMUB_WAIT_TYPE_NO_WAIT);
519 }
520 
521 static inline void
dc_stream_forward_dmcu_crc_window(struct dmcu * dmcu,struct rect * rect,struct otg_phy_mux * mux_mapping,bool is_stop)522 dc_stream_forward_dmcu_crc_window(struct dmcu *dmcu,
523 		struct rect *rect, struct otg_phy_mux *mux_mapping, bool is_stop)
524 {
525 	if (is_stop)
526 		dmcu->funcs->stop_crc_win_update(dmcu, mux_mapping);
527 	else
528 		dmcu->funcs->forward_crc_window(dmcu, rect, mux_mapping);
529 }
530 
531 bool
dc_stream_forward_crc_window(struct dc_stream_state * stream,struct rect * rect,bool is_stop)532 dc_stream_forward_crc_window(struct dc_stream_state *stream,
533 		struct rect *rect, bool is_stop)
534 {
535 	struct dmcu *dmcu;
536 	struct dc_dmub_srv *dmub_srv;
537 	struct otg_phy_mux mux_mapping;
538 	struct pipe_ctx *pipe;
539 	int i;
540 	struct dc *dc = stream->ctx->dc;
541 
542 	for (i = 0; i < MAX_PIPES; i++) {
543 		pipe = &dc->current_state->res_ctx.pipe_ctx[i];
544 		if (pipe->stream == stream && !pipe->top_pipe && !pipe->prev_odm_pipe)
545 			break;
546 	}
547 
548 	/* Stream not found */
549 	if (i == MAX_PIPES)
550 		return false;
551 
552 	mux_mapping.phy_output_num = stream->link->link_enc_hw_inst;
553 	mux_mapping.otg_output_num = pipe->stream_res.tg->inst;
554 
555 	dmcu = dc->res_pool->dmcu;
556 	dmub_srv = dc->ctx->dmub_srv;
557 
558 	/* forward to dmub */
559 	if (dmub_srv)
560 		dc_stream_forward_dmub_crc_window(dmub_srv, rect, &mux_mapping, is_stop);
561 	/* forward to dmcu */
562 	else if (dmcu && dmcu->funcs->is_dmcu_initialized(dmcu))
563 		dc_stream_forward_dmcu_crc_window(dmcu, rect, &mux_mapping, is_stop);
564 	else
565 		return false;
566 
567 	return true;
568 }
569 #endif /* CONFIG_DRM_AMD_SECURE_DISPLAY */
570 
571 /**
572  * dc_stream_configure_crc() - Configure CRC capture for the given stream.
573  * @dc: DC Object
574  * @stream: The stream to configure CRC on.
575  * @enable: Enable CRC if true, disable otherwise.
576  * @crc_window: CRC window (x/y start/end) information
577  * @continuous: Capture CRC on every frame if true. Otherwise, only capture
578  *              once.
579  *
580  * By default, only CRC0 is configured, and the entire frame is used to
581  * calculate the CRC.
582  *
583  * Return: %false if the stream is not found or CRC capture is not supported;
584  *         %true if the stream has been configured.
585  */
dc_stream_configure_crc(struct dc * dc,struct dc_stream_state * stream,struct crc_params * crc_window,bool enable,bool continuous)586 bool dc_stream_configure_crc(struct dc *dc, struct dc_stream_state *stream,
587 			     struct crc_params *crc_window, bool enable, bool continuous)
588 {
589 	struct pipe_ctx *pipe;
590 	struct crc_params param;
591 	struct timing_generator *tg;
592 
593 	pipe = resource_get_otg_master_for_stream(
594 			&dc->current_state->res_ctx, stream);
595 
596 	/* Stream not found */
597 	if (pipe == NULL)
598 		return false;
599 
600 	/* By default, capture the full frame */
601 	param.windowa_x_start = 0;
602 	param.windowa_y_start = 0;
603 	param.windowa_x_end = pipe->stream->timing.h_addressable;
604 	param.windowa_y_end = pipe->stream->timing.v_addressable;
605 	param.windowb_x_start = 0;
606 	param.windowb_y_start = 0;
607 	param.windowb_x_end = pipe->stream->timing.h_addressable;
608 	param.windowb_y_end = pipe->stream->timing.v_addressable;
609 
610 	if (crc_window) {
611 		param.windowa_x_start = crc_window->windowa_x_start;
612 		param.windowa_y_start = crc_window->windowa_y_start;
613 		param.windowa_x_end = crc_window->windowa_x_end;
614 		param.windowa_y_end = crc_window->windowa_y_end;
615 		param.windowb_x_start = crc_window->windowb_x_start;
616 		param.windowb_y_start = crc_window->windowb_y_start;
617 		param.windowb_x_end = crc_window->windowb_x_end;
618 		param.windowb_y_end = crc_window->windowb_y_end;
619 	}
620 
621 	param.dsc_mode = pipe->stream->timing.flags.DSC ? 1:0;
622 	param.odm_mode = pipe->next_odm_pipe ? 1:0;
623 
624 	/* Default to the union of both windows */
625 	param.selection = UNION_WINDOW_A_B;
626 	param.continuous_mode = continuous;
627 	param.enable = enable;
628 
629 	tg = pipe->stream_res.tg;
630 
631 	/* Only call if supported */
632 	if (tg->funcs->configure_crc)
633 		return tg->funcs->configure_crc(tg, &param);
634 	DC_LOG_WARNING("CRC capture not supported.");
635 	return false;
636 }
637 
638 /**
639  * dc_stream_get_crc() - Get CRC values for the given stream.
640  *
641  * @dc: DC object.
642  * @stream: The DC stream state of the stream to get CRCs from.
643  * @r_cr: CRC value for the red component.
644  * @g_y:  CRC value for the green component.
645  * @b_cb: CRC value for the blue component.
646  *
647  * dc_stream_configure_crc needs to be called beforehand to enable CRCs.
648  *
649  * Return:
650  * %false if stream is not found, or if CRCs are not enabled.
651  */
dc_stream_get_crc(struct dc * dc,struct dc_stream_state * stream,uint32_t * r_cr,uint32_t * g_y,uint32_t * b_cb)652 bool dc_stream_get_crc(struct dc *dc, struct dc_stream_state *stream,
653 		       uint32_t *r_cr, uint32_t *g_y, uint32_t *b_cb)
654 {
655 	int i;
656 	struct pipe_ctx *pipe;
657 	struct timing_generator *tg;
658 
659 	for (i = 0; i < MAX_PIPES; i++) {
660 		pipe = &dc->current_state->res_ctx.pipe_ctx[i];
661 		if (pipe->stream == stream)
662 			break;
663 	}
664 	/* Stream not found */
665 	if (i == MAX_PIPES)
666 		return false;
667 
668 	tg = pipe->stream_res.tg;
669 
670 	if (tg->funcs->get_crc)
671 		return tg->funcs->get_crc(tg, r_cr, g_y, b_cb);
672 	DC_LOG_WARNING("CRC capture not supported.");
673 	return false;
674 }
675 
dc_stream_set_dyn_expansion(struct dc * dc,struct dc_stream_state * stream,enum dc_dynamic_expansion option)676 void dc_stream_set_dyn_expansion(struct dc *dc, struct dc_stream_state *stream,
677 		enum dc_dynamic_expansion option)
678 {
679 	/* OPP FMT dyn expansion updates*/
680 	int i;
681 	struct pipe_ctx *pipe_ctx;
682 
683 	for (i = 0; i < MAX_PIPES; i++) {
684 		if (dc->current_state->res_ctx.pipe_ctx[i].stream
685 				== stream) {
686 			pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
687 			pipe_ctx->stream_res.opp->dyn_expansion = option;
688 			pipe_ctx->stream_res.opp->funcs->opp_set_dyn_expansion(
689 					pipe_ctx->stream_res.opp,
690 					COLOR_SPACE_YCBCR601,
691 					stream->timing.display_color_depth,
692 					stream->signal);
693 		}
694 	}
695 }
696 
dc_stream_set_dither_option(struct dc_stream_state * stream,enum dc_dither_option option)697 void dc_stream_set_dither_option(struct dc_stream_state *stream,
698 		enum dc_dither_option option)
699 {
700 	struct bit_depth_reduction_params params;
701 	struct dc_link *link = stream->link;
702 	struct pipe_ctx *pipes = NULL;
703 	int i;
704 
705 	for (i = 0; i < MAX_PIPES; i++) {
706 		if (link->dc->current_state->res_ctx.pipe_ctx[i].stream ==
707 				stream) {
708 			pipes = &link->dc->current_state->res_ctx.pipe_ctx[i];
709 			break;
710 		}
711 	}
712 
713 	if (!pipes)
714 		return;
715 	if (option > DITHER_OPTION_MAX)
716 		return;
717 
718 	stream->dither_option = option;
719 
720 	memset(&params, 0, sizeof(params));
721 	resource_build_bit_depth_reduction_params(stream, &params);
722 	stream->bit_depth_params = params;
723 
724 	if (pipes->plane_res.xfm &&
725 	    pipes->plane_res.xfm->funcs->transform_set_pixel_storage_depth) {
726 		pipes->plane_res.xfm->funcs->transform_set_pixel_storage_depth(
727 			pipes->plane_res.xfm,
728 			pipes->plane_res.scl_data.lb_params.depth,
729 			&stream->bit_depth_params);
730 	}
731 
732 	pipes->stream_res.opp->funcs->
733 		opp_program_bit_depth_reduction(pipes->stream_res.opp, &params);
734 }
735 
dc_stream_set_gamut_remap(struct dc * dc,const struct dc_stream_state * stream)736 bool dc_stream_set_gamut_remap(struct dc *dc, const struct dc_stream_state *stream)
737 {
738 	int i;
739 	bool ret = false;
740 	struct pipe_ctx *pipes;
741 
742 	for (i = 0; i < MAX_PIPES; i++) {
743 		if (dc->current_state->res_ctx.pipe_ctx[i].stream == stream) {
744 			pipes = &dc->current_state->res_ctx.pipe_ctx[i];
745 			dc->hwss.program_gamut_remap(pipes);
746 			ret = true;
747 		}
748 	}
749 
750 	return ret;
751 }
752 
dc_stream_program_csc_matrix(struct dc * dc,struct dc_stream_state * stream)753 bool dc_stream_program_csc_matrix(struct dc *dc, struct dc_stream_state *stream)
754 {
755 	int i;
756 	bool ret = false;
757 	struct pipe_ctx *pipes;
758 
759 	for (i = 0; i < MAX_PIPES; i++) {
760 		if (dc->current_state->res_ctx.pipe_ctx[i].stream
761 				== stream) {
762 
763 			pipes = &dc->current_state->res_ctx.pipe_ctx[i];
764 			dc->hwss.program_output_csc(dc,
765 					pipes,
766 					stream->output_color_space,
767 					stream->csc_color_matrix.matrix,
768 					pipes->stream_res.opp->inst);
769 			ret = true;
770 		}
771 	}
772 
773 	return ret;
774 }
775 
dc_stream_set_static_screen_params(struct dc * dc,struct dc_stream_state ** streams,int num_streams,const struct dc_static_screen_params * params)776 void dc_stream_set_static_screen_params(struct dc *dc,
777 		struct dc_stream_state **streams,
778 		int num_streams,
779 		const struct dc_static_screen_params *params)
780 {
781 	int i, j;
782 	struct pipe_ctx *pipes_affected[MAX_PIPES];
783 	int num_pipes_affected = 0;
784 
785 	for (i = 0; i < num_streams; i++) {
786 		struct dc_stream_state *stream = streams[i];
787 
788 		for (j = 0; j < MAX_PIPES; j++) {
789 			if (dc->current_state->res_ctx.pipe_ctx[j].stream
790 					== stream) {
791 				pipes_affected[num_pipes_affected++] =
792 						&dc->current_state->res_ctx.pipe_ctx[j];
793 			}
794 		}
795 	}
796 
797 	dc->hwss.set_static_screen_control(pipes_affected, num_pipes_affected, params);
798 }
799 
dc_destruct(struct dc * dc)800 static void dc_destruct(struct dc *dc)
801 {
802 	// reset link encoder assignment table on destruct
803 	if (dc->res_pool && dc->res_pool->funcs->link_encs_assign)
804 		link_enc_cfg_init(dc, dc->current_state);
805 
806 	if (dc->current_state) {
807 		dc_release_state(dc->current_state);
808 		dc->current_state = NULL;
809 	}
810 
811 	destroy_links(dc);
812 
813 	destroy_link_encoders(dc);
814 
815 	if (dc->clk_mgr) {
816 		dc_destroy_clk_mgr(dc->clk_mgr);
817 		dc->clk_mgr = NULL;
818 	}
819 
820 	dc_destroy_resource_pool(dc);
821 
822 	if (dc->link_srv)
823 		link_destroy_link_service(&dc->link_srv);
824 
825 	if (dc->ctx->gpio_service)
826 		dal_gpio_service_destroy(&dc->ctx->gpio_service);
827 
828 	if (dc->ctx->created_bios)
829 		dal_bios_parser_destroy(&dc->ctx->dc_bios);
830 
831 	dc_perf_trace_destroy(&dc->ctx->perf_trace);
832 
833 	kfree(dc->ctx);
834 	dc->ctx = NULL;
835 
836 	kfree(dc->bw_vbios);
837 	dc->bw_vbios = NULL;
838 
839 	kfree(dc->bw_dceip);
840 	dc->bw_dceip = NULL;
841 
842 	kfree(dc->dcn_soc);
843 	dc->dcn_soc = NULL;
844 
845 	kfree(dc->dcn_ip);
846 	dc->dcn_ip = NULL;
847 
848 	kfree(dc->vm_helper);
849 	dc->vm_helper = NULL;
850 
851 }
852 
dc_construct_ctx(struct dc * dc,const struct dc_init_data * init_params)853 static bool dc_construct_ctx(struct dc *dc,
854 		const struct dc_init_data *init_params)
855 {
856 	struct dc_context *dc_ctx;
857 
858 	dc_ctx = kzalloc(sizeof(*dc_ctx), GFP_KERNEL);
859 	if (!dc_ctx)
860 		return false;
861 
862 	dc_ctx->cgs_device = init_params->cgs_device;
863 	dc_ctx->driver_context = init_params->driver;
864 	dc_ctx->dc = dc;
865 	dc_ctx->asic_id = init_params->asic_id;
866 	dc_ctx->dc_sink_id_count = 0;
867 	dc_ctx->dc_stream_id_count = 0;
868 	dc_ctx->dce_environment = init_params->dce_environment;
869 	dc_ctx->dcn_reg_offsets = init_params->dcn_reg_offsets;
870 	dc_ctx->nbio_reg_offsets = init_params->nbio_reg_offsets;
871 
872 	/* Create logger */
873 
874 	dc_ctx->dce_version = resource_parse_asic_id(init_params->asic_id);
875 
876 	dc_ctx->perf_trace = dc_perf_trace_create();
877 	if (!dc_ctx->perf_trace) {
878 		kfree(dc_ctx);
879 		ASSERT_CRITICAL(false);
880 		return false;
881 	}
882 
883 	dc->ctx = dc_ctx;
884 
885 	dc->link_srv = link_create_link_service();
886 	if (!dc->link_srv)
887 		return false;
888 
889 	return true;
890 }
891 
dc_construct(struct dc * dc,const struct dc_init_data * init_params)892 static bool dc_construct(struct dc *dc,
893 		const struct dc_init_data *init_params)
894 {
895 	struct dc_context *dc_ctx;
896 	struct bw_calcs_dceip *dc_dceip;
897 	struct bw_calcs_vbios *dc_vbios;
898 	struct dcn_soc_bounding_box *dcn_soc;
899 	struct dcn_ip_params *dcn_ip;
900 
901 	dc->config = init_params->flags;
902 
903 	// Allocate memory for the vm_helper
904 	dc->vm_helper = kzalloc(sizeof(struct vm_helper), GFP_KERNEL);
905 	if (!dc->vm_helper) {
906 		dm_error("%s: failed to create dc->vm_helper\n", __func__);
907 		goto fail;
908 	}
909 
910 	memcpy(&dc->bb_overrides, &init_params->bb_overrides, sizeof(dc->bb_overrides));
911 
912 	dc_dceip = kzalloc(sizeof(*dc_dceip), GFP_KERNEL);
913 	if (!dc_dceip) {
914 		dm_error("%s: failed to create dceip\n", __func__);
915 		goto fail;
916 	}
917 
918 	dc->bw_dceip = dc_dceip;
919 
920 	dc_vbios = kzalloc(sizeof(*dc_vbios), GFP_KERNEL);
921 	if (!dc_vbios) {
922 		dm_error("%s: failed to create vbios\n", __func__);
923 		goto fail;
924 	}
925 
926 	dc->bw_vbios = dc_vbios;
927 	dcn_soc = kzalloc(sizeof(*dcn_soc), GFP_KERNEL);
928 	if (!dcn_soc) {
929 		dm_error("%s: failed to create dcn_soc\n", __func__);
930 		goto fail;
931 	}
932 
933 	dc->dcn_soc = dcn_soc;
934 
935 	dcn_ip = kzalloc(sizeof(*dcn_ip), GFP_KERNEL);
936 	if (!dcn_ip) {
937 		dm_error("%s: failed to create dcn_ip\n", __func__);
938 		goto fail;
939 	}
940 
941 	dc->dcn_ip = dcn_ip;
942 
943 	if (!dc_construct_ctx(dc, init_params)) {
944 		dm_error("%s: failed to create ctx\n", __func__);
945 		goto fail;
946 	}
947 
948         dc_ctx = dc->ctx;
949 
950 	/* Resource should construct all asic specific resources.
951 	 * This should be the only place where we need to parse the asic id
952 	 */
953 	if (init_params->vbios_override)
954 		dc_ctx->dc_bios = init_params->vbios_override;
955 	else {
956 		/* Create BIOS parser */
957 		struct bp_init_data bp_init_data;
958 
959 		bp_init_data.ctx = dc_ctx;
960 		bp_init_data.bios = init_params->asic_id.atombios_base_address;
961 
962 		dc_ctx->dc_bios = dal_bios_parser_create(
963 				&bp_init_data, dc_ctx->dce_version);
964 
965 		if (!dc_ctx->dc_bios) {
966 			ASSERT_CRITICAL(false);
967 			goto fail;
968 		}
969 
970 		dc_ctx->created_bios = true;
971 	}
972 
973 	dc->vendor_signature = init_params->vendor_signature;
974 
975 	/* Create GPIO service */
976 	dc_ctx->gpio_service = dal_gpio_service_create(
977 			dc_ctx->dce_version,
978 			dc_ctx->dce_environment,
979 			dc_ctx);
980 
981 	if (!dc_ctx->gpio_service) {
982 		ASSERT_CRITICAL(false);
983 		goto fail;
984 	}
985 
986 	dc->res_pool = dc_create_resource_pool(dc, init_params, dc_ctx->dce_version);
987 	if (!dc->res_pool)
988 		goto fail;
989 
990 	/* set i2c speed if not done by the respective dcnxxx__resource.c */
991 	if (dc->caps.i2c_speed_in_khz_hdcp == 0)
992 		dc->caps.i2c_speed_in_khz_hdcp = dc->caps.i2c_speed_in_khz;
993 
994 	dc->clk_mgr = dc_clk_mgr_create(dc->ctx, dc->res_pool->pp_smu, dc->res_pool->dccg);
995 	if (!dc->clk_mgr)
996 		goto fail;
997 #ifdef CONFIG_DRM_AMD_DC_FP
998 	dc->clk_mgr->force_smu_not_present = init_params->force_smu_not_present;
999 
1000 	if (dc->res_pool->funcs->update_bw_bounding_box) {
1001 		DC_FP_START();
1002 		dc->res_pool->funcs->update_bw_bounding_box(dc, dc->clk_mgr->bw_params);
1003 		DC_FP_END();
1004 	}
1005 #endif
1006 
1007 	/* Creation of current_state must occur after dc->dml
1008 	 * is initialized in dc_create_resource_pool because
1009 	 * on creation it copies the contents of dc->dml
1010 	 */
1011 
1012 	dc->current_state = dc_create_state(dc);
1013 
1014 	if (!dc->current_state) {
1015 		dm_error("%s: failed to create validate ctx\n", __func__);
1016 		goto fail;
1017 	}
1018 
1019 	if (!create_links(dc, init_params->num_virtual_links))
1020 		goto fail;
1021 
1022 	/* Create additional DIG link encoder objects if fewer than the platform
1023 	 * supports were created during link construction.
1024 	 */
1025 	if (!create_link_encoders(dc))
1026 		goto fail;
1027 
1028 	dc_resource_state_construct(dc, dc->current_state);
1029 
1030 	return true;
1031 
1032 fail:
1033 	return false;
1034 }
1035 
disable_all_writeback_pipes_for_stream(const struct dc * dc,struct dc_stream_state * stream,struct dc_state * context)1036 static void disable_all_writeback_pipes_for_stream(
1037 		const struct dc *dc,
1038 		struct dc_stream_state *stream,
1039 		struct dc_state *context)
1040 {
1041 	int i;
1042 
1043 	for (i = 0; i < stream->num_wb_info; i++)
1044 		stream->writeback_info[i].wb_enabled = false;
1045 }
1046 
apply_ctx_interdependent_lock(struct dc * dc,struct dc_state * context,struct dc_stream_state * stream,bool lock)1047 static void apply_ctx_interdependent_lock(struct dc *dc,
1048 					  struct dc_state *context,
1049 					  struct dc_stream_state *stream,
1050 					  bool lock)
1051 {
1052 	int i;
1053 
1054 	/* Checks if interdependent update function pointer is NULL or not, takes care of DCE110 case */
1055 	if (dc->hwss.interdependent_update_lock)
1056 		dc->hwss.interdependent_update_lock(dc, context, lock);
1057 	else {
1058 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
1059 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1060 			struct pipe_ctx *old_pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
1061 
1062 			// Copied conditions that were previously in dce110_apply_ctx_for_surface
1063 			if (stream == pipe_ctx->stream) {
1064 				if (resource_is_pipe_type(pipe_ctx, OPP_HEAD) &&
1065 					(pipe_ctx->plane_state || old_pipe_ctx->plane_state))
1066 					dc->hwss.pipe_control_lock(dc, pipe_ctx, lock);
1067 			}
1068 		}
1069 	}
1070 }
1071 
phantom_pipe_blank(struct dc * dc,struct timing_generator * tg,int width,int height)1072 static void phantom_pipe_blank(
1073 		struct dc *dc,
1074 		struct timing_generator *tg,
1075 		int width,
1076 		int height)
1077 {
1078 	struct dce_hwseq *hws = dc->hwseq;
1079 	enum dc_color_space color_space;
1080 	struct tg_color black_color = {0};
1081 	struct output_pixel_processor *opp = NULL;
1082 	uint32_t num_opps, opp_id_src0, opp_id_src1;
1083 	uint32_t otg_active_width, otg_active_height;
1084 	uint32_t i;
1085 
1086 	/* program opp dpg blank color */
1087 	color_space = COLOR_SPACE_SRGB;
1088 	color_space_to_black_color(dc, color_space, &black_color);
1089 
1090 	otg_active_width = width;
1091 	otg_active_height = height;
1092 
1093 	/* get the OPTC source */
1094 	tg->funcs->get_optc_source(tg, &num_opps, &opp_id_src0, &opp_id_src1);
1095 	ASSERT(opp_id_src0 < dc->res_pool->res_cap->num_opp);
1096 
1097 	for (i = 0; i < dc->res_pool->res_cap->num_opp; i++) {
1098 		if (dc->res_pool->opps[i] != NULL && dc->res_pool->opps[i]->inst == opp_id_src0) {
1099 			opp = dc->res_pool->opps[i];
1100 			break;
1101 		}
1102 	}
1103 
1104 	if (opp && opp->funcs->opp_set_disp_pattern_generator)
1105 		opp->funcs->opp_set_disp_pattern_generator(
1106 				opp,
1107 				CONTROLLER_DP_TEST_PATTERN_SOLID_COLOR,
1108 				CONTROLLER_DP_COLOR_SPACE_UDEFINED,
1109 				COLOR_DEPTH_UNDEFINED,
1110 				&black_color,
1111 				otg_active_width,
1112 				otg_active_height,
1113 				0);
1114 
1115 	if (tg->funcs->is_tg_enabled(tg))
1116 		hws->funcs.wait_for_blank_complete(opp);
1117 }
1118 
dc_update_viusal_confirm_color(struct dc * dc,struct dc_state * context,struct pipe_ctx * pipe_ctx)1119 static void dc_update_viusal_confirm_color(struct dc *dc, struct dc_state *context, struct pipe_ctx *pipe_ctx)
1120 {
1121 	if (dc->ctx->dce_version >= DCN_VERSION_1_0) {
1122 		memset(&pipe_ctx->visual_confirm_color, 0, sizeof(struct tg_color));
1123 
1124 		if (dc->debug.visual_confirm == VISUAL_CONFIRM_HDR)
1125 			get_hdr_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1126 		else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SURFACE)
1127 			get_surface_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1128 		else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SWIZZLE)
1129 			get_surface_tile_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1130 		else {
1131 			if (dc->ctx->dce_version < DCN_VERSION_2_0)
1132 				color_space_to_black_color(
1133 					dc, pipe_ctx->stream->output_color_space, &(pipe_ctx->visual_confirm_color));
1134 		}
1135 		if (dc->ctx->dce_version >= DCN_VERSION_2_0) {
1136 			if (dc->debug.visual_confirm == VISUAL_CONFIRM_MPCTREE)
1137 				get_mpctree_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1138 			else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SUBVP)
1139 				get_subvp_visual_confirm_color(dc, context, pipe_ctx, &(pipe_ctx->visual_confirm_color));
1140 			else if (dc->debug.visual_confirm == VISUAL_CONFIRM_MCLK_SWITCH)
1141 				get_mclk_switch_visual_confirm_color(dc, context, pipe_ctx, &(pipe_ctx->visual_confirm_color));
1142 		}
1143 	}
1144 }
1145 
disable_dangling_plane(struct dc * dc,struct dc_state * context)1146 static void disable_dangling_plane(struct dc *dc, struct dc_state *context)
1147 {
1148 	int i, j;
1149 	struct dc_state *dangling_context = dc_create_state(dc);
1150 	struct dc_state *current_ctx;
1151 	struct pipe_ctx *pipe;
1152 	struct timing_generator *tg;
1153 
1154 	if (dangling_context == NULL)
1155 		return;
1156 
1157 	dc_resource_state_copy_construct(dc->current_state, dangling_context);
1158 
1159 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1160 		struct dc_stream_state *old_stream =
1161 				dc->current_state->res_ctx.pipe_ctx[i].stream;
1162 		bool should_disable = true;
1163 		bool pipe_split_change = false;
1164 
1165 		if ((context->res_ctx.pipe_ctx[i].top_pipe) &&
1166 			(dc->current_state->res_ctx.pipe_ctx[i].top_pipe))
1167 			pipe_split_change = context->res_ctx.pipe_ctx[i].top_pipe->pipe_idx !=
1168 				dc->current_state->res_ctx.pipe_ctx[i].top_pipe->pipe_idx;
1169 		else
1170 			pipe_split_change = context->res_ctx.pipe_ctx[i].top_pipe !=
1171 				dc->current_state->res_ctx.pipe_ctx[i].top_pipe;
1172 
1173 		for (j = 0; j < context->stream_count; j++) {
1174 			if (old_stream == context->streams[j]) {
1175 				should_disable = false;
1176 				break;
1177 			}
1178 		}
1179 		if (!should_disable && pipe_split_change &&
1180 				dc->current_state->stream_count != context->stream_count)
1181 			should_disable = true;
1182 
1183 		if (old_stream && !dc->current_state->res_ctx.pipe_ctx[i].top_pipe &&
1184 				!dc->current_state->res_ctx.pipe_ctx[i].prev_odm_pipe) {
1185 			struct pipe_ctx *old_pipe, *new_pipe;
1186 
1187 			old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1188 			new_pipe = &context->res_ctx.pipe_ctx[i];
1189 
1190 			if (old_pipe->plane_state && !new_pipe->plane_state)
1191 				should_disable = true;
1192 		}
1193 
1194 		if (should_disable && old_stream) {
1195 			pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1196 			tg = pipe->stream_res.tg;
1197 			/* When disabling plane for a phantom pipe, we must turn on the
1198 			 * phantom OTG so the disable programming gets the double buffer
1199 			 * update. Otherwise the pipe will be left in a partially disabled
1200 			 * state that can result in underflow or hang when enabling it
1201 			 * again for different use.
1202 			 */
1203 			if (old_stream->mall_stream_config.type == SUBVP_PHANTOM) {
1204 				if (tg->funcs->enable_crtc) {
1205 					int main_pipe_width, main_pipe_height;
1206 
1207 					main_pipe_width = old_stream->mall_stream_config.paired_stream->dst.width;
1208 					main_pipe_height = old_stream->mall_stream_config.paired_stream->dst.height;
1209 					phantom_pipe_blank(dc, tg, main_pipe_width, main_pipe_height);
1210 					tg->funcs->enable_crtc(tg);
1211 				}
1212 			}
1213 			dc_rem_all_planes_for_stream(dc, old_stream, dangling_context);
1214 			disable_all_writeback_pipes_for_stream(dc, old_stream, dangling_context);
1215 
1216 			if (pipe->stream && pipe->plane_state)
1217 				dc_update_viusal_confirm_color(dc, context, pipe);
1218 
1219 			if (dc->hwss.apply_ctx_for_surface) {
1220 				apply_ctx_interdependent_lock(dc, dc->current_state, old_stream, true);
1221 				dc->hwss.apply_ctx_for_surface(dc, old_stream, 0, dangling_context);
1222 				apply_ctx_interdependent_lock(dc, dc->current_state, old_stream, false);
1223 				dc->hwss.post_unlock_program_front_end(dc, dangling_context);
1224 			}
1225 			if (dc->hwss.program_front_end_for_ctx) {
1226 				dc->hwss.interdependent_update_lock(dc, dc->current_state, true);
1227 				dc->hwss.program_front_end_for_ctx(dc, dangling_context);
1228 				dc->hwss.interdependent_update_lock(dc, dc->current_state, false);
1229 				dc->hwss.post_unlock_program_front_end(dc, dangling_context);
1230 			}
1231 			/* We need to put the phantom OTG back into it's default (disabled) state or we
1232 			 * can get corruption when transition from one SubVP config to a different one.
1233 			 * The OTG is set to disable on falling edge of VUPDATE so the plane disable
1234 			 * will still get it's double buffer update.
1235 			 */
1236 			if (old_stream->mall_stream_config.type == SUBVP_PHANTOM) {
1237 				if (tg->funcs->disable_phantom_crtc)
1238 					tg->funcs->disable_phantom_crtc(tg);
1239 			}
1240 		}
1241 	}
1242 
1243 	current_ctx = dc->current_state;
1244 	dc->current_state = dangling_context;
1245 	dc_release_state(current_ctx);
1246 }
1247 
disable_vbios_mode_if_required(struct dc * dc,struct dc_state * context)1248 static void disable_vbios_mode_if_required(
1249 		struct dc *dc,
1250 		struct dc_state *context)
1251 {
1252 	unsigned int i, j;
1253 
1254 	/* check if timing_changed, disable stream*/
1255 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1256 		struct dc_stream_state *stream = NULL;
1257 		struct dc_link *link = NULL;
1258 		struct pipe_ctx *pipe = NULL;
1259 
1260 		pipe = &context->res_ctx.pipe_ctx[i];
1261 		stream = pipe->stream;
1262 		if (stream == NULL)
1263 			continue;
1264 
1265 		if (stream->apply_seamless_boot_optimization)
1266 			continue;
1267 
1268 		// only looking for first odm pipe
1269 		if (pipe->prev_odm_pipe)
1270 			continue;
1271 
1272 		if (stream->link->local_sink &&
1273 			stream->link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1274 			link = stream->link;
1275 		}
1276 
1277 		if (link != NULL && link->link_enc->funcs->is_dig_enabled(link->link_enc)) {
1278 			unsigned int enc_inst, tg_inst = 0;
1279 			unsigned int pix_clk_100hz;
1280 
1281 			enc_inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
1282 			if (enc_inst != ENGINE_ID_UNKNOWN) {
1283 				for (j = 0; j < dc->res_pool->stream_enc_count; j++) {
1284 					if (dc->res_pool->stream_enc[j]->id == enc_inst) {
1285 						tg_inst = dc->res_pool->stream_enc[j]->funcs->dig_source_otg(
1286 							dc->res_pool->stream_enc[j]);
1287 						break;
1288 					}
1289 				}
1290 
1291 				dc->res_pool->dp_clock_source->funcs->get_pixel_clk_frequency_100hz(
1292 					dc->res_pool->dp_clock_source,
1293 					tg_inst, &pix_clk_100hz);
1294 
1295 				if (link->link_status.link_active) {
1296 					uint32_t requested_pix_clk_100hz =
1297 						pipe->stream_res.pix_clk_params.requested_pix_clk_100hz;
1298 
1299 					if (pix_clk_100hz != requested_pix_clk_100hz) {
1300 						dc->link_srv->set_dpms_off(pipe);
1301 						pipe->stream->dpms_off = false;
1302 					}
1303 				}
1304 			}
1305 		}
1306 	}
1307 }
1308 
wait_for_no_pipes_pending(struct dc * dc,struct dc_state * context)1309 static void wait_for_no_pipes_pending(struct dc *dc, struct dc_state *context)
1310 {
1311 	int i;
1312 	PERF_TRACE();
1313 	for (i = 0; i < MAX_PIPES; i++) {
1314 		int count = 0;
1315 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1316 
1317 		if (!pipe->plane_state || pipe->stream->mall_stream_config.type == SUBVP_PHANTOM)
1318 			continue;
1319 
1320 		/* Timeout 100 ms */
1321 		while (count < 100000) {
1322 			/* Must set to false to start with, due to OR in update function */
1323 			pipe->plane_state->status.is_flip_pending = false;
1324 			dc->hwss.update_pending_status(pipe);
1325 			if (!pipe->plane_state->status.is_flip_pending)
1326 				break;
1327 			udelay(1);
1328 			count++;
1329 		}
1330 		ASSERT(!pipe->plane_state->status.is_flip_pending);
1331 	}
1332 	PERF_TRACE();
1333 }
1334 
1335 /* Public functions */
1336 
dc_create(const struct dc_init_data * init_params)1337 struct dc *dc_create(const struct dc_init_data *init_params)
1338 {
1339 	struct dc *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
1340 	unsigned int full_pipe_count;
1341 
1342 	if (!dc)
1343 		return NULL;
1344 
1345 	if (init_params->dce_environment == DCE_ENV_VIRTUAL_HW) {
1346 		if (!dc_construct_ctx(dc, init_params))
1347 			goto destruct_dc;
1348 	} else {
1349 		if (!dc_construct(dc, init_params))
1350 			goto destruct_dc;
1351 
1352 		full_pipe_count = dc->res_pool->pipe_count;
1353 		if (dc->res_pool->underlay_pipe_index != NO_UNDERLAY_PIPE)
1354 			full_pipe_count--;
1355 		dc->caps.max_streams = min(
1356 				full_pipe_count,
1357 				dc->res_pool->stream_enc_count);
1358 
1359 		dc->caps.max_links = dc->link_count;
1360 		dc->caps.max_audios = dc->res_pool->audio_count;
1361 		dc->caps.linear_pitch_alignment = 64;
1362 
1363 		dc->caps.max_dp_protocol_version = DP_VERSION_1_4;
1364 
1365 		dc->caps.max_otg_num = dc->res_pool->res_cap->num_timing_generator;
1366 
1367 		if (dc->res_pool->dmcu != NULL)
1368 			dc->versions.dmcu_version = dc->res_pool->dmcu->dmcu_version;
1369 	}
1370 
1371 	dc->dcn_reg_offsets = init_params->dcn_reg_offsets;
1372 	dc->nbio_reg_offsets = init_params->nbio_reg_offsets;
1373 
1374 	/* Populate versioning information */
1375 	dc->versions.dc_ver = DC_VER;
1376 
1377 	dc->build_id = DC_BUILD_ID;
1378 
1379 	DC_LOG_DC("Display Core initialized\n");
1380 
1381 
1382 
1383 	return dc;
1384 
1385 destruct_dc:
1386 	dc_destruct(dc);
1387 	kfree(dc);
1388 	return NULL;
1389 }
1390 
detect_edp_presence(struct dc * dc)1391 static void detect_edp_presence(struct dc *dc)
1392 {
1393 	struct dc_link *edp_links[MAX_NUM_EDP];
1394 	struct dc_link *edp_link = NULL;
1395 	enum dc_connection_type type;
1396 	int i;
1397 	int edp_num;
1398 
1399 	dc_get_edp_links(dc, edp_links, &edp_num);
1400 	if (!edp_num)
1401 		return;
1402 
1403 	for (i = 0; i < edp_num; i++) {
1404 		edp_link = edp_links[i];
1405 		if (dc->config.edp_not_connected) {
1406 			edp_link->edp_sink_present = false;
1407 		} else {
1408 			dc_link_detect_connection_type(edp_link, &type);
1409 			edp_link->edp_sink_present = (type != dc_connection_none);
1410 		}
1411 	}
1412 }
1413 
dc_hardware_init(struct dc * dc)1414 void dc_hardware_init(struct dc *dc)
1415 {
1416 
1417 	detect_edp_presence(dc);
1418 	if (dc->ctx->dce_environment != DCE_ENV_VIRTUAL_HW)
1419 		dc->hwss.init_hw(dc);
1420 }
1421 
dc_init_callbacks(struct dc * dc,const struct dc_callback_init * init_params)1422 void dc_init_callbacks(struct dc *dc,
1423 		const struct dc_callback_init *init_params)
1424 {
1425 	dc->ctx->cp_psp = init_params->cp_psp;
1426 }
1427 
dc_deinit_callbacks(struct dc * dc)1428 void dc_deinit_callbacks(struct dc *dc)
1429 {
1430 	memset(&dc->ctx->cp_psp, 0, sizeof(dc->ctx->cp_psp));
1431 }
1432 
dc_destroy(struct dc ** dc)1433 void dc_destroy(struct dc **dc)
1434 {
1435 	dc_destruct(*dc);
1436 	kfree(*dc);
1437 	*dc = NULL;
1438 }
1439 
enable_timing_multisync(struct dc * dc,struct dc_state * ctx)1440 static void enable_timing_multisync(
1441 		struct dc *dc,
1442 		struct dc_state *ctx)
1443 {
1444 	int i, multisync_count = 0;
1445 	int pipe_count = dc->res_pool->pipe_count;
1446 	struct pipe_ctx *multisync_pipes[MAX_PIPES] = { NULL };
1447 
1448 	for (i = 0; i < pipe_count; i++) {
1449 		if (!ctx->res_ctx.pipe_ctx[i].stream ||
1450 				!ctx->res_ctx.pipe_ctx[i].stream->triggered_crtc_reset.enabled)
1451 			continue;
1452 		if (ctx->res_ctx.pipe_ctx[i].stream == ctx->res_ctx.pipe_ctx[i].stream->triggered_crtc_reset.event_source)
1453 			continue;
1454 		multisync_pipes[multisync_count] = &ctx->res_ctx.pipe_ctx[i];
1455 		multisync_count++;
1456 	}
1457 
1458 	if (multisync_count > 0) {
1459 		dc->hwss.enable_per_frame_crtc_position_reset(
1460 			dc, multisync_count, multisync_pipes);
1461 	}
1462 }
1463 
program_timing_sync(struct dc * dc,struct dc_state * ctx)1464 static void program_timing_sync(
1465 		struct dc *dc,
1466 		struct dc_state *ctx)
1467 {
1468 	int i, j, k;
1469 	int group_index = 0;
1470 	int num_group = 0;
1471 	int pipe_count = dc->res_pool->pipe_count;
1472 	struct pipe_ctx *unsynced_pipes[MAX_PIPES] = { NULL };
1473 
1474 	for (i = 0; i < pipe_count; i++) {
1475 		if (!ctx->res_ctx.pipe_ctx[i].stream
1476 				|| ctx->res_ctx.pipe_ctx[i].top_pipe
1477 				|| ctx->res_ctx.pipe_ctx[i].prev_odm_pipe)
1478 			continue;
1479 
1480 		unsynced_pipes[i] = &ctx->res_ctx.pipe_ctx[i];
1481 	}
1482 
1483 	for (i = 0; i < pipe_count; i++) {
1484 		int group_size = 1;
1485 		enum timing_synchronization_type sync_type = NOT_SYNCHRONIZABLE;
1486 		struct pipe_ctx *pipe_set[MAX_PIPES];
1487 
1488 		if (!unsynced_pipes[i])
1489 			continue;
1490 
1491 		pipe_set[0] = unsynced_pipes[i];
1492 		unsynced_pipes[i] = NULL;
1493 
1494 		/* Add tg to the set, search rest of the tg's for ones with
1495 		 * same timing, add all tgs with same timing to the group
1496 		 */
1497 		for (j = i + 1; j < pipe_count; j++) {
1498 			if (!unsynced_pipes[j])
1499 				continue;
1500 			if (sync_type != TIMING_SYNCHRONIZABLE &&
1501 				dc->hwss.enable_vblanks_synchronization &&
1502 				unsynced_pipes[j]->stream_res.tg->funcs->align_vblanks &&
1503 				resource_are_vblanks_synchronizable(
1504 					unsynced_pipes[j]->stream,
1505 					pipe_set[0]->stream)) {
1506 				sync_type = VBLANK_SYNCHRONIZABLE;
1507 				pipe_set[group_size] = unsynced_pipes[j];
1508 				unsynced_pipes[j] = NULL;
1509 				group_size++;
1510 			} else
1511 			if (sync_type != VBLANK_SYNCHRONIZABLE &&
1512 				resource_are_streams_timing_synchronizable(
1513 					unsynced_pipes[j]->stream,
1514 					pipe_set[0]->stream)) {
1515 				sync_type = TIMING_SYNCHRONIZABLE;
1516 				pipe_set[group_size] = unsynced_pipes[j];
1517 				unsynced_pipes[j] = NULL;
1518 				group_size++;
1519 			}
1520 		}
1521 
1522 		/* set first unblanked pipe as master */
1523 		for (j = 0; j < group_size; j++) {
1524 			bool is_blanked;
1525 
1526 			if (pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked)
1527 				is_blanked =
1528 					pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked(pipe_set[j]->stream_res.opp);
1529 			else
1530 				is_blanked =
1531 					pipe_set[j]->stream_res.tg->funcs->is_blanked(pipe_set[j]->stream_res.tg);
1532 			if (!is_blanked) {
1533 				if (j == 0)
1534 					break;
1535 
1536 				swap(pipe_set[0], pipe_set[j]);
1537 				break;
1538 			}
1539 		}
1540 
1541 		for (k = 0; k < group_size; k++) {
1542 			struct dc_stream_status *status = dc_stream_get_status_from_state(ctx, pipe_set[k]->stream);
1543 
1544 			status->timing_sync_info.group_id = num_group;
1545 			status->timing_sync_info.group_size = group_size;
1546 			if (k == 0)
1547 				status->timing_sync_info.master = true;
1548 			else
1549 				status->timing_sync_info.master = false;
1550 
1551 		}
1552 
1553 		/* remove any other pipes that are already been synced */
1554 		if (dc->config.use_pipe_ctx_sync_logic) {
1555 			/* check pipe's syncd to decide which pipe to be removed */
1556 			for (j = 1; j < group_size; j++) {
1557 				if (pipe_set[j]->pipe_idx_syncd == pipe_set[0]->pipe_idx_syncd) {
1558 					group_size--;
1559 					pipe_set[j] = pipe_set[group_size];
1560 					j--;
1561 				} else
1562 					/* link slave pipe's syncd with master pipe */
1563 					pipe_set[j]->pipe_idx_syncd = pipe_set[0]->pipe_idx_syncd;
1564 			}
1565 		} else {
1566 			for (j = j + 1; j < group_size; j++) {
1567 				bool is_blanked;
1568 
1569 				if (pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked)
1570 					is_blanked =
1571 						pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked(pipe_set[j]->stream_res.opp);
1572 				else
1573 					is_blanked =
1574 						pipe_set[j]->stream_res.tg->funcs->is_blanked(pipe_set[j]->stream_res.tg);
1575 				if (!is_blanked) {
1576 					group_size--;
1577 					pipe_set[j] = pipe_set[group_size];
1578 					j--;
1579 				}
1580 			}
1581 		}
1582 
1583 		if (group_size > 1) {
1584 			if (sync_type == TIMING_SYNCHRONIZABLE) {
1585 				dc->hwss.enable_timing_synchronization(
1586 					dc, group_index, group_size, pipe_set);
1587 			} else
1588 				if (sync_type == VBLANK_SYNCHRONIZABLE) {
1589 				dc->hwss.enable_vblanks_synchronization(
1590 					dc, group_index, group_size, pipe_set);
1591 				}
1592 			group_index++;
1593 		}
1594 		num_group++;
1595 	}
1596 }
1597 
streams_changed(struct dc * dc,struct dc_stream_state * streams[],uint8_t stream_count)1598 static bool streams_changed(struct dc *dc,
1599 			    struct dc_stream_state *streams[],
1600 			    uint8_t stream_count)
1601 {
1602 	uint8_t i;
1603 
1604 	if (stream_count != dc->current_state->stream_count)
1605 		return true;
1606 
1607 	for (i = 0; i < dc->current_state->stream_count; i++) {
1608 		if (dc->current_state->streams[i] != streams[i])
1609 			return true;
1610 		if (!streams[i]->link->link_state_valid)
1611 			return true;
1612 	}
1613 
1614 	return false;
1615 }
1616 
dc_validate_boot_timing(const struct dc * dc,const struct dc_sink * sink,struct dc_crtc_timing * crtc_timing)1617 bool dc_validate_boot_timing(const struct dc *dc,
1618 				const struct dc_sink *sink,
1619 				struct dc_crtc_timing *crtc_timing)
1620 {
1621 	struct timing_generator *tg;
1622 	struct stream_encoder *se = NULL;
1623 
1624 	struct dc_crtc_timing hw_crtc_timing = {0};
1625 
1626 	struct dc_link *link = sink->link;
1627 	unsigned int i, enc_inst, tg_inst = 0;
1628 
1629 	/* Support seamless boot on EDP displays only */
1630 	if (sink->sink_signal != SIGNAL_TYPE_EDP) {
1631 		return false;
1632 	}
1633 
1634 	if (dc->debug.force_odm_combine)
1635 		return false;
1636 
1637 	/* Check for enabled DIG to identify enabled display */
1638 	if (!link->link_enc->funcs->is_dig_enabled(link->link_enc))
1639 		return false;
1640 
1641 	enc_inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
1642 
1643 	if (enc_inst == ENGINE_ID_UNKNOWN)
1644 		return false;
1645 
1646 	for (i = 0; i < dc->res_pool->stream_enc_count; i++) {
1647 		if (dc->res_pool->stream_enc[i]->id == enc_inst) {
1648 
1649 			se = dc->res_pool->stream_enc[i];
1650 
1651 			tg_inst = dc->res_pool->stream_enc[i]->funcs->dig_source_otg(
1652 				dc->res_pool->stream_enc[i]);
1653 			break;
1654 		}
1655 	}
1656 
1657 	// tg_inst not found
1658 	if (i == dc->res_pool->stream_enc_count)
1659 		return false;
1660 
1661 	if (tg_inst >= dc->res_pool->timing_generator_count)
1662 		return false;
1663 
1664 	if (tg_inst != link->link_enc->preferred_engine)
1665 		return false;
1666 
1667 	tg = dc->res_pool->timing_generators[tg_inst];
1668 
1669 	if (!tg->funcs->get_hw_timing)
1670 		return false;
1671 
1672 	if (!tg->funcs->get_hw_timing(tg, &hw_crtc_timing))
1673 		return false;
1674 
1675 	if (crtc_timing->h_total != hw_crtc_timing.h_total)
1676 		return false;
1677 
1678 	if (crtc_timing->h_border_left != hw_crtc_timing.h_border_left)
1679 		return false;
1680 
1681 	if (crtc_timing->h_addressable != hw_crtc_timing.h_addressable)
1682 		return false;
1683 
1684 	if (crtc_timing->h_border_right != hw_crtc_timing.h_border_right)
1685 		return false;
1686 
1687 	if (crtc_timing->h_front_porch != hw_crtc_timing.h_front_porch)
1688 		return false;
1689 
1690 	if (crtc_timing->h_sync_width != hw_crtc_timing.h_sync_width)
1691 		return false;
1692 
1693 	if (crtc_timing->v_total != hw_crtc_timing.v_total)
1694 		return false;
1695 
1696 	if (crtc_timing->v_border_top != hw_crtc_timing.v_border_top)
1697 		return false;
1698 
1699 	if (crtc_timing->v_addressable != hw_crtc_timing.v_addressable)
1700 		return false;
1701 
1702 	if (crtc_timing->v_border_bottom != hw_crtc_timing.v_border_bottom)
1703 		return false;
1704 
1705 	if (crtc_timing->v_front_porch != hw_crtc_timing.v_front_porch)
1706 		return false;
1707 
1708 	if (crtc_timing->v_sync_width != hw_crtc_timing.v_sync_width)
1709 		return false;
1710 
1711 	/* block DSC for now, as VBIOS does not currently support DSC timings */
1712 	if (crtc_timing->flags.DSC)
1713 		return false;
1714 
1715 	if (dc_is_dp_signal(link->connector_signal)) {
1716 		unsigned int pix_clk_100hz;
1717 		uint32_t numOdmPipes = 1;
1718 		uint32_t id_src[4] = {0};
1719 
1720 		dc->res_pool->dp_clock_source->funcs->get_pixel_clk_frequency_100hz(
1721 			dc->res_pool->dp_clock_source,
1722 			tg_inst, &pix_clk_100hz);
1723 
1724 		if (tg->funcs->get_optc_source)
1725 			tg->funcs->get_optc_source(tg,
1726 						&numOdmPipes, &id_src[0], &id_src[1]);
1727 
1728 		if (numOdmPipes == 2)
1729 			pix_clk_100hz *= 2;
1730 		if (numOdmPipes == 4)
1731 			pix_clk_100hz *= 4;
1732 
1733 		// Note: In rare cases, HW pixclk may differ from crtc's pixclk
1734 		// slightly due to rounding issues in 10 kHz units.
1735 		if (crtc_timing->pix_clk_100hz != pix_clk_100hz)
1736 			return false;
1737 
1738 		if (!se->funcs->dp_get_pixel_format)
1739 			return false;
1740 
1741 		if (!se->funcs->dp_get_pixel_format(
1742 			se,
1743 			&hw_crtc_timing.pixel_encoding,
1744 			&hw_crtc_timing.display_color_depth))
1745 			return false;
1746 
1747 		if (hw_crtc_timing.display_color_depth != crtc_timing->display_color_depth)
1748 			return false;
1749 
1750 		if (hw_crtc_timing.pixel_encoding != crtc_timing->pixel_encoding)
1751 			return false;
1752 	}
1753 
1754 	if (link->dpcd_caps.dprx_feature.bits.VSC_SDP_COLORIMETRY_SUPPORTED) {
1755 		return false;
1756 	}
1757 
1758 	if (dc->link_srv->edp_is_ilr_optimization_required(link, crtc_timing)) {
1759 		DC_LOG_EVENT_LINK_TRAINING("Seamless boot disabled to optimize eDP link rate\n");
1760 		return false;
1761 	}
1762 
1763 	return true;
1764 }
1765 
should_update_pipe_for_stream(struct dc_state * context,struct pipe_ctx * pipe_ctx,struct dc_stream_state * stream)1766 static inline bool should_update_pipe_for_stream(
1767 		struct dc_state *context,
1768 		struct pipe_ctx *pipe_ctx,
1769 		struct dc_stream_state *stream)
1770 {
1771 	return (pipe_ctx->stream && pipe_ctx->stream == stream);
1772 }
1773 
should_update_pipe_for_plane(struct dc_state * context,struct pipe_ctx * pipe_ctx,struct dc_plane_state * plane_state)1774 static inline bool should_update_pipe_for_plane(
1775 		struct dc_state *context,
1776 		struct pipe_ctx *pipe_ctx,
1777 		struct dc_plane_state *plane_state)
1778 {
1779 	return (pipe_ctx->plane_state == plane_state);
1780 }
1781 
dc_enable_stereo(struct dc * dc,struct dc_state * context,struct dc_stream_state * streams[],uint8_t stream_count)1782 void dc_enable_stereo(
1783 	struct dc *dc,
1784 	struct dc_state *context,
1785 	struct dc_stream_state *streams[],
1786 	uint8_t stream_count)
1787 {
1788 	int i, j;
1789 	struct pipe_ctx *pipe;
1790 
1791 	for (i = 0; i < MAX_PIPES; i++) {
1792 		if (context != NULL) {
1793 			pipe = &context->res_ctx.pipe_ctx[i];
1794 		} else {
1795 			context = dc->current_state;
1796 			pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1797 		}
1798 
1799 		for (j = 0; pipe && j < stream_count; j++)  {
1800 			if (should_update_pipe_for_stream(context, pipe, streams[j]) &&
1801 				dc->hwss.setup_stereo)
1802 				dc->hwss.setup_stereo(pipe, dc);
1803 		}
1804 	}
1805 }
1806 
dc_trigger_sync(struct dc * dc,struct dc_state * context)1807 void dc_trigger_sync(struct dc *dc, struct dc_state *context)
1808 {
1809 	if (context->stream_count > 1 && !dc->debug.disable_timing_sync) {
1810 		enable_timing_multisync(dc, context);
1811 		program_timing_sync(dc, context);
1812 	}
1813 }
1814 
get_stream_mask(struct dc * dc,struct dc_state * context)1815 static uint8_t get_stream_mask(struct dc *dc, struct dc_state *context)
1816 {
1817 	int i;
1818 	unsigned int stream_mask = 0;
1819 
1820 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1821 		if (context->res_ctx.pipe_ctx[i].stream)
1822 			stream_mask |= 1 << i;
1823 	}
1824 
1825 	return stream_mask;
1826 }
1827 
dc_z10_restore(const struct dc * dc)1828 void dc_z10_restore(const struct dc *dc)
1829 {
1830 	if (dc->hwss.z10_restore)
1831 		dc->hwss.z10_restore(dc);
1832 }
1833 
dc_z10_save_init(struct dc * dc)1834 void dc_z10_save_init(struct dc *dc)
1835 {
1836 	if (dc->hwss.z10_save_init)
1837 		dc->hwss.z10_save_init(dc);
1838 }
1839 
1840 /**
1841  * dc_commit_state_no_check - Apply context to the hardware
1842  *
1843  * @dc: DC object with the current status to be updated
1844  * @context: New state that will become the current status at the end of this function
1845  *
1846  * Applies given context to the hardware and copy it into current context.
1847  * It's up to the user to release the src context afterwards.
1848  *
1849  * Return: an enum dc_status result code for the operation
1850  */
dc_commit_state_no_check(struct dc * dc,struct dc_state * context)1851 static enum dc_status dc_commit_state_no_check(struct dc *dc, struct dc_state *context)
1852 {
1853 	struct dc_bios *dcb = dc->ctx->dc_bios;
1854 	enum dc_status result = DC_ERROR_UNEXPECTED;
1855 	struct pipe_ctx *pipe;
1856 	int i, k, l;
1857 	struct dc_stream_state *dc_streams[MAX_STREAMS] = {0};
1858 	struct dc_state *old_state;
1859 	bool subvp_prev_use = false;
1860 
1861 	dc_z10_restore(dc);
1862 	dc_allow_idle_optimizations(dc, false);
1863 
1864 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1865 		struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1866 
1867 		/* Check old context for SubVP */
1868 		subvp_prev_use |= (old_pipe->stream && old_pipe->stream->mall_stream_config.type == SUBVP_PHANTOM);
1869 		if (subvp_prev_use)
1870 			break;
1871 	}
1872 
1873 	for (i = 0; i < context->stream_count; i++)
1874 		dc_streams[i] =  context->streams[i];
1875 
1876 	if (!dcb->funcs->is_accelerated_mode(dcb)) {
1877 		disable_vbios_mode_if_required(dc, context);
1878 		dc->hwss.enable_accelerated_mode(dc, context);
1879 	}
1880 
1881 	if (context->stream_count > get_seamless_boot_stream_count(context) ||
1882 		context->stream_count == 0)
1883 		dc->hwss.prepare_bandwidth(dc, context);
1884 
1885 	/* When SubVP is active, all HW programming must be done while
1886 	 * SubVP lock is acquired
1887 	 */
1888 	if (dc->hwss.subvp_pipe_control_lock)
1889 		dc->hwss.subvp_pipe_control_lock(dc, context, true, true, NULL, subvp_prev_use);
1890 
1891 	if (dc->debug.enable_double_buffered_dsc_pg_support)
1892 		dc->hwss.update_dsc_pg(dc, context, false);
1893 
1894 	disable_dangling_plane(dc, context);
1895 	/* re-program planes for existing stream, in case we need to
1896 	 * free up plane resource for later use
1897 	 */
1898 	if (dc->hwss.apply_ctx_for_surface) {
1899 		for (i = 0; i < context->stream_count; i++) {
1900 			if (context->streams[i]->mode_changed)
1901 				continue;
1902 			apply_ctx_interdependent_lock(dc, context, context->streams[i], true);
1903 			dc->hwss.apply_ctx_for_surface(
1904 				dc, context->streams[i],
1905 				context->stream_status[i].plane_count,
1906 				context); /* use new pipe config in new context */
1907 			apply_ctx_interdependent_lock(dc, context, context->streams[i], false);
1908 			dc->hwss.post_unlock_program_front_end(dc, context);
1909 		}
1910 	}
1911 
1912 	/* Program hardware */
1913 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1914 		pipe = &context->res_ctx.pipe_ctx[i];
1915 		dc->hwss.wait_for_mpcc_disconnect(dc, dc->res_pool, pipe);
1916 	}
1917 
1918 	result = dc->hwss.apply_ctx_to_hw(dc, context);
1919 
1920 	if (result != DC_OK) {
1921 		/* Application of dc_state to hardware stopped. */
1922 		dc->current_state->res_ctx.link_enc_cfg_ctx.mode = LINK_ENC_CFG_STEADY;
1923 		return result;
1924 	}
1925 
1926 	dc_trigger_sync(dc, context);
1927 
1928 	/* Full update should unconditionally be triggered when dc_commit_state_no_check is called */
1929 	for (i = 0; i < context->stream_count; i++) {
1930 		uint32_t prev_dsc_changed = context->streams[i]->update_flags.bits.dsc_changed;
1931 
1932 		context->streams[i]->update_flags.raw = 0xFFFFFFFF;
1933 		context->streams[i]->update_flags.bits.dsc_changed = prev_dsc_changed;
1934 	}
1935 
1936 	/* Program all planes within new context*/
1937 	if (dc->hwss.program_front_end_for_ctx) {
1938 		dc->hwss.interdependent_update_lock(dc, context, true);
1939 		dc->hwss.program_front_end_for_ctx(dc, context);
1940 		dc->hwss.interdependent_update_lock(dc, context, false);
1941 		dc->hwss.post_unlock_program_front_end(dc, context);
1942 	}
1943 
1944 	if (dc->hwss.commit_subvp_config)
1945 		dc->hwss.commit_subvp_config(dc, context);
1946 	if (dc->hwss.subvp_pipe_control_lock)
1947 		dc->hwss.subvp_pipe_control_lock(dc, context, false, true, NULL, subvp_prev_use);
1948 
1949 	for (i = 0; i < context->stream_count; i++) {
1950 		const struct dc_link *link = context->streams[i]->link;
1951 
1952 		if (!context->streams[i]->mode_changed)
1953 			continue;
1954 
1955 		if (dc->hwss.apply_ctx_for_surface) {
1956 			apply_ctx_interdependent_lock(dc, context, context->streams[i], true);
1957 			dc->hwss.apply_ctx_for_surface(
1958 					dc, context->streams[i],
1959 					context->stream_status[i].plane_count,
1960 					context);
1961 			apply_ctx_interdependent_lock(dc, context, context->streams[i], false);
1962 			dc->hwss.post_unlock_program_front_end(dc, context);
1963 		}
1964 
1965 		/*
1966 		 * enable stereo
1967 		 * TODO rework dc_enable_stereo call to work with validation sets?
1968 		 */
1969 		for (k = 0; k < MAX_PIPES; k++) {
1970 			pipe = &context->res_ctx.pipe_ctx[k];
1971 
1972 			for (l = 0 ; pipe && l < context->stream_count; l++)  {
1973 				if (context->streams[l] &&
1974 					context->streams[l] == pipe->stream &&
1975 					dc->hwss.setup_stereo)
1976 					dc->hwss.setup_stereo(pipe, dc);
1977 			}
1978 		}
1979 
1980 		CONN_MSG_MODE(link, "{%dx%d, %dx%d@%dKhz}",
1981 				context->streams[i]->timing.h_addressable,
1982 				context->streams[i]->timing.v_addressable,
1983 				context->streams[i]->timing.h_total,
1984 				context->streams[i]->timing.v_total,
1985 				context->streams[i]->timing.pix_clk_100hz / 10);
1986 	}
1987 
1988 	dc_enable_stereo(dc, context, dc_streams, context->stream_count);
1989 
1990 	if (context->stream_count > get_seamless_boot_stream_count(context) ||
1991 		context->stream_count == 0) {
1992 		/* Must wait for no flips to be pending before doing optimize bw */
1993 		wait_for_no_pipes_pending(dc, context);
1994 		/* pplib is notified if disp_num changed */
1995 		dc->hwss.optimize_bandwidth(dc, context);
1996 	}
1997 
1998 	if (dc->debug.enable_double_buffered_dsc_pg_support)
1999 		dc->hwss.update_dsc_pg(dc, context, true);
2000 
2001 	if (dc->ctx->dce_version >= DCE_VERSION_MAX)
2002 		TRACE_DCN_CLOCK_STATE(&context->bw_ctx.bw.dcn.clk);
2003 	else
2004 		TRACE_DCE_CLOCK_STATE(&context->bw_ctx.bw.dce);
2005 
2006 	context->stream_mask = get_stream_mask(dc, context);
2007 
2008 	if (context->stream_mask != dc->current_state->stream_mask)
2009 		dc_dmub_srv_notify_stream_mask(dc->ctx->dmub_srv, context->stream_mask);
2010 
2011 	for (i = 0; i < context->stream_count; i++)
2012 		context->streams[i]->mode_changed = false;
2013 
2014 	/* Clear update flags that were set earlier to avoid redundant programming */
2015 	for (i = 0; i < context->stream_count; i++) {
2016 		context->streams[i]->update_flags.raw = 0x0;
2017 	}
2018 
2019 	old_state = dc->current_state;
2020 	dc->current_state = context;
2021 
2022 	dc_release_state(old_state);
2023 
2024 	dc_retain_state(dc->current_state);
2025 
2026 	return result;
2027 }
2028 
2029 static bool commit_minimal_transition_state(struct dc *dc,
2030 		struct dc_state *transition_base_context);
2031 
2032 /**
2033  * dc_commit_streams - Commit current stream state
2034  *
2035  * @dc: DC object with the commit state to be configured in the hardware
2036  * @streams: Array with a list of stream state
2037  * @stream_count: Total of streams
2038  *
2039  * Function responsible for commit streams change to the hardware.
2040  *
2041  * Return:
2042  * Return DC_OK if everything work as expected, otherwise, return a dc_status
2043  * code.
2044  */
dc_commit_streams(struct dc * dc,struct dc_stream_state * streams[],uint8_t stream_count)2045 enum dc_status dc_commit_streams(struct dc *dc,
2046 				 struct dc_stream_state *streams[],
2047 				 uint8_t stream_count)
2048 {
2049 	int i, j;
2050 	struct dc_state *context;
2051 	enum dc_status res = DC_OK;
2052 	struct dc_validation_set set[MAX_STREAMS] = {0};
2053 	struct pipe_ctx *pipe;
2054 	bool handle_exit_odm2to1 = false;
2055 
2056 	if (dc->ctx->dce_environment == DCE_ENV_VIRTUAL_HW)
2057 		return res;
2058 
2059 	if (!streams_changed(dc, streams, stream_count))
2060 		return res;
2061 
2062 	DC_LOG_DC("%s: %d streams\n", __func__, stream_count);
2063 
2064 	for (i = 0; i < stream_count; i++) {
2065 		struct dc_stream_state *stream = streams[i];
2066 		struct dc_stream_status *status = dc_stream_get_status(stream);
2067 
2068 		dc_stream_log(dc, stream);
2069 
2070 		set[i].stream = stream;
2071 
2072 		if (status) {
2073 			set[i].plane_count = status->plane_count;
2074 			for (j = 0; j < status->plane_count; j++)
2075 				set[i].plane_states[j] = status->plane_states[j];
2076 		}
2077 	}
2078 
2079 	/* ODM Combine 2:1 power optimization is only applied for single stream
2080 	 * scenario, it uses extra pipes than needed to reduce power consumption
2081 	 * We need to switch off this feature to make room for new streams.
2082 	 */
2083 	if (stream_count > dc->current_state->stream_count &&
2084 			dc->current_state->stream_count == 1) {
2085 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
2086 			pipe = &dc->current_state->res_ctx.pipe_ctx[i];
2087 			if (pipe->next_odm_pipe)
2088 				handle_exit_odm2to1 = true;
2089 		}
2090 	}
2091 
2092 	if (handle_exit_odm2to1)
2093 		res = commit_minimal_transition_state(dc, dc->current_state);
2094 
2095 	context = dc_create_state(dc);
2096 	if (!context)
2097 		goto context_alloc_fail;
2098 
2099 	dc_resource_state_copy_construct_current(dc, context);
2100 
2101 	res = dc_validate_with_context(dc, set, stream_count, context, false);
2102 	if (res != DC_OK) {
2103 		BREAK_TO_DEBUGGER();
2104 		goto fail;
2105 	}
2106 
2107 	res = dc_commit_state_no_check(dc, context);
2108 
2109 	for (i = 0; i < stream_count; i++) {
2110 		for (j = 0; j < context->stream_count; j++) {
2111 			if (streams[i]->stream_id == context->streams[j]->stream_id)
2112 				streams[i]->out.otg_offset = context->stream_status[j].primary_otg_inst;
2113 
2114 			if (dc_is_embedded_signal(streams[i]->signal)) {
2115 				struct dc_stream_status *status = dc_stream_get_status_from_state(context, streams[i]);
2116 
2117 				if (dc->hwss.is_abm_supported)
2118 					status->is_abm_supported = dc->hwss.is_abm_supported(dc, context, streams[i]);
2119 				else
2120 					status->is_abm_supported = true;
2121 			}
2122 		}
2123 	}
2124 
2125 fail:
2126 	dc_release_state(context);
2127 
2128 context_alloc_fail:
2129 
2130 	DC_LOG_DC("%s Finished.\n", __func__);
2131 
2132 	return res;
2133 }
2134 
dc_acquire_release_mpc_3dlut(struct dc * dc,bool acquire,struct dc_stream_state * stream,struct dc_3dlut ** lut,struct dc_transfer_func ** shaper)2135 bool dc_acquire_release_mpc_3dlut(
2136 		struct dc *dc, bool acquire,
2137 		struct dc_stream_state *stream,
2138 		struct dc_3dlut **lut,
2139 		struct dc_transfer_func **shaper)
2140 {
2141 	int pipe_idx;
2142 	bool ret = false;
2143 	bool found_pipe_idx = false;
2144 	const struct resource_pool *pool = dc->res_pool;
2145 	struct resource_context *res_ctx = &dc->current_state->res_ctx;
2146 	int mpcc_id = 0;
2147 
2148 	if (pool && res_ctx) {
2149 		if (acquire) {
2150 			/*find pipe idx for the given stream*/
2151 			for (pipe_idx = 0; pipe_idx < pool->pipe_count; pipe_idx++) {
2152 				if (res_ctx->pipe_ctx[pipe_idx].stream == stream) {
2153 					found_pipe_idx = true;
2154 					mpcc_id = res_ctx->pipe_ctx[pipe_idx].plane_res.hubp->inst;
2155 					break;
2156 				}
2157 			}
2158 		} else
2159 			found_pipe_idx = true;/*for release pipe_idx is not required*/
2160 
2161 		if (found_pipe_idx) {
2162 			if (acquire && pool->funcs->acquire_post_bldn_3dlut)
2163 				ret = pool->funcs->acquire_post_bldn_3dlut(res_ctx, pool, mpcc_id, lut, shaper);
2164 			else if (!acquire && pool->funcs->release_post_bldn_3dlut)
2165 				ret = pool->funcs->release_post_bldn_3dlut(res_ctx, pool, lut, shaper);
2166 		}
2167 	}
2168 	return ret;
2169 }
2170 
is_flip_pending_in_pipes(struct dc * dc,struct dc_state * context)2171 static bool is_flip_pending_in_pipes(struct dc *dc, struct dc_state *context)
2172 {
2173 	int i;
2174 	struct pipe_ctx *pipe;
2175 
2176 	for (i = 0; i < MAX_PIPES; i++) {
2177 		pipe = &context->res_ctx.pipe_ctx[i];
2178 
2179 		// Don't check flip pending on phantom pipes
2180 		if (!pipe->plane_state || (pipe->stream && pipe->stream->mall_stream_config.type == SUBVP_PHANTOM))
2181 			continue;
2182 
2183 		/* Must set to false to start with, due to OR in update function */
2184 		pipe->plane_state->status.is_flip_pending = false;
2185 		dc->hwss.update_pending_status(pipe);
2186 		if (pipe->plane_state->status.is_flip_pending)
2187 			return true;
2188 	}
2189 	return false;
2190 }
2191 
2192 /* Perform updates here which need to be deferred until next vupdate
2193  *
2194  * i.e. blnd lut, 3dlut, and shaper lut bypass regs are double buffered
2195  * but forcing lut memory to shutdown state is immediate. This causes
2196  * single frame corruption as lut gets disabled mid-frame unless shutdown
2197  * is deferred until after entering bypass.
2198  */
process_deferred_updates(struct dc * dc)2199 static void process_deferred_updates(struct dc *dc)
2200 {
2201 	int i = 0;
2202 
2203 	if (dc->debug.enable_mem_low_power.bits.cm) {
2204 		ASSERT(dc->dcn_ip->max_num_dpp);
2205 		for (i = 0; i < dc->dcn_ip->max_num_dpp; i++)
2206 			if (dc->res_pool->dpps[i]->funcs->dpp_deferred_update)
2207 				dc->res_pool->dpps[i]->funcs->dpp_deferred_update(dc->res_pool->dpps[i]);
2208 	}
2209 }
2210 
dc_post_update_surfaces_to_stream(struct dc * dc)2211 void dc_post_update_surfaces_to_stream(struct dc *dc)
2212 {
2213 	int i;
2214 	struct dc_state *context = dc->current_state;
2215 
2216 	if ((!dc->optimized_required) || get_seamless_boot_stream_count(context) > 0)
2217 		return;
2218 
2219 	post_surface_trace(dc);
2220 
2221 	/*
2222 	 * Only relevant for DCN behavior where we can guarantee the optimization
2223 	 * is safe to apply - retain the legacy behavior for DCE.
2224 	 */
2225 
2226 	if (dc->ctx->dce_version < DCE_VERSION_MAX)
2227 		TRACE_DCE_CLOCK_STATE(&context->bw_ctx.bw.dce);
2228 	else {
2229 		TRACE_DCN_CLOCK_STATE(&context->bw_ctx.bw.dcn.clk);
2230 
2231 		if (is_flip_pending_in_pipes(dc, context))
2232 			return;
2233 
2234 		for (i = 0; i < dc->res_pool->pipe_count; i++)
2235 			if (context->res_ctx.pipe_ctx[i].stream == NULL ||
2236 					context->res_ctx.pipe_ctx[i].plane_state == NULL) {
2237 				context->res_ctx.pipe_ctx[i].pipe_idx = i;
2238 				dc->hwss.disable_plane(dc, &context->res_ctx.pipe_ctx[i]);
2239 			}
2240 
2241 		process_deferred_updates(dc);
2242 
2243 		dc->hwss.optimize_bandwidth(dc, context);
2244 
2245 		if (dc->debug.enable_double_buffered_dsc_pg_support)
2246 			dc->hwss.update_dsc_pg(dc, context, true);
2247 	}
2248 
2249 	dc->optimized_required = false;
2250 	dc->wm_optimized_required = false;
2251 }
2252 
init_state(struct dc * dc,struct dc_state * context)2253 static void init_state(struct dc *dc, struct dc_state *context)
2254 {
2255 	/* Each context must have their own instance of VBA and in order to
2256 	 * initialize and obtain IP and SOC the base DML instance from DC is
2257 	 * initially copied into every context
2258 	 */
2259 	memcpy(&context->bw_ctx.dml, &dc->dml, sizeof(struct display_mode_lib));
2260 }
2261 
dc_create_state(struct dc * dc)2262 struct dc_state *dc_create_state(struct dc *dc)
2263 {
2264 	struct dc_state *context = kvzalloc(sizeof(struct dc_state),
2265 					    GFP_KERNEL);
2266 
2267 	if (!context)
2268 		return NULL;
2269 
2270 	init_state(dc, context);
2271 
2272 	kref_init(&context->refcount);
2273 
2274 	return context;
2275 }
2276 
dc_copy_state(struct dc_state * src_ctx)2277 struct dc_state *dc_copy_state(struct dc_state *src_ctx)
2278 {
2279 	int i, j;
2280 	struct dc_state *new_ctx = kvmalloc(sizeof(struct dc_state), GFP_KERNEL);
2281 
2282 	if (!new_ctx)
2283 		return NULL;
2284 	memcpy(new_ctx, src_ctx, sizeof(struct dc_state));
2285 
2286 	for (i = 0; i < MAX_PIPES; i++) {
2287 			struct pipe_ctx *cur_pipe = &new_ctx->res_ctx.pipe_ctx[i];
2288 
2289 			if (cur_pipe->top_pipe)
2290 				cur_pipe->top_pipe =  &new_ctx->res_ctx.pipe_ctx[cur_pipe->top_pipe->pipe_idx];
2291 
2292 			if (cur_pipe->bottom_pipe)
2293 				cur_pipe->bottom_pipe = &new_ctx->res_ctx.pipe_ctx[cur_pipe->bottom_pipe->pipe_idx];
2294 
2295 			if (cur_pipe->prev_odm_pipe)
2296 				cur_pipe->prev_odm_pipe =  &new_ctx->res_ctx.pipe_ctx[cur_pipe->prev_odm_pipe->pipe_idx];
2297 
2298 			if (cur_pipe->next_odm_pipe)
2299 				cur_pipe->next_odm_pipe = &new_ctx->res_ctx.pipe_ctx[cur_pipe->next_odm_pipe->pipe_idx];
2300 
2301 	}
2302 
2303 	for (i = 0; i < new_ctx->stream_count; i++) {
2304 			dc_stream_retain(new_ctx->streams[i]);
2305 			for (j = 0; j < new_ctx->stream_status[i].plane_count; j++)
2306 				dc_plane_state_retain(
2307 					new_ctx->stream_status[i].plane_states[j]);
2308 	}
2309 
2310 	kref_init(&new_ctx->refcount);
2311 
2312 	return new_ctx;
2313 }
2314 
dc_retain_state(struct dc_state * context)2315 void dc_retain_state(struct dc_state *context)
2316 {
2317 	kref_get(&context->refcount);
2318 }
2319 
dc_state_free(struct kref * kref)2320 static void dc_state_free(struct kref *kref)
2321 {
2322 	struct dc_state *context = container_of(kref, struct dc_state, refcount);
2323 	dc_resource_state_destruct(context);
2324 	kvfree(context);
2325 }
2326 
dc_release_state(struct dc_state * context)2327 void dc_release_state(struct dc_state *context)
2328 {
2329 	kref_put(&context->refcount, dc_state_free);
2330 }
2331 
dc_set_generic_gpio_for_stereo(bool enable,struct gpio_service * gpio_service)2332 bool dc_set_generic_gpio_for_stereo(bool enable,
2333 		struct gpio_service *gpio_service)
2334 {
2335 	enum gpio_result gpio_result = GPIO_RESULT_NON_SPECIFIC_ERROR;
2336 	struct gpio_pin_info pin_info;
2337 	struct gpio *generic;
2338 	struct gpio_generic_mux_config *config = kzalloc(sizeof(struct gpio_generic_mux_config),
2339 			   GFP_KERNEL);
2340 
2341 	if (!config)
2342 		return false;
2343 	pin_info = dal_gpio_get_generic_pin_info(gpio_service, GPIO_ID_GENERIC, 0);
2344 
2345 	if (pin_info.mask == 0xFFFFFFFF || pin_info.offset == 0xFFFFFFFF) {
2346 		kfree(config);
2347 		return false;
2348 	} else {
2349 		generic = dal_gpio_service_create_generic_mux(
2350 			gpio_service,
2351 			pin_info.offset,
2352 			pin_info.mask);
2353 	}
2354 
2355 	if (!generic) {
2356 		kfree(config);
2357 		return false;
2358 	}
2359 
2360 	gpio_result = dal_gpio_open(generic, GPIO_MODE_OUTPUT);
2361 
2362 	config->enable_output_from_mux = enable;
2363 	config->mux_select = GPIO_SIGNAL_SOURCE_PASS_THROUGH_STEREO_SYNC;
2364 
2365 	if (gpio_result == GPIO_RESULT_OK)
2366 		gpio_result = dal_mux_setup_config(generic, config);
2367 
2368 	if (gpio_result == GPIO_RESULT_OK) {
2369 		dal_gpio_close(generic);
2370 		dal_gpio_destroy_generic_mux(&generic);
2371 		kfree(config);
2372 		return true;
2373 	} else {
2374 		dal_gpio_close(generic);
2375 		dal_gpio_destroy_generic_mux(&generic);
2376 		kfree(config);
2377 		return false;
2378 	}
2379 }
2380 
is_surface_in_context(const struct dc_state * context,const struct dc_plane_state * plane_state)2381 static bool is_surface_in_context(
2382 		const struct dc_state *context,
2383 		const struct dc_plane_state *plane_state)
2384 {
2385 	int j;
2386 
2387 	for (j = 0; j < MAX_PIPES; j++) {
2388 		const struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2389 
2390 		if (plane_state == pipe_ctx->plane_state) {
2391 			return true;
2392 		}
2393 	}
2394 
2395 	return false;
2396 }
2397 
get_plane_info_update_type(const struct dc_surface_update * u)2398 static enum surface_update_type get_plane_info_update_type(const struct dc_surface_update *u)
2399 {
2400 	union surface_update_flags *update_flags = &u->surface->update_flags;
2401 	enum surface_update_type update_type = UPDATE_TYPE_FAST;
2402 
2403 	if (!u->plane_info)
2404 		return UPDATE_TYPE_FAST;
2405 
2406 	if (u->plane_info->color_space != u->surface->color_space) {
2407 		update_flags->bits.color_space_change = 1;
2408 		elevate_update_type(&update_type, UPDATE_TYPE_MED);
2409 	}
2410 
2411 	if (u->plane_info->horizontal_mirror != u->surface->horizontal_mirror) {
2412 		update_flags->bits.horizontal_mirror_change = 1;
2413 		elevate_update_type(&update_type, UPDATE_TYPE_MED);
2414 	}
2415 
2416 	if (u->plane_info->rotation != u->surface->rotation) {
2417 		update_flags->bits.rotation_change = 1;
2418 		elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2419 	}
2420 
2421 	if (u->plane_info->format != u->surface->format) {
2422 		update_flags->bits.pixel_format_change = 1;
2423 		elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2424 	}
2425 
2426 	if (u->plane_info->stereo_format != u->surface->stereo_format) {
2427 		update_flags->bits.stereo_format_change = 1;
2428 		elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2429 	}
2430 
2431 	if (u->plane_info->per_pixel_alpha != u->surface->per_pixel_alpha) {
2432 		update_flags->bits.per_pixel_alpha_change = 1;
2433 		elevate_update_type(&update_type, UPDATE_TYPE_MED);
2434 	}
2435 
2436 	if (u->plane_info->global_alpha_value != u->surface->global_alpha_value) {
2437 		update_flags->bits.global_alpha_change = 1;
2438 		elevate_update_type(&update_type, UPDATE_TYPE_MED);
2439 	}
2440 
2441 	if (u->plane_info->dcc.enable != u->surface->dcc.enable
2442 			|| u->plane_info->dcc.dcc_ind_blk != u->surface->dcc.dcc_ind_blk
2443 			|| u->plane_info->dcc.meta_pitch != u->surface->dcc.meta_pitch) {
2444 		/* During DCC on/off, stutter period is calculated before
2445 		 * DCC has fully transitioned. This results in incorrect
2446 		 * stutter period calculation. Triggering a full update will
2447 		 * recalculate stutter period.
2448 		 */
2449 		update_flags->bits.dcc_change = 1;
2450 		elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2451 	}
2452 
2453 	if (resource_pixel_format_to_bpp(u->plane_info->format) !=
2454 			resource_pixel_format_to_bpp(u->surface->format)) {
2455 		/* different bytes per element will require full bandwidth
2456 		 * and DML calculation
2457 		 */
2458 		update_flags->bits.bpp_change = 1;
2459 		elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2460 	}
2461 
2462 	if (u->plane_info->plane_size.surface_pitch != u->surface->plane_size.surface_pitch
2463 			|| u->plane_info->plane_size.chroma_pitch != u->surface->plane_size.chroma_pitch) {
2464 		update_flags->bits.plane_size_change = 1;
2465 		elevate_update_type(&update_type, UPDATE_TYPE_MED);
2466 	}
2467 
2468 
2469 	if (memcmp(&u->plane_info->tiling_info, &u->surface->tiling_info,
2470 			sizeof(union dc_tiling_info)) != 0) {
2471 		update_flags->bits.swizzle_change = 1;
2472 		elevate_update_type(&update_type, UPDATE_TYPE_MED);
2473 
2474 		/* todo: below are HW dependent, we should add a hook to
2475 		 * DCE/N resource and validated there.
2476 		 */
2477 		if (u->plane_info->tiling_info.gfx9.swizzle != DC_SW_LINEAR) {
2478 			/* swizzled mode requires RQ to be setup properly,
2479 			 * thus need to run DML to calculate RQ settings
2480 			 */
2481 			update_flags->bits.bandwidth_change = 1;
2482 			elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2483 		}
2484 	}
2485 
2486 	/* This should be UPDATE_TYPE_FAST if nothing has changed. */
2487 	return update_type;
2488 }
2489 
get_scaling_info_update_type(const struct dc_surface_update * u)2490 static enum surface_update_type get_scaling_info_update_type(
2491 		const struct dc_surface_update *u)
2492 {
2493 	union surface_update_flags *update_flags = &u->surface->update_flags;
2494 
2495 	if (!u->scaling_info)
2496 		return UPDATE_TYPE_FAST;
2497 
2498 	if (u->scaling_info->dst_rect.width != u->surface->dst_rect.width
2499 			|| u->scaling_info->dst_rect.height != u->surface->dst_rect.height
2500 			|| u->scaling_info->scaling_quality.integer_scaling !=
2501 				u->surface->scaling_quality.integer_scaling
2502 			) {
2503 		update_flags->bits.scaling_change = 1;
2504 
2505 		if ((u->scaling_info->dst_rect.width < u->surface->dst_rect.width
2506 			|| u->scaling_info->dst_rect.height < u->surface->dst_rect.height)
2507 				&& (u->scaling_info->dst_rect.width < u->surface->src_rect.width
2508 					|| u->scaling_info->dst_rect.height < u->surface->src_rect.height))
2509 			/* Making dst rect smaller requires a bandwidth change */
2510 			update_flags->bits.bandwidth_change = 1;
2511 	}
2512 
2513 	if (u->scaling_info->src_rect.width != u->surface->src_rect.width
2514 		|| u->scaling_info->src_rect.height != u->surface->src_rect.height) {
2515 
2516 		update_flags->bits.scaling_change = 1;
2517 		if (u->scaling_info->src_rect.width > u->surface->src_rect.width
2518 				|| u->scaling_info->src_rect.height > u->surface->src_rect.height)
2519 			/* Making src rect bigger requires a bandwidth change */
2520 			update_flags->bits.clock_change = 1;
2521 	}
2522 
2523 	if (u->scaling_info->src_rect.x != u->surface->src_rect.x
2524 			|| u->scaling_info->src_rect.y != u->surface->src_rect.y
2525 			|| u->scaling_info->clip_rect.x != u->surface->clip_rect.x
2526 			|| u->scaling_info->clip_rect.y != u->surface->clip_rect.y
2527 			|| u->scaling_info->dst_rect.x != u->surface->dst_rect.x
2528 			|| u->scaling_info->dst_rect.y != u->surface->dst_rect.y)
2529 		update_flags->bits.position_change = 1;
2530 
2531 	if (update_flags->bits.clock_change
2532 			|| update_flags->bits.bandwidth_change
2533 			|| update_flags->bits.scaling_change)
2534 		return UPDATE_TYPE_FULL;
2535 
2536 	if (update_flags->bits.position_change)
2537 		return UPDATE_TYPE_MED;
2538 
2539 	return UPDATE_TYPE_FAST;
2540 }
2541 
det_surface_update(const struct dc * dc,const struct dc_surface_update * u)2542 static enum surface_update_type det_surface_update(const struct dc *dc,
2543 		const struct dc_surface_update *u)
2544 {
2545 	const struct dc_state *context = dc->current_state;
2546 	enum surface_update_type type;
2547 	enum surface_update_type overall_type = UPDATE_TYPE_FAST;
2548 	union surface_update_flags *update_flags = &u->surface->update_flags;
2549 
2550 	if (!is_surface_in_context(context, u->surface) || u->surface->force_full_update) {
2551 		update_flags->raw = 0xFFFFFFFF;
2552 		return UPDATE_TYPE_FULL;
2553 	}
2554 
2555 	update_flags->raw = 0; // Reset all flags
2556 
2557 	type = get_plane_info_update_type(u);
2558 	elevate_update_type(&overall_type, type);
2559 
2560 	type = get_scaling_info_update_type(u);
2561 	elevate_update_type(&overall_type, type);
2562 
2563 	if (u->flip_addr) {
2564 		update_flags->bits.addr_update = 1;
2565 		if (u->flip_addr->address.tmz_surface != u->surface->address.tmz_surface) {
2566 			update_flags->bits.tmz_changed = 1;
2567 			elevate_update_type(&overall_type, UPDATE_TYPE_FULL);
2568 		}
2569 	}
2570 	if (u->in_transfer_func)
2571 		update_flags->bits.in_transfer_func_change = 1;
2572 
2573 	if (u->input_csc_color_matrix)
2574 		update_flags->bits.input_csc_change = 1;
2575 
2576 	if (u->coeff_reduction_factor)
2577 		update_flags->bits.coeff_reduction_change = 1;
2578 
2579 	if (u->gamut_remap_matrix)
2580 		update_flags->bits.gamut_remap_change = 1;
2581 
2582 	if (u->gamma) {
2583 		enum surface_pixel_format format = SURFACE_PIXEL_FORMAT_GRPH_BEGIN;
2584 
2585 		if (u->plane_info)
2586 			format = u->plane_info->format;
2587 		else if (u->surface)
2588 			format = u->surface->format;
2589 
2590 		if (dce_use_lut(format))
2591 			update_flags->bits.gamma_change = 1;
2592 	}
2593 
2594 	if (u->lut3d_func || u->func_shaper)
2595 		update_flags->bits.lut_3d = 1;
2596 
2597 	if (u->hdr_mult.value)
2598 		if (u->hdr_mult.value != u->surface->hdr_mult.value) {
2599 			update_flags->bits.hdr_mult = 1;
2600 			elevate_update_type(&overall_type, UPDATE_TYPE_MED);
2601 		}
2602 
2603 	if (update_flags->bits.in_transfer_func_change) {
2604 		type = UPDATE_TYPE_MED;
2605 		elevate_update_type(&overall_type, type);
2606 	}
2607 
2608 	if (update_flags->bits.lut_3d) {
2609 		type = UPDATE_TYPE_FULL;
2610 		elevate_update_type(&overall_type, type);
2611 	}
2612 
2613 	if (dc->debug.enable_legacy_fast_update &&
2614 			(update_flags->bits.gamma_change ||
2615 			update_flags->bits.gamut_remap_change ||
2616 			update_flags->bits.input_csc_change ||
2617 			update_flags->bits.coeff_reduction_change)) {
2618 		type = UPDATE_TYPE_FULL;
2619 		elevate_update_type(&overall_type, type);
2620 	}
2621 	return overall_type;
2622 }
2623 
check_update_surfaces_for_stream(struct dc * dc,struct dc_surface_update * updates,int surface_count,struct dc_stream_update * stream_update,const struct dc_stream_status * stream_status)2624 static enum surface_update_type check_update_surfaces_for_stream(
2625 		struct dc *dc,
2626 		struct dc_surface_update *updates,
2627 		int surface_count,
2628 		struct dc_stream_update *stream_update,
2629 		const struct dc_stream_status *stream_status)
2630 {
2631 	int i;
2632 	enum surface_update_type overall_type = UPDATE_TYPE_FAST;
2633 
2634 	if (dc->idle_optimizations_allowed)
2635 		overall_type = UPDATE_TYPE_FULL;
2636 
2637 	if (stream_status == NULL || stream_status->plane_count != surface_count)
2638 		overall_type = UPDATE_TYPE_FULL;
2639 
2640 	if (stream_update && stream_update->pending_test_pattern) {
2641 		overall_type = UPDATE_TYPE_FULL;
2642 	}
2643 
2644 	/* some stream updates require passive update */
2645 	if (stream_update) {
2646 		union stream_update_flags *su_flags = &stream_update->stream->update_flags;
2647 
2648 		if ((stream_update->src.height != 0 && stream_update->src.width != 0) ||
2649 			(stream_update->dst.height != 0 && stream_update->dst.width != 0) ||
2650 			stream_update->integer_scaling_update)
2651 			su_flags->bits.scaling = 1;
2652 
2653 		if (dc->debug.enable_legacy_fast_update && stream_update->out_transfer_func)
2654 			su_flags->bits.out_tf = 1;
2655 
2656 		if (stream_update->abm_level)
2657 			su_flags->bits.abm_level = 1;
2658 
2659 		if (stream_update->dpms_off)
2660 			su_flags->bits.dpms_off = 1;
2661 
2662 		if (stream_update->gamut_remap)
2663 			su_flags->bits.gamut_remap = 1;
2664 
2665 		if (stream_update->wb_update)
2666 			su_flags->bits.wb_update = 1;
2667 
2668 		if (stream_update->dsc_config)
2669 			su_flags->bits.dsc_changed = 1;
2670 
2671 		if (stream_update->mst_bw_update)
2672 			su_flags->bits.mst_bw = 1;
2673 
2674 		if (stream_update->stream && stream_update->stream->freesync_on_desktop &&
2675 			(stream_update->vrr_infopacket || stream_update->allow_freesync ||
2676 				stream_update->vrr_active_variable || stream_update->vrr_active_fixed))
2677 			su_flags->bits.fams_changed = 1;
2678 
2679 		if (su_flags->raw != 0)
2680 			overall_type = UPDATE_TYPE_FULL;
2681 
2682 		if (stream_update->output_csc_transform || stream_update->output_color_space)
2683 			su_flags->bits.out_csc = 1;
2684 
2685 		/* Output transfer function changes do not require bandwidth recalculation,
2686 		 * so don't trigger a full update
2687 		 */
2688 		if (!dc->debug.enable_legacy_fast_update && stream_update->out_transfer_func)
2689 			su_flags->bits.out_tf = 1;
2690 	}
2691 
2692 	for (i = 0 ; i < surface_count; i++) {
2693 		enum surface_update_type type =
2694 				det_surface_update(dc, &updates[i]);
2695 
2696 		elevate_update_type(&overall_type, type);
2697 	}
2698 
2699 	return overall_type;
2700 }
2701 
2702 /*
2703  * dc_check_update_surfaces_for_stream() - Determine update type (fast, med, or full)
2704  *
2705  * See :c:type:`enum surface_update_type <surface_update_type>` for explanation of update types
2706  */
dc_check_update_surfaces_for_stream(struct dc * dc,struct dc_surface_update * updates,int surface_count,struct dc_stream_update * stream_update,const struct dc_stream_status * stream_status)2707 enum surface_update_type dc_check_update_surfaces_for_stream(
2708 		struct dc *dc,
2709 		struct dc_surface_update *updates,
2710 		int surface_count,
2711 		struct dc_stream_update *stream_update,
2712 		const struct dc_stream_status *stream_status)
2713 {
2714 	int i;
2715 	enum surface_update_type type;
2716 
2717 	if (stream_update)
2718 		stream_update->stream->update_flags.raw = 0;
2719 	for (i = 0; i < surface_count; i++)
2720 		updates[i].surface->update_flags.raw = 0;
2721 
2722 	type = check_update_surfaces_for_stream(dc, updates, surface_count, stream_update, stream_status);
2723 	if (type == UPDATE_TYPE_FULL) {
2724 		if (stream_update) {
2725 			uint32_t dsc_changed = stream_update->stream->update_flags.bits.dsc_changed;
2726 			stream_update->stream->update_flags.raw = 0xFFFFFFFF;
2727 			stream_update->stream->update_flags.bits.dsc_changed = dsc_changed;
2728 		}
2729 		for (i = 0; i < surface_count; i++)
2730 			updates[i].surface->update_flags.raw = 0xFFFFFFFF;
2731 	}
2732 
2733 	if (type == UPDATE_TYPE_FAST) {
2734 		// If there's an available clock comparator, we use that.
2735 		if (dc->clk_mgr->funcs->are_clock_states_equal) {
2736 			if (!dc->clk_mgr->funcs->are_clock_states_equal(&dc->clk_mgr->clks, &dc->current_state->bw_ctx.bw.dcn.clk))
2737 				dc->optimized_required = true;
2738 		// Else we fallback to mem compare.
2739 		} else if (memcmp(&dc->current_state->bw_ctx.bw.dcn.clk, &dc->clk_mgr->clks, offsetof(struct dc_clocks, prev_p_state_change_support)) != 0) {
2740 			dc->optimized_required = true;
2741 		}
2742 
2743 		dc->optimized_required |= dc->wm_optimized_required;
2744 	}
2745 
2746 	return type;
2747 }
2748 
stream_get_status(struct dc_state * ctx,struct dc_stream_state * stream)2749 static struct dc_stream_status *stream_get_status(
2750 	struct dc_state *ctx,
2751 	struct dc_stream_state *stream)
2752 {
2753 	uint8_t i;
2754 
2755 	for (i = 0; i < ctx->stream_count; i++) {
2756 		if (stream == ctx->streams[i]) {
2757 			return &ctx->stream_status[i];
2758 		}
2759 	}
2760 
2761 	return NULL;
2762 }
2763 
2764 static const enum surface_update_type update_surface_trace_level = UPDATE_TYPE_FULL;
2765 
copy_surface_update_to_plane(struct dc_plane_state * surface,struct dc_surface_update * srf_update)2766 static void copy_surface_update_to_plane(
2767 		struct dc_plane_state *surface,
2768 		struct dc_surface_update *srf_update)
2769 {
2770 	if (srf_update->flip_addr) {
2771 		surface->address = srf_update->flip_addr->address;
2772 		surface->flip_immediate =
2773 			srf_update->flip_addr->flip_immediate;
2774 		surface->time.time_elapsed_in_us[surface->time.index] =
2775 			srf_update->flip_addr->flip_timestamp_in_us -
2776 				surface->time.prev_update_time_in_us;
2777 		surface->time.prev_update_time_in_us =
2778 			srf_update->flip_addr->flip_timestamp_in_us;
2779 		surface->time.index++;
2780 		if (surface->time.index >= DC_PLANE_UPDATE_TIMES_MAX)
2781 			surface->time.index = 0;
2782 
2783 		surface->triplebuffer_flips = srf_update->flip_addr->triplebuffer_flips;
2784 	}
2785 
2786 	if (srf_update->scaling_info) {
2787 		surface->scaling_quality =
2788 				srf_update->scaling_info->scaling_quality;
2789 		surface->dst_rect =
2790 				srf_update->scaling_info->dst_rect;
2791 		surface->src_rect =
2792 				srf_update->scaling_info->src_rect;
2793 		surface->clip_rect =
2794 				srf_update->scaling_info->clip_rect;
2795 	}
2796 
2797 	if (srf_update->plane_info) {
2798 		surface->color_space =
2799 				srf_update->plane_info->color_space;
2800 		surface->format =
2801 				srf_update->plane_info->format;
2802 		surface->plane_size =
2803 				srf_update->plane_info->plane_size;
2804 		surface->rotation =
2805 				srf_update->plane_info->rotation;
2806 		surface->horizontal_mirror =
2807 				srf_update->plane_info->horizontal_mirror;
2808 		surface->stereo_format =
2809 				srf_update->plane_info->stereo_format;
2810 		surface->tiling_info =
2811 				srf_update->plane_info->tiling_info;
2812 		surface->visible =
2813 				srf_update->plane_info->visible;
2814 		surface->per_pixel_alpha =
2815 				srf_update->plane_info->per_pixel_alpha;
2816 		surface->global_alpha =
2817 				srf_update->plane_info->global_alpha;
2818 		surface->global_alpha_value =
2819 				srf_update->plane_info->global_alpha_value;
2820 		surface->dcc =
2821 				srf_update->plane_info->dcc;
2822 		surface->layer_index =
2823 				srf_update->plane_info->layer_index;
2824 	}
2825 
2826 	if (srf_update->gamma &&
2827 			(surface->gamma_correction !=
2828 					srf_update->gamma)) {
2829 		memcpy(&surface->gamma_correction->entries,
2830 			&srf_update->gamma->entries,
2831 			sizeof(struct dc_gamma_entries));
2832 		surface->gamma_correction->is_identity =
2833 			srf_update->gamma->is_identity;
2834 		surface->gamma_correction->num_entries =
2835 			srf_update->gamma->num_entries;
2836 		surface->gamma_correction->type =
2837 			srf_update->gamma->type;
2838 	}
2839 
2840 	if (srf_update->in_transfer_func &&
2841 			(surface->in_transfer_func !=
2842 				srf_update->in_transfer_func)) {
2843 		surface->in_transfer_func->sdr_ref_white_level =
2844 			srf_update->in_transfer_func->sdr_ref_white_level;
2845 		surface->in_transfer_func->tf =
2846 			srf_update->in_transfer_func->tf;
2847 		surface->in_transfer_func->type =
2848 			srf_update->in_transfer_func->type;
2849 		memcpy(&surface->in_transfer_func->tf_pts,
2850 			&srf_update->in_transfer_func->tf_pts,
2851 			sizeof(struct dc_transfer_func_distributed_points));
2852 	}
2853 
2854 	if (srf_update->func_shaper &&
2855 			(surface->in_shaper_func !=
2856 			srf_update->func_shaper))
2857 		memcpy(surface->in_shaper_func, srf_update->func_shaper,
2858 		sizeof(*surface->in_shaper_func));
2859 
2860 	if (srf_update->lut3d_func &&
2861 			(surface->lut3d_func !=
2862 			srf_update->lut3d_func))
2863 		memcpy(surface->lut3d_func, srf_update->lut3d_func,
2864 		sizeof(*surface->lut3d_func));
2865 
2866 	if (srf_update->hdr_mult.value)
2867 		surface->hdr_mult =
2868 				srf_update->hdr_mult;
2869 
2870 	if (srf_update->blend_tf &&
2871 			(surface->blend_tf !=
2872 			srf_update->blend_tf))
2873 		memcpy(surface->blend_tf, srf_update->blend_tf,
2874 		sizeof(*surface->blend_tf));
2875 
2876 	if (srf_update->input_csc_color_matrix)
2877 		surface->input_csc_color_matrix =
2878 			*srf_update->input_csc_color_matrix;
2879 
2880 	if (srf_update->coeff_reduction_factor)
2881 		surface->coeff_reduction_factor =
2882 			*srf_update->coeff_reduction_factor;
2883 
2884 	if (srf_update->gamut_remap_matrix)
2885 		surface->gamut_remap_matrix =
2886 			*srf_update->gamut_remap_matrix;
2887 }
2888 
copy_stream_update_to_stream(struct dc * dc,struct dc_state * context,struct dc_stream_state * stream,struct dc_stream_update * update)2889 static void copy_stream_update_to_stream(struct dc *dc,
2890 					 struct dc_state *context,
2891 					 struct dc_stream_state *stream,
2892 					 struct dc_stream_update *update)
2893 {
2894 	struct dc_context *dc_ctx = dc->ctx;
2895 
2896 	if (update == NULL || stream == NULL)
2897 		return;
2898 
2899 	if (update->src.height && update->src.width)
2900 		stream->src = update->src;
2901 
2902 	if (update->dst.height && update->dst.width)
2903 		stream->dst = update->dst;
2904 
2905 	if (update->out_transfer_func &&
2906 	    stream->out_transfer_func != update->out_transfer_func) {
2907 		stream->out_transfer_func->sdr_ref_white_level =
2908 			update->out_transfer_func->sdr_ref_white_level;
2909 		stream->out_transfer_func->tf = update->out_transfer_func->tf;
2910 		stream->out_transfer_func->type =
2911 			update->out_transfer_func->type;
2912 		memcpy(&stream->out_transfer_func->tf_pts,
2913 		       &update->out_transfer_func->tf_pts,
2914 		       sizeof(struct dc_transfer_func_distributed_points));
2915 	}
2916 
2917 	if (update->hdr_static_metadata)
2918 		stream->hdr_static_metadata = *update->hdr_static_metadata;
2919 
2920 	if (update->abm_level)
2921 		stream->abm_level = *update->abm_level;
2922 
2923 	if (update->periodic_interrupt)
2924 		stream->periodic_interrupt = *update->periodic_interrupt;
2925 
2926 	if (update->gamut_remap)
2927 		stream->gamut_remap_matrix = *update->gamut_remap;
2928 
2929 	/* Note: this being updated after mode set is currently not a use case
2930 	 * however if it arises OCSC would need to be reprogrammed at the
2931 	 * minimum
2932 	 */
2933 	if (update->output_color_space)
2934 		stream->output_color_space = *update->output_color_space;
2935 
2936 	if (update->output_csc_transform)
2937 		stream->csc_color_matrix = *update->output_csc_transform;
2938 
2939 	if (update->vrr_infopacket)
2940 		stream->vrr_infopacket = *update->vrr_infopacket;
2941 
2942 	if (update->allow_freesync)
2943 		stream->allow_freesync = *update->allow_freesync;
2944 
2945 	if (update->vrr_active_variable)
2946 		stream->vrr_active_variable = *update->vrr_active_variable;
2947 
2948 	if (update->vrr_active_fixed)
2949 		stream->vrr_active_fixed = *update->vrr_active_fixed;
2950 
2951 	if (update->crtc_timing_adjust)
2952 		stream->adjust = *update->crtc_timing_adjust;
2953 
2954 	if (update->dpms_off)
2955 		stream->dpms_off = *update->dpms_off;
2956 
2957 	if (update->hfvsif_infopacket)
2958 		stream->hfvsif_infopacket = *update->hfvsif_infopacket;
2959 
2960 	if (update->vtem_infopacket)
2961 		stream->vtem_infopacket = *update->vtem_infopacket;
2962 
2963 	if (update->vsc_infopacket)
2964 		stream->vsc_infopacket = *update->vsc_infopacket;
2965 
2966 	if (update->vsp_infopacket)
2967 		stream->vsp_infopacket = *update->vsp_infopacket;
2968 
2969 	if (update->adaptive_sync_infopacket)
2970 		stream->adaptive_sync_infopacket = *update->adaptive_sync_infopacket;
2971 
2972 	if (update->dither_option)
2973 		stream->dither_option = *update->dither_option;
2974 
2975 	if (update->pending_test_pattern)
2976 		stream->test_pattern = *update->pending_test_pattern;
2977 	/* update current stream with writeback info */
2978 	if (update->wb_update) {
2979 		int i;
2980 
2981 		stream->num_wb_info = update->wb_update->num_wb_info;
2982 		ASSERT(stream->num_wb_info <= MAX_DWB_PIPES);
2983 		for (i = 0; i < stream->num_wb_info; i++)
2984 			stream->writeback_info[i] =
2985 				update->wb_update->writeback_info[i];
2986 	}
2987 	if (update->dsc_config) {
2988 		struct dc_dsc_config old_dsc_cfg = stream->timing.dsc_cfg;
2989 		uint32_t old_dsc_enabled = stream->timing.flags.DSC;
2990 		uint32_t enable_dsc = (update->dsc_config->num_slices_h != 0 &&
2991 				       update->dsc_config->num_slices_v != 0);
2992 
2993 		/* Use temporarry context for validating new DSC config */
2994 		struct dc_state *dsc_validate_context = dc_create_state(dc);
2995 
2996 		if (dsc_validate_context) {
2997 			dc_resource_state_copy_construct(dc->current_state, dsc_validate_context);
2998 
2999 			stream->timing.dsc_cfg = *update->dsc_config;
3000 			stream->timing.flags.DSC = enable_dsc;
3001 			if (!dc->res_pool->funcs->validate_bandwidth(dc, dsc_validate_context, true)) {
3002 				stream->timing.dsc_cfg = old_dsc_cfg;
3003 				stream->timing.flags.DSC = old_dsc_enabled;
3004 				update->dsc_config = NULL;
3005 			}
3006 
3007 			dc_release_state(dsc_validate_context);
3008 		} else {
3009 			DC_ERROR("Failed to allocate new validate context for DSC change\n");
3010 			update->dsc_config = NULL;
3011 		}
3012 	}
3013 }
3014 
update_planes_and_stream_state(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type * new_update_type,struct dc_state ** new_context)3015 static bool update_planes_and_stream_state(struct dc *dc,
3016 		struct dc_surface_update *srf_updates, int surface_count,
3017 		struct dc_stream_state *stream,
3018 		struct dc_stream_update *stream_update,
3019 		enum surface_update_type *new_update_type,
3020 		struct dc_state **new_context)
3021 {
3022 	struct dc_state *context;
3023 	int i, j;
3024 	enum surface_update_type update_type;
3025 	const struct dc_stream_status *stream_status;
3026 	struct dc_context *dc_ctx = dc->ctx;
3027 
3028 	stream_status = dc_stream_get_status(stream);
3029 
3030 	if (!stream_status) {
3031 		if (surface_count) /* Only an error condition if surf_count non-zero*/
3032 			ASSERT(false);
3033 
3034 		return false; /* Cannot commit surface to stream that is not committed */
3035 	}
3036 
3037 	context = dc->current_state;
3038 
3039 	update_type = dc_check_update_surfaces_for_stream(
3040 			dc, srf_updates, surface_count, stream_update, stream_status);
3041 
3042 	/* update current stream with the new updates */
3043 	copy_stream_update_to_stream(dc, context, stream, stream_update);
3044 
3045 	/* do not perform surface update if surface has invalid dimensions
3046 	 * (all zero) and no scaling_info is provided
3047 	 */
3048 	if (surface_count > 0) {
3049 		for (i = 0; i < surface_count; i++) {
3050 			if ((srf_updates[i].surface->src_rect.width == 0 ||
3051 				 srf_updates[i].surface->src_rect.height == 0 ||
3052 				 srf_updates[i].surface->dst_rect.width == 0 ||
3053 				 srf_updates[i].surface->dst_rect.height == 0) &&
3054 				(!srf_updates[i].scaling_info ||
3055 				  srf_updates[i].scaling_info->src_rect.width == 0 ||
3056 				  srf_updates[i].scaling_info->src_rect.height == 0 ||
3057 				  srf_updates[i].scaling_info->dst_rect.width == 0 ||
3058 				  srf_updates[i].scaling_info->dst_rect.height == 0)) {
3059 				DC_ERROR("Invalid src/dst rects in surface update!\n");
3060 				return false;
3061 			}
3062 		}
3063 	}
3064 
3065 	if (update_type >= update_surface_trace_level)
3066 		update_surface_trace(dc, srf_updates, surface_count);
3067 
3068 	if (update_type >= UPDATE_TYPE_FULL) {
3069 		struct dc_plane_state *new_planes[MAX_SURFACES] = {0};
3070 
3071 		for (i = 0; i < surface_count; i++)
3072 			new_planes[i] = srf_updates[i].surface;
3073 
3074 		/* initialize scratch memory for building context */
3075 		context = dc_create_state(dc);
3076 		if (context == NULL) {
3077 			DC_ERROR("Failed to allocate new validate context!\n");
3078 			return false;
3079 		}
3080 
3081 		dc_resource_state_copy_construct(
3082 				dc->current_state, context);
3083 
3084 		/* For each full update, remove all existing phantom pipes first.
3085 		 * Ensures that we have enough pipes for newly added MPO planes
3086 		 */
3087 		if (dc->res_pool->funcs->remove_phantom_pipes)
3088 			dc->res_pool->funcs->remove_phantom_pipes(dc, context, false);
3089 
3090 		/*remove old surfaces from context */
3091 		if (!dc_rem_all_planes_for_stream(dc, stream, context)) {
3092 
3093 			BREAK_TO_DEBUGGER();
3094 			goto fail;
3095 		}
3096 
3097 		/* add surface to context */
3098 		if (!dc_add_all_planes_for_stream(dc, stream, new_planes, surface_count, context)) {
3099 
3100 			BREAK_TO_DEBUGGER();
3101 			goto fail;
3102 		}
3103 	}
3104 
3105 	/* save update parameters into surface */
3106 	for (i = 0; i < surface_count; i++) {
3107 		struct dc_plane_state *surface = srf_updates[i].surface;
3108 
3109 		copy_surface_update_to_plane(surface, &srf_updates[i]);
3110 
3111 		if (update_type >= UPDATE_TYPE_MED) {
3112 			for (j = 0; j < dc->res_pool->pipe_count; j++) {
3113 				struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3114 
3115 				if (pipe_ctx->plane_state != surface)
3116 					continue;
3117 
3118 				resource_build_scaling_params(pipe_ctx);
3119 			}
3120 		}
3121 	}
3122 
3123 	if (update_type == UPDATE_TYPE_FULL) {
3124 		if (!dc->res_pool->funcs->validate_bandwidth(dc, context, false)) {
3125 			/* For phantom pipes we remove and create a new set of phantom pipes
3126 			 * for each full update (because we don't know if we'll need phantom
3127 			 * pipes until after the first round of validation). However, if validation
3128 			 * fails we need to keep the existing phantom pipes (because we don't update
3129 			 * the dc->current_state).
3130 			 *
3131 			 * The phantom stream/plane refcount is decremented for validation because
3132 			 * we assume it'll be removed (the free comes when the dc_state is freed),
3133 			 * but if validation fails we have to increment back the refcount so it's
3134 			 * consistent.
3135 			 */
3136 			if (dc->res_pool->funcs->retain_phantom_pipes)
3137 				dc->res_pool->funcs->retain_phantom_pipes(dc, dc->current_state);
3138 			BREAK_TO_DEBUGGER();
3139 			goto fail;
3140 		}
3141 	}
3142 
3143 	*new_context = context;
3144 	*new_update_type = update_type;
3145 
3146 	return true;
3147 
3148 fail:
3149 	dc_release_state(context);
3150 
3151 	return false;
3152 
3153 }
3154 
commit_planes_do_stream_update(struct dc * dc,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * context)3155 static void commit_planes_do_stream_update(struct dc *dc,
3156 		struct dc_stream_state *stream,
3157 		struct dc_stream_update *stream_update,
3158 		enum surface_update_type update_type,
3159 		struct dc_state *context)
3160 {
3161 	int j;
3162 
3163 	// Stream updates
3164 	for (j = 0; j < dc->res_pool->pipe_count; j++) {
3165 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3166 
3167 		if (resource_is_pipe_type(pipe_ctx, OTG_MASTER) && pipe_ctx->stream == stream) {
3168 
3169 			if (stream_update->periodic_interrupt && dc->hwss.setup_periodic_interrupt)
3170 				dc->hwss.setup_periodic_interrupt(dc, pipe_ctx);
3171 
3172 			if ((stream_update->hdr_static_metadata && !stream->use_dynamic_meta) ||
3173 					stream_update->vrr_infopacket ||
3174 					stream_update->vsc_infopacket ||
3175 					stream_update->vsp_infopacket ||
3176 					stream_update->hfvsif_infopacket ||
3177 					stream_update->adaptive_sync_infopacket ||
3178 					stream_update->vtem_infopacket) {
3179 				resource_build_info_frame(pipe_ctx);
3180 				dc->hwss.update_info_frame(pipe_ctx);
3181 
3182 				if (dc_is_dp_signal(pipe_ctx->stream->signal))
3183 					dc->link_srv->dp_trace_source_sequence(
3184 							pipe_ctx->stream->link,
3185 							DPCD_SOURCE_SEQ_AFTER_UPDATE_INFO_FRAME);
3186 			}
3187 
3188 			if (stream_update->hdr_static_metadata &&
3189 					stream->use_dynamic_meta &&
3190 					dc->hwss.set_dmdata_attributes &&
3191 					pipe_ctx->stream->dmdata_address.quad_part != 0)
3192 				dc->hwss.set_dmdata_attributes(pipe_ctx);
3193 
3194 			if (stream_update->gamut_remap)
3195 				dc_stream_set_gamut_remap(dc, stream);
3196 
3197 			if (stream_update->output_csc_transform)
3198 				dc_stream_program_csc_matrix(dc, stream);
3199 
3200 			if (stream_update->dither_option) {
3201 				struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe;
3202 				resource_build_bit_depth_reduction_params(pipe_ctx->stream,
3203 									&pipe_ctx->stream->bit_depth_params);
3204 				pipe_ctx->stream_res.opp->funcs->opp_program_fmt(pipe_ctx->stream_res.opp,
3205 						&stream->bit_depth_params,
3206 						&stream->clamping);
3207 				while (odm_pipe) {
3208 					odm_pipe->stream_res.opp->funcs->opp_program_fmt(odm_pipe->stream_res.opp,
3209 							&stream->bit_depth_params,
3210 							&stream->clamping);
3211 					odm_pipe = odm_pipe->next_odm_pipe;
3212 				}
3213 			}
3214 
3215 
3216 			/* Full fe update*/
3217 			if (update_type == UPDATE_TYPE_FAST)
3218 				continue;
3219 
3220 			if (stream_update->dsc_config)
3221 				dc->link_srv->update_dsc_config(pipe_ctx);
3222 
3223 			if (stream_update->mst_bw_update) {
3224 				if (stream_update->mst_bw_update->is_increase)
3225 					dc->link_srv->increase_mst_payload(pipe_ctx,
3226 							stream_update->mst_bw_update->mst_stream_bw);
3227  				else
3228 					dc->link_srv->reduce_mst_payload(pipe_ctx,
3229 							stream_update->mst_bw_update->mst_stream_bw);
3230  			}
3231 
3232 			if (stream_update->pending_test_pattern) {
3233 				dc_link_dp_set_test_pattern(stream->link,
3234 					stream->test_pattern.type,
3235 					stream->test_pattern.color_space,
3236 					stream->test_pattern.p_link_settings,
3237 					stream->test_pattern.p_custom_pattern,
3238 					stream->test_pattern.cust_pattern_size);
3239 			}
3240 
3241 			if (stream_update->dpms_off) {
3242 				if (*stream_update->dpms_off) {
3243 					dc->link_srv->set_dpms_off(pipe_ctx);
3244 					/* for dpms, keep acquired resources*/
3245 					if (pipe_ctx->stream_res.audio && !dc->debug.az_endpoint_mute_only)
3246 						pipe_ctx->stream_res.audio->funcs->az_disable(pipe_ctx->stream_res.audio);
3247 
3248 					dc->optimized_required = true;
3249 
3250 				} else {
3251 					if (get_seamless_boot_stream_count(context) == 0)
3252 						dc->hwss.prepare_bandwidth(dc, dc->current_state);
3253 					dc->link_srv->set_dpms_on(dc->current_state, pipe_ctx);
3254 				}
3255 			} else if (pipe_ctx->stream->link->wa_flags.blank_stream_on_ocs_change && stream_update->output_color_space
3256 					&& !stream->dpms_off && dc_is_dp_signal(pipe_ctx->stream->signal)) {
3257 				/*
3258 				 * Workaround for firmware issue in some receivers where they don't pick up
3259 				 * correct output color space unless DP link is disabled/re-enabled
3260 				 */
3261 				dc->link_srv->set_dpms_on(dc->current_state, pipe_ctx);
3262 			}
3263 
3264 			if (stream_update->abm_level && pipe_ctx->stream_res.abm) {
3265 				bool should_program_abm = true;
3266 
3267 				// if otg funcs defined check if blanked before programming
3268 				if (pipe_ctx->stream_res.tg->funcs->is_blanked)
3269 					if (pipe_ctx->stream_res.tg->funcs->is_blanked(pipe_ctx->stream_res.tg))
3270 						should_program_abm = false;
3271 
3272 				if (should_program_abm) {
3273 					if (*stream_update->abm_level == ABM_LEVEL_IMMEDIATE_DISABLE) {
3274 						dc->hwss.set_abm_immediate_disable(pipe_ctx);
3275 					} else {
3276 						pipe_ctx->stream_res.abm->funcs->set_abm_level(
3277 							pipe_ctx->stream_res.abm, stream->abm_level);
3278 					}
3279 				}
3280 			}
3281 		}
3282 	}
3283 }
3284 
dc_dmub_should_send_dirty_rect_cmd(struct dc * dc,struct dc_stream_state * stream)3285 static bool dc_dmub_should_send_dirty_rect_cmd(struct dc *dc, struct dc_stream_state *stream)
3286 {
3287 	if ((stream->link->psr_settings.psr_version == DC_PSR_VERSION_SU_1
3288 			|| stream->link->psr_settings.psr_version == DC_PSR_VERSION_1)
3289 			&& stream->ctx->dce_version >= DCN_VERSION_3_1)
3290 		return true;
3291 
3292 	if (stream->link->replay_settings.config.replay_supported)
3293 		return true;
3294 
3295 	return false;
3296 }
3297 
dc_dmub_update_dirty_rect(struct dc * dc,int surface_count,struct dc_stream_state * stream,struct dc_surface_update * srf_updates,struct dc_state * context)3298 void dc_dmub_update_dirty_rect(struct dc *dc,
3299 			       int surface_count,
3300 			       struct dc_stream_state *stream,
3301 			       struct dc_surface_update *srf_updates,
3302 			       struct dc_state *context)
3303 {
3304 	union dmub_rb_cmd cmd;
3305 	struct dmub_cmd_update_dirty_rect_data *update_dirty_rect;
3306 	unsigned int i, j;
3307 	unsigned int panel_inst = 0;
3308 
3309 	if (!dc_dmub_should_send_dirty_rect_cmd(dc, stream))
3310 		return;
3311 
3312 	if (!dc_get_edp_link_panel_inst(dc, stream->link, &panel_inst))
3313 		return;
3314 
3315 	memset(&cmd, 0x0, sizeof(cmd));
3316 	cmd.update_dirty_rect.header.type = DMUB_CMD__UPDATE_DIRTY_RECT;
3317 	cmd.update_dirty_rect.header.sub_type = 0;
3318 	cmd.update_dirty_rect.header.payload_bytes =
3319 		sizeof(cmd.update_dirty_rect) -
3320 		sizeof(cmd.update_dirty_rect.header);
3321 	update_dirty_rect = &cmd.update_dirty_rect.update_dirty_rect_data;
3322 	for (i = 0; i < surface_count; i++) {
3323 		struct dc_plane_state *plane_state = srf_updates[i].surface;
3324 		const struct dc_flip_addrs *flip_addr = srf_updates[i].flip_addr;
3325 
3326 		if (!srf_updates[i].surface || !flip_addr)
3327 			continue;
3328 		/* Do not send in immediate flip mode */
3329 		if (srf_updates[i].surface->flip_immediate)
3330 			continue;
3331 
3332 		update_dirty_rect->dirty_rect_count = flip_addr->dirty_rect_count;
3333 		memcpy(update_dirty_rect->src_dirty_rects, flip_addr->dirty_rects,
3334 				sizeof(flip_addr->dirty_rects));
3335 		for (j = 0; j < dc->res_pool->pipe_count; j++) {
3336 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3337 
3338 			if (pipe_ctx->stream != stream)
3339 				continue;
3340 			if (pipe_ctx->plane_state != plane_state)
3341 				continue;
3342 
3343 			update_dirty_rect->panel_inst = panel_inst;
3344 			update_dirty_rect->pipe_idx = j;
3345 			dm_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_NO_WAIT);
3346 		}
3347 	}
3348 }
3349 
build_dmub_update_dirty_rect(struct dc * dc,int surface_count,struct dc_stream_state * stream,struct dc_surface_update * srf_updates,struct dc_state * context,struct dc_dmub_cmd dc_dmub_cmd[],unsigned int * dmub_cmd_count)3350 static void build_dmub_update_dirty_rect(
3351 		struct dc *dc,
3352 		int surface_count,
3353 		struct dc_stream_state *stream,
3354 		struct dc_surface_update *srf_updates,
3355 		struct dc_state *context,
3356 		struct dc_dmub_cmd dc_dmub_cmd[],
3357 		unsigned int *dmub_cmd_count)
3358 {
3359 	union dmub_rb_cmd cmd;
3360 	struct dmub_cmd_update_dirty_rect_data *update_dirty_rect;
3361 	unsigned int i, j;
3362 	unsigned int panel_inst = 0;
3363 
3364 	if (!dc_dmub_should_send_dirty_rect_cmd(dc, stream))
3365 		return;
3366 
3367 	if (!dc_get_edp_link_panel_inst(dc, stream->link, &panel_inst))
3368 		return;
3369 
3370 	memset(&cmd, 0x0, sizeof(cmd));
3371 	cmd.update_dirty_rect.header.type = DMUB_CMD__UPDATE_DIRTY_RECT;
3372 	cmd.update_dirty_rect.header.sub_type = 0;
3373 	cmd.update_dirty_rect.header.payload_bytes =
3374 		sizeof(cmd.update_dirty_rect) -
3375 		sizeof(cmd.update_dirty_rect.header);
3376 	update_dirty_rect = &cmd.update_dirty_rect.update_dirty_rect_data;
3377 	for (i = 0; i < surface_count; i++) {
3378 		struct dc_plane_state *plane_state = srf_updates[i].surface;
3379 		const struct dc_flip_addrs *flip_addr = srf_updates[i].flip_addr;
3380 
3381 		if (!srf_updates[i].surface || !flip_addr)
3382 			continue;
3383 		/* Do not send in immediate flip mode */
3384 		if (srf_updates[i].surface->flip_immediate)
3385 			continue;
3386 		update_dirty_rect->cmd_version = DMUB_CMD_PSR_CONTROL_VERSION_1;
3387 		update_dirty_rect->dirty_rect_count = flip_addr->dirty_rect_count;
3388 		memcpy(update_dirty_rect->src_dirty_rects, flip_addr->dirty_rects,
3389 				sizeof(flip_addr->dirty_rects));
3390 		for (j = 0; j < dc->res_pool->pipe_count; j++) {
3391 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3392 
3393 			if (pipe_ctx->stream != stream)
3394 				continue;
3395 			if (pipe_ctx->plane_state != plane_state)
3396 				continue;
3397 			update_dirty_rect->panel_inst = panel_inst;
3398 			update_dirty_rect->pipe_idx = j;
3399 			dc_dmub_cmd[*dmub_cmd_count].dmub_cmd = cmd;
3400 			dc_dmub_cmd[*dmub_cmd_count].wait_type = DM_DMUB_WAIT_TYPE_NO_WAIT;
3401 			(*dmub_cmd_count)++;
3402 		}
3403 	}
3404 }
3405 
3406 
3407 /**
3408  * build_dmub_cmd_list() - Build an array of DMCUB commands to be sent to DMCUB
3409  *
3410  * @dc: Current DC state
3411  * @srf_updates: Array of surface updates
3412  * @surface_count: Number of surfaces that have an updated
3413  * @stream: Corresponding stream to be updated in the current flip
3414  * @context: New DC state to be programmed
3415  *
3416  * @dc_dmub_cmd: Array of DMCUB commands to be sent to DMCUB
3417  * @dmub_cmd_count: Count indicating the number of DMCUB commands in dc_dmub_cmd array
3418  *
3419  * This function builds an array of DMCUB commands to be sent to DMCUB. This function is required
3420  * to build an array of commands and have them sent while the OTG lock is acquired.
3421  *
3422  * Return: void
3423  */
build_dmub_cmd_list(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_state * context,struct dc_dmub_cmd dc_dmub_cmd[],unsigned int * dmub_cmd_count)3424 static void build_dmub_cmd_list(struct dc *dc,
3425 		struct dc_surface_update *srf_updates,
3426 		int surface_count,
3427 		struct dc_stream_state *stream,
3428 		struct dc_state *context,
3429 		struct dc_dmub_cmd dc_dmub_cmd[],
3430 		unsigned int *dmub_cmd_count)
3431 {
3432 	// Initialize cmd count to 0
3433 	*dmub_cmd_count = 0;
3434 	build_dmub_update_dirty_rect(dc, surface_count, stream, srf_updates, context, dc_dmub_cmd, dmub_cmd_count);
3435 }
3436 
commit_planes_for_stream_fast(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * context)3437 static void commit_planes_for_stream_fast(struct dc *dc,
3438 		struct dc_surface_update *srf_updates,
3439 		int surface_count,
3440 		struct dc_stream_state *stream,
3441 		struct dc_stream_update *stream_update,
3442 		enum surface_update_type update_type,
3443 		struct dc_state *context)
3444 {
3445 	int i, j;
3446 	struct pipe_ctx *top_pipe_to_program = NULL;
3447 	dc_z10_restore(dc);
3448 
3449 	top_pipe_to_program = resource_get_otg_master_for_stream(
3450 			&context->res_ctx,
3451 			stream);
3452 
3453 	if (dc->debug.visual_confirm) {
3454 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
3455 			struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
3456 
3457 			if (pipe->stream && pipe->plane_state)
3458 				dc_update_viusal_confirm_color(dc, context, pipe);
3459 		}
3460 	}
3461 
3462 	for (i = 0; i < surface_count; i++) {
3463 		struct dc_plane_state *plane_state = srf_updates[i].surface;
3464 		/*set logical flag for lock/unlock use*/
3465 		for (j = 0; j < dc->res_pool->pipe_count; j++) {
3466 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3467 
3468 			if (!pipe_ctx->plane_state)
3469 				continue;
3470 			if (should_update_pipe_for_plane(context, pipe_ctx, plane_state))
3471 				continue;
3472 			pipe_ctx->plane_state->triplebuffer_flips = false;
3473 			if (update_type == UPDATE_TYPE_FAST &&
3474 			    dc->hwss.program_triplebuffer &&
3475 			    !pipe_ctx->plane_state->flip_immediate && dc->debug.enable_tri_buf) {
3476 				/*triple buffer for VUpdate  only*/
3477 				pipe_ctx->plane_state->triplebuffer_flips = true;
3478 			}
3479 		}
3480 	}
3481 
3482 	build_dmub_cmd_list(dc,
3483 			srf_updates,
3484 			surface_count,
3485 			stream,
3486 			context,
3487 			context->dc_dmub_cmd,
3488 			&(context->dmub_cmd_count));
3489 	hwss_build_fast_sequence(dc,
3490 			context->dc_dmub_cmd,
3491 			context->dmub_cmd_count,
3492 			context->block_sequence,
3493 			&(context->block_sequence_steps),
3494 			top_pipe_to_program);
3495 	hwss_execute_sequence(dc,
3496 			context->block_sequence,
3497 			context->block_sequence_steps);
3498 	/* Clear update flags so next flip doesn't have redundant programming
3499 	 * (if there's no stream update, the update flags are not cleared).
3500 	 * Surface updates are cleared unconditionally at the beginning of each flip,
3501 	 * so no need to clear here.
3502 	 */
3503 	if (top_pipe_to_program->stream)
3504 		top_pipe_to_program->stream->update_flags.raw = 0;
3505 }
3506 
wait_for_outstanding_hw_updates(struct dc * dc,const struct dc_state * dc_context)3507 static void wait_for_outstanding_hw_updates(struct dc *dc, const struct dc_state *dc_context)
3508 {
3509 /*
3510  * This function calls HWSS to wait for any potentially double buffered
3511  * operations to complete. It should be invoked as a pre-amble prior
3512  * to full update programming before asserting any HW locks.
3513  */
3514 	int pipe_idx;
3515 	int opp_inst;
3516 	int opp_count = dc->res_pool->pipe_count;
3517 	struct hubp *hubp;
3518 	int mpcc_inst;
3519 	const struct pipe_ctx *pipe_ctx;
3520 
3521 	for (pipe_idx = 0; pipe_idx < dc->res_pool->pipe_count; pipe_idx++) {
3522 		pipe_ctx = &dc_context->res_ctx.pipe_ctx[pipe_idx];
3523 
3524 		if (!pipe_ctx->stream)
3525 			continue;
3526 
3527 		if (pipe_ctx->stream_res.tg->funcs->wait_drr_doublebuffer_pending_clear)
3528 			pipe_ctx->stream_res.tg->funcs->wait_drr_doublebuffer_pending_clear(pipe_ctx->stream_res.tg);
3529 
3530 		hubp = pipe_ctx->plane_res.hubp;
3531 		if (!hubp)
3532 			continue;
3533 
3534 		mpcc_inst = hubp->inst;
3535 		// MPCC inst is equal to pipe index in practice
3536 		for (opp_inst = 0; opp_inst < opp_count; opp_inst++) {
3537 			if (dc->res_pool->opps[opp_inst]->mpcc_disconnect_pending[mpcc_inst]) {
3538 				dc->res_pool->mpc->funcs->wait_for_idle(dc->res_pool->mpc, mpcc_inst);
3539 				dc->res_pool->opps[opp_inst]->mpcc_disconnect_pending[mpcc_inst] = false;
3540 				break;
3541 			}
3542 		}
3543 	}
3544 }
3545 
commit_planes_for_stream(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * context)3546 static void commit_planes_for_stream(struct dc *dc,
3547 		struct dc_surface_update *srf_updates,
3548 		int surface_count,
3549 		struct dc_stream_state *stream,
3550 		struct dc_stream_update *stream_update,
3551 		enum surface_update_type update_type,
3552 		struct dc_state *context)
3553 {
3554 	int i, j;
3555 	struct pipe_ctx *top_pipe_to_program = NULL;
3556 	bool should_lock_all_pipes = (update_type != UPDATE_TYPE_FAST);
3557 	bool subvp_prev_use = false;
3558 	bool subvp_curr_use = false;
3559 
3560 	// Once we apply the new subvp context to hardware it won't be in the
3561 	// dc->current_state anymore, so we have to cache it before we apply
3562 	// the new SubVP context
3563 	subvp_prev_use = false;
3564 	dc_z10_restore(dc);
3565 	if (update_type == UPDATE_TYPE_FULL)
3566 		wait_for_outstanding_hw_updates(dc, context);
3567 
3568 	if (update_type == UPDATE_TYPE_FULL) {
3569 		dc_allow_idle_optimizations(dc, false);
3570 
3571 		if (get_seamless_boot_stream_count(context) == 0)
3572 			dc->hwss.prepare_bandwidth(dc, context);
3573 
3574 		if (dc->debug.enable_double_buffered_dsc_pg_support)
3575 			dc->hwss.update_dsc_pg(dc, context, false);
3576 
3577 		context_clock_trace(dc, context);
3578 	}
3579 
3580 	top_pipe_to_program = resource_get_otg_master_for_stream(
3581 				&context->res_ctx,
3582 				stream);
3583 
3584 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
3585 		struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
3586 
3587 		// Check old context for SubVP
3588 		subvp_prev_use |= (old_pipe->stream && old_pipe->stream->mall_stream_config.type == SUBVP_PHANTOM);
3589 		if (subvp_prev_use)
3590 			break;
3591 	}
3592 
3593 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
3594 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
3595 
3596 		if (pipe->stream && pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) {
3597 			subvp_curr_use = true;
3598 			break;
3599 		}
3600 	}
3601 
3602 	if (dc->debug.visual_confirm)
3603 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
3604 			struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
3605 
3606 			if (pipe->stream && pipe->plane_state)
3607 				dc_update_viusal_confirm_color(dc, context, pipe);
3608 		}
3609 
3610 	if (stream->test_pattern.type != DP_TEST_PATTERN_VIDEO_MODE) {
3611 		struct pipe_ctx *mpcc_pipe;
3612 		struct pipe_ctx *odm_pipe;
3613 
3614 		for (mpcc_pipe = top_pipe_to_program; mpcc_pipe; mpcc_pipe = mpcc_pipe->bottom_pipe)
3615 			for (odm_pipe = mpcc_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe)
3616 				odm_pipe->ttu_regs.min_ttu_vblank = MAX_TTU;
3617 	}
3618 
3619 	if ((update_type != UPDATE_TYPE_FAST) && stream->update_flags.bits.dsc_changed)
3620 		if (top_pipe_to_program &&
3621 			top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable) {
3622 			if (should_use_dmub_lock(stream->link)) {
3623 				union dmub_hw_lock_flags hw_locks = { 0 };
3624 				struct dmub_hw_lock_inst_flags inst_flags = { 0 };
3625 
3626 				hw_locks.bits.lock_dig = 1;
3627 				inst_flags.dig_inst = top_pipe_to_program->stream_res.tg->inst;
3628 
3629 				dmub_hw_lock_mgr_cmd(dc->ctx->dmub_srv,
3630 							true,
3631 							&hw_locks,
3632 							&inst_flags);
3633 			} else
3634 				top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable(
3635 						top_pipe_to_program->stream_res.tg);
3636 		}
3637 
3638 	if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
3639 		if (dc->hwss.subvp_pipe_control_lock)
3640 				dc->hwss.subvp_pipe_control_lock(dc, context, true, should_lock_all_pipes, NULL, subvp_prev_use);
3641 		dc->hwss.interdependent_update_lock(dc, context, true);
3642 
3643 	} else {
3644 		if (dc->hwss.subvp_pipe_control_lock)
3645 			dc->hwss.subvp_pipe_control_lock(dc, context, true, should_lock_all_pipes, top_pipe_to_program, subvp_prev_use);
3646 		/* Lock the top pipe while updating plane addrs, since freesync requires
3647 		 *  plane addr update event triggers to be synchronized.
3648 		 *  top_pipe_to_program is expected to never be NULL
3649 		 */
3650 		dc->hwss.pipe_control_lock(dc, top_pipe_to_program, true);
3651 	}
3652 
3653 	dc_dmub_update_dirty_rect(dc, surface_count, stream, srf_updates, context);
3654 
3655 	// Stream updates
3656 	if (stream_update)
3657 		commit_planes_do_stream_update(dc, stream, stream_update, update_type, context);
3658 
3659 	if (surface_count == 0) {
3660 		/*
3661 		 * In case of turning off screen, no need to program front end a second time.
3662 		 * just return after program blank.
3663 		 */
3664 		if (dc->hwss.apply_ctx_for_surface)
3665 			dc->hwss.apply_ctx_for_surface(dc, stream, 0, context);
3666 		if (dc->hwss.program_front_end_for_ctx)
3667 			dc->hwss.program_front_end_for_ctx(dc, context);
3668 
3669 		if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
3670 			dc->hwss.interdependent_update_lock(dc, context, false);
3671 		} else {
3672 			dc->hwss.pipe_control_lock(dc, top_pipe_to_program, false);
3673 		}
3674 		dc->hwss.post_unlock_program_front_end(dc, context);
3675 
3676 		if (update_type != UPDATE_TYPE_FAST)
3677 			if (dc->hwss.commit_subvp_config)
3678 				dc->hwss.commit_subvp_config(dc, context);
3679 
3680 		/* Since phantom pipe programming is moved to post_unlock_program_front_end,
3681 		 * move the SubVP lock to after the phantom pipes have been setup
3682 		 */
3683 		if (dc->hwss.subvp_pipe_control_lock)
3684 			dc->hwss.subvp_pipe_control_lock(dc, context, false, should_lock_all_pipes,
3685 							 NULL, subvp_prev_use);
3686 		return;
3687 	}
3688 
3689 	if (update_type != UPDATE_TYPE_FAST) {
3690 		for (j = 0; j < dc->res_pool->pipe_count; j++) {
3691 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3692 
3693 			if ((dc->debug.visual_confirm == VISUAL_CONFIRM_SUBVP ||
3694 				dc->debug.visual_confirm == VISUAL_CONFIRM_MCLK_SWITCH) &&
3695 				pipe_ctx->stream && pipe_ctx->plane_state) {
3696 				/* Only update visual confirm for SUBVP and Mclk switching here.
3697 				 * The bar appears on all pipes, so we need to update the bar on all displays,
3698 				 * so the information doesn't get stale.
3699 				 */
3700 				dc->hwss.update_visual_confirm_color(dc, pipe_ctx,
3701 						pipe_ctx->plane_res.hubp->inst);
3702 			}
3703 		}
3704 	}
3705 
3706 	for (i = 0; i < surface_count; i++) {
3707 		struct dc_plane_state *plane_state = srf_updates[i].surface;
3708 		/*set logical flag for lock/unlock use*/
3709 		for (j = 0; j < dc->res_pool->pipe_count; j++) {
3710 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3711 			if (!pipe_ctx->plane_state)
3712 				continue;
3713 			if (should_update_pipe_for_plane(context, pipe_ctx, plane_state))
3714 				continue;
3715 			pipe_ctx->plane_state->triplebuffer_flips = false;
3716 			if (update_type == UPDATE_TYPE_FAST &&
3717 				dc->hwss.program_triplebuffer != NULL &&
3718 				!pipe_ctx->plane_state->flip_immediate && dc->debug.enable_tri_buf) {
3719 					/*triple buffer for VUpdate  only*/
3720 					pipe_ctx->plane_state->triplebuffer_flips = true;
3721 			}
3722 		}
3723 		if (update_type == UPDATE_TYPE_FULL) {
3724 			/* force vsync flip when reconfiguring pipes to prevent underflow */
3725 			plane_state->flip_immediate = false;
3726 		}
3727 	}
3728 
3729 	// Update Type FULL, Surface updates
3730 	for (j = 0; j < dc->res_pool->pipe_count; j++) {
3731 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3732 
3733 		if (!pipe_ctx->top_pipe &&
3734 			!pipe_ctx->prev_odm_pipe &&
3735 			should_update_pipe_for_stream(context, pipe_ctx, stream)) {
3736 			struct dc_stream_status *stream_status = NULL;
3737 
3738 			if (!pipe_ctx->plane_state)
3739 				continue;
3740 
3741 			/* Full fe update*/
3742 			if (update_type == UPDATE_TYPE_FAST)
3743 				continue;
3744 
3745 			ASSERT(!pipe_ctx->plane_state->triplebuffer_flips);
3746 
3747 			if (dc->hwss.program_triplebuffer != NULL && dc->debug.enable_tri_buf) {
3748 				/*turn off triple buffer for full update*/
3749 				dc->hwss.program_triplebuffer(
3750 					dc, pipe_ctx, pipe_ctx->plane_state->triplebuffer_flips);
3751 			}
3752 			stream_status =
3753 				stream_get_status(context, pipe_ctx->stream);
3754 
3755 			if (dc->hwss.apply_ctx_for_surface)
3756 				dc->hwss.apply_ctx_for_surface(
3757 					dc, pipe_ctx->stream, stream_status->plane_count, context);
3758 		}
3759 	}
3760 	if (dc->hwss.program_front_end_for_ctx && update_type != UPDATE_TYPE_FAST) {
3761 		dc->hwss.program_front_end_for_ctx(dc, context);
3762 		if (dc->debug.validate_dml_output) {
3763 			for (i = 0; i < dc->res_pool->pipe_count; i++) {
3764 				struct pipe_ctx *cur_pipe = &context->res_ctx.pipe_ctx[i];
3765 				if (cur_pipe->stream == NULL)
3766 					continue;
3767 
3768 				cur_pipe->plane_res.hubp->funcs->validate_dml_output(
3769 						cur_pipe->plane_res.hubp, dc->ctx,
3770 						&context->res_ctx.pipe_ctx[i].rq_regs,
3771 						&context->res_ctx.pipe_ctx[i].dlg_regs,
3772 						&context->res_ctx.pipe_ctx[i].ttu_regs);
3773 			}
3774 		}
3775 	}
3776 
3777 	// Update Type FAST, Surface updates
3778 	if (update_type == UPDATE_TYPE_FAST) {
3779 		if (dc->hwss.set_flip_control_gsl)
3780 			for (i = 0; i < surface_count; i++) {
3781 				struct dc_plane_state *plane_state = srf_updates[i].surface;
3782 
3783 				for (j = 0; j < dc->res_pool->pipe_count; j++) {
3784 					struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3785 
3786 					if (!should_update_pipe_for_stream(context, pipe_ctx, stream))
3787 						continue;
3788 
3789 					if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state))
3790 						continue;
3791 
3792 					// GSL has to be used for flip immediate
3793 					dc->hwss.set_flip_control_gsl(pipe_ctx,
3794 							pipe_ctx->plane_state->flip_immediate);
3795 				}
3796 			}
3797 
3798 		/* Perform requested Updates */
3799 		for (i = 0; i < surface_count; i++) {
3800 			struct dc_plane_state *plane_state = srf_updates[i].surface;
3801 
3802 			for (j = 0; j < dc->res_pool->pipe_count; j++) {
3803 				struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3804 
3805 				if (!should_update_pipe_for_stream(context, pipe_ctx, stream))
3806 					continue;
3807 
3808 				if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state))
3809 					continue;
3810 
3811 				/*program triple buffer after lock based on flip type*/
3812 				if (dc->hwss.program_triplebuffer != NULL && dc->debug.enable_tri_buf) {
3813 					/*only enable triplebuffer for  fast_update*/
3814 					dc->hwss.program_triplebuffer(
3815 						dc, pipe_ctx, pipe_ctx->plane_state->triplebuffer_flips);
3816 				}
3817 				if (pipe_ctx->plane_state->update_flags.bits.addr_update)
3818 					dc->hwss.update_plane_addr(dc, pipe_ctx);
3819 			}
3820 		}
3821 	}
3822 
3823 	if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
3824 		dc->hwss.interdependent_update_lock(dc, context, false);
3825 	} else {
3826 		dc->hwss.pipe_control_lock(dc, top_pipe_to_program, false);
3827 	}
3828 
3829 	if ((update_type != UPDATE_TYPE_FAST) && stream->update_flags.bits.dsc_changed)
3830 		if (top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable) {
3831 			top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
3832 				top_pipe_to_program->stream_res.tg,
3833 				CRTC_STATE_VACTIVE);
3834 			top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
3835 				top_pipe_to_program->stream_res.tg,
3836 				CRTC_STATE_VBLANK);
3837 			top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
3838 				top_pipe_to_program->stream_res.tg,
3839 				CRTC_STATE_VACTIVE);
3840 
3841 			if (should_use_dmub_lock(stream->link)) {
3842 				union dmub_hw_lock_flags hw_locks = { 0 };
3843 				struct dmub_hw_lock_inst_flags inst_flags = { 0 };
3844 
3845 				hw_locks.bits.lock_dig = 1;
3846 				inst_flags.dig_inst = top_pipe_to_program->stream_res.tg->inst;
3847 
3848 				dmub_hw_lock_mgr_cmd(dc->ctx->dmub_srv,
3849 							false,
3850 							&hw_locks,
3851 							&inst_flags);
3852 			} else
3853 				top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_disable(
3854 					top_pipe_to_program->stream_res.tg);
3855 		}
3856 
3857 	if (subvp_curr_use) {
3858 		/* If enabling subvp or transitioning from subvp->subvp, enable the
3859 		 * phantom streams before we program front end for the phantom pipes.
3860 		 */
3861 		if (update_type != UPDATE_TYPE_FAST) {
3862 			if (dc->hwss.enable_phantom_streams)
3863 				dc->hwss.enable_phantom_streams(dc, context);
3864 		}
3865 	}
3866 
3867 	if (update_type != UPDATE_TYPE_FAST)
3868 		dc->hwss.post_unlock_program_front_end(dc, context);
3869 
3870 	if (subvp_prev_use && !subvp_curr_use) {
3871 		/* If disabling subvp, disable phantom streams after front end
3872 		 * programming has completed (we turn on phantom OTG in order
3873 		 * to complete the plane disable for phantom pipes).
3874 		 */
3875 		dc->hwss.apply_ctx_to_hw(dc, context);
3876 	}
3877 
3878 	if (update_type != UPDATE_TYPE_FAST)
3879 		if (dc->hwss.commit_subvp_config)
3880 			dc->hwss.commit_subvp_config(dc, context);
3881 	/* Since phantom pipe programming is moved to post_unlock_program_front_end,
3882 	 * move the SubVP lock to after the phantom pipes have been setup
3883 	 */
3884 	if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
3885 		if (dc->hwss.subvp_pipe_control_lock)
3886 			dc->hwss.subvp_pipe_control_lock(dc, context, false, should_lock_all_pipes, NULL, subvp_prev_use);
3887 	} else {
3888 		if (dc->hwss.subvp_pipe_control_lock)
3889 			dc->hwss.subvp_pipe_control_lock(dc, context, false, should_lock_all_pipes, top_pipe_to_program, subvp_prev_use);
3890 	}
3891 
3892 	// Fire manual trigger only when bottom plane is flipped
3893 	for (j = 0; j < dc->res_pool->pipe_count; j++) {
3894 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3895 
3896 		if (!pipe_ctx->plane_state)
3897 			continue;
3898 
3899 		if (pipe_ctx->bottom_pipe || pipe_ctx->next_odm_pipe ||
3900 				!pipe_ctx->stream || !should_update_pipe_for_stream(context, pipe_ctx, stream) ||
3901 				!pipe_ctx->plane_state->update_flags.bits.addr_update ||
3902 				pipe_ctx->plane_state->skip_manual_trigger)
3903 			continue;
3904 
3905 		if (pipe_ctx->stream_res.tg->funcs->program_manual_trigger)
3906 			pipe_ctx->stream_res.tg->funcs->program_manual_trigger(pipe_ctx->stream_res.tg);
3907 	}
3908 }
3909 
3910 /**
3911  * could_mpcc_tree_change_for_active_pipes - Check if an OPP associated with MPCC might change
3912  *
3913  * @dc: Used to get the current state status
3914  * @stream: Target stream, which we want to remove the attached planes
3915  * @surface_count: Number of surface update
3916  * @is_plane_addition: [in] Fill out with true if it is a plane addition case
3917  *
3918  * DCN32x and newer support a feature named Dynamic ODM which can conflict with
3919  * the MPO if used simultaneously in some specific configurations (e.g.,
3920  * 4k@144). This function checks if the incoming context requires applying a
3921  * transition state with unnecessary pipe splitting and ODM disabled to
3922  * circumvent our hardware limitations to prevent this edge case. If the OPP
3923  * associated with an MPCC might change due to plane additions, this function
3924  * returns true.
3925  *
3926  * Return:
3927  * Return true if OPP and MPCC might change, otherwise, return false.
3928  */
could_mpcc_tree_change_for_active_pipes(struct dc * dc,struct dc_stream_state * stream,int surface_count,bool * is_plane_addition)3929 static bool could_mpcc_tree_change_for_active_pipes(struct dc *dc,
3930 		struct dc_stream_state *stream,
3931 		int surface_count,
3932 		bool *is_plane_addition)
3933 {
3934 
3935 	struct dc_stream_status *cur_stream_status = stream_get_status(dc->current_state, stream);
3936 	bool force_minimal_pipe_splitting = false;
3937 	bool subvp_active = false;
3938 	uint32_t i;
3939 
3940 	*is_plane_addition = false;
3941 
3942 	if (cur_stream_status &&
3943 			dc->current_state->stream_count > 0 &&
3944 			dc->debug.pipe_split_policy != MPC_SPLIT_AVOID) {
3945 		/* determine if minimal transition is required due to MPC*/
3946 		if (surface_count > 0) {
3947 			if (cur_stream_status->plane_count > surface_count) {
3948 				force_minimal_pipe_splitting = true;
3949 			} else if (cur_stream_status->plane_count < surface_count) {
3950 				force_minimal_pipe_splitting = true;
3951 				*is_plane_addition = true;
3952 			}
3953 		}
3954 	}
3955 
3956 	if (cur_stream_status &&
3957 			dc->current_state->stream_count == 1 &&
3958 			dc->debug.enable_single_display_2to1_odm_policy) {
3959 		/* determine if minimal transition is required due to dynamic ODM*/
3960 		if (surface_count > 0) {
3961 			if (cur_stream_status->plane_count > 2 && cur_stream_status->plane_count > surface_count) {
3962 				force_minimal_pipe_splitting = true;
3963 			} else if (surface_count > 2 && cur_stream_status->plane_count < surface_count) {
3964 				force_minimal_pipe_splitting = true;
3965 				*is_plane_addition = true;
3966 			}
3967 		}
3968 	}
3969 
3970 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
3971 		struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
3972 
3973 		if (pipe->stream && pipe->stream->mall_stream_config.type != SUBVP_NONE) {
3974 			subvp_active = true;
3975 			break;
3976 		}
3977 	}
3978 
3979 	/* For SubVP when adding or removing planes we need to add a minimal transition
3980 	 * (even when disabling all planes). Whenever disabling a phantom pipe, we
3981 	 * must use the minimal transition path to disable the pipe correctly.
3982 	 *
3983 	 * We want to use the minimal transition whenever subvp is active, not only if
3984 	 * a plane is being added / removed from a subvp stream (MPO plane can be added
3985 	 * to a DRR pipe of SubVP + DRR config, in which case we still want to run through
3986 	 * a min transition to disable subvp.
3987 	 */
3988 	if (cur_stream_status && subvp_active) {
3989 		/* determine if minimal transition is required due to SubVP*/
3990 		if (cur_stream_status->plane_count > surface_count) {
3991 			force_minimal_pipe_splitting = true;
3992 		} else if (cur_stream_status->plane_count < surface_count) {
3993 			force_minimal_pipe_splitting = true;
3994 			*is_plane_addition = true;
3995 		}
3996 	}
3997 
3998 	return force_minimal_pipe_splitting;
3999 }
4000 
4001 /**
4002  * commit_minimal_transition_state - Create a transition pipe split state
4003  *
4004  * @dc: Used to get the current state status
4005  * @transition_base_context: New transition state
4006  *
4007  * In some specific configurations, such as pipe split on multi-display with
4008  * MPO and/or Dynamic ODM, removing a plane may cause unsupported pipe
4009  * programming when moving to new planes. To mitigate those types of problems,
4010  * this function adds a transition state that minimizes pipe usage before
4011  * programming the new configuration. When adding a new plane, the current
4012  * state requires the least pipes, so it is applied without splitting. When
4013  * removing a plane, the new state requires the least pipes, so it is applied
4014  * without splitting.
4015  *
4016  * Return:
4017  * Return false if something is wrong in the transition state.
4018  */
commit_minimal_transition_state(struct dc * dc,struct dc_state * transition_base_context)4019 static bool commit_minimal_transition_state(struct dc *dc,
4020 		struct dc_state *transition_base_context)
4021 {
4022 	struct dc_state *transition_context = dc_create_state(dc);
4023 	enum pipe_split_policy tmp_mpc_policy = 0;
4024 	bool temp_dynamic_odm_policy = 0;
4025 	bool temp_subvp_policy = 0;
4026 	enum dc_status ret = DC_ERROR_UNEXPECTED;
4027 	unsigned int i, j;
4028 	unsigned int pipe_in_use = 0;
4029 	bool subvp_in_use = false;
4030 	bool odm_in_use = false;
4031 
4032 	if (!transition_context)
4033 		return false;
4034 	/* Setup:
4035 	 * Store the current ODM and MPC config in some temp variables to be
4036 	 * restored after we commit the transition state.
4037 	 */
4038 
4039 	/* check current pipes in use*/
4040 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
4041 		struct pipe_ctx *pipe = &transition_base_context->res_ctx.pipe_ctx[i];
4042 
4043 		if (pipe->plane_state)
4044 			pipe_in_use++;
4045 	}
4046 
4047 	/* If SubVP is enabled and we are adding or removing planes from any main subvp
4048 	 * pipe, we must use the minimal transition.
4049 	 */
4050 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
4051 		struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
4052 
4053 		if (pipe->stream && pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) {
4054 			subvp_in_use = true;
4055 			break;
4056 		}
4057 	}
4058 
4059 	/* If ODM is enabled and we are adding or removing planes from any ODM
4060 	 * pipe, we must use the minimal transition.
4061 	 */
4062 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
4063 		struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
4064 
4065 		if (pipe->stream && pipe->next_odm_pipe) {
4066 			odm_in_use = true;
4067 			break;
4068 		}
4069 	}
4070 
4071 	/* When the OS add a new surface if we have been used all of pipes with odm combine
4072 	 * and mpc split feature, it need use commit_minimal_transition_state to transition safely.
4073 	 * After OS exit MPO, it will back to use odm and mpc split with all of pipes, we need
4074 	 * call it again. Otherwise return true to skip.
4075 	 *
4076 	 * Reduce the scenarios to use dc_commit_state_no_check in the stage of flip. Especially
4077 	 * enter/exit MPO when DCN still have enough resources.
4078 	 */
4079 	if (pipe_in_use != dc->res_pool->pipe_count && !subvp_in_use && !odm_in_use) {
4080 		dc_release_state(transition_context);
4081 		return true;
4082 	}
4083 
4084 	if (!dc->config.is_vmin_only_asic) {
4085 		tmp_mpc_policy = dc->debug.pipe_split_policy;
4086 		dc->debug.pipe_split_policy = MPC_SPLIT_AVOID;
4087 	}
4088 
4089 	temp_dynamic_odm_policy = dc->debug.enable_single_display_2to1_odm_policy;
4090 	dc->debug.enable_single_display_2to1_odm_policy = false;
4091 
4092 	temp_subvp_policy = dc->debug.force_disable_subvp;
4093 	dc->debug.force_disable_subvp = true;
4094 
4095 	dc_resource_state_copy_construct(transition_base_context, transition_context);
4096 
4097 	/* commit minimal state */
4098 	if (dc->res_pool->funcs->validate_bandwidth(dc, transition_context, false)) {
4099 		for (i = 0; i < transition_context->stream_count; i++) {
4100 			struct dc_stream_status *stream_status = &transition_context->stream_status[i];
4101 
4102 			for (j = 0; j < stream_status->plane_count; j++) {
4103 				struct dc_plane_state *plane_state = stream_status->plane_states[j];
4104 
4105 				/* force vsync flip when reconfiguring pipes to prevent underflow
4106 				 * and corruption
4107 				 */
4108 				plane_state->flip_immediate = false;
4109 			}
4110 		}
4111 
4112 		ret = dc_commit_state_no_check(dc, transition_context);
4113 	}
4114 
4115 	/* always release as dc_commit_state_no_check retains in good case */
4116 	dc_release_state(transition_context);
4117 
4118 	/* TearDown:
4119 	 * Restore original configuration for ODM and MPO.
4120 	 */
4121 	if (!dc->config.is_vmin_only_asic)
4122 		dc->debug.pipe_split_policy = tmp_mpc_policy;
4123 
4124 	dc->debug.enable_single_display_2to1_odm_policy = temp_dynamic_odm_policy;
4125 	dc->debug.force_disable_subvp = temp_subvp_policy;
4126 
4127 	if (ret != DC_OK) {
4128 		/* this should never happen */
4129 		BREAK_TO_DEBUGGER();
4130 		return false;
4131 	}
4132 
4133 	/* force full surface update */
4134 	for (i = 0; i < dc->current_state->stream_count; i++) {
4135 		for (j = 0; j < dc->current_state->stream_status[i].plane_count; j++) {
4136 			dc->current_state->stream_status[i].plane_states[j]->update_flags.raw = 0xFFFFFFFF;
4137 		}
4138 	}
4139 
4140 	return true;
4141 }
4142 
4143 /**
4144  * update_seamless_boot_flags() - Helper function for updating seamless boot flags
4145  *
4146  * @dc: Current DC state
4147  * @context: New DC state to be programmed
4148  * @surface_count: Number of surfaces that have an updated
4149  * @stream: Corresponding stream to be updated in the current flip
4150  *
4151  * Updating seamless boot flags do not need to be part of the commit sequence. This
4152  * helper function will update the seamless boot flags on each flip (if required)
4153  * outside of the HW commit sequence (fast or slow).
4154  *
4155  * Return: void
4156  */
update_seamless_boot_flags(struct dc * dc,struct dc_state * context,int surface_count,struct dc_stream_state * stream)4157 static void update_seamless_boot_flags(struct dc *dc,
4158 		struct dc_state *context,
4159 		int surface_count,
4160 		struct dc_stream_state *stream)
4161 {
4162 	if (get_seamless_boot_stream_count(context) > 0 && surface_count > 0) {
4163 		/* Optimize seamless boot flag keeps clocks and watermarks high until
4164 		 * first flip. After first flip, optimization is required to lower
4165 		 * bandwidth. Important to note that it is expected UEFI will
4166 		 * only light up a single display on POST, therefore we only expect
4167 		 * one stream with seamless boot flag set.
4168 		 */
4169 		if (stream->apply_seamless_boot_optimization) {
4170 			stream->apply_seamless_boot_optimization = false;
4171 
4172 			if (get_seamless_boot_stream_count(context) == 0)
4173 				dc->optimized_required = true;
4174 		}
4175 	}
4176 }
4177 
populate_fast_updates(struct dc_fast_update * fast_update,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_update * stream_update)4178 static void populate_fast_updates(struct dc_fast_update *fast_update,
4179 		struct dc_surface_update *srf_updates,
4180 		int surface_count,
4181 		struct dc_stream_update *stream_update)
4182 {
4183 	int i = 0;
4184 
4185 	if (stream_update) {
4186 		fast_update[0].out_transfer_func = stream_update->out_transfer_func;
4187 		fast_update[0].output_csc_transform = stream_update->output_csc_transform;
4188 	}
4189 
4190 	for (i = 0; i < surface_count; i++) {
4191 		fast_update[i].flip_addr = srf_updates[i].flip_addr;
4192 		fast_update[i].gamma = srf_updates[i].gamma;
4193 		fast_update[i].gamut_remap_matrix = srf_updates[i].gamut_remap_matrix;
4194 		fast_update[i].input_csc_color_matrix = srf_updates[i].input_csc_color_matrix;
4195 		fast_update[i].coeff_reduction_factor = srf_updates[i].coeff_reduction_factor;
4196 	}
4197 }
4198 
fast_updates_exist(struct dc_fast_update * fast_update,int surface_count)4199 static bool fast_updates_exist(struct dc_fast_update *fast_update, int surface_count)
4200 {
4201 	int i;
4202 
4203 	if (fast_update[0].out_transfer_func ||
4204 		fast_update[0].output_csc_transform)
4205 		return true;
4206 
4207 	for (i = 0; i < surface_count; i++) {
4208 		if (fast_update[i].flip_addr ||
4209 				fast_update[i].gamma ||
4210 				fast_update[i].gamut_remap_matrix ||
4211 				fast_update[i].input_csc_color_matrix ||
4212 				fast_update[i].coeff_reduction_factor)
4213 			return true;
4214 	}
4215 
4216 	return false;
4217 }
4218 
full_update_required(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_update * stream_update,struct dc_stream_state * stream)4219 static bool full_update_required(struct dc *dc,
4220 		struct dc_surface_update *srf_updates,
4221 		int surface_count,
4222 		struct dc_stream_update *stream_update,
4223 		struct dc_stream_state *stream)
4224 {
4225 
4226 	int i;
4227 	struct dc_stream_status *stream_status;
4228 	const struct dc_state *context = dc->current_state;
4229 
4230 	for (i = 0; i < surface_count; i++) {
4231 		if (srf_updates &&
4232 				(srf_updates[i].plane_info ||
4233 				srf_updates[i].scaling_info ||
4234 				(srf_updates[i].hdr_mult.value &&
4235 				srf_updates[i].hdr_mult.value != srf_updates->surface->hdr_mult.value) ||
4236 				srf_updates[i].in_transfer_func ||
4237 				srf_updates[i].func_shaper ||
4238 				srf_updates[i].lut3d_func ||
4239 				srf_updates[i].blend_tf ||
4240 				srf_updates[i].surface->force_full_update ||
4241 				(srf_updates[i].flip_addr &&
4242 				srf_updates[i].flip_addr->address.tmz_surface != srf_updates[i].surface->address.tmz_surface) ||
4243 				!is_surface_in_context(context, srf_updates[i].surface)))
4244 			return true;
4245 	}
4246 
4247 	if (stream_update &&
4248 			(((stream_update->src.height != 0 && stream_update->src.width != 0) ||
4249 			(stream_update->dst.height != 0 && stream_update->dst.width != 0) ||
4250 			stream_update->integer_scaling_update) ||
4251 			stream_update->hdr_static_metadata ||
4252 			stream_update->abm_level ||
4253 			stream_update->periodic_interrupt ||
4254 			stream_update->vrr_infopacket ||
4255 			stream_update->vsc_infopacket ||
4256 			stream_update->vsp_infopacket ||
4257 			stream_update->hfvsif_infopacket ||
4258 			stream_update->vtem_infopacket ||
4259 			stream_update->adaptive_sync_infopacket ||
4260 			stream_update->dpms_off ||
4261 			stream_update->allow_freesync ||
4262 			stream_update->vrr_active_variable ||
4263 			stream_update->vrr_active_fixed ||
4264 			stream_update->gamut_remap ||
4265 			stream_update->output_color_space ||
4266 			stream_update->dither_option ||
4267 			stream_update->wb_update ||
4268 			stream_update->dsc_config ||
4269 			stream_update->mst_bw_update ||
4270 			stream_update->func_shaper ||
4271 			stream_update->lut3d_func ||
4272 			stream_update->pending_test_pattern ||
4273 			stream_update->crtc_timing_adjust))
4274 		return true;
4275 
4276 	if (stream) {
4277 		stream_status = dc_stream_get_status(stream);
4278 		if (stream_status == NULL || stream_status->plane_count != surface_count)
4279 			return true;
4280 	}
4281 	if (dc->idle_optimizations_allowed)
4282 		return true;
4283 
4284 	return false;
4285 }
4286 
fast_update_only(struct dc * dc,struct dc_fast_update * fast_update,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_update * stream_update,struct dc_stream_state * stream)4287 static bool fast_update_only(struct dc *dc,
4288 		struct dc_fast_update *fast_update,
4289 		struct dc_surface_update *srf_updates,
4290 		int surface_count,
4291 		struct dc_stream_update *stream_update,
4292 		struct dc_stream_state *stream)
4293 {
4294 	return fast_updates_exist(fast_update, surface_count)
4295 			&& !full_update_required(dc, srf_updates, surface_count, stream_update, stream);
4296 }
4297 
dc_update_planes_and_stream(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update)4298 bool dc_update_planes_and_stream(struct dc *dc,
4299 		struct dc_surface_update *srf_updates, int surface_count,
4300 		struct dc_stream_state *stream,
4301 		struct dc_stream_update *stream_update)
4302 {
4303 	struct dc_state *context;
4304 	enum surface_update_type update_type;
4305 	int i;
4306 	struct mall_temp_config mall_temp_config;
4307 	struct dc_fast_update fast_update[MAX_SURFACES] = {0};
4308 
4309 	/* In cases where MPO and split or ODM are used transitions can
4310 	 * cause underflow. Apply stream configuration with minimal pipe
4311 	 * split first to avoid unsupported transitions for active pipes.
4312 	 */
4313 	bool force_minimal_pipe_splitting = 0;
4314 	bool is_plane_addition = 0;
4315 
4316 	populate_fast_updates(fast_update, srf_updates, surface_count, stream_update);
4317 	force_minimal_pipe_splitting = could_mpcc_tree_change_for_active_pipes(
4318 			dc,
4319 			stream,
4320 			surface_count,
4321 			&is_plane_addition);
4322 
4323 	/* on plane addition, minimal state is the current one */
4324 	if (force_minimal_pipe_splitting && is_plane_addition &&
4325 		!commit_minimal_transition_state(dc, dc->current_state))
4326 				return false;
4327 
4328 	if (!update_planes_and_stream_state(
4329 			dc,
4330 			srf_updates,
4331 			surface_count,
4332 			stream,
4333 			stream_update,
4334 			&update_type,
4335 			&context))
4336 		return false;
4337 
4338 	/* on plane removal, minimal state is the new one */
4339 	if (force_minimal_pipe_splitting && !is_plane_addition) {
4340 		/* Since all phantom pipes are removed in full validation,
4341 		 * we have to save and restore the subvp/mall config when
4342 		 * we do a minimal transition since the flags marking the
4343 		 * pipe as subvp/phantom will be cleared (dc copy constructor
4344 		 * creates a shallow copy).
4345 		 */
4346 		if (dc->res_pool->funcs->save_mall_state)
4347 			dc->res_pool->funcs->save_mall_state(dc, context, &mall_temp_config);
4348 		if (!commit_minimal_transition_state(dc, context)) {
4349 			dc_release_state(context);
4350 			return false;
4351 		}
4352 		if (dc->res_pool->funcs->restore_mall_state)
4353 			dc->res_pool->funcs->restore_mall_state(dc, context, &mall_temp_config);
4354 
4355 		/* If we do a minimal transition with plane removal and the context
4356 		 * has subvp we also have to retain back the phantom stream / planes
4357 		 * since the refcount is decremented as part of the min transition
4358 		 * (we commit a state with no subvp, so the phantom streams / planes
4359 		 * had to be removed).
4360 		 */
4361 		if (dc->res_pool->funcs->retain_phantom_pipes)
4362 			dc->res_pool->funcs->retain_phantom_pipes(dc, context);
4363 		update_type = UPDATE_TYPE_FULL;
4364 	}
4365 
4366 	update_seamless_boot_flags(dc, context, surface_count, stream);
4367 	if (fast_update_only(dc, fast_update, srf_updates, surface_count, stream_update, stream) &&
4368 			!dc->debug.enable_legacy_fast_update) {
4369 		commit_planes_for_stream_fast(dc,
4370 				srf_updates,
4371 				surface_count,
4372 				stream,
4373 				stream_update,
4374 				update_type,
4375 				context);
4376 	} else {
4377 		commit_planes_for_stream(
4378 				dc,
4379 				srf_updates,
4380 				surface_count,
4381 				stream,
4382 				stream_update,
4383 				update_type,
4384 				context);
4385 	}
4386 
4387 	if (dc->current_state != context) {
4388 
4389 		/* Since memory free requires elevated IRQL, an interrupt
4390 		 * request is generated by mem free. If this happens
4391 		 * between freeing and reassigning the context, our vsync
4392 		 * interrupt will call into dc and cause a memory
4393 		 * corruption BSOD. Hence, we first reassign the context,
4394 		 * then free the old context.
4395 		 */
4396 
4397 		struct dc_state *old = dc->current_state;
4398 
4399 		dc->current_state = context;
4400 		dc_release_state(old);
4401 
4402 		// clear any forced full updates
4403 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
4404 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
4405 
4406 			if (pipe_ctx->plane_state && pipe_ctx->stream == stream)
4407 				pipe_ctx->plane_state->force_full_update = false;
4408 		}
4409 	}
4410 	return true;
4411 }
4412 
dc_commit_updates_for_stream(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,struct dc_state * state)4413 void dc_commit_updates_for_stream(struct dc *dc,
4414 		struct dc_surface_update *srf_updates,
4415 		int surface_count,
4416 		struct dc_stream_state *stream,
4417 		struct dc_stream_update *stream_update,
4418 		struct dc_state *state)
4419 {
4420 	const struct dc_stream_status *stream_status;
4421 	enum surface_update_type update_type;
4422 	struct dc_state *context;
4423 	struct dc_context *dc_ctx = dc->ctx;
4424 	int i, j;
4425 	struct dc_fast_update fast_update[MAX_SURFACES] = {0};
4426 
4427 	populate_fast_updates(fast_update, srf_updates, surface_count, stream_update);
4428 	stream_status = dc_stream_get_status(stream);
4429 	context = dc->current_state;
4430 
4431 	update_type = dc_check_update_surfaces_for_stream(
4432 				dc, srf_updates, surface_count, stream_update, stream_status);
4433 
4434 	/* TODO: Since change commit sequence can have a huge impact,
4435 	 * we decided to only enable it for DCN3x. However, as soon as
4436 	 * we get more confident about this change we'll need to enable
4437 	 * the new sequence for all ASICs.
4438 	 */
4439 	if (dc->ctx->dce_version >= DCN_VERSION_3_2) {
4440 		/*
4441 		 * Previous frame finished and HW is ready for optimization.
4442 		 */
4443 		if (update_type == UPDATE_TYPE_FAST)
4444 			dc_post_update_surfaces_to_stream(dc);
4445 
4446 		dc_update_planes_and_stream(dc, srf_updates,
4447 					    surface_count, stream,
4448 					    stream_update);
4449 		return;
4450 	}
4451 
4452 	if (update_type >= update_surface_trace_level)
4453 		update_surface_trace(dc, srf_updates, surface_count);
4454 
4455 
4456 	if (update_type >= UPDATE_TYPE_FULL) {
4457 
4458 		/* initialize scratch memory for building context */
4459 		context = dc_create_state(dc);
4460 		if (context == NULL) {
4461 			DC_ERROR("Failed to allocate new validate context!\n");
4462 			return;
4463 		}
4464 
4465 		dc_resource_state_copy_construct(state, context);
4466 
4467 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
4468 			struct pipe_ctx *new_pipe = &context->res_ctx.pipe_ctx[i];
4469 			struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
4470 
4471 			if (new_pipe->plane_state && new_pipe->plane_state != old_pipe->plane_state)
4472 				new_pipe->plane_state->force_full_update = true;
4473 		}
4474 	} else if (update_type == UPDATE_TYPE_FAST) {
4475 		/*
4476 		 * Previous frame finished and HW is ready for optimization.
4477 		 */
4478 		dc_post_update_surfaces_to_stream(dc);
4479 	}
4480 
4481 
4482 	for (i = 0; i < surface_count; i++) {
4483 		struct dc_plane_state *surface = srf_updates[i].surface;
4484 
4485 		copy_surface_update_to_plane(surface, &srf_updates[i]);
4486 
4487 		if (update_type >= UPDATE_TYPE_MED) {
4488 			for (j = 0; j < dc->res_pool->pipe_count; j++) {
4489 				struct pipe_ctx *pipe_ctx =
4490 					&context->res_ctx.pipe_ctx[j];
4491 
4492 				if (pipe_ctx->plane_state != surface)
4493 					continue;
4494 
4495 				resource_build_scaling_params(pipe_ctx);
4496 			}
4497 		}
4498 	}
4499 
4500 	copy_stream_update_to_stream(dc, context, stream, stream_update);
4501 
4502 	if (update_type >= UPDATE_TYPE_FULL) {
4503 		if (!dc->res_pool->funcs->validate_bandwidth(dc, context, false)) {
4504 			DC_ERROR("Mode validation failed for stream update!\n");
4505 			dc_release_state(context);
4506 			return;
4507 		}
4508 	}
4509 
4510 	TRACE_DC_PIPE_STATE(pipe_ctx, i, MAX_PIPES);
4511 
4512 	update_seamless_boot_flags(dc, context, surface_count, stream);
4513 	if (fast_update_only(dc, fast_update, srf_updates, surface_count, stream_update, stream) &&
4514 			!dc->debug.enable_legacy_fast_update) {
4515 		commit_planes_for_stream_fast(dc,
4516 				srf_updates,
4517 				surface_count,
4518 				stream,
4519 				stream_update,
4520 				update_type,
4521 				context);
4522 	} else {
4523 		commit_planes_for_stream(
4524 				dc,
4525 				srf_updates,
4526 				surface_count,
4527 				stream,
4528 				stream_update,
4529 				update_type,
4530 				context);
4531 	}
4532 	/*update current_State*/
4533 	if (dc->current_state != context) {
4534 
4535 		struct dc_state *old = dc->current_state;
4536 
4537 		dc->current_state = context;
4538 		dc_release_state(old);
4539 
4540 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
4541 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
4542 
4543 			if (pipe_ctx->plane_state && pipe_ctx->stream == stream)
4544 				pipe_ctx->plane_state->force_full_update = false;
4545 		}
4546 	}
4547 
4548 	/* Legacy optimization path for DCE. */
4549 	if (update_type >= UPDATE_TYPE_FULL && dc_ctx->dce_version < DCE_VERSION_MAX) {
4550 		dc_post_update_surfaces_to_stream(dc);
4551 		TRACE_DCE_CLOCK_STATE(&context->bw_ctx.bw.dce);
4552 	}
4553 
4554 	return;
4555 
4556 }
4557 
dc_get_current_stream_count(struct dc * dc)4558 uint8_t dc_get_current_stream_count(struct dc *dc)
4559 {
4560 	return dc->current_state->stream_count;
4561 }
4562 
dc_get_stream_at_index(struct dc * dc,uint8_t i)4563 struct dc_stream_state *dc_get_stream_at_index(struct dc *dc, uint8_t i)
4564 {
4565 	if (i < dc->current_state->stream_count)
4566 		return dc->current_state->streams[i];
4567 	return NULL;
4568 }
4569 
dc_interrupt_to_irq_source(struct dc * dc,uint32_t src_id,uint32_t ext_id)4570 enum dc_irq_source dc_interrupt_to_irq_source(
4571 		struct dc *dc,
4572 		uint32_t src_id,
4573 		uint32_t ext_id)
4574 {
4575 	return dal_irq_service_to_irq_source(dc->res_pool->irqs, src_id, ext_id);
4576 }
4577 
4578 /*
4579  * dc_interrupt_set() - Enable/disable an AMD hw interrupt source
4580  */
dc_interrupt_set(struct dc * dc,enum dc_irq_source src,bool enable)4581 bool dc_interrupt_set(struct dc *dc, enum dc_irq_source src, bool enable)
4582 {
4583 
4584 	if (dc == NULL)
4585 		return false;
4586 
4587 	return dal_irq_service_set(dc->res_pool->irqs, src, enable);
4588 }
4589 
dc_interrupt_ack(struct dc * dc,enum dc_irq_source src)4590 void dc_interrupt_ack(struct dc *dc, enum dc_irq_source src)
4591 {
4592 	dal_irq_service_ack(dc->res_pool->irqs, src);
4593 }
4594 
dc_power_down_on_boot(struct dc * dc)4595 void dc_power_down_on_boot(struct dc *dc)
4596 {
4597 	if (dc->ctx->dce_environment != DCE_ENV_VIRTUAL_HW &&
4598 			dc->hwss.power_down_on_boot)
4599 		dc->hwss.power_down_on_boot(dc);
4600 }
4601 
dc_set_power_state(struct dc * dc,enum dc_acpi_cm_power_state power_state)4602 void dc_set_power_state(
4603 	struct dc *dc,
4604 	enum dc_acpi_cm_power_state power_state)
4605 {
4606 	struct kref refcount;
4607 	struct display_mode_lib *dml;
4608 
4609 	if (!dc->current_state)
4610 		return;
4611 
4612 	switch (power_state) {
4613 	case DC_ACPI_CM_POWER_STATE_D0:
4614 		dc_resource_state_construct(dc, dc->current_state);
4615 
4616 		dc_z10_restore(dc);
4617 
4618 		dc->hwss.init_hw(dc);
4619 
4620 		if (dc->hwss.init_sys_ctx != NULL &&
4621 			dc->vm_pa_config.valid) {
4622 			dc->hwss.init_sys_ctx(dc->hwseq, dc, &dc->vm_pa_config);
4623 		}
4624 
4625 		break;
4626 	default:
4627 		ASSERT(dc->current_state->stream_count == 0);
4628 		/* Zero out the current context so that on resume we start with
4629 		 * clean state, and dc hw programming optimizations will not
4630 		 * cause any trouble.
4631 		 */
4632 		dml = kzalloc(sizeof(struct display_mode_lib),
4633 				GFP_KERNEL);
4634 
4635 		ASSERT(dml);
4636 		if (!dml)
4637 			return;
4638 
4639 		/* Preserve refcount */
4640 		refcount = dc->current_state->refcount;
4641 		/* Preserve display mode lib */
4642 		memcpy(dml, &dc->current_state->bw_ctx.dml, sizeof(struct display_mode_lib));
4643 
4644 		dc_resource_state_destruct(dc->current_state);
4645 		memset(dc->current_state, 0,
4646 				sizeof(*dc->current_state));
4647 
4648 		dc->current_state->refcount = refcount;
4649 		dc->current_state->bw_ctx.dml = *dml;
4650 
4651 		kfree(dml);
4652 
4653 		break;
4654 	}
4655 }
4656 
dc_resume(struct dc * dc)4657 void dc_resume(struct dc *dc)
4658 {
4659 	uint32_t i;
4660 
4661 	for (i = 0; i < dc->link_count; i++)
4662 		dc->link_srv->resume(dc->links[i]);
4663 }
4664 
dc_is_dmcu_initialized(struct dc * dc)4665 bool dc_is_dmcu_initialized(struct dc *dc)
4666 {
4667 	struct dmcu *dmcu = dc->res_pool->dmcu;
4668 
4669 	if (dmcu)
4670 		return dmcu->funcs->is_dmcu_initialized(dmcu);
4671 	return false;
4672 }
4673 
get_clock_requirements_for_state(struct dc_state * state,struct AsicStateEx * info)4674 void get_clock_requirements_for_state(struct dc_state *state, struct AsicStateEx *info)
4675 {
4676 	info->displayClock				= (unsigned int)state->bw_ctx.bw.dcn.clk.dispclk_khz;
4677 	info->engineClock				= (unsigned int)state->bw_ctx.bw.dcn.clk.dcfclk_khz;
4678 	info->memoryClock				= (unsigned int)state->bw_ctx.bw.dcn.clk.dramclk_khz;
4679 	info->maxSupportedDppClock		= (unsigned int)state->bw_ctx.bw.dcn.clk.max_supported_dppclk_khz;
4680 	info->dppClock					= (unsigned int)state->bw_ctx.bw.dcn.clk.dppclk_khz;
4681 	info->socClock					= (unsigned int)state->bw_ctx.bw.dcn.clk.socclk_khz;
4682 	info->dcfClockDeepSleep			= (unsigned int)state->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz;
4683 	info->fClock					= (unsigned int)state->bw_ctx.bw.dcn.clk.fclk_khz;
4684 	info->phyClock					= (unsigned int)state->bw_ctx.bw.dcn.clk.phyclk_khz;
4685 }
dc_set_clock(struct dc * dc,enum dc_clock_type clock_type,uint32_t clk_khz,uint32_t stepping)4686 enum dc_status dc_set_clock(struct dc *dc, enum dc_clock_type clock_type, uint32_t clk_khz, uint32_t stepping)
4687 {
4688 	if (dc->hwss.set_clock)
4689 		return dc->hwss.set_clock(dc, clock_type, clk_khz, stepping);
4690 	return DC_ERROR_UNEXPECTED;
4691 }
dc_get_clock(struct dc * dc,enum dc_clock_type clock_type,struct dc_clock_config * clock_cfg)4692 void dc_get_clock(struct dc *dc, enum dc_clock_type clock_type, struct dc_clock_config *clock_cfg)
4693 {
4694 	if (dc->hwss.get_clock)
4695 		dc->hwss.get_clock(dc, clock_type, clock_cfg);
4696 }
4697 
4698 /* enable/disable eDP PSR without specify stream for eDP */
dc_set_psr_allow_active(struct dc * dc,bool enable)4699 bool dc_set_psr_allow_active(struct dc *dc, bool enable)
4700 {
4701 	int i;
4702 	bool allow_active;
4703 
4704 	for (i = 0; i < dc->current_state->stream_count ; i++) {
4705 		struct dc_link *link;
4706 		struct dc_stream_state *stream = dc->current_state->streams[i];
4707 
4708 		link = stream->link;
4709 		if (!link)
4710 			continue;
4711 
4712 		if (link->psr_settings.psr_feature_enabled) {
4713 			if (enable && !link->psr_settings.psr_allow_active) {
4714 				allow_active = true;
4715 				if (!dc_link_set_psr_allow_active(link, &allow_active, false, false, NULL))
4716 					return false;
4717 			} else if (!enable && link->psr_settings.psr_allow_active) {
4718 				allow_active = false;
4719 				if (!dc_link_set_psr_allow_active(link, &allow_active, true, false, NULL))
4720 					return false;
4721 			}
4722 		}
4723 	}
4724 
4725 	return true;
4726 }
4727 
dc_allow_idle_optimizations(struct dc * dc,bool allow)4728 void dc_allow_idle_optimizations(struct dc *dc, bool allow)
4729 {
4730 	if (dc->debug.disable_idle_power_optimizations)
4731 		return;
4732 
4733 	if (dc->clk_mgr != NULL && dc->clk_mgr->funcs->is_smu_present)
4734 		if (!dc->clk_mgr->funcs->is_smu_present(dc->clk_mgr))
4735 			return;
4736 
4737 	if (allow == dc->idle_optimizations_allowed)
4738 		return;
4739 
4740 	if (dc->hwss.apply_idle_power_optimizations && dc->hwss.apply_idle_power_optimizations(dc, allow))
4741 		dc->idle_optimizations_allowed = allow;
4742 }
4743 
4744 /* set min and max memory clock to lowest and highest DPM level, respectively */
dc_unlock_memory_clock_frequency(struct dc * dc)4745 void dc_unlock_memory_clock_frequency(struct dc *dc)
4746 {
4747 	if (dc->clk_mgr->funcs->set_hard_min_memclk)
4748 		dc->clk_mgr->funcs->set_hard_min_memclk(dc->clk_mgr, false);
4749 
4750 	if (dc->clk_mgr->funcs->set_hard_max_memclk)
4751 		dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr);
4752 }
4753 
4754 /* set min memory clock to the min required for current mode, max to maxDPM */
dc_lock_memory_clock_frequency(struct dc * dc)4755 void dc_lock_memory_clock_frequency(struct dc *dc)
4756 {
4757 	if (dc->clk_mgr->funcs->get_memclk_states_from_smu)
4758 		dc->clk_mgr->funcs->get_memclk_states_from_smu(dc->clk_mgr);
4759 
4760 	if (dc->clk_mgr->funcs->set_hard_min_memclk)
4761 		dc->clk_mgr->funcs->set_hard_min_memclk(dc->clk_mgr, true);
4762 
4763 	if (dc->clk_mgr->funcs->set_hard_max_memclk)
4764 		dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr);
4765 }
4766 
blank_and_force_memclk(struct dc * dc,bool apply,unsigned int memclk_mhz)4767 static void blank_and_force_memclk(struct dc *dc, bool apply, unsigned int memclk_mhz)
4768 {
4769 	struct dc_state *context = dc->current_state;
4770 	struct hubp *hubp;
4771 	struct pipe_ctx *pipe;
4772 	int i;
4773 
4774 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
4775 		pipe = &context->res_ctx.pipe_ctx[i];
4776 
4777 		if (pipe->stream != NULL) {
4778 			dc->hwss.disable_pixel_data(dc, pipe, true);
4779 
4780 			// wait for double buffer
4781 			pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VACTIVE);
4782 			pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VBLANK);
4783 			pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VACTIVE);
4784 
4785 			hubp = pipe->plane_res.hubp;
4786 			hubp->funcs->set_blank_regs(hubp, true);
4787 		}
4788 	}
4789 
4790 	dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, memclk_mhz);
4791 	dc->clk_mgr->funcs->set_min_memclk(dc->clk_mgr, memclk_mhz);
4792 
4793 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
4794 		pipe = &context->res_ctx.pipe_ctx[i];
4795 
4796 		if (pipe->stream != NULL) {
4797 			dc->hwss.disable_pixel_data(dc, pipe, false);
4798 
4799 			hubp = pipe->plane_res.hubp;
4800 			hubp->funcs->set_blank_regs(hubp, false);
4801 		}
4802 	}
4803 }
4804 
4805 
4806 /**
4807  * dc_enable_dcmode_clk_limit() - lower clocks in dc (battery) mode
4808  * @dc: pointer to dc of the dm calling this
4809  * @enable: True = transition to DC mode, false = transition back to AC mode
4810  *
4811  * Some SoCs define additional clock limits when in DC mode, DM should
4812  * invoke this function when the platform undergoes a power source transition
4813  * so DC can apply/unapply the limit. This interface may be disruptive to
4814  * the onscreen content.
4815  *
4816  * Context: Triggered by OS through DM interface, or manually by escape calls.
4817  * Need to hold a dclock when doing so.
4818  *
4819  * Return: none (void function)
4820  *
4821  */
dc_enable_dcmode_clk_limit(struct dc * dc,bool enable)4822 void dc_enable_dcmode_clk_limit(struct dc *dc, bool enable)
4823 {
4824 	unsigned int softMax = 0, maxDPM = 0, funcMin = 0, i;
4825 	bool p_state_change_support;
4826 
4827 	if (!dc->config.dc_mode_clk_limit_support)
4828 		return;
4829 
4830 	softMax = dc->clk_mgr->bw_params->dc_mode_softmax_memclk;
4831 	for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries; i++) {
4832 		if (dc->clk_mgr->bw_params->clk_table.entries[i].memclk_mhz > maxDPM)
4833 			maxDPM = dc->clk_mgr->bw_params->clk_table.entries[i].memclk_mhz;
4834 	}
4835 	funcMin = (dc->clk_mgr->clks.dramclk_khz + 999) / 1000;
4836 	p_state_change_support = dc->clk_mgr->clks.p_state_change_support;
4837 
4838 	if (enable && !dc->clk_mgr->dc_mode_softmax_enabled) {
4839 		if (p_state_change_support) {
4840 			if (funcMin <= softMax)
4841 				dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, softMax);
4842 			// else: No-Op
4843 		} else {
4844 			if (funcMin <= softMax)
4845 				blank_and_force_memclk(dc, true, softMax);
4846 			// else: No-Op
4847 		}
4848 	} else if (!enable && dc->clk_mgr->dc_mode_softmax_enabled) {
4849 		if (p_state_change_support) {
4850 			if (funcMin <= softMax)
4851 				dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, maxDPM);
4852 			// else: No-Op
4853 		} else {
4854 			if (funcMin <= softMax)
4855 				blank_and_force_memclk(dc, true, maxDPM);
4856 			// else: No-Op
4857 		}
4858 	}
4859 	dc->clk_mgr->dc_mode_softmax_enabled = enable;
4860 }
dc_is_plane_eligible_for_idle_optimizations(struct dc * dc,struct dc_plane_state * plane,struct dc_cursor_attributes * cursor_attr)4861 bool dc_is_plane_eligible_for_idle_optimizations(struct dc *dc, struct dc_plane_state *plane,
4862 		struct dc_cursor_attributes *cursor_attr)
4863 {
4864 	if (dc->hwss.does_plane_fit_in_mall && dc->hwss.does_plane_fit_in_mall(dc, plane, cursor_attr))
4865 		return true;
4866 	return false;
4867 }
4868 
4869 /* cleanup on driver unload */
dc_hardware_release(struct dc * dc)4870 void dc_hardware_release(struct dc *dc)
4871 {
4872 	dc_mclk_switch_using_fw_based_vblank_stretch_shut_down(dc);
4873 
4874 	if (dc->hwss.hardware_release)
4875 		dc->hwss.hardware_release(dc);
4876 }
4877 
dc_mclk_switch_using_fw_based_vblank_stretch_shut_down(struct dc * dc)4878 void dc_mclk_switch_using_fw_based_vblank_stretch_shut_down(struct dc *dc)
4879 {
4880 	if (dc->current_state)
4881 		dc->current_state->bw_ctx.bw.dcn.clk.fw_based_mclk_switching_shut_down = true;
4882 }
4883 
4884 /**
4885  * dc_is_dmub_outbox_supported - Check if DMUB firmware support outbox notification
4886  *
4887  * @dc: [in] dc structure
4888  *
4889  * Checks whether DMUB FW supports outbox notifications, if supported DM
4890  * should register outbox interrupt prior to actually enabling interrupts
4891  * via dc_enable_dmub_outbox
4892  *
4893  * Return:
4894  * True if DMUB FW supports outbox notifications, False otherwise
4895  */
dc_is_dmub_outbox_supported(struct dc * dc)4896 bool dc_is_dmub_outbox_supported(struct dc *dc)
4897 {
4898 	/* DCN31 B0 USB4 DPIA needs dmub notifications for interrupts */
4899 	if (dc->ctx->asic_id.chip_family == FAMILY_YELLOW_CARP &&
4900 	    dc->ctx->asic_id.hw_internal_rev == YELLOW_CARP_B0 &&
4901 	    !dc->debug.dpia_debug.bits.disable_dpia)
4902 		return true;
4903 
4904 	if (dc->ctx->asic_id.chip_family == AMDGPU_FAMILY_GC_11_0_1 &&
4905 	    !dc->debug.dpia_debug.bits.disable_dpia)
4906 		return true;
4907 
4908 	/* dmub aux needs dmub notifications to be enabled */
4909 	return dc->debug.enable_dmub_aux_for_legacy_ddc;
4910 }
4911 
4912 /**
4913  * dc_enable_dmub_notifications - Check if dmub fw supports outbox
4914  *
4915  * @dc: [in] dc structure
4916  *
4917  * Calls dc_is_dmub_outbox_supported to check if dmub fw supports outbox
4918  * notifications. All DMs shall switch to dc_is_dmub_outbox_supported.  This
4919  * API shall be removed after switching.
4920  *
4921  * Return:
4922  * True if DMUB FW supports outbox notifications, False otherwise
4923  */
dc_enable_dmub_notifications(struct dc * dc)4924 bool dc_enable_dmub_notifications(struct dc *dc)
4925 {
4926 	return dc_is_dmub_outbox_supported(dc);
4927 }
4928 
4929 /**
4930  * dc_enable_dmub_outbox - Enables DMUB unsolicited notification
4931  *
4932  * @dc: [in] dc structure
4933  *
4934  * Enables DMUB unsolicited notifications to x86 via outbox.
4935  */
dc_enable_dmub_outbox(struct dc * dc)4936 void dc_enable_dmub_outbox(struct dc *dc)
4937 {
4938 	struct dc_context *dc_ctx = dc->ctx;
4939 
4940 	dmub_enable_outbox_notification(dc_ctx->dmub_srv);
4941 	DC_LOG_DC("%s: dmub outbox notifications enabled\n", __func__);
4942 }
4943 
4944 /**
4945  * dc_process_dmub_aux_transfer_async - Submits aux command to dmub via inbox message
4946  *                                      Sets port index appropriately for legacy DDC
4947  * @dc: dc structure
4948  * @link_index: link index
4949  * @payload: aux payload
4950  *
4951  * Returns: True if successful, False if failure
4952  */
dc_process_dmub_aux_transfer_async(struct dc * dc,uint32_t link_index,struct aux_payload * payload)4953 bool dc_process_dmub_aux_transfer_async(struct dc *dc,
4954 				uint32_t link_index,
4955 				struct aux_payload *payload)
4956 {
4957 	uint8_t action;
4958 	union dmub_rb_cmd cmd = {0};
4959 
4960 	ASSERT(payload->length <= 16);
4961 
4962 	cmd.dp_aux_access.header.type = DMUB_CMD__DP_AUX_ACCESS;
4963 	cmd.dp_aux_access.header.payload_bytes = 0;
4964 	/* For dpia, ddc_pin is set to NULL */
4965 	if (!dc->links[link_index]->ddc->ddc_pin)
4966 		cmd.dp_aux_access.aux_control.type = AUX_CHANNEL_DPIA;
4967 	else
4968 		cmd.dp_aux_access.aux_control.type = AUX_CHANNEL_LEGACY_DDC;
4969 
4970 	cmd.dp_aux_access.aux_control.instance = dc->links[link_index]->ddc_hw_inst;
4971 	cmd.dp_aux_access.aux_control.sw_crc_enabled = 0;
4972 	cmd.dp_aux_access.aux_control.timeout = 0;
4973 	cmd.dp_aux_access.aux_control.dpaux.address = payload->address;
4974 	cmd.dp_aux_access.aux_control.dpaux.is_i2c_over_aux = payload->i2c_over_aux;
4975 	cmd.dp_aux_access.aux_control.dpaux.length = payload->length;
4976 
4977 	/* set aux action */
4978 	if (payload->i2c_over_aux) {
4979 		if (payload->write) {
4980 			if (payload->mot)
4981 				action = DP_AUX_REQ_ACTION_I2C_WRITE_MOT;
4982 			else
4983 				action = DP_AUX_REQ_ACTION_I2C_WRITE;
4984 		} else {
4985 			if (payload->mot)
4986 				action = DP_AUX_REQ_ACTION_I2C_READ_MOT;
4987 			else
4988 				action = DP_AUX_REQ_ACTION_I2C_READ;
4989 			}
4990 	} else {
4991 		if (payload->write)
4992 			action = DP_AUX_REQ_ACTION_DPCD_WRITE;
4993 		else
4994 			action = DP_AUX_REQ_ACTION_DPCD_READ;
4995 	}
4996 
4997 	cmd.dp_aux_access.aux_control.dpaux.action = action;
4998 
4999 	if (payload->length && payload->write) {
5000 		memcpy(cmd.dp_aux_access.aux_control.dpaux.data,
5001 			payload->data,
5002 			payload->length
5003 			);
5004 	}
5005 
5006 	dm_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT);
5007 
5008 	return true;
5009 }
5010 
get_link_index_from_dpia_port_index(const struct dc * dc,uint8_t dpia_port_index)5011 uint8_t get_link_index_from_dpia_port_index(const struct dc *dc,
5012 					    uint8_t dpia_port_index)
5013 {
5014 	uint8_t index, link_index = 0xFF;
5015 
5016 	for (index = 0; index < dc->link_count; index++) {
5017 		/* ddc_hw_inst has dpia port index for dpia links
5018 		 * and ddc instance for legacy links
5019 		 */
5020 		if (!dc->links[index]->ddc->ddc_pin) {
5021 			if (dc->links[index]->ddc_hw_inst == dpia_port_index) {
5022 				link_index = index;
5023 				break;
5024 			}
5025 		}
5026 	}
5027 	ASSERT(link_index != 0xFF);
5028 	return link_index;
5029 }
5030 
5031 /**
5032  * dc_process_dmub_set_config_async - Submits set_config command
5033  *
5034  * @dc: [in] dc structure
5035  * @link_index: [in] link_index: link index
5036  * @payload: [in] aux payload
5037  * @notify: [out] set_config immediate reply
5038  *
5039  * Submits set_config command to dmub via inbox message.
5040  *
5041  * Return:
5042  * True if successful, False if failure
5043  */
dc_process_dmub_set_config_async(struct dc * dc,uint32_t link_index,struct set_config_cmd_payload * payload,struct dmub_notification * notify)5044 bool dc_process_dmub_set_config_async(struct dc *dc,
5045 				uint32_t link_index,
5046 				struct set_config_cmd_payload *payload,
5047 				struct dmub_notification *notify)
5048 {
5049 	union dmub_rb_cmd cmd = {0};
5050 	bool is_cmd_complete = true;
5051 
5052 	/* prepare SET_CONFIG command */
5053 	cmd.set_config_access.header.type = DMUB_CMD__DPIA;
5054 	cmd.set_config_access.header.sub_type = DMUB_CMD__DPIA_SET_CONFIG_ACCESS;
5055 
5056 	cmd.set_config_access.set_config_control.instance = dc->links[link_index]->ddc_hw_inst;
5057 	cmd.set_config_access.set_config_control.cmd_pkt.msg_type = payload->msg_type;
5058 	cmd.set_config_access.set_config_control.cmd_pkt.msg_data = payload->msg_data;
5059 
5060 	if (!dm_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT_WITH_REPLY)) {
5061 		/* command is not processed by dmub */
5062 		notify->sc_status = SET_CONFIG_UNKNOWN_ERROR;
5063 		return is_cmd_complete;
5064 	}
5065 
5066 	/* command processed by dmub, if ret_status is 1, it is completed instantly */
5067 	if (cmd.set_config_access.header.ret_status == 1)
5068 		notify->sc_status = cmd.set_config_access.set_config_control.immed_status;
5069 	else
5070 		/* cmd pending, will receive notification via outbox */
5071 		is_cmd_complete = false;
5072 
5073 	return is_cmd_complete;
5074 }
5075 
5076 /**
5077  * dc_process_dmub_set_mst_slots - Submits MST solt allocation
5078  *
5079  * @dc: [in] dc structure
5080  * @link_index: [in] link index
5081  * @mst_alloc_slots: [in] mst slots to be allotted
5082  * @mst_slots_in_use: [out] mst slots in use returned in failure case
5083  *
5084  * Submits mst slot allocation command to dmub via inbox message
5085  *
5086  * Return:
5087  * DC_OK if successful, DC_ERROR if failure
5088  */
dc_process_dmub_set_mst_slots(const struct dc * dc,uint32_t link_index,uint8_t mst_alloc_slots,uint8_t * mst_slots_in_use)5089 enum dc_status dc_process_dmub_set_mst_slots(const struct dc *dc,
5090 				uint32_t link_index,
5091 				uint8_t mst_alloc_slots,
5092 				uint8_t *mst_slots_in_use)
5093 {
5094 	union dmub_rb_cmd cmd = {0};
5095 
5096 	/* prepare MST_ALLOC_SLOTS command */
5097 	cmd.set_mst_alloc_slots.header.type = DMUB_CMD__DPIA;
5098 	cmd.set_mst_alloc_slots.header.sub_type = DMUB_CMD__DPIA_MST_ALLOC_SLOTS;
5099 
5100 	cmd.set_mst_alloc_slots.mst_slots_control.instance = dc->links[link_index]->ddc_hw_inst;
5101 	cmd.set_mst_alloc_slots.mst_slots_control.mst_alloc_slots = mst_alloc_slots;
5102 
5103 	if (!dm_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT_WITH_REPLY))
5104 		/* command is not processed by dmub */
5105 		return DC_ERROR_UNEXPECTED;
5106 
5107 	/* command processed by dmub, if ret_status is 1 */
5108 	if (cmd.set_config_access.header.ret_status != 1)
5109 		/* command processing error */
5110 		return DC_ERROR_UNEXPECTED;
5111 
5112 	/* command processed and we have a status of 2, mst not enabled in dpia */
5113 	if (cmd.set_mst_alloc_slots.mst_slots_control.immed_status == 2)
5114 		return DC_FAIL_UNSUPPORTED_1;
5115 
5116 	/* previously configured mst alloc and used slots did not match */
5117 	if (cmd.set_mst_alloc_slots.mst_slots_control.immed_status == 3) {
5118 		*mst_slots_in_use = cmd.set_mst_alloc_slots.mst_slots_control.mst_slots_in_use;
5119 		return DC_NOT_SUPPORTED;
5120 	}
5121 
5122 	return DC_OK;
5123 }
5124 
5125 /**
5126  * dc_process_dmub_dpia_hpd_int_enable - Submits DPIA DPD interruption
5127  *
5128  * @dc: [in] dc structure
5129  * @hpd_int_enable: [in] 1 for hpd int enable, 0 to disable
5130  *
5131  * Submits dpia hpd int enable command to dmub via inbox message
5132  */
dc_process_dmub_dpia_hpd_int_enable(const struct dc * dc,uint32_t hpd_int_enable)5133 void dc_process_dmub_dpia_hpd_int_enable(const struct dc *dc,
5134 				uint32_t hpd_int_enable)
5135 {
5136 	union dmub_rb_cmd cmd = {0};
5137 
5138 	cmd.dpia_hpd_int_enable.header.type = DMUB_CMD__DPIA_HPD_INT_ENABLE;
5139 	cmd.dpia_hpd_int_enable.enable = hpd_int_enable;
5140 
5141 	dm_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT);
5142 
5143 	DC_LOG_DEBUG("%s: hpd_int_enable(%d)\n", __func__, hpd_int_enable);
5144 }
5145 
5146 /**
5147  * dc_print_dmub_diagnostic_data - Print DMUB diagnostic data for debugging
5148  *
5149  * @dc: [in] dc structure
5150  *
5151  *
5152  */
dc_print_dmub_diagnostic_data(const struct dc * dc)5153 void dc_print_dmub_diagnostic_data(const struct dc *dc)
5154 {
5155 	dc_dmub_srv_log_diagnostic_data(dc->ctx->dmub_srv);
5156 }
5157 
5158 /**
5159  * dc_disable_accelerated_mode - disable accelerated mode
5160  * @dc: dc structure
5161  */
dc_disable_accelerated_mode(struct dc * dc)5162 void dc_disable_accelerated_mode(struct dc *dc)
5163 {
5164 	bios_set_scratch_acc_mode_change(dc->ctx->dc_bios, 0);
5165 }
5166 
5167 
5168 /**
5169  *  dc_notify_vsync_int_state - notifies vsync enable/disable state
5170  *  @dc: dc structure
5171  *  @stream: stream where vsync int state changed
5172  *  @enable: whether vsync is enabled or disabled
5173  *
5174  *  Called when vsync is enabled/disabled Will notify DMUB to start/stop ABM
5175  *  interrupts after steady state is reached.
5176  */
dc_notify_vsync_int_state(struct dc * dc,struct dc_stream_state * stream,bool enable)5177 void dc_notify_vsync_int_state(struct dc *dc, struct dc_stream_state *stream, bool enable)
5178 {
5179 	int i;
5180 	int edp_num;
5181 	struct pipe_ctx *pipe = NULL;
5182 	struct dc_link *link = stream->sink->link;
5183 	struct dc_link *edp_links[MAX_NUM_EDP];
5184 
5185 
5186 	if (link->psr_settings.psr_feature_enabled)
5187 		return;
5188 
5189 	if (link->replay_settings.replay_feature_enabled)
5190 		return;
5191 
5192 	/*find primary pipe associated with stream*/
5193 	for (i = 0; i < MAX_PIPES; i++) {
5194 		pipe = &dc->current_state->res_ctx.pipe_ctx[i];
5195 
5196 		if (pipe->stream == stream && pipe->stream_res.tg)
5197 			break;
5198 	}
5199 
5200 	if (i == MAX_PIPES) {
5201 		ASSERT(0);
5202 		return;
5203 	}
5204 
5205 	dc_get_edp_links(dc, edp_links, &edp_num);
5206 
5207 	/* Determine panel inst */
5208 	for (i = 0; i < edp_num; i++) {
5209 		if (edp_links[i] == link)
5210 			break;
5211 	}
5212 
5213 	if (i == edp_num) {
5214 		return;
5215 	}
5216 
5217 	if (pipe->stream_res.abm && pipe->stream_res.abm->funcs->set_abm_pause)
5218 		pipe->stream_res.abm->funcs->set_abm_pause(pipe->stream_res.abm, !enable, i, pipe->stream_res.tg->inst);
5219 }
5220 
5221 /*****************************************************************************
5222  *  dc_abm_save_restore() - Interface to DC for save+pause and restore+un-pause
5223  *                          ABM
5224  *  @dc: dc structure
5225  *	@stream: stream where vsync int state changed
5226  *  @pData: abm hw states
5227  *
5228  ****************************************************************************/
dc_abm_save_restore(struct dc * dc,struct dc_stream_state * stream,struct abm_save_restore * pData)5229 bool dc_abm_save_restore(
5230 		struct dc *dc,
5231 		struct dc_stream_state *stream,
5232 		struct abm_save_restore *pData)
5233 {
5234 	int i;
5235 	int edp_num;
5236 	struct pipe_ctx *pipe = NULL;
5237 	struct dc_link *link = stream->sink->link;
5238 	struct dc_link *edp_links[MAX_NUM_EDP];
5239 
5240 
5241 	/*find primary pipe associated with stream*/
5242 	for (i = 0; i < MAX_PIPES; i++) {
5243 		pipe = &dc->current_state->res_ctx.pipe_ctx[i];
5244 
5245 		if (pipe->stream == stream && pipe->stream_res.tg)
5246 			break;
5247 	}
5248 
5249 	if (i == MAX_PIPES) {
5250 		ASSERT(0);
5251 		return false;
5252 	}
5253 
5254 	dc_get_edp_links(dc, edp_links, &edp_num);
5255 
5256 	/* Determine panel inst */
5257 	for (i = 0; i < edp_num; i++)
5258 		if (edp_links[i] == link)
5259 			break;
5260 
5261 	if (i == edp_num)
5262 		return false;
5263 
5264 	if (pipe->stream_res.abm &&
5265 		pipe->stream_res.abm->funcs->save_restore)
5266 		return pipe->stream_res.abm->funcs->save_restore(
5267 				pipe->stream_res.abm,
5268 				i,
5269 				pData);
5270 	return false;
5271 }
5272 
dc_query_current_properties(struct dc * dc,struct dc_current_properties * properties)5273 void dc_query_current_properties(struct dc *dc, struct dc_current_properties *properties)
5274 {
5275 	unsigned int i;
5276 	bool subvp_in_use = false;
5277 
5278 	for (i = 0; i < dc->current_state->stream_count; i++) {
5279 		if (dc->current_state->streams[i]->mall_stream_config.type != SUBVP_NONE) {
5280 			subvp_in_use = true;
5281 			break;
5282 		}
5283 	}
5284 	properties->cursor_size_limit = subvp_in_use ? 64 : dc->caps.max_cursor_size;
5285 }
5286 
5287