1 /*
2  * Copyright 2012-15 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25 
26 #include "dm_services.h"
27 #include "include/fixed31_32.h"
28 
abs_i64(long long arg)29 static inline unsigned long long abs_i64(
30 	long long arg)
31 {
32 	if (arg > 0)
33 		return (unsigned long long)arg;
34 	else
35 		return (unsigned long long)(-arg);
36 }
37 
38 /*
39  * @brief
40  * result = dividend / divisor
41  * *remainder = dividend % divisor
42  */
complete_integer_division_u64(unsigned long long dividend,unsigned long long divisor,unsigned long long * remainder)43 static inline unsigned long long complete_integer_division_u64(
44 	unsigned long long dividend,
45 	unsigned long long divisor,
46 	unsigned long long *remainder)
47 {
48 	unsigned long long result;
49 
50 	ASSERT(divisor);
51 
52 	result = div64_u64_rem(dividend, divisor, remainder);
53 
54 	return result;
55 }
56 
57 
58 #define FRACTIONAL_PART_MASK \
59 	((1ULL << FIXED31_32_BITS_PER_FRACTIONAL_PART) - 1)
60 
61 #define GET_INTEGER_PART(x) \
62 	((x) >> FIXED31_32_BITS_PER_FRACTIONAL_PART)
63 
64 #define GET_FRACTIONAL_PART(x) \
65 	(FRACTIONAL_PART_MASK & (x))
66 
dc_fixpt_from_fraction(long long numerator,long long denominator)67 struct fixed31_32 dc_fixpt_from_fraction(long long numerator, long long denominator)
68 {
69 	struct fixed31_32 res;
70 
71 	bool arg1_negative = numerator < 0;
72 	bool arg2_negative = denominator < 0;
73 
74 	unsigned long long arg1_value = arg1_negative ? -numerator : numerator;
75 	unsigned long long arg2_value = arg2_negative ? -denominator : denominator;
76 
77 	unsigned long long remainder;
78 
79 	/* determine integer part */
80 
81 	unsigned long long res_value = complete_integer_division_u64(
82 		arg1_value, arg2_value, &remainder);
83 
84 	ASSERT(res_value <= LONG_MAX);
85 
86 	/* determine fractional part */
87 	{
88 		unsigned int i = FIXED31_32_BITS_PER_FRACTIONAL_PART;
89 
90 		do {
91 			remainder <<= 1;
92 
93 			res_value <<= 1;
94 
95 			if (remainder >= arg2_value) {
96 				res_value |= 1;
97 				remainder -= arg2_value;
98 			}
99 		} while (--i != 0);
100 	}
101 
102 	/* round up LSB */
103 	{
104 		unsigned long long summand = (remainder << 1) >= arg2_value;
105 
106 		ASSERT(res_value <= LLONG_MAX - summand);
107 
108 		res_value += summand;
109 	}
110 
111 	res.value = (long long)res_value;
112 
113 	if (arg1_negative ^ arg2_negative)
114 		res.value = -res.value;
115 
116 	return res;
117 }
118 
dc_fixpt_mul(struct fixed31_32 arg1,struct fixed31_32 arg2)119 struct fixed31_32 dc_fixpt_mul(struct fixed31_32 arg1, struct fixed31_32 arg2)
120 {
121 	struct fixed31_32 res;
122 
123 	bool arg1_negative = arg1.value < 0;
124 	bool arg2_negative = arg2.value < 0;
125 
126 	unsigned long long arg1_value = arg1_negative ? -arg1.value : arg1.value;
127 	unsigned long long arg2_value = arg2_negative ? -arg2.value : arg2.value;
128 
129 	unsigned long long arg1_int = GET_INTEGER_PART(arg1_value);
130 	unsigned long long arg2_int = GET_INTEGER_PART(arg2_value);
131 
132 	unsigned long long arg1_fra = GET_FRACTIONAL_PART(arg1_value);
133 	unsigned long long arg2_fra = GET_FRACTIONAL_PART(arg2_value);
134 
135 	unsigned long long tmp;
136 
137 	res.value = arg1_int * arg2_int;
138 
139 	ASSERT(res.value <= LONG_MAX);
140 
141 	res.value <<= FIXED31_32_BITS_PER_FRACTIONAL_PART;
142 
143 	tmp = arg1_int * arg2_fra;
144 
145 	ASSERT(tmp <= (unsigned long long)(LLONG_MAX - res.value));
146 
147 	res.value += tmp;
148 
149 	tmp = arg2_int * arg1_fra;
150 
151 	ASSERT(tmp <= (unsigned long long)(LLONG_MAX - res.value));
152 
153 	res.value += tmp;
154 
155 	tmp = arg1_fra * arg2_fra;
156 
157 	tmp = (tmp >> FIXED31_32_BITS_PER_FRACTIONAL_PART) +
158 		(tmp >= (unsigned long long)dc_fixpt_half.value);
159 
160 	ASSERT(tmp <= (unsigned long long)(LLONG_MAX - res.value));
161 
162 	res.value += tmp;
163 
164 	if (arg1_negative ^ arg2_negative)
165 		res.value = -res.value;
166 
167 	return res;
168 }
169 
dc_fixpt_sqr(struct fixed31_32 arg)170 struct fixed31_32 dc_fixpt_sqr(struct fixed31_32 arg)
171 {
172 	struct fixed31_32 res;
173 
174 	unsigned long long arg_value = abs_i64(arg.value);
175 
176 	unsigned long long arg_int = GET_INTEGER_PART(arg_value);
177 
178 	unsigned long long arg_fra = GET_FRACTIONAL_PART(arg_value);
179 
180 	unsigned long long tmp;
181 
182 	res.value = arg_int * arg_int;
183 
184 	ASSERT(res.value <= LONG_MAX);
185 
186 	res.value <<= FIXED31_32_BITS_PER_FRACTIONAL_PART;
187 
188 	tmp = arg_int * arg_fra;
189 
190 	ASSERT(tmp <= (unsigned long long)(LLONG_MAX - res.value));
191 
192 	res.value += tmp;
193 
194 	ASSERT(tmp <= (unsigned long long)(LLONG_MAX - res.value));
195 
196 	res.value += tmp;
197 
198 	tmp = arg_fra * arg_fra;
199 
200 	tmp = (tmp >> FIXED31_32_BITS_PER_FRACTIONAL_PART) +
201 		(tmp >= (unsigned long long)dc_fixpt_half.value);
202 
203 	ASSERT(tmp <= (unsigned long long)(LLONG_MAX - res.value));
204 
205 	res.value += tmp;
206 
207 	return res;
208 }
209 
dc_fixpt_recip(struct fixed31_32 arg)210 struct fixed31_32 dc_fixpt_recip(struct fixed31_32 arg)
211 {
212 	/*
213 	 * @note
214 	 * Good idea to use Newton's method
215 	 */
216 
217 	ASSERT(arg.value);
218 
219 	return dc_fixpt_from_fraction(
220 		dc_fixpt_one.value,
221 		arg.value);
222 }
223 
dc_fixpt_sinc(struct fixed31_32 arg)224 struct fixed31_32 dc_fixpt_sinc(struct fixed31_32 arg)
225 {
226 	struct fixed31_32 square;
227 
228 	struct fixed31_32 res = dc_fixpt_one;
229 
230 	int n = 27;
231 
232 	struct fixed31_32 arg_norm = arg;
233 
234 	if (dc_fixpt_le(
235 		dc_fixpt_two_pi,
236 		dc_fixpt_abs(arg))) {
237 		arg_norm = dc_fixpt_sub(
238 			arg_norm,
239 			dc_fixpt_mul_int(
240 				dc_fixpt_two_pi,
241 				(int)div64_s64(
242 					arg_norm.value,
243 					dc_fixpt_two_pi.value)));
244 	}
245 
246 	square = dc_fixpt_sqr(arg_norm);
247 
248 	do {
249 		res = dc_fixpt_sub(
250 			dc_fixpt_one,
251 			dc_fixpt_div_int(
252 				dc_fixpt_mul(
253 					square,
254 					res),
255 				n * (n - 1)));
256 
257 		n -= 2;
258 	} while (n > 2);
259 
260 	if (arg.value != arg_norm.value)
261 		res = dc_fixpt_div(
262 			dc_fixpt_mul(res, arg_norm),
263 			arg);
264 
265 	return res;
266 }
267 
dc_fixpt_sin(struct fixed31_32 arg)268 struct fixed31_32 dc_fixpt_sin(struct fixed31_32 arg)
269 {
270 	return dc_fixpt_mul(
271 		arg,
272 		dc_fixpt_sinc(arg));
273 }
274 
dc_fixpt_cos(struct fixed31_32 arg)275 struct fixed31_32 dc_fixpt_cos(struct fixed31_32 arg)
276 {
277 	/* TODO implement argument normalization */
278 
279 	const struct fixed31_32 square = dc_fixpt_sqr(arg);
280 
281 	struct fixed31_32 res = dc_fixpt_one;
282 
283 	int n = 26;
284 
285 	do {
286 		res = dc_fixpt_sub(
287 			dc_fixpt_one,
288 			dc_fixpt_div_int(
289 				dc_fixpt_mul(
290 					square,
291 					res),
292 				n * (n - 1)));
293 
294 		n -= 2;
295 	} while (n != 0);
296 
297 	return res;
298 }
299 
300 /*
301  * @brief
302  * result = exp(arg),
303  * where abs(arg) < 1
304  *
305  * Calculated as Taylor series.
306  */
fixed31_32_exp_from_taylor_series(struct fixed31_32 arg)307 static struct fixed31_32 fixed31_32_exp_from_taylor_series(struct fixed31_32 arg)
308 {
309 	unsigned int n = 9;
310 
311 	struct fixed31_32 res = dc_fixpt_from_fraction(
312 		n + 2,
313 		n + 1);
314 	/* TODO find correct res */
315 
316 	ASSERT(dc_fixpt_lt(arg, dc_fixpt_one));
317 
318 	do
319 		res = dc_fixpt_add(
320 			dc_fixpt_one,
321 			dc_fixpt_div_int(
322 				dc_fixpt_mul(
323 					arg,
324 					res),
325 				n));
326 	while (--n != 1);
327 
328 	return dc_fixpt_add(
329 		dc_fixpt_one,
330 		dc_fixpt_mul(
331 			arg,
332 			res));
333 }
334 
dc_fixpt_exp(struct fixed31_32 arg)335 struct fixed31_32 dc_fixpt_exp(struct fixed31_32 arg)
336 {
337 	/*
338 	 * @brief
339 	 * Main equation is:
340 	 * exp(x) = exp(r + m * ln(2)) = (1 << m) * exp(r),
341 	 * where m = round(x / ln(2)), r = x - m * ln(2)
342 	 */
343 
344 	if (dc_fixpt_le(
345 		dc_fixpt_ln2_div_2,
346 		dc_fixpt_abs(arg))) {
347 		int m = dc_fixpt_round(
348 			dc_fixpt_div(
349 				arg,
350 				dc_fixpt_ln2));
351 
352 		struct fixed31_32 r = dc_fixpt_sub(
353 			arg,
354 			dc_fixpt_mul_int(
355 				dc_fixpt_ln2,
356 				m));
357 
358 		ASSERT(m != 0);
359 
360 		ASSERT(dc_fixpt_lt(
361 			dc_fixpt_abs(r),
362 			dc_fixpt_one));
363 
364 		if (m > 0)
365 			return dc_fixpt_shl(
366 				fixed31_32_exp_from_taylor_series(r),
367 				(unsigned char)m);
368 		else
369 			return dc_fixpt_div_int(
370 				fixed31_32_exp_from_taylor_series(r),
371 				1LL << -m);
372 	} else if (arg.value != 0)
373 		return fixed31_32_exp_from_taylor_series(arg);
374 	else
375 		return dc_fixpt_one;
376 }
377 
dc_fixpt_log(struct fixed31_32 arg)378 struct fixed31_32 dc_fixpt_log(struct fixed31_32 arg)
379 {
380 	struct fixed31_32 res = dc_fixpt_neg(dc_fixpt_one);
381 	/* TODO improve 1st estimation */
382 
383 	struct fixed31_32 error;
384 
385 	ASSERT(arg.value > 0);
386 	/* TODO if arg is negative, return NaN */
387 	/* TODO if arg is zero, return -INF */
388 
389 	do {
390 		struct fixed31_32 res1 = dc_fixpt_add(
391 			dc_fixpt_sub(
392 				res,
393 				dc_fixpt_one),
394 			dc_fixpt_div(
395 				arg,
396 				dc_fixpt_exp(res)));
397 
398 		error = dc_fixpt_sub(
399 			res,
400 			res1);
401 
402 		res = res1;
403 		/* TODO determine max_allowed_error based on quality of exp() */
404 	} while (abs_i64(error.value) > 100ULL);
405 
406 	return res;
407 }
408 
409 
410 /* this function is a generic helper to translate fixed point value to
411  * specified integer format that will consist of integer_bits integer part and
412  * fractional_bits fractional part. For example it is used in
413  * dc_fixpt_u2d19 to receive 2 bits integer part and 19 bits fractional
414  * part in 32 bits. It is used in hw programming (scaler)
415  */
416 
ux_dy(long long value,unsigned int integer_bits,unsigned int fractional_bits)417 static inline unsigned int ux_dy(
418 	long long value,
419 	unsigned int integer_bits,
420 	unsigned int fractional_bits)
421 {
422 	/* 1. create mask of integer part */
423 	unsigned int result = (1 << integer_bits) - 1;
424 	/* 2. mask out fractional part */
425 	unsigned int fractional_part = FRACTIONAL_PART_MASK & value;
426 	/* 3. shrink fixed point integer part to be of integer_bits width*/
427 	result &= GET_INTEGER_PART(value);
428 	/* 4. make space for fractional part to be filled in after integer */
429 	result <<= fractional_bits;
430 	/* 5. shrink fixed point fractional part to of fractional_bits width*/
431 	fractional_part >>= FIXED31_32_BITS_PER_FRACTIONAL_PART - fractional_bits;
432 	/* 6. merge the result */
433 	return result | fractional_part;
434 }
435 
clamp_ux_dy(long long value,unsigned int integer_bits,unsigned int fractional_bits,unsigned int min_clamp)436 static inline unsigned int clamp_ux_dy(
437 	long long value,
438 	unsigned int integer_bits,
439 	unsigned int fractional_bits,
440 	unsigned int min_clamp)
441 {
442 	unsigned int truncated_val = ux_dy(value, integer_bits, fractional_bits);
443 
444 	if (value >= (1LL << (integer_bits + FIXED31_32_BITS_PER_FRACTIONAL_PART)))
445 		return (1 << (integer_bits + fractional_bits)) - 1;
446 	else if (truncated_val > min_clamp)
447 		return truncated_val;
448 	else
449 		return min_clamp;
450 }
451 
dc_fixpt_u3d19(struct fixed31_32 arg)452 unsigned int dc_fixpt_u3d19(struct fixed31_32 arg)
453 {
454 	return ux_dy(arg.value, 3, 19);
455 }
456 
dc_fixpt_u2d19(struct fixed31_32 arg)457 unsigned int dc_fixpt_u2d19(struct fixed31_32 arg)
458 {
459 	return ux_dy(arg.value, 2, 19);
460 }
461 
dc_fixpt_u0d19(struct fixed31_32 arg)462 unsigned int dc_fixpt_u0d19(struct fixed31_32 arg)
463 {
464 	return ux_dy(arg.value, 0, 19);
465 }
466 
dc_fixpt_clamp_u0d14(struct fixed31_32 arg)467 unsigned int dc_fixpt_clamp_u0d14(struct fixed31_32 arg)
468 {
469 	return clamp_ux_dy(arg.value, 0, 14, 1);
470 }
471 
dc_fixpt_clamp_u0d10(struct fixed31_32 arg)472 unsigned int dc_fixpt_clamp_u0d10(struct fixed31_32 arg)
473 {
474 	return clamp_ux_dy(arg.value, 0, 10, 1);
475 }
476 
dc_fixpt_s4d19(struct fixed31_32 arg)477 int dc_fixpt_s4d19(struct fixed31_32 arg)
478 {
479 	if (arg.value < 0)
480 		return -(int)ux_dy(dc_fixpt_abs(arg).value, 4, 19);
481 	else
482 		return ux_dy(arg.value, 4, 19);
483 }
484