1 /*
2 * Copyright 2012-15 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: AMD
23 *
24 */
25
26 #include "dm_services.h"
27
28 #include "resource.h"
29 #include "include/irq_service_interface.h"
30 #include "link_encoder.h"
31 #include "stream_encoder.h"
32 #include "opp.h"
33 #include "timing_generator.h"
34 #include "transform.h"
35 #include "dccg.h"
36 #include "dchubbub.h"
37 #include "dpp.h"
38 #include "core_types.h"
39 #include "set_mode_types.h"
40 #include "virtual/virtual_stream_encoder.h"
41 #include "dpcd_defs.h"
42 #include "link_enc_cfg.h"
43 #include "link.h"
44 #include "virtual/virtual_link_hwss.h"
45 #include "link/hwss/link_hwss_dio.h"
46 #include "link/hwss/link_hwss_dpia.h"
47 #include "link/hwss/link_hwss_hpo_dp.h"
48 #include "link/hwss/link_hwss_dio_fixed_vs_pe_retimer.h"
49 #include "link/hwss/link_hwss_hpo_fixed_vs_pe_retimer_dp.h"
50
51 #if defined(CONFIG_DRM_AMD_DC_SI)
52 #include "dce60/dce60_resource.h"
53 #endif
54 #include "dce80/dce80_resource.h"
55 #include "dce100/dce100_resource.h"
56 #include "dce110/dce110_resource.h"
57 #include "dce112/dce112_resource.h"
58 #include "dce120/dce120_resource.h"
59 #include "dcn10/dcn10_resource.h"
60 #include "dcn20/dcn20_resource.h"
61 #include "dcn21/dcn21_resource.h"
62 #include "dcn201/dcn201_resource.h"
63 #include "dcn30/dcn30_resource.h"
64 #include "dcn301/dcn301_resource.h"
65 #include "dcn302/dcn302_resource.h"
66 #include "dcn303/dcn303_resource.h"
67 #include "dcn31/dcn31_resource.h"
68 #include "dcn314/dcn314_resource.h"
69 #include "dcn315/dcn315_resource.h"
70 #include "dcn316/dcn316_resource.h"
71 #include "../dcn32/dcn32_resource.h"
72 #include "../dcn321/dcn321_resource.h"
73
74 #define VISUAL_CONFIRM_BASE_DEFAULT 3
75 #define VISUAL_CONFIRM_BASE_MIN 1
76 #define VISUAL_CONFIRM_BASE_MAX 10
77 /* we choose 240 because it is a common denominator of common v addressable
78 * such as 2160, 1440, 1200, 960. So we take 1/240 portion of v addressable as
79 * the visual confirm dpp offset height. So visual confirm height can stay
80 * relatively the same independent from timing used.
81 */
82 #define VISUAL_CONFIRM_DPP_OFFSET_DENO 240
83
84 #define DC_LOGGER_INIT(logger)
85
86 #define UNABLE_TO_SPLIT -1
87
resource_parse_asic_id(struct hw_asic_id asic_id)88 enum dce_version resource_parse_asic_id(struct hw_asic_id asic_id)
89 {
90 enum dce_version dc_version = DCE_VERSION_UNKNOWN;
91
92 switch (asic_id.chip_family) {
93
94 #if defined(CONFIG_DRM_AMD_DC_SI)
95 case FAMILY_SI:
96 if (ASIC_REV_IS_TAHITI_P(asic_id.hw_internal_rev) ||
97 ASIC_REV_IS_PITCAIRN_PM(asic_id.hw_internal_rev) ||
98 ASIC_REV_IS_CAPEVERDE_M(asic_id.hw_internal_rev))
99 dc_version = DCE_VERSION_6_0;
100 else if (ASIC_REV_IS_OLAND_M(asic_id.hw_internal_rev))
101 dc_version = DCE_VERSION_6_4;
102 else
103 dc_version = DCE_VERSION_6_1;
104 break;
105 #endif
106 case FAMILY_CI:
107 dc_version = DCE_VERSION_8_0;
108 break;
109 case FAMILY_KV:
110 if (ASIC_REV_IS_KALINDI(asic_id.hw_internal_rev) ||
111 ASIC_REV_IS_BHAVANI(asic_id.hw_internal_rev) ||
112 ASIC_REV_IS_GODAVARI(asic_id.hw_internal_rev))
113 dc_version = DCE_VERSION_8_3;
114 else
115 dc_version = DCE_VERSION_8_1;
116 break;
117 case FAMILY_CZ:
118 dc_version = DCE_VERSION_11_0;
119 break;
120
121 case FAMILY_VI:
122 if (ASIC_REV_IS_TONGA_P(asic_id.hw_internal_rev) ||
123 ASIC_REV_IS_FIJI_P(asic_id.hw_internal_rev)) {
124 dc_version = DCE_VERSION_10_0;
125 break;
126 }
127 if (ASIC_REV_IS_POLARIS10_P(asic_id.hw_internal_rev) ||
128 ASIC_REV_IS_POLARIS11_M(asic_id.hw_internal_rev) ||
129 ASIC_REV_IS_POLARIS12_V(asic_id.hw_internal_rev)) {
130 dc_version = DCE_VERSION_11_2;
131 }
132 if (ASIC_REV_IS_VEGAM(asic_id.hw_internal_rev))
133 dc_version = DCE_VERSION_11_22;
134 break;
135 case FAMILY_AI:
136 if (ASICREV_IS_VEGA20_P(asic_id.hw_internal_rev))
137 dc_version = DCE_VERSION_12_1;
138 else
139 dc_version = DCE_VERSION_12_0;
140 break;
141 case FAMILY_RV:
142 dc_version = DCN_VERSION_1_0;
143 if (ASICREV_IS_RAVEN2(asic_id.hw_internal_rev))
144 dc_version = DCN_VERSION_1_01;
145 if (ASICREV_IS_RENOIR(asic_id.hw_internal_rev))
146 dc_version = DCN_VERSION_2_1;
147 if (ASICREV_IS_GREEN_SARDINE(asic_id.hw_internal_rev))
148 dc_version = DCN_VERSION_2_1;
149 break;
150
151 case FAMILY_NV:
152 dc_version = DCN_VERSION_2_0;
153 if (asic_id.chip_id == DEVICE_ID_NV_13FE || asic_id.chip_id == DEVICE_ID_NV_143F) {
154 dc_version = DCN_VERSION_2_01;
155 break;
156 }
157 if (ASICREV_IS_SIENNA_CICHLID_P(asic_id.hw_internal_rev))
158 dc_version = DCN_VERSION_3_0;
159 if (ASICREV_IS_DIMGREY_CAVEFISH_P(asic_id.hw_internal_rev))
160 dc_version = DCN_VERSION_3_02;
161 if (ASICREV_IS_BEIGE_GOBY_P(asic_id.hw_internal_rev))
162 dc_version = DCN_VERSION_3_03;
163 break;
164
165 case FAMILY_VGH:
166 dc_version = DCN_VERSION_3_01;
167 break;
168
169 case FAMILY_YELLOW_CARP:
170 if (ASICREV_IS_YELLOW_CARP(asic_id.hw_internal_rev))
171 dc_version = DCN_VERSION_3_1;
172 break;
173 case AMDGPU_FAMILY_GC_10_3_6:
174 if (ASICREV_IS_GC_10_3_6(asic_id.hw_internal_rev))
175 dc_version = DCN_VERSION_3_15;
176 break;
177 case AMDGPU_FAMILY_GC_10_3_7:
178 if (ASICREV_IS_GC_10_3_7(asic_id.hw_internal_rev))
179 dc_version = DCN_VERSION_3_16;
180 break;
181 case AMDGPU_FAMILY_GC_11_0_0:
182 dc_version = DCN_VERSION_3_2;
183 if (ASICREV_IS_GC_11_0_2(asic_id.hw_internal_rev))
184 dc_version = DCN_VERSION_3_21;
185 break;
186 case AMDGPU_FAMILY_GC_11_0_1:
187 dc_version = DCN_VERSION_3_14;
188 break;
189 default:
190 dc_version = DCE_VERSION_UNKNOWN;
191 break;
192 }
193 return dc_version;
194 }
195
dc_create_resource_pool(struct dc * dc,const struct dc_init_data * init_data,enum dce_version dc_version)196 struct resource_pool *dc_create_resource_pool(struct dc *dc,
197 const struct dc_init_data *init_data,
198 enum dce_version dc_version)
199 {
200 struct resource_pool *res_pool = NULL;
201
202 switch (dc_version) {
203 #if defined(CONFIG_DRM_AMD_DC_SI)
204 case DCE_VERSION_6_0:
205 res_pool = dce60_create_resource_pool(
206 init_data->num_virtual_links, dc);
207 break;
208 case DCE_VERSION_6_1:
209 res_pool = dce61_create_resource_pool(
210 init_data->num_virtual_links, dc);
211 break;
212 case DCE_VERSION_6_4:
213 res_pool = dce64_create_resource_pool(
214 init_data->num_virtual_links, dc);
215 break;
216 #endif
217 case DCE_VERSION_8_0:
218 res_pool = dce80_create_resource_pool(
219 init_data->num_virtual_links, dc);
220 break;
221 case DCE_VERSION_8_1:
222 res_pool = dce81_create_resource_pool(
223 init_data->num_virtual_links, dc);
224 break;
225 case DCE_VERSION_8_3:
226 res_pool = dce83_create_resource_pool(
227 init_data->num_virtual_links, dc);
228 break;
229 case DCE_VERSION_10_0:
230 res_pool = dce100_create_resource_pool(
231 init_data->num_virtual_links, dc);
232 break;
233 case DCE_VERSION_11_0:
234 res_pool = dce110_create_resource_pool(
235 init_data->num_virtual_links, dc,
236 init_data->asic_id);
237 break;
238 case DCE_VERSION_11_2:
239 case DCE_VERSION_11_22:
240 res_pool = dce112_create_resource_pool(
241 init_data->num_virtual_links, dc);
242 break;
243 case DCE_VERSION_12_0:
244 case DCE_VERSION_12_1:
245 res_pool = dce120_create_resource_pool(
246 init_data->num_virtual_links, dc);
247 break;
248
249 #if defined(CONFIG_DRM_AMD_DC_FP)
250 case DCN_VERSION_1_0:
251 case DCN_VERSION_1_01:
252 res_pool = dcn10_create_resource_pool(init_data, dc);
253 break;
254 case DCN_VERSION_2_0:
255 res_pool = dcn20_create_resource_pool(init_data, dc);
256 break;
257 case DCN_VERSION_2_1:
258 res_pool = dcn21_create_resource_pool(init_data, dc);
259 break;
260 case DCN_VERSION_2_01:
261 res_pool = dcn201_create_resource_pool(init_data, dc);
262 break;
263 case DCN_VERSION_3_0:
264 res_pool = dcn30_create_resource_pool(init_data, dc);
265 break;
266 case DCN_VERSION_3_01:
267 res_pool = dcn301_create_resource_pool(init_data, dc);
268 break;
269 case DCN_VERSION_3_02:
270 res_pool = dcn302_create_resource_pool(init_data, dc);
271 break;
272 case DCN_VERSION_3_03:
273 res_pool = dcn303_create_resource_pool(init_data, dc);
274 break;
275 case DCN_VERSION_3_1:
276 res_pool = dcn31_create_resource_pool(init_data, dc);
277 break;
278 case DCN_VERSION_3_14:
279 res_pool = dcn314_create_resource_pool(init_data, dc);
280 break;
281 case DCN_VERSION_3_15:
282 res_pool = dcn315_create_resource_pool(init_data, dc);
283 break;
284 case DCN_VERSION_3_16:
285 res_pool = dcn316_create_resource_pool(init_data, dc);
286 break;
287 case DCN_VERSION_3_2:
288 res_pool = dcn32_create_resource_pool(init_data, dc);
289 break;
290 case DCN_VERSION_3_21:
291 res_pool = dcn321_create_resource_pool(init_data, dc);
292 break;
293 #endif /* CONFIG_DRM_AMD_DC_FP */
294 default:
295 break;
296 }
297
298 if (res_pool != NULL) {
299 if (dc->ctx->dc_bios->fw_info_valid) {
300 res_pool->ref_clocks.xtalin_clock_inKhz =
301 dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency;
302 /* initialize with firmware data first, no all
303 * ASIC have DCCG SW component. FPGA or
304 * simulation need initialization of
305 * dccg_ref_clock_inKhz, dchub_ref_clock_inKhz
306 * with xtalin_clock_inKhz
307 */
308 res_pool->ref_clocks.dccg_ref_clock_inKhz =
309 res_pool->ref_clocks.xtalin_clock_inKhz;
310 res_pool->ref_clocks.dchub_ref_clock_inKhz =
311 res_pool->ref_clocks.xtalin_clock_inKhz;
312 } else
313 ASSERT_CRITICAL(false);
314 }
315
316 return res_pool;
317 }
318
dc_destroy_resource_pool(struct dc * dc)319 void dc_destroy_resource_pool(struct dc *dc)
320 {
321 if (dc) {
322 if (dc->res_pool)
323 dc->res_pool->funcs->destroy(&dc->res_pool);
324
325 kfree(dc->hwseq);
326 }
327 }
328
update_num_audio(const struct resource_straps * straps,unsigned int * num_audio,struct audio_support * aud_support)329 static void update_num_audio(
330 const struct resource_straps *straps,
331 unsigned int *num_audio,
332 struct audio_support *aud_support)
333 {
334 aud_support->dp_audio = true;
335 aud_support->hdmi_audio_native = false;
336 aud_support->hdmi_audio_on_dongle = false;
337
338 if (straps->hdmi_disable == 0) {
339 if (straps->dc_pinstraps_audio & 0x2) {
340 aud_support->hdmi_audio_on_dongle = true;
341 aud_support->hdmi_audio_native = true;
342 }
343 }
344
345 switch (straps->audio_stream_number) {
346 case 0: /* multi streams supported */
347 break;
348 case 1: /* multi streams not supported */
349 *num_audio = 1;
350 break;
351 default:
352 DC_ERR("DC: unexpected audio fuse!\n");
353 }
354 }
355
resource_construct(unsigned int num_virtual_links,struct dc * dc,struct resource_pool * pool,const struct resource_create_funcs * create_funcs)356 bool resource_construct(
357 unsigned int num_virtual_links,
358 struct dc *dc,
359 struct resource_pool *pool,
360 const struct resource_create_funcs *create_funcs)
361 {
362 struct dc_context *ctx = dc->ctx;
363 const struct resource_caps *caps = pool->res_cap;
364 int i;
365 unsigned int num_audio = caps->num_audio;
366 struct resource_straps straps = {0};
367
368 if (create_funcs->read_dce_straps)
369 create_funcs->read_dce_straps(dc->ctx, &straps);
370
371 pool->audio_count = 0;
372 if (create_funcs->create_audio) {
373 /* find the total number of streams available via the
374 * AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_CONFIGURATION_DEFAULT
375 * registers (one for each pin) starting from pin 1
376 * up to the max number of audio pins.
377 * We stop on the first pin where
378 * PORT_CONNECTIVITY == 1 (as instructed by HW team).
379 */
380 update_num_audio(&straps, &num_audio, &pool->audio_support);
381 for (i = 0; i < caps->num_audio; i++) {
382 struct audio *aud = create_funcs->create_audio(ctx, i);
383
384 if (aud == NULL) {
385 DC_ERR("DC: failed to create audio!\n");
386 return false;
387 }
388 if (!aud->funcs->endpoint_valid(aud)) {
389 aud->funcs->destroy(&aud);
390 break;
391 }
392 pool->audios[i] = aud;
393 pool->audio_count++;
394 }
395 }
396
397 pool->stream_enc_count = 0;
398 if (create_funcs->create_stream_encoder) {
399 for (i = 0; i < caps->num_stream_encoder; i++) {
400 pool->stream_enc[i] = create_funcs->create_stream_encoder(i, ctx);
401 if (pool->stream_enc[i] == NULL)
402 DC_ERR("DC: failed to create stream_encoder!\n");
403 pool->stream_enc_count++;
404 }
405 }
406
407 pool->hpo_dp_stream_enc_count = 0;
408 if (create_funcs->create_hpo_dp_stream_encoder) {
409 for (i = 0; i < caps->num_hpo_dp_stream_encoder; i++) {
410 pool->hpo_dp_stream_enc[i] = create_funcs->create_hpo_dp_stream_encoder(i+ENGINE_ID_HPO_DP_0, ctx);
411 if (pool->hpo_dp_stream_enc[i] == NULL)
412 DC_ERR("DC: failed to create HPO DP stream encoder!\n");
413 pool->hpo_dp_stream_enc_count++;
414
415 }
416 }
417
418 pool->hpo_dp_link_enc_count = 0;
419 if (create_funcs->create_hpo_dp_link_encoder) {
420 for (i = 0; i < caps->num_hpo_dp_link_encoder; i++) {
421 pool->hpo_dp_link_enc[i] = create_funcs->create_hpo_dp_link_encoder(i, ctx);
422 if (pool->hpo_dp_link_enc[i] == NULL)
423 DC_ERR("DC: failed to create HPO DP link encoder!\n");
424 pool->hpo_dp_link_enc_count++;
425 }
426 }
427
428 for (i = 0; i < caps->num_mpc_3dlut; i++) {
429 pool->mpc_lut[i] = dc_create_3dlut_func();
430 if (pool->mpc_lut[i] == NULL)
431 DC_ERR("DC: failed to create MPC 3dlut!\n");
432 pool->mpc_shaper[i] = dc_create_transfer_func();
433 if (pool->mpc_shaper[i] == NULL)
434 DC_ERR("DC: failed to create MPC shaper!\n");
435 }
436
437 dc->caps.dynamic_audio = false;
438 if (pool->audio_count < pool->stream_enc_count) {
439 dc->caps.dynamic_audio = true;
440 }
441 for (i = 0; i < num_virtual_links; i++) {
442 pool->stream_enc[pool->stream_enc_count] =
443 virtual_stream_encoder_create(
444 ctx, ctx->dc_bios);
445 if (pool->stream_enc[pool->stream_enc_count] == NULL) {
446 DC_ERR("DC: failed to create stream_encoder!\n");
447 return false;
448 }
449 pool->stream_enc_count++;
450 }
451
452 dc->hwseq = create_funcs->create_hwseq(ctx);
453
454 return true;
455 }
find_matching_clock_source(const struct resource_pool * pool,struct clock_source * clock_source)456 static int find_matching_clock_source(
457 const struct resource_pool *pool,
458 struct clock_source *clock_source)
459 {
460
461 int i;
462
463 for (i = 0; i < pool->clk_src_count; i++) {
464 if (pool->clock_sources[i] == clock_source)
465 return i;
466 }
467 return -1;
468 }
469
resource_unreference_clock_source(struct resource_context * res_ctx,const struct resource_pool * pool,struct clock_source * clock_source)470 void resource_unreference_clock_source(
471 struct resource_context *res_ctx,
472 const struct resource_pool *pool,
473 struct clock_source *clock_source)
474 {
475 int i = find_matching_clock_source(pool, clock_source);
476
477 if (i > -1)
478 res_ctx->clock_source_ref_count[i]--;
479
480 if (pool->dp_clock_source == clock_source)
481 res_ctx->dp_clock_source_ref_count--;
482 }
483
resource_reference_clock_source(struct resource_context * res_ctx,const struct resource_pool * pool,struct clock_source * clock_source)484 void resource_reference_clock_source(
485 struct resource_context *res_ctx,
486 const struct resource_pool *pool,
487 struct clock_source *clock_source)
488 {
489 int i = find_matching_clock_source(pool, clock_source);
490
491 if (i > -1)
492 res_ctx->clock_source_ref_count[i]++;
493
494 if (pool->dp_clock_source == clock_source)
495 res_ctx->dp_clock_source_ref_count++;
496 }
497
resource_get_clock_source_reference(struct resource_context * res_ctx,const struct resource_pool * pool,struct clock_source * clock_source)498 int resource_get_clock_source_reference(
499 struct resource_context *res_ctx,
500 const struct resource_pool *pool,
501 struct clock_source *clock_source)
502 {
503 int i = find_matching_clock_source(pool, clock_source);
504
505 if (i > -1)
506 return res_ctx->clock_source_ref_count[i];
507
508 if (pool->dp_clock_source == clock_source)
509 return res_ctx->dp_clock_source_ref_count;
510
511 return -1;
512 }
513
resource_are_vblanks_synchronizable(struct dc_stream_state * stream1,struct dc_stream_state * stream2)514 bool resource_are_vblanks_synchronizable(
515 struct dc_stream_state *stream1,
516 struct dc_stream_state *stream2)
517 {
518 uint32_t base60_refresh_rates[] = {10, 20, 5};
519 uint8_t i;
520 uint8_t rr_count = ARRAY_SIZE(base60_refresh_rates);
521 uint64_t frame_time_diff;
522
523 if (stream1->ctx->dc->config.vblank_alignment_dto_params &&
524 stream1->ctx->dc->config.vblank_alignment_max_frame_time_diff > 0 &&
525 dc_is_dp_signal(stream1->signal) &&
526 dc_is_dp_signal(stream2->signal) &&
527 false == stream1->has_non_synchronizable_pclk &&
528 false == stream2->has_non_synchronizable_pclk &&
529 stream1->timing.flags.VBLANK_SYNCHRONIZABLE &&
530 stream2->timing.flags.VBLANK_SYNCHRONIZABLE) {
531 /* disable refresh rates higher than 60Hz for now */
532 if (stream1->timing.pix_clk_100hz*100/stream1->timing.h_total/
533 stream1->timing.v_total > 60)
534 return false;
535 if (stream2->timing.pix_clk_100hz*100/stream2->timing.h_total/
536 stream2->timing.v_total > 60)
537 return false;
538 frame_time_diff = (uint64_t)10000 *
539 stream1->timing.h_total *
540 stream1->timing.v_total *
541 stream2->timing.pix_clk_100hz;
542 frame_time_diff = div_u64(frame_time_diff, stream1->timing.pix_clk_100hz);
543 frame_time_diff = div_u64(frame_time_diff, stream2->timing.h_total);
544 frame_time_diff = div_u64(frame_time_diff, stream2->timing.v_total);
545 for (i = 0; i < rr_count; i++) {
546 int64_t diff = (int64_t)div_u64(frame_time_diff * base60_refresh_rates[i], 10) - 10000;
547
548 if (diff < 0)
549 diff = -diff;
550 if (diff < stream1->ctx->dc->config.vblank_alignment_max_frame_time_diff)
551 return true;
552 }
553 }
554 return false;
555 }
556
resource_are_streams_timing_synchronizable(struct dc_stream_state * stream1,struct dc_stream_state * stream2)557 bool resource_are_streams_timing_synchronizable(
558 struct dc_stream_state *stream1,
559 struct dc_stream_state *stream2)
560 {
561 if (stream1->timing.h_total != stream2->timing.h_total)
562 return false;
563
564 if (stream1->timing.v_total != stream2->timing.v_total)
565 return false;
566
567 if (stream1->timing.h_addressable
568 != stream2->timing.h_addressable)
569 return false;
570
571 if (stream1->timing.v_addressable
572 != stream2->timing.v_addressable)
573 return false;
574
575 if (stream1->timing.v_front_porch
576 != stream2->timing.v_front_porch)
577 return false;
578
579 if (stream1->timing.pix_clk_100hz
580 != stream2->timing.pix_clk_100hz)
581 return false;
582
583 if (stream1->clamping.c_depth != stream2->clamping.c_depth)
584 return false;
585
586 if (stream1->phy_pix_clk != stream2->phy_pix_clk
587 && (!dc_is_dp_signal(stream1->signal)
588 || !dc_is_dp_signal(stream2->signal)))
589 return false;
590
591 if (stream1->view_format != stream2->view_format)
592 return false;
593
594 if (stream1->ignore_msa_timing_param || stream2->ignore_msa_timing_param)
595 return false;
596
597 return true;
598 }
is_dp_and_hdmi_sharable(struct dc_stream_state * stream1,struct dc_stream_state * stream2)599 static bool is_dp_and_hdmi_sharable(
600 struct dc_stream_state *stream1,
601 struct dc_stream_state *stream2)
602 {
603 if (stream1->ctx->dc->caps.disable_dp_clk_share)
604 return false;
605
606 if (stream1->clamping.c_depth != COLOR_DEPTH_888 ||
607 stream2->clamping.c_depth != COLOR_DEPTH_888)
608 return false;
609
610 return true;
611
612 }
613
is_sharable_clk_src(const struct pipe_ctx * pipe_with_clk_src,const struct pipe_ctx * pipe)614 static bool is_sharable_clk_src(
615 const struct pipe_ctx *pipe_with_clk_src,
616 const struct pipe_ctx *pipe)
617 {
618 if (pipe_with_clk_src->clock_source == NULL)
619 return false;
620
621 if (pipe_with_clk_src->stream->signal == SIGNAL_TYPE_VIRTUAL)
622 return false;
623
624 if (dc_is_dp_signal(pipe_with_clk_src->stream->signal) ||
625 (dc_is_dp_signal(pipe->stream->signal) &&
626 !is_dp_and_hdmi_sharable(pipe_with_clk_src->stream,
627 pipe->stream)))
628 return false;
629
630 if (dc_is_hdmi_signal(pipe_with_clk_src->stream->signal)
631 && dc_is_dual_link_signal(pipe->stream->signal))
632 return false;
633
634 if (dc_is_hdmi_signal(pipe->stream->signal)
635 && dc_is_dual_link_signal(pipe_with_clk_src->stream->signal))
636 return false;
637
638 if (!resource_are_streams_timing_synchronizable(
639 pipe_with_clk_src->stream, pipe->stream))
640 return false;
641
642 return true;
643 }
644
resource_find_used_clk_src_for_sharing(struct resource_context * res_ctx,struct pipe_ctx * pipe_ctx)645 struct clock_source *resource_find_used_clk_src_for_sharing(
646 struct resource_context *res_ctx,
647 struct pipe_ctx *pipe_ctx)
648 {
649 int i;
650
651 for (i = 0; i < MAX_PIPES; i++) {
652 if (is_sharable_clk_src(&res_ctx->pipe_ctx[i], pipe_ctx))
653 return res_ctx->pipe_ctx[i].clock_source;
654 }
655
656 return NULL;
657 }
658
convert_pixel_format_to_dalsurface(enum surface_pixel_format surface_pixel_format)659 static enum pixel_format convert_pixel_format_to_dalsurface(
660 enum surface_pixel_format surface_pixel_format)
661 {
662 enum pixel_format dal_pixel_format = PIXEL_FORMAT_UNKNOWN;
663
664 switch (surface_pixel_format) {
665 case SURFACE_PIXEL_FORMAT_GRPH_PALETA_256_COLORS:
666 dal_pixel_format = PIXEL_FORMAT_INDEX8;
667 break;
668 case SURFACE_PIXEL_FORMAT_GRPH_ARGB1555:
669 dal_pixel_format = PIXEL_FORMAT_RGB565;
670 break;
671 case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
672 dal_pixel_format = PIXEL_FORMAT_RGB565;
673 break;
674 case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
675 dal_pixel_format = PIXEL_FORMAT_ARGB8888;
676 break;
677 case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
678 dal_pixel_format = PIXEL_FORMAT_ARGB8888;
679 break;
680 case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
681 dal_pixel_format = PIXEL_FORMAT_ARGB2101010;
682 break;
683 case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
684 dal_pixel_format = PIXEL_FORMAT_ARGB2101010;
685 break;
686 case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010_XR_BIAS:
687 dal_pixel_format = PIXEL_FORMAT_ARGB2101010_XRBIAS;
688 break;
689 case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
690 case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616F:
691 dal_pixel_format = PIXEL_FORMAT_FP16;
692 break;
693 case SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr:
694 case SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb:
695 dal_pixel_format = PIXEL_FORMAT_420BPP8;
696 break;
697 case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCbCr:
698 case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCrCb:
699 dal_pixel_format = PIXEL_FORMAT_420BPP10;
700 break;
701 case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
702 case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616:
703 default:
704 dal_pixel_format = PIXEL_FORMAT_UNKNOWN;
705 break;
706 }
707 return dal_pixel_format;
708 }
709
get_vp_scan_direction(enum dc_rotation_angle rotation,bool horizontal_mirror,bool * orthogonal_rotation,bool * flip_vert_scan_dir,bool * flip_horz_scan_dir)710 static inline void get_vp_scan_direction(
711 enum dc_rotation_angle rotation,
712 bool horizontal_mirror,
713 bool *orthogonal_rotation,
714 bool *flip_vert_scan_dir,
715 bool *flip_horz_scan_dir)
716 {
717 *orthogonal_rotation = false;
718 *flip_vert_scan_dir = false;
719 *flip_horz_scan_dir = false;
720 if (rotation == ROTATION_ANGLE_180) {
721 *flip_vert_scan_dir = true;
722 *flip_horz_scan_dir = true;
723 } else if (rotation == ROTATION_ANGLE_90) {
724 *orthogonal_rotation = true;
725 *flip_horz_scan_dir = true;
726 } else if (rotation == ROTATION_ANGLE_270) {
727 *orthogonal_rotation = true;
728 *flip_vert_scan_dir = true;
729 }
730
731 if (horizontal_mirror)
732 *flip_horz_scan_dir = !*flip_horz_scan_dir;
733 }
734
resource_get_num_mpc_splits(const struct pipe_ctx * pipe)735 int resource_get_num_mpc_splits(const struct pipe_ctx *pipe)
736 {
737 int mpc_split_count = 0;
738 const struct pipe_ctx *other_pipe = pipe->bottom_pipe;
739
740 while (other_pipe && other_pipe->plane_state == pipe->plane_state) {
741 mpc_split_count++;
742 other_pipe = other_pipe->bottom_pipe;
743 }
744 other_pipe = pipe->top_pipe;
745 while (other_pipe && other_pipe->plane_state == pipe->plane_state) {
746 mpc_split_count++;
747 other_pipe = other_pipe->top_pipe;
748 }
749
750 return mpc_split_count;
751 }
752
resource_get_num_odm_splits(const struct pipe_ctx * pipe)753 int resource_get_num_odm_splits(const struct pipe_ctx *pipe)
754 {
755 int odm_split_count = 0;
756
757 pipe = resource_get_otg_master(pipe);
758
759 while (pipe->next_odm_pipe) {
760 odm_split_count++;
761 pipe = pipe->next_odm_pipe;
762 }
763 return odm_split_count;
764 }
765
get_odm_split_index(struct pipe_ctx * pipe_ctx)766 static int get_odm_split_index(struct pipe_ctx *pipe_ctx)
767 {
768 int index = 0;
769
770 pipe_ctx = resource_get_opp_head(pipe_ctx);
771 if (!pipe_ctx)
772 return 0;
773
774 while (pipe_ctx->prev_odm_pipe) {
775 index++;
776 pipe_ctx = pipe_ctx->prev_odm_pipe;
777 }
778
779 return index;
780 }
781
get_mpc_split_index(struct pipe_ctx * pipe_ctx)782 static int get_mpc_split_index(struct pipe_ctx *pipe_ctx)
783 {
784 struct pipe_ctx *split_pipe = pipe_ctx->top_pipe;
785 int index = 0;
786
787 while (split_pipe && split_pipe->plane_state == pipe_ctx->plane_state) {
788 index++;
789 split_pipe = split_pipe->top_pipe;
790 }
791
792 return index;
793 }
794
795 /*
796 * This is a preliminary vp size calculation to allow us to check taps support.
797 * The result is completely overridden afterwards.
798 */
calculate_viewport_size(struct pipe_ctx * pipe_ctx)799 static void calculate_viewport_size(struct pipe_ctx *pipe_ctx)
800 {
801 struct scaler_data *data = &pipe_ctx->plane_res.scl_data;
802
803 data->viewport.width = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.horz, data->recout.width));
804 data->viewport.height = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.vert, data->recout.height));
805 data->viewport_c.width = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.horz_c, data->recout.width));
806 data->viewport_c.height = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.vert_c, data->recout.height));
807 if (pipe_ctx->plane_state->rotation == ROTATION_ANGLE_90 ||
808 pipe_ctx->plane_state->rotation == ROTATION_ANGLE_270) {
809 swap(data->viewport.width, data->viewport.height);
810 swap(data->viewport_c.width, data->viewport_c.height);
811 }
812 }
813
intersect_rec(const struct rect * r0,const struct rect * r1)814 static struct rect intersect_rec(const struct rect *r0, const struct rect *r1)
815 {
816 struct rect rec;
817 int r0_x_end = r0->x + r0->width;
818 int r1_x_end = r1->x + r1->width;
819 int r0_y_end = r0->y + r0->height;
820 int r1_y_end = r1->y + r1->height;
821
822 rec.x = r0->x > r1->x ? r0->x : r1->x;
823 rec.width = r0_x_end > r1_x_end ? r1_x_end - rec.x : r0_x_end - rec.x;
824 rec.y = r0->y > r1->y ? r0->y : r1->y;
825 rec.height = r0_y_end > r1_y_end ? r1_y_end - rec.y : r0_y_end - rec.y;
826
827 /* in case that there is no intersection */
828 if (rec.width < 0 || rec.height < 0)
829 memset(&rec, 0, sizeof(rec));
830
831 return rec;
832 }
833
shift_rec(const struct rect * rec_in,int x,int y)834 static struct rect shift_rec(const struct rect *rec_in, int x, int y)
835 {
836 struct rect rec_out = *rec_in;
837
838 rec_out.x += x;
839 rec_out.y += y;
840
841 return rec_out;
842 }
843
calculate_odm_slice_in_timing_active(struct pipe_ctx * pipe_ctx)844 static struct rect calculate_odm_slice_in_timing_active(struct pipe_ctx *pipe_ctx)
845 {
846 const struct dc_stream_state *stream = pipe_ctx->stream;
847 int odm_slice_count = resource_get_num_odm_splits(pipe_ctx) + 1;
848 int odm_slice_idx = get_odm_split_index(pipe_ctx);
849 bool is_last_odm_slice = (odm_slice_idx + 1) == odm_slice_count;
850 int h_active = stream->timing.h_addressable +
851 stream->timing.h_border_left +
852 stream->timing.h_border_right;
853 int odm_slice_width = h_active / odm_slice_count;
854 struct rect odm_rec;
855
856 odm_rec.x = odm_slice_width * odm_slice_idx;
857 odm_rec.width = is_last_odm_slice ?
858 /* last slice width is the reminder of h_active */
859 h_active - odm_slice_width * (odm_slice_count - 1) :
860 /* odm slice width is the floor of h_active / count */
861 odm_slice_width;
862 odm_rec.y = 0;
863 odm_rec.height = stream->timing.v_addressable +
864 stream->timing.v_border_bottom +
865 stream->timing.v_border_top;
866
867 return odm_rec;
868 }
869
calculate_plane_rec_in_timing_active(struct pipe_ctx * pipe_ctx,const struct rect * rec_in)870 static struct rect calculate_plane_rec_in_timing_active(
871 struct pipe_ctx *pipe_ctx,
872 const struct rect *rec_in)
873 {
874 /*
875 * The following diagram shows an example where we map a 1920x1200
876 * desktop to a 2560x1440 timing with a plane rect in the middle
877 * of the screen. To map a plane rect from Stream Source to Timing
878 * Active space, we first multiply stream scaling ratios (i.e 2304/1920
879 * horizontal and 1440/1200 vertical) to the plane's x and y, then
880 * we add stream destination offsets (i.e 128 horizontal, 0 vertical).
881 * This will give us a plane rect's position in Timing Active. However
882 * we have to remove the fractional. The rule is that we find left/right
883 * and top/bottom positions and round the value to the adjacent integer.
884 *
885 * Stream Source Space
886 * ------------
887 * __________________________________________________
888 * |Stream Source (1920 x 1200) ^ |
889 * | y |
890 * | <------- w --------|> |
891 * | __________________V |
892 * |<-- x -->|Plane//////////////| ^ |
893 * | |(pre scale)////////| | |
894 * | |///////////////////| | |
895 * | |///////////////////| h |
896 * | |///////////////////| | |
897 * | |///////////////////| | |
898 * | |///////////////////| V |
899 * | |
900 * | |
901 * |__________________________________________________|
902 *
903 *
904 * Timing Active Space
905 * ---------------------------------
906 *
907 * Timing Active (2560 x 1440)
908 * __________________________________________________
909 * |*****| Stteam Destination (2304 x 1440) |*****|
910 * |*****| |*****|
911 * |<128>| |*****|
912 * |*****| __________________ |*****|
913 * |*****| |Plane/////////////| |*****|
914 * |*****| |(post scale)//////| |*****|
915 * |*****| |//////////////////| |*****|
916 * |*****| |//////////////////| |*****|
917 * |*****| |//////////////////| |*****|
918 * |*****| |//////////////////| |*****|
919 * |*****| |*****|
920 * |*****| |*****|
921 * |*****| |*****|
922 * |*****|______________________________________|*****|
923 *
924 * So the resulting formulas are shown below:
925 *
926 * recout_x = 128 + round(plane_x * 2304 / 1920)
927 * recout_w = 128 + round((plane_x + plane_w) * 2304 / 1920) - recout_x
928 * recout_y = 0 + round(plane_y * 1440 / 1280)
929 * recout_h = 0 + round((plane_y + plane_h) * 1440 / 1200) - recout_y
930 *
931 * NOTE: fixed point division is not error free. To reduce errors
932 * introduced by fixed point division, we divide only after
933 * multiplication is complete.
934 */
935 const struct dc_stream_state *stream = pipe_ctx->stream;
936 struct rect rec_out = {0};
937 struct fixed31_32 temp;
938
939 temp = dc_fixpt_from_fraction(rec_in->x * stream->dst.width,
940 stream->src.width);
941 rec_out.x = stream->dst.x + dc_fixpt_round(temp);
942
943 temp = dc_fixpt_from_fraction(
944 (rec_in->x + rec_in->width) * stream->dst.width,
945 stream->src.width);
946 rec_out.width = stream->dst.x + dc_fixpt_round(temp) - rec_out.x;
947
948 temp = dc_fixpt_from_fraction(rec_in->y * stream->dst.height,
949 stream->src.height);
950 rec_out.y = stream->dst.y + dc_fixpt_round(temp);
951
952 temp = dc_fixpt_from_fraction(
953 (rec_in->y + rec_in->height) * stream->dst.height,
954 stream->src.height);
955 rec_out.height = stream->dst.y + dc_fixpt_round(temp) - rec_out.y;
956
957 return rec_out;
958 }
959
calculate_mpc_slice_in_timing_active(struct pipe_ctx * pipe_ctx,struct rect * plane_clip_rec)960 static struct rect calculate_mpc_slice_in_timing_active(
961 struct pipe_ctx *pipe_ctx,
962 struct rect *plane_clip_rec)
963 {
964 const struct dc_stream_state *stream = pipe_ctx->stream;
965 int mpc_slice_count = resource_get_num_mpc_splits(pipe_ctx) + 1;
966 int mpc_slice_idx = get_mpc_split_index(pipe_ctx);
967 int epimo = mpc_slice_count - plane_clip_rec->width % mpc_slice_count - 1;
968 struct rect mpc_rec;
969
970 mpc_rec.width = plane_clip_rec->width / mpc_slice_count;
971 mpc_rec.x = plane_clip_rec->x + mpc_rec.width * mpc_slice_idx;
972 mpc_rec.height = plane_clip_rec->height;
973 mpc_rec.y = plane_clip_rec->y;
974 ASSERT(mpc_slice_count == 1 ||
975 stream->view_format != VIEW_3D_FORMAT_SIDE_BY_SIDE ||
976 mpc_rec.width % 2 == 0);
977
978 /* extra pixels in the division remainder need to go to pipes after
979 * the extra pixel index minus one(epimo) defined here as:
980 */
981 if (mpc_slice_idx > epimo) {
982 mpc_rec.x += mpc_slice_idx - epimo - 1;
983 mpc_rec.width += 1;
984 }
985
986 if (stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM) {
987 ASSERT(mpc_rec.height % 2 == 0);
988 mpc_rec.height /= 2;
989 }
990 return mpc_rec;
991 }
992
adjust_recout_for_visual_confirm(struct rect * recout,struct pipe_ctx * pipe_ctx)993 static void adjust_recout_for_visual_confirm(struct rect *recout,
994 struct pipe_ctx *pipe_ctx)
995 {
996 struct dc *dc = pipe_ctx->stream->ctx->dc;
997 int dpp_offset, base_offset;
998
999 if (dc->debug.visual_confirm == VISUAL_CONFIRM_DISABLE)
1000 return;
1001
1002 dpp_offset = pipe_ctx->stream->timing.v_addressable / VISUAL_CONFIRM_DPP_OFFSET_DENO;
1003 dpp_offset *= pipe_ctx->plane_res.dpp->inst;
1004
1005 if ((dc->debug.visual_confirm_rect_height >= VISUAL_CONFIRM_BASE_MIN) &&
1006 dc->debug.visual_confirm_rect_height <= VISUAL_CONFIRM_BASE_MAX)
1007 base_offset = dc->debug.visual_confirm_rect_height;
1008 else
1009 base_offset = VISUAL_CONFIRM_BASE_DEFAULT;
1010
1011 recout->height -= base_offset;
1012 recout->height -= dpp_offset;
1013 }
1014
1015 /*
1016 * The function maps a plane clip from Stream Source Space to ODM Slice Space
1017 * and calculates the rec of the overlapping area of MPC slice of the plane
1018 * clip, ODM slice associated with the pipe context and stream destination rec.
1019 */
calculate_recout(struct pipe_ctx * pipe_ctx)1020 static void calculate_recout(struct pipe_ctx *pipe_ctx)
1021 {
1022 /*
1023 * A plane clip represents the desired plane size and position in Stream
1024 * Source Space. Stream Source is the destination where all planes are
1025 * blended (i.e. positioned, scaled and overlaid). It is a canvas where
1026 * all planes associated with the current stream are drawn together.
1027 * After Stream Source is completed, we will further scale and
1028 * reposition the entire canvas of the stream source to Stream
1029 * Destination in Timing Active Space. This could be due to display
1030 * overscan adjustment where we will need to rescale and reposition all
1031 * the planes so they can fit into a TV with overscan or downscale
1032 * upscale features such as GPU scaling or VSR.
1033 *
1034 * This two step blending is a virtual procedure in software. In
1035 * hardware there is no such thing as Stream Source. all planes are
1036 * blended once in Timing Active Space. Software virtualizes a Stream
1037 * Source space to decouple the math complicity so scaling param
1038 * calculation focuses on one step at a time.
1039 *
1040 * In the following two diagrams, user applied 10% overscan adjustment
1041 * so the Stream Source needs to be scaled down a little before mapping
1042 * to Timing Active Space. As a result the Plane Clip is also scaled
1043 * down by the same ratio, Plane Clip position (i.e. x and y) with
1044 * respect to Stream Source is also scaled down. To map it in Timing
1045 * Active Space additional x and y offsets from Stream Destination are
1046 * added to Plane Clip as well.
1047 *
1048 * Stream Source Space
1049 * ------------
1050 * __________________________________________________
1051 * |Stream Source (3840 x 2160) ^ |
1052 * | y |
1053 * | | |
1054 * | __________________V |
1055 * |<-- x -->|Plane Clip/////////| |
1056 * | |(pre scale)////////| |
1057 * | |///////////////////| |
1058 * | |///////////////////| |
1059 * | |///////////////////| |
1060 * | |///////////////////| |
1061 * | |///////////////////| |
1062 * | |
1063 * | |
1064 * |__________________________________________________|
1065 *
1066 *
1067 * Timing Active Space (3840 x 2160)
1068 * ---------------------------------
1069 *
1070 * Timing Active
1071 * __________________________________________________
1072 * | y_____________________________________________ |
1073 * |x |Stream Destination (3456 x 1944) | |
1074 * | | | |
1075 * | | __________________ | |
1076 * | | |Plane Clip////////| | |
1077 * | | |(post scale)//////| | |
1078 * | | |//////////////////| | |
1079 * | | |//////////////////| | |
1080 * | | |//////////////////| | |
1081 * | | |//////////////////| | |
1082 * | | | |
1083 * | | | |
1084 * | |____________________________________________| |
1085 * |__________________________________________________|
1086 *
1087 *
1088 * In Timing Active Space a plane clip could be further sliced into
1089 * pieces called MPC slices. Each Pipe Context is responsible for
1090 * processing only one MPC slice so the plane processing workload can be
1091 * distributed to multiple DPP Pipes. MPC slices could be blended
1092 * together to a single ODM slice. Each ODM slice is responsible for
1093 * processing a portion of Timing Active divided horizontally so the
1094 * output pixel processing workload can be distributed to multiple OPP
1095 * pipes. All ODM slices are mapped together in ODM block so all MPC
1096 * slices belong to different ODM slices could be pieced together to
1097 * form a single image in Timing Active. MPC slices must belong to
1098 * single ODM slice. If an MPC slice goes across ODM slice boundary, it
1099 * needs to be divided into two MPC slices one for each ODM slice.
1100 *
1101 * In the following diagram the output pixel processing workload is
1102 * divided horizontally into two ODM slices one for each OPP blend tree.
1103 * OPP0 blend tree is responsible for processing left half of Timing
1104 * Active, while OPP2 blend tree is responsible for processing right
1105 * half.
1106 *
1107 * The plane has two MPC slices. However since the right MPC slice goes
1108 * across ODM boundary, two DPP pipes are needed one for each OPP blend
1109 * tree. (i.e. DPP1 for OPP0 blend tree and DPP2 for OPP2 blend tree).
1110 *
1111 * Assuming that we have a Pipe Context associated with OPP0 and DPP1
1112 * working on processing the plane in the diagram. We want to know the
1113 * width and height of the shaded rectangle and its relative position
1114 * with respect to the ODM slice0. This is called the recout of the pipe
1115 * context.
1116 *
1117 * Planes can be at arbitrary size and position and there could be an
1118 * arbitrary number of MPC and ODM slices. The algorithm needs to take
1119 * all scenarios into account.
1120 *
1121 * Timing Active Space (3840 x 2160)
1122 * ---------------------------------
1123 *
1124 * Timing Active
1125 * __________________________________________________
1126 * |OPP0(ODM slice0)^ |OPP2(ODM slice1) |
1127 * | y | |
1128 * | | <- w -> |
1129 * | _____V________|____ |
1130 * | |DPP0 ^ |DPP1 |DPP2| |
1131 * |<------ x |-----|->|/////| | |
1132 * | | | |/////| | |
1133 * | | h |/////| | |
1134 * | | | |/////| | |
1135 * | |_____V__|/////|____| |
1136 * | | |
1137 * | | |
1138 * | | |
1139 * |_________________________|________________________|
1140 *
1141 *
1142 */
1143 struct rect plane_clip;
1144 struct rect mpc_slice_of_plane_clip;
1145 struct rect odm_slice;
1146 struct rect overlapping_area;
1147
1148 plane_clip = calculate_plane_rec_in_timing_active(pipe_ctx,
1149 &pipe_ctx->plane_state->clip_rect);
1150 /* guard plane clip from drawing beyond stream dst here */
1151 plane_clip = intersect_rec(&plane_clip,
1152 &pipe_ctx->stream->dst);
1153 mpc_slice_of_plane_clip = calculate_mpc_slice_in_timing_active(
1154 pipe_ctx, &plane_clip);
1155 odm_slice = calculate_odm_slice_in_timing_active(pipe_ctx);
1156 overlapping_area = intersect_rec(&mpc_slice_of_plane_clip, &odm_slice);
1157 if (overlapping_area.height > 0 &&
1158 overlapping_area.width > 0) {
1159 /* shift the overlapping area so it is with respect to current
1160 * ODM slice's position
1161 */
1162 pipe_ctx->plane_res.scl_data.recout = shift_rec(
1163 &overlapping_area,
1164 -odm_slice.x, -odm_slice.y);
1165 adjust_recout_for_visual_confirm(
1166 &pipe_ctx->plane_res.scl_data.recout,
1167 pipe_ctx);
1168 } else {
1169 /* if there is no overlap, zero recout */
1170 memset(&pipe_ctx->plane_res.scl_data.recout, 0,
1171 sizeof(struct rect));
1172 }
1173
1174 }
1175
calculate_scaling_ratios(struct pipe_ctx * pipe_ctx)1176 static void calculate_scaling_ratios(struct pipe_ctx *pipe_ctx)
1177 {
1178 const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
1179 const struct dc_stream_state *stream = pipe_ctx->stream;
1180 struct rect surf_src = plane_state->src_rect;
1181 const int in_w = stream->src.width;
1182 const int in_h = stream->src.height;
1183 const int out_w = stream->dst.width;
1184 const int out_h = stream->dst.height;
1185
1186 /*Swap surf_src height and width since scaling ratios are in recout rotation*/
1187 if (pipe_ctx->plane_state->rotation == ROTATION_ANGLE_90 ||
1188 pipe_ctx->plane_state->rotation == ROTATION_ANGLE_270)
1189 swap(surf_src.height, surf_src.width);
1190
1191 pipe_ctx->plane_res.scl_data.ratios.horz = dc_fixpt_from_fraction(
1192 surf_src.width,
1193 plane_state->dst_rect.width);
1194 pipe_ctx->plane_res.scl_data.ratios.vert = dc_fixpt_from_fraction(
1195 surf_src.height,
1196 plane_state->dst_rect.height);
1197
1198 if (stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE)
1199 pipe_ctx->plane_res.scl_data.ratios.horz.value *= 2;
1200 else if (stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM)
1201 pipe_ctx->plane_res.scl_data.ratios.vert.value *= 2;
1202
1203 pipe_ctx->plane_res.scl_data.ratios.vert.value = div64_s64(
1204 pipe_ctx->plane_res.scl_data.ratios.vert.value * in_h, out_h);
1205 pipe_ctx->plane_res.scl_data.ratios.horz.value = div64_s64(
1206 pipe_ctx->plane_res.scl_data.ratios.horz.value * in_w, out_w);
1207
1208 pipe_ctx->plane_res.scl_data.ratios.horz_c = pipe_ctx->plane_res.scl_data.ratios.horz;
1209 pipe_ctx->plane_res.scl_data.ratios.vert_c = pipe_ctx->plane_res.scl_data.ratios.vert;
1210
1211 if (pipe_ctx->plane_res.scl_data.format == PIXEL_FORMAT_420BPP8
1212 || pipe_ctx->plane_res.scl_data.format == PIXEL_FORMAT_420BPP10) {
1213 pipe_ctx->plane_res.scl_data.ratios.horz_c.value /= 2;
1214 pipe_ctx->plane_res.scl_data.ratios.vert_c.value /= 2;
1215 }
1216 pipe_ctx->plane_res.scl_data.ratios.horz = dc_fixpt_truncate(
1217 pipe_ctx->plane_res.scl_data.ratios.horz, 19);
1218 pipe_ctx->plane_res.scl_data.ratios.vert = dc_fixpt_truncate(
1219 pipe_ctx->plane_res.scl_data.ratios.vert, 19);
1220 pipe_ctx->plane_res.scl_data.ratios.horz_c = dc_fixpt_truncate(
1221 pipe_ctx->plane_res.scl_data.ratios.horz_c, 19);
1222 pipe_ctx->plane_res.scl_data.ratios.vert_c = dc_fixpt_truncate(
1223 pipe_ctx->plane_res.scl_data.ratios.vert_c, 19);
1224 }
1225
1226
1227 /*
1228 * We completely calculate vp offset, size and inits here based entirely on scaling
1229 * ratios and recout for pixel perfect pipe combine.
1230 */
calculate_init_and_vp(bool flip_scan_dir,int recout_offset_within_recout_full,int recout_size,int src_size,int taps,struct fixed31_32 ratio,struct fixed31_32 * init,int * vp_offset,int * vp_size)1231 static void calculate_init_and_vp(
1232 bool flip_scan_dir,
1233 int recout_offset_within_recout_full,
1234 int recout_size,
1235 int src_size,
1236 int taps,
1237 struct fixed31_32 ratio,
1238 struct fixed31_32 *init,
1239 int *vp_offset,
1240 int *vp_size)
1241 {
1242 struct fixed31_32 temp;
1243 int int_part;
1244
1245 /*
1246 * First of the taps starts sampling pixel number <init_int_part> corresponding to recout
1247 * pixel 1. Next recout pixel samples int part of <init + scaling ratio> and so on.
1248 * All following calculations are based on this logic.
1249 *
1250 * Init calculated according to formula:
1251 * init = (scaling_ratio + number_of_taps + 1) / 2
1252 * init_bot = init + scaling_ratio
1253 * to get pixel perfect combine add the fraction from calculating vp offset
1254 */
1255 temp = dc_fixpt_mul_int(ratio, recout_offset_within_recout_full);
1256 *vp_offset = dc_fixpt_floor(temp);
1257 temp.value &= 0xffffffff;
1258 *init = dc_fixpt_truncate(dc_fixpt_add(dc_fixpt_div_int(
1259 dc_fixpt_add_int(ratio, taps + 1), 2), temp), 19);
1260 /*
1261 * If viewport has non 0 offset and there are more taps than covered by init then
1262 * we should decrease the offset and increase init so we are never sampling
1263 * outside of viewport.
1264 */
1265 int_part = dc_fixpt_floor(*init);
1266 if (int_part < taps) {
1267 int_part = taps - int_part;
1268 if (int_part > *vp_offset)
1269 int_part = *vp_offset;
1270 *vp_offset -= int_part;
1271 *init = dc_fixpt_add_int(*init, int_part);
1272 }
1273 /*
1274 * If taps are sampling outside of viewport at end of recout and there are more pixels
1275 * available in the surface we should increase the viewport size, regardless set vp to
1276 * only what is used.
1277 */
1278 temp = dc_fixpt_add(*init, dc_fixpt_mul_int(ratio, recout_size - 1));
1279 *vp_size = dc_fixpt_floor(temp);
1280 if (*vp_size + *vp_offset > src_size)
1281 *vp_size = src_size - *vp_offset;
1282
1283 /* We did all the math assuming we are scanning same direction as display does,
1284 * however mirror/rotation changes how vp scans vs how it is offset. If scan direction
1285 * is flipped we simply need to calculate offset from the other side of plane.
1286 * Note that outside of viewport all scaling hardware works in recout space.
1287 */
1288 if (flip_scan_dir)
1289 *vp_offset = src_size - *vp_offset - *vp_size;
1290 }
1291
calculate_inits_and_viewports(struct pipe_ctx * pipe_ctx)1292 static void calculate_inits_and_viewports(struct pipe_ctx *pipe_ctx)
1293 {
1294 const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
1295 struct scaler_data *data = &pipe_ctx->plane_res.scl_data;
1296 struct rect src = plane_state->src_rect;
1297 struct rect recout_dst_in_active_timing;
1298 struct rect recout_clip_in_active_timing;
1299 struct rect recout_clip_in_recout_dst;
1300 struct rect overlap_in_active_timing;
1301 struct rect odm_slice = calculate_odm_slice_in_timing_active(pipe_ctx);
1302 int vpc_div = (data->format == PIXEL_FORMAT_420BPP8
1303 || data->format == PIXEL_FORMAT_420BPP10) ? 2 : 1;
1304 bool orthogonal_rotation, flip_vert_scan_dir, flip_horz_scan_dir;
1305
1306 recout_clip_in_active_timing = shift_rec(
1307 &data->recout, odm_slice.x, odm_slice.y);
1308 recout_dst_in_active_timing = calculate_plane_rec_in_timing_active(
1309 pipe_ctx, &plane_state->dst_rect);
1310 overlap_in_active_timing = intersect_rec(&recout_clip_in_active_timing,
1311 &recout_dst_in_active_timing);
1312 if (overlap_in_active_timing.width > 0 &&
1313 overlap_in_active_timing.height > 0)
1314 recout_clip_in_recout_dst = shift_rec(&overlap_in_active_timing,
1315 -recout_dst_in_active_timing.x,
1316 -recout_dst_in_active_timing.y);
1317 else
1318 memset(&recout_clip_in_recout_dst, 0, sizeof(struct rect));
1319
1320 /*
1321 * Work in recout rotation since that requires less transformations
1322 */
1323 get_vp_scan_direction(
1324 plane_state->rotation,
1325 plane_state->horizontal_mirror,
1326 &orthogonal_rotation,
1327 &flip_vert_scan_dir,
1328 &flip_horz_scan_dir);
1329
1330 if (orthogonal_rotation) {
1331 swap(src.width, src.height);
1332 swap(flip_vert_scan_dir, flip_horz_scan_dir);
1333 }
1334
1335 calculate_init_and_vp(
1336 flip_horz_scan_dir,
1337 recout_clip_in_recout_dst.x,
1338 data->recout.width,
1339 src.width,
1340 data->taps.h_taps,
1341 data->ratios.horz,
1342 &data->inits.h,
1343 &data->viewport.x,
1344 &data->viewport.width);
1345 calculate_init_and_vp(
1346 flip_horz_scan_dir,
1347 recout_clip_in_recout_dst.x,
1348 data->recout.width,
1349 src.width / vpc_div,
1350 data->taps.h_taps_c,
1351 data->ratios.horz_c,
1352 &data->inits.h_c,
1353 &data->viewport_c.x,
1354 &data->viewport_c.width);
1355 calculate_init_and_vp(
1356 flip_vert_scan_dir,
1357 recout_clip_in_recout_dst.y,
1358 data->recout.height,
1359 src.height,
1360 data->taps.v_taps,
1361 data->ratios.vert,
1362 &data->inits.v,
1363 &data->viewport.y,
1364 &data->viewport.height);
1365 calculate_init_and_vp(
1366 flip_vert_scan_dir,
1367 recout_clip_in_recout_dst.y,
1368 data->recout.height,
1369 src.height / vpc_div,
1370 data->taps.v_taps_c,
1371 data->ratios.vert_c,
1372 &data->inits.v_c,
1373 &data->viewport_c.y,
1374 &data->viewport_c.height);
1375 if (orthogonal_rotation) {
1376 swap(data->viewport.x, data->viewport.y);
1377 swap(data->viewport.width, data->viewport.height);
1378 swap(data->viewport_c.x, data->viewport_c.y);
1379 swap(data->viewport_c.width, data->viewport_c.height);
1380 }
1381 data->viewport.x += src.x;
1382 data->viewport.y += src.y;
1383 ASSERT(src.x % vpc_div == 0 && src.y % vpc_div == 0);
1384 data->viewport_c.x += src.x / vpc_div;
1385 data->viewport_c.y += src.y / vpc_div;
1386 }
1387
resource_build_scaling_params(struct pipe_ctx * pipe_ctx)1388 bool resource_build_scaling_params(struct pipe_ctx *pipe_ctx)
1389 {
1390 const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
1391 struct dc_crtc_timing *timing = &pipe_ctx->stream->timing;
1392 const struct rect odm_slice_rec = calculate_odm_slice_in_timing_active(pipe_ctx);
1393 bool res = false;
1394 DC_LOGGER_INIT(pipe_ctx->stream->ctx->logger);
1395
1396 /* Invalid input */
1397 if (!plane_state->dst_rect.width ||
1398 !plane_state->dst_rect.height ||
1399 !plane_state->src_rect.width ||
1400 !plane_state->src_rect.height) {
1401 ASSERT(0);
1402 return false;
1403 }
1404
1405 pipe_ctx->plane_res.scl_data.format = convert_pixel_format_to_dalsurface(
1406 pipe_ctx->plane_state->format);
1407
1408 /* Timing borders are part of vactive that we are also supposed to skip in addition
1409 * to any stream dst offset. Since dm logic assumes dst is in addressable
1410 * space we need to add the left and top borders to dst offsets temporarily.
1411 * TODO: fix in DM, stream dst is supposed to be in vactive
1412 */
1413 pipe_ctx->stream->dst.x += timing->h_border_left;
1414 pipe_ctx->stream->dst.y += timing->v_border_top;
1415
1416 /* Calculate H and V active size */
1417 pipe_ctx->plane_res.scl_data.h_active = odm_slice_rec.width;
1418 pipe_ctx->plane_res.scl_data.v_active = odm_slice_rec.height;
1419
1420 /* depends on h_active */
1421 calculate_recout(pipe_ctx);
1422 /* depends on pixel format */
1423 calculate_scaling_ratios(pipe_ctx);
1424 /* depends on scaling ratios and recout, does not calculate offset yet */
1425 calculate_viewport_size(pipe_ctx);
1426
1427 if (!pipe_ctx->stream->ctx->dc->config.enable_windowed_mpo_odm) {
1428 /* Stopgap for validation of ODM + MPO on one side of screen case */
1429 if (pipe_ctx->plane_res.scl_data.viewport.height < 1 ||
1430 pipe_ctx->plane_res.scl_data.viewport.width < 1)
1431 return false;
1432 }
1433
1434 /*
1435 * LB calculations depend on vp size, h/v_active and scaling ratios
1436 * Setting line buffer pixel depth to 24bpp yields banding
1437 * on certain displays, such as the Sharp 4k. 36bpp is needed
1438 * to support SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616 and
1439 * SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616 with actual > 10 bpc
1440 * precision on DCN display engines, but apparently not for DCE, as
1441 * far as testing on DCE-11.2 and DCE-8 showed. Various DCE parts have
1442 * problems: Carrizo with DCE_VERSION_11_0 does not like 36 bpp lb depth,
1443 * neither do DCE-8 at 4k resolution, or DCE-11.2 (broken identify pixel
1444 * passthrough). Therefore only use 36 bpp on DCN where it is actually needed.
1445 */
1446 if (plane_state->ctx->dce_version > DCE_VERSION_MAX)
1447 pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_36BPP;
1448 else
1449 pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_30BPP;
1450
1451 pipe_ctx->plane_res.scl_data.lb_params.alpha_en = plane_state->per_pixel_alpha;
1452
1453 if (pipe_ctx->plane_res.xfm != NULL)
1454 res = pipe_ctx->plane_res.xfm->funcs->transform_get_optimal_number_of_taps(
1455 pipe_ctx->plane_res.xfm, &pipe_ctx->plane_res.scl_data, &plane_state->scaling_quality);
1456
1457 if (pipe_ctx->plane_res.dpp != NULL)
1458 res = pipe_ctx->plane_res.dpp->funcs->dpp_get_optimal_number_of_taps(
1459 pipe_ctx->plane_res.dpp, &pipe_ctx->plane_res.scl_data, &plane_state->scaling_quality);
1460
1461
1462 if (!res) {
1463 /* Try 24 bpp linebuffer */
1464 pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_24BPP;
1465
1466 if (pipe_ctx->plane_res.xfm != NULL)
1467 res = pipe_ctx->plane_res.xfm->funcs->transform_get_optimal_number_of_taps(
1468 pipe_ctx->plane_res.xfm,
1469 &pipe_ctx->plane_res.scl_data,
1470 &plane_state->scaling_quality);
1471
1472 if (pipe_ctx->plane_res.dpp != NULL)
1473 res = pipe_ctx->plane_res.dpp->funcs->dpp_get_optimal_number_of_taps(
1474 pipe_ctx->plane_res.dpp,
1475 &pipe_ctx->plane_res.scl_data,
1476 &plane_state->scaling_quality);
1477 }
1478
1479 /*
1480 * Depends on recout, scaling ratios, h_active and taps
1481 * May need to re-check lb size after this in some obscure scenario
1482 */
1483 if (res)
1484 calculate_inits_and_viewports(pipe_ctx);
1485
1486 /*
1487 * Handle side by side and top bottom 3d recout offsets after vp calculation
1488 * since 3d is special and needs to calculate vp as if there is no recout offset
1489 * This may break with rotation, good thing we aren't mixing hw rotation and 3d
1490 */
1491 if (pipe_ctx->top_pipe && pipe_ctx->top_pipe->plane_state == plane_state) {
1492 ASSERT(plane_state->rotation == ROTATION_ANGLE_0 ||
1493 (pipe_ctx->stream->view_format != VIEW_3D_FORMAT_TOP_AND_BOTTOM &&
1494 pipe_ctx->stream->view_format != VIEW_3D_FORMAT_SIDE_BY_SIDE));
1495 if (pipe_ctx->stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM)
1496 pipe_ctx->plane_res.scl_data.recout.y += pipe_ctx->plane_res.scl_data.recout.height;
1497 else if (pipe_ctx->stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE)
1498 pipe_ctx->plane_res.scl_data.recout.x += pipe_ctx->plane_res.scl_data.recout.width;
1499 }
1500
1501 /* Clamp minimum viewport size */
1502 if (pipe_ctx->plane_res.scl_data.viewport.height < MIN_VIEWPORT_SIZE)
1503 pipe_ctx->plane_res.scl_data.viewport.height = MIN_VIEWPORT_SIZE;
1504 if (pipe_ctx->plane_res.scl_data.viewport.width < MIN_VIEWPORT_SIZE)
1505 pipe_ctx->plane_res.scl_data.viewport.width = MIN_VIEWPORT_SIZE;
1506
1507
1508 DC_LOG_SCALER("%s pipe %d:\nViewport: height:%d width:%d x:%d y:%d Recout: height:%d width:%d x:%d y:%d HACTIVE:%d VACTIVE:%d\n"
1509 "src_rect: height:%d width:%d x:%d y:%d dst_rect: height:%d width:%d x:%d y:%d clip_rect: height:%d width:%d x:%d y:%d\n",
1510 __func__,
1511 pipe_ctx->pipe_idx,
1512 pipe_ctx->plane_res.scl_data.viewport.height,
1513 pipe_ctx->plane_res.scl_data.viewport.width,
1514 pipe_ctx->plane_res.scl_data.viewport.x,
1515 pipe_ctx->plane_res.scl_data.viewport.y,
1516 pipe_ctx->plane_res.scl_data.recout.height,
1517 pipe_ctx->plane_res.scl_data.recout.width,
1518 pipe_ctx->plane_res.scl_data.recout.x,
1519 pipe_ctx->plane_res.scl_data.recout.y,
1520 pipe_ctx->plane_res.scl_data.h_active,
1521 pipe_ctx->plane_res.scl_data.v_active,
1522 plane_state->src_rect.height,
1523 plane_state->src_rect.width,
1524 plane_state->src_rect.x,
1525 plane_state->src_rect.y,
1526 plane_state->dst_rect.height,
1527 plane_state->dst_rect.width,
1528 plane_state->dst_rect.x,
1529 plane_state->dst_rect.y,
1530 plane_state->clip_rect.height,
1531 plane_state->clip_rect.width,
1532 plane_state->clip_rect.x,
1533 plane_state->clip_rect.y);
1534
1535 pipe_ctx->stream->dst.x -= timing->h_border_left;
1536 pipe_ctx->stream->dst.y -= timing->v_border_top;
1537
1538 return res;
1539 }
1540
1541
resource_build_scaling_params_for_context(const struct dc * dc,struct dc_state * context)1542 enum dc_status resource_build_scaling_params_for_context(
1543 const struct dc *dc,
1544 struct dc_state *context)
1545 {
1546 int i;
1547
1548 for (i = 0; i < MAX_PIPES; i++) {
1549 if (context->res_ctx.pipe_ctx[i].plane_state != NULL &&
1550 context->res_ctx.pipe_ctx[i].stream != NULL)
1551 if (!resource_build_scaling_params(&context->res_ctx.pipe_ctx[i]))
1552 return DC_FAIL_SCALING;
1553 }
1554
1555 return DC_OK;
1556 }
1557
resource_find_free_secondary_pipe_legacy(struct resource_context * res_ctx,const struct resource_pool * pool,const struct pipe_ctx * primary_pipe)1558 struct pipe_ctx *resource_find_free_secondary_pipe_legacy(
1559 struct resource_context *res_ctx,
1560 const struct resource_pool *pool,
1561 const struct pipe_ctx *primary_pipe)
1562 {
1563 int i;
1564 struct pipe_ctx *secondary_pipe = NULL;
1565
1566 /*
1567 * We add a preferred pipe mapping to avoid the chance that
1568 * MPCCs already in use will need to be reassigned to other trees.
1569 * For example, if we went with the strict, assign backwards logic:
1570 *
1571 * (State 1)
1572 * Display A on, no surface, top pipe = 0
1573 * Display B on, no surface, top pipe = 1
1574 *
1575 * (State 2)
1576 * Display A on, no surface, top pipe = 0
1577 * Display B on, surface enable, top pipe = 1, bottom pipe = 5
1578 *
1579 * (State 3)
1580 * Display A on, surface enable, top pipe = 0, bottom pipe = 5
1581 * Display B on, surface enable, top pipe = 1, bottom pipe = 4
1582 *
1583 * The state 2->3 transition requires remapping MPCC 5 from display B
1584 * to display A.
1585 *
1586 * However, with the preferred pipe logic, state 2 would look like:
1587 *
1588 * (State 2)
1589 * Display A on, no surface, top pipe = 0
1590 * Display B on, surface enable, top pipe = 1, bottom pipe = 4
1591 *
1592 * This would then cause 2->3 to not require remapping any MPCCs.
1593 */
1594 if (primary_pipe) {
1595 int preferred_pipe_idx = (pool->pipe_count - 1) - primary_pipe->pipe_idx;
1596 if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) {
1597 secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx];
1598 secondary_pipe->pipe_idx = preferred_pipe_idx;
1599 }
1600 }
1601
1602 /*
1603 * search backwards for the second pipe to keep pipe
1604 * assignment more consistent
1605 */
1606 if (!secondary_pipe)
1607 for (i = pool->pipe_count - 1; i >= 0; i--) {
1608 if (res_ctx->pipe_ctx[i].stream == NULL) {
1609 secondary_pipe = &res_ctx->pipe_ctx[i];
1610 secondary_pipe->pipe_idx = i;
1611 break;
1612 }
1613 }
1614
1615 return secondary_pipe;
1616 }
1617
resource_find_free_pipe_used_in_cur_mpc_blending_tree(const struct resource_context * cur_res_ctx,struct resource_context * new_res_ctx,const struct pipe_ctx * cur_opp_head)1618 int resource_find_free_pipe_used_in_cur_mpc_blending_tree(
1619 const struct resource_context *cur_res_ctx,
1620 struct resource_context *new_res_ctx,
1621 const struct pipe_ctx *cur_opp_head)
1622 {
1623 const struct pipe_ctx *cur_sec_dpp = cur_opp_head->bottom_pipe;
1624 struct pipe_ctx *new_pipe;
1625 int free_pipe_idx = FREE_PIPE_INDEX_NOT_FOUND;
1626
1627 while (cur_sec_dpp) {
1628 /* find a free pipe used in current opp blend tree,
1629 * this is to avoid MPO pipe switching to different opp blending
1630 * tree
1631 */
1632 new_pipe = &new_res_ctx->pipe_ctx[cur_sec_dpp->pipe_idx];
1633 if (resource_is_pipe_type(new_pipe, FREE_PIPE)) {
1634 free_pipe_idx = cur_sec_dpp->pipe_idx;
1635 break;
1636 }
1637 cur_sec_dpp = cur_sec_dpp->bottom_pipe;
1638 }
1639
1640 return free_pipe_idx;
1641 }
1642
recource_find_free_pipe_not_used_in_cur_res_ctx(const struct resource_context * cur_res_ctx,struct resource_context * new_res_ctx,const struct resource_pool * pool)1643 int recource_find_free_pipe_not_used_in_cur_res_ctx(
1644 const struct resource_context *cur_res_ctx,
1645 struct resource_context *new_res_ctx,
1646 const struct resource_pool *pool)
1647 {
1648 int free_pipe_idx = FREE_PIPE_INDEX_NOT_FOUND;
1649 const struct pipe_ctx *new_pipe, *cur_pipe;
1650 int i;
1651
1652 for (i = 0; i < pool->pipe_count; i++) {
1653 cur_pipe = &cur_res_ctx->pipe_ctx[i];
1654 new_pipe = &new_res_ctx->pipe_ctx[i];
1655
1656 if (resource_is_pipe_type(cur_pipe, FREE_PIPE) &&
1657 resource_is_pipe_type(new_pipe, FREE_PIPE)) {
1658 free_pipe_idx = i;
1659 break;
1660 }
1661 }
1662
1663 return free_pipe_idx;
1664 }
1665
resource_find_free_pipe_used_as_cur_sec_dpp_in_mpcc_combine(const struct resource_context * cur_res_ctx,struct resource_context * new_res_ctx,const struct resource_pool * pool)1666 int resource_find_free_pipe_used_as_cur_sec_dpp_in_mpcc_combine(
1667 const struct resource_context *cur_res_ctx,
1668 struct resource_context *new_res_ctx,
1669 const struct resource_pool *pool)
1670 {
1671 int free_pipe_idx = FREE_PIPE_INDEX_NOT_FOUND;
1672 const struct pipe_ctx *new_pipe, *cur_pipe;
1673 int i;
1674
1675 for (i = 0; i < pool->pipe_count; i++) {
1676 cur_pipe = &cur_res_ctx->pipe_ctx[i];
1677 new_pipe = &new_res_ctx->pipe_ctx[i];
1678
1679 if (resource_is_pipe_type(cur_pipe, DPP_PIPE) &&
1680 !resource_is_pipe_type(cur_pipe, OPP_HEAD) &&
1681 resource_is_for_mpcc_combine(cur_pipe) &&
1682 resource_is_pipe_type(new_pipe, FREE_PIPE)) {
1683 free_pipe_idx = i;
1684 break;
1685 }
1686 }
1687
1688 return free_pipe_idx;
1689 }
1690
resource_find_any_free_pipe(struct resource_context * new_res_ctx,const struct resource_pool * pool)1691 int resource_find_any_free_pipe(struct resource_context *new_res_ctx,
1692 const struct resource_pool *pool)
1693 {
1694 int free_pipe_idx = FREE_PIPE_INDEX_NOT_FOUND;
1695 const struct pipe_ctx *new_pipe;
1696 int i;
1697
1698 for (i = 0; i < pool->pipe_count; i++) {
1699 new_pipe = &new_res_ctx->pipe_ctx[i];
1700
1701 if (resource_is_pipe_type(new_pipe, FREE_PIPE)) {
1702 free_pipe_idx = i;
1703 break;
1704 }
1705 }
1706
1707 return free_pipe_idx;
1708 }
1709
resource_is_pipe_type(const struct pipe_ctx * pipe_ctx,enum pipe_type type)1710 bool resource_is_pipe_type(const struct pipe_ctx *pipe_ctx, enum pipe_type type)
1711 {
1712 #ifdef DBG
1713 if (pipe_ctx->stream == NULL) {
1714 /* a free pipe with dangling states */
1715 ASSERT(!pipe_ctx->plane_state);
1716 ASSERT(!pipe_ctx->prev_odm_pipe);
1717 ASSERT(!pipe_ctx->next_odm_pipe);
1718 ASSERT(!pipe_ctx->top_pipe);
1719 ASSERT(!pipe_ctx->bottom_pipe);
1720 } else if (pipe_ctx->top_pipe) {
1721 /* a secondary DPP pipe must be signed to a plane */
1722 ASSERT(pipe_ctx->plane_state)
1723 }
1724 /* Add more checks here to prevent corrupted pipe ctx. It is very hard
1725 * to debug this issue afterwards because we can't pinpoint the code
1726 * location causing inconsistent pipe context states.
1727 */
1728 #endif
1729 switch (type) {
1730 case OTG_MASTER:
1731 return !pipe_ctx->prev_odm_pipe &&
1732 !pipe_ctx->top_pipe &&
1733 pipe_ctx->stream;
1734 case OPP_HEAD:
1735 return !pipe_ctx->top_pipe && pipe_ctx->stream;
1736 case DPP_PIPE:
1737 return pipe_ctx->plane_state && pipe_ctx->stream;
1738 case FREE_PIPE:
1739 return !pipe_ctx->plane_state && !pipe_ctx->stream;
1740 default:
1741 return false;
1742 }
1743 }
1744
resource_is_for_mpcc_combine(const struct pipe_ctx * pipe_ctx)1745 bool resource_is_for_mpcc_combine(const struct pipe_ctx *pipe_ctx)
1746 {
1747 return resource_get_num_mpc_splits(pipe_ctx) > 0;
1748 }
1749
resource_get_otg_master_for_stream(struct resource_context * res_ctx,struct dc_stream_state * stream)1750 struct pipe_ctx *resource_get_otg_master_for_stream(
1751 struct resource_context *res_ctx,
1752 struct dc_stream_state *stream)
1753 {
1754 int i;
1755
1756 for (i = 0; i < MAX_PIPES; i++) {
1757 if (res_ctx->pipe_ctx[i].stream == stream &&
1758 resource_is_pipe_type(&res_ctx->pipe_ctx[i], OTG_MASTER))
1759 return &res_ctx->pipe_ctx[i];
1760 }
1761 return NULL;
1762 }
1763
resource_get_otg_master(const struct pipe_ctx * pipe_ctx)1764 struct pipe_ctx *resource_get_otg_master(const struct pipe_ctx *pipe_ctx)
1765 {
1766 struct pipe_ctx *otg_master = resource_get_opp_head(pipe_ctx);
1767
1768 while (otg_master->prev_odm_pipe)
1769 otg_master = otg_master->prev_odm_pipe;
1770 return otg_master;
1771 }
1772
resource_get_opp_head(const struct pipe_ctx * pipe_ctx)1773 struct pipe_ctx *resource_get_opp_head(const struct pipe_ctx *pipe_ctx)
1774 {
1775 struct pipe_ctx *opp_head = (struct pipe_ctx *) pipe_ctx;
1776
1777 ASSERT(!resource_is_pipe_type(opp_head, FREE_PIPE));
1778 while (opp_head->top_pipe)
1779 opp_head = opp_head->top_pipe;
1780 return opp_head;
1781 }
1782
get_tail_pipe(struct pipe_ctx * head_pipe)1783 static struct pipe_ctx *get_tail_pipe(
1784 struct pipe_ctx *head_pipe)
1785 {
1786 struct pipe_ctx *tail_pipe = head_pipe->bottom_pipe;
1787
1788 while (tail_pipe) {
1789 head_pipe = tail_pipe;
1790 tail_pipe = tail_pipe->bottom_pipe;
1791 }
1792
1793 return head_pipe;
1794 }
1795
acquire_first_split_pipe(struct resource_context * res_ctx,const struct resource_pool * pool,struct dc_stream_state * stream)1796 static int acquire_first_split_pipe(
1797 struct resource_context *res_ctx,
1798 const struct resource_pool *pool,
1799 struct dc_stream_state *stream)
1800 {
1801 int i;
1802
1803 for (i = 0; i < pool->pipe_count; i++) {
1804 struct pipe_ctx *split_pipe = &res_ctx->pipe_ctx[i];
1805
1806 if (split_pipe->top_pipe &&
1807 split_pipe->top_pipe->plane_state == split_pipe->plane_state) {
1808 split_pipe->top_pipe->bottom_pipe = split_pipe->bottom_pipe;
1809 if (split_pipe->bottom_pipe)
1810 split_pipe->bottom_pipe->top_pipe = split_pipe->top_pipe;
1811
1812 if (split_pipe->top_pipe->plane_state)
1813 resource_build_scaling_params(split_pipe->top_pipe);
1814
1815 memset(split_pipe, 0, sizeof(*split_pipe));
1816 split_pipe->stream_res.tg = pool->timing_generators[i];
1817 split_pipe->plane_res.hubp = pool->hubps[i];
1818 split_pipe->plane_res.ipp = pool->ipps[i];
1819 split_pipe->plane_res.dpp = pool->dpps[i];
1820 split_pipe->stream_res.opp = pool->opps[i];
1821 split_pipe->plane_res.mpcc_inst = pool->dpps[i]->inst;
1822 split_pipe->pipe_idx = i;
1823
1824 split_pipe->stream = stream;
1825 return i;
1826 }
1827 }
1828 return UNABLE_TO_SPLIT;
1829 }
1830
add_plane_to_opp_head_pipes(struct pipe_ctx * otg_master_pipe,struct dc_plane_state * plane_state,struct dc_state * context)1831 static bool add_plane_to_opp_head_pipes(struct pipe_ctx *otg_master_pipe,
1832 struct dc_plane_state *plane_state,
1833 struct dc_state *context)
1834 {
1835 struct pipe_ctx *opp_head_pipe = otg_master_pipe;
1836
1837 while (opp_head_pipe) {
1838 if (opp_head_pipe->plane_state) {
1839 ASSERT(0);
1840 return false;
1841 }
1842 opp_head_pipe->plane_state = plane_state;
1843 opp_head_pipe = opp_head_pipe->next_odm_pipe;
1844 }
1845
1846 return true;
1847 }
1848
insert_secondary_dpp_pipe_with_plane(struct pipe_ctx * opp_head_pipe,struct pipe_ctx * sec_pipe,struct dc_plane_state * plane_state)1849 static void insert_secondary_dpp_pipe_with_plane(struct pipe_ctx *opp_head_pipe,
1850 struct pipe_ctx *sec_pipe, struct dc_plane_state *plane_state)
1851 {
1852 struct pipe_ctx *tail_pipe = get_tail_pipe(opp_head_pipe);
1853
1854 tail_pipe->bottom_pipe = sec_pipe;
1855 sec_pipe->top_pipe = tail_pipe;
1856 if (tail_pipe->prev_odm_pipe) {
1857 ASSERT(tail_pipe->prev_odm_pipe->bottom_pipe);
1858 sec_pipe->prev_odm_pipe = tail_pipe->prev_odm_pipe->bottom_pipe;
1859 tail_pipe->prev_odm_pipe->bottom_pipe->next_odm_pipe = sec_pipe;
1860 }
1861 sec_pipe->plane_state = plane_state;
1862 }
1863
1864 /* for each opp head pipe of an otg master pipe, acquire a secondary dpp pipe
1865 * and add the plane. So the plane is added to all MPC blend trees associated
1866 * with the otg master pipe.
1867 */
acquire_secondary_dpp_pipes_and_add_plane(struct pipe_ctx * otg_master_pipe,struct dc_plane_state * plane_state,struct dc_state * new_ctx,struct dc_state * cur_ctx,struct resource_pool * pool)1868 static bool acquire_secondary_dpp_pipes_and_add_plane(
1869 struct pipe_ctx *otg_master_pipe,
1870 struct dc_plane_state *plane_state,
1871 struct dc_state *new_ctx,
1872 struct dc_state *cur_ctx,
1873 struct resource_pool *pool)
1874 {
1875 struct pipe_ctx *opp_head_pipe, *sec_pipe;
1876
1877 if (!pool->funcs->acquire_free_pipe_as_secondary_dpp_pipe)
1878 return false;
1879
1880 opp_head_pipe = otg_master_pipe;
1881 while (opp_head_pipe) {
1882 sec_pipe = pool->funcs->acquire_free_pipe_as_secondary_dpp_pipe(
1883 cur_ctx,
1884 new_ctx,
1885 pool,
1886 opp_head_pipe);
1887 if (!sec_pipe) {
1888 /* try tearing down MPCC combine */
1889 int pipe_idx = acquire_first_split_pipe(
1890 &new_ctx->res_ctx, pool,
1891 otg_master_pipe->stream);
1892
1893 if (pipe_idx >= 0)
1894 sec_pipe = &new_ctx->res_ctx.pipe_ctx[pipe_idx];
1895 }
1896
1897 if (!sec_pipe)
1898 return false;
1899
1900 insert_secondary_dpp_pipe_with_plane(opp_head_pipe, sec_pipe,
1901 plane_state);
1902 opp_head_pipe = opp_head_pipe->next_odm_pipe;
1903 }
1904 return true;
1905 }
1906
dc_add_plane_to_context(const struct dc * dc,struct dc_stream_state * stream,struct dc_plane_state * plane_state,struct dc_state * context)1907 bool dc_add_plane_to_context(
1908 const struct dc *dc,
1909 struct dc_stream_state *stream,
1910 struct dc_plane_state *plane_state,
1911 struct dc_state *context)
1912 {
1913 struct resource_pool *pool = dc->res_pool;
1914 struct pipe_ctx *otg_master_pipe;
1915 struct dc_stream_status *stream_status = NULL;
1916 bool added = false;
1917
1918 stream_status = dc_stream_get_status_from_state(context, stream);
1919 if (stream_status == NULL) {
1920 dm_error("Existing stream not found; failed to attach surface!\n");
1921 goto out;
1922 } else if (stream_status->plane_count == MAX_SURFACE_NUM) {
1923 dm_error("Surface: can not attach plane_state %p! Maximum is: %d\n",
1924 plane_state, MAX_SURFACE_NUM);
1925 goto out;
1926 }
1927
1928 otg_master_pipe = resource_get_otg_master_for_stream(
1929 &context->res_ctx, stream);
1930 if (otg_master_pipe->plane_state == NULL)
1931 added = add_plane_to_opp_head_pipes(otg_master_pipe,
1932 plane_state, context);
1933 else
1934 added = acquire_secondary_dpp_pipes_and_add_plane(
1935 otg_master_pipe, plane_state, context,
1936 dc->current_state, pool);
1937 if (added) {
1938 stream_status->plane_states[stream_status->plane_count] =
1939 plane_state;
1940 stream_status->plane_count++;
1941 dc_plane_state_retain(plane_state);
1942 }
1943
1944 out:
1945 return added;
1946 }
1947
dc_remove_plane_from_context(const struct dc * dc,struct dc_stream_state * stream,struct dc_plane_state * plane_state,struct dc_state * context)1948 bool dc_remove_plane_from_context(
1949 const struct dc *dc,
1950 struct dc_stream_state *stream,
1951 struct dc_plane_state *plane_state,
1952 struct dc_state *context)
1953 {
1954 int i;
1955 struct dc_stream_status *stream_status = NULL;
1956 struct resource_pool *pool = dc->res_pool;
1957
1958 if (!plane_state)
1959 return true;
1960
1961 for (i = 0; i < context->stream_count; i++)
1962 if (context->streams[i] == stream) {
1963 stream_status = &context->stream_status[i];
1964 break;
1965 }
1966
1967 if (stream_status == NULL) {
1968 dm_error("Existing stream not found; failed to remove plane.\n");
1969 return false;
1970 }
1971
1972 /* release pipe for plane*/
1973 for (i = pool->pipe_count - 1; i >= 0; i--) {
1974 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1975
1976 if (pipe_ctx->plane_state == plane_state) {
1977 if (pipe_ctx->top_pipe)
1978 pipe_ctx->top_pipe->bottom_pipe = pipe_ctx->bottom_pipe;
1979
1980 /* Second condition is to avoid setting NULL to top pipe
1981 * of tail pipe making it look like head pipe in subsequent
1982 * deletes
1983 */
1984 if (pipe_ctx->bottom_pipe && pipe_ctx->top_pipe)
1985 pipe_ctx->bottom_pipe->top_pipe = pipe_ctx->top_pipe;
1986
1987 /*
1988 * For head pipe detach surfaces from pipe for tail
1989 * pipe just zero it out
1990 */
1991 if (!pipe_ctx->top_pipe)
1992 pipe_ctx->plane_state = NULL;
1993 else
1994 memset(pipe_ctx, 0, sizeof(*pipe_ctx));
1995 }
1996 }
1997
1998
1999 for (i = 0; i < stream_status->plane_count; i++) {
2000 if (stream_status->plane_states[i] == plane_state) {
2001 dc_plane_state_release(stream_status->plane_states[i]);
2002 break;
2003 }
2004 }
2005
2006 if (i == stream_status->plane_count) {
2007 dm_error("Existing plane_state not found; failed to detach it!\n");
2008 return false;
2009 }
2010
2011 stream_status->plane_count--;
2012
2013 /* Start at the plane we've just released, and move all the planes one index forward to "trim" the array */
2014 for (; i < stream_status->plane_count; i++)
2015 stream_status->plane_states[i] = stream_status->plane_states[i + 1];
2016
2017 stream_status->plane_states[stream_status->plane_count] = NULL;
2018
2019 return true;
2020 }
2021
2022 /**
2023 * dc_rem_all_planes_for_stream - Remove planes attached to the target stream.
2024 *
2025 * @dc: Current dc state.
2026 * @stream: Target stream, which we want to remove the attached plans.
2027 * @context: New context.
2028 *
2029 * Return:
2030 * Return true if DC was able to remove all planes from the target
2031 * stream, otherwise, return false.
2032 */
dc_rem_all_planes_for_stream(const struct dc * dc,struct dc_stream_state * stream,struct dc_state * context)2033 bool dc_rem_all_planes_for_stream(
2034 const struct dc *dc,
2035 struct dc_stream_state *stream,
2036 struct dc_state *context)
2037 {
2038 int i, old_plane_count;
2039 struct dc_stream_status *stream_status = NULL;
2040 struct dc_plane_state *del_planes[MAX_SURFACE_NUM] = { 0 };
2041
2042 for (i = 0; i < context->stream_count; i++)
2043 if (context->streams[i] == stream) {
2044 stream_status = &context->stream_status[i];
2045 break;
2046 }
2047
2048 if (stream_status == NULL) {
2049 dm_error("Existing stream %p not found!\n", stream);
2050 return false;
2051 }
2052
2053 old_plane_count = stream_status->plane_count;
2054
2055 for (i = 0; i < old_plane_count; i++)
2056 del_planes[i] = stream_status->plane_states[i];
2057
2058 for (i = 0; i < old_plane_count; i++)
2059 if (!dc_remove_plane_from_context(dc, stream, del_planes[i], context))
2060 return false;
2061
2062 return true;
2063 }
2064
add_all_planes_for_stream(const struct dc * dc,struct dc_stream_state * stream,const struct dc_validation_set set[],int set_count,struct dc_state * context)2065 static bool add_all_planes_for_stream(
2066 const struct dc *dc,
2067 struct dc_stream_state *stream,
2068 const struct dc_validation_set set[],
2069 int set_count,
2070 struct dc_state *context)
2071 {
2072 int i, j;
2073
2074 for (i = 0; i < set_count; i++)
2075 if (set[i].stream == stream)
2076 break;
2077
2078 if (i == set_count) {
2079 dm_error("Stream %p not found in set!\n", stream);
2080 return false;
2081 }
2082
2083 for (j = 0; j < set[i].plane_count; j++)
2084 if (!dc_add_plane_to_context(dc, stream, set[i].plane_states[j], context))
2085 return false;
2086
2087 return true;
2088 }
2089
dc_add_all_planes_for_stream(const struct dc * dc,struct dc_stream_state * stream,struct dc_plane_state * const * plane_states,int plane_count,struct dc_state * context)2090 bool dc_add_all_planes_for_stream(
2091 const struct dc *dc,
2092 struct dc_stream_state *stream,
2093 struct dc_plane_state * const *plane_states,
2094 int plane_count,
2095 struct dc_state *context)
2096 {
2097 struct dc_validation_set set;
2098 int i;
2099
2100 set.stream = stream;
2101 set.plane_count = plane_count;
2102
2103 for (i = 0; i < plane_count; i++)
2104 set.plane_states[i] = plane_states[i];
2105
2106 return add_all_planes_for_stream(dc, stream, &set, 1, context);
2107 }
2108
dc_is_timing_changed(struct dc_stream_state * cur_stream,struct dc_stream_state * new_stream)2109 bool dc_is_timing_changed(struct dc_stream_state *cur_stream,
2110 struct dc_stream_state *new_stream)
2111 {
2112 if (cur_stream == NULL)
2113 return true;
2114
2115 /* If output color space is changed, need to reprogram info frames */
2116 if (cur_stream->output_color_space != new_stream->output_color_space)
2117 return true;
2118
2119 return memcmp(
2120 &cur_stream->timing,
2121 &new_stream->timing,
2122 sizeof(struct dc_crtc_timing)) != 0;
2123 }
2124
are_stream_backends_same(struct dc_stream_state * stream_a,struct dc_stream_state * stream_b)2125 static bool are_stream_backends_same(
2126 struct dc_stream_state *stream_a, struct dc_stream_state *stream_b)
2127 {
2128 if (stream_a == stream_b)
2129 return true;
2130
2131 if (stream_a == NULL || stream_b == NULL)
2132 return false;
2133
2134 if (dc_is_timing_changed(stream_a, stream_b))
2135 return false;
2136
2137 if (stream_a->signal != stream_b->signal)
2138 return false;
2139
2140 if (stream_a->dpms_off != stream_b->dpms_off)
2141 return false;
2142
2143 return true;
2144 }
2145
2146 /*
2147 * dc_is_stream_unchanged() - Compare two stream states for equivalence.
2148 *
2149 * Checks if there a difference between the two states
2150 * that would require a mode change.
2151 *
2152 * Does not compare cursor position or attributes.
2153 */
dc_is_stream_unchanged(struct dc_stream_state * old_stream,struct dc_stream_state * stream)2154 bool dc_is_stream_unchanged(
2155 struct dc_stream_state *old_stream, struct dc_stream_state *stream)
2156 {
2157
2158 if (!are_stream_backends_same(old_stream, stream))
2159 return false;
2160
2161 if (old_stream->ignore_msa_timing_param != stream->ignore_msa_timing_param)
2162 return false;
2163
2164 /*compare audio info*/
2165 if (memcmp(&old_stream->audio_info, &stream->audio_info, sizeof(stream->audio_info)) != 0)
2166 return false;
2167
2168 return true;
2169 }
2170
2171 /*
2172 * dc_is_stream_scaling_unchanged() - Compare scaling rectangles of two streams.
2173 */
dc_is_stream_scaling_unchanged(struct dc_stream_state * old_stream,struct dc_stream_state * stream)2174 bool dc_is_stream_scaling_unchanged(struct dc_stream_state *old_stream,
2175 struct dc_stream_state *stream)
2176 {
2177 if (old_stream == stream)
2178 return true;
2179
2180 if (old_stream == NULL || stream == NULL)
2181 return false;
2182
2183 if (memcmp(&old_stream->src,
2184 &stream->src,
2185 sizeof(struct rect)) != 0)
2186 return false;
2187
2188 if (memcmp(&old_stream->dst,
2189 &stream->dst,
2190 sizeof(struct rect)) != 0)
2191 return false;
2192
2193 return true;
2194 }
2195
update_stream_engine_usage(struct resource_context * res_ctx,const struct resource_pool * pool,struct stream_encoder * stream_enc,bool acquired)2196 static void update_stream_engine_usage(
2197 struct resource_context *res_ctx,
2198 const struct resource_pool *pool,
2199 struct stream_encoder *stream_enc,
2200 bool acquired)
2201 {
2202 int i;
2203
2204 for (i = 0; i < pool->stream_enc_count; i++) {
2205 if (pool->stream_enc[i] == stream_enc)
2206 res_ctx->is_stream_enc_acquired[i] = acquired;
2207 }
2208 }
2209
update_hpo_dp_stream_engine_usage(struct resource_context * res_ctx,const struct resource_pool * pool,struct hpo_dp_stream_encoder * hpo_dp_stream_enc,bool acquired)2210 static void update_hpo_dp_stream_engine_usage(
2211 struct resource_context *res_ctx,
2212 const struct resource_pool *pool,
2213 struct hpo_dp_stream_encoder *hpo_dp_stream_enc,
2214 bool acquired)
2215 {
2216 int i;
2217
2218 for (i = 0; i < pool->hpo_dp_stream_enc_count; i++) {
2219 if (pool->hpo_dp_stream_enc[i] == hpo_dp_stream_enc)
2220 res_ctx->is_hpo_dp_stream_enc_acquired[i] = acquired;
2221 }
2222 }
2223
find_acquired_hpo_dp_link_enc_for_link(const struct resource_context * res_ctx,const struct dc_link * link)2224 static inline int find_acquired_hpo_dp_link_enc_for_link(
2225 const struct resource_context *res_ctx,
2226 const struct dc_link *link)
2227 {
2228 int i;
2229
2230 for (i = 0; i < ARRAY_SIZE(res_ctx->hpo_dp_link_enc_to_link_idx); i++)
2231 if (res_ctx->hpo_dp_link_enc_ref_cnts[i] > 0 &&
2232 res_ctx->hpo_dp_link_enc_to_link_idx[i] == link->link_index)
2233 return i;
2234
2235 return -1;
2236 }
2237
find_free_hpo_dp_link_enc(const struct resource_context * res_ctx,const struct resource_pool * pool)2238 static inline int find_free_hpo_dp_link_enc(const struct resource_context *res_ctx,
2239 const struct resource_pool *pool)
2240 {
2241 int i;
2242
2243 for (i = 0; i < ARRAY_SIZE(res_ctx->hpo_dp_link_enc_ref_cnts); i++)
2244 if (res_ctx->hpo_dp_link_enc_ref_cnts[i] == 0)
2245 break;
2246
2247 return (i < ARRAY_SIZE(res_ctx->hpo_dp_link_enc_ref_cnts) &&
2248 i < pool->hpo_dp_link_enc_count) ? i : -1;
2249 }
2250
acquire_hpo_dp_link_enc(struct resource_context * res_ctx,unsigned int link_index,int enc_index)2251 static inline void acquire_hpo_dp_link_enc(
2252 struct resource_context *res_ctx,
2253 unsigned int link_index,
2254 int enc_index)
2255 {
2256 res_ctx->hpo_dp_link_enc_to_link_idx[enc_index] = link_index;
2257 res_ctx->hpo_dp_link_enc_ref_cnts[enc_index] = 1;
2258 }
2259
retain_hpo_dp_link_enc(struct resource_context * res_ctx,int enc_index)2260 static inline void retain_hpo_dp_link_enc(
2261 struct resource_context *res_ctx,
2262 int enc_index)
2263 {
2264 res_ctx->hpo_dp_link_enc_ref_cnts[enc_index]++;
2265 }
2266
release_hpo_dp_link_enc(struct resource_context * res_ctx,int enc_index)2267 static inline void release_hpo_dp_link_enc(
2268 struct resource_context *res_ctx,
2269 int enc_index)
2270 {
2271 ASSERT(res_ctx->hpo_dp_link_enc_ref_cnts[enc_index] > 0);
2272 res_ctx->hpo_dp_link_enc_ref_cnts[enc_index]--;
2273 }
2274
add_hpo_dp_link_enc_to_ctx(struct resource_context * res_ctx,const struct resource_pool * pool,struct pipe_ctx * pipe_ctx,struct dc_stream_state * stream)2275 static bool add_hpo_dp_link_enc_to_ctx(struct resource_context *res_ctx,
2276 const struct resource_pool *pool,
2277 struct pipe_ctx *pipe_ctx,
2278 struct dc_stream_state *stream)
2279 {
2280 int enc_index;
2281
2282 enc_index = find_acquired_hpo_dp_link_enc_for_link(res_ctx, stream->link);
2283
2284 if (enc_index >= 0) {
2285 retain_hpo_dp_link_enc(res_ctx, enc_index);
2286 } else {
2287 enc_index = find_free_hpo_dp_link_enc(res_ctx, pool);
2288 if (enc_index >= 0)
2289 acquire_hpo_dp_link_enc(res_ctx, stream->link->link_index, enc_index);
2290 }
2291
2292 if (enc_index >= 0)
2293 pipe_ctx->link_res.hpo_dp_link_enc = pool->hpo_dp_link_enc[enc_index];
2294
2295 return pipe_ctx->link_res.hpo_dp_link_enc != NULL;
2296 }
2297
remove_hpo_dp_link_enc_from_ctx(struct resource_context * res_ctx,struct pipe_ctx * pipe_ctx,struct dc_stream_state * stream)2298 static void remove_hpo_dp_link_enc_from_ctx(struct resource_context *res_ctx,
2299 struct pipe_ctx *pipe_ctx,
2300 struct dc_stream_state *stream)
2301 {
2302 int enc_index;
2303
2304 enc_index = find_acquired_hpo_dp_link_enc_for_link(res_ctx, stream->link);
2305
2306 if (enc_index >= 0) {
2307 release_hpo_dp_link_enc(res_ctx, enc_index);
2308 pipe_ctx->link_res.hpo_dp_link_enc = NULL;
2309 }
2310 }
2311
2312 /* TODO: release audio object */
update_audio_usage(struct resource_context * res_ctx,const struct resource_pool * pool,struct audio * audio,bool acquired)2313 void update_audio_usage(
2314 struct resource_context *res_ctx,
2315 const struct resource_pool *pool,
2316 struct audio *audio,
2317 bool acquired)
2318 {
2319 int i;
2320 for (i = 0; i < pool->audio_count; i++) {
2321 if (pool->audios[i] == audio)
2322 res_ctx->is_audio_acquired[i] = acquired;
2323 }
2324 }
2325
acquire_first_free_pipe(struct resource_context * res_ctx,const struct resource_pool * pool,struct dc_stream_state * stream)2326 static int acquire_first_free_pipe(
2327 struct resource_context *res_ctx,
2328 const struct resource_pool *pool,
2329 struct dc_stream_state *stream)
2330 {
2331 int i;
2332
2333 for (i = 0; i < pool->pipe_count; i++) {
2334 if (!res_ctx->pipe_ctx[i].stream) {
2335 struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[i];
2336
2337 pipe_ctx->stream_res.tg = pool->timing_generators[i];
2338 pipe_ctx->plane_res.mi = pool->mis[i];
2339 pipe_ctx->plane_res.hubp = pool->hubps[i];
2340 pipe_ctx->plane_res.ipp = pool->ipps[i];
2341 pipe_ctx->plane_res.xfm = pool->transforms[i];
2342 pipe_ctx->plane_res.dpp = pool->dpps[i];
2343 pipe_ctx->stream_res.opp = pool->opps[i];
2344 if (pool->dpps[i])
2345 pipe_ctx->plane_res.mpcc_inst = pool->dpps[i]->inst;
2346 pipe_ctx->pipe_idx = i;
2347
2348 if (i >= pool->timing_generator_count) {
2349 int tg_inst = pool->timing_generator_count - 1;
2350
2351 pipe_ctx->stream_res.tg = pool->timing_generators[tg_inst];
2352 pipe_ctx->stream_res.opp = pool->opps[tg_inst];
2353 }
2354
2355 pipe_ctx->stream = stream;
2356 return i;
2357 }
2358 }
2359 return -1;
2360 }
2361
find_first_free_match_hpo_dp_stream_enc_for_link(struct resource_context * res_ctx,const struct resource_pool * pool,struct dc_stream_state * stream)2362 static struct hpo_dp_stream_encoder *find_first_free_match_hpo_dp_stream_enc_for_link(
2363 struct resource_context *res_ctx,
2364 const struct resource_pool *pool,
2365 struct dc_stream_state *stream)
2366 {
2367 int i;
2368
2369 for (i = 0; i < pool->hpo_dp_stream_enc_count; i++) {
2370 if (!res_ctx->is_hpo_dp_stream_enc_acquired[i] &&
2371 pool->hpo_dp_stream_enc[i]) {
2372
2373 return pool->hpo_dp_stream_enc[i];
2374 }
2375 }
2376
2377 return NULL;
2378 }
2379
find_first_free_audio(struct resource_context * res_ctx,const struct resource_pool * pool,enum engine_id id,enum dce_version dc_version)2380 static struct audio *find_first_free_audio(
2381 struct resource_context *res_ctx,
2382 const struct resource_pool *pool,
2383 enum engine_id id,
2384 enum dce_version dc_version)
2385 {
2386 int i, available_audio_count;
2387
2388 available_audio_count = pool->audio_count;
2389
2390 for (i = 0; i < available_audio_count; i++) {
2391 if ((res_ctx->is_audio_acquired[i] == false) && (res_ctx->is_stream_enc_acquired[i] == true)) {
2392 /*we have enough audio endpoint, find the matching inst*/
2393 if (id != i)
2394 continue;
2395 return pool->audios[i];
2396 }
2397 }
2398
2399 /* use engine id to find free audio */
2400 if ((id < available_audio_count) && (res_ctx->is_audio_acquired[id] == false)) {
2401 return pool->audios[id];
2402 }
2403 /*not found the matching one, first come first serve*/
2404 for (i = 0; i < available_audio_count; i++) {
2405 if (res_ctx->is_audio_acquired[i] == false) {
2406 return pool->audios[i];
2407 }
2408 }
2409 return NULL;
2410 }
2411
2412 /*
2413 * dc_add_stream_to_ctx() - Add a new dc_stream_state to a dc_state.
2414 */
dc_add_stream_to_ctx(struct dc * dc,struct dc_state * new_ctx,struct dc_stream_state * stream)2415 enum dc_status dc_add_stream_to_ctx(
2416 struct dc *dc,
2417 struct dc_state *new_ctx,
2418 struct dc_stream_state *stream)
2419 {
2420 enum dc_status res;
2421 DC_LOGGER_INIT(dc->ctx->logger);
2422
2423 if (new_ctx->stream_count >= dc->res_pool->timing_generator_count) {
2424 DC_LOG_WARNING("Max streams reached, can't add stream %p !\n", stream);
2425 return DC_ERROR_UNEXPECTED;
2426 }
2427
2428 new_ctx->streams[new_ctx->stream_count] = stream;
2429 dc_stream_retain(stream);
2430 new_ctx->stream_count++;
2431
2432 res = dc->res_pool->funcs->add_stream_to_ctx(dc, new_ctx, stream);
2433 if (res != DC_OK)
2434 DC_LOG_WARNING("Adding stream %p to context failed with err %d!\n", stream, res);
2435
2436 return res;
2437 }
2438
2439 /*
2440 * dc_remove_stream_from_ctx() - Remove a stream from a dc_state.
2441 */
dc_remove_stream_from_ctx(struct dc * dc,struct dc_state * new_ctx,struct dc_stream_state * stream)2442 enum dc_status dc_remove_stream_from_ctx(
2443 struct dc *dc,
2444 struct dc_state *new_ctx,
2445 struct dc_stream_state *stream)
2446 {
2447 int i;
2448 struct dc_context *dc_ctx = dc->ctx;
2449 struct pipe_ctx *del_pipe = resource_get_otg_master_for_stream(&new_ctx->res_ctx, stream);
2450 struct pipe_ctx *odm_pipe;
2451
2452 if (!del_pipe) {
2453 DC_ERROR("Pipe not found for stream %p !\n", stream);
2454 return DC_ERROR_UNEXPECTED;
2455 }
2456
2457 odm_pipe = del_pipe->next_odm_pipe;
2458
2459 /* Release primary pipe */
2460 ASSERT(del_pipe->stream_res.stream_enc);
2461 update_stream_engine_usage(
2462 &new_ctx->res_ctx,
2463 dc->res_pool,
2464 del_pipe->stream_res.stream_enc,
2465 false);
2466
2467 if (dc->link_srv->dp_is_128b_132b_signal(del_pipe)) {
2468 update_hpo_dp_stream_engine_usage(
2469 &new_ctx->res_ctx, dc->res_pool,
2470 del_pipe->stream_res.hpo_dp_stream_enc,
2471 false);
2472 remove_hpo_dp_link_enc_from_ctx(&new_ctx->res_ctx, del_pipe, del_pipe->stream);
2473 }
2474
2475 if (del_pipe->stream_res.audio)
2476 update_audio_usage(
2477 &new_ctx->res_ctx,
2478 dc->res_pool,
2479 del_pipe->stream_res.audio,
2480 false);
2481
2482 resource_unreference_clock_source(&new_ctx->res_ctx,
2483 dc->res_pool,
2484 del_pipe->clock_source);
2485
2486 if (dc->res_pool->funcs->remove_stream_from_ctx)
2487 dc->res_pool->funcs->remove_stream_from_ctx(dc, new_ctx, stream);
2488
2489 while (odm_pipe) {
2490 struct pipe_ctx *next_odm_pipe = odm_pipe->next_odm_pipe;
2491
2492 memset(odm_pipe, 0, sizeof(*odm_pipe));
2493 odm_pipe = next_odm_pipe;
2494 }
2495 memset(del_pipe, 0, sizeof(*del_pipe));
2496
2497 for (i = 0; i < new_ctx->stream_count; i++)
2498 if (new_ctx->streams[i] == stream)
2499 break;
2500
2501 if (new_ctx->streams[i] != stream) {
2502 DC_ERROR("Context doesn't have stream %p !\n", stream);
2503 return DC_ERROR_UNEXPECTED;
2504 }
2505
2506 dc_stream_release(new_ctx->streams[i]);
2507 new_ctx->stream_count--;
2508
2509 /* Trim back arrays */
2510 for (; i < new_ctx->stream_count; i++) {
2511 new_ctx->streams[i] = new_ctx->streams[i + 1];
2512 new_ctx->stream_status[i] = new_ctx->stream_status[i + 1];
2513 }
2514
2515 new_ctx->streams[new_ctx->stream_count] = NULL;
2516 memset(
2517 &new_ctx->stream_status[new_ctx->stream_count],
2518 0,
2519 sizeof(new_ctx->stream_status[0]));
2520
2521 return DC_OK;
2522 }
2523
find_pll_sharable_stream(struct dc_stream_state * stream_needs_pll,struct dc_state * context)2524 static struct dc_stream_state *find_pll_sharable_stream(
2525 struct dc_stream_state *stream_needs_pll,
2526 struct dc_state *context)
2527 {
2528 int i;
2529
2530 for (i = 0; i < context->stream_count; i++) {
2531 struct dc_stream_state *stream_has_pll = context->streams[i];
2532
2533 /* We are looking for non dp, non virtual stream */
2534 if (resource_are_streams_timing_synchronizable(
2535 stream_needs_pll, stream_has_pll)
2536 && !dc_is_dp_signal(stream_has_pll->signal)
2537 && stream_has_pll->link->connector_signal
2538 != SIGNAL_TYPE_VIRTUAL)
2539 return stream_has_pll;
2540
2541 }
2542
2543 return NULL;
2544 }
2545
get_norm_pix_clk(const struct dc_crtc_timing * timing)2546 static int get_norm_pix_clk(const struct dc_crtc_timing *timing)
2547 {
2548 uint32_t pix_clk = timing->pix_clk_100hz;
2549 uint32_t normalized_pix_clk = pix_clk;
2550
2551 if (timing->pixel_encoding == PIXEL_ENCODING_YCBCR420)
2552 pix_clk /= 2;
2553 if (timing->pixel_encoding != PIXEL_ENCODING_YCBCR422) {
2554 switch (timing->display_color_depth) {
2555 case COLOR_DEPTH_666:
2556 case COLOR_DEPTH_888:
2557 normalized_pix_clk = pix_clk;
2558 break;
2559 case COLOR_DEPTH_101010:
2560 normalized_pix_clk = (pix_clk * 30) / 24;
2561 break;
2562 case COLOR_DEPTH_121212:
2563 normalized_pix_clk = (pix_clk * 36) / 24;
2564 break;
2565 case COLOR_DEPTH_161616:
2566 normalized_pix_clk = (pix_clk * 48) / 24;
2567 break;
2568 default:
2569 ASSERT(0);
2570 break;
2571 }
2572 }
2573 return normalized_pix_clk;
2574 }
2575
calculate_phy_pix_clks(struct dc_stream_state * stream)2576 static void calculate_phy_pix_clks(struct dc_stream_state *stream)
2577 {
2578 /* update actual pixel clock on all streams */
2579 if (dc_is_hdmi_signal(stream->signal))
2580 stream->phy_pix_clk = get_norm_pix_clk(
2581 &stream->timing) / 10;
2582 else
2583 stream->phy_pix_clk =
2584 stream->timing.pix_clk_100hz / 10;
2585
2586 if (stream->timing.timing_3d_format == TIMING_3D_FORMAT_HW_FRAME_PACKING)
2587 stream->phy_pix_clk *= 2;
2588 }
2589
acquire_resource_from_hw_enabled_state(struct resource_context * res_ctx,const struct resource_pool * pool,struct dc_stream_state * stream)2590 static int acquire_resource_from_hw_enabled_state(
2591 struct resource_context *res_ctx,
2592 const struct resource_pool *pool,
2593 struct dc_stream_state *stream)
2594 {
2595 struct dc_link *link = stream->link;
2596 unsigned int i, inst, tg_inst = 0;
2597 uint32_t numPipes = 1;
2598 uint32_t id_src[4] = {0};
2599
2600 /* Check for enabled DIG to identify enabled display */
2601 if (!link->link_enc->funcs->is_dig_enabled(link->link_enc))
2602 return -1;
2603
2604 inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
2605
2606 if (inst == ENGINE_ID_UNKNOWN)
2607 return -1;
2608
2609 for (i = 0; i < pool->stream_enc_count; i++) {
2610 if (pool->stream_enc[i]->id == inst) {
2611 tg_inst = pool->stream_enc[i]->funcs->dig_source_otg(
2612 pool->stream_enc[i]);
2613 break;
2614 }
2615 }
2616
2617 // tg_inst not found
2618 if (i == pool->stream_enc_count)
2619 return -1;
2620
2621 if (tg_inst >= pool->timing_generator_count)
2622 return -1;
2623
2624 if (!res_ctx->pipe_ctx[tg_inst].stream) {
2625 struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[tg_inst];
2626
2627 pipe_ctx->stream_res.tg = pool->timing_generators[tg_inst];
2628 id_src[0] = tg_inst;
2629
2630 if (pipe_ctx->stream_res.tg->funcs->get_optc_source)
2631 pipe_ctx->stream_res.tg->funcs->get_optc_source(pipe_ctx->stream_res.tg,
2632 &numPipes, &id_src[0], &id_src[1]);
2633
2634 if (id_src[0] == 0xf && id_src[1] == 0xf) {
2635 id_src[0] = tg_inst;
2636 numPipes = 1;
2637 }
2638
2639 for (i = 0; i < numPipes; i++) {
2640 //Check if src id invalid
2641 if (id_src[i] == 0xf)
2642 return -1;
2643
2644 pipe_ctx = &res_ctx->pipe_ctx[id_src[i]];
2645
2646 pipe_ctx->stream_res.tg = pool->timing_generators[tg_inst];
2647 pipe_ctx->plane_res.mi = pool->mis[id_src[i]];
2648 pipe_ctx->plane_res.hubp = pool->hubps[id_src[i]];
2649 pipe_ctx->plane_res.ipp = pool->ipps[id_src[i]];
2650 pipe_ctx->plane_res.xfm = pool->transforms[id_src[i]];
2651 pipe_ctx->plane_res.dpp = pool->dpps[id_src[i]];
2652 pipe_ctx->stream_res.opp = pool->opps[id_src[i]];
2653
2654 if (pool->dpps[id_src[i]]) {
2655 pipe_ctx->plane_res.mpcc_inst = pool->dpps[id_src[i]]->inst;
2656
2657 if (pool->mpc->funcs->read_mpcc_state) {
2658 struct mpcc_state s = {0};
2659
2660 pool->mpc->funcs->read_mpcc_state(pool->mpc, pipe_ctx->plane_res.mpcc_inst, &s);
2661
2662 if (s.dpp_id < MAX_MPCC)
2663 pool->mpc->mpcc_array[pipe_ctx->plane_res.mpcc_inst].dpp_id =
2664 s.dpp_id;
2665
2666 if (s.bot_mpcc_id < MAX_MPCC)
2667 pool->mpc->mpcc_array[pipe_ctx->plane_res.mpcc_inst].mpcc_bot =
2668 &pool->mpc->mpcc_array[s.bot_mpcc_id];
2669
2670 if (s.opp_id < MAX_OPP)
2671 pipe_ctx->stream_res.opp->mpc_tree_params.opp_id = s.opp_id;
2672 }
2673 }
2674 pipe_ctx->pipe_idx = id_src[i];
2675
2676 if (id_src[i] >= pool->timing_generator_count) {
2677 id_src[i] = pool->timing_generator_count - 1;
2678
2679 pipe_ctx->stream_res.tg = pool->timing_generators[id_src[i]];
2680 pipe_ctx->stream_res.opp = pool->opps[id_src[i]];
2681 }
2682
2683 pipe_ctx->stream = stream;
2684 }
2685
2686 if (numPipes == 2) {
2687 stream->apply_boot_odm_mode = dm_odm_combine_policy_2to1;
2688 res_ctx->pipe_ctx[id_src[0]].next_odm_pipe = &res_ctx->pipe_ctx[id_src[1]];
2689 res_ctx->pipe_ctx[id_src[0]].prev_odm_pipe = NULL;
2690 res_ctx->pipe_ctx[id_src[1]].next_odm_pipe = NULL;
2691 res_ctx->pipe_ctx[id_src[1]].prev_odm_pipe = &res_ctx->pipe_ctx[id_src[0]];
2692 } else
2693 stream->apply_boot_odm_mode = dm_odm_combine_mode_disabled;
2694
2695 return id_src[0];
2696 }
2697
2698 return -1;
2699 }
2700
mark_seamless_boot_stream(const struct dc * dc,struct dc_stream_state * stream)2701 static void mark_seamless_boot_stream(
2702 const struct dc *dc,
2703 struct dc_stream_state *stream)
2704 {
2705 struct dc_bios *dcb = dc->ctx->dc_bios;
2706
2707 if (dc->config.allow_seamless_boot_optimization &&
2708 !dcb->funcs->is_accelerated_mode(dcb)) {
2709 if (dc_validate_boot_timing(dc, stream->sink, &stream->timing))
2710 stream->apply_seamless_boot_optimization = true;
2711 }
2712 }
2713
resource_map_pool_resources(const struct dc * dc,struct dc_state * context,struct dc_stream_state * stream)2714 enum dc_status resource_map_pool_resources(
2715 const struct dc *dc,
2716 struct dc_state *context,
2717 struct dc_stream_state *stream)
2718 {
2719 const struct resource_pool *pool = dc->res_pool;
2720 int i;
2721 struct dc_context *dc_ctx = dc->ctx;
2722 struct pipe_ctx *pipe_ctx = NULL;
2723 int pipe_idx = -1;
2724
2725 calculate_phy_pix_clks(stream);
2726
2727 mark_seamless_boot_stream(dc, stream);
2728
2729 if (stream->apply_seamless_boot_optimization) {
2730 pipe_idx = acquire_resource_from_hw_enabled_state(
2731 &context->res_ctx,
2732 pool,
2733 stream);
2734 if (pipe_idx < 0)
2735 /* hw resource was assigned to other stream */
2736 stream->apply_seamless_boot_optimization = false;
2737 }
2738
2739 if (pipe_idx < 0)
2740 /* acquire new resources */
2741 pipe_idx = acquire_first_free_pipe(&context->res_ctx, pool, stream);
2742
2743 if (pipe_idx < 0)
2744 pipe_idx = acquire_first_split_pipe(&context->res_ctx, pool, stream);
2745
2746 if (pipe_idx < 0 || context->res_ctx.pipe_ctx[pipe_idx].stream_res.tg == NULL)
2747 return DC_NO_CONTROLLER_RESOURCE;
2748
2749 pipe_ctx = &context->res_ctx.pipe_ctx[pipe_idx];
2750
2751 pipe_ctx->stream_res.stream_enc =
2752 dc->res_pool->funcs->find_first_free_match_stream_enc_for_link(
2753 &context->res_ctx, pool, stream);
2754
2755 if (!pipe_ctx->stream_res.stream_enc)
2756 return DC_NO_STREAM_ENC_RESOURCE;
2757
2758 update_stream_engine_usage(
2759 &context->res_ctx, pool,
2760 pipe_ctx->stream_res.stream_enc,
2761 true);
2762
2763 /* Allocate DP HPO Stream Encoder based on signal, hw capabilities
2764 * and link settings
2765 */
2766 if (dc_is_dp_signal(stream->signal)) {
2767 if (!dc->link_srv->dp_decide_link_settings(stream, &pipe_ctx->link_config.dp_link_settings))
2768 return DC_FAIL_DP_LINK_BANDWIDTH;
2769 if (dc->link_srv->dp_get_encoding_format(
2770 &pipe_ctx->link_config.dp_link_settings) == DP_128b_132b_ENCODING) {
2771 pipe_ctx->stream_res.hpo_dp_stream_enc =
2772 find_first_free_match_hpo_dp_stream_enc_for_link(
2773 &context->res_ctx, pool, stream);
2774
2775 if (!pipe_ctx->stream_res.hpo_dp_stream_enc)
2776 return DC_NO_STREAM_ENC_RESOURCE;
2777
2778 update_hpo_dp_stream_engine_usage(
2779 &context->res_ctx, pool,
2780 pipe_ctx->stream_res.hpo_dp_stream_enc,
2781 true);
2782 if (!add_hpo_dp_link_enc_to_ctx(&context->res_ctx, pool, pipe_ctx, stream))
2783 return DC_NO_LINK_ENC_RESOURCE;
2784 }
2785 }
2786
2787 /* TODO: Add check if ASIC support and EDID audio */
2788 if (!stream->converter_disable_audio &&
2789 dc_is_audio_capable_signal(pipe_ctx->stream->signal) &&
2790 stream->audio_info.mode_count && stream->audio_info.flags.all) {
2791 pipe_ctx->stream_res.audio = find_first_free_audio(
2792 &context->res_ctx, pool, pipe_ctx->stream_res.stream_enc->id, dc_ctx->dce_version);
2793
2794 /*
2795 * Audio assigned in order first come first get.
2796 * There are asics which has number of audio
2797 * resources less then number of pipes
2798 */
2799 if (pipe_ctx->stream_res.audio)
2800 update_audio_usage(&context->res_ctx, pool,
2801 pipe_ctx->stream_res.audio, true);
2802 }
2803
2804 /* Add ABM to the resource if on EDP */
2805 if (pipe_ctx->stream && dc_is_embedded_signal(pipe_ctx->stream->signal)) {
2806 if (pool->abm)
2807 pipe_ctx->stream_res.abm = pool->abm;
2808 else
2809 pipe_ctx->stream_res.abm = pool->multiple_abms[pipe_ctx->stream_res.tg->inst];
2810 }
2811
2812 for (i = 0; i < context->stream_count; i++)
2813 if (context->streams[i] == stream) {
2814 context->stream_status[i].primary_otg_inst = pipe_ctx->stream_res.tg->inst;
2815 context->stream_status[i].stream_enc_inst = pipe_ctx->stream_res.stream_enc->stream_enc_inst;
2816 context->stream_status[i].audio_inst =
2817 pipe_ctx->stream_res.audio ? pipe_ctx->stream_res.audio->inst : -1;
2818
2819 return DC_OK;
2820 }
2821
2822 DC_ERROR("Stream %p not found in new ctx!\n", stream);
2823 return DC_ERROR_UNEXPECTED;
2824 }
2825
2826 /**
2827 * dc_resource_state_copy_construct_current() - Creates a new dc_state from existing state
2828 *
2829 * @dc: copy out of dc->current_state
2830 * @dst_ctx: copy into this
2831 *
2832 * This function makes a shallow copy of the current DC state and increments
2833 * refcounts on existing streams and planes.
2834 */
dc_resource_state_copy_construct_current(const struct dc * dc,struct dc_state * dst_ctx)2835 void dc_resource_state_copy_construct_current(
2836 const struct dc *dc,
2837 struct dc_state *dst_ctx)
2838 {
2839 dc_resource_state_copy_construct(dc->current_state, dst_ctx);
2840 }
2841
2842
dc_resource_state_construct(const struct dc * dc,struct dc_state * dst_ctx)2843 void dc_resource_state_construct(
2844 const struct dc *dc,
2845 struct dc_state *dst_ctx)
2846 {
2847 dst_ctx->clk_mgr = dc->clk_mgr;
2848
2849 /* Initialise DIG link encoder resource tracking variables. */
2850 link_enc_cfg_init(dc, dst_ctx);
2851 }
2852
2853
dc_resource_is_dsc_encoding_supported(const struct dc * dc)2854 bool dc_resource_is_dsc_encoding_supported(const struct dc *dc)
2855 {
2856 if (dc->res_pool == NULL)
2857 return false;
2858
2859 return dc->res_pool->res_cap->num_dsc > 0;
2860 }
2861
planes_changed_for_existing_stream(struct dc_state * context,struct dc_stream_state * stream,const struct dc_validation_set set[],int set_count)2862 static bool planes_changed_for_existing_stream(struct dc_state *context,
2863 struct dc_stream_state *stream,
2864 const struct dc_validation_set set[],
2865 int set_count)
2866 {
2867 int i, j;
2868 struct dc_stream_status *stream_status = NULL;
2869
2870 for (i = 0; i < context->stream_count; i++) {
2871 if (context->streams[i] == stream) {
2872 stream_status = &context->stream_status[i];
2873 break;
2874 }
2875 }
2876
2877 if (!stream_status)
2878 ASSERT(0);
2879
2880 for (i = 0; i < set_count; i++)
2881 if (set[i].stream == stream)
2882 break;
2883
2884 if (i == set_count)
2885 ASSERT(0);
2886
2887 if (set[i].plane_count != stream_status->plane_count)
2888 return true;
2889
2890 for (j = 0; j < set[i].plane_count; j++)
2891 if (set[i].plane_states[j] != stream_status->plane_states[j])
2892 return true;
2893
2894 return false;
2895 }
2896
2897 /**
2898 * dc_validate_with_context - Validate and update the potential new stream in the context object
2899 *
2900 * @dc: Used to get the current state status
2901 * @set: An array of dc_validation_set with all the current streams reference
2902 * @set_count: Total of streams
2903 * @context: New context
2904 * @fast_validate: Enable or disable fast validation
2905 *
2906 * This function updates the potential new stream in the context object. It
2907 * creates multiple lists for the add, remove, and unchanged streams. In
2908 * particular, if the unchanged streams have a plane that changed, it is
2909 * necessary to remove all planes from the unchanged streams. In summary, this
2910 * function is responsible for validating the new context.
2911 *
2912 * Return:
2913 * In case of success, return DC_OK (1), otherwise, return a DC error.
2914 */
dc_validate_with_context(struct dc * dc,const struct dc_validation_set set[],int set_count,struct dc_state * context,bool fast_validate)2915 enum dc_status dc_validate_with_context(struct dc *dc,
2916 const struct dc_validation_set set[],
2917 int set_count,
2918 struct dc_state *context,
2919 bool fast_validate)
2920 {
2921 struct dc_stream_state *unchanged_streams[MAX_PIPES] = { 0 };
2922 struct dc_stream_state *del_streams[MAX_PIPES] = { 0 };
2923 struct dc_stream_state *add_streams[MAX_PIPES] = { 0 };
2924 int old_stream_count = context->stream_count;
2925 enum dc_status res = DC_ERROR_UNEXPECTED;
2926 int unchanged_streams_count = 0;
2927 int del_streams_count = 0;
2928 int add_streams_count = 0;
2929 bool found = false;
2930 int i, j, k;
2931
2932 DC_LOGGER_INIT(dc->ctx->logger);
2933
2934 /* First build a list of streams to be remove from current context */
2935 for (i = 0; i < old_stream_count; i++) {
2936 struct dc_stream_state *stream = context->streams[i];
2937
2938 for (j = 0; j < set_count; j++) {
2939 if (stream == set[j].stream) {
2940 found = true;
2941 break;
2942 }
2943 }
2944
2945 if (!found)
2946 del_streams[del_streams_count++] = stream;
2947
2948 found = false;
2949 }
2950
2951 /* Second, build a list of new streams */
2952 for (i = 0; i < set_count; i++) {
2953 struct dc_stream_state *stream = set[i].stream;
2954
2955 for (j = 0; j < old_stream_count; j++) {
2956 if (stream == context->streams[j]) {
2957 found = true;
2958 break;
2959 }
2960 }
2961
2962 if (!found)
2963 add_streams[add_streams_count++] = stream;
2964
2965 found = false;
2966 }
2967
2968 /* Build a list of unchanged streams which is necessary for handling
2969 * planes change such as added, removed, and updated.
2970 */
2971 for (i = 0; i < set_count; i++) {
2972 /* Check if stream is part of the delete list */
2973 for (j = 0; j < del_streams_count; j++) {
2974 if (set[i].stream == del_streams[j]) {
2975 found = true;
2976 break;
2977 }
2978 }
2979
2980 if (!found) {
2981 /* Check if stream is part of the add list */
2982 for (j = 0; j < add_streams_count; j++) {
2983 if (set[i].stream == add_streams[j]) {
2984 found = true;
2985 break;
2986 }
2987 }
2988 }
2989
2990 if (!found)
2991 unchanged_streams[unchanged_streams_count++] = set[i].stream;
2992
2993 found = false;
2994 }
2995
2996 /* Remove all planes for unchanged streams if planes changed */
2997 for (i = 0; i < unchanged_streams_count; i++) {
2998 if (planes_changed_for_existing_stream(context,
2999 unchanged_streams[i],
3000 set,
3001 set_count)) {
3002 if (!dc_rem_all_planes_for_stream(dc,
3003 unchanged_streams[i],
3004 context)) {
3005 res = DC_FAIL_DETACH_SURFACES;
3006 goto fail;
3007 }
3008 }
3009 }
3010
3011 /* Remove all planes for removed streams and then remove the streams */
3012 for (i = 0; i < del_streams_count; i++) {
3013 /* Need to cpy the dwb data from the old stream in order to efc to work */
3014 if (del_streams[i]->num_wb_info > 0) {
3015 for (j = 0; j < add_streams_count; j++) {
3016 if (del_streams[i]->sink == add_streams[j]->sink) {
3017 add_streams[j]->num_wb_info = del_streams[i]->num_wb_info;
3018 for (k = 0; k < del_streams[i]->num_wb_info; k++)
3019 add_streams[j]->writeback_info[k] = del_streams[i]->writeback_info[k];
3020 }
3021 }
3022 }
3023
3024 if (!dc_rem_all_planes_for_stream(dc, del_streams[i], context)) {
3025 res = DC_FAIL_DETACH_SURFACES;
3026 goto fail;
3027 }
3028
3029 res = dc_remove_stream_from_ctx(dc, context, del_streams[i]);
3030 if (res != DC_OK)
3031 goto fail;
3032 }
3033
3034 /* Swap seamless boot stream to pipe 0 (if needed) to ensure pipe_ctx
3035 * matches. This may change in the future if seamless_boot_stream can be
3036 * multiple.
3037 */
3038 for (i = 0; i < add_streams_count; i++) {
3039 mark_seamless_boot_stream(dc, add_streams[i]);
3040 if (add_streams[i]->apply_seamless_boot_optimization && i != 0) {
3041 struct dc_stream_state *temp = add_streams[0];
3042
3043 add_streams[0] = add_streams[i];
3044 add_streams[i] = temp;
3045 break;
3046 }
3047 }
3048
3049 /* Add new streams and then add all planes for the new stream */
3050 for (i = 0; i < add_streams_count; i++) {
3051 calculate_phy_pix_clks(add_streams[i]);
3052 res = dc_add_stream_to_ctx(dc, context, add_streams[i]);
3053 if (res != DC_OK)
3054 goto fail;
3055
3056 if (!add_all_planes_for_stream(dc, add_streams[i], set, set_count, context)) {
3057 res = DC_FAIL_ATTACH_SURFACES;
3058 goto fail;
3059 }
3060 }
3061
3062 /* Add all planes for unchanged streams if planes changed */
3063 for (i = 0; i < unchanged_streams_count; i++) {
3064 if (planes_changed_for_existing_stream(context,
3065 unchanged_streams[i],
3066 set,
3067 set_count)) {
3068 if (!add_all_planes_for_stream(dc, unchanged_streams[i], set, set_count, context)) {
3069 res = DC_FAIL_ATTACH_SURFACES;
3070 goto fail;
3071 }
3072 }
3073 }
3074
3075 res = dc_validate_global_state(dc, context, fast_validate);
3076
3077 fail:
3078 if (res != DC_OK)
3079 DC_LOG_WARNING("%s:resource validation failed, dc_status:%d\n",
3080 __func__,
3081 res);
3082
3083 return res;
3084 }
3085
3086 /**
3087 * dc_validate_global_state() - Determine if hardware can support a given state
3088 *
3089 * @dc: dc struct for this driver
3090 * @new_ctx: state to be validated
3091 * @fast_validate: set to true if only yes/no to support matters
3092 *
3093 * Checks hardware resource availability and bandwidth requirement.
3094 *
3095 * Return:
3096 * DC_OK if the result can be programmed. Otherwise, an error code.
3097 */
dc_validate_global_state(struct dc * dc,struct dc_state * new_ctx,bool fast_validate)3098 enum dc_status dc_validate_global_state(
3099 struct dc *dc,
3100 struct dc_state *new_ctx,
3101 bool fast_validate)
3102 {
3103 enum dc_status result = DC_ERROR_UNEXPECTED;
3104 int i, j;
3105
3106 if (!new_ctx)
3107 return DC_ERROR_UNEXPECTED;
3108
3109 if (dc->res_pool->funcs->validate_global) {
3110 result = dc->res_pool->funcs->validate_global(dc, new_ctx);
3111 if (result != DC_OK)
3112 return result;
3113 }
3114
3115 for (i = 0; i < new_ctx->stream_count; i++) {
3116 struct dc_stream_state *stream = new_ctx->streams[i];
3117
3118 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3119 struct pipe_ctx *pipe_ctx = &new_ctx->res_ctx.pipe_ctx[j];
3120
3121 if (pipe_ctx->stream != stream)
3122 continue;
3123
3124 if (dc->res_pool->funcs->patch_unknown_plane_state &&
3125 pipe_ctx->plane_state &&
3126 pipe_ctx->plane_state->tiling_info.gfx9.swizzle == DC_SW_UNKNOWN) {
3127 result = dc->res_pool->funcs->patch_unknown_plane_state(pipe_ctx->plane_state);
3128 if (result != DC_OK)
3129 return result;
3130 }
3131
3132 /* Switch to dp clock source only if there is
3133 * no non dp stream that shares the same timing
3134 * with the dp stream.
3135 */
3136 if (dc_is_dp_signal(pipe_ctx->stream->signal) &&
3137 !find_pll_sharable_stream(stream, new_ctx)) {
3138
3139 resource_unreference_clock_source(
3140 &new_ctx->res_ctx,
3141 dc->res_pool,
3142 pipe_ctx->clock_source);
3143
3144 pipe_ctx->clock_source = dc->res_pool->dp_clock_source;
3145 resource_reference_clock_source(
3146 &new_ctx->res_ctx,
3147 dc->res_pool,
3148 pipe_ctx->clock_source);
3149 }
3150 }
3151 }
3152
3153 result = resource_build_scaling_params_for_context(dc, new_ctx);
3154
3155 if (result == DC_OK)
3156 if (!dc->res_pool->funcs->validate_bandwidth(dc, new_ctx, fast_validate))
3157 result = DC_FAIL_BANDWIDTH_VALIDATE;
3158
3159 /*
3160 * Only update link encoder to stream assignment after bandwidth validation passed.
3161 * TODO: Split out assignment and validation.
3162 */
3163 if (result == DC_OK && dc->res_pool->funcs->link_encs_assign && fast_validate == false)
3164 dc->res_pool->funcs->link_encs_assign(
3165 dc, new_ctx, new_ctx->streams, new_ctx->stream_count);
3166
3167 return result;
3168 }
3169
patch_gamut_packet_checksum(struct dc_info_packet * gamut_packet)3170 static void patch_gamut_packet_checksum(
3171 struct dc_info_packet *gamut_packet)
3172 {
3173 /* For gamut we recalc checksum */
3174 if (gamut_packet->valid) {
3175 uint8_t chk_sum = 0;
3176 uint8_t *ptr;
3177 uint8_t i;
3178
3179 /*start of the Gamut data. */
3180 ptr = &gamut_packet->sb[3];
3181
3182 for (i = 0; i <= gamut_packet->sb[1]; i++)
3183 chk_sum += ptr[i];
3184
3185 gamut_packet->sb[2] = (uint8_t) (0x100 - chk_sum);
3186 }
3187 }
3188
set_avi_info_frame(struct dc_info_packet * info_packet,struct pipe_ctx * pipe_ctx)3189 static void set_avi_info_frame(
3190 struct dc_info_packet *info_packet,
3191 struct pipe_ctx *pipe_ctx)
3192 {
3193 struct dc_stream_state *stream = pipe_ctx->stream;
3194 enum dc_color_space color_space = COLOR_SPACE_UNKNOWN;
3195 uint32_t pixel_encoding = 0;
3196 enum scanning_type scan_type = SCANNING_TYPE_NODATA;
3197 enum dc_aspect_ratio aspect = ASPECT_RATIO_NO_DATA;
3198 bool itc = false;
3199 uint8_t itc_value = 0;
3200 uint8_t cn0_cn1 = 0;
3201 unsigned int cn0_cn1_value = 0;
3202 uint8_t *check_sum = NULL;
3203 uint8_t byte_index = 0;
3204 union hdmi_info_packet hdmi_info;
3205 union display_content_support support = {0};
3206 unsigned int vic = pipe_ctx->stream->timing.vic;
3207 unsigned int rid = pipe_ctx->stream->timing.rid;
3208 unsigned int fr_ind = pipe_ctx->stream->timing.fr_index;
3209 enum dc_timing_3d_format format;
3210
3211 memset(&hdmi_info, 0, sizeof(union hdmi_info_packet));
3212
3213 color_space = pipe_ctx->stream->output_color_space;
3214 if (color_space == COLOR_SPACE_UNKNOWN)
3215 color_space = (stream->timing.pixel_encoding == PIXEL_ENCODING_RGB) ?
3216 COLOR_SPACE_SRGB:COLOR_SPACE_YCBCR709;
3217
3218 /* Initialize header */
3219 hdmi_info.bits.header.info_frame_type = HDMI_INFOFRAME_TYPE_AVI;
3220 /* InfoFrameVersion_3 is defined by CEA861F (Section 6.4), but shall
3221 * not be used in HDMI 2.0 (Section 10.1) */
3222 hdmi_info.bits.header.version = 2;
3223 hdmi_info.bits.header.length = HDMI_AVI_INFOFRAME_SIZE;
3224
3225 /*
3226 * IDO-defined (Y2,Y1,Y0 = 1,1,1) shall not be used by devices built
3227 * according to HDMI 2.0 spec (Section 10.1)
3228 */
3229
3230 switch (stream->timing.pixel_encoding) {
3231 case PIXEL_ENCODING_YCBCR422:
3232 pixel_encoding = 1;
3233 break;
3234
3235 case PIXEL_ENCODING_YCBCR444:
3236 pixel_encoding = 2;
3237 break;
3238 case PIXEL_ENCODING_YCBCR420:
3239 pixel_encoding = 3;
3240 break;
3241
3242 case PIXEL_ENCODING_RGB:
3243 default:
3244 pixel_encoding = 0;
3245 }
3246
3247 /* Y0_Y1_Y2 : The pixel encoding */
3248 /* H14b AVI InfoFrame has extension on Y-field from 2 bits to 3 bits */
3249 hdmi_info.bits.Y0_Y1_Y2 = pixel_encoding;
3250
3251 /* A0 = 1 Active Format Information valid */
3252 hdmi_info.bits.A0 = ACTIVE_FORMAT_VALID;
3253
3254 /* B0, B1 = 3; Bar info data is valid */
3255 hdmi_info.bits.B0_B1 = BAR_INFO_BOTH_VALID;
3256
3257 hdmi_info.bits.SC0_SC1 = PICTURE_SCALING_UNIFORM;
3258
3259 /* S0, S1 : Underscan / Overscan */
3260 /* TODO: un-hardcode scan type */
3261 scan_type = SCANNING_TYPE_UNDERSCAN;
3262 hdmi_info.bits.S0_S1 = scan_type;
3263
3264 /* C0, C1 : Colorimetry */
3265 switch (color_space) {
3266 case COLOR_SPACE_YCBCR709:
3267 case COLOR_SPACE_YCBCR709_LIMITED:
3268 hdmi_info.bits.C0_C1 = COLORIMETRY_ITU709;
3269 break;
3270 case COLOR_SPACE_YCBCR601:
3271 case COLOR_SPACE_YCBCR601_LIMITED:
3272 hdmi_info.bits.C0_C1 = COLORIMETRY_ITU601;
3273 break;
3274 case COLOR_SPACE_2020_RGB_FULLRANGE:
3275 case COLOR_SPACE_2020_RGB_LIMITEDRANGE:
3276 case COLOR_SPACE_2020_YCBCR:
3277 hdmi_info.bits.EC0_EC2 = COLORIMETRYEX_BT2020RGBYCBCR;
3278 hdmi_info.bits.C0_C1 = COLORIMETRY_EXTENDED;
3279 break;
3280 case COLOR_SPACE_ADOBERGB:
3281 hdmi_info.bits.EC0_EC2 = COLORIMETRYEX_ADOBERGB;
3282 hdmi_info.bits.C0_C1 = COLORIMETRY_EXTENDED;
3283 break;
3284 case COLOR_SPACE_SRGB:
3285 default:
3286 hdmi_info.bits.C0_C1 = COLORIMETRY_NO_DATA;
3287 break;
3288 }
3289
3290 if (pixel_encoding && color_space == COLOR_SPACE_2020_YCBCR &&
3291 stream->out_transfer_func->tf == TRANSFER_FUNCTION_GAMMA22) {
3292 hdmi_info.bits.EC0_EC2 = 0;
3293 hdmi_info.bits.C0_C1 = COLORIMETRY_ITU709;
3294 }
3295
3296 /* TODO: un-hardcode aspect ratio */
3297 aspect = stream->timing.aspect_ratio;
3298
3299 switch (aspect) {
3300 case ASPECT_RATIO_4_3:
3301 case ASPECT_RATIO_16_9:
3302 hdmi_info.bits.M0_M1 = aspect;
3303 break;
3304
3305 case ASPECT_RATIO_NO_DATA:
3306 case ASPECT_RATIO_64_27:
3307 case ASPECT_RATIO_256_135:
3308 default:
3309 hdmi_info.bits.M0_M1 = 0;
3310 }
3311
3312 /* Active Format Aspect ratio - same as Picture Aspect Ratio. */
3313 hdmi_info.bits.R0_R3 = ACTIVE_FORMAT_ASPECT_RATIO_SAME_AS_PICTURE;
3314
3315 /* TODO: un-hardcode cn0_cn1 and itc */
3316
3317 cn0_cn1 = 0;
3318 cn0_cn1_value = 0;
3319
3320 itc = true;
3321 itc_value = 1;
3322
3323 support = stream->content_support;
3324
3325 if (itc) {
3326 if (!support.bits.valid_content_type) {
3327 cn0_cn1_value = 0;
3328 } else {
3329 if (cn0_cn1 == DISPLAY_CONTENT_TYPE_GRAPHICS) {
3330 if (support.bits.graphics_content == 1) {
3331 cn0_cn1_value = 0;
3332 }
3333 } else if (cn0_cn1 == DISPLAY_CONTENT_TYPE_PHOTO) {
3334 if (support.bits.photo_content == 1) {
3335 cn0_cn1_value = 1;
3336 } else {
3337 cn0_cn1_value = 0;
3338 itc_value = 0;
3339 }
3340 } else if (cn0_cn1 == DISPLAY_CONTENT_TYPE_CINEMA) {
3341 if (support.bits.cinema_content == 1) {
3342 cn0_cn1_value = 2;
3343 } else {
3344 cn0_cn1_value = 0;
3345 itc_value = 0;
3346 }
3347 } else if (cn0_cn1 == DISPLAY_CONTENT_TYPE_GAME) {
3348 if (support.bits.game_content == 1) {
3349 cn0_cn1_value = 3;
3350 } else {
3351 cn0_cn1_value = 0;
3352 itc_value = 0;
3353 }
3354 }
3355 }
3356 hdmi_info.bits.CN0_CN1 = cn0_cn1_value;
3357 hdmi_info.bits.ITC = itc_value;
3358 }
3359
3360 if (stream->qs_bit == 1) {
3361 if (color_space == COLOR_SPACE_SRGB ||
3362 color_space == COLOR_SPACE_2020_RGB_FULLRANGE)
3363 hdmi_info.bits.Q0_Q1 = RGB_QUANTIZATION_FULL_RANGE;
3364 else if (color_space == COLOR_SPACE_SRGB_LIMITED ||
3365 color_space == COLOR_SPACE_2020_RGB_LIMITEDRANGE)
3366 hdmi_info.bits.Q0_Q1 = RGB_QUANTIZATION_LIMITED_RANGE;
3367 else
3368 hdmi_info.bits.Q0_Q1 = RGB_QUANTIZATION_DEFAULT_RANGE;
3369 } else
3370 hdmi_info.bits.Q0_Q1 = RGB_QUANTIZATION_DEFAULT_RANGE;
3371
3372 /* TODO : We should handle YCC quantization */
3373 /* but we do not have matrix calculation */
3374 hdmi_info.bits.YQ0_YQ1 = YYC_QUANTIZATION_LIMITED_RANGE;
3375
3376 ///VIC
3377 if (pipe_ctx->stream->timing.hdmi_vic != 0)
3378 vic = 0;
3379 format = stream->timing.timing_3d_format;
3380 /*todo, add 3DStereo support*/
3381 if (format != TIMING_3D_FORMAT_NONE) {
3382 // Based on HDMI specs hdmi vic needs to be converted to cea vic when 3D is enabled
3383 switch (pipe_ctx->stream->timing.hdmi_vic) {
3384 case 1:
3385 vic = 95;
3386 break;
3387 case 2:
3388 vic = 94;
3389 break;
3390 case 3:
3391 vic = 93;
3392 break;
3393 case 4:
3394 vic = 98;
3395 break;
3396 default:
3397 break;
3398 }
3399 }
3400 /* If VIC >= 128, the Source shall use AVI InfoFrame Version 3*/
3401 hdmi_info.bits.VIC0_VIC7 = vic;
3402 if (vic >= 128)
3403 hdmi_info.bits.header.version = 3;
3404 /* If (C1, C0)=(1, 1) and (EC2, EC1, EC0)=(1, 1, 1),
3405 * the Source shall use 20 AVI InfoFrame Version 4
3406 */
3407 if (hdmi_info.bits.C0_C1 == COLORIMETRY_EXTENDED &&
3408 hdmi_info.bits.EC0_EC2 == COLORIMETRYEX_RESERVED) {
3409 hdmi_info.bits.header.version = 4;
3410 hdmi_info.bits.header.length = 14;
3411 }
3412
3413 if (rid != 0 && fr_ind != 0) {
3414 hdmi_info.bits.header.version = 5;
3415 hdmi_info.bits.header.length = 15;
3416
3417 hdmi_info.bits.FR0_FR3 = fr_ind & 0xF;
3418 hdmi_info.bits.FR4 = (fr_ind >> 4) & 0x1;
3419 hdmi_info.bits.RID0_RID5 = rid;
3420 }
3421
3422 /* pixel repetition
3423 * PR0 - PR3 start from 0 whereas pHwPathMode->mode.timing.flags.pixel
3424 * repetition start from 1 */
3425 hdmi_info.bits.PR0_PR3 = 0;
3426
3427 /* Bar Info
3428 * barTop: Line Number of End of Top Bar.
3429 * barBottom: Line Number of Start of Bottom Bar.
3430 * barLeft: Pixel Number of End of Left Bar.
3431 * barRight: Pixel Number of Start of Right Bar. */
3432 hdmi_info.bits.bar_top = stream->timing.v_border_top;
3433 hdmi_info.bits.bar_bottom = (stream->timing.v_total
3434 - stream->timing.v_border_bottom + 1);
3435 hdmi_info.bits.bar_left = stream->timing.h_border_left;
3436 hdmi_info.bits.bar_right = (stream->timing.h_total
3437 - stream->timing.h_border_right + 1);
3438
3439 /* Additional Colorimetry Extension
3440 * Used in conduction with C0-C1 and EC0-EC2
3441 * 0 = DCI-P3 RGB (D65)
3442 * 1 = DCI-P3 RGB (theater)
3443 */
3444 hdmi_info.bits.ACE0_ACE3 = 0;
3445
3446 /* check_sum - Calculate AFMT_AVI_INFO0 ~ AFMT_AVI_INFO3 */
3447 check_sum = &hdmi_info.packet_raw_data.sb[0];
3448
3449 *check_sum = HDMI_INFOFRAME_TYPE_AVI + hdmi_info.bits.header.length + hdmi_info.bits.header.version;
3450
3451 for (byte_index = 1; byte_index <= hdmi_info.bits.header.length; byte_index++)
3452 *check_sum += hdmi_info.packet_raw_data.sb[byte_index];
3453
3454 /* one byte complement */
3455 *check_sum = (uint8_t) (0x100 - *check_sum);
3456
3457 /* Store in hw_path_mode */
3458 info_packet->hb0 = hdmi_info.packet_raw_data.hb0;
3459 info_packet->hb1 = hdmi_info.packet_raw_data.hb1;
3460 info_packet->hb2 = hdmi_info.packet_raw_data.hb2;
3461
3462 for (byte_index = 0; byte_index < sizeof(hdmi_info.packet_raw_data.sb); byte_index++)
3463 info_packet->sb[byte_index] = hdmi_info.packet_raw_data.sb[byte_index];
3464
3465 info_packet->valid = true;
3466 }
3467
set_vendor_info_packet(struct dc_info_packet * info_packet,struct dc_stream_state * stream)3468 static void set_vendor_info_packet(
3469 struct dc_info_packet *info_packet,
3470 struct dc_stream_state *stream)
3471 {
3472 /* SPD info packet for FreeSync */
3473
3474 /* Check if Freesync is supported. Return if false. If true,
3475 * set the corresponding bit in the info packet
3476 */
3477 if (!stream->vsp_infopacket.valid)
3478 return;
3479
3480 *info_packet = stream->vsp_infopacket;
3481 }
3482
set_spd_info_packet(struct dc_info_packet * info_packet,struct dc_stream_state * stream)3483 static void set_spd_info_packet(
3484 struct dc_info_packet *info_packet,
3485 struct dc_stream_state *stream)
3486 {
3487 /* SPD info packet for FreeSync */
3488
3489 /* Check if Freesync is supported. Return if false. If true,
3490 * set the corresponding bit in the info packet
3491 */
3492 if (!stream->vrr_infopacket.valid)
3493 return;
3494
3495 *info_packet = stream->vrr_infopacket;
3496 }
3497
set_hdr_static_info_packet(struct dc_info_packet * info_packet,struct dc_stream_state * stream)3498 static void set_hdr_static_info_packet(
3499 struct dc_info_packet *info_packet,
3500 struct dc_stream_state *stream)
3501 {
3502 /* HDR Static Metadata info packet for HDR10 */
3503
3504 if (!stream->hdr_static_metadata.valid ||
3505 stream->use_dynamic_meta)
3506 return;
3507
3508 *info_packet = stream->hdr_static_metadata;
3509 }
3510
set_vsc_info_packet(struct dc_info_packet * info_packet,struct dc_stream_state * stream)3511 static void set_vsc_info_packet(
3512 struct dc_info_packet *info_packet,
3513 struct dc_stream_state *stream)
3514 {
3515 if (!stream->vsc_infopacket.valid)
3516 return;
3517
3518 *info_packet = stream->vsc_infopacket;
3519 }
set_hfvs_info_packet(struct dc_info_packet * info_packet,struct dc_stream_state * stream)3520 static void set_hfvs_info_packet(
3521 struct dc_info_packet *info_packet,
3522 struct dc_stream_state *stream)
3523 {
3524 if (!stream->hfvsif_infopacket.valid)
3525 return;
3526
3527 *info_packet = stream->hfvsif_infopacket;
3528 }
3529
adaptive_sync_override_dp_info_packets_sdp_line_num(const struct dc_crtc_timing * timing,struct enc_sdp_line_num * sdp_line_num,struct _vcs_dpi_display_pipe_dest_params_st * pipe_dlg_param)3530 static void adaptive_sync_override_dp_info_packets_sdp_line_num(
3531 const struct dc_crtc_timing *timing,
3532 struct enc_sdp_line_num *sdp_line_num,
3533 struct _vcs_dpi_display_pipe_dest_params_st *pipe_dlg_param)
3534 {
3535 uint32_t asic_blank_start = 0;
3536 uint32_t asic_blank_end = 0;
3537 uint32_t v_update = 0;
3538
3539 const struct dc_crtc_timing *tg = timing;
3540
3541 /* blank_start = frame end - front porch */
3542 asic_blank_start = tg->v_total - tg->v_front_porch;
3543
3544 /* blank_end = blank_start - active */
3545 asic_blank_end = (asic_blank_start - tg->v_border_bottom -
3546 tg->v_addressable - tg->v_border_top);
3547
3548 if (pipe_dlg_param->vstartup_start > asic_blank_end) {
3549 v_update = (tg->v_total - (pipe_dlg_param->vstartup_start - asic_blank_end));
3550 sdp_line_num->adaptive_sync_line_num_valid = true;
3551 sdp_line_num->adaptive_sync_line_num = (tg->v_total - v_update - 1);
3552 } else {
3553 sdp_line_num->adaptive_sync_line_num_valid = false;
3554 sdp_line_num->adaptive_sync_line_num = 0;
3555 }
3556 }
3557
set_adaptive_sync_info_packet(struct dc_info_packet * info_packet,const struct dc_stream_state * stream,struct encoder_info_frame * info_frame,struct _vcs_dpi_display_pipe_dest_params_st * pipe_dlg_param)3558 static void set_adaptive_sync_info_packet(
3559 struct dc_info_packet *info_packet,
3560 const struct dc_stream_state *stream,
3561 struct encoder_info_frame *info_frame,
3562 struct _vcs_dpi_display_pipe_dest_params_st *pipe_dlg_param)
3563 {
3564 if (!stream->adaptive_sync_infopacket.valid)
3565 return;
3566
3567 adaptive_sync_override_dp_info_packets_sdp_line_num(
3568 &stream->timing,
3569 &info_frame->sdp_line_num,
3570 pipe_dlg_param);
3571
3572 *info_packet = stream->adaptive_sync_infopacket;
3573 }
3574
set_vtem_info_packet(struct dc_info_packet * info_packet,struct dc_stream_state * stream)3575 static void set_vtem_info_packet(
3576 struct dc_info_packet *info_packet,
3577 struct dc_stream_state *stream)
3578 {
3579 if (!stream->vtem_infopacket.valid)
3580 return;
3581
3582 *info_packet = stream->vtem_infopacket;
3583 }
3584
dc_resource_state_destruct(struct dc_state * context)3585 void dc_resource_state_destruct(struct dc_state *context)
3586 {
3587 int i, j;
3588
3589 for (i = 0; i < context->stream_count; i++) {
3590 for (j = 0; j < context->stream_status[i].plane_count; j++)
3591 dc_plane_state_release(
3592 context->stream_status[i].plane_states[j]);
3593
3594 context->stream_status[i].plane_count = 0;
3595 dc_stream_release(context->streams[i]);
3596 context->streams[i] = NULL;
3597 }
3598 context->stream_count = 0;
3599 }
3600
dc_resource_state_copy_construct(const struct dc_state * src_ctx,struct dc_state * dst_ctx)3601 void dc_resource_state_copy_construct(
3602 const struct dc_state *src_ctx,
3603 struct dc_state *dst_ctx)
3604 {
3605 int i, j;
3606 struct kref refcount = dst_ctx->refcount;
3607
3608 *dst_ctx = *src_ctx;
3609
3610 for (i = 0; i < MAX_PIPES; i++) {
3611 struct pipe_ctx *cur_pipe = &dst_ctx->res_ctx.pipe_ctx[i];
3612
3613 if (cur_pipe->top_pipe)
3614 cur_pipe->top_pipe = &dst_ctx->res_ctx.pipe_ctx[cur_pipe->top_pipe->pipe_idx];
3615
3616 if (cur_pipe->bottom_pipe)
3617 cur_pipe->bottom_pipe = &dst_ctx->res_ctx.pipe_ctx[cur_pipe->bottom_pipe->pipe_idx];
3618
3619 if (cur_pipe->next_odm_pipe)
3620 cur_pipe->next_odm_pipe = &dst_ctx->res_ctx.pipe_ctx[cur_pipe->next_odm_pipe->pipe_idx];
3621
3622 if (cur_pipe->prev_odm_pipe)
3623 cur_pipe->prev_odm_pipe = &dst_ctx->res_ctx.pipe_ctx[cur_pipe->prev_odm_pipe->pipe_idx];
3624 }
3625
3626 for (i = 0; i < dst_ctx->stream_count; i++) {
3627 dc_stream_retain(dst_ctx->streams[i]);
3628 for (j = 0; j < dst_ctx->stream_status[i].plane_count; j++)
3629 dc_plane_state_retain(
3630 dst_ctx->stream_status[i].plane_states[j]);
3631 }
3632
3633 /* context refcount should not be overridden */
3634 dst_ctx->refcount = refcount;
3635
3636 }
3637
dc_resource_find_first_free_pll(struct resource_context * res_ctx,const struct resource_pool * pool)3638 struct clock_source *dc_resource_find_first_free_pll(
3639 struct resource_context *res_ctx,
3640 const struct resource_pool *pool)
3641 {
3642 int i;
3643
3644 for (i = 0; i < pool->clk_src_count; ++i) {
3645 if (res_ctx->clock_source_ref_count[i] == 0)
3646 return pool->clock_sources[i];
3647 }
3648
3649 return NULL;
3650 }
3651
resource_build_info_frame(struct pipe_ctx * pipe_ctx)3652 void resource_build_info_frame(struct pipe_ctx *pipe_ctx)
3653 {
3654 enum signal_type signal = SIGNAL_TYPE_NONE;
3655 struct encoder_info_frame *info = &pipe_ctx->stream_res.encoder_info_frame;
3656
3657 /* default all packets to invalid */
3658 info->avi.valid = false;
3659 info->gamut.valid = false;
3660 info->vendor.valid = false;
3661 info->spd.valid = false;
3662 info->hdrsmd.valid = false;
3663 info->vsc.valid = false;
3664 info->hfvsif.valid = false;
3665 info->vtem.valid = false;
3666 info->adaptive_sync.valid = false;
3667 signal = pipe_ctx->stream->signal;
3668
3669 /* HDMi and DP have different info packets*/
3670 if (dc_is_hdmi_signal(signal)) {
3671 set_avi_info_frame(&info->avi, pipe_ctx);
3672
3673 set_vendor_info_packet(&info->vendor, pipe_ctx->stream);
3674 set_hfvs_info_packet(&info->hfvsif, pipe_ctx->stream);
3675 set_vtem_info_packet(&info->vtem, pipe_ctx->stream);
3676
3677 set_spd_info_packet(&info->spd, pipe_ctx->stream);
3678
3679 set_hdr_static_info_packet(&info->hdrsmd, pipe_ctx->stream);
3680
3681 } else if (dc_is_dp_signal(signal)) {
3682 set_vsc_info_packet(&info->vsc, pipe_ctx->stream);
3683
3684 set_spd_info_packet(&info->spd, pipe_ctx->stream);
3685
3686 set_hdr_static_info_packet(&info->hdrsmd, pipe_ctx->stream);
3687 set_adaptive_sync_info_packet(&info->adaptive_sync,
3688 pipe_ctx->stream,
3689 info,
3690 &pipe_ctx->pipe_dlg_param);
3691 }
3692
3693 patch_gamut_packet_checksum(&info->gamut);
3694 }
3695
resource_map_clock_resources(const struct dc * dc,struct dc_state * context,struct dc_stream_state * stream)3696 enum dc_status resource_map_clock_resources(
3697 const struct dc *dc,
3698 struct dc_state *context,
3699 struct dc_stream_state *stream)
3700 {
3701 /* acquire new resources */
3702 const struct resource_pool *pool = dc->res_pool;
3703 struct pipe_ctx *pipe_ctx = resource_get_otg_master_for_stream(
3704 &context->res_ctx, stream);
3705
3706 if (!pipe_ctx)
3707 return DC_ERROR_UNEXPECTED;
3708
3709 if (dc_is_dp_signal(pipe_ctx->stream->signal)
3710 || pipe_ctx->stream->signal == SIGNAL_TYPE_VIRTUAL)
3711 pipe_ctx->clock_source = pool->dp_clock_source;
3712 else {
3713 pipe_ctx->clock_source = NULL;
3714
3715 if (!dc->config.disable_disp_pll_sharing)
3716 pipe_ctx->clock_source = resource_find_used_clk_src_for_sharing(
3717 &context->res_ctx,
3718 pipe_ctx);
3719
3720 if (pipe_ctx->clock_source == NULL)
3721 pipe_ctx->clock_source =
3722 dc_resource_find_first_free_pll(
3723 &context->res_ctx,
3724 pool);
3725 }
3726
3727 if (pipe_ctx->clock_source == NULL)
3728 return DC_NO_CLOCK_SOURCE_RESOURCE;
3729
3730 resource_reference_clock_source(
3731 &context->res_ctx, pool,
3732 pipe_ctx->clock_source);
3733
3734 return DC_OK;
3735 }
3736
3737 /*
3738 * Note: We need to disable output if clock sources change,
3739 * since bios does optimization and doesn't apply if changing
3740 * PHY when not already disabled.
3741 */
pipe_need_reprogram(struct pipe_ctx * pipe_ctx_old,struct pipe_ctx * pipe_ctx)3742 bool pipe_need_reprogram(
3743 struct pipe_ctx *pipe_ctx_old,
3744 struct pipe_ctx *pipe_ctx)
3745 {
3746 if (!pipe_ctx_old->stream)
3747 return false;
3748
3749 if (pipe_ctx_old->stream->sink != pipe_ctx->stream->sink)
3750 return true;
3751
3752 if (pipe_ctx_old->stream->signal != pipe_ctx->stream->signal)
3753 return true;
3754
3755 if (pipe_ctx_old->stream_res.audio != pipe_ctx->stream_res.audio)
3756 return true;
3757
3758 if (pipe_ctx_old->clock_source != pipe_ctx->clock_source
3759 && pipe_ctx_old->stream != pipe_ctx->stream)
3760 return true;
3761
3762 if (pipe_ctx_old->stream_res.stream_enc != pipe_ctx->stream_res.stream_enc)
3763 return true;
3764
3765 if (dc_is_timing_changed(pipe_ctx_old->stream, pipe_ctx->stream))
3766 return true;
3767
3768 if (pipe_ctx_old->stream->dpms_off != pipe_ctx->stream->dpms_off)
3769 return true;
3770
3771 if (false == pipe_ctx_old->stream->link->link_state_valid &&
3772 false == pipe_ctx_old->stream->dpms_off)
3773 return true;
3774
3775 if (pipe_ctx_old->stream_res.dsc != pipe_ctx->stream_res.dsc)
3776 return true;
3777
3778 if (pipe_ctx_old->stream_res.hpo_dp_stream_enc != pipe_ctx->stream_res.hpo_dp_stream_enc)
3779 return true;
3780 if (pipe_ctx_old->link_res.hpo_dp_link_enc != pipe_ctx->link_res.hpo_dp_link_enc)
3781 return true;
3782
3783 /* DIG link encoder resource assignment for stream changed. */
3784 if (pipe_ctx_old->stream->ctx->dc->res_pool->funcs->link_encs_assign) {
3785 bool need_reprogram = false;
3786 struct dc *dc = pipe_ctx_old->stream->ctx->dc;
3787 struct link_encoder *link_enc_prev =
3788 link_enc_cfg_get_link_enc_used_by_stream_current(dc, pipe_ctx_old->stream);
3789
3790 if (link_enc_prev != pipe_ctx->stream->link_enc)
3791 need_reprogram = true;
3792
3793 return need_reprogram;
3794 }
3795
3796 return false;
3797 }
3798
resource_build_bit_depth_reduction_params(struct dc_stream_state * stream,struct bit_depth_reduction_params * fmt_bit_depth)3799 void resource_build_bit_depth_reduction_params(struct dc_stream_state *stream,
3800 struct bit_depth_reduction_params *fmt_bit_depth)
3801 {
3802 enum dc_dither_option option = stream->dither_option;
3803 enum dc_pixel_encoding pixel_encoding =
3804 stream->timing.pixel_encoding;
3805
3806 memset(fmt_bit_depth, 0, sizeof(*fmt_bit_depth));
3807
3808 if (option == DITHER_OPTION_DEFAULT) {
3809 switch (stream->timing.display_color_depth) {
3810 case COLOR_DEPTH_666:
3811 option = DITHER_OPTION_SPATIAL6;
3812 break;
3813 case COLOR_DEPTH_888:
3814 option = DITHER_OPTION_SPATIAL8;
3815 break;
3816 case COLOR_DEPTH_101010:
3817 option = DITHER_OPTION_SPATIAL10;
3818 break;
3819 default:
3820 option = DITHER_OPTION_DISABLE;
3821 }
3822 }
3823
3824 if (option == DITHER_OPTION_DISABLE)
3825 return;
3826
3827 if (option == DITHER_OPTION_TRUN6) {
3828 fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
3829 fmt_bit_depth->flags.TRUNCATE_DEPTH = 0;
3830 } else if (option == DITHER_OPTION_TRUN8 ||
3831 option == DITHER_OPTION_TRUN8_SPATIAL6 ||
3832 option == DITHER_OPTION_TRUN8_FM6) {
3833 fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
3834 fmt_bit_depth->flags.TRUNCATE_DEPTH = 1;
3835 } else if (option == DITHER_OPTION_TRUN10 ||
3836 option == DITHER_OPTION_TRUN10_SPATIAL6 ||
3837 option == DITHER_OPTION_TRUN10_SPATIAL8 ||
3838 option == DITHER_OPTION_TRUN10_FM8 ||
3839 option == DITHER_OPTION_TRUN10_FM6 ||
3840 option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
3841 fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
3842 fmt_bit_depth->flags.TRUNCATE_DEPTH = 2;
3843 }
3844
3845 /* special case - Formatter can only reduce by 4 bits at most.
3846 * When reducing from 12 to 6 bits,
3847 * HW recommends we use trunc with round mode
3848 * (if we did nothing, trunc to 10 bits would be used)
3849 * note that any 12->10 bit reduction is ignored prior to DCE8,
3850 * as the input was 10 bits.
3851 */
3852 if (option == DITHER_OPTION_SPATIAL6_FRAME_RANDOM ||
3853 option == DITHER_OPTION_SPATIAL6 ||
3854 option == DITHER_OPTION_FM6) {
3855 fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
3856 fmt_bit_depth->flags.TRUNCATE_DEPTH = 2;
3857 fmt_bit_depth->flags.TRUNCATE_MODE = 1;
3858 }
3859
3860 /* spatial dither
3861 * note that spatial modes 1-3 are never used
3862 */
3863 if (option == DITHER_OPTION_SPATIAL6_FRAME_RANDOM ||
3864 option == DITHER_OPTION_SPATIAL6 ||
3865 option == DITHER_OPTION_TRUN10_SPATIAL6 ||
3866 option == DITHER_OPTION_TRUN8_SPATIAL6) {
3867 fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
3868 fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 0;
3869 fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
3870 fmt_bit_depth->flags.RGB_RANDOM =
3871 (pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
3872 } else if (option == DITHER_OPTION_SPATIAL8_FRAME_RANDOM ||
3873 option == DITHER_OPTION_SPATIAL8 ||
3874 option == DITHER_OPTION_SPATIAL8_FM6 ||
3875 option == DITHER_OPTION_TRUN10_SPATIAL8 ||
3876 option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
3877 fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
3878 fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 1;
3879 fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
3880 fmt_bit_depth->flags.RGB_RANDOM =
3881 (pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
3882 } else if (option == DITHER_OPTION_SPATIAL10_FRAME_RANDOM ||
3883 option == DITHER_OPTION_SPATIAL10 ||
3884 option == DITHER_OPTION_SPATIAL10_FM8 ||
3885 option == DITHER_OPTION_SPATIAL10_FM6) {
3886 fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
3887 fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 2;
3888 fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
3889 fmt_bit_depth->flags.RGB_RANDOM =
3890 (pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
3891 }
3892
3893 if (option == DITHER_OPTION_SPATIAL6 ||
3894 option == DITHER_OPTION_SPATIAL8 ||
3895 option == DITHER_OPTION_SPATIAL10) {
3896 fmt_bit_depth->flags.FRAME_RANDOM = 0;
3897 } else {
3898 fmt_bit_depth->flags.FRAME_RANDOM = 1;
3899 }
3900
3901 //////////////////////
3902 //// temporal dither
3903 //////////////////////
3904 if (option == DITHER_OPTION_FM6 ||
3905 option == DITHER_OPTION_SPATIAL8_FM6 ||
3906 option == DITHER_OPTION_SPATIAL10_FM6 ||
3907 option == DITHER_OPTION_TRUN10_FM6 ||
3908 option == DITHER_OPTION_TRUN8_FM6 ||
3909 option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
3910 fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
3911 fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 0;
3912 } else if (option == DITHER_OPTION_FM8 ||
3913 option == DITHER_OPTION_SPATIAL10_FM8 ||
3914 option == DITHER_OPTION_TRUN10_FM8) {
3915 fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
3916 fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 1;
3917 } else if (option == DITHER_OPTION_FM10) {
3918 fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
3919 fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 2;
3920 }
3921
3922 fmt_bit_depth->pixel_encoding = pixel_encoding;
3923 }
3924
dc_validate_stream(struct dc * dc,struct dc_stream_state * stream)3925 enum dc_status dc_validate_stream(struct dc *dc, struct dc_stream_state *stream)
3926 {
3927 struct dc_link *link = stream->link;
3928 struct timing_generator *tg = dc->res_pool->timing_generators[0];
3929 enum dc_status res = DC_OK;
3930
3931 calculate_phy_pix_clks(stream);
3932
3933 if (!tg->funcs->validate_timing(tg, &stream->timing))
3934 res = DC_FAIL_CONTROLLER_VALIDATE;
3935
3936 if (res == DC_OK) {
3937 if (link->ep_type == DISPLAY_ENDPOINT_PHY &&
3938 !link->link_enc->funcs->validate_output_with_stream(
3939 link->link_enc, stream))
3940 res = DC_FAIL_ENC_VALIDATE;
3941 }
3942
3943 /* TODO: validate audio ASIC caps, encoder */
3944
3945 if (res == DC_OK)
3946 res = dc->link_srv->validate_mode_timing(stream,
3947 link,
3948 &stream->timing);
3949
3950 return res;
3951 }
3952
dc_validate_plane(struct dc * dc,const struct dc_plane_state * plane_state)3953 enum dc_status dc_validate_plane(struct dc *dc, const struct dc_plane_state *plane_state)
3954 {
3955 enum dc_status res = DC_OK;
3956
3957 /* check if surface has invalid dimensions */
3958 if (plane_state->src_rect.width == 0 || plane_state->src_rect.height == 0 ||
3959 plane_state->dst_rect.width == 0 || plane_state->dst_rect.height == 0)
3960 return DC_FAIL_SURFACE_VALIDATE;
3961
3962 /* TODO For now validates pixel format only */
3963 if (dc->res_pool->funcs->validate_plane)
3964 return dc->res_pool->funcs->validate_plane(plane_state, &dc->caps);
3965
3966 return res;
3967 }
3968
resource_pixel_format_to_bpp(enum surface_pixel_format format)3969 unsigned int resource_pixel_format_to_bpp(enum surface_pixel_format format)
3970 {
3971 switch (format) {
3972 case SURFACE_PIXEL_FORMAT_GRPH_PALETA_256_COLORS:
3973 return 8;
3974 case SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr:
3975 case SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb:
3976 return 12;
3977 case SURFACE_PIXEL_FORMAT_GRPH_ARGB1555:
3978 case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
3979 case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCbCr:
3980 case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCrCb:
3981 return 16;
3982 case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
3983 case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
3984 case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
3985 case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
3986 case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010_XR_BIAS:
3987 case SURFACE_PIXEL_FORMAT_GRPH_RGBE:
3988 case SURFACE_PIXEL_FORMAT_GRPH_RGBE_ALPHA:
3989 return 32;
3990 case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
3991 case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616:
3992 case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616F:
3993 case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
3994 return 64;
3995 default:
3996 ASSERT_CRITICAL(false);
3997 return -1;
3998 }
3999 }
get_max_audio_sample_rate(struct audio_mode * modes)4000 static unsigned int get_max_audio_sample_rate(struct audio_mode *modes)
4001 {
4002 if (modes) {
4003 if (modes->sample_rates.rate.RATE_192)
4004 return 192000;
4005 if (modes->sample_rates.rate.RATE_176_4)
4006 return 176400;
4007 if (modes->sample_rates.rate.RATE_96)
4008 return 96000;
4009 if (modes->sample_rates.rate.RATE_88_2)
4010 return 88200;
4011 if (modes->sample_rates.rate.RATE_48)
4012 return 48000;
4013 if (modes->sample_rates.rate.RATE_44_1)
4014 return 44100;
4015 if (modes->sample_rates.rate.RATE_32)
4016 return 32000;
4017 }
4018 /*original logic when no audio info*/
4019 return 441000;
4020 }
4021
get_audio_check(struct audio_info * aud_modes,struct audio_check * audio_chk)4022 void get_audio_check(struct audio_info *aud_modes,
4023 struct audio_check *audio_chk)
4024 {
4025 unsigned int i;
4026 unsigned int max_sample_rate = 0;
4027
4028 if (aud_modes) {
4029 audio_chk->audio_packet_type = 0x2;/*audio sample packet AP = .25 for layout0, 1 for layout1*/
4030
4031 audio_chk->max_audiosample_rate = 0;
4032 for (i = 0; i < aud_modes->mode_count; i++) {
4033 max_sample_rate = get_max_audio_sample_rate(&aud_modes->modes[i]);
4034 if (audio_chk->max_audiosample_rate < max_sample_rate)
4035 audio_chk->max_audiosample_rate = max_sample_rate;
4036 /*dts takes the same as type 2: AP = 0.25*/
4037 }
4038 /*check which one take more bandwidth*/
4039 if (audio_chk->max_audiosample_rate > 192000)
4040 audio_chk->audio_packet_type = 0x9;/*AP =1*/
4041 audio_chk->acat = 0;/*not support*/
4042 }
4043 }
4044
get_temp_hpo_dp_link_enc(const struct resource_context * res_ctx,const struct resource_pool * const pool,const struct dc_link * link)4045 static struct hpo_dp_link_encoder *get_temp_hpo_dp_link_enc(
4046 const struct resource_context *res_ctx,
4047 const struct resource_pool *const pool,
4048 const struct dc_link *link)
4049 {
4050 struct hpo_dp_link_encoder *hpo_dp_link_enc = NULL;
4051 int enc_index;
4052
4053 enc_index = find_acquired_hpo_dp_link_enc_for_link(res_ctx, link);
4054
4055 if (enc_index < 0)
4056 enc_index = find_free_hpo_dp_link_enc(res_ctx, pool);
4057
4058 if (enc_index >= 0)
4059 hpo_dp_link_enc = pool->hpo_dp_link_enc[enc_index];
4060
4061 return hpo_dp_link_enc;
4062 }
4063
get_temp_dp_link_res(struct dc_link * link,struct link_resource * link_res,struct dc_link_settings * link_settings)4064 bool get_temp_dp_link_res(struct dc_link *link,
4065 struct link_resource *link_res,
4066 struct dc_link_settings *link_settings)
4067 {
4068 const struct dc *dc = link->dc;
4069 const struct resource_context *res_ctx = &dc->current_state->res_ctx;
4070
4071 memset(link_res, 0, sizeof(*link_res));
4072
4073 if (dc->link_srv->dp_get_encoding_format(link_settings) == DP_128b_132b_ENCODING) {
4074 link_res->hpo_dp_link_enc = get_temp_hpo_dp_link_enc(res_ctx,
4075 dc->res_pool, link);
4076 if (!link_res->hpo_dp_link_enc)
4077 return false;
4078 }
4079 return true;
4080 }
4081
reset_syncd_pipes_from_disabled_pipes(struct dc * dc,struct dc_state * context)4082 void reset_syncd_pipes_from_disabled_pipes(struct dc *dc,
4083 struct dc_state *context)
4084 {
4085 int i, j;
4086 struct pipe_ctx *pipe_ctx_old, *pipe_ctx, *pipe_ctx_syncd;
4087
4088 /* If pipe backend is reset, need to reset pipe syncd status */
4089 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4090 pipe_ctx_old = &dc->current_state->res_ctx.pipe_ctx[i];
4091 pipe_ctx = &context->res_ctx.pipe_ctx[i];
4092
4093 if (!resource_is_pipe_type(pipe_ctx_old, OTG_MASTER))
4094 continue;
4095
4096 if (!pipe_ctx->stream ||
4097 pipe_need_reprogram(pipe_ctx_old, pipe_ctx)) {
4098
4099 /* Reset all the syncd pipes from the disabled pipe */
4100 for (j = 0; j < dc->res_pool->pipe_count; j++) {
4101 pipe_ctx_syncd = &context->res_ctx.pipe_ctx[j];
4102 if ((GET_PIPE_SYNCD_FROM_PIPE(pipe_ctx_syncd) == pipe_ctx_old->pipe_idx) ||
4103 !IS_PIPE_SYNCD_VALID(pipe_ctx_syncd))
4104 SET_PIPE_SYNCD_TO_PIPE(pipe_ctx_syncd, j);
4105 }
4106 }
4107 }
4108 }
4109
check_syncd_pipes_for_disabled_master_pipe(struct dc * dc,struct dc_state * context,uint8_t disabled_master_pipe_idx)4110 void check_syncd_pipes_for_disabled_master_pipe(struct dc *dc,
4111 struct dc_state *context,
4112 uint8_t disabled_master_pipe_idx)
4113 {
4114 int i;
4115 struct pipe_ctx *pipe_ctx, *pipe_ctx_check;
4116
4117 pipe_ctx = &context->res_ctx.pipe_ctx[disabled_master_pipe_idx];
4118 if ((GET_PIPE_SYNCD_FROM_PIPE(pipe_ctx) != disabled_master_pipe_idx) ||
4119 !IS_PIPE_SYNCD_VALID(pipe_ctx))
4120 SET_PIPE_SYNCD_TO_PIPE(pipe_ctx, disabled_master_pipe_idx);
4121
4122 /* for the pipe disabled, check if any slave pipe exists and assert */
4123 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4124 pipe_ctx_check = &context->res_ctx.pipe_ctx[i];
4125
4126 if ((GET_PIPE_SYNCD_FROM_PIPE(pipe_ctx_check) == disabled_master_pipe_idx) &&
4127 IS_PIPE_SYNCD_VALID(pipe_ctx_check) && (i != disabled_master_pipe_idx)) {
4128 struct pipe_ctx *first_pipe = pipe_ctx_check;
4129
4130 while (first_pipe->prev_odm_pipe)
4131 first_pipe = first_pipe->prev_odm_pipe;
4132 /* When ODM combine is enabled, this case is expected. If the disabled pipe
4133 * is part of the ODM tree, then we should not print an error.
4134 * */
4135 if (first_pipe->pipe_idx == disabled_master_pipe_idx)
4136 continue;
4137
4138 DC_ERR("DC: Failure: pipe_idx[%d] syncd with disabled master pipe_idx[%d]\n",
4139 i, disabled_master_pipe_idx);
4140 }
4141 }
4142 }
4143
reset_sync_context_for_pipe(const struct dc * dc,struct dc_state * context,uint8_t pipe_idx)4144 void reset_sync_context_for_pipe(const struct dc *dc,
4145 struct dc_state *context,
4146 uint8_t pipe_idx)
4147 {
4148 int i;
4149 struct pipe_ctx *pipe_ctx_reset;
4150
4151 /* reset the otg sync context for the pipe and its slave pipes if any */
4152 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4153 pipe_ctx_reset = &context->res_ctx.pipe_ctx[i];
4154
4155 if (((GET_PIPE_SYNCD_FROM_PIPE(pipe_ctx_reset) == pipe_idx) &&
4156 IS_PIPE_SYNCD_VALID(pipe_ctx_reset)) || (i == pipe_idx))
4157 SET_PIPE_SYNCD_TO_PIPE(pipe_ctx_reset, i);
4158 }
4159 }
4160
resource_transmitter_to_phy_idx(const struct dc * dc,enum transmitter transmitter)4161 uint8_t resource_transmitter_to_phy_idx(const struct dc *dc, enum transmitter transmitter)
4162 {
4163 /* TODO - get transmitter to phy idx mapping from DMUB */
4164 uint8_t phy_idx = transmitter - TRANSMITTER_UNIPHY_A;
4165
4166 if (dc->ctx->dce_version == DCN_VERSION_3_1 &&
4167 dc->ctx->asic_id.hw_internal_rev == YELLOW_CARP_B0) {
4168 switch (transmitter) {
4169 case TRANSMITTER_UNIPHY_A:
4170 phy_idx = 0;
4171 break;
4172 case TRANSMITTER_UNIPHY_B:
4173 phy_idx = 1;
4174 break;
4175 case TRANSMITTER_UNIPHY_C:
4176 phy_idx = 5;
4177 break;
4178 case TRANSMITTER_UNIPHY_D:
4179 phy_idx = 6;
4180 break;
4181 case TRANSMITTER_UNIPHY_E:
4182 phy_idx = 4;
4183 break;
4184 default:
4185 phy_idx = 0;
4186 break;
4187 }
4188 }
4189
4190 return phy_idx;
4191 }
4192
get_link_hwss(const struct dc_link * link,const struct link_resource * link_res)4193 const struct link_hwss *get_link_hwss(const struct dc_link *link,
4194 const struct link_resource *link_res)
4195 {
4196 /* Link_hwss is only accessible by getter function instead of accessing
4197 * by pointers in dc with the intent to protect against breaking polymorphism.
4198 */
4199 if (can_use_hpo_dp_link_hwss(link, link_res))
4200 /* TODO: some assumes that if decided link settings is 128b/132b
4201 * channel coding format hpo_dp_link_enc should be used.
4202 * Others believe that if hpo_dp_link_enc is available in link
4203 * resource then hpo_dp_link_enc must be used. This bound between
4204 * hpo_dp_link_enc != NULL and decided link settings is loosely coupled
4205 * with a premise that both hpo_dp_link_enc pointer and decided link
4206 * settings are determined based on single policy function like
4207 * "decide_link_settings" from upper layer. This "convention"
4208 * cannot be maintained and enforced at current level.
4209 * Therefore a refactor is due so we can enforce a strong bound
4210 * between those two parameters at this level.
4211 *
4212 * To put it simple, we want to make enforcement at low level so that
4213 * we will not return link hwss if caller plans to do 8b/10b
4214 * with an hpo encoder. Or we can return a very dummy one that doesn't
4215 * do work for all functions
4216 */
4217 return (requires_fixed_vs_pe_retimer_hpo_link_hwss(link) ?
4218 get_hpo_fixed_vs_pe_retimer_dp_link_hwss() : get_hpo_dp_link_hwss());
4219 else if (can_use_dpia_link_hwss(link, link_res))
4220 return get_dpia_link_hwss();
4221 else if (can_use_dio_link_hwss(link, link_res))
4222 return (requires_fixed_vs_pe_retimer_dio_link_hwss(link)) ?
4223 get_dio_fixed_vs_pe_retimer_link_hwss() : get_dio_link_hwss();
4224 else
4225 return get_virtual_link_hwss();
4226 }
4227
is_h_timing_divisible_by_2(struct dc_stream_state * stream)4228 bool is_h_timing_divisible_by_2(struct dc_stream_state *stream)
4229 {
4230 bool divisible = false;
4231 uint16_t h_blank_start = 0;
4232 uint16_t h_blank_end = 0;
4233
4234 if (stream) {
4235 h_blank_start = stream->timing.h_total - stream->timing.h_front_porch;
4236 h_blank_end = h_blank_start - stream->timing.h_addressable;
4237
4238 /* HTOTAL, Hblank start/end, and Hsync start/end all must be
4239 * divisible by 2 in order for the horizontal timing params
4240 * to be considered divisible by 2. Hsync start is always 0.
4241 */
4242 divisible = (stream->timing.h_total % 2 == 0) &&
4243 (h_blank_start % 2 == 0) &&
4244 (h_blank_end % 2 == 0) &&
4245 (stream->timing.h_sync_width % 2 == 0);
4246 }
4247 return divisible;
4248 }
4249
dc_resource_acquire_secondary_pipe_for_mpc_odm(const struct dc * dc,struct dc_state * state,struct pipe_ctx * pri_pipe,struct pipe_ctx * sec_pipe,bool odm)4250 bool dc_resource_acquire_secondary_pipe_for_mpc_odm(
4251 const struct dc *dc,
4252 struct dc_state *state,
4253 struct pipe_ctx *pri_pipe,
4254 struct pipe_ctx *sec_pipe,
4255 bool odm)
4256 {
4257 int pipe_idx = sec_pipe->pipe_idx;
4258 struct pipe_ctx *sec_top, *sec_bottom, *sec_next, *sec_prev;
4259 const struct resource_pool *pool = dc->res_pool;
4260
4261 sec_top = sec_pipe->top_pipe;
4262 sec_bottom = sec_pipe->bottom_pipe;
4263 sec_next = sec_pipe->next_odm_pipe;
4264 sec_prev = sec_pipe->prev_odm_pipe;
4265
4266 *sec_pipe = *pri_pipe;
4267
4268 sec_pipe->top_pipe = sec_top;
4269 sec_pipe->bottom_pipe = sec_bottom;
4270 sec_pipe->next_odm_pipe = sec_next;
4271 sec_pipe->prev_odm_pipe = sec_prev;
4272
4273 sec_pipe->pipe_idx = pipe_idx;
4274 sec_pipe->plane_res.mi = pool->mis[pipe_idx];
4275 sec_pipe->plane_res.hubp = pool->hubps[pipe_idx];
4276 sec_pipe->plane_res.ipp = pool->ipps[pipe_idx];
4277 sec_pipe->plane_res.xfm = pool->transforms[pipe_idx];
4278 sec_pipe->plane_res.dpp = pool->dpps[pipe_idx];
4279 sec_pipe->plane_res.mpcc_inst = pool->dpps[pipe_idx]->inst;
4280 sec_pipe->stream_res.dsc = NULL;
4281 if (odm) {
4282 if (!sec_pipe->top_pipe)
4283 sec_pipe->stream_res.opp = pool->opps[pipe_idx];
4284 else
4285 sec_pipe->stream_res.opp = sec_pipe->top_pipe->stream_res.opp;
4286 if (sec_pipe->stream->timing.flags.DSC == 1) {
4287 #if defined(CONFIG_DRM_AMD_DC_FP)
4288 dcn20_acquire_dsc(dc, &state->res_ctx, &sec_pipe->stream_res.dsc, pipe_idx);
4289 #endif
4290 ASSERT(sec_pipe->stream_res.dsc);
4291 if (sec_pipe->stream_res.dsc == NULL)
4292 return false;
4293 }
4294 #if defined(CONFIG_DRM_AMD_DC_FP)
4295 dcn20_build_mapped_resource(dc, state, sec_pipe->stream);
4296 #endif
4297 }
4298
4299 return true;
4300 }
4301
update_dp_encoder_resources_for_test_harness(const struct dc * dc,struct dc_state * context,struct pipe_ctx * pipe_ctx)4302 enum dc_status update_dp_encoder_resources_for_test_harness(const struct dc *dc,
4303 struct dc_state *context,
4304 struct pipe_ctx *pipe_ctx)
4305 {
4306 if (dc->link_srv->dp_get_encoding_format(&pipe_ctx->link_config.dp_link_settings) == DP_128b_132b_ENCODING) {
4307 if (pipe_ctx->stream_res.hpo_dp_stream_enc == NULL) {
4308 pipe_ctx->stream_res.hpo_dp_stream_enc =
4309 find_first_free_match_hpo_dp_stream_enc_for_link(
4310 &context->res_ctx, dc->res_pool, pipe_ctx->stream);
4311
4312 if (!pipe_ctx->stream_res.hpo_dp_stream_enc)
4313 return DC_NO_STREAM_ENC_RESOURCE;
4314
4315 update_hpo_dp_stream_engine_usage(
4316 &context->res_ctx, dc->res_pool,
4317 pipe_ctx->stream_res.hpo_dp_stream_enc,
4318 true);
4319 }
4320
4321 if (pipe_ctx->link_res.hpo_dp_link_enc == NULL) {
4322 if (!add_hpo_dp_link_enc_to_ctx(&context->res_ctx, dc->res_pool, pipe_ctx, pipe_ctx->stream))
4323 return DC_NO_LINK_ENC_RESOURCE;
4324 }
4325 } else {
4326 if (pipe_ctx->stream_res.hpo_dp_stream_enc) {
4327 update_hpo_dp_stream_engine_usage(
4328 &context->res_ctx, dc->res_pool,
4329 pipe_ctx->stream_res.hpo_dp_stream_enc,
4330 false);
4331 pipe_ctx->stream_res.hpo_dp_stream_enc = NULL;
4332 }
4333 if (pipe_ctx->link_res.hpo_dp_link_enc)
4334 remove_hpo_dp_link_enc_from_ctx(&context->res_ctx, pipe_ctx, pipe_ctx->stream);
4335 }
4336
4337 return DC_OK;
4338 }
4339
4340