1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* SCTP kernel implementation
3 * (C) Copyright IBM Corp. 2001, 2004
4 * Copyright (c) 1999-2000 Cisco, Inc.
5 * Copyright (c) 1999-2001 Motorola, Inc.
6 * Copyright (c) 2001-2003 Intel Corp.
7 * Copyright (c) 2001-2002 Nokia, Inc.
8 * Copyright (c) 2001 La Monte H.P. Yarroll
9 *
10 * This file is part of the SCTP kernel implementation
11 *
12 * These functions interface with the sockets layer to implement the
13 * SCTP Extensions for the Sockets API.
14 *
15 * Note that the descriptions from the specification are USER level
16 * functions--this file is the functions which populate the struct proto
17 * for SCTP which is the BOTTOM of the sockets interface.
18 *
19 * Please send any bug reports or fixes you make to the
20 * email address(es):
21 * lksctp developers <linux-sctp@vger.kernel.org>
22 *
23 * Written or modified by:
24 * La Monte H.P. Yarroll <piggy@acm.org>
25 * Narasimha Budihal <narsi@refcode.org>
26 * Karl Knutson <karl@athena.chicago.il.us>
27 * Jon Grimm <jgrimm@us.ibm.com>
28 * Xingang Guo <xingang.guo@intel.com>
29 * Daisy Chang <daisyc@us.ibm.com>
30 * Sridhar Samudrala <samudrala@us.ibm.com>
31 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com>
32 * Ardelle Fan <ardelle.fan@intel.com>
33 * Ryan Layer <rmlayer@us.ibm.com>
34 * Anup Pemmaiah <pemmaiah@cc.usu.edu>
35 * Kevin Gao <kevin.gao@intel.com>
36 */
37
38 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
39
40 #include <crypto/hash.h>
41 #include <linux/types.h>
42 #include <linux/kernel.h>
43 #include <linux/wait.h>
44 #include <linux/time.h>
45 #include <linux/sched/signal.h>
46 #include <linux/ip.h>
47 #include <linux/capability.h>
48 #include <linux/fcntl.h>
49 #include <linux/poll.h>
50 #include <linux/init.h>
51 #include <linux/slab.h>
52 #include <linux/file.h>
53 #include <linux/compat.h>
54 #include <linux/rhashtable.h>
55
56 #include <net/ip.h>
57 #include <net/icmp.h>
58 #include <net/route.h>
59 #include <net/ipv6.h>
60 #include <net/inet_common.h>
61 #include <net/busy_poll.h>
62 #include <trace/events/sock.h>
63
64 #include <linux/socket.h> /* for sa_family_t */
65 #include <linux/export.h>
66 #include <net/sock.h>
67 #include <net/sctp/sctp.h>
68 #include <net/sctp/sm.h>
69 #include <net/sctp/stream_sched.h>
70
71 /* Forward declarations for internal helper functions. */
72 static bool sctp_writeable(const struct sock *sk);
73 static void sctp_wfree(struct sk_buff *skb);
74 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
75 size_t msg_len);
76 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p);
77 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
78 static int sctp_wait_for_accept(struct sock *sk, long timeo);
79 static void sctp_wait_for_close(struct sock *sk, long timeo);
80 static void sctp_destruct_sock(struct sock *sk);
81 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
82 union sctp_addr *addr, int len);
83 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
84 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
85 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
86 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
87 static int sctp_send_asconf(struct sctp_association *asoc,
88 struct sctp_chunk *chunk);
89 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
90 static int sctp_autobind(struct sock *sk);
91 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
92 struct sctp_association *assoc,
93 enum sctp_socket_type type);
94
95 static unsigned long sctp_memory_pressure;
96 static atomic_long_t sctp_memory_allocated;
97 static DEFINE_PER_CPU(int, sctp_memory_per_cpu_fw_alloc);
98 struct percpu_counter sctp_sockets_allocated;
99
sctp_enter_memory_pressure(struct sock * sk)100 static void sctp_enter_memory_pressure(struct sock *sk)
101 {
102 WRITE_ONCE(sctp_memory_pressure, 1);
103 }
104
105
106 /* Get the sndbuf space available at the time on the association. */
sctp_wspace(struct sctp_association * asoc)107 static inline int sctp_wspace(struct sctp_association *asoc)
108 {
109 struct sock *sk = asoc->base.sk;
110
111 return asoc->ep->sndbuf_policy ? sk->sk_sndbuf - asoc->sndbuf_used
112 : sk_stream_wspace(sk);
113 }
114
115 /* Increment the used sndbuf space count of the corresponding association by
116 * the size of the outgoing data chunk.
117 * Also, set the skb destructor for sndbuf accounting later.
118 *
119 * Since it is always 1-1 between chunk and skb, and also a new skb is always
120 * allocated for chunk bundling in sctp_packet_transmit(), we can use the
121 * destructor in the data chunk skb for the purpose of the sndbuf space
122 * tracking.
123 */
sctp_set_owner_w(struct sctp_chunk * chunk)124 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
125 {
126 struct sctp_association *asoc = chunk->asoc;
127 struct sock *sk = asoc->base.sk;
128
129 /* The sndbuf space is tracked per association. */
130 sctp_association_hold(asoc);
131
132 if (chunk->shkey)
133 sctp_auth_shkey_hold(chunk->shkey);
134
135 skb_set_owner_w(chunk->skb, sk);
136
137 chunk->skb->destructor = sctp_wfree;
138 /* Save the chunk pointer in skb for sctp_wfree to use later. */
139 skb_shinfo(chunk->skb)->destructor_arg = chunk;
140
141 refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
142 asoc->sndbuf_used += chunk->skb->truesize + sizeof(struct sctp_chunk);
143 sk_wmem_queued_add(sk, chunk->skb->truesize + sizeof(struct sctp_chunk));
144 sk_mem_charge(sk, chunk->skb->truesize);
145 }
146
sctp_clear_owner_w(struct sctp_chunk * chunk)147 static void sctp_clear_owner_w(struct sctp_chunk *chunk)
148 {
149 skb_orphan(chunk->skb);
150 }
151
152 #define traverse_and_process() \
153 do { \
154 msg = chunk->msg; \
155 if (msg == prev_msg) \
156 continue; \
157 list_for_each_entry(c, &msg->chunks, frag_list) { \
158 if ((clear && asoc->base.sk == c->skb->sk) || \
159 (!clear && asoc->base.sk != c->skb->sk)) \
160 cb(c); \
161 } \
162 prev_msg = msg; \
163 } while (0)
164
sctp_for_each_tx_datachunk(struct sctp_association * asoc,bool clear,void (* cb)(struct sctp_chunk *))165 static void sctp_for_each_tx_datachunk(struct sctp_association *asoc,
166 bool clear,
167 void (*cb)(struct sctp_chunk *))
168
169 {
170 struct sctp_datamsg *msg, *prev_msg = NULL;
171 struct sctp_outq *q = &asoc->outqueue;
172 struct sctp_chunk *chunk, *c;
173 struct sctp_transport *t;
174
175 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports)
176 list_for_each_entry(chunk, &t->transmitted, transmitted_list)
177 traverse_and_process();
178
179 list_for_each_entry(chunk, &q->retransmit, transmitted_list)
180 traverse_and_process();
181
182 list_for_each_entry(chunk, &q->sacked, transmitted_list)
183 traverse_and_process();
184
185 list_for_each_entry(chunk, &q->abandoned, transmitted_list)
186 traverse_and_process();
187
188 list_for_each_entry(chunk, &q->out_chunk_list, list)
189 traverse_and_process();
190 }
191
sctp_for_each_rx_skb(struct sctp_association * asoc,struct sock * sk,void (* cb)(struct sk_buff *,struct sock *))192 static void sctp_for_each_rx_skb(struct sctp_association *asoc, struct sock *sk,
193 void (*cb)(struct sk_buff *, struct sock *))
194
195 {
196 struct sk_buff *skb, *tmp;
197
198 sctp_skb_for_each(skb, &asoc->ulpq.lobby, tmp)
199 cb(skb, sk);
200
201 sctp_skb_for_each(skb, &asoc->ulpq.reasm, tmp)
202 cb(skb, sk);
203
204 sctp_skb_for_each(skb, &asoc->ulpq.reasm_uo, tmp)
205 cb(skb, sk);
206 }
207
208 /* Verify that this is a valid address. */
sctp_verify_addr(struct sock * sk,union sctp_addr * addr,int len)209 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
210 int len)
211 {
212 struct sctp_af *af;
213
214 /* Verify basic sockaddr. */
215 af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
216 if (!af)
217 return -EINVAL;
218
219 /* Is this a valid SCTP address? */
220 if (!af->addr_valid(addr, sctp_sk(sk), NULL))
221 return -EINVAL;
222
223 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
224 return -EINVAL;
225
226 return 0;
227 }
228
229 /* Look up the association by its id. If this is not a UDP-style
230 * socket, the ID field is always ignored.
231 */
sctp_id2assoc(struct sock * sk,sctp_assoc_t id)232 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
233 {
234 struct sctp_association *asoc = NULL;
235
236 /* If this is not a UDP-style socket, assoc id should be ignored. */
237 if (!sctp_style(sk, UDP)) {
238 /* Return NULL if the socket state is not ESTABLISHED. It
239 * could be a TCP-style listening socket or a socket which
240 * hasn't yet called connect() to establish an association.
241 */
242 if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING))
243 return NULL;
244
245 /* Get the first and the only association from the list. */
246 if (!list_empty(&sctp_sk(sk)->ep->asocs))
247 asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
248 struct sctp_association, asocs);
249 return asoc;
250 }
251
252 /* Otherwise this is a UDP-style socket. */
253 if (id <= SCTP_ALL_ASSOC)
254 return NULL;
255
256 spin_lock_bh(&sctp_assocs_id_lock);
257 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
258 if (asoc && (asoc->base.sk != sk || asoc->base.dead))
259 asoc = NULL;
260 spin_unlock_bh(&sctp_assocs_id_lock);
261
262 return asoc;
263 }
264
265 /* Look up the transport from an address and an assoc id. If both address and
266 * id are specified, the associations matching the address and the id should be
267 * the same.
268 */
sctp_addr_id2transport(struct sock * sk,struct sockaddr_storage * addr,sctp_assoc_t id)269 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
270 struct sockaddr_storage *addr,
271 sctp_assoc_t id)
272 {
273 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
274 struct sctp_af *af = sctp_get_af_specific(addr->ss_family);
275 union sctp_addr *laddr = (union sctp_addr *)addr;
276 struct sctp_transport *transport;
277
278 if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len))
279 return NULL;
280
281 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
282 laddr,
283 &transport);
284
285 if (!addr_asoc)
286 return NULL;
287
288 id_asoc = sctp_id2assoc(sk, id);
289 if (id_asoc && (id_asoc != addr_asoc))
290 return NULL;
291
292 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
293 (union sctp_addr *)addr);
294
295 return transport;
296 }
297
298 /* API 3.1.2 bind() - UDP Style Syntax
299 * The syntax of bind() is,
300 *
301 * ret = bind(int sd, struct sockaddr *addr, int addrlen);
302 *
303 * sd - the socket descriptor returned by socket().
304 * addr - the address structure (struct sockaddr_in or struct
305 * sockaddr_in6 [RFC 2553]),
306 * addr_len - the size of the address structure.
307 */
sctp_bind(struct sock * sk,struct sockaddr * addr,int addr_len)308 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
309 {
310 int retval = 0;
311
312 lock_sock(sk);
313
314 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk,
315 addr, addr_len);
316
317 /* Disallow binding twice. */
318 if (!sctp_sk(sk)->ep->base.bind_addr.port)
319 retval = sctp_do_bind(sk, (union sctp_addr *)addr,
320 addr_len);
321 else
322 retval = -EINVAL;
323
324 release_sock(sk);
325
326 return retval;
327 }
328
329 static int sctp_get_port_local(struct sock *, union sctp_addr *);
330
331 /* Verify this is a valid sockaddr. */
sctp_sockaddr_af(struct sctp_sock * opt,union sctp_addr * addr,int len)332 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
333 union sctp_addr *addr, int len)
334 {
335 struct sctp_af *af;
336
337 /* Check minimum size. */
338 if (len < sizeof (struct sockaddr))
339 return NULL;
340
341 if (!opt->pf->af_supported(addr->sa.sa_family, opt))
342 return NULL;
343
344 if (addr->sa.sa_family == AF_INET6) {
345 if (len < SIN6_LEN_RFC2133)
346 return NULL;
347 /* V4 mapped address are really of AF_INET family */
348 if (ipv6_addr_v4mapped(&addr->v6.sin6_addr) &&
349 !opt->pf->af_supported(AF_INET, opt))
350 return NULL;
351 }
352
353 /* If we get this far, af is valid. */
354 af = sctp_get_af_specific(addr->sa.sa_family);
355
356 if (len < af->sockaddr_len)
357 return NULL;
358
359 return af;
360 }
361
sctp_auto_asconf_init(struct sctp_sock * sp)362 static void sctp_auto_asconf_init(struct sctp_sock *sp)
363 {
364 struct net *net = sock_net(&sp->inet.sk);
365
366 if (net->sctp.default_auto_asconf) {
367 spin_lock_bh(&net->sctp.addr_wq_lock);
368 list_add_tail(&sp->auto_asconf_list, &net->sctp.auto_asconf_splist);
369 spin_unlock_bh(&net->sctp.addr_wq_lock);
370 sp->do_auto_asconf = 1;
371 }
372 }
373
374 /* Bind a local address either to an endpoint or to an association. */
sctp_do_bind(struct sock * sk,union sctp_addr * addr,int len)375 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
376 {
377 struct net *net = sock_net(sk);
378 struct sctp_sock *sp = sctp_sk(sk);
379 struct sctp_endpoint *ep = sp->ep;
380 struct sctp_bind_addr *bp = &ep->base.bind_addr;
381 struct sctp_af *af;
382 unsigned short snum;
383 int ret = 0;
384
385 /* Common sockaddr verification. */
386 af = sctp_sockaddr_af(sp, addr, len);
387 if (!af) {
388 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n",
389 __func__, sk, addr, len);
390 return -EINVAL;
391 }
392
393 snum = ntohs(addr->v4.sin_port);
394
395 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n",
396 __func__, sk, &addr->sa, bp->port, snum, len);
397
398 /* PF specific bind() address verification. */
399 if (!sp->pf->bind_verify(sp, addr))
400 return -EADDRNOTAVAIL;
401
402 /* We must either be unbound, or bind to the same port.
403 * It's OK to allow 0 ports if we are already bound.
404 * We'll just inhert an already bound port in this case
405 */
406 if (bp->port) {
407 if (!snum)
408 snum = bp->port;
409 else if (snum != bp->port) {
410 pr_debug("%s: new port %d doesn't match existing port "
411 "%d\n", __func__, snum, bp->port);
412 return -EINVAL;
413 }
414 }
415
416 if (snum && inet_port_requires_bind_service(net, snum) &&
417 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
418 return -EACCES;
419
420 /* See if the address matches any of the addresses we may have
421 * already bound before checking against other endpoints.
422 */
423 if (sctp_bind_addr_match(bp, addr, sp))
424 return -EINVAL;
425
426 /* Make sure we are allowed to bind here.
427 * The function sctp_get_port_local() does duplicate address
428 * detection.
429 */
430 addr->v4.sin_port = htons(snum);
431 if (sctp_get_port_local(sk, addr))
432 return -EADDRINUSE;
433
434 /* Refresh ephemeral port. */
435 if (!bp->port) {
436 bp->port = inet_sk(sk)->inet_num;
437 sctp_auto_asconf_init(sp);
438 }
439
440 /* Add the address to the bind address list.
441 * Use GFP_ATOMIC since BHs will be disabled.
442 */
443 ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len,
444 SCTP_ADDR_SRC, GFP_ATOMIC);
445
446 if (ret) {
447 sctp_put_port(sk);
448 return ret;
449 }
450 /* Copy back into socket for getsockname() use. */
451 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
452 sp->pf->to_sk_saddr(addr, sk);
453
454 return ret;
455 }
456
457 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
458 *
459 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
460 * at any one time. If a sender, after sending an ASCONF chunk, decides
461 * it needs to transfer another ASCONF Chunk, it MUST wait until the
462 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
463 * subsequent ASCONF. Note this restriction binds each side, so at any
464 * time two ASCONF may be in-transit on any given association (one sent
465 * from each endpoint).
466 */
sctp_send_asconf(struct sctp_association * asoc,struct sctp_chunk * chunk)467 static int sctp_send_asconf(struct sctp_association *asoc,
468 struct sctp_chunk *chunk)
469 {
470 int retval = 0;
471
472 /* If there is an outstanding ASCONF chunk, queue it for later
473 * transmission.
474 */
475 if (asoc->addip_last_asconf) {
476 list_add_tail(&chunk->list, &asoc->addip_chunk_list);
477 goto out;
478 }
479
480 /* Hold the chunk until an ASCONF_ACK is received. */
481 sctp_chunk_hold(chunk);
482 retval = sctp_primitive_ASCONF(asoc->base.net, asoc, chunk);
483 if (retval)
484 sctp_chunk_free(chunk);
485 else
486 asoc->addip_last_asconf = chunk;
487
488 out:
489 return retval;
490 }
491
492 /* Add a list of addresses as bind addresses to local endpoint or
493 * association.
494 *
495 * Basically run through each address specified in the addrs/addrcnt
496 * array/length pair, determine if it is IPv6 or IPv4 and call
497 * sctp_do_bind() on it.
498 *
499 * If any of them fails, then the operation will be reversed and the
500 * ones that were added will be removed.
501 *
502 * Only sctp_setsockopt_bindx() is supposed to call this function.
503 */
sctp_bindx_add(struct sock * sk,struct sockaddr * addrs,int addrcnt)504 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
505 {
506 int cnt;
507 int retval = 0;
508 void *addr_buf;
509 struct sockaddr *sa_addr;
510 struct sctp_af *af;
511
512 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk,
513 addrs, addrcnt);
514
515 addr_buf = addrs;
516 for (cnt = 0; cnt < addrcnt; cnt++) {
517 /* The list may contain either IPv4 or IPv6 address;
518 * determine the address length for walking thru the list.
519 */
520 sa_addr = addr_buf;
521 af = sctp_get_af_specific(sa_addr->sa_family);
522 if (!af) {
523 retval = -EINVAL;
524 goto err_bindx_add;
525 }
526
527 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
528 af->sockaddr_len);
529
530 addr_buf += af->sockaddr_len;
531
532 err_bindx_add:
533 if (retval < 0) {
534 /* Failed. Cleanup the ones that have been added */
535 if (cnt > 0)
536 sctp_bindx_rem(sk, addrs, cnt);
537 return retval;
538 }
539 }
540
541 return retval;
542 }
543
544 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
545 * associations that are part of the endpoint indicating that a list of local
546 * addresses are added to the endpoint.
547 *
548 * If any of the addresses is already in the bind address list of the
549 * association, we do not send the chunk for that association. But it will not
550 * affect other associations.
551 *
552 * Only sctp_setsockopt_bindx() is supposed to call this function.
553 */
sctp_send_asconf_add_ip(struct sock * sk,struct sockaddr * addrs,int addrcnt)554 static int sctp_send_asconf_add_ip(struct sock *sk,
555 struct sockaddr *addrs,
556 int addrcnt)
557 {
558 struct sctp_sock *sp;
559 struct sctp_endpoint *ep;
560 struct sctp_association *asoc;
561 struct sctp_bind_addr *bp;
562 struct sctp_chunk *chunk;
563 struct sctp_sockaddr_entry *laddr;
564 union sctp_addr *addr;
565 union sctp_addr saveaddr;
566 void *addr_buf;
567 struct sctp_af *af;
568 struct list_head *p;
569 int i;
570 int retval = 0;
571
572 sp = sctp_sk(sk);
573 ep = sp->ep;
574
575 if (!ep->asconf_enable)
576 return retval;
577
578 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
579 __func__, sk, addrs, addrcnt);
580
581 list_for_each_entry(asoc, &ep->asocs, asocs) {
582 if (!asoc->peer.asconf_capable)
583 continue;
584
585 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
586 continue;
587
588 if (!sctp_state(asoc, ESTABLISHED))
589 continue;
590
591 /* Check if any address in the packed array of addresses is
592 * in the bind address list of the association. If so,
593 * do not send the asconf chunk to its peer, but continue with
594 * other associations.
595 */
596 addr_buf = addrs;
597 for (i = 0; i < addrcnt; i++) {
598 addr = addr_buf;
599 af = sctp_get_af_specific(addr->v4.sin_family);
600 if (!af) {
601 retval = -EINVAL;
602 goto out;
603 }
604
605 if (sctp_assoc_lookup_laddr(asoc, addr))
606 break;
607
608 addr_buf += af->sockaddr_len;
609 }
610 if (i < addrcnt)
611 continue;
612
613 /* Use the first valid address in bind addr list of
614 * association as Address Parameter of ASCONF CHUNK.
615 */
616 bp = &asoc->base.bind_addr;
617 p = bp->address_list.next;
618 laddr = list_entry(p, struct sctp_sockaddr_entry, list);
619 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
620 addrcnt, SCTP_PARAM_ADD_IP);
621 if (!chunk) {
622 retval = -ENOMEM;
623 goto out;
624 }
625
626 /* Add the new addresses to the bind address list with
627 * use_as_src set to 0.
628 */
629 addr_buf = addrs;
630 for (i = 0; i < addrcnt; i++) {
631 addr = addr_buf;
632 af = sctp_get_af_specific(addr->v4.sin_family);
633 memcpy(&saveaddr, addr, af->sockaddr_len);
634 retval = sctp_add_bind_addr(bp, &saveaddr,
635 sizeof(saveaddr),
636 SCTP_ADDR_NEW, GFP_ATOMIC);
637 addr_buf += af->sockaddr_len;
638 }
639 if (asoc->src_out_of_asoc_ok) {
640 struct sctp_transport *trans;
641
642 list_for_each_entry(trans,
643 &asoc->peer.transport_addr_list, transports) {
644 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
645 2*asoc->pathmtu, 4380));
646 trans->ssthresh = asoc->peer.i.a_rwnd;
647 trans->rto = asoc->rto_initial;
648 sctp_max_rto(asoc, trans);
649 trans->rtt = trans->srtt = trans->rttvar = 0;
650 /* Clear the source and route cache */
651 sctp_transport_route(trans, NULL,
652 sctp_sk(asoc->base.sk));
653 }
654 }
655 retval = sctp_send_asconf(asoc, chunk);
656 }
657
658 out:
659 return retval;
660 }
661
662 /* Remove a list of addresses from bind addresses list. Do not remove the
663 * last address.
664 *
665 * Basically run through each address specified in the addrs/addrcnt
666 * array/length pair, determine if it is IPv6 or IPv4 and call
667 * sctp_del_bind() on it.
668 *
669 * If any of them fails, then the operation will be reversed and the
670 * ones that were removed will be added back.
671 *
672 * At least one address has to be left; if only one address is
673 * available, the operation will return -EBUSY.
674 *
675 * Only sctp_setsockopt_bindx() is supposed to call this function.
676 */
sctp_bindx_rem(struct sock * sk,struct sockaddr * addrs,int addrcnt)677 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
678 {
679 struct sctp_sock *sp = sctp_sk(sk);
680 struct sctp_endpoint *ep = sp->ep;
681 int cnt;
682 struct sctp_bind_addr *bp = &ep->base.bind_addr;
683 int retval = 0;
684 void *addr_buf;
685 union sctp_addr *sa_addr;
686 struct sctp_af *af;
687
688 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
689 __func__, sk, addrs, addrcnt);
690
691 addr_buf = addrs;
692 for (cnt = 0; cnt < addrcnt; cnt++) {
693 /* If the bind address list is empty or if there is only one
694 * bind address, there is nothing more to be removed (we need
695 * at least one address here).
696 */
697 if (list_empty(&bp->address_list) ||
698 (sctp_list_single_entry(&bp->address_list))) {
699 retval = -EBUSY;
700 goto err_bindx_rem;
701 }
702
703 sa_addr = addr_buf;
704 af = sctp_get_af_specific(sa_addr->sa.sa_family);
705 if (!af) {
706 retval = -EINVAL;
707 goto err_bindx_rem;
708 }
709
710 if (!af->addr_valid(sa_addr, sp, NULL)) {
711 retval = -EADDRNOTAVAIL;
712 goto err_bindx_rem;
713 }
714
715 if (sa_addr->v4.sin_port &&
716 sa_addr->v4.sin_port != htons(bp->port)) {
717 retval = -EINVAL;
718 goto err_bindx_rem;
719 }
720
721 if (!sa_addr->v4.sin_port)
722 sa_addr->v4.sin_port = htons(bp->port);
723
724 /* FIXME - There is probably a need to check if sk->sk_saddr and
725 * sk->sk_rcv_addr are currently set to one of the addresses to
726 * be removed. This is something which needs to be looked into
727 * when we are fixing the outstanding issues with multi-homing
728 * socket routing and failover schemes. Refer to comments in
729 * sctp_do_bind(). -daisy
730 */
731 retval = sctp_del_bind_addr(bp, sa_addr);
732
733 addr_buf += af->sockaddr_len;
734 err_bindx_rem:
735 if (retval < 0) {
736 /* Failed. Add the ones that has been removed back */
737 if (cnt > 0)
738 sctp_bindx_add(sk, addrs, cnt);
739 return retval;
740 }
741 }
742
743 return retval;
744 }
745
746 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
747 * the associations that are part of the endpoint indicating that a list of
748 * local addresses are removed from the endpoint.
749 *
750 * If any of the addresses is already in the bind address list of the
751 * association, we do not send the chunk for that association. But it will not
752 * affect other associations.
753 *
754 * Only sctp_setsockopt_bindx() is supposed to call this function.
755 */
sctp_send_asconf_del_ip(struct sock * sk,struct sockaddr * addrs,int addrcnt)756 static int sctp_send_asconf_del_ip(struct sock *sk,
757 struct sockaddr *addrs,
758 int addrcnt)
759 {
760 struct sctp_sock *sp;
761 struct sctp_endpoint *ep;
762 struct sctp_association *asoc;
763 struct sctp_transport *transport;
764 struct sctp_bind_addr *bp;
765 struct sctp_chunk *chunk;
766 union sctp_addr *laddr;
767 void *addr_buf;
768 struct sctp_af *af;
769 struct sctp_sockaddr_entry *saddr;
770 int i;
771 int retval = 0;
772 int stored = 0;
773
774 chunk = NULL;
775 sp = sctp_sk(sk);
776 ep = sp->ep;
777
778 if (!ep->asconf_enable)
779 return retval;
780
781 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
782 __func__, sk, addrs, addrcnt);
783
784 list_for_each_entry(asoc, &ep->asocs, asocs) {
785
786 if (!asoc->peer.asconf_capable)
787 continue;
788
789 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
790 continue;
791
792 if (!sctp_state(asoc, ESTABLISHED))
793 continue;
794
795 /* Check if any address in the packed array of addresses is
796 * not present in the bind address list of the association.
797 * If so, do not send the asconf chunk to its peer, but
798 * continue with other associations.
799 */
800 addr_buf = addrs;
801 for (i = 0; i < addrcnt; i++) {
802 laddr = addr_buf;
803 af = sctp_get_af_specific(laddr->v4.sin_family);
804 if (!af) {
805 retval = -EINVAL;
806 goto out;
807 }
808
809 if (!sctp_assoc_lookup_laddr(asoc, laddr))
810 break;
811
812 addr_buf += af->sockaddr_len;
813 }
814 if (i < addrcnt)
815 continue;
816
817 /* Find one address in the association's bind address list
818 * that is not in the packed array of addresses. This is to
819 * make sure that we do not delete all the addresses in the
820 * association.
821 */
822 bp = &asoc->base.bind_addr;
823 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
824 addrcnt, sp);
825 if ((laddr == NULL) && (addrcnt == 1)) {
826 if (asoc->asconf_addr_del_pending)
827 continue;
828 asoc->asconf_addr_del_pending =
829 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
830 if (asoc->asconf_addr_del_pending == NULL) {
831 retval = -ENOMEM;
832 goto out;
833 }
834 asoc->asconf_addr_del_pending->sa.sa_family =
835 addrs->sa_family;
836 asoc->asconf_addr_del_pending->v4.sin_port =
837 htons(bp->port);
838 if (addrs->sa_family == AF_INET) {
839 struct sockaddr_in *sin;
840
841 sin = (struct sockaddr_in *)addrs;
842 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
843 } else if (addrs->sa_family == AF_INET6) {
844 struct sockaddr_in6 *sin6;
845
846 sin6 = (struct sockaddr_in6 *)addrs;
847 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr;
848 }
849
850 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n",
851 __func__, asoc, &asoc->asconf_addr_del_pending->sa,
852 asoc->asconf_addr_del_pending);
853
854 asoc->src_out_of_asoc_ok = 1;
855 stored = 1;
856 goto skip_mkasconf;
857 }
858
859 if (laddr == NULL)
860 return -EINVAL;
861
862 /* We do not need RCU protection throughout this loop
863 * because this is done under a socket lock from the
864 * setsockopt call.
865 */
866 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
867 SCTP_PARAM_DEL_IP);
868 if (!chunk) {
869 retval = -ENOMEM;
870 goto out;
871 }
872
873 skip_mkasconf:
874 /* Reset use_as_src flag for the addresses in the bind address
875 * list that are to be deleted.
876 */
877 addr_buf = addrs;
878 for (i = 0; i < addrcnt; i++) {
879 laddr = addr_buf;
880 af = sctp_get_af_specific(laddr->v4.sin_family);
881 list_for_each_entry(saddr, &bp->address_list, list) {
882 if (sctp_cmp_addr_exact(&saddr->a, laddr))
883 saddr->state = SCTP_ADDR_DEL;
884 }
885 addr_buf += af->sockaddr_len;
886 }
887
888 /* Update the route and saddr entries for all the transports
889 * as some of the addresses in the bind address list are
890 * about to be deleted and cannot be used as source addresses.
891 */
892 list_for_each_entry(transport, &asoc->peer.transport_addr_list,
893 transports) {
894 sctp_transport_route(transport, NULL,
895 sctp_sk(asoc->base.sk));
896 }
897
898 if (stored)
899 /* We don't need to transmit ASCONF */
900 continue;
901 retval = sctp_send_asconf(asoc, chunk);
902 }
903 out:
904 return retval;
905 }
906
907 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */
sctp_asconf_mgmt(struct sctp_sock * sp,struct sctp_sockaddr_entry * addrw)908 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
909 {
910 struct sock *sk = sctp_opt2sk(sp);
911 union sctp_addr *addr;
912 struct sctp_af *af;
913
914 /* It is safe to write port space in caller. */
915 addr = &addrw->a;
916 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
917 af = sctp_get_af_specific(addr->sa.sa_family);
918 if (!af)
919 return -EINVAL;
920 if (sctp_verify_addr(sk, addr, af->sockaddr_len))
921 return -EINVAL;
922
923 if (addrw->state == SCTP_ADDR_NEW)
924 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
925 else
926 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
927 }
928
929 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
930 *
931 * API 8.1
932 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
933 * int flags);
934 *
935 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
936 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
937 * or IPv6 addresses.
938 *
939 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
940 * Section 3.1.2 for this usage.
941 *
942 * addrs is a pointer to an array of one or more socket addresses. Each
943 * address is contained in its appropriate structure (i.e. struct
944 * sockaddr_in or struct sockaddr_in6) the family of the address type
945 * must be used to distinguish the address length (note that this
946 * representation is termed a "packed array" of addresses). The caller
947 * specifies the number of addresses in the array with addrcnt.
948 *
949 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
950 * -1, and sets errno to the appropriate error code.
951 *
952 * For SCTP, the port given in each socket address must be the same, or
953 * sctp_bindx() will fail, setting errno to EINVAL.
954 *
955 * The flags parameter is formed from the bitwise OR of zero or more of
956 * the following currently defined flags:
957 *
958 * SCTP_BINDX_ADD_ADDR
959 *
960 * SCTP_BINDX_REM_ADDR
961 *
962 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
963 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
964 * addresses from the association. The two flags are mutually exclusive;
965 * if both are given, sctp_bindx() will fail with EINVAL. A caller may
966 * not remove all addresses from an association; sctp_bindx() will
967 * reject such an attempt with EINVAL.
968 *
969 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
970 * additional addresses with an endpoint after calling bind(). Or use
971 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
972 * socket is associated with so that no new association accepted will be
973 * associated with those addresses. If the endpoint supports dynamic
974 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
975 * endpoint to send the appropriate message to the peer to change the
976 * peers address lists.
977 *
978 * Adding and removing addresses from a connected association is
979 * optional functionality. Implementations that do not support this
980 * functionality should return EOPNOTSUPP.
981 *
982 * Basically do nothing but copying the addresses from user to kernel
983 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
984 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
985 * from userspace.
986 *
987 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
988 * it.
989 *
990 * sk The sk of the socket
991 * addrs The pointer to the addresses
992 * addrssize Size of the addrs buffer
993 * op Operation to perform (add or remove, see the flags of
994 * sctp_bindx)
995 *
996 * Returns 0 if ok, <0 errno code on error.
997 */
sctp_setsockopt_bindx(struct sock * sk,struct sockaddr * addrs,int addrs_size,int op)998 static int sctp_setsockopt_bindx(struct sock *sk, struct sockaddr *addrs,
999 int addrs_size, int op)
1000 {
1001 int err;
1002 int addrcnt = 0;
1003 int walk_size = 0;
1004 struct sockaddr *sa_addr;
1005 void *addr_buf = addrs;
1006 struct sctp_af *af;
1007
1008 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n",
1009 __func__, sk, addr_buf, addrs_size, op);
1010
1011 if (unlikely(addrs_size <= 0))
1012 return -EINVAL;
1013
1014 /* Walk through the addrs buffer and count the number of addresses. */
1015 while (walk_size < addrs_size) {
1016 if (walk_size + sizeof(sa_family_t) > addrs_size)
1017 return -EINVAL;
1018
1019 sa_addr = addr_buf;
1020 af = sctp_get_af_specific(sa_addr->sa_family);
1021
1022 /* If the address family is not supported or if this address
1023 * causes the address buffer to overflow return EINVAL.
1024 */
1025 if (!af || (walk_size + af->sockaddr_len) > addrs_size)
1026 return -EINVAL;
1027 addrcnt++;
1028 addr_buf += af->sockaddr_len;
1029 walk_size += af->sockaddr_len;
1030 }
1031
1032 /* Do the work. */
1033 switch (op) {
1034 case SCTP_BINDX_ADD_ADDR:
1035 /* Allow security module to validate bindx addresses. */
1036 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_BINDX_ADD,
1037 addrs, addrs_size);
1038 if (err)
1039 return err;
1040 err = sctp_bindx_add(sk, addrs, addrcnt);
1041 if (err)
1042 return err;
1043 return sctp_send_asconf_add_ip(sk, addrs, addrcnt);
1044 case SCTP_BINDX_REM_ADDR:
1045 err = sctp_bindx_rem(sk, addrs, addrcnt);
1046 if (err)
1047 return err;
1048 return sctp_send_asconf_del_ip(sk, addrs, addrcnt);
1049
1050 default:
1051 return -EINVAL;
1052 }
1053 }
1054
sctp_bind_add(struct sock * sk,struct sockaddr * addrs,int addrlen)1055 static int sctp_bind_add(struct sock *sk, struct sockaddr *addrs,
1056 int addrlen)
1057 {
1058 int err;
1059
1060 lock_sock(sk);
1061 err = sctp_setsockopt_bindx(sk, addrs, addrlen, SCTP_BINDX_ADD_ADDR);
1062 release_sock(sk);
1063 return err;
1064 }
1065
sctp_connect_new_asoc(struct sctp_endpoint * ep,const union sctp_addr * daddr,const struct sctp_initmsg * init,struct sctp_transport ** tp)1066 static int sctp_connect_new_asoc(struct sctp_endpoint *ep,
1067 const union sctp_addr *daddr,
1068 const struct sctp_initmsg *init,
1069 struct sctp_transport **tp)
1070 {
1071 struct sctp_association *asoc;
1072 struct sock *sk = ep->base.sk;
1073 struct net *net = sock_net(sk);
1074 enum sctp_scope scope;
1075 int err;
1076
1077 if (sctp_endpoint_is_peeled_off(ep, daddr))
1078 return -EADDRNOTAVAIL;
1079
1080 if (!ep->base.bind_addr.port) {
1081 if (sctp_autobind(sk))
1082 return -EAGAIN;
1083 } else {
1084 if (inet_port_requires_bind_service(net, ep->base.bind_addr.port) &&
1085 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
1086 return -EACCES;
1087 }
1088
1089 scope = sctp_scope(daddr);
1090 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1091 if (!asoc)
1092 return -ENOMEM;
1093
1094 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL);
1095 if (err < 0)
1096 goto free;
1097
1098 *tp = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN);
1099 if (!*tp) {
1100 err = -ENOMEM;
1101 goto free;
1102 }
1103
1104 if (!init)
1105 return 0;
1106
1107 if (init->sinit_num_ostreams) {
1108 __u16 outcnt = init->sinit_num_ostreams;
1109
1110 asoc->c.sinit_num_ostreams = outcnt;
1111 /* outcnt has been changed, need to re-init stream */
1112 err = sctp_stream_init(&asoc->stream, outcnt, 0, GFP_KERNEL);
1113 if (err)
1114 goto free;
1115 }
1116
1117 if (init->sinit_max_instreams)
1118 asoc->c.sinit_max_instreams = init->sinit_max_instreams;
1119
1120 if (init->sinit_max_attempts)
1121 asoc->max_init_attempts = init->sinit_max_attempts;
1122
1123 if (init->sinit_max_init_timeo)
1124 asoc->max_init_timeo =
1125 msecs_to_jiffies(init->sinit_max_init_timeo);
1126
1127 return 0;
1128 free:
1129 sctp_association_free(asoc);
1130 return err;
1131 }
1132
sctp_connect_add_peer(struct sctp_association * asoc,union sctp_addr * daddr,int addr_len)1133 static int sctp_connect_add_peer(struct sctp_association *asoc,
1134 union sctp_addr *daddr, int addr_len)
1135 {
1136 struct sctp_endpoint *ep = asoc->ep;
1137 struct sctp_association *old;
1138 struct sctp_transport *t;
1139 int err;
1140
1141 err = sctp_verify_addr(ep->base.sk, daddr, addr_len);
1142 if (err)
1143 return err;
1144
1145 old = sctp_endpoint_lookup_assoc(ep, daddr, &t);
1146 if (old && old != asoc)
1147 return old->state >= SCTP_STATE_ESTABLISHED ? -EISCONN
1148 : -EALREADY;
1149
1150 if (sctp_endpoint_is_peeled_off(ep, daddr))
1151 return -EADDRNOTAVAIL;
1152
1153 t = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN);
1154 if (!t)
1155 return -ENOMEM;
1156
1157 return 0;
1158 }
1159
1160 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1161 *
1162 * Common routine for handling connect() and sctp_connectx().
1163 * Connect will come in with just a single address.
1164 */
__sctp_connect(struct sock * sk,struct sockaddr * kaddrs,int addrs_size,int flags,sctp_assoc_t * assoc_id)1165 static int __sctp_connect(struct sock *sk, struct sockaddr *kaddrs,
1166 int addrs_size, int flags, sctp_assoc_t *assoc_id)
1167 {
1168 struct sctp_sock *sp = sctp_sk(sk);
1169 struct sctp_endpoint *ep = sp->ep;
1170 struct sctp_transport *transport;
1171 struct sctp_association *asoc;
1172 void *addr_buf = kaddrs;
1173 union sctp_addr *daddr;
1174 struct sctp_af *af;
1175 int walk_size, err;
1176 long timeo;
1177
1178 if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) ||
1179 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)))
1180 return -EISCONN;
1181
1182 daddr = addr_buf;
1183 af = sctp_get_af_specific(daddr->sa.sa_family);
1184 if (!af || af->sockaddr_len > addrs_size)
1185 return -EINVAL;
1186
1187 err = sctp_verify_addr(sk, daddr, af->sockaddr_len);
1188 if (err)
1189 return err;
1190
1191 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport);
1192 if (asoc)
1193 return asoc->state >= SCTP_STATE_ESTABLISHED ? -EISCONN
1194 : -EALREADY;
1195
1196 err = sctp_connect_new_asoc(ep, daddr, NULL, &transport);
1197 if (err)
1198 return err;
1199 asoc = transport->asoc;
1200
1201 addr_buf += af->sockaddr_len;
1202 walk_size = af->sockaddr_len;
1203 while (walk_size < addrs_size) {
1204 err = -EINVAL;
1205 if (walk_size + sizeof(sa_family_t) > addrs_size)
1206 goto out_free;
1207
1208 daddr = addr_buf;
1209 af = sctp_get_af_specific(daddr->sa.sa_family);
1210 if (!af || af->sockaddr_len + walk_size > addrs_size)
1211 goto out_free;
1212
1213 if (asoc->peer.port != ntohs(daddr->v4.sin_port))
1214 goto out_free;
1215
1216 err = sctp_connect_add_peer(asoc, daddr, af->sockaddr_len);
1217 if (err)
1218 goto out_free;
1219
1220 addr_buf += af->sockaddr_len;
1221 walk_size += af->sockaddr_len;
1222 }
1223
1224 /* In case the user of sctp_connectx() wants an association
1225 * id back, assign one now.
1226 */
1227 if (assoc_id) {
1228 err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1229 if (err < 0)
1230 goto out_free;
1231 }
1232
1233 err = sctp_primitive_ASSOCIATE(sock_net(sk), asoc, NULL);
1234 if (err < 0)
1235 goto out_free;
1236
1237 /* Initialize sk's dport and daddr for getpeername() */
1238 inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1239 sp->pf->to_sk_daddr(daddr, sk);
1240 sk->sk_err = 0;
1241
1242 if (assoc_id)
1243 *assoc_id = asoc->assoc_id;
1244
1245 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK);
1246 return sctp_wait_for_connect(asoc, &timeo);
1247
1248 out_free:
1249 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n",
1250 __func__, asoc, kaddrs, err);
1251 sctp_association_free(asoc);
1252 return err;
1253 }
1254
1255 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1256 *
1257 * API 8.9
1258 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1259 * sctp_assoc_t *asoc);
1260 *
1261 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1262 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1263 * or IPv6 addresses.
1264 *
1265 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1266 * Section 3.1.2 for this usage.
1267 *
1268 * addrs is a pointer to an array of one or more socket addresses. Each
1269 * address is contained in its appropriate structure (i.e. struct
1270 * sockaddr_in or struct sockaddr_in6) the family of the address type
1271 * must be used to distengish the address length (note that this
1272 * representation is termed a "packed array" of addresses). The caller
1273 * specifies the number of addresses in the array with addrcnt.
1274 *
1275 * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1276 * the association id of the new association. On failure, sctp_connectx()
1277 * returns -1, and sets errno to the appropriate error code. The assoc_id
1278 * is not touched by the kernel.
1279 *
1280 * For SCTP, the port given in each socket address must be the same, or
1281 * sctp_connectx() will fail, setting errno to EINVAL.
1282 *
1283 * An application can use sctp_connectx to initiate an association with
1284 * an endpoint that is multi-homed. Much like sctp_bindx() this call
1285 * allows a caller to specify multiple addresses at which a peer can be
1286 * reached. The way the SCTP stack uses the list of addresses to set up
1287 * the association is implementation dependent. This function only
1288 * specifies that the stack will try to make use of all the addresses in
1289 * the list when needed.
1290 *
1291 * Note that the list of addresses passed in is only used for setting up
1292 * the association. It does not necessarily equal the set of addresses
1293 * the peer uses for the resulting association. If the caller wants to
1294 * find out the set of peer addresses, it must use sctp_getpaddrs() to
1295 * retrieve them after the association has been set up.
1296 *
1297 * Basically do nothing but copying the addresses from user to kernel
1298 * land and invoking either sctp_connectx(). This is used for tunneling
1299 * the sctp_connectx() request through sctp_setsockopt() from userspace.
1300 *
1301 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1302 * it.
1303 *
1304 * sk The sk of the socket
1305 * addrs The pointer to the addresses
1306 * addrssize Size of the addrs buffer
1307 *
1308 * Returns >=0 if ok, <0 errno code on error.
1309 */
__sctp_setsockopt_connectx(struct sock * sk,struct sockaddr * kaddrs,int addrs_size,sctp_assoc_t * assoc_id)1310 static int __sctp_setsockopt_connectx(struct sock *sk, struct sockaddr *kaddrs,
1311 int addrs_size, sctp_assoc_t *assoc_id)
1312 {
1313 int err = 0, flags = 0;
1314
1315 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n",
1316 __func__, sk, kaddrs, addrs_size);
1317
1318 /* make sure the 1st addr's sa_family is accessible later */
1319 if (unlikely(addrs_size < sizeof(sa_family_t)))
1320 return -EINVAL;
1321
1322 /* Allow security module to validate connectx addresses. */
1323 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_CONNECTX,
1324 (struct sockaddr *)kaddrs,
1325 addrs_size);
1326 if (err)
1327 return err;
1328
1329 /* in-kernel sockets don't generally have a file allocated to them
1330 * if all they do is call sock_create_kern().
1331 */
1332 if (sk->sk_socket->file)
1333 flags = sk->sk_socket->file->f_flags;
1334
1335 return __sctp_connect(sk, kaddrs, addrs_size, flags, assoc_id);
1336 }
1337
1338 /*
1339 * This is an older interface. It's kept for backward compatibility
1340 * to the option that doesn't provide association id.
1341 */
sctp_setsockopt_connectx_old(struct sock * sk,struct sockaddr * kaddrs,int addrs_size)1342 static int sctp_setsockopt_connectx_old(struct sock *sk,
1343 struct sockaddr *kaddrs,
1344 int addrs_size)
1345 {
1346 return __sctp_setsockopt_connectx(sk, kaddrs, addrs_size, NULL);
1347 }
1348
1349 /*
1350 * New interface for the API. The since the API is done with a socket
1351 * option, to make it simple we feed back the association id is as a return
1352 * indication to the call. Error is always negative and association id is
1353 * always positive.
1354 */
sctp_setsockopt_connectx(struct sock * sk,struct sockaddr * kaddrs,int addrs_size)1355 static int sctp_setsockopt_connectx(struct sock *sk,
1356 struct sockaddr *kaddrs,
1357 int addrs_size)
1358 {
1359 sctp_assoc_t assoc_id = 0;
1360 int err = 0;
1361
1362 err = __sctp_setsockopt_connectx(sk, kaddrs, addrs_size, &assoc_id);
1363
1364 if (err)
1365 return err;
1366 else
1367 return assoc_id;
1368 }
1369
1370 /*
1371 * New (hopefully final) interface for the API.
1372 * We use the sctp_getaddrs_old structure so that use-space library
1373 * can avoid any unnecessary allocations. The only different part
1374 * is that we store the actual length of the address buffer into the
1375 * addrs_num structure member. That way we can re-use the existing
1376 * code.
1377 */
1378 #ifdef CONFIG_COMPAT
1379 struct compat_sctp_getaddrs_old {
1380 sctp_assoc_t assoc_id;
1381 s32 addr_num;
1382 compat_uptr_t addrs; /* struct sockaddr * */
1383 };
1384 #endif
1385
sctp_getsockopt_connectx3(struct sock * sk,int len,char __user * optval,int __user * optlen)1386 static int sctp_getsockopt_connectx3(struct sock *sk, int len,
1387 char __user *optval,
1388 int __user *optlen)
1389 {
1390 struct sctp_getaddrs_old param;
1391 sctp_assoc_t assoc_id = 0;
1392 struct sockaddr *kaddrs;
1393 int err = 0;
1394
1395 #ifdef CONFIG_COMPAT
1396 if (in_compat_syscall()) {
1397 struct compat_sctp_getaddrs_old param32;
1398
1399 if (len < sizeof(param32))
1400 return -EINVAL;
1401 if (copy_from_user(¶m32, optval, sizeof(param32)))
1402 return -EFAULT;
1403
1404 param.assoc_id = param32.assoc_id;
1405 param.addr_num = param32.addr_num;
1406 param.addrs = compat_ptr(param32.addrs);
1407 } else
1408 #endif
1409 {
1410 if (len < sizeof(param))
1411 return -EINVAL;
1412 if (copy_from_user(¶m, optval, sizeof(param)))
1413 return -EFAULT;
1414 }
1415
1416 kaddrs = memdup_user(param.addrs, param.addr_num);
1417 if (IS_ERR(kaddrs))
1418 return PTR_ERR(kaddrs);
1419
1420 err = __sctp_setsockopt_connectx(sk, kaddrs, param.addr_num, &assoc_id);
1421 kfree(kaddrs);
1422 if (err == 0 || err == -EINPROGRESS) {
1423 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1424 return -EFAULT;
1425 if (put_user(sizeof(assoc_id), optlen))
1426 return -EFAULT;
1427 }
1428
1429 return err;
1430 }
1431
1432 /* API 3.1.4 close() - UDP Style Syntax
1433 * Applications use close() to perform graceful shutdown (as described in
1434 * Section 10.1 of [SCTP]) on ALL the associations currently represented
1435 * by a UDP-style socket.
1436 *
1437 * The syntax is
1438 *
1439 * ret = close(int sd);
1440 *
1441 * sd - the socket descriptor of the associations to be closed.
1442 *
1443 * To gracefully shutdown a specific association represented by the
1444 * UDP-style socket, an application should use the sendmsg() call,
1445 * passing no user data, but including the appropriate flag in the
1446 * ancillary data (see Section xxxx).
1447 *
1448 * If sd in the close() call is a branched-off socket representing only
1449 * one association, the shutdown is performed on that association only.
1450 *
1451 * 4.1.6 close() - TCP Style Syntax
1452 *
1453 * Applications use close() to gracefully close down an association.
1454 *
1455 * The syntax is:
1456 *
1457 * int close(int sd);
1458 *
1459 * sd - the socket descriptor of the association to be closed.
1460 *
1461 * After an application calls close() on a socket descriptor, no further
1462 * socket operations will succeed on that descriptor.
1463 *
1464 * API 7.1.4 SO_LINGER
1465 *
1466 * An application using the TCP-style socket can use this option to
1467 * perform the SCTP ABORT primitive. The linger option structure is:
1468 *
1469 * struct linger {
1470 * int l_onoff; // option on/off
1471 * int l_linger; // linger time
1472 * };
1473 *
1474 * To enable the option, set l_onoff to 1. If the l_linger value is set
1475 * to 0, calling close() is the same as the ABORT primitive. If the
1476 * value is set to a negative value, the setsockopt() call will return
1477 * an error. If the value is set to a positive value linger_time, the
1478 * close() can be blocked for at most linger_time ms. If the graceful
1479 * shutdown phase does not finish during this period, close() will
1480 * return but the graceful shutdown phase continues in the system.
1481 */
sctp_close(struct sock * sk,long timeout)1482 static void sctp_close(struct sock *sk, long timeout)
1483 {
1484 struct net *net = sock_net(sk);
1485 struct sctp_endpoint *ep;
1486 struct sctp_association *asoc;
1487 struct list_head *pos, *temp;
1488 unsigned int data_was_unread;
1489
1490 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout);
1491
1492 lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
1493 sk->sk_shutdown = SHUTDOWN_MASK;
1494 inet_sk_set_state(sk, SCTP_SS_CLOSING);
1495
1496 ep = sctp_sk(sk)->ep;
1497
1498 /* Clean up any skbs sitting on the receive queue. */
1499 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1500 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1501
1502 /* Walk all associations on an endpoint. */
1503 list_for_each_safe(pos, temp, &ep->asocs) {
1504 asoc = list_entry(pos, struct sctp_association, asocs);
1505
1506 if (sctp_style(sk, TCP)) {
1507 /* A closed association can still be in the list if
1508 * it belongs to a TCP-style listening socket that is
1509 * not yet accepted. If so, free it. If not, send an
1510 * ABORT or SHUTDOWN based on the linger options.
1511 */
1512 if (sctp_state(asoc, CLOSED)) {
1513 sctp_association_free(asoc);
1514 continue;
1515 }
1516 }
1517
1518 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1519 !skb_queue_empty(&asoc->ulpq.reasm) ||
1520 !skb_queue_empty(&asoc->ulpq.reasm_uo) ||
1521 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1522 struct sctp_chunk *chunk;
1523
1524 chunk = sctp_make_abort_user(asoc, NULL, 0);
1525 sctp_primitive_ABORT(net, asoc, chunk);
1526 } else
1527 sctp_primitive_SHUTDOWN(net, asoc, NULL);
1528 }
1529
1530 /* On a TCP-style socket, block for at most linger_time if set. */
1531 if (sctp_style(sk, TCP) && timeout)
1532 sctp_wait_for_close(sk, timeout);
1533
1534 /* This will run the backlog queue. */
1535 release_sock(sk);
1536
1537 /* Supposedly, no process has access to the socket, but
1538 * the net layers still may.
1539 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock
1540 * held and that should be grabbed before socket lock.
1541 */
1542 spin_lock_bh(&net->sctp.addr_wq_lock);
1543 bh_lock_sock_nested(sk);
1544
1545 /* Hold the sock, since sk_common_release() will put sock_put()
1546 * and we have just a little more cleanup.
1547 */
1548 sock_hold(sk);
1549 sk_common_release(sk);
1550
1551 bh_unlock_sock(sk);
1552 spin_unlock_bh(&net->sctp.addr_wq_lock);
1553
1554 sock_put(sk);
1555
1556 SCTP_DBG_OBJCNT_DEC(sock);
1557 }
1558
1559 /* Handle EPIPE error. */
sctp_error(struct sock * sk,int flags,int err)1560 static int sctp_error(struct sock *sk, int flags, int err)
1561 {
1562 if (err == -EPIPE)
1563 err = sock_error(sk) ? : -EPIPE;
1564 if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1565 send_sig(SIGPIPE, current, 0);
1566 return err;
1567 }
1568
1569 /* API 3.1.3 sendmsg() - UDP Style Syntax
1570 *
1571 * An application uses sendmsg() and recvmsg() calls to transmit data to
1572 * and receive data from its peer.
1573 *
1574 * ssize_t sendmsg(int socket, const struct msghdr *message,
1575 * int flags);
1576 *
1577 * socket - the socket descriptor of the endpoint.
1578 * message - pointer to the msghdr structure which contains a single
1579 * user message and possibly some ancillary data.
1580 *
1581 * See Section 5 for complete description of the data
1582 * structures.
1583 *
1584 * flags - flags sent or received with the user message, see Section
1585 * 5 for complete description of the flags.
1586 *
1587 * Note: This function could use a rewrite especially when explicit
1588 * connect support comes in.
1589 */
1590 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */
1591
1592 static int sctp_msghdr_parse(const struct msghdr *msg,
1593 struct sctp_cmsgs *cmsgs);
1594
sctp_sendmsg_parse(struct sock * sk,struct sctp_cmsgs * cmsgs,struct sctp_sndrcvinfo * srinfo,const struct msghdr * msg,size_t msg_len)1595 static int sctp_sendmsg_parse(struct sock *sk, struct sctp_cmsgs *cmsgs,
1596 struct sctp_sndrcvinfo *srinfo,
1597 const struct msghdr *msg, size_t msg_len)
1598 {
1599 __u16 sflags;
1600 int err;
1601
1602 if (sctp_sstate(sk, LISTENING) && sctp_style(sk, TCP))
1603 return -EPIPE;
1604
1605 if (msg_len > sk->sk_sndbuf)
1606 return -EMSGSIZE;
1607
1608 memset(cmsgs, 0, sizeof(*cmsgs));
1609 err = sctp_msghdr_parse(msg, cmsgs);
1610 if (err) {
1611 pr_debug("%s: msghdr parse err:%x\n", __func__, err);
1612 return err;
1613 }
1614
1615 memset(srinfo, 0, sizeof(*srinfo));
1616 if (cmsgs->srinfo) {
1617 srinfo->sinfo_stream = cmsgs->srinfo->sinfo_stream;
1618 srinfo->sinfo_flags = cmsgs->srinfo->sinfo_flags;
1619 srinfo->sinfo_ppid = cmsgs->srinfo->sinfo_ppid;
1620 srinfo->sinfo_context = cmsgs->srinfo->sinfo_context;
1621 srinfo->sinfo_assoc_id = cmsgs->srinfo->sinfo_assoc_id;
1622 srinfo->sinfo_timetolive = cmsgs->srinfo->sinfo_timetolive;
1623 }
1624
1625 if (cmsgs->sinfo) {
1626 srinfo->sinfo_stream = cmsgs->sinfo->snd_sid;
1627 srinfo->sinfo_flags = cmsgs->sinfo->snd_flags;
1628 srinfo->sinfo_ppid = cmsgs->sinfo->snd_ppid;
1629 srinfo->sinfo_context = cmsgs->sinfo->snd_context;
1630 srinfo->sinfo_assoc_id = cmsgs->sinfo->snd_assoc_id;
1631 }
1632
1633 if (cmsgs->prinfo) {
1634 srinfo->sinfo_timetolive = cmsgs->prinfo->pr_value;
1635 SCTP_PR_SET_POLICY(srinfo->sinfo_flags,
1636 cmsgs->prinfo->pr_policy);
1637 }
1638
1639 sflags = srinfo->sinfo_flags;
1640 if (!sflags && msg_len)
1641 return 0;
1642
1643 if (sctp_style(sk, TCP) && (sflags & (SCTP_EOF | SCTP_ABORT)))
1644 return -EINVAL;
1645
1646 if (((sflags & SCTP_EOF) && msg_len > 0) ||
1647 (!(sflags & (SCTP_EOF | SCTP_ABORT)) && msg_len == 0))
1648 return -EINVAL;
1649
1650 if ((sflags & SCTP_ADDR_OVER) && !msg->msg_name)
1651 return -EINVAL;
1652
1653 return 0;
1654 }
1655
sctp_sendmsg_new_asoc(struct sock * sk,__u16 sflags,struct sctp_cmsgs * cmsgs,union sctp_addr * daddr,struct sctp_transport ** tp)1656 static int sctp_sendmsg_new_asoc(struct sock *sk, __u16 sflags,
1657 struct sctp_cmsgs *cmsgs,
1658 union sctp_addr *daddr,
1659 struct sctp_transport **tp)
1660 {
1661 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
1662 struct sctp_association *asoc;
1663 struct cmsghdr *cmsg;
1664 __be32 flowinfo = 0;
1665 struct sctp_af *af;
1666 int err;
1667
1668 *tp = NULL;
1669
1670 if (sflags & (SCTP_EOF | SCTP_ABORT))
1671 return -EINVAL;
1672
1673 if (sctp_style(sk, TCP) && (sctp_sstate(sk, ESTABLISHED) ||
1674 sctp_sstate(sk, CLOSING)))
1675 return -EADDRNOTAVAIL;
1676
1677 /* Label connection socket for first association 1-to-many
1678 * style for client sequence socket()->sendmsg(). This
1679 * needs to be done before sctp_assoc_add_peer() as that will
1680 * set up the initial packet that needs to account for any
1681 * security ip options (CIPSO/CALIPSO) added to the packet.
1682 */
1683 af = sctp_get_af_specific(daddr->sa.sa_family);
1684 if (!af)
1685 return -EINVAL;
1686 err = security_sctp_bind_connect(sk, SCTP_SENDMSG_CONNECT,
1687 (struct sockaddr *)daddr,
1688 af->sockaddr_len);
1689 if (err < 0)
1690 return err;
1691
1692 err = sctp_connect_new_asoc(ep, daddr, cmsgs->init, tp);
1693 if (err)
1694 return err;
1695 asoc = (*tp)->asoc;
1696
1697 if (!cmsgs->addrs_msg)
1698 return 0;
1699
1700 if (daddr->sa.sa_family == AF_INET6)
1701 flowinfo = daddr->v6.sin6_flowinfo;
1702
1703 /* sendv addr list parse */
1704 for_each_cmsghdr(cmsg, cmsgs->addrs_msg) {
1705 union sctp_addr _daddr;
1706 int dlen;
1707
1708 if (cmsg->cmsg_level != IPPROTO_SCTP ||
1709 (cmsg->cmsg_type != SCTP_DSTADDRV4 &&
1710 cmsg->cmsg_type != SCTP_DSTADDRV6))
1711 continue;
1712
1713 daddr = &_daddr;
1714 memset(daddr, 0, sizeof(*daddr));
1715 dlen = cmsg->cmsg_len - sizeof(struct cmsghdr);
1716 if (cmsg->cmsg_type == SCTP_DSTADDRV4) {
1717 if (dlen < sizeof(struct in_addr)) {
1718 err = -EINVAL;
1719 goto free;
1720 }
1721
1722 dlen = sizeof(struct in_addr);
1723 daddr->v4.sin_family = AF_INET;
1724 daddr->v4.sin_port = htons(asoc->peer.port);
1725 memcpy(&daddr->v4.sin_addr, CMSG_DATA(cmsg), dlen);
1726 } else {
1727 if (dlen < sizeof(struct in6_addr)) {
1728 err = -EINVAL;
1729 goto free;
1730 }
1731
1732 dlen = sizeof(struct in6_addr);
1733 daddr->v6.sin6_flowinfo = flowinfo;
1734 daddr->v6.sin6_family = AF_INET6;
1735 daddr->v6.sin6_port = htons(asoc->peer.port);
1736 memcpy(&daddr->v6.sin6_addr, CMSG_DATA(cmsg), dlen);
1737 }
1738
1739 err = sctp_connect_add_peer(asoc, daddr, sizeof(*daddr));
1740 if (err)
1741 goto free;
1742 }
1743
1744 return 0;
1745
1746 free:
1747 sctp_association_free(asoc);
1748 return err;
1749 }
1750
sctp_sendmsg_check_sflags(struct sctp_association * asoc,__u16 sflags,struct msghdr * msg,size_t msg_len)1751 static int sctp_sendmsg_check_sflags(struct sctp_association *asoc,
1752 __u16 sflags, struct msghdr *msg,
1753 size_t msg_len)
1754 {
1755 struct sock *sk = asoc->base.sk;
1756 struct net *net = sock_net(sk);
1757
1758 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP))
1759 return -EPIPE;
1760
1761 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP) &&
1762 !sctp_state(asoc, ESTABLISHED))
1763 return 0;
1764
1765 if (sflags & SCTP_EOF) {
1766 pr_debug("%s: shutting down association:%p\n", __func__, asoc);
1767 sctp_primitive_SHUTDOWN(net, asoc, NULL);
1768
1769 return 0;
1770 }
1771
1772 if (sflags & SCTP_ABORT) {
1773 struct sctp_chunk *chunk;
1774
1775 chunk = sctp_make_abort_user(asoc, msg, msg_len);
1776 if (!chunk)
1777 return -ENOMEM;
1778
1779 pr_debug("%s: aborting association:%p\n", __func__, asoc);
1780 sctp_primitive_ABORT(net, asoc, chunk);
1781 iov_iter_revert(&msg->msg_iter, msg_len);
1782
1783 return 0;
1784 }
1785
1786 return 1;
1787 }
1788
sctp_sendmsg_to_asoc(struct sctp_association * asoc,struct msghdr * msg,size_t msg_len,struct sctp_transport * transport,struct sctp_sndrcvinfo * sinfo)1789 static int sctp_sendmsg_to_asoc(struct sctp_association *asoc,
1790 struct msghdr *msg, size_t msg_len,
1791 struct sctp_transport *transport,
1792 struct sctp_sndrcvinfo *sinfo)
1793 {
1794 struct sock *sk = asoc->base.sk;
1795 struct sctp_sock *sp = sctp_sk(sk);
1796 struct net *net = sock_net(sk);
1797 struct sctp_datamsg *datamsg;
1798 bool wait_connect = false;
1799 struct sctp_chunk *chunk;
1800 long timeo;
1801 int err;
1802
1803 if (sinfo->sinfo_stream >= asoc->stream.outcnt) {
1804 err = -EINVAL;
1805 goto err;
1806 }
1807
1808 if (unlikely(!SCTP_SO(&asoc->stream, sinfo->sinfo_stream)->ext)) {
1809 err = sctp_stream_init_ext(&asoc->stream, sinfo->sinfo_stream);
1810 if (err)
1811 goto err;
1812 }
1813
1814 if (sp->disable_fragments && msg_len > asoc->frag_point) {
1815 err = -EMSGSIZE;
1816 goto err;
1817 }
1818
1819 if (asoc->pmtu_pending) {
1820 if (sp->param_flags & SPP_PMTUD_ENABLE)
1821 sctp_assoc_sync_pmtu(asoc);
1822 asoc->pmtu_pending = 0;
1823 }
1824
1825 if (sctp_wspace(asoc) < (int)msg_len)
1826 sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc));
1827
1828 if (sctp_wspace(asoc) <= 0 || !sk_wmem_schedule(sk, msg_len)) {
1829 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1830 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1831 if (err)
1832 goto err;
1833 if (unlikely(sinfo->sinfo_stream >= asoc->stream.outcnt)) {
1834 err = -EINVAL;
1835 goto err;
1836 }
1837 }
1838
1839 if (sctp_state(asoc, CLOSED)) {
1840 err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1841 if (err)
1842 goto err;
1843
1844 if (asoc->ep->intl_enable) {
1845 timeo = sock_sndtimeo(sk, 0);
1846 err = sctp_wait_for_connect(asoc, &timeo);
1847 if (err) {
1848 err = -ESRCH;
1849 goto err;
1850 }
1851 } else {
1852 wait_connect = true;
1853 }
1854
1855 pr_debug("%s: we associated primitively\n", __func__);
1856 }
1857
1858 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter);
1859 if (IS_ERR(datamsg)) {
1860 err = PTR_ERR(datamsg);
1861 goto err;
1862 }
1863
1864 asoc->force_delay = !!(msg->msg_flags & MSG_MORE);
1865
1866 list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1867 sctp_chunk_hold(chunk);
1868 sctp_set_owner_w(chunk);
1869 chunk->transport = transport;
1870 }
1871
1872 err = sctp_primitive_SEND(net, asoc, datamsg);
1873 if (err) {
1874 sctp_datamsg_free(datamsg);
1875 goto err;
1876 }
1877
1878 pr_debug("%s: we sent primitively\n", __func__);
1879
1880 sctp_datamsg_put(datamsg);
1881
1882 if (unlikely(wait_connect)) {
1883 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1884 sctp_wait_for_connect(asoc, &timeo);
1885 }
1886
1887 err = msg_len;
1888
1889 err:
1890 return err;
1891 }
1892
sctp_sendmsg_get_daddr(struct sock * sk,const struct msghdr * msg,struct sctp_cmsgs * cmsgs)1893 static union sctp_addr *sctp_sendmsg_get_daddr(struct sock *sk,
1894 const struct msghdr *msg,
1895 struct sctp_cmsgs *cmsgs)
1896 {
1897 union sctp_addr *daddr = NULL;
1898 int err;
1899
1900 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1901 int len = msg->msg_namelen;
1902
1903 if (len > sizeof(*daddr))
1904 len = sizeof(*daddr);
1905
1906 daddr = (union sctp_addr *)msg->msg_name;
1907
1908 err = sctp_verify_addr(sk, daddr, len);
1909 if (err)
1910 return ERR_PTR(err);
1911 }
1912
1913 return daddr;
1914 }
1915
sctp_sendmsg_update_sinfo(struct sctp_association * asoc,struct sctp_sndrcvinfo * sinfo,struct sctp_cmsgs * cmsgs)1916 static void sctp_sendmsg_update_sinfo(struct sctp_association *asoc,
1917 struct sctp_sndrcvinfo *sinfo,
1918 struct sctp_cmsgs *cmsgs)
1919 {
1920 if (!cmsgs->srinfo && !cmsgs->sinfo) {
1921 sinfo->sinfo_stream = asoc->default_stream;
1922 sinfo->sinfo_ppid = asoc->default_ppid;
1923 sinfo->sinfo_context = asoc->default_context;
1924 sinfo->sinfo_assoc_id = sctp_assoc2id(asoc);
1925
1926 if (!cmsgs->prinfo)
1927 sinfo->sinfo_flags = asoc->default_flags;
1928 }
1929
1930 if (!cmsgs->srinfo && !cmsgs->prinfo)
1931 sinfo->sinfo_timetolive = asoc->default_timetolive;
1932
1933 if (cmsgs->authinfo) {
1934 /* Reuse sinfo_tsn to indicate that authinfo was set and
1935 * sinfo_ssn to save the keyid on tx path.
1936 */
1937 sinfo->sinfo_tsn = 1;
1938 sinfo->sinfo_ssn = cmsgs->authinfo->auth_keynumber;
1939 }
1940 }
1941
sctp_sendmsg(struct sock * sk,struct msghdr * msg,size_t msg_len)1942 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len)
1943 {
1944 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
1945 struct sctp_transport *transport = NULL;
1946 struct sctp_sndrcvinfo _sinfo, *sinfo;
1947 struct sctp_association *asoc, *tmp;
1948 struct sctp_cmsgs cmsgs;
1949 union sctp_addr *daddr;
1950 bool new = false;
1951 __u16 sflags;
1952 int err;
1953
1954 /* Parse and get snd_info */
1955 err = sctp_sendmsg_parse(sk, &cmsgs, &_sinfo, msg, msg_len);
1956 if (err)
1957 goto out;
1958
1959 sinfo = &_sinfo;
1960 sflags = sinfo->sinfo_flags;
1961
1962 /* Get daddr from msg */
1963 daddr = sctp_sendmsg_get_daddr(sk, msg, &cmsgs);
1964 if (IS_ERR(daddr)) {
1965 err = PTR_ERR(daddr);
1966 goto out;
1967 }
1968
1969 lock_sock(sk);
1970
1971 /* SCTP_SENDALL process */
1972 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP)) {
1973 list_for_each_entry_safe(asoc, tmp, &ep->asocs, asocs) {
1974 err = sctp_sendmsg_check_sflags(asoc, sflags, msg,
1975 msg_len);
1976 if (err == 0)
1977 continue;
1978 if (err < 0)
1979 goto out_unlock;
1980
1981 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs);
1982
1983 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len,
1984 NULL, sinfo);
1985 if (err < 0)
1986 goto out_unlock;
1987
1988 iov_iter_revert(&msg->msg_iter, err);
1989 }
1990
1991 goto out_unlock;
1992 }
1993
1994 /* Get and check or create asoc */
1995 if (daddr) {
1996 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport);
1997 if (asoc) {
1998 err = sctp_sendmsg_check_sflags(asoc, sflags, msg,
1999 msg_len);
2000 if (err <= 0)
2001 goto out_unlock;
2002 } else {
2003 err = sctp_sendmsg_new_asoc(sk, sflags, &cmsgs, daddr,
2004 &transport);
2005 if (err)
2006 goto out_unlock;
2007
2008 asoc = transport->asoc;
2009 new = true;
2010 }
2011
2012 if (!sctp_style(sk, TCP) && !(sflags & SCTP_ADDR_OVER))
2013 transport = NULL;
2014 } else {
2015 asoc = sctp_id2assoc(sk, sinfo->sinfo_assoc_id);
2016 if (!asoc) {
2017 err = -EPIPE;
2018 goto out_unlock;
2019 }
2020
2021 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, msg_len);
2022 if (err <= 0)
2023 goto out_unlock;
2024 }
2025
2026 /* Update snd_info with the asoc */
2027 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs);
2028
2029 /* Send msg to the asoc */
2030 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, transport, sinfo);
2031 if (err < 0 && err != -ESRCH && new)
2032 sctp_association_free(asoc);
2033
2034 out_unlock:
2035 release_sock(sk);
2036 out:
2037 return sctp_error(sk, msg->msg_flags, err);
2038 }
2039
2040 /* This is an extended version of skb_pull() that removes the data from the
2041 * start of a skb even when data is spread across the list of skb's in the
2042 * frag_list. len specifies the total amount of data that needs to be removed.
2043 * when 'len' bytes could be removed from the skb, it returns 0.
2044 * If 'len' exceeds the total skb length, it returns the no. of bytes that
2045 * could not be removed.
2046 */
sctp_skb_pull(struct sk_buff * skb,int len)2047 static int sctp_skb_pull(struct sk_buff *skb, int len)
2048 {
2049 struct sk_buff *list;
2050 int skb_len = skb_headlen(skb);
2051 int rlen;
2052
2053 if (len <= skb_len) {
2054 __skb_pull(skb, len);
2055 return 0;
2056 }
2057 len -= skb_len;
2058 __skb_pull(skb, skb_len);
2059
2060 skb_walk_frags(skb, list) {
2061 rlen = sctp_skb_pull(list, len);
2062 skb->len -= (len-rlen);
2063 skb->data_len -= (len-rlen);
2064
2065 if (!rlen)
2066 return 0;
2067
2068 len = rlen;
2069 }
2070
2071 return len;
2072 }
2073
2074 /* API 3.1.3 recvmsg() - UDP Style Syntax
2075 *
2076 * ssize_t recvmsg(int socket, struct msghdr *message,
2077 * int flags);
2078 *
2079 * socket - the socket descriptor of the endpoint.
2080 * message - pointer to the msghdr structure which contains a single
2081 * user message and possibly some ancillary data.
2082 *
2083 * See Section 5 for complete description of the data
2084 * structures.
2085 *
2086 * flags - flags sent or received with the user message, see Section
2087 * 5 for complete description of the flags.
2088 */
sctp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags,int * addr_len)2089 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2090 int flags, int *addr_len)
2091 {
2092 struct sctp_ulpevent *event = NULL;
2093 struct sctp_sock *sp = sctp_sk(sk);
2094 struct sk_buff *skb, *head_skb;
2095 int copied;
2096 int err = 0;
2097 int skb_len;
2098
2099 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, flags:0x%x, addr_len:%p)\n",
2100 __func__, sk, msg, len, flags, addr_len);
2101
2102 lock_sock(sk);
2103
2104 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) &&
2105 !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) {
2106 err = -ENOTCONN;
2107 goto out;
2108 }
2109
2110 skb = sctp_skb_recv_datagram(sk, flags, &err);
2111 if (!skb)
2112 goto out;
2113
2114 /* Get the total length of the skb including any skb's in the
2115 * frag_list.
2116 */
2117 skb_len = skb->len;
2118
2119 copied = skb_len;
2120 if (copied > len)
2121 copied = len;
2122
2123 err = skb_copy_datagram_msg(skb, 0, msg, copied);
2124
2125 event = sctp_skb2event(skb);
2126
2127 if (err)
2128 goto out_free;
2129
2130 if (event->chunk && event->chunk->head_skb)
2131 head_skb = event->chunk->head_skb;
2132 else
2133 head_skb = skb;
2134 sock_recv_cmsgs(msg, sk, head_skb);
2135 if (sctp_ulpevent_is_notification(event)) {
2136 msg->msg_flags |= MSG_NOTIFICATION;
2137 sp->pf->event_msgname(event, msg->msg_name, addr_len);
2138 } else {
2139 sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len);
2140 }
2141
2142 /* Check if we allow SCTP_NXTINFO. */
2143 if (sp->recvnxtinfo)
2144 sctp_ulpevent_read_nxtinfo(event, msg, sk);
2145 /* Check if we allow SCTP_RCVINFO. */
2146 if (sp->recvrcvinfo)
2147 sctp_ulpevent_read_rcvinfo(event, msg);
2148 /* Check if we allow SCTP_SNDRCVINFO. */
2149 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_DATA_IO_EVENT))
2150 sctp_ulpevent_read_sndrcvinfo(event, msg);
2151
2152 err = copied;
2153
2154 /* If skb's length exceeds the user's buffer, update the skb and
2155 * push it back to the receive_queue so that the next call to
2156 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2157 */
2158 if (skb_len > copied) {
2159 msg->msg_flags &= ~MSG_EOR;
2160 if (flags & MSG_PEEK)
2161 goto out_free;
2162 sctp_skb_pull(skb, copied);
2163 skb_queue_head(&sk->sk_receive_queue, skb);
2164
2165 /* When only partial message is copied to the user, increase
2166 * rwnd by that amount. If all the data in the skb is read,
2167 * rwnd is updated when the event is freed.
2168 */
2169 if (!sctp_ulpevent_is_notification(event))
2170 sctp_assoc_rwnd_increase(event->asoc, copied);
2171 goto out;
2172 } else if ((event->msg_flags & MSG_NOTIFICATION) ||
2173 (event->msg_flags & MSG_EOR))
2174 msg->msg_flags |= MSG_EOR;
2175 else
2176 msg->msg_flags &= ~MSG_EOR;
2177
2178 out_free:
2179 if (flags & MSG_PEEK) {
2180 /* Release the skb reference acquired after peeking the skb in
2181 * sctp_skb_recv_datagram().
2182 */
2183 kfree_skb(skb);
2184 } else {
2185 /* Free the event which includes releasing the reference to
2186 * the owner of the skb, freeing the skb and updating the
2187 * rwnd.
2188 */
2189 sctp_ulpevent_free(event);
2190 }
2191 out:
2192 release_sock(sk);
2193 return err;
2194 }
2195
2196 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2197 *
2198 * This option is a on/off flag. If enabled no SCTP message
2199 * fragmentation will be performed. Instead if a message being sent
2200 * exceeds the current PMTU size, the message will NOT be sent and
2201 * instead a error will be indicated to the user.
2202 */
sctp_setsockopt_disable_fragments(struct sock * sk,int * val,unsigned int optlen)2203 static int sctp_setsockopt_disable_fragments(struct sock *sk, int *val,
2204 unsigned int optlen)
2205 {
2206 if (optlen < sizeof(int))
2207 return -EINVAL;
2208 sctp_sk(sk)->disable_fragments = (*val == 0) ? 0 : 1;
2209 return 0;
2210 }
2211
sctp_setsockopt_events(struct sock * sk,__u8 * sn_type,unsigned int optlen)2212 static int sctp_setsockopt_events(struct sock *sk, __u8 *sn_type,
2213 unsigned int optlen)
2214 {
2215 struct sctp_sock *sp = sctp_sk(sk);
2216 struct sctp_association *asoc;
2217 int i;
2218
2219 if (optlen > sizeof(struct sctp_event_subscribe))
2220 return -EINVAL;
2221
2222 for (i = 0; i < optlen; i++)
2223 sctp_ulpevent_type_set(&sp->subscribe, SCTP_SN_TYPE_BASE + i,
2224 sn_type[i]);
2225
2226 list_for_each_entry(asoc, &sp->ep->asocs, asocs)
2227 asoc->subscribe = sctp_sk(sk)->subscribe;
2228
2229 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2230 * if there is no data to be sent or retransmit, the stack will
2231 * immediately send up this notification.
2232 */
2233 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_SENDER_DRY_EVENT)) {
2234 struct sctp_ulpevent *event;
2235
2236 asoc = sctp_id2assoc(sk, 0);
2237 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2238 event = sctp_ulpevent_make_sender_dry_event(asoc,
2239 GFP_USER | __GFP_NOWARN);
2240 if (!event)
2241 return -ENOMEM;
2242
2243 asoc->stream.si->enqueue_event(&asoc->ulpq, event);
2244 }
2245 }
2246
2247 return 0;
2248 }
2249
2250 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2251 *
2252 * This socket option is applicable to the UDP-style socket only. When
2253 * set it will cause associations that are idle for more than the
2254 * specified number of seconds to automatically close. An association
2255 * being idle is defined an association that has NOT sent or received
2256 * user data. The special value of '0' indicates that no automatic
2257 * close of any associations should be performed. The option expects an
2258 * integer defining the number of seconds of idle time before an
2259 * association is closed.
2260 */
sctp_setsockopt_autoclose(struct sock * sk,u32 * optval,unsigned int optlen)2261 static int sctp_setsockopt_autoclose(struct sock *sk, u32 *optval,
2262 unsigned int optlen)
2263 {
2264 struct sctp_sock *sp = sctp_sk(sk);
2265 struct net *net = sock_net(sk);
2266
2267 /* Applicable to UDP-style socket only */
2268 if (sctp_style(sk, TCP))
2269 return -EOPNOTSUPP;
2270 if (optlen != sizeof(int))
2271 return -EINVAL;
2272
2273 sp->autoclose = *optval;
2274 if (sp->autoclose > net->sctp.max_autoclose)
2275 sp->autoclose = net->sctp.max_autoclose;
2276
2277 return 0;
2278 }
2279
2280 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2281 *
2282 * Applications can enable or disable heartbeats for any peer address of
2283 * an association, modify an address's heartbeat interval, force a
2284 * heartbeat to be sent immediately, and adjust the address's maximum
2285 * number of retransmissions sent before an address is considered
2286 * unreachable. The following structure is used to access and modify an
2287 * address's parameters:
2288 *
2289 * struct sctp_paddrparams {
2290 * sctp_assoc_t spp_assoc_id;
2291 * struct sockaddr_storage spp_address;
2292 * uint32_t spp_hbinterval;
2293 * uint16_t spp_pathmaxrxt;
2294 * uint32_t spp_pathmtu;
2295 * uint32_t spp_sackdelay;
2296 * uint32_t spp_flags;
2297 * uint32_t spp_ipv6_flowlabel;
2298 * uint8_t spp_dscp;
2299 * };
2300 *
2301 * spp_assoc_id - (one-to-many style socket) This is filled in the
2302 * application, and identifies the association for
2303 * this query.
2304 * spp_address - This specifies which address is of interest.
2305 * spp_hbinterval - This contains the value of the heartbeat interval,
2306 * in milliseconds. If a value of zero
2307 * is present in this field then no changes are to
2308 * be made to this parameter.
2309 * spp_pathmaxrxt - This contains the maximum number of
2310 * retransmissions before this address shall be
2311 * considered unreachable. If a value of zero
2312 * is present in this field then no changes are to
2313 * be made to this parameter.
2314 * spp_pathmtu - When Path MTU discovery is disabled the value
2315 * specified here will be the "fixed" path mtu.
2316 * Note that if the spp_address field is empty
2317 * then all associations on this address will
2318 * have this fixed path mtu set upon them.
2319 *
2320 * spp_sackdelay - When delayed sack is enabled, this value specifies
2321 * the number of milliseconds that sacks will be delayed
2322 * for. This value will apply to all addresses of an
2323 * association if the spp_address field is empty. Note
2324 * also, that if delayed sack is enabled and this
2325 * value is set to 0, no change is made to the last
2326 * recorded delayed sack timer value.
2327 *
2328 * spp_flags - These flags are used to control various features
2329 * on an association. The flag field may contain
2330 * zero or more of the following options.
2331 *
2332 * SPP_HB_ENABLE - Enable heartbeats on the
2333 * specified address. Note that if the address
2334 * field is empty all addresses for the association
2335 * have heartbeats enabled upon them.
2336 *
2337 * SPP_HB_DISABLE - Disable heartbeats on the
2338 * speicifed address. Note that if the address
2339 * field is empty all addresses for the association
2340 * will have their heartbeats disabled. Note also
2341 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
2342 * mutually exclusive, only one of these two should
2343 * be specified. Enabling both fields will have
2344 * undetermined results.
2345 *
2346 * SPP_HB_DEMAND - Request a user initiated heartbeat
2347 * to be made immediately.
2348 *
2349 * SPP_HB_TIME_IS_ZERO - Specify's that the time for
2350 * heartbeat delayis to be set to the value of 0
2351 * milliseconds.
2352 *
2353 * SPP_PMTUD_ENABLE - This field will enable PMTU
2354 * discovery upon the specified address. Note that
2355 * if the address feild is empty then all addresses
2356 * on the association are effected.
2357 *
2358 * SPP_PMTUD_DISABLE - This field will disable PMTU
2359 * discovery upon the specified address. Note that
2360 * if the address feild is empty then all addresses
2361 * on the association are effected. Not also that
2362 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2363 * exclusive. Enabling both will have undetermined
2364 * results.
2365 *
2366 * SPP_SACKDELAY_ENABLE - Setting this flag turns
2367 * on delayed sack. The time specified in spp_sackdelay
2368 * is used to specify the sack delay for this address. Note
2369 * that if spp_address is empty then all addresses will
2370 * enable delayed sack and take on the sack delay
2371 * value specified in spp_sackdelay.
2372 * SPP_SACKDELAY_DISABLE - Setting this flag turns
2373 * off delayed sack. If the spp_address field is blank then
2374 * delayed sack is disabled for the entire association. Note
2375 * also that this field is mutually exclusive to
2376 * SPP_SACKDELAY_ENABLE, setting both will have undefined
2377 * results.
2378 *
2379 * SPP_IPV6_FLOWLABEL: Setting this flag enables the
2380 * setting of the IPV6 flow label value. The value is
2381 * contained in the spp_ipv6_flowlabel field.
2382 * Upon retrieval, this flag will be set to indicate that
2383 * the spp_ipv6_flowlabel field has a valid value returned.
2384 * If a specific destination address is set (in the
2385 * spp_address field), then the value returned is that of
2386 * the address. If just an association is specified (and
2387 * no address), then the association's default flow label
2388 * is returned. If neither an association nor a destination
2389 * is specified, then the socket's default flow label is
2390 * returned. For non-IPv6 sockets, this flag will be left
2391 * cleared.
2392 *
2393 * SPP_DSCP: Setting this flag enables the setting of the
2394 * Differentiated Services Code Point (DSCP) value
2395 * associated with either the association or a specific
2396 * address. The value is obtained in the spp_dscp field.
2397 * Upon retrieval, this flag will be set to indicate that
2398 * the spp_dscp field has a valid value returned. If a
2399 * specific destination address is set when called (in the
2400 * spp_address field), then that specific destination
2401 * address's DSCP value is returned. If just an association
2402 * is specified, then the association's default DSCP is
2403 * returned. If neither an association nor a destination is
2404 * specified, then the socket's default DSCP is returned.
2405 *
2406 * spp_ipv6_flowlabel
2407 * - This field is used in conjunction with the
2408 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label.
2409 * The 20 least significant bits are used for the flow
2410 * label. This setting has precedence over any IPv6-layer
2411 * setting.
2412 *
2413 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag
2414 * and contains the DSCP. The 6 most significant bits are
2415 * used for the DSCP. This setting has precedence over any
2416 * IPv4- or IPv6- layer setting.
2417 */
sctp_apply_peer_addr_params(struct sctp_paddrparams * params,struct sctp_transport * trans,struct sctp_association * asoc,struct sctp_sock * sp,int hb_change,int pmtud_change,int sackdelay_change)2418 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2419 struct sctp_transport *trans,
2420 struct sctp_association *asoc,
2421 struct sctp_sock *sp,
2422 int hb_change,
2423 int pmtud_change,
2424 int sackdelay_change)
2425 {
2426 int error;
2427
2428 if (params->spp_flags & SPP_HB_DEMAND && trans) {
2429 error = sctp_primitive_REQUESTHEARTBEAT(trans->asoc->base.net,
2430 trans->asoc, trans);
2431 if (error)
2432 return error;
2433 }
2434
2435 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2436 * this field is ignored. Note also that a value of zero indicates
2437 * the current setting should be left unchanged.
2438 */
2439 if (params->spp_flags & SPP_HB_ENABLE) {
2440
2441 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2442 * set. This lets us use 0 value when this flag
2443 * is set.
2444 */
2445 if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2446 params->spp_hbinterval = 0;
2447
2448 if (params->spp_hbinterval ||
2449 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2450 if (trans) {
2451 trans->hbinterval =
2452 msecs_to_jiffies(params->spp_hbinterval);
2453 sctp_transport_reset_hb_timer(trans);
2454 } else if (asoc) {
2455 asoc->hbinterval =
2456 msecs_to_jiffies(params->spp_hbinterval);
2457 } else {
2458 sp->hbinterval = params->spp_hbinterval;
2459 }
2460 }
2461 }
2462
2463 if (hb_change) {
2464 if (trans) {
2465 trans->param_flags =
2466 (trans->param_flags & ~SPP_HB) | hb_change;
2467 } else if (asoc) {
2468 asoc->param_flags =
2469 (asoc->param_flags & ~SPP_HB) | hb_change;
2470 } else {
2471 sp->param_flags =
2472 (sp->param_flags & ~SPP_HB) | hb_change;
2473 }
2474 }
2475
2476 /* When Path MTU discovery is disabled the value specified here will
2477 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2478 * include the flag SPP_PMTUD_DISABLE for this field to have any
2479 * effect).
2480 */
2481 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2482 if (trans) {
2483 trans->pathmtu = params->spp_pathmtu;
2484 sctp_assoc_sync_pmtu(asoc);
2485 } else if (asoc) {
2486 sctp_assoc_set_pmtu(asoc, params->spp_pathmtu);
2487 } else {
2488 sp->pathmtu = params->spp_pathmtu;
2489 }
2490 }
2491
2492 if (pmtud_change) {
2493 if (trans) {
2494 int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2495 (params->spp_flags & SPP_PMTUD_ENABLE);
2496 trans->param_flags =
2497 (trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2498 if (update) {
2499 sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2500 sctp_assoc_sync_pmtu(asoc);
2501 }
2502 sctp_transport_pl_reset(trans);
2503 } else if (asoc) {
2504 asoc->param_flags =
2505 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2506 } else {
2507 sp->param_flags =
2508 (sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2509 }
2510 }
2511
2512 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2513 * value of this field is ignored. Note also that a value of zero
2514 * indicates the current setting should be left unchanged.
2515 */
2516 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2517 if (trans) {
2518 trans->sackdelay =
2519 msecs_to_jiffies(params->spp_sackdelay);
2520 } else if (asoc) {
2521 asoc->sackdelay =
2522 msecs_to_jiffies(params->spp_sackdelay);
2523 } else {
2524 sp->sackdelay = params->spp_sackdelay;
2525 }
2526 }
2527
2528 if (sackdelay_change) {
2529 if (trans) {
2530 trans->param_flags =
2531 (trans->param_flags & ~SPP_SACKDELAY) |
2532 sackdelay_change;
2533 } else if (asoc) {
2534 asoc->param_flags =
2535 (asoc->param_flags & ~SPP_SACKDELAY) |
2536 sackdelay_change;
2537 } else {
2538 sp->param_flags =
2539 (sp->param_flags & ~SPP_SACKDELAY) |
2540 sackdelay_change;
2541 }
2542 }
2543
2544 /* Note that a value of zero indicates the current setting should be
2545 left unchanged.
2546 */
2547 if (params->spp_pathmaxrxt) {
2548 if (trans) {
2549 trans->pathmaxrxt = params->spp_pathmaxrxt;
2550 } else if (asoc) {
2551 asoc->pathmaxrxt = params->spp_pathmaxrxt;
2552 } else {
2553 sp->pathmaxrxt = params->spp_pathmaxrxt;
2554 }
2555 }
2556
2557 if (params->spp_flags & SPP_IPV6_FLOWLABEL) {
2558 if (trans) {
2559 if (trans->ipaddr.sa.sa_family == AF_INET6) {
2560 trans->flowlabel = params->spp_ipv6_flowlabel &
2561 SCTP_FLOWLABEL_VAL_MASK;
2562 trans->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2563 }
2564 } else if (asoc) {
2565 struct sctp_transport *t;
2566
2567 list_for_each_entry(t, &asoc->peer.transport_addr_list,
2568 transports) {
2569 if (t->ipaddr.sa.sa_family != AF_INET6)
2570 continue;
2571 t->flowlabel = params->spp_ipv6_flowlabel &
2572 SCTP_FLOWLABEL_VAL_MASK;
2573 t->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2574 }
2575 asoc->flowlabel = params->spp_ipv6_flowlabel &
2576 SCTP_FLOWLABEL_VAL_MASK;
2577 asoc->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2578 } else if (sctp_opt2sk(sp)->sk_family == AF_INET6) {
2579 sp->flowlabel = params->spp_ipv6_flowlabel &
2580 SCTP_FLOWLABEL_VAL_MASK;
2581 sp->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2582 }
2583 }
2584
2585 if (params->spp_flags & SPP_DSCP) {
2586 if (trans) {
2587 trans->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2588 trans->dscp |= SCTP_DSCP_SET_MASK;
2589 } else if (asoc) {
2590 struct sctp_transport *t;
2591
2592 list_for_each_entry(t, &asoc->peer.transport_addr_list,
2593 transports) {
2594 t->dscp = params->spp_dscp &
2595 SCTP_DSCP_VAL_MASK;
2596 t->dscp |= SCTP_DSCP_SET_MASK;
2597 }
2598 asoc->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2599 asoc->dscp |= SCTP_DSCP_SET_MASK;
2600 } else {
2601 sp->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2602 sp->dscp |= SCTP_DSCP_SET_MASK;
2603 }
2604 }
2605
2606 return 0;
2607 }
2608
sctp_setsockopt_peer_addr_params(struct sock * sk,struct sctp_paddrparams * params,unsigned int optlen)2609 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2610 struct sctp_paddrparams *params,
2611 unsigned int optlen)
2612 {
2613 struct sctp_transport *trans = NULL;
2614 struct sctp_association *asoc = NULL;
2615 struct sctp_sock *sp = sctp_sk(sk);
2616 int error;
2617 int hb_change, pmtud_change, sackdelay_change;
2618
2619 if (optlen == ALIGN(offsetof(struct sctp_paddrparams,
2620 spp_ipv6_flowlabel), 4)) {
2621 if (params->spp_flags & (SPP_DSCP | SPP_IPV6_FLOWLABEL))
2622 return -EINVAL;
2623 } else if (optlen != sizeof(*params)) {
2624 return -EINVAL;
2625 }
2626
2627 /* Validate flags and value parameters. */
2628 hb_change = params->spp_flags & SPP_HB;
2629 pmtud_change = params->spp_flags & SPP_PMTUD;
2630 sackdelay_change = params->spp_flags & SPP_SACKDELAY;
2631
2632 if (hb_change == SPP_HB ||
2633 pmtud_change == SPP_PMTUD ||
2634 sackdelay_change == SPP_SACKDELAY ||
2635 params->spp_sackdelay > 500 ||
2636 (params->spp_pathmtu &&
2637 params->spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2638 return -EINVAL;
2639
2640 /* If an address other than INADDR_ANY is specified, and
2641 * no transport is found, then the request is invalid.
2642 */
2643 if (!sctp_is_any(sk, (union sctp_addr *)¶ms->spp_address)) {
2644 trans = sctp_addr_id2transport(sk, ¶ms->spp_address,
2645 params->spp_assoc_id);
2646 if (!trans)
2647 return -EINVAL;
2648 }
2649
2650 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
2651 * socket is a one to many style socket, and an association
2652 * was not found, then the id was invalid.
2653 */
2654 asoc = sctp_id2assoc(sk, params->spp_assoc_id);
2655 if (!asoc && params->spp_assoc_id != SCTP_FUTURE_ASSOC &&
2656 sctp_style(sk, UDP))
2657 return -EINVAL;
2658
2659 /* Heartbeat demand can only be sent on a transport or
2660 * association, but not a socket.
2661 */
2662 if (params->spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2663 return -EINVAL;
2664
2665 /* Process parameters. */
2666 error = sctp_apply_peer_addr_params(params, trans, asoc, sp,
2667 hb_change, pmtud_change,
2668 sackdelay_change);
2669
2670 if (error)
2671 return error;
2672
2673 /* If changes are for association, also apply parameters to each
2674 * transport.
2675 */
2676 if (!trans && asoc) {
2677 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2678 transports) {
2679 sctp_apply_peer_addr_params(params, trans, asoc, sp,
2680 hb_change, pmtud_change,
2681 sackdelay_change);
2682 }
2683 }
2684
2685 return 0;
2686 }
2687
sctp_spp_sackdelay_enable(__u32 param_flags)2688 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags)
2689 {
2690 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE;
2691 }
2692
sctp_spp_sackdelay_disable(__u32 param_flags)2693 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags)
2694 {
2695 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE;
2696 }
2697
sctp_apply_asoc_delayed_ack(struct sctp_sack_info * params,struct sctp_association * asoc)2698 static void sctp_apply_asoc_delayed_ack(struct sctp_sack_info *params,
2699 struct sctp_association *asoc)
2700 {
2701 struct sctp_transport *trans;
2702
2703 if (params->sack_delay) {
2704 asoc->sackdelay = msecs_to_jiffies(params->sack_delay);
2705 asoc->param_flags =
2706 sctp_spp_sackdelay_enable(asoc->param_flags);
2707 }
2708 if (params->sack_freq == 1) {
2709 asoc->param_flags =
2710 sctp_spp_sackdelay_disable(asoc->param_flags);
2711 } else if (params->sack_freq > 1) {
2712 asoc->sackfreq = params->sack_freq;
2713 asoc->param_flags =
2714 sctp_spp_sackdelay_enable(asoc->param_flags);
2715 }
2716
2717 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2718 transports) {
2719 if (params->sack_delay) {
2720 trans->sackdelay = msecs_to_jiffies(params->sack_delay);
2721 trans->param_flags =
2722 sctp_spp_sackdelay_enable(trans->param_flags);
2723 }
2724 if (params->sack_freq == 1) {
2725 trans->param_flags =
2726 sctp_spp_sackdelay_disable(trans->param_flags);
2727 } else if (params->sack_freq > 1) {
2728 trans->sackfreq = params->sack_freq;
2729 trans->param_flags =
2730 sctp_spp_sackdelay_enable(trans->param_flags);
2731 }
2732 }
2733 }
2734
2735 /*
2736 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
2737 *
2738 * This option will effect the way delayed acks are performed. This
2739 * option allows you to get or set the delayed ack time, in
2740 * milliseconds. It also allows changing the delayed ack frequency.
2741 * Changing the frequency to 1 disables the delayed sack algorithm. If
2742 * the assoc_id is 0, then this sets or gets the endpoints default
2743 * values. If the assoc_id field is non-zero, then the set or get
2744 * effects the specified association for the one to many model (the
2745 * assoc_id field is ignored by the one to one model). Note that if
2746 * sack_delay or sack_freq are 0 when setting this option, then the
2747 * current values will remain unchanged.
2748 *
2749 * struct sctp_sack_info {
2750 * sctp_assoc_t sack_assoc_id;
2751 * uint32_t sack_delay;
2752 * uint32_t sack_freq;
2753 * };
2754 *
2755 * sack_assoc_id - This parameter, indicates which association the user
2756 * is performing an action upon. Note that if this field's value is
2757 * zero then the endpoints default value is changed (effecting future
2758 * associations only).
2759 *
2760 * sack_delay - This parameter contains the number of milliseconds that
2761 * the user is requesting the delayed ACK timer be set to. Note that
2762 * this value is defined in the standard to be between 200 and 500
2763 * milliseconds.
2764 *
2765 * sack_freq - This parameter contains the number of packets that must
2766 * be received before a sack is sent without waiting for the delay
2767 * timer to expire. The default value for this is 2, setting this
2768 * value to 1 will disable the delayed sack algorithm.
2769 */
__sctp_setsockopt_delayed_ack(struct sock * sk,struct sctp_sack_info * params)2770 static int __sctp_setsockopt_delayed_ack(struct sock *sk,
2771 struct sctp_sack_info *params)
2772 {
2773 struct sctp_sock *sp = sctp_sk(sk);
2774 struct sctp_association *asoc;
2775
2776 /* Validate value parameter. */
2777 if (params->sack_delay > 500)
2778 return -EINVAL;
2779
2780 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the
2781 * socket is a one to many style socket, and an association
2782 * was not found, then the id was invalid.
2783 */
2784 asoc = sctp_id2assoc(sk, params->sack_assoc_id);
2785 if (!asoc && params->sack_assoc_id > SCTP_ALL_ASSOC &&
2786 sctp_style(sk, UDP))
2787 return -EINVAL;
2788
2789 if (asoc) {
2790 sctp_apply_asoc_delayed_ack(params, asoc);
2791
2792 return 0;
2793 }
2794
2795 if (sctp_style(sk, TCP))
2796 params->sack_assoc_id = SCTP_FUTURE_ASSOC;
2797
2798 if (params->sack_assoc_id == SCTP_FUTURE_ASSOC ||
2799 params->sack_assoc_id == SCTP_ALL_ASSOC) {
2800 if (params->sack_delay) {
2801 sp->sackdelay = params->sack_delay;
2802 sp->param_flags =
2803 sctp_spp_sackdelay_enable(sp->param_flags);
2804 }
2805 if (params->sack_freq == 1) {
2806 sp->param_flags =
2807 sctp_spp_sackdelay_disable(sp->param_flags);
2808 } else if (params->sack_freq > 1) {
2809 sp->sackfreq = params->sack_freq;
2810 sp->param_flags =
2811 sctp_spp_sackdelay_enable(sp->param_flags);
2812 }
2813 }
2814
2815 if (params->sack_assoc_id == SCTP_CURRENT_ASSOC ||
2816 params->sack_assoc_id == SCTP_ALL_ASSOC)
2817 list_for_each_entry(asoc, &sp->ep->asocs, asocs)
2818 sctp_apply_asoc_delayed_ack(params, asoc);
2819
2820 return 0;
2821 }
2822
sctp_setsockopt_delayed_ack(struct sock * sk,struct sctp_sack_info * params,unsigned int optlen)2823 static int sctp_setsockopt_delayed_ack(struct sock *sk,
2824 struct sctp_sack_info *params,
2825 unsigned int optlen)
2826 {
2827 if (optlen == sizeof(struct sctp_assoc_value)) {
2828 struct sctp_assoc_value *v = (struct sctp_assoc_value *)params;
2829 struct sctp_sack_info p;
2830
2831 pr_warn_ratelimited(DEPRECATED
2832 "%s (pid %d) "
2833 "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
2834 "Use struct sctp_sack_info instead\n",
2835 current->comm, task_pid_nr(current));
2836
2837 p.sack_assoc_id = v->assoc_id;
2838 p.sack_delay = v->assoc_value;
2839 p.sack_freq = v->assoc_value ? 0 : 1;
2840 return __sctp_setsockopt_delayed_ack(sk, &p);
2841 }
2842
2843 if (optlen != sizeof(struct sctp_sack_info))
2844 return -EINVAL;
2845 if (params->sack_delay == 0 && params->sack_freq == 0)
2846 return 0;
2847 return __sctp_setsockopt_delayed_ack(sk, params);
2848 }
2849
2850 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2851 *
2852 * Applications can specify protocol parameters for the default association
2853 * initialization. The option name argument to setsockopt() and getsockopt()
2854 * is SCTP_INITMSG.
2855 *
2856 * Setting initialization parameters is effective only on an unconnected
2857 * socket (for UDP-style sockets only future associations are effected
2858 * by the change). With TCP-style sockets, this option is inherited by
2859 * sockets derived from a listener socket.
2860 */
sctp_setsockopt_initmsg(struct sock * sk,struct sctp_initmsg * sinit,unsigned int optlen)2861 static int sctp_setsockopt_initmsg(struct sock *sk, struct sctp_initmsg *sinit,
2862 unsigned int optlen)
2863 {
2864 struct sctp_sock *sp = sctp_sk(sk);
2865
2866 if (optlen != sizeof(struct sctp_initmsg))
2867 return -EINVAL;
2868
2869 if (sinit->sinit_num_ostreams)
2870 sp->initmsg.sinit_num_ostreams = sinit->sinit_num_ostreams;
2871 if (sinit->sinit_max_instreams)
2872 sp->initmsg.sinit_max_instreams = sinit->sinit_max_instreams;
2873 if (sinit->sinit_max_attempts)
2874 sp->initmsg.sinit_max_attempts = sinit->sinit_max_attempts;
2875 if (sinit->sinit_max_init_timeo)
2876 sp->initmsg.sinit_max_init_timeo = sinit->sinit_max_init_timeo;
2877
2878 return 0;
2879 }
2880
2881 /*
2882 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2883 *
2884 * Applications that wish to use the sendto() system call may wish to
2885 * specify a default set of parameters that would normally be supplied
2886 * through the inclusion of ancillary data. This socket option allows
2887 * such an application to set the default sctp_sndrcvinfo structure.
2888 * The application that wishes to use this socket option simply passes
2889 * in to this call the sctp_sndrcvinfo structure defined in Section
2890 * 5.2.2) The input parameters accepted by this call include
2891 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2892 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
2893 * to this call if the caller is using the UDP model.
2894 */
sctp_setsockopt_default_send_param(struct sock * sk,struct sctp_sndrcvinfo * info,unsigned int optlen)2895 static int sctp_setsockopt_default_send_param(struct sock *sk,
2896 struct sctp_sndrcvinfo *info,
2897 unsigned int optlen)
2898 {
2899 struct sctp_sock *sp = sctp_sk(sk);
2900 struct sctp_association *asoc;
2901
2902 if (optlen != sizeof(*info))
2903 return -EINVAL;
2904 if (info->sinfo_flags &
2905 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2906 SCTP_ABORT | SCTP_EOF))
2907 return -EINVAL;
2908
2909 asoc = sctp_id2assoc(sk, info->sinfo_assoc_id);
2910 if (!asoc && info->sinfo_assoc_id > SCTP_ALL_ASSOC &&
2911 sctp_style(sk, UDP))
2912 return -EINVAL;
2913
2914 if (asoc) {
2915 asoc->default_stream = info->sinfo_stream;
2916 asoc->default_flags = info->sinfo_flags;
2917 asoc->default_ppid = info->sinfo_ppid;
2918 asoc->default_context = info->sinfo_context;
2919 asoc->default_timetolive = info->sinfo_timetolive;
2920
2921 return 0;
2922 }
2923
2924 if (sctp_style(sk, TCP))
2925 info->sinfo_assoc_id = SCTP_FUTURE_ASSOC;
2926
2927 if (info->sinfo_assoc_id == SCTP_FUTURE_ASSOC ||
2928 info->sinfo_assoc_id == SCTP_ALL_ASSOC) {
2929 sp->default_stream = info->sinfo_stream;
2930 sp->default_flags = info->sinfo_flags;
2931 sp->default_ppid = info->sinfo_ppid;
2932 sp->default_context = info->sinfo_context;
2933 sp->default_timetolive = info->sinfo_timetolive;
2934 }
2935
2936 if (info->sinfo_assoc_id == SCTP_CURRENT_ASSOC ||
2937 info->sinfo_assoc_id == SCTP_ALL_ASSOC) {
2938 list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
2939 asoc->default_stream = info->sinfo_stream;
2940 asoc->default_flags = info->sinfo_flags;
2941 asoc->default_ppid = info->sinfo_ppid;
2942 asoc->default_context = info->sinfo_context;
2943 asoc->default_timetolive = info->sinfo_timetolive;
2944 }
2945 }
2946
2947 return 0;
2948 }
2949
2950 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
2951 * (SCTP_DEFAULT_SNDINFO)
2952 */
sctp_setsockopt_default_sndinfo(struct sock * sk,struct sctp_sndinfo * info,unsigned int optlen)2953 static int sctp_setsockopt_default_sndinfo(struct sock *sk,
2954 struct sctp_sndinfo *info,
2955 unsigned int optlen)
2956 {
2957 struct sctp_sock *sp = sctp_sk(sk);
2958 struct sctp_association *asoc;
2959
2960 if (optlen != sizeof(*info))
2961 return -EINVAL;
2962 if (info->snd_flags &
2963 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2964 SCTP_ABORT | SCTP_EOF))
2965 return -EINVAL;
2966
2967 asoc = sctp_id2assoc(sk, info->snd_assoc_id);
2968 if (!asoc && info->snd_assoc_id > SCTP_ALL_ASSOC &&
2969 sctp_style(sk, UDP))
2970 return -EINVAL;
2971
2972 if (asoc) {
2973 asoc->default_stream = info->snd_sid;
2974 asoc->default_flags = info->snd_flags;
2975 asoc->default_ppid = info->snd_ppid;
2976 asoc->default_context = info->snd_context;
2977
2978 return 0;
2979 }
2980
2981 if (sctp_style(sk, TCP))
2982 info->snd_assoc_id = SCTP_FUTURE_ASSOC;
2983
2984 if (info->snd_assoc_id == SCTP_FUTURE_ASSOC ||
2985 info->snd_assoc_id == SCTP_ALL_ASSOC) {
2986 sp->default_stream = info->snd_sid;
2987 sp->default_flags = info->snd_flags;
2988 sp->default_ppid = info->snd_ppid;
2989 sp->default_context = info->snd_context;
2990 }
2991
2992 if (info->snd_assoc_id == SCTP_CURRENT_ASSOC ||
2993 info->snd_assoc_id == SCTP_ALL_ASSOC) {
2994 list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
2995 asoc->default_stream = info->snd_sid;
2996 asoc->default_flags = info->snd_flags;
2997 asoc->default_ppid = info->snd_ppid;
2998 asoc->default_context = info->snd_context;
2999 }
3000 }
3001
3002 return 0;
3003 }
3004
3005 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
3006 *
3007 * Requests that the local SCTP stack use the enclosed peer address as
3008 * the association primary. The enclosed address must be one of the
3009 * association peer's addresses.
3010 */
sctp_setsockopt_primary_addr(struct sock * sk,struct sctp_prim * prim,unsigned int optlen)3011 static int sctp_setsockopt_primary_addr(struct sock *sk, struct sctp_prim *prim,
3012 unsigned int optlen)
3013 {
3014 struct sctp_transport *trans;
3015 struct sctp_af *af;
3016 int err;
3017
3018 if (optlen != sizeof(struct sctp_prim))
3019 return -EINVAL;
3020
3021 /* Allow security module to validate address but need address len. */
3022 af = sctp_get_af_specific(prim->ssp_addr.ss_family);
3023 if (!af)
3024 return -EINVAL;
3025
3026 err = security_sctp_bind_connect(sk, SCTP_PRIMARY_ADDR,
3027 (struct sockaddr *)&prim->ssp_addr,
3028 af->sockaddr_len);
3029 if (err)
3030 return err;
3031
3032 trans = sctp_addr_id2transport(sk, &prim->ssp_addr, prim->ssp_assoc_id);
3033 if (!trans)
3034 return -EINVAL;
3035
3036 sctp_assoc_set_primary(trans->asoc, trans);
3037
3038 return 0;
3039 }
3040
3041 /*
3042 * 7.1.5 SCTP_NODELAY
3043 *
3044 * Turn on/off any Nagle-like algorithm. This means that packets are
3045 * generally sent as soon as possible and no unnecessary delays are
3046 * introduced, at the cost of more packets in the network. Expects an
3047 * integer boolean flag.
3048 */
sctp_setsockopt_nodelay(struct sock * sk,int * val,unsigned int optlen)3049 static int sctp_setsockopt_nodelay(struct sock *sk, int *val,
3050 unsigned int optlen)
3051 {
3052 if (optlen < sizeof(int))
3053 return -EINVAL;
3054 sctp_sk(sk)->nodelay = (*val == 0) ? 0 : 1;
3055 return 0;
3056 }
3057
3058 /*
3059 *
3060 * 7.1.1 SCTP_RTOINFO
3061 *
3062 * The protocol parameters used to initialize and bound retransmission
3063 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
3064 * and modify these parameters.
3065 * All parameters are time values, in milliseconds. A value of 0, when
3066 * modifying the parameters, indicates that the current value should not
3067 * be changed.
3068 *
3069 */
sctp_setsockopt_rtoinfo(struct sock * sk,struct sctp_rtoinfo * rtoinfo,unsigned int optlen)3070 static int sctp_setsockopt_rtoinfo(struct sock *sk,
3071 struct sctp_rtoinfo *rtoinfo,
3072 unsigned int optlen)
3073 {
3074 struct sctp_association *asoc;
3075 unsigned long rto_min, rto_max;
3076 struct sctp_sock *sp = sctp_sk(sk);
3077
3078 if (optlen != sizeof (struct sctp_rtoinfo))
3079 return -EINVAL;
3080
3081 asoc = sctp_id2assoc(sk, rtoinfo->srto_assoc_id);
3082
3083 /* Set the values to the specific association */
3084 if (!asoc && rtoinfo->srto_assoc_id != SCTP_FUTURE_ASSOC &&
3085 sctp_style(sk, UDP))
3086 return -EINVAL;
3087
3088 rto_max = rtoinfo->srto_max;
3089 rto_min = rtoinfo->srto_min;
3090
3091 if (rto_max)
3092 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max;
3093 else
3094 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max;
3095
3096 if (rto_min)
3097 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min;
3098 else
3099 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min;
3100
3101 if (rto_min > rto_max)
3102 return -EINVAL;
3103
3104 if (asoc) {
3105 if (rtoinfo->srto_initial != 0)
3106 asoc->rto_initial =
3107 msecs_to_jiffies(rtoinfo->srto_initial);
3108 asoc->rto_max = rto_max;
3109 asoc->rto_min = rto_min;
3110 } else {
3111 /* If there is no association or the association-id = 0
3112 * set the values to the endpoint.
3113 */
3114 if (rtoinfo->srto_initial != 0)
3115 sp->rtoinfo.srto_initial = rtoinfo->srto_initial;
3116 sp->rtoinfo.srto_max = rto_max;
3117 sp->rtoinfo.srto_min = rto_min;
3118 }
3119
3120 return 0;
3121 }
3122
3123 /*
3124 *
3125 * 7.1.2 SCTP_ASSOCINFO
3126 *
3127 * This option is used to tune the maximum retransmission attempts
3128 * of the association.
3129 * Returns an error if the new association retransmission value is
3130 * greater than the sum of the retransmission value of the peer.
3131 * See [SCTP] for more information.
3132 *
3133 */
sctp_setsockopt_associnfo(struct sock * sk,struct sctp_assocparams * assocparams,unsigned int optlen)3134 static int sctp_setsockopt_associnfo(struct sock *sk,
3135 struct sctp_assocparams *assocparams,
3136 unsigned int optlen)
3137 {
3138
3139 struct sctp_association *asoc;
3140
3141 if (optlen != sizeof(struct sctp_assocparams))
3142 return -EINVAL;
3143
3144 asoc = sctp_id2assoc(sk, assocparams->sasoc_assoc_id);
3145
3146 if (!asoc && assocparams->sasoc_assoc_id != SCTP_FUTURE_ASSOC &&
3147 sctp_style(sk, UDP))
3148 return -EINVAL;
3149
3150 /* Set the values to the specific association */
3151 if (asoc) {
3152 if (assocparams->sasoc_asocmaxrxt != 0) {
3153 __u32 path_sum = 0;
3154 int paths = 0;
3155 struct sctp_transport *peer_addr;
3156
3157 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
3158 transports) {
3159 path_sum += peer_addr->pathmaxrxt;
3160 paths++;
3161 }
3162
3163 /* Only validate asocmaxrxt if we have more than
3164 * one path/transport. We do this because path
3165 * retransmissions are only counted when we have more
3166 * then one path.
3167 */
3168 if (paths > 1 &&
3169 assocparams->sasoc_asocmaxrxt > path_sum)
3170 return -EINVAL;
3171
3172 asoc->max_retrans = assocparams->sasoc_asocmaxrxt;
3173 }
3174
3175 if (assocparams->sasoc_cookie_life != 0)
3176 asoc->cookie_life =
3177 ms_to_ktime(assocparams->sasoc_cookie_life);
3178 } else {
3179 /* Set the values to the endpoint */
3180 struct sctp_sock *sp = sctp_sk(sk);
3181
3182 if (assocparams->sasoc_asocmaxrxt != 0)
3183 sp->assocparams.sasoc_asocmaxrxt =
3184 assocparams->sasoc_asocmaxrxt;
3185 if (assocparams->sasoc_cookie_life != 0)
3186 sp->assocparams.sasoc_cookie_life =
3187 assocparams->sasoc_cookie_life;
3188 }
3189 return 0;
3190 }
3191
3192 /*
3193 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
3194 *
3195 * This socket option is a boolean flag which turns on or off mapped V4
3196 * addresses. If this option is turned on and the socket is type
3197 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
3198 * If this option is turned off, then no mapping will be done of V4
3199 * addresses and a user will receive both PF_INET6 and PF_INET type
3200 * addresses on the socket.
3201 */
sctp_setsockopt_mappedv4(struct sock * sk,int * val,unsigned int optlen)3202 static int sctp_setsockopt_mappedv4(struct sock *sk, int *val,
3203 unsigned int optlen)
3204 {
3205 struct sctp_sock *sp = sctp_sk(sk);
3206
3207 if (optlen < sizeof(int))
3208 return -EINVAL;
3209 if (*val)
3210 sp->v4mapped = 1;
3211 else
3212 sp->v4mapped = 0;
3213
3214 return 0;
3215 }
3216
3217 /*
3218 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
3219 * This option will get or set the maximum size to put in any outgoing
3220 * SCTP DATA chunk. If a message is larger than this size it will be
3221 * fragmented by SCTP into the specified size. Note that the underlying
3222 * SCTP implementation may fragment into smaller sized chunks when the
3223 * PMTU of the underlying association is smaller than the value set by
3224 * the user. The default value for this option is '0' which indicates
3225 * the user is NOT limiting fragmentation and only the PMTU will effect
3226 * SCTP's choice of DATA chunk size. Note also that values set larger
3227 * than the maximum size of an IP datagram will effectively let SCTP
3228 * control fragmentation (i.e. the same as setting this option to 0).
3229 *
3230 * The following structure is used to access and modify this parameter:
3231 *
3232 * struct sctp_assoc_value {
3233 * sctp_assoc_t assoc_id;
3234 * uint32_t assoc_value;
3235 * };
3236 *
3237 * assoc_id: This parameter is ignored for one-to-one style sockets.
3238 * For one-to-many style sockets this parameter indicates which
3239 * association the user is performing an action upon. Note that if
3240 * this field's value is zero then the endpoints default value is
3241 * changed (effecting future associations only).
3242 * assoc_value: This parameter specifies the maximum size in bytes.
3243 */
sctp_setsockopt_maxseg(struct sock * sk,struct sctp_assoc_value * params,unsigned int optlen)3244 static int sctp_setsockopt_maxseg(struct sock *sk,
3245 struct sctp_assoc_value *params,
3246 unsigned int optlen)
3247 {
3248 struct sctp_sock *sp = sctp_sk(sk);
3249 struct sctp_association *asoc;
3250 sctp_assoc_t assoc_id;
3251 int val;
3252
3253 if (optlen == sizeof(int)) {
3254 pr_warn_ratelimited(DEPRECATED
3255 "%s (pid %d) "
3256 "Use of int in maxseg socket option.\n"
3257 "Use struct sctp_assoc_value instead\n",
3258 current->comm, task_pid_nr(current));
3259 assoc_id = SCTP_FUTURE_ASSOC;
3260 val = *(int *)params;
3261 } else if (optlen == sizeof(struct sctp_assoc_value)) {
3262 assoc_id = params->assoc_id;
3263 val = params->assoc_value;
3264 } else {
3265 return -EINVAL;
3266 }
3267
3268 asoc = sctp_id2assoc(sk, assoc_id);
3269 if (!asoc && assoc_id != SCTP_FUTURE_ASSOC &&
3270 sctp_style(sk, UDP))
3271 return -EINVAL;
3272
3273 if (val) {
3274 int min_len, max_len;
3275 __u16 datasize = asoc ? sctp_datachk_len(&asoc->stream) :
3276 sizeof(struct sctp_data_chunk);
3277
3278 min_len = sctp_min_frag_point(sp, datasize);
3279 max_len = SCTP_MAX_CHUNK_LEN - datasize;
3280
3281 if (val < min_len || val > max_len)
3282 return -EINVAL;
3283 }
3284
3285 if (asoc) {
3286 asoc->user_frag = val;
3287 sctp_assoc_update_frag_point(asoc);
3288 } else {
3289 sp->user_frag = val;
3290 }
3291
3292 return 0;
3293 }
3294
3295
3296 /*
3297 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3298 *
3299 * Requests that the peer mark the enclosed address as the association
3300 * primary. The enclosed address must be one of the association's
3301 * locally bound addresses. The following structure is used to make a
3302 * set primary request:
3303 */
sctp_setsockopt_peer_primary_addr(struct sock * sk,struct sctp_setpeerprim * prim,unsigned int optlen)3304 static int sctp_setsockopt_peer_primary_addr(struct sock *sk,
3305 struct sctp_setpeerprim *prim,
3306 unsigned int optlen)
3307 {
3308 struct sctp_sock *sp;
3309 struct sctp_association *asoc = NULL;
3310 struct sctp_chunk *chunk;
3311 struct sctp_af *af;
3312 int err;
3313
3314 sp = sctp_sk(sk);
3315
3316 if (!sp->ep->asconf_enable)
3317 return -EPERM;
3318
3319 if (optlen != sizeof(struct sctp_setpeerprim))
3320 return -EINVAL;
3321
3322 asoc = sctp_id2assoc(sk, prim->sspp_assoc_id);
3323 if (!asoc)
3324 return -EINVAL;
3325
3326 if (!asoc->peer.asconf_capable)
3327 return -EPERM;
3328
3329 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3330 return -EPERM;
3331
3332 if (!sctp_state(asoc, ESTABLISHED))
3333 return -ENOTCONN;
3334
3335 af = sctp_get_af_specific(prim->sspp_addr.ss_family);
3336 if (!af)
3337 return -EINVAL;
3338
3339 if (!af->addr_valid((union sctp_addr *)&prim->sspp_addr, sp, NULL))
3340 return -EADDRNOTAVAIL;
3341
3342 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim->sspp_addr))
3343 return -EADDRNOTAVAIL;
3344
3345 /* Allow security module to validate address. */
3346 err = security_sctp_bind_connect(sk, SCTP_SET_PEER_PRIMARY_ADDR,
3347 (struct sockaddr *)&prim->sspp_addr,
3348 af->sockaddr_len);
3349 if (err)
3350 return err;
3351
3352 /* Create an ASCONF chunk with SET_PRIMARY parameter */
3353 chunk = sctp_make_asconf_set_prim(asoc,
3354 (union sctp_addr *)&prim->sspp_addr);
3355 if (!chunk)
3356 return -ENOMEM;
3357
3358 err = sctp_send_asconf(asoc, chunk);
3359
3360 pr_debug("%s: we set peer primary addr primitively\n", __func__);
3361
3362 return err;
3363 }
3364
sctp_setsockopt_adaptation_layer(struct sock * sk,struct sctp_setadaptation * adapt,unsigned int optlen)3365 static int sctp_setsockopt_adaptation_layer(struct sock *sk,
3366 struct sctp_setadaptation *adapt,
3367 unsigned int optlen)
3368 {
3369 if (optlen != sizeof(struct sctp_setadaptation))
3370 return -EINVAL;
3371
3372 sctp_sk(sk)->adaptation_ind = adapt->ssb_adaptation_ind;
3373
3374 return 0;
3375 }
3376
3377 /*
3378 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
3379 *
3380 * The context field in the sctp_sndrcvinfo structure is normally only
3381 * used when a failed message is retrieved holding the value that was
3382 * sent down on the actual send call. This option allows the setting of
3383 * a default context on an association basis that will be received on
3384 * reading messages from the peer. This is especially helpful in the
3385 * one-2-many model for an application to keep some reference to an
3386 * internal state machine that is processing messages on the
3387 * association. Note that the setting of this value only effects
3388 * received messages from the peer and does not effect the value that is
3389 * saved with outbound messages.
3390 */
sctp_setsockopt_context(struct sock * sk,struct sctp_assoc_value * params,unsigned int optlen)3391 static int sctp_setsockopt_context(struct sock *sk,
3392 struct sctp_assoc_value *params,
3393 unsigned int optlen)
3394 {
3395 struct sctp_sock *sp = sctp_sk(sk);
3396 struct sctp_association *asoc;
3397
3398 if (optlen != sizeof(struct sctp_assoc_value))
3399 return -EINVAL;
3400
3401 asoc = sctp_id2assoc(sk, params->assoc_id);
3402 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC &&
3403 sctp_style(sk, UDP))
3404 return -EINVAL;
3405
3406 if (asoc) {
3407 asoc->default_rcv_context = params->assoc_value;
3408
3409 return 0;
3410 }
3411
3412 if (sctp_style(sk, TCP))
3413 params->assoc_id = SCTP_FUTURE_ASSOC;
3414
3415 if (params->assoc_id == SCTP_FUTURE_ASSOC ||
3416 params->assoc_id == SCTP_ALL_ASSOC)
3417 sp->default_rcv_context = params->assoc_value;
3418
3419 if (params->assoc_id == SCTP_CURRENT_ASSOC ||
3420 params->assoc_id == SCTP_ALL_ASSOC)
3421 list_for_each_entry(asoc, &sp->ep->asocs, asocs)
3422 asoc->default_rcv_context = params->assoc_value;
3423
3424 return 0;
3425 }
3426
3427 /*
3428 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3429 *
3430 * This options will at a minimum specify if the implementation is doing
3431 * fragmented interleave. Fragmented interleave, for a one to many
3432 * socket, is when subsequent calls to receive a message may return
3433 * parts of messages from different associations. Some implementations
3434 * may allow you to turn this value on or off. If so, when turned off,
3435 * no fragment interleave will occur (which will cause a head of line
3436 * blocking amongst multiple associations sharing the same one to many
3437 * socket). When this option is turned on, then each receive call may
3438 * come from a different association (thus the user must receive data
3439 * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3440 * association each receive belongs to.
3441 *
3442 * This option takes a boolean value. A non-zero value indicates that
3443 * fragmented interleave is on. A value of zero indicates that
3444 * fragmented interleave is off.
3445 *
3446 * Note that it is important that an implementation that allows this
3447 * option to be turned on, have it off by default. Otherwise an unaware
3448 * application using the one to many model may become confused and act
3449 * incorrectly.
3450 */
sctp_setsockopt_fragment_interleave(struct sock * sk,int * val,unsigned int optlen)3451 static int sctp_setsockopt_fragment_interleave(struct sock *sk, int *val,
3452 unsigned int optlen)
3453 {
3454 if (optlen != sizeof(int))
3455 return -EINVAL;
3456
3457 sctp_sk(sk)->frag_interleave = !!*val;
3458
3459 if (!sctp_sk(sk)->frag_interleave)
3460 sctp_sk(sk)->ep->intl_enable = 0;
3461
3462 return 0;
3463 }
3464
3465 /*
3466 * 8.1.21. Set or Get the SCTP Partial Delivery Point
3467 * (SCTP_PARTIAL_DELIVERY_POINT)
3468 *
3469 * This option will set or get the SCTP partial delivery point. This
3470 * point is the size of a message where the partial delivery API will be
3471 * invoked to help free up rwnd space for the peer. Setting this to a
3472 * lower value will cause partial deliveries to happen more often. The
3473 * calls argument is an integer that sets or gets the partial delivery
3474 * point. Note also that the call will fail if the user attempts to set
3475 * this value larger than the socket receive buffer size.
3476 *
3477 * Note that any single message having a length smaller than or equal to
3478 * the SCTP partial delivery point will be delivered in one single read
3479 * call as long as the user provided buffer is large enough to hold the
3480 * message.
3481 */
sctp_setsockopt_partial_delivery_point(struct sock * sk,u32 * val,unsigned int optlen)3482 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, u32 *val,
3483 unsigned int optlen)
3484 {
3485 if (optlen != sizeof(u32))
3486 return -EINVAL;
3487
3488 /* Note: We double the receive buffer from what the user sets
3489 * it to be, also initial rwnd is based on rcvbuf/2.
3490 */
3491 if (*val > (sk->sk_rcvbuf >> 1))
3492 return -EINVAL;
3493
3494 sctp_sk(sk)->pd_point = *val;
3495
3496 return 0; /* is this the right error code? */
3497 }
3498
3499 /*
3500 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
3501 *
3502 * This option will allow a user to change the maximum burst of packets
3503 * that can be emitted by this association. Note that the default value
3504 * is 4, and some implementations may restrict this setting so that it
3505 * can only be lowered.
3506 *
3507 * NOTE: This text doesn't seem right. Do this on a socket basis with
3508 * future associations inheriting the socket value.
3509 */
sctp_setsockopt_maxburst(struct sock * sk,struct sctp_assoc_value * params,unsigned int optlen)3510 static int sctp_setsockopt_maxburst(struct sock *sk,
3511 struct sctp_assoc_value *params,
3512 unsigned int optlen)
3513 {
3514 struct sctp_sock *sp = sctp_sk(sk);
3515 struct sctp_association *asoc;
3516 sctp_assoc_t assoc_id;
3517 u32 assoc_value;
3518
3519 if (optlen == sizeof(int)) {
3520 pr_warn_ratelimited(DEPRECATED
3521 "%s (pid %d) "
3522 "Use of int in max_burst socket option deprecated.\n"
3523 "Use struct sctp_assoc_value instead\n",
3524 current->comm, task_pid_nr(current));
3525 assoc_id = SCTP_FUTURE_ASSOC;
3526 assoc_value = *((int *)params);
3527 } else if (optlen == sizeof(struct sctp_assoc_value)) {
3528 assoc_id = params->assoc_id;
3529 assoc_value = params->assoc_value;
3530 } else
3531 return -EINVAL;
3532
3533 asoc = sctp_id2assoc(sk, assoc_id);
3534 if (!asoc && assoc_id > SCTP_ALL_ASSOC && sctp_style(sk, UDP))
3535 return -EINVAL;
3536
3537 if (asoc) {
3538 asoc->max_burst = assoc_value;
3539
3540 return 0;
3541 }
3542
3543 if (sctp_style(sk, TCP))
3544 assoc_id = SCTP_FUTURE_ASSOC;
3545
3546 if (assoc_id == SCTP_FUTURE_ASSOC || assoc_id == SCTP_ALL_ASSOC)
3547 sp->max_burst = assoc_value;
3548
3549 if (assoc_id == SCTP_CURRENT_ASSOC || assoc_id == SCTP_ALL_ASSOC)
3550 list_for_each_entry(asoc, &sp->ep->asocs, asocs)
3551 asoc->max_burst = assoc_value;
3552
3553 return 0;
3554 }
3555
3556 /*
3557 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3558 *
3559 * This set option adds a chunk type that the user is requesting to be
3560 * received only in an authenticated way. Changes to the list of chunks
3561 * will only effect future associations on the socket.
3562 */
sctp_setsockopt_auth_chunk(struct sock * sk,struct sctp_authchunk * val,unsigned int optlen)3563 static int sctp_setsockopt_auth_chunk(struct sock *sk,
3564 struct sctp_authchunk *val,
3565 unsigned int optlen)
3566 {
3567 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3568
3569 if (!ep->auth_enable)
3570 return -EACCES;
3571
3572 if (optlen != sizeof(struct sctp_authchunk))
3573 return -EINVAL;
3574
3575 switch (val->sauth_chunk) {
3576 case SCTP_CID_INIT:
3577 case SCTP_CID_INIT_ACK:
3578 case SCTP_CID_SHUTDOWN_COMPLETE:
3579 case SCTP_CID_AUTH:
3580 return -EINVAL;
3581 }
3582
3583 /* add this chunk id to the endpoint */
3584 return sctp_auth_ep_add_chunkid(ep, val->sauth_chunk);
3585 }
3586
3587 /*
3588 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3589 *
3590 * This option gets or sets the list of HMAC algorithms that the local
3591 * endpoint requires the peer to use.
3592 */
sctp_setsockopt_hmac_ident(struct sock * sk,struct sctp_hmacalgo * hmacs,unsigned int optlen)3593 static int sctp_setsockopt_hmac_ident(struct sock *sk,
3594 struct sctp_hmacalgo *hmacs,
3595 unsigned int optlen)
3596 {
3597 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3598 u32 idents;
3599
3600 if (!ep->auth_enable)
3601 return -EACCES;
3602
3603 if (optlen < sizeof(struct sctp_hmacalgo))
3604 return -EINVAL;
3605 optlen = min_t(unsigned int, optlen, sizeof(struct sctp_hmacalgo) +
3606 SCTP_AUTH_NUM_HMACS * sizeof(u16));
3607
3608 idents = hmacs->shmac_num_idents;
3609 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3610 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo)))
3611 return -EINVAL;
3612
3613 return sctp_auth_ep_set_hmacs(ep, hmacs);
3614 }
3615
3616 /*
3617 * 7.1.20. Set a shared key (SCTP_AUTH_KEY)
3618 *
3619 * This option will set a shared secret key which is used to build an
3620 * association shared key.
3621 */
sctp_setsockopt_auth_key(struct sock * sk,struct sctp_authkey * authkey,unsigned int optlen)3622 static int sctp_setsockopt_auth_key(struct sock *sk,
3623 struct sctp_authkey *authkey,
3624 unsigned int optlen)
3625 {
3626 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3627 struct sctp_association *asoc;
3628 int ret = -EINVAL;
3629
3630 if (optlen <= sizeof(struct sctp_authkey))
3631 return -EINVAL;
3632 /* authkey->sca_keylength is u16, so optlen can't be bigger than
3633 * this.
3634 */
3635 optlen = min_t(unsigned int, optlen, USHRT_MAX + sizeof(*authkey));
3636
3637 if (authkey->sca_keylength > optlen - sizeof(*authkey))
3638 goto out;
3639
3640 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3641 if (!asoc && authkey->sca_assoc_id > SCTP_ALL_ASSOC &&
3642 sctp_style(sk, UDP))
3643 goto out;
3644
3645 if (asoc) {
3646 ret = sctp_auth_set_key(ep, asoc, authkey);
3647 goto out;
3648 }
3649
3650 if (sctp_style(sk, TCP))
3651 authkey->sca_assoc_id = SCTP_FUTURE_ASSOC;
3652
3653 if (authkey->sca_assoc_id == SCTP_FUTURE_ASSOC ||
3654 authkey->sca_assoc_id == SCTP_ALL_ASSOC) {
3655 ret = sctp_auth_set_key(ep, asoc, authkey);
3656 if (ret)
3657 goto out;
3658 }
3659
3660 ret = 0;
3661
3662 if (authkey->sca_assoc_id == SCTP_CURRENT_ASSOC ||
3663 authkey->sca_assoc_id == SCTP_ALL_ASSOC) {
3664 list_for_each_entry(asoc, &ep->asocs, asocs) {
3665 int res = sctp_auth_set_key(ep, asoc, authkey);
3666
3667 if (res && !ret)
3668 ret = res;
3669 }
3670 }
3671
3672 out:
3673 memzero_explicit(authkey, optlen);
3674 return ret;
3675 }
3676
3677 /*
3678 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3679 *
3680 * This option will get or set the active shared key to be used to build
3681 * the association shared key.
3682 */
sctp_setsockopt_active_key(struct sock * sk,struct sctp_authkeyid * val,unsigned int optlen)3683 static int sctp_setsockopt_active_key(struct sock *sk,
3684 struct sctp_authkeyid *val,
3685 unsigned int optlen)
3686 {
3687 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3688 struct sctp_association *asoc;
3689 int ret = 0;
3690
3691 if (optlen != sizeof(struct sctp_authkeyid))
3692 return -EINVAL;
3693
3694 asoc = sctp_id2assoc(sk, val->scact_assoc_id);
3695 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC &&
3696 sctp_style(sk, UDP))
3697 return -EINVAL;
3698
3699 if (asoc)
3700 return sctp_auth_set_active_key(ep, asoc, val->scact_keynumber);
3701
3702 if (sctp_style(sk, TCP))
3703 val->scact_assoc_id = SCTP_FUTURE_ASSOC;
3704
3705 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC ||
3706 val->scact_assoc_id == SCTP_ALL_ASSOC) {
3707 ret = sctp_auth_set_active_key(ep, asoc, val->scact_keynumber);
3708 if (ret)
3709 return ret;
3710 }
3711
3712 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC ||
3713 val->scact_assoc_id == SCTP_ALL_ASSOC) {
3714 list_for_each_entry(asoc, &ep->asocs, asocs) {
3715 int res = sctp_auth_set_active_key(ep, asoc,
3716 val->scact_keynumber);
3717
3718 if (res && !ret)
3719 ret = res;
3720 }
3721 }
3722
3723 return ret;
3724 }
3725
3726 /*
3727 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY)
3728 *
3729 * This set option will delete a shared secret key from use.
3730 */
sctp_setsockopt_del_key(struct sock * sk,struct sctp_authkeyid * val,unsigned int optlen)3731 static int sctp_setsockopt_del_key(struct sock *sk,
3732 struct sctp_authkeyid *val,
3733 unsigned int optlen)
3734 {
3735 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3736 struct sctp_association *asoc;
3737 int ret = 0;
3738
3739 if (optlen != sizeof(struct sctp_authkeyid))
3740 return -EINVAL;
3741
3742 asoc = sctp_id2assoc(sk, val->scact_assoc_id);
3743 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC &&
3744 sctp_style(sk, UDP))
3745 return -EINVAL;
3746
3747 if (asoc)
3748 return sctp_auth_del_key_id(ep, asoc, val->scact_keynumber);
3749
3750 if (sctp_style(sk, TCP))
3751 val->scact_assoc_id = SCTP_FUTURE_ASSOC;
3752
3753 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC ||
3754 val->scact_assoc_id == SCTP_ALL_ASSOC) {
3755 ret = sctp_auth_del_key_id(ep, asoc, val->scact_keynumber);
3756 if (ret)
3757 return ret;
3758 }
3759
3760 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC ||
3761 val->scact_assoc_id == SCTP_ALL_ASSOC) {
3762 list_for_each_entry(asoc, &ep->asocs, asocs) {
3763 int res = sctp_auth_del_key_id(ep, asoc,
3764 val->scact_keynumber);
3765
3766 if (res && !ret)
3767 ret = res;
3768 }
3769 }
3770
3771 return ret;
3772 }
3773
3774 /*
3775 * 8.3.4 Deactivate a Shared Key (SCTP_AUTH_DEACTIVATE_KEY)
3776 *
3777 * This set option will deactivate a shared secret key.
3778 */
sctp_setsockopt_deactivate_key(struct sock * sk,struct sctp_authkeyid * val,unsigned int optlen)3779 static int sctp_setsockopt_deactivate_key(struct sock *sk,
3780 struct sctp_authkeyid *val,
3781 unsigned int optlen)
3782 {
3783 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3784 struct sctp_association *asoc;
3785 int ret = 0;
3786
3787 if (optlen != sizeof(struct sctp_authkeyid))
3788 return -EINVAL;
3789
3790 asoc = sctp_id2assoc(sk, val->scact_assoc_id);
3791 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC &&
3792 sctp_style(sk, UDP))
3793 return -EINVAL;
3794
3795 if (asoc)
3796 return sctp_auth_deact_key_id(ep, asoc, val->scact_keynumber);
3797
3798 if (sctp_style(sk, TCP))
3799 val->scact_assoc_id = SCTP_FUTURE_ASSOC;
3800
3801 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC ||
3802 val->scact_assoc_id == SCTP_ALL_ASSOC) {
3803 ret = sctp_auth_deact_key_id(ep, asoc, val->scact_keynumber);
3804 if (ret)
3805 return ret;
3806 }
3807
3808 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC ||
3809 val->scact_assoc_id == SCTP_ALL_ASSOC) {
3810 list_for_each_entry(asoc, &ep->asocs, asocs) {
3811 int res = sctp_auth_deact_key_id(ep, asoc,
3812 val->scact_keynumber);
3813
3814 if (res && !ret)
3815 ret = res;
3816 }
3817 }
3818
3819 return ret;
3820 }
3821
3822 /*
3823 * 8.1.23 SCTP_AUTO_ASCONF
3824 *
3825 * This option will enable or disable the use of the automatic generation of
3826 * ASCONF chunks to add and delete addresses to an existing association. Note
3827 * that this option has two caveats namely: a) it only affects sockets that
3828 * are bound to all addresses available to the SCTP stack, and b) the system
3829 * administrator may have an overriding control that turns the ASCONF feature
3830 * off no matter what setting the socket option may have.
3831 * This option expects an integer boolean flag, where a non-zero value turns on
3832 * the option, and a zero value turns off the option.
3833 * Note. In this implementation, socket operation overrides default parameter
3834 * being set by sysctl as well as FreeBSD implementation
3835 */
sctp_setsockopt_auto_asconf(struct sock * sk,int * val,unsigned int optlen)3836 static int sctp_setsockopt_auto_asconf(struct sock *sk, int *val,
3837 unsigned int optlen)
3838 {
3839 struct sctp_sock *sp = sctp_sk(sk);
3840
3841 if (optlen < sizeof(int))
3842 return -EINVAL;
3843 if (!sctp_is_ep_boundall(sk) && *val)
3844 return -EINVAL;
3845 if ((*val && sp->do_auto_asconf) || (!*val && !sp->do_auto_asconf))
3846 return 0;
3847
3848 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3849 if (*val == 0 && sp->do_auto_asconf) {
3850 list_del(&sp->auto_asconf_list);
3851 sp->do_auto_asconf = 0;
3852 } else if (*val && !sp->do_auto_asconf) {
3853 list_add_tail(&sp->auto_asconf_list,
3854 &sock_net(sk)->sctp.auto_asconf_splist);
3855 sp->do_auto_asconf = 1;
3856 }
3857 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3858 return 0;
3859 }
3860
3861 /*
3862 * SCTP_PEER_ADDR_THLDS
3863 *
3864 * This option allows us to alter the partially failed threshold for one or all
3865 * transports in an association. See Section 6.1 of:
3866 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
3867 */
sctp_setsockopt_paddr_thresholds(struct sock * sk,struct sctp_paddrthlds_v2 * val,unsigned int optlen,bool v2)3868 static int sctp_setsockopt_paddr_thresholds(struct sock *sk,
3869 struct sctp_paddrthlds_v2 *val,
3870 unsigned int optlen, bool v2)
3871 {
3872 struct sctp_transport *trans;
3873 struct sctp_association *asoc;
3874 int len;
3875
3876 len = v2 ? sizeof(*val) : sizeof(struct sctp_paddrthlds);
3877 if (optlen < len)
3878 return -EINVAL;
3879
3880 if (v2 && val->spt_pathpfthld > val->spt_pathcpthld)
3881 return -EINVAL;
3882
3883 if (!sctp_is_any(sk, (const union sctp_addr *)&val->spt_address)) {
3884 trans = sctp_addr_id2transport(sk, &val->spt_address,
3885 val->spt_assoc_id);
3886 if (!trans)
3887 return -ENOENT;
3888
3889 if (val->spt_pathmaxrxt)
3890 trans->pathmaxrxt = val->spt_pathmaxrxt;
3891 if (v2)
3892 trans->ps_retrans = val->spt_pathcpthld;
3893 trans->pf_retrans = val->spt_pathpfthld;
3894
3895 return 0;
3896 }
3897
3898 asoc = sctp_id2assoc(sk, val->spt_assoc_id);
3899 if (!asoc && val->spt_assoc_id != SCTP_FUTURE_ASSOC &&
3900 sctp_style(sk, UDP))
3901 return -EINVAL;
3902
3903 if (asoc) {
3904 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
3905 transports) {
3906 if (val->spt_pathmaxrxt)
3907 trans->pathmaxrxt = val->spt_pathmaxrxt;
3908 if (v2)
3909 trans->ps_retrans = val->spt_pathcpthld;
3910 trans->pf_retrans = val->spt_pathpfthld;
3911 }
3912
3913 if (val->spt_pathmaxrxt)
3914 asoc->pathmaxrxt = val->spt_pathmaxrxt;
3915 if (v2)
3916 asoc->ps_retrans = val->spt_pathcpthld;
3917 asoc->pf_retrans = val->spt_pathpfthld;
3918 } else {
3919 struct sctp_sock *sp = sctp_sk(sk);
3920
3921 if (val->spt_pathmaxrxt)
3922 sp->pathmaxrxt = val->spt_pathmaxrxt;
3923 if (v2)
3924 sp->ps_retrans = val->spt_pathcpthld;
3925 sp->pf_retrans = val->spt_pathpfthld;
3926 }
3927
3928 return 0;
3929 }
3930
sctp_setsockopt_recvrcvinfo(struct sock * sk,int * val,unsigned int optlen)3931 static int sctp_setsockopt_recvrcvinfo(struct sock *sk, int *val,
3932 unsigned int optlen)
3933 {
3934 if (optlen < sizeof(int))
3935 return -EINVAL;
3936
3937 sctp_sk(sk)->recvrcvinfo = (*val == 0) ? 0 : 1;
3938
3939 return 0;
3940 }
3941
sctp_setsockopt_recvnxtinfo(struct sock * sk,int * val,unsigned int optlen)3942 static int sctp_setsockopt_recvnxtinfo(struct sock *sk, int *val,
3943 unsigned int optlen)
3944 {
3945 if (optlen < sizeof(int))
3946 return -EINVAL;
3947
3948 sctp_sk(sk)->recvnxtinfo = (*val == 0) ? 0 : 1;
3949
3950 return 0;
3951 }
3952
sctp_setsockopt_pr_supported(struct sock * sk,struct sctp_assoc_value * params,unsigned int optlen)3953 static int sctp_setsockopt_pr_supported(struct sock *sk,
3954 struct sctp_assoc_value *params,
3955 unsigned int optlen)
3956 {
3957 struct sctp_association *asoc;
3958
3959 if (optlen != sizeof(*params))
3960 return -EINVAL;
3961
3962 asoc = sctp_id2assoc(sk, params->assoc_id);
3963 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
3964 sctp_style(sk, UDP))
3965 return -EINVAL;
3966
3967 sctp_sk(sk)->ep->prsctp_enable = !!params->assoc_value;
3968
3969 return 0;
3970 }
3971
sctp_setsockopt_default_prinfo(struct sock * sk,struct sctp_default_prinfo * info,unsigned int optlen)3972 static int sctp_setsockopt_default_prinfo(struct sock *sk,
3973 struct sctp_default_prinfo *info,
3974 unsigned int optlen)
3975 {
3976 struct sctp_sock *sp = sctp_sk(sk);
3977 struct sctp_association *asoc;
3978 int retval = -EINVAL;
3979
3980 if (optlen != sizeof(*info))
3981 goto out;
3982
3983 if (info->pr_policy & ~SCTP_PR_SCTP_MASK)
3984 goto out;
3985
3986 if (info->pr_policy == SCTP_PR_SCTP_NONE)
3987 info->pr_value = 0;
3988
3989 asoc = sctp_id2assoc(sk, info->pr_assoc_id);
3990 if (!asoc && info->pr_assoc_id > SCTP_ALL_ASSOC &&
3991 sctp_style(sk, UDP))
3992 goto out;
3993
3994 retval = 0;
3995
3996 if (asoc) {
3997 SCTP_PR_SET_POLICY(asoc->default_flags, info->pr_policy);
3998 asoc->default_timetolive = info->pr_value;
3999 goto out;
4000 }
4001
4002 if (sctp_style(sk, TCP))
4003 info->pr_assoc_id = SCTP_FUTURE_ASSOC;
4004
4005 if (info->pr_assoc_id == SCTP_FUTURE_ASSOC ||
4006 info->pr_assoc_id == SCTP_ALL_ASSOC) {
4007 SCTP_PR_SET_POLICY(sp->default_flags, info->pr_policy);
4008 sp->default_timetolive = info->pr_value;
4009 }
4010
4011 if (info->pr_assoc_id == SCTP_CURRENT_ASSOC ||
4012 info->pr_assoc_id == SCTP_ALL_ASSOC) {
4013 list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
4014 SCTP_PR_SET_POLICY(asoc->default_flags,
4015 info->pr_policy);
4016 asoc->default_timetolive = info->pr_value;
4017 }
4018 }
4019
4020 out:
4021 return retval;
4022 }
4023
sctp_setsockopt_reconfig_supported(struct sock * sk,struct sctp_assoc_value * params,unsigned int optlen)4024 static int sctp_setsockopt_reconfig_supported(struct sock *sk,
4025 struct sctp_assoc_value *params,
4026 unsigned int optlen)
4027 {
4028 struct sctp_association *asoc;
4029 int retval = -EINVAL;
4030
4031 if (optlen != sizeof(*params))
4032 goto out;
4033
4034 asoc = sctp_id2assoc(sk, params->assoc_id);
4035 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4036 sctp_style(sk, UDP))
4037 goto out;
4038
4039 sctp_sk(sk)->ep->reconf_enable = !!params->assoc_value;
4040
4041 retval = 0;
4042
4043 out:
4044 return retval;
4045 }
4046
sctp_setsockopt_enable_strreset(struct sock * sk,struct sctp_assoc_value * params,unsigned int optlen)4047 static int sctp_setsockopt_enable_strreset(struct sock *sk,
4048 struct sctp_assoc_value *params,
4049 unsigned int optlen)
4050 {
4051 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
4052 struct sctp_association *asoc;
4053 int retval = -EINVAL;
4054
4055 if (optlen != sizeof(*params))
4056 goto out;
4057
4058 if (params->assoc_value & (~SCTP_ENABLE_STRRESET_MASK))
4059 goto out;
4060
4061 asoc = sctp_id2assoc(sk, params->assoc_id);
4062 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC &&
4063 sctp_style(sk, UDP))
4064 goto out;
4065
4066 retval = 0;
4067
4068 if (asoc) {
4069 asoc->strreset_enable = params->assoc_value;
4070 goto out;
4071 }
4072
4073 if (sctp_style(sk, TCP))
4074 params->assoc_id = SCTP_FUTURE_ASSOC;
4075
4076 if (params->assoc_id == SCTP_FUTURE_ASSOC ||
4077 params->assoc_id == SCTP_ALL_ASSOC)
4078 ep->strreset_enable = params->assoc_value;
4079
4080 if (params->assoc_id == SCTP_CURRENT_ASSOC ||
4081 params->assoc_id == SCTP_ALL_ASSOC)
4082 list_for_each_entry(asoc, &ep->asocs, asocs)
4083 asoc->strreset_enable = params->assoc_value;
4084
4085 out:
4086 return retval;
4087 }
4088
sctp_setsockopt_reset_streams(struct sock * sk,struct sctp_reset_streams * params,unsigned int optlen)4089 static int sctp_setsockopt_reset_streams(struct sock *sk,
4090 struct sctp_reset_streams *params,
4091 unsigned int optlen)
4092 {
4093 struct sctp_association *asoc;
4094
4095 if (optlen < sizeof(*params))
4096 return -EINVAL;
4097 /* srs_number_streams is u16, so optlen can't be bigger than this. */
4098 optlen = min_t(unsigned int, optlen, USHRT_MAX +
4099 sizeof(__u16) * sizeof(*params));
4100
4101 if (params->srs_number_streams * sizeof(__u16) >
4102 optlen - sizeof(*params))
4103 return -EINVAL;
4104
4105 asoc = sctp_id2assoc(sk, params->srs_assoc_id);
4106 if (!asoc)
4107 return -EINVAL;
4108
4109 return sctp_send_reset_streams(asoc, params);
4110 }
4111
sctp_setsockopt_reset_assoc(struct sock * sk,sctp_assoc_t * associd,unsigned int optlen)4112 static int sctp_setsockopt_reset_assoc(struct sock *sk, sctp_assoc_t *associd,
4113 unsigned int optlen)
4114 {
4115 struct sctp_association *asoc;
4116
4117 if (optlen != sizeof(*associd))
4118 return -EINVAL;
4119
4120 asoc = sctp_id2assoc(sk, *associd);
4121 if (!asoc)
4122 return -EINVAL;
4123
4124 return sctp_send_reset_assoc(asoc);
4125 }
4126
sctp_setsockopt_add_streams(struct sock * sk,struct sctp_add_streams * params,unsigned int optlen)4127 static int sctp_setsockopt_add_streams(struct sock *sk,
4128 struct sctp_add_streams *params,
4129 unsigned int optlen)
4130 {
4131 struct sctp_association *asoc;
4132
4133 if (optlen != sizeof(*params))
4134 return -EINVAL;
4135
4136 asoc = sctp_id2assoc(sk, params->sas_assoc_id);
4137 if (!asoc)
4138 return -EINVAL;
4139
4140 return sctp_send_add_streams(asoc, params);
4141 }
4142
sctp_setsockopt_scheduler(struct sock * sk,struct sctp_assoc_value * params,unsigned int optlen)4143 static int sctp_setsockopt_scheduler(struct sock *sk,
4144 struct sctp_assoc_value *params,
4145 unsigned int optlen)
4146 {
4147 struct sctp_sock *sp = sctp_sk(sk);
4148 struct sctp_association *asoc;
4149 int retval = 0;
4150
4151 if (optlen < sizeof(*params))
4152 return -EINVAL;
4153
4154 if (params->assoc_value > SCTP_SS_MAX)
4155 return -EINVAL;
4156
4157 asoc = sctp_id2assoc(sk, params->assoc_id);
4158 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC &&
4159 sctp_style(sk, UDP))
4160 return -EINVAL;
4161
4162 if (asoc)
4163 return sctp_sched_set_sched(asoc, params->assoc_value);
4164
4165 if (sctp_style(sk, TCP))
4166 params->assoc_id = SCTP_FUTURE_ASSOC;
4167
4168 if (params->assoc_id == SCTP_FUTURE_ASSOC ||
4169 params->assoc_id == SCTP_ALL_ASSOC)
4170 sp->default_ss = params->assoc_value;
4171
4172 if (params->assoc_id == SCTP_CURRENT_ASSOC ||
4173 params->assoc_id == SCTP_ALL_ASSOC) {
4174 list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
4175 int ret = sctp_sched_set_sched(asoc,
4176 params->assoc_value);
4177
4178 if (ret && !retval)
4179 retval = ret;
4180 }
4181 }
4182
4183 return retval;
4184 }
4185
sctp_setsockopt_scheduler_value(struct sock * sk,struct sctp_stream_value * params,unsigned int optlen)4186 static int sctp_setsockopt_scheduler_value(struct sock *sk,
4187 struct sctp_stream_value *params,
4188 unsigned int optlen)
4189 {
4190 struct sctp_association *asoc;
4191 int retval = -EINVAL;
4192
4193 if (optlen < sizeof(*params))
4194 goto out;
4195
4196 asoc = sctp_id2assoc(sk, params->assoc_id);
4197 if (!asoc && params->assoc_id != SCTP_CURRENT_ASSOC &&
4198 sctp_style(sk, UDP))
4199 goto out;
4200
4201 if (asoc) {
4202 retval = sctp_sched_set_value(asoc, params->stream_id,
4203 params->stream_value, GFP_KERNEL);
4204 goto out;
4205 }
4206
4207 retval = 0;
4208
4209 list_for_each_entry(asoc, &sctp_sk(sk)->ep->asocs, asocs) {
4210 int ret = sctp_sched_set_value(asoc, params->stream_id,
4211 params->stream_value,
4212 GFP_KERNEL);
4213 if (ret && !retval) /* try to return the 1st error. */
4214 retval = ret;
4215 }
4216
4217 out:
4218 return retval;
4219 }
4220
sctp_setsockopt_interleaving_supported(struct sock * sk,struct sctp_assoc_value * p,unsigned int optlen)4221 static int sctp_setsockopt_interleaving_supported(struct sock *sk,
4222 struct sctp_assoc_value *p,
4223 unsigned int optlen)
4224 {
4225 struct sctp_sock *sp = sctp_sk(sk);
4226 struct sctp_association *asoc;
4227
4228 if (optlen < sizeof(*p))
4229 return -EINVAL;
4230
4231 asoc = sctp_id2assoc(sk, p->assoc_id);
4232 if (!asoc && p->assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP))
4233 return -EINVAL;
4234
4235 if (!sock_net(sk)->sctp.intl_enable || !sp->frag_interleave) {
4236 return -EPERM;
4237 }
4238
4239 sp->ep->intl_enable = !!p->assoc_value;
4240 return 0;
4241 }
4242
sctp_setsockopt_reuse_port(struct sock * sk,int * val,unsigned int optlen)4243 static int sctp_setsockopt_reuse_port(struct sock *sk, int *val,
4244 unsigned int optlen)
4245 {
4246 if (!sctp_style(sk, TCP))
4247 return -EOPNOTSUPP;
4248
4249 if (sctp_sk(sk)->ep->base.bind_addr.port)
4250 return -EFAULT;
4251
4252 if (optlen < sizeof(int))
4253 return -EINVAL;
4254
4255 sctp_sk(sk)->reuse = !!*val;
4256
4257 return 0;
4258 }
4259
sctp_assoc_ulpevent_type_set(struct sctp_event * param,struct sctp_association * asoc)4260 static int sctp_assoc_ulpevent_type_set(struct sctp_event *param,
4261 struct sctp_association *asoc)
4262 {
4263 struct sctp_ulpevent *event;
4264
4265 sctp_ulpevent_type_set(&asoc->subscribe, param->se_type, param->se_on);
4266
4267 if (param->se_type == SCTP_SENDER_DRY_EVENT && param->se_on) {
4268 if (sctp_outq_is_empty(&asoc->outqueue)) {
4269 event = sctp_ulpevent_make_sender_dry_event(asoc,
4270 GFP_USER | __GFP_NOWARN);
4271 if (!event)
4272 return -ENOMEM;
4273
4274 asoc->stream.si->enqueue_event(&asoc->ulpq, event);
4275 }
4276 }
4277
4278 return 0;
4279 }
4280
sctp_setsockopt_event(struct sock * sk,struct sctp_event * param,unsigned int optlen)4281 static int sctp_setsockopt_event(struct sock *sk, struct sctp_event *param,
4282 unsigned int optlen)
4283 {
4284 struct sctp_sock *sp = sctp_sk(sk);
4285 struct sctp_association *asoc;
4286 int retval = 0;
4287
4288 if (optlen < sizeof(*param))
4289 return -EINVAL;
4290
4291 if (param->se_type < SCTP_SN_TYPE_BASE ||
4292 param->se_type > SCTP_SN_TYPE_MAX)
4293 return -EINVAL;
4294
4295 asoc = sctp_id2assoc(sk, param->se_assoc_id);
4296 if (!asoc && param->se_assoc_id > SCTP_ALL_ASSOC &&
4297 sctp_style(sk, UDP))
4298 return -EINVAL;
4299
4300 if (asoc)
4301 return sctp_assoc_ulpevent_type_set(param, asoc);
4302
4303 if (sctp_style(sk, TCP))
4304 param->se_assoc_id = SCTP_FUTURE_ASSOC;
4305
4306 if (param->se_assoc_id == SCTP_FUTURE_ASSOC ||
4307 param->se_assoc_id == SCTP_ALL_ASSOC)
4308 sctp_ulpevent_type_set(&sp->subscribe,
4309 param->se_type, param->se_on);
4310
4311 if (param->se_assoc_id == SCTP_CURRENT_ASSOC ||
4312 param->se_assoc_id == SCTP_ALL_ASSOC) {
4313 list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
4314 int ret = sctp_assoc_ulpevent_type_set(param, asoc);
4315
4316 if (ret && !retval)
4317 retval = ret;
4318 }
4319 }
4320
4321 return retval;
4322 }
4323
sctp_setsockopt_asconf_supported(struct sock * sk,struct sctp_assoc_value * params,unsigned int optlen)4324 static int sctp_setsockopt_asconf_supported(struct sock *sk,
4325 struct sctp_assoc_value *params,
4326 unsigned int optlen)
4327 {
4328 struct sctp_association *asoc;
4329 struct sctp_endpoint *ep;
4330 int retval = -EINVAL;
4331
4332 if (optlen != sizeof(*params))
4333 goto out;
4334
4335 asoc = sctp_id2assoc(sk, params->assoc_id);
4336 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4337 sctp_style(sk, UDP))
4338 goto out;
4339
4340 ep = sctp_sk(sk)->ep;
4341 ep->asconf_enable = !!params->assoc_value;
4342
4343 if (ep->asconf_enable && ep->auth_enable) {
4344 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF);
4345 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK);
4346 }
4347
4348 retval = 0;
4349
4350 out:
4351 return retval;
4352 }
4353
sctp_setsockopt_auth_supported(struct sock * sk,struct sctp_assoc_value * params,unsigned int optlen)4354 static int sctp_setsockopt_auth_supported(struct sock *sk,
4355 struct sctp_assoc_value *params,
4356 unsigned int optlen)
4357 {
4358 struct sctp_association *asoc;
4359 struct sctp_endpoint *ep;
4360 int retval = -EINVAL;
4361
4362 if (optlen != sizeof(*params))
4363 goto out;
4364
4365 asoc = sctp_id2assoc(sk, params->assoc_id);
4366 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4367 sctp_style(sk, UDP))
4368 goto out;
4369
4370 ep = sctp_sk(sk)->ep;
4371 if (params->assoc_value) {
4372 retval = sctp_auth_init(ep, GFP_KERNEL);
4373 if (retval)
4374 goto out;
4375 if (ep->asconf_enable) {
4376 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF);
4377 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK);
4378 }
4379 }
4380
4381 ep->auth_enable = !!params->assoc_value;
4382 retval = 0;
4383
4384 out:
4385 return retval;
4386 }
4387
sctp_setsockopt_ecn_supported(struct sock * sk,struct sctp_assoc_value * params,unsigned int optlen)4388 static int sctp_setsockopt_ecn_supported(struct sock *sk,
4389 struct sctp_assoc_value *params,
4390 unsigned int optlen)
4391 {
4392 struct sctp_association *asoc;
4393 int retval = -EINVAL;
4394
4395 if (optlen != sizeof(*params))
4396 goto out;
4397
4398 asoc = sctp_id2assoc(sk, params->assoc_id);
4399 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4400 sctp_style(sk, UDP))
4401 goto out;
4402
4403 sctp_sk(sk)->ep->ecn_enable = !!params->assoc_value;
4404 retval = 0;
4405
4406 out:
4407 return retval;
4408 }
4409
sctp_setsockopt_pf_expose(struct sock * sk,struct sctp_assoc_value * params,unsigned int optlen)4410 static int sctp_setsockopt_pf_expose(struct sock *sk,
4411 struct sctp_assoc_value *params,
4412 unsigned int optlen)
4413 {
4414 struct sctp_association *asoc;
4415 int retval = -EINVAL;
4416
4417 if (optlen != sizeof(*params))
4418 goto out;
4419
4420 if (params->assoc_value > SCTP_PF_EXPOSE_MAX)
4421 goto out;
4422
4423 asoc = sctp_id2assoc(sk, params->assoc_id);
4424 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4425 sctp_style(sk, UDP))
4426 goto out;
4427
4428 if (asoc)
4429 asoc->pf_expose = params->assoc_value;
4430 else
4431 sctp_sk(sk)->pf_expose = params->assoc_value;
4432 retval = 0;
4433
4434 out:
4435 return retval;
4436 }
4437
sctp_setsockopt_encap_port(struct sock * sk,struct sctp_udpencaps * encap,unsigned int optlen)4438 static int sctp_setsockopt_encap_port(struct sock *sk,
4439 struct sctp_udpencaps *encap,
4440 unsigned int optlen)
4441 {
4442 struct sctp_association *asoc;
4443 struct sctp_transport *t;
4444 __be16 encap_port;
4445
4446 if (optlen != sizeof(*encap))
4447 return -EINVAL;
4448
4449 /* If an address other than INADDR_ANY is specified, and
4450 * no transport is found, then the request is invalid.
4451 */
4452 encap_port = (__force __be16)encap->sue_port;
4453 if (!sctp_is_any(sk, (union sctp_addr *)&encap->sue_address)) {
4454 t = sctp_addr_id2transport(sk, &encap->sue_address,
4455 encap->sue_assoc_id);
4456 if (!t)
4457 return -EINVAL;
4458
4459 t->encap_port = encap_port;
4460 return 0;
4461 }
4462
4463 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
4464 * socket is a one to many style socket, and an association
4465 * was not found, then the id was invalid.
4466 */
4467 asoc = sctp_id2assoc(sk, encap->sue_assoc_id);
4468 if (!asoc && encap->sue_assoc_id != SCTP_FUTURE_ASSOC &&
4469 sctp_style(sk, UDP))
4470 return -EINVAL;
4471
4472 /* If changes are for association, also apply encap_port to
4473 * each transport.
4474 */
4475 if (asoc) {
4476 list_for_each_entry(t, &asoc->peer.transport_addr_list,
4477 transports)
4478 t->encap_port = encap_port;
4479
4480 asoc->encap_port = encap_port;
4481 return 0;
4482 }
4483
4484 sctp_sk(sk)->encap_port = encap_port;
4485 return 0;
4486 }
4487
sctp_setsockopt_probe_interval(struct sock * sk,struct sctp_probeinterval * params,unsigned int optlen)4488 static int sctp_setsockopt_probe_interval(struct sock *sk,
4489 struct sctp_probeinterval *params,
4490 unsigned int optlen)
4491 {
4492 struct sctp_association *asoc;
4493 struct sctp_transport *t;
4494 __u32 probe_interval;
4495
4496 if (optlen != sizeof(*params))
4497 return -EINVAL;
4498
4499 probe_interval = params->spi_interval;
4500 if (probe_interval && probe_interval < SCTP_PROBE_TIMER_MIN)
4501 return -EINVAL;
4502
4503 /* If an address other than INADDR_ANY is specified, and
4504 * no transport is found, then the request is invalid.
4505 */
4506 if (!sctp_is_any(sk, (union sctp_addr *)¶ms->spi_address)) {
4507 t = sctp_addr_id2transport(sk, ¶ms->spi_address,
4508 params->spi_assoc_id);
4509 if (!t)
4510 return -EINVAL;
4511
4512 t->probe_interval = msecs_to_jiffies(probe_interval);
4513 sctp_transport_pl_reset(t);
4514 return 0;
4515 }
4516
4517 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
4518 * socket is a one to many style socket, and an association
4519 * was not found, then the id was invalid.
4520 */
4521 asoc = sctp_id2assoc(sk, params->spi_assoc_id);
4522 if (!asoc && params->spi_assoc_id != SCTP_FUTURE_ASSOC &&
4523 sctp_style(sk, UDP))
4524 return -EINVAL;
4525
4526 /* If changes are for association, also apply probe_interval to
4527 * each transport.
4528 */
4529 if (asoc) {
4530 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) {
4531 t->probe_interval = msecs_to_jiffies(probe_interval);
4532 sctp_transport_pl_reset(t);
4533 }
4534
4535 asoc->probe_interval = msecs_to_jiffies(probe_interval);
4536 return 0;
4537 }
4538
4539 sctp_sk(sk)->probe_interval = probe_interval;
4540 return 0;
4541 }
4542
4543 /* API 6.2 setsockopt(), getsockopt()
4544 *
4545 * Applications use setsockopt() and getsockopt() to set or retrieve
4546 * socket options. Socket options are used to change the default
4547 * behavior of sockets calls. They are described in Section 7.
4548 *
4549 * The syntax is:
4550 *
4551 * ret = getsockopt(int sd, int level, int optname, void __user *optval,
4552 * int __user *optlen);
4553 * ret = setsockopt(int sd, int level, int optname, const void __user *optval,
4554 * int optlen);
4555 *
4556 * sd - the socket descript.
4557 * level - set to IPPROTO_SCTP for all SCTP options.
4558 * optname - the option name.
4559 * optval - the buffer to store the value of the option.
4560 * optlen - the size of the buffer.
4561 */
sctp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)4562 static int sctp_setsockopt(struct sock *sk, int level, int optname,
4563 sockptr_t optval, unsigned int optlen)
4564 {
4565 void *kopt = NULL;
4566 int retval = 0;
4567
4568 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
4569
4570 /* I can hardly begin to describe how wrong this is. This is
4571 * so broken as to be worse than useless. The API draft
4572 * REALLY is NOT helpful here... I am not convinced that the
4573 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
4574 * are at all well-founded.
4575 */
4576 if (level != SOL_SCTP) {
4577 struct sctp_af *af = sctp_sk(sk)->pf->af;
4578
4579 return af->setsockopt(sk, level, optname, optval, optlen);
4580 }
4581
4582 if (optlen > 0) {
4583 /* Trim it to the biggest size sctp sockopt may need if necessary */
4584 optlen = min_t(unsigned int, optlen,
4585 PAGE_ALIGN(USHRT_MAX +
4586 sizeof(__u16) * sizeof(struct sctp_reset_streams)));
4587 kopt = memdup_sockptr(optval, optlen);
4588 if (IS_ERR(kopt))
4589 return PTR_ERR(kopt);
4590 }
4591
4592 lock_sock(sk);
4593
4594 switch (optname) {
4595 case SCTP_SOCKOPT_BINDX_ADD:
4596 /* 'optlen' is the size of the addresses buffer. */
4597 retval = sctp_setsockopt_bindx(sk, kopt, optlen,
4598 SCTP_BINDX_ADD_ADDR);
4599 break;
4600
4601 case SCTP_SOCKOPT_BINDX_REM:
4602 /* 'optlen' is the size of the addresses buffer. */
4603 retval = sctp_setsockopt_bindx(sk, kopt, optlen,
4604 SCTP_BINDX_REM_ADDR);
4605 break;
4606
4607 case SCTP_SOCKOPT_CONNECTX_OLD:
4608 /* 'optlen' is the size of the addresses buffer. */
4609 retval = sctp_setsockopt_connectx_old(sk, kopt, optlen);
4610 break;
4611
4612 case SCTP_SOCKOPT_CONNECTX:
4613 /* 'optlen' is the size of the addresses buffer. */
4614 retval = sctp_setsockopt_connectx(sk, kopt, optlen);
4615 break;
4616
4617 case SCTP_DISABLE_FRAGMENTS:
4618 retval = sctp_setsockopt_disable_fragments(sk, kopt, optlen);
4619 break;
4620
4621 case SCTP_EVENTS:
4622 retval = sctp_setsockopt_events(sk, kopt, optlen);
4623 break;
4624
4625 case SCTP_AUTOCLOSE:
4626 retval = sctp_setsockopt_autoclose(sk, kopt, optlen);
4627 break;
4628
4629 case SCTP_PEER_ADDR_PARAMS:
4630 retval = sctp_setsockopt_peer_addr_params(sk, kopt, optlen);
4631 break;
4632
4633 case SCTP_DELAYED_SACK:
4634 retval = sctp_setsockopt_delayed_ack(sk, kopt, optlen);
4635 break;
4636 case SCTP_PARTIAL_DELIVERY_POINT:
4637 retval = sctp_setsockopt_partial_delivery_point(sk, kopt, optlen);
4638 break;
4639
4640 case SCTP_INITMSG:
4641 retval = sctp_setsockopt_initmsg(sk, kopt, optlen);
4642 break;
4643 case SCTP_DEFAULT_SEND_PARAM:
4644 retval = sctp_setsockopt_default_send_param(sk, kopt, optlen);
4645 break;
4646 case SCTP_DEFAULT_SNDINFO:
4647 retval = sctp_setsockopt_default_sndinfo(sk, kopt, optlen);
4648 break;
4649 case SCTP_PRIMARY_ADDR:
4650 retval = sctp_setsockopt_primary_addr(sk, kopt, optlen);
4651 break;
4652 case SCTP_SET_PEER_PRIMARY_ADDR:
4653 retval = sctp_setsockopt_peer_primary_addr(sk, kopt, optlen);
4654 break;
4655 case SCTP_NODELAY:
4656 retval = sctp_setsockopt_nodelay(sk, kopt, optlen);
4657 break;
4658 case SCTP_RTOINFO:
4659 retval = sctp_setsockopt_rtoinfo(sk, kopt, optlen);
4660 break;
4661 case SCTP_ASSOCINFO:
4662 retval = sctp_setsockopt_associnfo(sk, kopt, optlen);
4663 break;
4664 case SCTP_I_WANT_MAPPED_V4_ADDR:
4665 retval = sctp_setsockopt_mappedv4(sk, kopt, optlen);
4666 break;
4667 case SCTP_MAXSEG:
4668 retval = sctp_setsockopt_maxseg(sk, kopt, optlen);
4669 break;
4670 case SCTP_ADAPTATION_LAYER:
4671 retval = sctp_setsockopt_adaptation_layer(sk, kopt, optlen);
4672 break;
4673 case SCTP_CONTEXT:
4674 retval = sctp_setsockopt_context(sk, kopt, optlen);
4675 break;
4676 case SCTP_FRAGMENT_INTERLEAVE:
4677 retval = sctp_setsockopt_fragment_interleave(sk, kopt, optlen);
4678 break;
4679 case SCTP_MAX_BURST:
4680 retval = sctp_setsockopt_maxburst(sk, kopt, optlen);
4681 break;
4682 case SCTP_AUTH_CHUNK:
4683 retval = sctp_setsockopt_auth_chunk(sk, kopt, optlen);
4684 break;
4685 case SCTP_HMAC_IDENT:
4686 retval = sctp_setsockopt_hmac_ident(sk, kopt, optlen);
4687 break;
4688 case SCTP_AUTH_KEY:
4689 retval = sctp_setsockopt_auth_key(sk, kopt, optlen);
4690 break;
4691 case SCTP_AUTH_ACTIVE_KEY:
4692 retval = sctp_setsockopt_active_key(sk, kopt, optlen);
4693 break;
4694 case SCTP_AUTH_DELETE_KEY:
4695 retval = sctp_setsockopt_del_key(sk, kopt, optlen);
4696 break;
4697 case SCTP_AUTH_DEACTIVATE_KEY:
4698 retval = sctp_setsockopt_deactivate_key(sk, kopt, optlen);
4699 break;
4700 case SCTP_AUTO_ASCONF:
4701 retval = sctp_setsockopt_auto_asconf(sk, kopt, optlen);
4702 break;
4703 case SCTP_PEER_ADDR_THLDS:
4704 retval = sctp_setsockopt_paddr_thresholds(sk, kopt, optlen,
4705 false);
4706 break;
4707 case SCTP_PEER_ADDR_THLDS_V2:
4708 retval = sctp_setsockopt_paddr_thresholds(sk, kopt, optlen,
4709 true);
4710 break;
4711 case SCTP_RECVRCVINFO:
4712 retval = sctp_setsockopt_recvrcvinfo(sk, kopt, optlen);
4713 break;
4714 case SCTP_RECVNXTINFO:
4715 retval = sctp_setsockopt_recvnxtinfo(sk, kopt, optlen);
4716 break;
4717 case SCTP_PR_SUPPORTED:
4718 retval = sctp_setsockopt_pr_supported(sk, kopt, optlen);
4719 break;
4720 case SCTP_DEFAULT_PRINFO:
4721 retval = sctp_setsockopt_default_prinfo(sk, kopt, optlen);
4722 break;
4723 case SCTP_RECONFIG_SUPPORTED:
4724 retval = sctp_setsockopt_reconfig_supported(sk, kopt, optlen);
4725 break;
4726 case SCTP_ENABLE_STREAM_RESET:
4727 retval = sctp_setsockopt_enable_strreset(sk, kopt, optlen);
4728 break;
4729 case SCTP_RESET_STREAMS:
4730 retval = sctp_setsockopt_reset_streams(sk, kopt, optlen);
4731 break;
4732 case SCTP_RESET_ASSOC:
4733 retval = sctp_setsockopt_reset_assoc(sk, kopt, optlen);
4734 break;
4735 case SCTP_ADD_STREAMS:
4736 retval = sctp_setsockopt_add_streams(sk, kopt, optlen);
4737 break;
4738 case SCTP_STREAM_SCHEDULER:
4739 retval = sctp_setsockopt_scheduler(sk, kopt, optlen);
4740 break;
4741 case SCTP_STREAM_SCHEDULER_VALUE:
4742 retval = sctp_setsockopt_scheduler_value(sk, kopt, optlen);
4743 break;
4744 case SCTP_INTERLEAVING_SUPPORTED:
4745 retval = sctp_setsockopt_interleaving_supported(sk, kopt,
4746 optlen);
4747 break;
4748 case SCTP_REUSE_PORT:
4749 retval = sctp_setsockopt_reuse_port(sk, kopt, optlen);
4750 break;
4751 case SCTP_EVENT:
4752 retval = sctp_setsockopt_event(sk, kopt, optlen);
4753 break;
4754 case SCTP_ASCONF_SUPPORTED:
4755 retval = sctp_setsockopt_asconf_supported(sk, kopt, optlen);
4756 break;
4757 case SCTP_AUTH_SUPPORTED:
4758 retval = sctp_setsockopt_auth_supported(sk, kopt, optlen);
4759 break;
4760 case SCTP_ECN_SUPPORTED:
4761 retval = sctp_setsockopt_ecn_supported(sk, kopt, optlen);
4762 break;
4763 case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE:
4764 retval = sctp_setsockopt_pf_expose(sk, kopt, optlen);
4765 break;
4766 case SCTP_REMOTE_UDP_ENCAPS_PORT:
4767 retval = sctp_setsockopt_encap_port(sk, kopt, optlen);
4768 break;
4769 case SCTP_PLPMTUD_PROBE_INTERVAL:
4770 retval = sctp_setsockopt_probe_interval(sk, kopt, optlen);
4771 break;
4772 default:
4773 retval = -ENOPROTOOPT;
4774 break;
4775 }
4776
4777 release_sock(sk);
4778 kfree(kopt);
4779 return retval;
4780 }
4781
4782 /* API 3.1.6 connect() - UDP Style Syntax
4783 *
4784 * An application may use the connect() call in the UDP model to initiate an
4785 * association without sending data.
4786 *
4787 * The syntax is:
4788 *
4789 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
4790 *
4791 * sd: the socket descriptor to have a new association added to.
4792 *
4793 * nam: the address structure (either struct sockaddr_in or struct
4794 * sockaddr_in6 defined in RFC2553 [7]).
4795 *
4796 * len: the size of the address.
4797 */
sctp_connect(struct sock * sk,struct sockaddr * addr,int addr_len,int flags)4798 static int sctp_connect(struct sock *sk, struct sockaddr *addr,
4799 int addr_len, int flags)
4800 {
4801 struct sctp_af *af;
4802 int err = -EINVAL;
4803
4804 lock_sock(sk);
4805 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk,
4806 addr, addr_len);
4807
4808 /* Validate addr_len before calling common connect/connectx routine. */
4809 af = sctp_get_af_specific(addr->sa_family);
4810 if (af && addr_len >= af->sockaddr_len)
4811 err = __sctp_connect(sk, addr, af->sockaddr_len, flags, NULL);
4812
4813 release_sock(sk);
4814 return err;
4815 }
4816
sctp_inet_connect(struct socket * sock,struct sockaddr * uaddr,int addr_len,int flags)4817 int sctp_inet_connect(struct socket *sock, struct sockaddr *uaddr,
4818 int addr_len, int flags)
4819 {
4820 if (addr_len < sizeof(uaddr->sa_family))
4821 return -EINVAL;
4822
4823 if (uaddr->sa_family == AF_UNSPEC)
4824 return -EOPNOTSUPP;
4825
4826 return sctp_connect(sock->sk, uaddr, addr_len, flags);
4827 }
4828
4829 /* FIXME: Write comments. */
sctp_disconnect(struct sock * sk,int flags)4830 static int sctp_disconnect(struct sock *sk, int flags)
4831 {
4832 return -EOPNOTSUPP; /* STUB */
4833 }
4834
4835 /* 4.1.4 accept() - TCP Style Syntax
4836 *
4837 * Applications use accept() call to remove an established SCTP
4838 * association from the accept queue of the endpoint. A new socket
4839 * descriptor will be returned from accept() to represent the newly
4840 * formed association.
4841 */
sctp_accept(struct sock * sk,int flags,int * err,bool kern)4842 static struct sock *sctp_accept(struct sock *sk, int flags, int *err, bool kern)
4843 {
4844 struct sctp_sock *sp;
4845 struct sctp_endpoint *ep;
4846 struct sock *newsk = NULL;
4847 struct sctp_association *asoc;
4848 long timeo;
4849 int error = 0;
4850
4851 lock_sock(sk);
4852
4853 sp = sctp_sk(sk);
4854 ep = sp->ep;
4855
4856 if (!sctp_style(sk, TCP)) {
4857 error = -EOPNOTSUPP;
4858 goto out;
4859 }
4860
4861 if (!sctp_sstate(sk, LISTENING)) {
4862 error = -EINVAL;
4863 goto out;
4864 }
4865
4866 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
4867
4868 error = sctp_wait_for_accept(sk, timeo);
4869 if (error)
4870 goto out;
4871
4872 /* We treat the list of associations on the endpoint as the accept
4873 * queue and pick the first association on the list.
4874 */
4875 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
4876
4877 newsk = sp->pf->create_accept_sk(sk, asoc, kern);
4878 if (!newsk) {
4879 error = -ENOMEM;
4880 goto out;
4881 }
4882
4883 /* Populate the fields of the newsk from the oldsk and migrate the
4884 * asoc to the newsk.
4885 */
4886 error = sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
4887 if (error) {
4888 sk_common_release(newsk);
4889 newsk = NULL;
4890 }
4891
4892 out:
4893 release_sock(sk);
4894 *err = error;
4895 return newsk;
4896 }
4897
4898 /* The SCTP ioctl handler. */
sctp_ioctl(struct sock * sk,int cmd,int * karg)4899 static int sctp_ioctl(struct sock *sk, int cmd, int *karg)
4900 {
4901 int rc = -ENOTCONN;
4902
4903 lock_sock(sk);
4904
4905 /*
4906 * SEQPACKET-style sockets in LISTENING state are valid, for
4907 * SCTP, so only discard TCP-style sockets in LISTENING state.
4908 */
4909 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
4910 goto out;
4911
4912 switch (cmd) {
4913 case SIOCINQ: {
4914 struct sk_buff *skb;
4915 *karg = 0;
4916
4917 skb = skb_peek(&sk->sk_receive_queue);
4918 if (skb != NULL) {
4919 /*
4920 * We will only return the amount of this packet since
4921 * that is all that will be read.
4922 */
4923 *karg = skb->len;
4924 }
4925 rc = 0;
4926 break;
4927 }
4928 default:
4929 rc = -ENOIOCTLCMD;
4930 break;
4931 }
4932 out:
4933 release_sock(sk);
4934 return rc;
4935 }
4936
4937 /* This is the function which gets called during socket creation to
4938 * initialized the SCTP-specific portion of the sock.
4939 * The sock structure should already be zero-filled memory.
4940 */
sctp_init_sock(struct sock * sk)4941 static int sctp_init_sock(struct sock *sk)
4942 {
4943 struct net *net = sock_net(sk);
4944 struct sctp_sock *sp;
4945
4946 pr_debug("%s: sk:%p\n", __func__, sk);
4947
4948 sp = sctp_sk(sk);
4949
4950 /* Initialize the SCTP per socket area. */
4951 switch (sk->sk_type) {
4952 case SOCK_SEQPACKET:
4953 sp->type = SCTP_SOCKET_UDP;
4954 break;
4955 case SOCK_STREAM:
4956 sp->type = SCTP_SOCKET_TCP;
4957 break;
4958 default:
4959 return -ESOCKTNOSUPPORT;
4960 }
4961
4962 sk->sk_gso_type = SKB_GSO_SCTP;
4963
4964 /* Initialize default send parameters. These parameters can be
4965 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
4966 */
4967 sp->default_stream = 0;
4968 sp->default_ppid = 0;
4969 sp->default_flags = 0;
4970 sp->default_context = 0;
4971 sp->default_timetolive = 0;
4972
4973 sp->default_rcv_context = 0;
4974 sp->max_burst = net->sctp.max_burst;
4975
4976 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg;
4977
4978 /* Initialize default setup parameters. These parameters
4979 * can be modified with the SCTP_INITMSG socket option or
4980 * overridden by the SCTP_INIT CMSG.
4981 */
4982 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams;
4983 sp->initmsg.sinit_max_instreams = sctp_max_instreams;
4984 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init;
4985 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max;
4986
4987 /* Initialize default RTO related parameters. These parameters can
4988 * be modified for with the SCTP_RTOINFO socket option.
4989 */
4990 sp->rtoinfo.srto_initial = net->sctp.rto_initial;
4991 sp->rtoinfo.srto_max = net->sctp.rto_max;
4992 sp->rtoinfo.srto_min = net->sctp.rto_min;
4993
4994 /* Initialize default association related parameters. These parameters
4995 * can be modified with the SCTP_ASSOCINFO socket option.
4996 */
4997 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association;
4998 sp->assocparams.sasoc_number_peer_destinations = 0;
4999 sp->assocparams.sasoc_peer_rwnd = 0;
5000 sp->assocparams.sasoc_local_rwnd = 0;
5001 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life;
5002
5003 /* Initialize default event subscriptions. By default, all the
5004 * options are off.
5005 */
5006 sp->subscribe = 0;
5007
5008 /* Default Peer Address Parameters. These defaults can
5009 * be modified via SCTP_PEER_ADDR_PARAMS
5010 */
5011 sp->hbinterval = net->sctp.hb_interval;
5012 sp->udp_port = htons(net->sctp.udp_port);
5013 sp->encap_port = htons(net->sctp.encap_port);
5014 sp->pathmaxrxt = net->sctp.max_retrans_path;
5015 sp->pf_retrans = net->sctp.pf_retrans;
5016 sp->ps_retrans = net->sctp.ps_retrans;
5017 sp->pf_expose = net->sctp.pf_expose;
5018 sp->pathmtu = 0; /* allow default discovery */
5019 sp->sackdelay = net->sctp.sack_timeout;
5020 sp->sackfreq = 2;
5021 sp->param_flags = SPP_HB_ENABLE |
5022 SPP_PMTUD_ENABLE |
5023 SPP_SACKDELAY_ENABLE;
5024 sp->default_ss = SCTP_SS_DEFAULT;
5025
5026 /* If enabled no SCTP message fragmentation will be performed.
5027 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
5028 */
5029 sp->disable_fragments = 0;
5030
5031 /* Enable Nagle algorithm by default. */
5032 sp->nodelay = 0;
5033
5034 sp->recvrcvinfo = 0;
5035 sp->recvnxtinfo = 0;
5036
5037 /* Enable by default. */
5038 sp->v4mapped = 1;
5039
5040 /* Auto-close idle associations after the configured
5041 * number of seconds. A value of 0 disables this
5042 * feature. Configure through the SCTP_AUTOCLOSE socket option,
5043 * for UDP-style sockets only.
5044 */
5045 sp->autoclose = 0;
5046
5047 /* User specified fragmentation limit. */
5048 sp->user_frag = 0;
5049
5050 sp->adaptation_ind = 0;
5051
5052 sp->pf = sctp_get_pf_specific(sk->sk_family);
5053
5054 /* Control variables for partial data delivery. */
5055 atomic_set(&sp->pd_mode, 0);
5056 skb_queue_head_init(&sp->pd_lobby);
5057 sp->frag_interleave = 0;
5058 sp->probe_interval = net->sctp.probe_interval;
5059
5060 /* Create a per socket endpoint structure. Even if we
5061 * change the data structure relationships, this may still
5062 * be useful for storing pre-connect address information.
5063 */
5064 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL);
5065 if (!sp->ep)
5066 return -ENOMEM;
5067
5068 sp->hmac = NULL;
5069
5070 sk->sk_destruct = sctp_destruct_sock;
5071
5072 SCTP_DBG_OBJCNT_INC(sock);
5073
5074 sk_sockets_allocated_inc(sk);
5075 sock_prot_inuse_add(net, sk->sk_prot, 1);
5076
5077 return 0;
5078 }
5079
5080 /* Cleanup any SCTP per socket resources. Must be called with
5081 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true
5082 */
sctp_destroy_sock(struct sock * sk)5083 static void sctp_destroy_sock(struct sock *sk)
5084 {
5085 struct sctp_sock *sp;
5086
5087 pr_debug("%s: sk:%p\n", __func__, sk);
5088
5089 /* Release our hold on the endpoint. */
5090 sp = sctp_sk(sk);
5091 /* This could happen during socket init, thus we bail out
5092 * early, since the rest of the below is not setup either.
5093 */
5094 if (sp->ep == NULL)
5095 return;
5096
5097 if (sp->do_auto_asconf) {
5098 sp->do_auto_asconf = 0;
5099 list_del(&sp->auto_asconf_list);
5100 }
5101 sctp_endpoint_free(sp->ep);
5102 sk_sockets_allocated_dec(sk);
5103 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
5104 }
5105
5106 /* Triggered when there are no references on the socket anymore */
sctp_destruct_common(struct sock * sk)5107 static void sctp_destruct_common(struct sock *sk)
5108 {
5109 struct sctp_sock *sp = sctp_sk(sk);
5110
5111 /* Free up the HMAC transform. */
5112 crypto_free_shash(sp->hmac);
5113 }
5114
sctp_destruct_sock(struct sock * sk)5115 static void sctp_destruct_sock(struct sock *sk)
5116 {
5117 sctp_destruct_common(sk);
5118 inet_sock_destruct(sk);
5119 }
5120
5121 /* API 4.1.7 shutdown() - TCP Style Syntax
5122 * int shutdown(int socket, int how);
5123 *
5124 * sd - the socket descriptor of the association to be closed.
5125 * how - Specifies the type of shutdown. The values are
5126 * as follows:
5127 * SHUT_RD
5128 * Disables further receive operations. No SCTP
5129 * protocol action is taken.
5130 * SHUT_WR
5131 * Disables further send operations, and initiates
5132 * the SCTP shutdown sequence.
5133 * SHUT_RDWR
5134 * Disables further send and receive operations
5135 * and initiates the SCTP shutdown sequence.
5136 */
sctp_shutdown(struct sock * sk,int how)5137 static void sctp_shutdown(struct sock *sk, int how)
5138 {
5139 struct net *net = sock_net(sk);
5140 struct sctp_endpoint *ep;
5141
5142 if (!sctp_style(sk, TCP))
5143 return;
5144
5145 ep = sctp_sk(sk)->ep;
5146 if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) {
5147 struct sctp_association *asoc;
5148
5149 inet_sk_set_state(sk, SCTP_SS_CLOSING);
5150 asoc = list_entry(ep->asocs.next,
5151 struct sctp_association, asocs);
5152 sctp_primitive_SHUTDOWN(net, asoc, NULL);
5153 }
5154 }
5155
sctp_get_sctp_info(struct sock * sk,struct sctp_association * asoc,struct sctp_info * info)5156 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc,
5157 struct sctp_info *info)
5158 {
5159 struct sctp_transport *prim;
5160 struct list_head *pos;
5161 int mask;
5162
5163 memset(info, 0, sizeof(*info));
5164 if (!asoc) {
5165 struct sctp_sock *sp = sctp_sk(sk);
5166
5167 info->sctpi_s_autoclose = sp->autoclose;
5168 info->sctpi_s_adaptation_ind = sp->adaptation_ind;
5169 info->sctpi_s_pd_point = sp->pd_point;
5170 info->sctpi_s_nodelay = sp->nodelay;
5171 info->sctpi_s_disable_fragments = sp->disable_fragments;
5172 info->sctpi_s_v4mapped = sp->v4mapped;
5173 info->sctpi_s_frag_interleave = sp->frag_interleave;
5174 info->sctpi_s_type = sp->type;
5175
5176 return 0;
5177 }
5178
5179 info->sctpi_tag = asoc->c.my_vtag;
5180 info->sctpi_state = asoc->state;
5181 info->sctpi_rwnd = asoc->a_rwnd;
5182 info->sctpi_unackdata = asoc->unack_data;
5183 info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
5184 info->sctpi_instrms = asoc->stream.incnt;
5185 info->sctpi_outstrms = asoc->stream.outcnt;
5186 list_for_each(pos, &asoc->base.inqueue.in_chunk_list)
5187 info->sctpi_inqueue++;
5188 list_for_each(pos, &asoc->outqueue.out_chunk_list)
5189 info->sctpi_outqueue++;
5190 info->sctpi_overall_error = asoc->overall_error_count;
5191 info->sctpi_max_burst = asoc->max_burst;
5192 info->sctpi_maxseg = asoc->frag_point;
5193 info->sctpi_peer_rwnd = asoc->peer.rwnd;
5194 info->sctpi_peer_tag = asoc->c.peer_vtag;
5195
5196 mask = asoc->peer.intl_capable << 1;
5197 mask = (mask | asoc->peer.ecn_capable) << 1;
5198 mask = (mask | asoc->peer.ipv4_address) << 1;
5199 mask = (mask | asoc->peer.ipv6_address) << 1;
5200 mask = (mask | asoc->peer.reconf_capable) << 1;
5201 mask = (mask | asoc->peer.asconf_capable) << 1;
5202 mask = (mask | asoc->peer.prsctp_capable) << 1;
5203 mask = (mask | asoc->peer.auth_capable);
5204 info->sctpi_peer_capable = mask;
5205 mask = asoc->peer.sack_needed << 1;
5206 mask = (mask | asoc->peer.sack_generation) << 1;
5207 mask = (mask | asoc->peer.zero_window_announced);
5208 info->sctpi_peer_sack = mask;
5209
5210 info->sctpi_isacks = asoc->stats.isacks;
5211 info->sctpi_osacks = asoc->stats.osacks;
5212 info->sctpi_opackets = asoc->stats.opackets;
5213 info->sctpi_ipackets = asoc->stats.ipackets;
5214 info->sctpi_rtxchunks = asoc->stats.rtxchunks;
5215 info->sctpi_outofseqtsns = asoc->stats.outofseqtsns;
5216 info->sctpi_idupchunks = asoc->stats.idupchunks;
5217 info->sctpi_gapcnt = asoc->stats.gapcnt;
5218 info->sctpi_ouodchunks = asoc->stats.ouodchunks;
5219 info->sctpi_iuodchunks = asoc->stats.iuodchunks;
5220 info->sctpi_oodchunks = asoc->stats.oodchunks;
5221 info->sctpi_iodchunks = asoc->stats.iodchunks;
5222 info->sctpi_octrlchunks = asoc->stats.octrlchunks;
5223 info->sctpi_ictrlchunks = asoc->stats.ictrlchunks;
5224
5225 prim = asoc->peer.primary_path;
5226 memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr));
5227 info->sctpi_p_state = prim->state;
5228 info->sctpi_p_cwnd = prim->cwnd;
5229 info->sctpi_p_srtt = prim->srtt;
5230 info->sctpi_p_rto = jiffies_to_msecs(prim->rto);
5231 info->sctpi_p_hbinterval = prim->hbinterval;
5232 info->sctpi_p_pathmaxrxt = prim->pathmaxrxt;
5233 info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay);
5234 info->sctpi_p_ssthresh = prim->ssthresh;
5235 info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked;
5236 info->sctpi_p_flight_size = prim->flight_size;
5237 info->sctpi_p_error = prim->error_count;
5238
5239 return 0;
5240 }
5241 EXPORT_SYMBOL_GPL(sctp_get_sctp_info);
5242
5243 /* use callback to avoid exporting the core structure */
sctp_transport_walk_start(struct rhashtable_iter * iter)5244 void sctp_transport_walk_start(struct rhashtable_iter *iter) __acquires(RCU)
5245 {
5246 rhltable_walk_enter(&sctp_transport_hashtable, iter);
5247
5248 rhashtable_walk_start(iter);
5249 }
5250
sctp_transport_walk_stop(struct rhashtable_iter * iter)5251 void sctp_transport_walk_stop(struct rhashtable_iter *iter) __releases(RCU)
5252 {
5253 rhashtable_walk_stop(iter);
5254 rhashtable_walk_exit(iter);
5255 }
5256
sctp_transport_get_next(struct net * net,struct rhashtable_iter * iter)5257 struct sctp_transport *sctp_transport_get_next(struct net *net,
5258 struct rhashtable_iter *iter)
5259 {
5260 struct sctp_transport *t;
5261
5262 t = rhashtable_walk_next(iter);
5263 for (; t; t = rhashtable_walk_next(iter)) {
5264 if (IS_ERR(t)) {
5265 if (PTR_ERR(t) == -EAGAIN)
5266 continue;
5267 break;
5268 }
5269
5270 if (!sctp_transport_hold(t))
5271 continue;
5272
5273 if (net_eq(t->asoc->base.net, net) &&
5274 t->asoc->peer.primary_path == t)
5275 break;
5276
5277 sctp_transport_put(t);
5278 }
5279
5280 return t;
5281 }
5282
sctp_transport_get_idx(struct net * net,struct rhashtable_iter * iter,int pos)5283 struct sctp_transport *sctp_transport_get_idx(struct net *net,
5284 struct rhashtable_iter *iter,
5285 int pos)
5286 {
5287 struct sctp_transport *t;
5288
5289 if (!pos)
5290 return SEQ_START_TOKEN;
5291
5292 while ((t = sctp_transport_get_next(net, iter)) && !IS_ERR(t)) {
5293 if (!--pos)
5294 break;
5295 sctp_transport_put(t);
5296 }
5297
5298 return t;
5299 }
5300
sctp_for_each_endpoint(int (* cb)(struct sctp_endpoint *,void *),void * p)5301 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *),
5302 void *p) {
5303 int err = 0;
5304 int hash = 0;
5305 struct sctp_endpoint *ep;
5306 struct sctp_hashbucket *head;
5307
5308 for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize;
5309 hash++, head++) {
5310 read_lock_bh(&head->lock);
5311 sctp_for_each_hentry(ep, &head->chain) {
5312 err = cb(ep, p);
5313 if (err)
5314 break;
5315 }
5316 read_unlock_bh(&head->lock);
5317 }
5318
5319 return err;
5320 }
5321 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint);
5322
sctp_transport_lookup_process(sctp_callback_t cb,struct net * net,const union sctp_addr * laddr,const union sctp_addr * paddr,void * p,int dif)5323 int sctp_transport_lookup_process(sctp_callback_t cb, struct net *net,
5324 const union sctp_addr *laddr,
5325 const union sctp_addr *paddr, void *p, int dif)
5326 {
5327 struct sctp_transport *transport;
5328 struct sctp_endpoint *ep;
5329 int err = -ENOENT;
5330
5331 rcu_read_lock();
5332 transport = sctp_addrs_lookup_transport(net, laddr, paddr, dif, dif);
5333 if (!transport) {
5334 rcu_read_unlock();
5335 return err;
5336 }
5337 ep = transport->asoc->ep;
5338 if (!sctp_endpoint_hold(ep)) { /* asoc can be peeled off */
5339 sctp_transport_put(transport);
5340 rcu_read_unlock();
5341 return err;
5342 }
5343 rcu_read_unlock();
5344
5345 err = cb(ep, transport, p);
5346 sctp_endpoint_put(ep);
5347 sctp_transport_put(transport);
5348 return err;
5349 }
5350 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process);
5351
sctp_transport_traverse_process(sctp_callback_t cb,sctp_callback_t cb_done,struct net * net,int * pos,void * p)5352 int sctp_transport_traverse_process(sctp_callback_t cb, sctp_callback_t cb_done,
5353 struct net *net, int *pos, void *p)
5354 {
5355 struct rhashtable_iter hti;
5356 struct sctp_transport *tsp;
5357 struct sctp_endpoint *ep;
5358 int ret;
5359
5360 again:
5361 ret = 0;
5362 sctp_transport_walk_start(&hti);
5363
5364 tsp = sctp_transport_get_idx(net, &hti, *pos + 1);
5365 for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) {
5366 ep = tsp->asoc->ep;
5367 if (sctp_endpoint_hold(ep)) { /* asoc can be peeled off */
5368 ret = cb(ep, tsp, p);
5369 if (ret)
5370 break;
5371 sctp_endpoint_put(ep);
5372 }
5373 (*pos)++;
5374 sctp_transport_put(tsp);
5375 }
5376 sctp_transport_walk_stop(&hti);
5377
5378 if (ret) {
5379 if (cb_done && !cb_done(ep, tsp, p)) {
5380 (*pos)++;
5381 sctp_endpoint_put(ep);
5382 sctp_transport_put(tsp);
5383 goto again;
5384 }
5385 sctp_endpoint_put(ep);
5386 sctp_transport_put(tsp);
5387 }
5388
5389 return ret;
5390 }
5391 EXPORT_SYMBOL_GPL(sctp_transport_traverse_process);
5392
5393 /* 7.2.1 Association Status (SCTP_STATUS)
5394
5395 * Applications can retrieve current status information about an
5396 * association, including association state, peer receiver window size,
5397 * number of unacked data chunks, and number of data chunks pending
5398 * receipt. This information is read-only.
5399 */
sctp_getsockopt_sctp_status(struct sock * sk,int len,char __user * optval,int __user * optlen)5400 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
5401 char __user *optval,
5402 int __user *optlen)
5403 {
5404 struct sctp_status status;
5405 struct sctp_association *asoc = NULL;
5406 struct sctp_transport *transport;
5407 sctp_assoc_t associd;
5408 int retval = 0;
5409
5410 if (len < sizeof(status)) {
5411 retval = -EINVAL;
5412 goto out;
5413 }
5414
5415 len = sizeof(status);
5416 if (copy_from_user(&status, optval, len)) {
5417 retval = -EFAULT;
5418 goto out;
5419 }
5420
5421 associd = status.sstat_assoc_id;
5422 asoc = sctp_id2assoc(sk, associd);
5423 if (!asoc) {
5424 retval = -EINVAL;
5425 goto out;
5426 }
5427
5428 transport = asoc->peer.primary_path;
5429
5430 status.sstat_assoc_id = sctp_assoc2id(asoc);
5431 status.sstat_state = sctp_assoc_to_state(asoc);
5432 status.sstat_rwnd = asoc->peer.rwnd;
5433 status.sstat_unackdata = asoc->unack_data;
5434
5435 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
5436 status.sstat_instrms = asoc->stream.incnt;
5437 status.sstat_outstrms = asoc->stream.outcnt;
5438 status.sstat_fragmentation_point = asoc->frag_point;
5439 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
5440 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
5441 transport->af_specific->sockaddr_len);
5442 /* Map ipv4 address into v4-mapped-on-v6 address. */
5443 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
5444 (union sctp_addr *)&status.sstat_primary.spinfo_address);
5445 status.sstat_primary.spinfo_state = transport->state;
5446 status.sstat_primary.spinfo_cwnd = transport->cwnd;
5447 status.sstat_primary.spinfo_srtt = transport->srtt;
5448 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
5449 status.sstat_primary.spinfo_mtu = transport->pathmtu;
5450
5451 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
5452 status.sstat_primary.spinfo_state = SCTP_ACTIVE;
5453
5454 if (put_user(len, optlen)) {
5455 retval = -EFAULT;
5456 goto out;
5457 }
5458
5459 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n",
5460 __func__, len, status.sstat_state, status.sstat_rwnd,
5461 status.sstat_assoc_id);
5462
5463 if (copy_to_user(optval, &status, len)) {
5464 retval = -EFAULT;
5465 goto out;
5466 }
5467
5468 out:
5469 return retval;
5470 }
5471
5472
5473 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
5474 *
5475 * Applications can retrieve information about a specific peer address
5476 * of an association, including its reachability state, congestion
5477 * window, and retransmission timer values. This information is
5478 * read-only.
5479 */
sctp_getsockopt_peer_addr_info(struct sock * sk,int len,char __user * optval,int __user * optlen)5480 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
5481 char __user *optval,
5482 int __user *optlen)
5483 {
5484 struct sctp_paddrinfo pinfo;
5485 struct sctp_transport *transport;
5486 int retval = 0;
5487
5488 if (len < sizeof(pinfo)) {
5489 retval = -EINVAL;
5490 goto out;
5491 }
5492
5493 len = sizeof(pinfo);
5494 if (copy_from_user(&pinfo, optval, len)) {
5495 retval = -EFAULT;
5496 goto out;
5497 }
5498
5499 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
5500 pinfo.spinfo_assoc_id);
5501 if (!transport) {
5502 retval = -EINVAL;
5503 goto out;
5504 }
5505
5506 if (transport->state == SCTP_PF &&
5507 transport->asoc->pf_expose == SCTP_PF_EXPOSE_DISABLE) {
5508 retval = -EACCES;
5509 goto out;
5510 }
5511
5512 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
5513 pinfo.spinfo_state = transport->state;
5514 pinfo.spinfo_cwnd = transport->cwnd;
5515 pinfo.spinfo_srtt = transport->srtt;
5516 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
5517 pinfo.spinfo_mtu = transport->pathmtu;
5518
5519 if (pinfo.spinfo_state == SCTP_UNKNOWN)
5520 pinfo.spinfo_state = SCTP_ACTIVE;
5521
5522 if (put_user(len, optlen)) {
5523 retval = -EFAULT;
5524 goto out;
5525 }
5526
5527 if (copy_to_user(optval, &pinfo, len)) {
5528 retval = -EFAULT;
5529 goto out;
5530 }
5531
5532 out:
5533 return retval;
5534 }
5535
5536 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
5537 *
5538 * This option is a on/off flag. If enabled no SCTP message
5539 * fragmentation will be performed. Instead if a message being sent
5540 * exceeds the current PMTU size, the message will NOT be sent and
5541 * instead a error will be indicated to the user.
5542 */
sctp_getsockopt_disable_fragments(struct sock * sk,int len,char __user * optval,int __user * optlen)5543 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
5544 char __user *optval, int __user *optlen)
5545 {
5546 int val;
5547
5548 if (len < sizeof(int))
5549 return -EINVAL;
5550
5551 len = sizeof(int);
5552 val = (sctp_sk(sk)->disable_fragments == 1);
5553 if (put_user(len, optlen))
5554 return -EFAULT;
5555 if (copy_to_user(optval, &val, len))
5556 return -EFAULT;
5557 return 0;
5558 }
5559
5560 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
5561 *
5562 * This socket option is used to specify various notifications and
5563 * ancillary data the user wishes to receive.
5564 */
sctp_getsockopt_events(struct sock * sk,int len,char __user * optval,int __user * optlen)5565 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
5566 int __user *optlen)
5567 {
5568 struct sctp_event_subscribe subscribe;
5569 __u8 *sn_type = (__u8 *)&subscribe;
5570 int i;
5571
5572 if (len == 0)
5573 return -EINVAL;
5574 if (len > sizeof(struct sctp_event_subscribe))
5575 len = sizeof(struct sctp_event_subscribe);
5576 if (put_user(len, optlen))
5577 return -EFAULT;
5578
5579 for (i = 0; i < len; i++)
5580 sn_type[i] = sctp_ulpevent_type_enabled(sctp_sk(sk)->subscribe,
5581 SCTP_SN_TYPE_BASE + i);
5582
5583 if (copy_to_user(optval, &subscribe, len))
5584 return -EFAULT;
5585
5586 return 0;
5587 }
5588
5589 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
5590 *
5591 * This socket option is applicable to the UDP-style socket only. When
5592 * set it will cause associations that are idle for more than the
5593 * specified number of seconds to automatically close. An association
5594 * being idle is defined an association that has NOT sent or received
5595 * user data. The special value of '0' indicates that no automatic
5596 * close of any associations should be performed. The option expects an
5597 * integer defining the number of seconds of idle time before an
5598 * association is closed.
5599 */
sctp_getsockopt_autoclose(struct sock * sk,int len,char __user * optval,int __user * optlen)5600 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
5601 {
5602 /* Applicable to UDP-style socket only */
5603 if (sctp_style(sk, TCP))
5604 return -EOPNOTSUPP;
5605 if (len < sizeof(int))
5606 return -EINVAL;
5607 len = sizeof(int);
5608 if (put_user(len, optlen))
5609 return -EFAULT;
5610 if (put_user(sctp_sk(sk)->autoclose, (int __user *)optval))
5611 return -EFAULT;
5612 return 0;
5613 }
5614
5615 /* Helper routine to branch off an association to a new socket. */
sctp_do_peeloff(struct sock * sk,sctp_assoc_t id,struct socket ** sockp)5616 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp)
5617 {
5618 struct sctp_association *asoc = sctp_id2assoc(sk, id);
5619 struct sctp_sock *sp = sctp_sk(sk);
5620 struct socket *sock;
5621 int err = 0;
5622
5623 /* Do not peel off from one netns to another one. */
5624 if (!net_eq(current->nsproxy->net_ns, sock_net(sk)))
5625 return -EINVAL;
5626
5627 if (!asoc)
5628 return -EINVAL;
5629
5630 /* An association cannot be branched off from an already peeled-off
5631 * socket, nor is this supported for tcp style sockets.
5632 */
5633 if (!sctp_style(sk, UDP))
5634 return -EINVAL;
5635
5636 /* Create a new socket. */
5637 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
5638 if (err < 0)
5639 return err;
5640
5641 sctp_copy_sock(sock->sk, sk, asoc);
5642
5643 /* Make peeled-off sockets more like 1-1 accepted sockets.
5644 * Set the daddr and initialize id to something more random and also
5645 * copy over any ip options.
5646 */
5647 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sock->sk);
5648 sp->pf->copy_ip_options(sk, sock->sk);
5649
5650 /* Populate the fields of the newsk from the oldsk and migrate the
5651 * asoc to the newsk.
5652 */
5653 err = sctp_sock_migrate(sk, sock->sk, asoc,
5654 SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
5655 if (err) {
5656 sock_release(sock);
5657 sock = NULL;
5658 }
5659
5660 *sockp = sock;
5661
5662 return err;
5663 }
5664 EXPORT_SYMBOL(sctp_do_peeloff);
5665
sctp_getsockopt_peeloff_common(struct sock * sk,sctp_peeloff_arg_t * peeloff,struct file ** newfile,unsigned flags)5666 static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff,
5667 struct file **newfile, unsigned flags)
5668 {
5669 struct socket *newsock;
5670 int retval;
5671
5672 retval = sctp_do_peeloff(sk, peeloff->associd, &newsock);
5673 if (retval < 0)
5674 goto out;
5675
5676 /* Map the socket to an unused fd that can be returned to the user. */
5677 retval = get_unused_fd_flags(flags & SOCK_CLOEXEC);
5678 if (retval < 0) {
5679 sock_release(newsock);
5680 goto out;
5681 }
5682
5683 *newfile = sock_alloc_file(newsock, 0, NULL);
5684 if (IS_ERR(*newfile)) {
5685 put_unused_fd(retval);
5686 retval = PTR_ERR(*newfile);
5687 *newfile = NULL;
5688 return retval;
5689 }
5690
5691 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk,
5692 retval);
5693
5694 peeloff->sd = retval;
5695
5696 if (flags & SOCK_NONBLOCK)
5697 (*newfile)->f_flags |= O_NONBLOCK;
5698 out:
5699 return retval;
5700 }
5701
sctp_getsockopt_peeloff(struct sock * sk,int len,char __user * optval,int __user * optlen)5702 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
5703 {
5704 sctp_peeloff_arg_t peeloff;
5705 struct file *newfile = NULL;
5706 int retval = 0;
5707
5708 if (len < sizeof(sctp_peeloff_arg_t))
5709 return -EINVAL;
5710 len = sizeof(sctp_peeloff_arg_t);
5711 if (copy_from_user(&peeloff, optval, len))
5712 return -EFAULT;
5713
5714 retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0);
5715 if (retval < 0)
5716 goto out;
5717
5718 /* Return the fd mapped to the new socket. */
5719 if (put_user(len, optlen)) {
5720 fput(newfile);
5721 put_unused_fd(retval);
5722 return -EFAULT;
5723 }
5724
5725 if (copy_to_user(optval, &peeloff, len)) {
5726 fput(newfile);
5727 put_unused_fd(retval);
5728 return -EFAULT;
5729 }
5730 fd_install(retval, newfile);
5731 out:
5732 return retval;
5733 }
5734
sctp_getsockopt_peeloff_flags(struct sock * sk,int len,char __user * optval,int __user * optlen)5735 static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len,
5736 char __user *optval, int __user *optlen)
5737 {
5738 sctp_peeloff_flags_arg_t peeloff;
5739 struct file *newfile = NULL;
5740 int retval = 0;
5741
5742 if (len < sizeof(sctp_peeloff_flags_arg_t))
5743 return -EINVAL;
5744 len = sizeof(sctp_peeloff_flags_arg_t);
5745 if (copy_from_user(&peeloff, optval, len))
5746 return -EFAULT;
5747
5748 retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg,
5749 &newfile, peeloff.flags);
5750 if (retval < 0)
5751 goto out;
5752
5753 /* Return the fd mapped to the new socket. */
5754 if (put_user(len, optlen)) {
5755 fput(newfile);
5756 put_unused_fd(retval);
5757 return -EFAULT;
5758 }
5759
5760 if (copy_to_user(optval, &peeloff, len)) {
5761 fput(newfile);
5762 put_unused_fd(retval);
5763 return -EFAULT;
5764 }
5765 fd_install(retval, newfile);
5766 out:
5767 return retval;
5768 }
5769
5770 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
5771 *
5772 * Applications can enable or disable heartbeats for any peer address of
5773 * an association, modify an address's heartbeat interval, force a
5774 * heartbeat to be sent immediately, and adjust the address's maximum
5775 * number of retransmissions sent before an address is considered
5776 * unreachable. The following structure is used to access and modify an
5777 * address's parameters:
5778 *
5779 * struct sctp_paddrparams {
5780 * sctp_assoc_t spp_assoc_id;
5781 * struct sockaddr_storage spp_address;
5782 * uint32_t spp_hbinterval;
5783 * uint16_t spp_pathmaxrxt;
5784 * uint32_t spp_pathmtu;
5785 * uint32_t spp_sackdelay;
5786 * uint32_t spp_flags;
5787 * };
5788 *
5789 * spp_assoc_id - (one-to-many style socket) This is filled in the
5790 * application, and identifies the association for
5791 * this query.
5792 * spp_address - This specifies which address is of interest.
5793 * spp_hbinterval - This contains the value of the heartbeat interval,
5794 * in milliseconds. If a value of zero
5795 * is present in this field then no changes are to
5796 * be made to this parameter.
5797 * spp_pathmaxrxt - This contains the maximum number of
5798 * retransmissions before this address shall be
5799 * considered unreachable. If a value of zero
5800 * is present in this field then no changes are to
5801 * be made to this parameter.
5802 * spp_pathmtu - When Path MTU discovery is disabled the value
5803 * specified here will be the "fixed" path mtu.
5804 * Note that if the spp_address field is empty
5805 * then all associations on this address will
5806 * have this fixed path mtu set upon them.
5807 *
5808 * spp_sackdelay - When delayed sack is enabled, this value specifies
5809 * the number of milliseconds that sacks will be delayed
5810 * for. This value will apply to all addresses of an
5811 * association if the spp_address field is empty. Note
5812 * also, that if delayed sack is enabled and this
5813 * value is set to 0, no change is made to the last
5814 * recorded delayed sack timer value.
5815 *
5816 * spp_flags - These flags are used to control various features
5817 * on an association. The flag field may contain
5818 * zero or more of the following options.
5819 *
5820 * SPP_HB_ENABLE - Enable heartbeats on the
5821 * specified address. Note that if the address
5822 * field is empty all addresses for the association
5823 * have heartbeats enabled upon them.
5824 *
5825 * SPP_HB_DISABLE - Disable heartbeats on the
5826 * speicifed address. Note that if the address
5827 * field is empty all addresses for the association
5828 * will have their heartbeats disabled. Note also
5829 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
5830 * mutually exclusive, only one of these two should
5831 * be specified. Enabling both fields will have
5832 * undetermined results.
5833 *
5834 * SPP_HB_DEMAND - Request a user initiated heartbeat
5835 * to be made immediately.
5836 *
5837 * SPP_PMTUD_ENABLE - This field will enable PMTU
5838 * discovery upon the specified address. Note that
5839 * if the address feild is empty then all addresses
5840 * on the association are effected.
5841 *
5842 * SPP_PMTUD_DISABLE - This field will disable PMTU
5843 * discovery upon the specified address. Note that
5844 * if the address feild is empty then all addresses
5845 * on the association are effected. Not also that
5846 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
5847 * exclusive. Enabling both will have undetermined
5848 * results.
5849 *
5850 * SPP_SACKDELAY_ENABLE - Setting this flag turns
5851 * on delayed sack. The time specified in spp_sackdelay
5852 * is used to specify the sack delay for this address. Note
5853 * that if spp_address is empty then all addresses will
5854 * enable delayed sack and take on the sack delay
5855 * value specified in spp_sackdelay.
5856 * SPP_SACKDELAY_DISABLE - Setting this flag turns
5857 * off delayed sack. If the spp_address field is blank then
5858 * delayed sack is disabled for the entire association. Note
5859 * also that this field is mutually exclusive to
5860 * SPP_SACKDELAY_ENABLE, setting both will have undefined
5861 * results.
5862 *
5863 * SPP_IPV6_FLOWLABEL: Setting this flag enables the
5864 * setting of the IPV6 flow label value. The value is
5865 * contained in the spp_ipv6_flowlabel field.
5866 * Upon retrieval, this flag will be set to indicate that
5867 * the spp_ipv6_flowlabel field has a valid value returned.
5868 * If a specific destination address is set (in the
5869 * spp_address field), then the value returned is that of
5870 * the address. If just an association is specified (and
5871 * no address), then the association's default flow label
5872 * is returned. If neither an association nor a destination
5873 * is specified, then the socket's default flow label is
5874 * returned. For non-IPv6 sockets, this flag will be left
5875 * cleared.
5876 *
5877 * SPP_DSCP: Setting this flag enables the setting of the
5878 * Differentiated Services Code Point (DSCP) value
5879 * associated with either the association or a specific
5880 * address. The value is obtained in the spp_dscp field.
5881 * Upon retrieval, this flag will be set to indicate that
5882 * the spp_dscp field has a valid value returned. If a
5883 * specific destination address is set when called (in the
5884 * spp_address field), then that specific destination
5885 * address's DSCP value is returned. If just an association
5886 * is specified, then the association's default DSCP is
5887 * returned. If neither an association nor a destination is
5888 * specified, then the socket's default DSCP is returned.
5889 *
5890 * spp_ipv6_flowlabel
5891 * - This field is used in conjunction with the
5892 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label.
5893 * The 20 least significant bits are used for the flow
5894 * label. This setting has precedence over any IPv6-layer
5895 * setting.
5896 *
5897 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag
5898 * and contains the DSCP. The 6 most significant bits are
5899 * used for the DSCP. This setting has precedence over any
5900 * IPv4- or IPv6- layer setting.
5901 */
sctp_getsockopt_peer_addr_params(struct sock * sk,int len,char __user * optval,int __user * optlen)5902 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
5903 char __user *optval, int __user *optlen)
5904 {
5905 struct sctp_paddrparams params;
5906 struct sctp_transport *trans = NULL;
5907 struct sctp_association *asoc = NULL;
5908 struct sctp_sock *sp = sctp_sk(sk);
5909
5910 if (len >= sizeof(params))
5911 len = sizeof(params);
5912 else if (len >= ALIGN(offsetof(struct sctp_paddrparams,
5913 spp_ipv6_flowlabel), 4))
5914 len = ALIGN(offsetof(struct sctp_paddrparams,
5915 spp_ipv6_flowlabel), 4);
5916 else
5917 return -EINVAL;
5918
5919 if (copy_from_user(¶ms, optval, len))
5920 return -EFAULT;
5921
5922 /* If an address other than INADDR_ANY is specified, and
5923 * no transport is found, then the request is invalid.
5924 */
5925 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) {
5926 trans = sctp_addr_id2transport(sk, ¶ms.spp_address,
5927 params.spp_assoc_id);
5928 if (!trans) {
5929 pr_debug("%s: failed no transport\n", __func__);
5930 return -EINVAL;
5931 }
5932 }
5933
5934 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
5935 * socket is a one to many style socket, and an association
5936 * was not found, then the id was invalid.
5937 */
5938 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
5939 if (!asoc && params.spp_assoc_id != SCTP_FUTURE_ASSOC &&
5940 sctp_style(sk, UDP)) {
5941 pr_debug("%s: failed no association\n", __func__);
5942 return -EINVAL;
5943 }
5944
5945 if (trans) {
5946 /* Fetch transport values. */
5947 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
5948 params.spp_pathmtu = trans->pathmtu;
5949 params.spp_pathmaxrxt = trans->pathmaxrxt;
5950 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay);
5951
5952 /*draft-11 doesn't say what to return in spp_flags*/
5953 params.spp_flags = trans->param_flags;
5954 if (trans->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5955 params.spp_ipv6_flowlabel = trans->flowlabel &
5956 SCTP_FLOWLABEL_VAL_MASK;
5957 params.spp_flags |= SPP_IPV6_FLOWLABEL;
5958 }
5959 if (trans->dscp & SCTP_DSCP_SET_MASK) {
5960 params.spp_dscp = trans->dscp & SCTP_DSCP_VAL_MASK;
5961 params.spp_flags |= SPP_DSCP;
5962 }
5963 } else if (asoc) {
5964 /* Fetch association values. */
5965 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
5966 params.spp_pathmtu = asoc->pathmtu;
5967 params.spp_pathmaxrxt = asoc->pathmaxrxt;
5968 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay);
5969
5970 /*draft-11 doesn't say what to return in spp_flags*/
5971 params.spp_flags = asoc->param_flags;
5972 if (asoc->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5973 params.spp_ipv6_flowlabel = asoc->flowlabel &
5974 SCTP_FLOWLABEL_VAL_MASK;
5975 params.spp_flags |= SPP_IPV6_FLOWLABEL;
5976 }
5977 if (asoc->dscp & SCTP_DSCP_SET_MASK) {
5978 params.spp_dscp = asoc->dscp & SCTP_DSCP_VAL_MASK;
5979 params.spp_flags |= SPP_DSCP;
5980 }
5981 } else {
5982 /* Fetch socket values. */
5983 params.spp_hbinterval = sp->hbinterval;
5984 params.spp_pathmtu = sp->pathmtu;
5985 params.spp_sackdelay = sp->sackdelay;
5986 params.spp_pathmaxrxt = sp->pathmaxrxt;
5987
5988 /*draft-11 doesn't say what to return in spp_flags*/
5989 params.spp_flags = sp->param_flags;
5990 if (sp->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5991 params.spp_ipv6_flowlabel = sp->flowlabel &
5992 SCTP_FLOWLABEL_VAL_MASK;
5993 params.spp_flags |= SPP_IPV6_FLOWLABEL;
5994 }
5995 if (sp->dscp & SCTP_DSCP_SET_MASK) {
5996 params.spp_dscp = sp->dscp & SCTP_DSCP_VAL_MASK;
5997 params.spp_flags |= SPP_DSCP;
5998 }
5999 }
6000
6001 if (copy_to_user(optval, ¶ms, len))
6002 return -EFAULT;
6003
6004 if (put_user(len, optlen))
6005 return -EFAULT;
6006
6007 return 0;
6008 }
6009
6010 /*
6011 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
6012 *
6013 * This option will effect the way delayed acks are performed. This
6014 * option allows you to get or set the delayed ack time, in
6015 * milliseconds. It also allows changing the delayed ack frequency.
6016 * Changing the frequency to 1 disables the delayed sack algorithm. If
6017 * the assoc_id is 0, then this sets or gets the endpoints default
6018 * values. If the assoc_id field is non-zero, then the set or get
6019 * effects the specified association for the one to many model (the
6020 * assoc_id field is ignored by the one to one model). Note that if
6021 * sack_delay or sack_freq are 0 when setting this option, then the
6022 * current values will remain unchanged.
6023 *
6024 * struct sctp_sack_info {
6025 * sctp_assoc_t sack_assoc_id;
6026 * uint32_t sack_delay;
6027 * uint32_t sack_freq;
6028 * };
6029 *
6030 * sack_assoc_id - This parameter, indicates which association the user
6031 * is performing an action upon. Note that if this field's value is
6032 * zero then the endpoints default value is changed (effecting future
6033 * associations only).
6034 *
6035 * sack_delay - This parameter contains the number of milliseconds that
6036 * the user is requesting the delayed ACK timer be set to. Note that
6037 * this value is defined in the standard to be between 200 and 500
6038 * milliseconds.
6039 *
6040 * sack_freq - This parameter contains the number of packets that must
6041 * be received before a sack is sent without waiting for the delay
6042 * timer to expire. The default value for this is 2, setting this
6043 * value to 1 will disable the delayed sack algorithm.
6044 */
sctp_getsockopt_delayed_ack(struct sock * sk,int len,char __user * optval,int __user * optlen)6045 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
6046 char __user *optval,
6047 int __user *optlen)
6048 {
6049 struct sctp_sack_info params;
6050 struct sctp_association *asoc = NULL;
6051 struct sctp_sock *sp = sctp_sk(sk);
6052
6053 if (len >= sizeof(struct sctp_sack_info)) {
6054 len = sizeof(struct sctp_sack_info);
6055
6056 if (copy_from_user(¶ms, optval, len))
6057 return -EFAULT;
6058 } else if (len == sizeof(struct sctp_assoc_value)) {
6059 pr_warn_ratelimited(DEPRECATED
6060 "%s (pid %d) "
6061 "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
6062 "Use struct sctp_sack_info instead\n",
6063 current->comm, task_pid_nr(current));
6064 if (copy_from_user(¶ms, optval, len))
6065 return -EFAULT;
6066 } else
6067 return -EINVAL;
6068
6069 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the
6070 * socket is a one to many style socket, and an association
6071 * was not found, then the id was invalid.
6072 */
6073 asoc = sctp_id2assoc(sk, params.sack_assoc_id);
6074 if (!asoc && params.sack_assoc_id != SCTP_FUTURE_ASSOC &&
6075 sctp_style(sk, UDP))
6076 return -EINVAL;
6077
6078 if (asoc) {
6079 /* Fetch association values. */
6080 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
6081 params.sack_delay = jiffies_to_msecs(asoc->sackdelay);
6082 params.sack_freq = asoc->sackfreq;
6083
6084 } else {
6085 params.sack_delay = 0;
6086 params.sack_freq = 1;
6087 }
6088 } else {
6089 /* Fetch socket values. */
6090 if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
6091 params.sack_delay = sp->sackdelay;
6092 params.sack_freq = sp->sackfreq;
6093 } else {
6094 params.sack_delay = 0;
6095 params.sack_freq = 1;
6096 }
6097 }
6098
6099 if (copy_to_user(optval, ¶ms, len))
6100 return -EFAULT;
6101
6102 if (put_user(len, optlen))
6103 return -EFAULT;
6104
6105 return 0;
6106 }
6107
6108 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
6109 *
6110 * Applications can specify protocol parameters for the default association
6111 * initialization. The option name argument to setsockopt() and getsockopt()
6112 * is SCTP_INITMSG.
6113 *
6114 * Setting initialization parameters is effective only on an unconnected
6115 * socket (for UDP-style sockets only future associations are effected
6116 * by the change). With TCP-style sockets, this option is inherited by
6117 * sockets derived from a listener socket.
6118 */
sctp_getsockopt_initmsg(struct sock * sk,int len,char __user * optval,int __user * optlen)6119 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
6120 {
6121 if (len < sizeof(struct sctp_initmsg))
6122 return -EINVAL;
6123 len = sizeof(struct sctp_initmsg);
6124 if (put_user(len, optlen))
6125 return -EFAULT;
6126 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
6127 return -EFAULT;
6128 return 0;
6129 }
6130
6131
sctp_getsockopt_peer_addrs(struct sock * sk,int len,char __user * optval,int __user * optlen)6132 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
6133 char __user *optval, int __user *optlen)
6134 {
6135 struct sctp_association *asoc;
6136 int cnt = 0;
6137 struct sctp_getaddrs getaddrs;
6138 struct sctp_transport *from;
6139 void __user *to;
6140 union sctp_addr temp;
6141 struct sctp_sock *sp = sctp_sk(sk);
6142 int addrlen;
6143 size_t space_left;
6144 int bytes_copied;
6145
6146 if (len < sizeof(struct sctp_getaddrs))
6147 return -EINVAL;
6148
6149 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
6150 return -EFAULT;
6151
6152 /* For UDP-style sockets, id specifies the association to query. */
6153 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
6154 if (!asoc)
6155 return -EINVAL;
6156
6157 to = optval + offsetof(struct sctp_getaddrs, addrs);
6158 space_left = len - offsetof(struct sctp_getaddrs, addrs);
6159
6160 list_for_each_entry(from, &asoc->peer.transport_addr_list,
6161 transports) {
6162 memcpy(&temp, &from->ipaddr, sizeof(temp));
6163 addrlen = sctp_get_pf_specific(sk->sk_family)
6164 ->addr_to_user(sp, &temp);
6165 if (space_left < addrlen)
6166 return -ENOMEM;
6167 if (copy_to_user(to, &temp, addrlen))
6168 return -EFAULT;
6169 to += addrlen;
6170 cnt++;
6171 space_left -= addrlen;
6172 }
6173
6174 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
6175 return -EFAULT;
6176 bytes_copied = ((char __user *)to) - optval;
6177 if (put_user(bytes_copied, optlen))
6178 return -EFAULT;
6179
6180 return 0;
6181 }
6182
sctp_copy_laddrs(struct sock * sk,__u16 port,void * to,size_t space_left,int * bytes_copied)6183 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
6184 size_t space_left, int *bytes_copied)
6185 {
6186 struct sctp_sockaddr_entry *addr;
6187 union sctp_addr temp;
6188 int cnt = 0;
6189 int addrlen;
6190 struct net *net = sock_net(sk);
6191
6192 rcu_read_lock();
6193 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) {
6194 if (!addr->valid)
6195 continue;
6196
6197 if ((PF_INET == sk->sk_family) &&
6198 (AF_INET6 == addr->a.sa.sa_family))
6199 continue;
6200 if ((PF_INET6 == sk->sk_family) &&
6201 inet_v6_ipv6only(sk) &&
6202 (AF_INET == addr->a.sa.sa_family))
6203 continue;
6204 memcpy(&temp, &addr->a, sizeof(temp));
6205 if (!temp.v4.sin_port)
6206 temp.v4.sin_port = htons(port);
6207
6208 addrlen = sctp_get_pf_specific(sk->sk_family)
6209 ->addr_to_user(sctp_sk(sk), &temp);
6210
6211 if (space_left < addrlen) {
6212 cnt = -ENOMEM;
6213 break;
6214 }
6215 memcpy(to, &temp, addrlen);
6216
6217 to += addrlen;
6218 cnt++;
6219 space_left -= addrlen;
6220 *bytes_copied += addrlen;
6221 }
6222 rcu_read_unlock();
6223
6224 return cnt;
6225 }
6226
6227
sctp_getsockopt_local_addrs(struct sock * sk,int len,char __user * optval,int __user * optlen)6228 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
6229 char __user *optval, int __user *optlen)
6230 {
6231 struct sctp_bind_addr *bp;
6232 struct sctp_association *asoc;
6233 int cnt = 0;
6234 struct sctp_getaddrs getaddrs;
6235 struct sctp_sockaddr_entry *addr;
6236 void __user *to;
6237 union sctp_addr temp;
6238 struct sctp_sock *sp = sctp_sk(sk);
6239 int addrlen;
6240 int err = 0;
6241 size_t space_left;
6242 int bytes_copied = 0;
6243 void *addrs;
6244 void *buf;
6245
6246 if (len < sizeof(struct sctp_getaddrs))
6247 return -EINVAL;
6248
6249 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
6250 return -EFAULT;
6251
6252 /*
6253 * For UDP-style sockets, id specifies the association to query.
6254 * If the id field is set to the value '0' then the locally bound
6255 * addresses are returned without regard to any particular
6256 * association.
6257 */
6258 if (0 == getaddrs.assoc_id) {
6259 bp = &sctp_sk(sk)->ep->base.bind_addr;
6260 } else {
6261 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
6262 if (!asoc)
6263 return -EINVAL;
6264 bp = &asoc->base.bind_addr;
6265 }
6266
6267 to = optval + offsetof(struct sctp_getaddrs, addrs);
6268 space_left = len - offsetof(struct sctp_getaddrs, addrs);
6269
6270 addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN);
6271 if (!addrs)
6272 return -ENOMEM;
6273
6274 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
6275 * addresses from the global local address list.
6276 */
6277 if (sctp_list_single_entry(&bp->address_list)) {
6278 addr = list_entry(bp->address_list.next,
6279 struct sctp_sockaddr_entry, list);
6280 if (sctp_is_any(sk, &addr->a)) {
6281 cnt = sctp_copy_laddrs(sk, bp->port, addrs,
6282 space_left, &bytes_copied);
6283 if (cnt < 0) {
6284 err = cnt;
6285 goto out;
6286 }
6287 goto copy_getaddrs;
6288 }
6289 }
6290
6291 buf = addrs;
6292 /* Protection on the bound address list is not needed since
6293 * in the socket option context we hold a socket lock and
6294 * thus the bound address list can't change.
6295 */
6296 list_for_each_entry(addr, &bp->address_list, list) {
6297 memcpy(&temp, &addr->a, sizeof(temp));
6298 addrlen = sctp_get_pf_specific(sk->sk_family)
6299 ->addr_to_user(sp, &temp);
6300 if (space_left < addrlen) {
6301 err = -ENOMEM; /*fixme: right error?*/
6302 goto out;
6303 }
6304 memcpy(buf, &temp, addrlen);
6305 buf += addrlen;
6306 bytes_copied += addrlen;
6307 cnt++;
6308 space_left -= addrlen;
6309 }
6310
6311 copy_getaddrs:
6312 if (copy_to_user(to, addrs, bytes_copied)) {
6313 err = -EFAULT;
6314 goto out;
6315 }
6316 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
6317 err = -EFAULT;
6318 goto out;
6319 }
6320 /* XXX: We should have accounted for sizeof(struct sctp_getaddrs) too,
6321 * but we can't change it anymore.
6322 */
6323 if (put_user(bytes_copied, optlen))
6324 err = -EFAULT;
6325 out:
6326 kfree(addrs);
6327 return err;
6328 }
6329
6330 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
6331 *
6332 * Requests that the local SCTP stack use the enclosed peer address as
6333 * the association primary. The enclosed address must be one of the
6334 * association peer's addresses.
6335 */
sctp_getsockopt_primary_addr(struct sock * sk,int len,char __user * optval,int __user * optlen)6336 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
6337 char __user *optval, int __user *optlen)
6338 {
6339 struct sctp_prim prim;
6340 struct sctp_association *asoc;
6341 struct sctp_sock *sp = sctp_sk(sk);
6342
6343 if (len < sizeof(struct sctp_prim))
6344 return -EINVAL;
6345
6346 len = sizeof(struct sctp_prim);
6347
6348 if (copy_from_user(&prim, optval, len))
6349 return -EFAULT;
6350
6351 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
6352 if (!asoc)
6353 return -EINVAL;
6354
6355 if (!asoc->peer.primary_path)
6356 return -ENOTCONN;
6357
6358 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
6359 asoc->peer.primary_path->af_specific->sockaddr_len);
6360
6361 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp,
6362 (union sctp_addr *)&prim.ssp_addr);
6363
6364 if (put_user(len, optlen))
6365 return -EFAULT;
6366 if (copy_to_user(optval, &prim, len))
6367 return -EFAULT;
6368
6369 return 0;
6370 }
6371
6372 /*
6373 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
6374 *
6375 * Requests that the local endpoint set the specified Adaptation Layer
6376 * Indication parameter for all future INIT and INIT-ACK exchanges.
6377 */
sctp_getsockopt_adaptation_layer(struct sock * sk,int len,char __user * optval,int __user * optlen)6378 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
6379 char __user *optval, int __user *optlen)
6380 {
6381 struct sctp_setadaptation adaptation;
6382
6383 if (len < sizeof(struct sctp_setadaptation))
6384 return -EINVAL;
6385
6386 len = sizeof(struct sctp_setadaptation);
6387
6388 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
6389
6390 if (put_user(len, optlen))
6391 return -EFAULT;
6392 if (copy_to_user(optval, &adaptation, len))
6393 return -EFAULT;
6394
6395 return 0;
6396 }
6397
6398 /*
6399 *
6400 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
6401 *
6402 * Applications that wish to use the sendto() system call may wish to
6403 * specify a default set of parameters that would normally be supplied
6404 * through the inclusion of ancillary data. This socket option allows
6405 * such an application to set the default sctp_sndrcvinfo structure.
6406
6407
6408 * The application that wishes to use this socket option simply passes
6409 * in to this call the sctp_sndrcvinfo structure defined in Section
6410 * 5.2.2) The input parameters accepted by this call include
6411 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
6412 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
6413 * to this call if the caller is using the UDP model.
6414 *
6415 * For getsockopt, it get the default sctp_sndrcvinfo structure.
6416 */
sctp_getsockopt_default_send_param(struct sock * sk,int len,char __user * optval,int __user * optlen)6417 static int sctp_getsockopt_default_send_param(struct sock *sk,
6418 int len, char __user *optval,
6419 int __user *optlen)
6420 {
6421 struct sctp_sock *sp = sctp_sk(sk);
6422 struct sctp_association *asoc;
6423 struct sctp_sndrcvinfo info;
6424
6425 if (len < sizeof(info))
6426 return -EINVAL;
6427
6428 len = sizeof(info);
6429
6430 if (copy_from_user(&info, optval, len))
6431 return -EFAULT;
6432
6433 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
6434 if (!asoc && info.sinfo_assoc_id != SCTP_FUTURE_ASSOC &&
6435 sctp_style(sk, UDP))
6436 return -EINVAL;
6437
6438 if (asoc) {
6439 info.sinfo_stream = asoc->default_stream;
6440 info.sinfo_flags = asoc->default_flags;
6441 info.sinfo_ppid = asoc->default_ppid;
6442 info.sinfo_context = asoc->default_context;
6443 info.sinfo_timetolive = asoc->default_timetolive;
6444 } else {
6445 info.sinfo_stream = sp->default_stream;
6446 info.sinfo_flags = sp->default_flags;
6447 info.sinfo_ppid = sp->default_ppid;
6448 info.sinfo_context = sp->default_context;
6449 info.sinfo_timetolive = sp->default_timetolive;
6450 }
6451
6452 if (put_user(len, optlen))
6453 return -EFAULT;
6454 if (copy_to_user(optval, &info, len))
6455 return -EFAULT;
6456
6457 return 0;
6458 }
6459
6460 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
6461 * (SCTP_DEFAULT_SNDINFO)
6462 */
sctp_getsockopt_default_sndinfo(struct sock * sk,int len,char __user * optval,int __user * optlen)6463 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len,
6464 char __user *optval,
6465 int __user *optlen)
6466 {
6467 struct sctp_sock *sp = sctp_sk(sk);
6468 struct sctp_association *asoc;
6469 struct sctp_sndinfo info;
6470
6471 if (len < sizeof(info))
6472 return -EINVAL;
6473
6474 len = sizeof(info);
6475
6476 if (copy_from_user(&info, optval, len))
6477 return -EFAULT;
6478
6479 asoc = sctp_id2assoc(sk, info.snd_assoc_id);
6480 if (!asoc && info.snd_assoc_id != SCTP_FUTURE_ASSOC &&
6481 sctp_style(sk, UDP))
6482 return -EINVAL;
6483
6484 if (asoc) {
6485 info.snd_sid = asoc->default_stream;
6486 info.snd_flags = asoc->default_flags;
6487 info.snd_ppid = asoc->default_ppid;
6488 info.snd_context = asoc->default_context;
6489 } else {
6490 info.snd_sid = sp->default_stream;
6491 info.snd_flags = sp->default_flags;
6492 info.snd_ppid = sp->default_ppid;
6493 info.snd_context = sp->default_context;
6494 }
6495
6496 if (put_user(len, optlen))
6497 return -EFAULT;
6498 if (copy_to_user(optval, &info, len))
6499 return -EFAULT;
6500
6501 return 0;
6502 }
6503
6504 /*
6505 *
6506 * 7.1.5 SCTP_NODELAY
6507 *
6508 * Turn on/off any Nagle-like algorithm. This means that packets are
6509 * generally sent as soon as possible and no unnecessary delays are
6510 * introduced, at the cost of more packets in the network. Expects an
6511 * integer boolean flag.
6512 */
6513
sctp_getsockopt_nodelay(struct sock * sk,int len,char __user * optval,int __user * optlen)6514 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
6515 char __user *optval, int __user *optlen)
6516 {
6517 int val;
6518
6519 if (len < sizeof(int))
6520 return -EINVAL;
6521
6522 len = sizeof(int);
6523 val = (sctp_sk(sk)->nodelay == 1);
6524 if (put_user(len, optlen))
6525 return -EFAULT;
6526 if (copy_to_user(optval, &val, len))
6527 return -EFAULT;
6528 return 0;
6529 }
6530
6531 /*
6532 *
6533 * 7.1.1 SCTP_RTOINFO
6534 *
6535 * The protocol parameters used to initialize and bound retransmission
6536 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
6537 * and modify these parameters.
6538 * All parameters are time values, in milliseconds. A value of 0, when
6539 * modifying the parameters, indicates that the current value should not
6540 * be changed.
6541 *
6542 */
sctp_getsockopt_rtoinfo(struct sock * sk,int len,char __user * optval,int __user * optlen)6543 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
6544 char __user *optval,
6545 int __user *optlen) {
6546 struct sctp_rtoinfo rtoinfo;
6547 struct sctp_association *asoc;
6548
6549 if (len < sizeof (struct sctp_rtoinfo))
6550 return -EINVAL;
6551
6552 len = sizeof(struct sctp_rtoinfo);
6553
6554 if (copy_from_user(&rtoinfo, optval, len))
6555 return -EFAULT;
6556
6557 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
6558
6559 if (!asoc && rtoinfo.srto_assoc_id != SCTP_FUTURE_ASSOC &&
6560 sctp_style(sk, UDP))
6561 return -EINVAL;
6562
6563 /* Values corresponding to the specific association. */
6564 if (asoc) {
6565 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
6566 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
6567 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
6568 } else {
6569 /* Values corresponding to the endpoint. */
6570 struct sctp_sock *sp = sctp_sk(sk);
6571
6572 rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
6573 rtoinfo.srto_max = sp->rtoinfo.srto_max;
6574 rtoinfo.srto_min = sp->rtoinfo.srto_min;
6575 }
6576
6577 if (put_user(len, optlen))
6578 return -EFAULT;
6579
6580 if (copy_to_user(optval, &rtoinfo, len))
6581 return -EFAULT;
6582
6583 return 0;
6584 }
6585
6586 /*
6587 *
6588 * 7.1.2 SCTP_ASSOCINFO
6589 *
6590 * This option is used to tune the maximum retransmission attempts
6591 * of the association.
6592 * Returns an error if the new association retransmission value is
6593 * greater than the sum of the retransmission value of the peer.
6594 * See [SCTP] for more information.
6595 *
6596 */
sctp_getsockopt_associnfo(struct sock * sk,int len,char __user * optval,int __user * optlen)6597 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
6598 char __user *optval,
6599 int __user *optlen)
6600 {
6601
6602 struct sctp_assocparams assocparams;
6603 struct sctp_association *asoc;
6604 struct list_head *pos;
6605 int cnt = 0;
6606
6607 if (len < sizeof (struct sctp_assocparams))
6608 return -EINVAL;
6609
6610 len = sizeof(struct sctp_assocparams);
6611
6612 if (copy_from_user(&assocparams, optval, len))
6613 return -EFAULT;
6614
6615 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
6616
6617 if (!asoc && assocparams.sasoc_assoc_id != SCTP_FUTURE_ASSOC &&
6618 sctp_style(sk, UDP))
6619 return -EINVAL;
6620
6621 /* Values correspoinding to the specific association */
6622 if (asoc) {
6623 assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
6624 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
6625 assocparams.sasoc_local_rwnd = asoc->a_rwnd;
6626 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life);
6627
6628 list_for_each(pos, &asoc->peer.transport_addr_list) {
6629 cnt++;
6630 }
6631
6632 assocparams.sasoc_number_peer_destinations = cnt;
6633 } else {
6634 /* Values corresponding to the endpoint */
6635 struct sctp_sock *sp = sctp_sk(sk);
6636
6637 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
6638 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
6639 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
6640 assocparams.sasoc_cookie_life =
6641 sp->assocparams.sasoc_cookie_life;
6642 assocparams.sasoc_number_peer_destinations =
6643 sp->assocparams.
6644 sasoc_number_peer_destinations;
6645 }
6646
6647 if (put_user(len, optlen))
6648 return -EFAULT;
6649
6650 if (copy_to_user(optval, &assocparams, len))
6651 return -EFAULT;
6652
6653 return 0;
6654 }
6655
6656 /*
6657 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
6658 *
6659 * This socket option is a boolean flag which turns on or off mapped V4
6660 * addresses. If this option is turned on and the socket is type
6661 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
6662 * If this option is turned off, then no mapping will be done of V4
6663 * addresses and a user will receive both PF_INET6 and PF_INET type
6664 * addresses on the socket.
6665 */
sctp_getsockopt_mappedv4(struct sock * sk,int len,char __user * optval,int __user * optlen)6666 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
6667 char __user *optval, int __user *optlen)
6668 {
6669 int val;
6670 struct sctp_sock *sp = sctp_sk(sk);
6671
6672 if (len < sizeof(int))
6673 return -EINVAL;
6674
6675 len = sizeof(int);
6676 val = sp->v4mapped;
6677 if (put_user(len, optlen))
6678 return -EFAULT;
6679 if (copy_to_user(optval, &val, len))
6680 return -EFAULT;
6681
6682 return 0;
6683 }
6684
6685 /*
6686 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
6687 * (chapter and verse is quoted at sctp_setsockopt_context())
6688 */
sctp_getsockopt_context(struct sock * sk,int len,char __user * optval,int __user * optlen)6689 static int sctp_getsockopt_context(struct sock *sk, int len,
6690 char __user *optval, int __user *optlen)
6691 {
6692 struct sctp_assoc_value params;
6693 struct sctp_association *asoc;
6694
6695 if (len < sizeof(struct sctp_assoc_value))
6696 return -EINVAL;
6697
6698 len = sizeof(struct sctp_assoc_value);
6699
6700 if (copy_from_user(¶ms, optval, len))
6701 return -EFAULT;
6702
6703 asoc = sctp_id2assoc(sk, params.assoc_id);
6704 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
6705 sctp_style(sk, UDP))
6706 return -EINVAL;
6707
6708 params.assoc_value = asoc ? asoc->default_rcv_context
6709 : sctp_sk(sk)->default_rcv_context;
6710
6711 if (put_user(len, optlen))
6712 return -EFAULT;
6713 if (copy_to_user(optval, ¶ms, len))
6714 return -EFAULT;
6715
6716 return 0;
6717 }
6718
6719 /*
6720 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
6721 * This option will get or set the maximum size to put in any outgoing
6722 * SCTP DATA chunk. If a message is larger than this size it will be
6723 * fragmented by SCTP into the specified size. Note that the underlying
6724 * SCTP implementation may fragment into smaller sized chunks when the
6725 * PMTU of the underlying association is smaller than the value set by
6726 * the user. The default value for this option is '0' which indicates
6727 * the user is NOT limiting fragmentation and only the PMTU will effect
6728 * SCTP's choice of DATA chunk size. Note also that values set larger
6729 * than the maximum size of an IP datagram will effectively let SCTP
6730 * control fragmentation (i.e. the same as setting this option to 0).
6731 *
6732 * The following structure is used to access and modify this parameter:
6733 *
6734 * struct sctp_assoc_value {
6735 * sctp_assoc_t assoc_id;
6736 * uint32_t assoc_value;
6737 * };
6738 *
6739 * assoc_id: This parameter is ignored for one-to-one style sockets.
6740 * For one-to-many style sockets this parameter indicates which
6741 * association the user is performing an action upon. Note that if
6742 * this field's value is zero then the endpoints default value is
6743 * changed (effecting future associations only).
6744 * assoc_value: This parameter specifies the maximum size in bytes.
6745 */
sctp_getsockopt_maxseg(struct sock * sk,int len,char __user * optval,int __user * optlen)6746 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
6747 char __user *optval, int __user *optlen)
6748 {
6749 struct sctp_assoc_value params;
6750 struct sctp_association *asoc;
6751
6752 if (len == sizeof(int)) {
6753 pr_warn_ratelimited(DEPRECATED
6754 "%s (pid %d) "
6755 "Use of int in maxseg socket option.\n"
6756 "Use struct sctp_assoc_value instead\n",
6757 current->comm, task_pid_nr(current));
6758 params.assoc_id = SCTP_FUTURE_ASSOC;
6759 } else if (len >= sizeof(struct sctp_assoc_value)) {
6760 len = sizeof(struct sctp_assoc_value);
6761 if (copy_from_user(¶ms, optval, len))
6762 return -EFAULT;
6763 } else
6764 return -EINVAL;
6765
6766 asoc = sctp_id2assoc(sk, params.assoc_id);
6767 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
6768 sctp_style(sk, UDP))
6769 return -EINVAL;
6770
6771 if (asoc)
6772 params.assoc_value = asoc->frag_point;
6773 else
6774 params.assoc_value = sctp_sk(sk)->user_frag;
6775
6776 if (put_user(len, optlen))
6777 return -EFAULT;
6778 if (len == sizeof(int)) {
6779 if (copy_to_user(optval, ¶ms.assoc_value, len))
6780 return -EFAULT;
6781 } else {
6782 if (copy_to_user(optval, ¶ms, len))
6783 return -EFAULT;
6784 }
6785
6786 return 0;
6787 }
6788
6789 /*
6790 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
6791 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
6792 */
sctp_getsockopt_fragment_interleave(struct sock * sk,int len,char __user * optval,int __user * optlen)6793 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
6794 char __user *optval, int __user *optlen)
6795 {
6796 int val;
6797
6798 if (len < sizeof(int))
6799 return -EINVAL;
6800
6801 len = sizeof(int);
6802
6803 val = sctp_sk(sk)->frag_interleave;
6804 if (put_user(len, optlen))
6805 return -EFAULT;
6806 if (copy_to_user(optval, &val, len))
6807 return -EFAULT;
6808
6809 return 0;
6810 }
6811
6812 /*
6813 * 7.1.25. Set or Get the sctp partial delivery point
6814 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
6815 */
sctp_getsockopt_partial_delivery_point(struct sock * sk,int len,char __user * optval,int __user * optlen)6816 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
6817 char __user *optval,
6818 int __user *optlen)
6819 {
6820 u32 val;
6821
6822 if (len < sizeof(u32))
6823 return -EINVAL;
6824
6825 len = sizeof(u32);
6826
6827 val = sctp_sk(sk)->pd_point;
6828 if (put_user(len, optlen))
6829 return -EFAULT;
6830 if (copy_to_user(optval, &val, len))
6831 return -EFAULT;
6832
6833 return 0;
6834 }
6835
6836 /*
6837 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
6838 * (chapter and verse is quoted at sctp_setsockopt_maxburst())
6839 */
sctp_getsockopt_maxburst(struct sock * sk,int len,char __user * optval,int __user * optlen)6840 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
6841 char __user *optval,
6842 int __user *optlen)
6843 {
6844 struct sctp_assoc_value params;
6845 struct sctp_association *asoc;
6846
6847 if (len == sizeof(int)) {
6848 pr_warn_ratelimited(DEPRECATED
6849 "%s (pid %d) "
6850 "Use of int in max_burst socket option.\n"
6851 "Use struct sctp_assoc_value instead\n",
6852 current->comm, task_pid_nr(current));
6853 params.assoc_id = SCTP_FUTURE_ASSOC;
6854 } else if (len >= sizeof(struct sctp_assoc_value)) {
6855 len = sizeof(struct sctp_assoc_value);
6856 if (copy_from_user(¶ms, optval, len))
6857 return -EFAULT;
6858 } else
6859 return -EINVAL;
6860
6861 asoc = sctp_id2assoc(sk, params.assoc_id);
6862 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
6863 sctp_style(sk, UDP))
6864 return -EINVAL;
6865
6866 params.assoc_value = asoc ? asoc->max_burst : sctp_sk(sk)->max_burst;
6867
6868 if (len == sizeof(int)) {
6869 if (copy_to_user(optval, ¶ms.assoc_value, len))
6870 return -EFAULT;
6871 } else {
6872 if (copy_to_user(optval, ¶ms, len))
6873 return -EFAULT;
6874 }
6875
6876 return 0;
6877
6878 }
6879
sctp_getsockopt_hmac_ident(struct sock * sk,int len,char __user * optval,int __user * optlen)6880 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
6881 char __user *optval, int __user *optlen)
6882 {
6883 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6884 struct sctp_hmacalgo __user *p = (void __user *)optval;
6885 struct sctp_hmac_algo_param *hmacs;
6886 __u16 data_len = 0;
6887 u32 num_idents;
6888 int i;
6889
6890 if (!ep->auth_enable)
6891 return -EACCES;
6892
6893 hmacs = ep->auth_hmacs_list;
6894 data_len = ntohs(hmacs->param_hdr.length) -
6895 sizeof(struct sctp_paramhdr);
6896
6897 if (len < sizeof(struct sctp_hmacalgo) + data_len)
6898 return -EINVAL;
6899
6900 len = sizeof(struct sctp_hmacalgo) + data_len;
6901 num_idents = data_len / sizeof(u16);
6902
6903 if (put_user(len, optlen))
6904 return -EFAULT;
6905 if (put_user(num_idents, &p->shmac_num_idents))
6906 return -EFAULT;
6907 for (i = 0; i < num_idents; i++) {
6908 __u16 hmacid = ntohs(hmacs->hmac_ids[i]);
6909
6910 if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16)))
6911 return -EFAULT;
6912 }
6913 return 0;
6914 }
6915
sctp_getsockopt_active_key(struct sock * sk,int len,char __user * optval,int __user * optlen)6916 static int sctp_getsockopt_active_key(struct sock *sk, int len,
6917 char __user *optval, int __user *optlen)
6918 {
6919 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6920 struct sctp_authkeyid val;
6921 struct sctp_association *asoc;
6922
6923 if (len < sizeof(struct sctp_authkeyid))
6924 return -EINVAL;
6925
6926 len = sizeof(struct sctp_authkeyid);
6927 if (copy_from_user(&val, optval, len))
6928 return -EFAULT;
6929
6930 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
6931 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
6932 return -EINVAL;
6933
6934 if (asoc) {
6935 if (!asoc->peer.auth_capable)
6936 return -EACCES;
6937 val.scact_keynumber = asoc->active_key_id;
6938 } else {
6939 if (!ep->auth_enable)
6940 return -EACCES;
6941 val.scact_keynumber = ep->active_key_id;
6942 }
6943
6944 if (put_user(len, optlen))
6945 return -EFAULT;
6946 if (copy_to_user(optval, &val, len))
6947 return -EFAULT;
6948
6949 return 0;
6950 }
6951
sctp_getsockopt_peer_auth_chunks(struct sock * sk,int len,char __user * optval,int __user * optlen)6952 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
6953 char __user *optval, int __user *optlen)
6954 {
6955 struct sctp_authchunks __user *p = (void __user *)optval;
6956 struct sctp_authchunks val;
6957 struct sctp_association *asoc;
6958 struct sctp_chunks_param *ch;
6959 u32 num_chunks = 0;
6960 char __user *to;
6961
6962 if (len < sizeof(struct sctp_authchunks))
6963 return -EINVAL;
6964
6965 if (copy_from_user(&val, optval, sizeof(val)))
6966 return -EFAULT;
6967
6968 to = p->gauth_chunks;
6969 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
6970 if (!asoc)
6971 return -EINVAL;
6972
6973 if (!asoc->peer.auth_capable)
6974 return -EACCES;
6975
6976 ch = asoc->peer.peer_chunks;
6977 if (!ch)
6978 goto num;
6979
6980 /* See if the user provided enough room for all the data */
6981 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr);
6982 if (len < num_chunks)
6983 return -EINVAL;
6984
6985 if (copy_to_user(to, ch->chunks, num_chunks))
6986 return -EFAULT;
6987 num:
6988 len = sizeof(struct sctp_authchunks) + num_chunks;
6989 if (put_user(len, optlen))
6990 return -EFAULT;
6991 if (put_user(num_chunks, &p->gauth_number_of_chunks))
6992 return -EFAULT;
6993 return 0;
6994 }
6995
sctp_getsockopt_local_auth_chunks(struct sock * sk,int len,char __user * optval,int __user * optlen)6996 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
6997 char __user *optval, int __user *optlen)
6998 {
6999 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
7000 struct sctp_authchunks __user *p = (void __user *)optval;
7001 struct sctp_authchunks val;
7002 struct sctp_association *asoc;
7003 struct sctp_chunks_param *ch;
7004 u32 num_chunks = 0;
7005 char __user *to;
7006
7007 if (len < sizeof(struct sctp_authchunks))
7008 return -EINVAL;
7009
7010 if (copy_from_user(&val, optval, sizeof(val)))
7011 return -EFAULT;
7012
7013 to = p->gauth_chunks;
7014 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
7015 if (!asoc && val.gauth_assoc_id != SCTP_FUTURE_ASSOC &&
7016 sctp_style(sk, UDP))
7017 return -EINVAL;
7018
7019 if (asoc) {
7020 if (!asoc->peer.auth_capable)
7021 return -EACCES;
7022 ch = (struct sctp_chunks_param *)asoc->c.auth_chunks;
7023 } else {
7024 if (!ep->auth_enable)
7025 return -EACCES;
7026 ch = ep->auth_chunk_list;
7027 }
7028 if (!ch)
7029 goto num;
7030
7031 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr);
7032 if (len < sizeof(struct sctp_authchunks) + num_chunks)
7033 return -EINVAL;
7034
7035 if (copy_to_user(to, ch->chunks, num_chunks))
7036 return -EFAULT;
7037 num:
7038 len = sizeof(struct sctp_authchunks) + num_chunks;
7039 if (put_user(len, optlen))
7040 return -EFAULT;
7041 if (put_user(num_chunks, &p->gauth_number_of_chunks))
7042 return -EFAULT;
7043
7044 return 0;
7045 }
7046
7047 /*
7048 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
7049 * This option gets the current number of associations that are attached
7050 * to a one-to-many style socket. The option value is an uint32_t.
7051 */
sctp_getsockopt_assoc_number(struct sock * sk,int len,char __user * optval,int __user * optlen)7052 static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
7053 char __user *optval, int __user *optlen)
7054 {
7055 struct sctp_sock *sp = sctp_sk(sk);
7056 struct sctp_association *asoc;
7057 u32 val = 0;
7058
7059 if (sctp_style(sk, TCP))
7060 return -EOPNOTSUPP;
7061
7062 if (len < sizeof(u32))
7063 return -EINVAL;
7064
7065 len = sizeof(u32);
7066
7067 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
7068 val++;
7069 }
7070
7071 if (put_user(len, optlen))
7072 return -EFAULT;
7073 if (copy_to_user(optval, &val, len))
7074 return -EFAULT;
7075
7076 return 0;
7077 }
7078
7079 /*
7080 * 8.1.23 SCTP_AUTO_ASCONF
7081 * See the corresponding setsockopt entry as description
7082 */
sctp_getsockopt_auto_asconf(struct sock * sk,int len,char __user * optval,int __user * optlen)7083 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
7084 char __user *optval, int __user *optlen)
7085 {
7086 int val = 0;
7087
7088 if (len < sizeof(int))
7089 return -EINVAL;
7090
7091 len = sizeof(int);
7092 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
7093 val = 1;
7094 if (put_user(len, optlen))
7095 return -EFAULT;
7096 if (copy_to_user(optval, &val, len))
7097 return -EFAULT;
7098 return 0;
7099 }
7100
7101 /*
7102 * 8.2.6. Get the Current Identifiers of Associations
7103 * (SCTP_GET_ASSOC_ID_LIST)
7104 *
7105 * This option gets the current list of SCTP association identifiers of
7106 * the SCTP associations handled by a one-to-many style socket.
7107 */
sctp_getsockopt_assoc_ids(struct sock * sk,int len,char __user * optval,int __user * optlen)7108 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
7109 char __user *optval, int __user *optlen)
7110 {
7111 struct sctp_sock *sp = sctp_sk(sk);
7112 struct sctp_association *asoc;
7113 struct sctp_assoc_ids *ids;
7114 u32 num = 0;
7115
7116 if (sctp_style(sk, TCP))
7117 return -EOPNOTSUPP;
7118
7119 if (len < sizeof(struct sctp_assoc_ids))
7120 return -EINVAL;
7121
7122 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
7123 num++;
7124 }
7125
7126 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
7127 return -EINVAL;
7128
7129 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
7130
7131 ids = kmalloc(len, GFP_USER | __GFP_NOWARN);
7132 if (unlikely(!ids))
7133 return -ENOMEM;
7134
7135 ids->gaids_number_of_ids = num;
7136 num = 0;
7137 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
7138 ids->gaids_assoc_id[num++] = asoc->assoc_id;
7139 }
7140
7141 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
7142 kfree(ids);
7143 return -EFAULT;
7144 }
7145
7146 kfree(ids);
7147 return 0;
7148 }
7149
7150 /*
7151 * SCTP_PEER_ADDR_THLDS
7152 *
7153 * This option allows us to fetch the partially failed threshold for one or all
7154 * transports in an association. See Section 6.1 of:
7155 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
7156 */
sctp_getsockopt_paddr_thresholds(struct sock * sk,char __user * optval,int len,int __user * optlen,bool v2)7157 static int sctp_getsockopt_paddr_thresholds(struct sock *sk,
7158 char __user *optval, int len,
7159 int __user *optlen, bool v2)
7160 {
7161 struct sctp_paddrthlds_v2 val;
7162 struct sctp_transport *trans;
7163 struct sctp_association *asoc;
7164 int min;
7165
7166 min = v2 ? sizeof(val) : sizeof(struct sctp_paddrthlds);
7167 if (len < min)
7168 return -EINVAL;
7169 len = min;
7170 if (copy_from_user(&val, optval, len))
7171 return -EFAULT;
7172
7173 if (!sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
7174 trans = sctp_addr_id2transport(sk, &val.spt_address,
7175 val.spt_assoc_id);
7176 if (!trans)
7177 return -ENOENT;
7178
7179 val.spt_pathmaxrxt = trans->pathmaxrxt;
7180 val.spt_pathpfthld = trans->pf_retrans;
7181 val.spt_pathcpthld = trans->ps_retrans;
7182
7183 goto out;
7184 }
7185
7186 asoc = sctp_id2assoc(sk, val.spt_assoc_id);
7187 if (!asoc && val.spt_assoc_id != SCTP_FUTURE_ASSOC &&
7188 sctp_style(sk, UDP))
7189 return -EINVAL;
7190
7191 if (asoc) {
7192 val.spt_pathpfthld = asoc->pf_retrans;
7193 val.spt_pathmaxrxt = asoc->pathmaxrxt;
7194 val.spt_pathcpthld = asoc->ps_retrans;
7195 } else {
7196 struct sctp_sock *sp = sctp_sk(sk);
7197
7198 val.spt_pathpfthld = sp->pf_retrans;
7199 val.spt_pathmaxrxt = sp->pathmaxrxt;
7200 val.spt_pathcpthld = sp->ps_retrans;
7201 }
7202
7203 out:
7204 if (put_user(len, optlen) || copy_to_user(optval, &val, len))
7205 return -EFAULT;
7206
7207 return 0;
7208 }
7209
7210 /*
7211 * SCTP_GET_ASSOC_STATS
7212 *
7213 * This option retrieves local per endpoint statistics. It is modeled
7214 * after OpenSolaris' implementation
7215 */
sctp_getsockopt_assoc_stats(struct sock * sk,int len,char __user * optval,int __user * optlen)7216 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len,
7217 char __user *optval,
7218 int __user *optlen)
7219 {
7220 struct sctp_assoc_stats sas;
7221 struct sctp_association *asoc = NULL;
7222
7223 /* User must provide at least the assoc id */
7224 if (len < sizeof(sctp_assoc_t))
7225 return -EINVAL;
7226
7227 /* Allow the struct to grow and fill in as much as possible */
7228 len = min_t(size_t, len, sizeof(sas));
7229
7230 if (copy_from_user(&sas, optval, len))
7231 return -EFAULT;
7232
7233 asoc = sctp_id2assoc(sk, sas.sas_assoc_id);
7234 if (!asoc)
7235 return -EINVAL;
7236
7237 sas.sas_rtxchunks = asoc->stats.rtxchunks;
7238 sas.sas_gapcnt = asoc->stats.gapcnt;
7239 sas.sas_outofseqtsns = asoc->stats.outofseqtsns;
7240 sas.sas_osacks = asoc->stats.osacks;
7241 sas.sas_isacks = asoc->stats.isacks;
7242 sas.sas_octrlchunks = asoc->stats.octrlchunks;
7243 sas.sas_ictrlchunks = asoc->stats.ictrlchunks;
7244 sas.sas_oodchunks = asoc->stats.oodchunks;
7245 sas.sas_iodchunks = asoc->stats.iodchunks;
7246 sas.sas_ouodchunks = asoc->stats.ouodchunks;
7247 sas.sas_iuodchunks = asoc->stats.iuodchunks;
7248 sas.sas_idupchunks = asoc->stats.idupchunks;
7249 sas.sas_opackets = asoc->stats.opackets;
7250 sas.sas_ipackets = asoc->stats.ipackets;
7251
7252 /* New high max rto observed, will return 0 if not a single
7253 * RTO update took place. obs_rto_ipaddr will be bogus
7254 * in such a case
7255 */
7256 sas.sas_maxrto = asoc->stats.max_obs_rto;
7257 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr,
7258 sizeof(struct sockaddr_storage));
7259
7260 /* Mark beginning of a new observation period */
7261 asoc->stats.max_obs_rto = asoc->rto_min;
7262
7263 if (put_user(len, optlen))
7264 return -EFAULT;
7265
7266 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id);
7267
7268 if (copy_to_user(optval, &sas, len))
7269 return -EFAULT;
7270
7271 return 0;
7272 }
7273
sctp_getsockopt_recvrcvinfo(struct sock * sk,int len,char __user * optval,int __user * optlen)7274 static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len,
7275 char __user *optval,
7276 int __user *optlen)
7277 {
7278 int val = 0;
7279
7280 if (len < sizeof(int))
7281 return -EINVAL;
7282
7283 len = sizeof(int);
7284 if (sctp_sk(sk)->recvrcvinfo)
7285 val = 1;
7286 if (put_user(len, optlen))
7287 return -EFAULT;
7288 if (copy_to_user(optval, &val, len))
7289 return -EFAULT;
7290
7291 return 0;
7292 }
7293
sctp_getsockopt_recvnxtinfo(struct sock * sk,int len,char __user * optval,int __user * optlen)7294 static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len,
7295 char __user *optval,
7296 int __user *optlen)
7297 {
7298 int val = 0;
7299
7300 if (len < sizeof(int))
7301 return -EINVAL;
7302
7303 len = sizeof(int);
7304 if (sctp_sk(sk)->recvnxtinfo)
7305 val = 1;
7306 if (put_user(len, optlen))
7307 return -EFAULT;
7308 if (copy_to_user(optval, &val, len))
7309 return -EFAULT;
7310
7311 return 0;
7312 }
7313
sctp_getsockopt_pr_supported(struct sock * sk,int len,char __user * optval,int __user * optlen)7314 static int sctp_getsockopt_pr_supported(struct sock *sk, int len,
7315 char __user *optval,
7316 int __user *optlen)
7317 {
7318 struct sctp_assoc_value params;
7319 struct sctp_association *asoc;
7320 int retval = -EFAULT;
7321
7322 if (len < sizeof(params)) {
7323 retval = -EINVAL;
7324 goto out;
7325 }
7326
7327 len = sizeof(params);
7328 if (copy_from_user(¶ms, optval, len))
7329 goto out;
7330
7331 asoc = sctp_id2assoc(sk, params.assoc_id);
7332 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7333 sctp_style(sk, UDP)) {
7334 retval = -EINVAL;
7335 goto out;
7336 }
7337
7338 params.assoc_value = asoc ? asoc->peer.prsctp_capable
7339 : sctp_sk(sk)->ep->prsctp_enable;
7340
7341 if (put_user(len, optlen))
7342 goto out;
7343
7344 if (copy_to_user(optval, ¶ms, len))
7345 goto out;
7346
7347 retval = 0;
7348
7349 out:
7350 return retval;
7351 }
7352
sctp_getsockopt_default_prinfo(struct sock * sk,int len,char __user * optval,int __user * optlen)7353 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len,
7354 char __user *optval,
7355 int __user *optlen)
7356 {
7357 struct sctp_default_prinfo info;
7358 struct sctp_association *asoc;
7359 int retval = -EFAULT;
7360
7361 if (len < sizeof(info)) {
7362 retval = -EINVAL;
7363 goto out;
7364 }
7365
7366 len = sizeof(info);
7367 if (copy_from_user(&info, optval, len))
7368 goto out;
7369
7370 asoc = sctp_id2assoc(sk, info.pr_assoc_id);
7371 if (!asoc && info.pr_assoc_id != SCTP_FUTURE_ASSOC &&
7372 sctp_style(sk, UDP)) {
7373 retval = -EINVAL;
7374 goto out;
7375 }
7376
7377 if (asoc) {
7378 info.pr_policy = SCTP_PR_POLICY(asoc->default_flags);
7379 info.pr_value = asoc->default_timetolive;
7380 } else {
7381 struct sctp_sock *sp = sctp_sk(sk);
7382
7383 info.pr_policy = SCTP_PR_POLICY(sp->default_flags);
7384 info.pr_value = sp->default_timetolive;
7385 }
7386
7387 if (put_user(len, optlen))
7388 goto out;
7389
7390 if (copy_to_user(optval, &info, len))
7391 goto out;
7392
7393 retval = 0;
7394
7395 out:
7396 return retval;
7397 }
7398
sctp_getsockopt_pr_assocstatus(struct sock * sk,int len,char __user * optval,int __user * optlen)7399 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len,
7400 char __user *optval,
7401 int __user *optlen)
7402 {
7403 struct sctp_prstatus params;
7404 struct sctp_association *asoc;
7405 int policy;
7406 int retval = -EINVAL;
7407
7408 if (len < sizeof(params))
7409 goto out;
7410
7411 len = sizeof(params);
7412 if (copy_from_user(¶ms, optval, len)) {
7413 retval = -EFAULT;
7414 goto out;
7415 }
7416
7417 policy = params.sprstat_policy;
7418 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) ||
7419 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK)))
7420 goto out;
7421
7422 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
7423 if (!asoc)
7424 goto out;
7425
7426 if (policy == SCTP_PR_SCTP_ALL) {
7427 params.sprstat_abandoned_unsent = 0;
7428 params.sprstat_abandoned_sent = 0;
7429 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
7430 params.sprstat_abandoned_unsent +=
7431 asoc->abandoned_unsent[policy];
7432 params.sprstat_abandoned_sent +=
7433 asoc->abandoned_sent[policy];
7434 }
7435 } else {
7436 params.sprstat_abandoned_unsent =
7437 asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)];
7438 params.sprstat_abandoned_sent =
7439 asoc->abandoned_sent[__SCTP_PR_INDEX(policy)];
7440 }
7441
7442 if (put_user(len, optlen)) {
7443 retval = -EFAULT;
7444 goto out;
7445 }
7446
7447 if (copy_to_user(optval, ¶ms, len)) {
7448 retval = -EFAULT;
7449 goto out;
7450 }
7451
7452 retval = 0;
7453
7454 out:
7455 return retval;
7456 }
7457
sctp_getsockopt_pr_streamstatus(struct sock * sk,int len,char __user * optval,int __user * optlen)7458 static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len,
7459 char __user *optval,
7460 int __user *optlen)
7461 {
7462 struct sctp_stream_out_ext *streamoute;
7463 struct sctp_association *asoc;
7464 struct sctp_prstatus params;
7465 int retval = -EINVAL;
7466 int policy;
7467
7468 if (len < sizeof(params))
7469 goto out;
7470
7471 len = sizeof(params);
7472 if (copy_from_user(¶ms, optval, len)) {
7473 retval = -EFAULT;
7474 goto out;
7475 }
7476
7477 policy = params.sprstat_policy;
7478 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) ||
7479 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK)))
7480 goto out;
7481
7482 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
7483 if (!asoc || params.sprstat_sid >= asoc->stream.outcnt)
7484 goto out;
7485
7486 streamoute = SCTP_SO(&asoc->stream, params.sprstat_sid)->ext;
7487 if (!streamoute) {
7488 /* Not allocated yet, means all stats are 0 */
7489 params.sprstat_abandoned_unsent = 0;
7490 params.sprstat_abandoned_sent = 0;
7491 retval = 0;
7492 goto out;
7493 }
7494
7495 if (policy == SCTP_PR_SCTP_ALL) {
7496 params.sprstat_abandoned_unsent = 0;
7497 params.sprstat_abandoned_sent = 0;
7498 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
7499 params.sprstat_abandoned_unsent +=
7500 streamoute->abandoned_unsent[policy];
7501 params.sprstat_abandoned_sent +=
7502 streamoute->abandoned_sent[policy];
7503 }
7504 } else {
7505 params.sprstat_abandoned_unsent =
7506 streamoute->abandoned_unsent[__SCTP_PR_INDEX(policy)];
7507 params.sprstat_abandoned_sent =
7508 streamoute->abandoned_sent[__SCTP_PR_INDEX(policy)];
7509 }
7510
7511 if (put_user(len, optlen) || copy_to_user(optval, ¶ms, len)) {
7512 retval = -EFAULT;
7513 goto out;
7514 }
7515
7516 retval = 0;
7517
7518 out:
7519 return retval;
7520 }
7521
sctp_getsockopt_reconfig_supported(struct sock * sk,int len,char __user * optval,int __user * optlen)7522 static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len,
7523 char __user *optval,
7524 int __user *optlen)
7525 {
7526 struct sctp_assoc_value params;
7527 struct sctp_association *asoc;
7528 int retval = -EFAULT;
7529
7530 if (len < sizeof(params)) {
7531 retval = -EINVAL;
7532 goto out;
7533 }
7534
7535 len = sizeof(params);
7536 if (copy_from_user(¶ms, optval, len))
7537 goto out;
7538
7539 asoc = sctp_id2assoc(sk, params.assoc_id);
7540 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7541 sctp_style(sk, UDP)) {
7542 retval = -EINVAL;
7543 goto out;
7544 }
7545
7546 params.assoc_value = asoc ? asoc->peer.reconf_capable
7547 : sctp_sk(sk)->ep->reconf_enable;
7548
7549 if (put_user(len, optlen))
7550 goto out;
7551
7552 if (copy_to_user(optval, ¶ms, len))
7553 goto out;
7554
7555 retval = 0;
7556
7557 out:
7558 return retval;
7559 }
7560
sctp_getsockopt_enable_strreset(struct sock * sk,int len,char __user * optval,int __user * optlen)7561 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len,
7562 char __user *optval,
7563 int __user *optlen)
7564 {
7565 struct sctp_assoc_value params;
7566 struct sctp_association *asoc;
7567 int retval = -EFAULT;
7568
7569 if (len < sizeof(params)) {
7570 retval = -EINVAL;
7571 goto out;
7572 }
7573
7574 len = sizeof(params);
7575 if (copy_from_user(¶ms, optval, len))
7576 goto out;
7577
7578 asoc = sctp_id2assoc(sk, params.assoc_id);
7579 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7580 sctp_style(sk, UDP)) {
7581 retval = -EINVAL;
7582 goto out;
7583 }
7584
7585 params.assoc_value = asoc ? asoc->strreset_enable
7586 : sctp_sk(sk)->ep->strreset_enable;
7587
7588 if (put_user(len, optlen))
7589 goto out;
7590
7591 if (copy_to_user(optval, ¶ms, len))
7592 goto out;
7593
7594 retval = 0;
7595
7596 out:
7597 return retval;
7598 }
7599
sctp_getsockopt_scheduler(struct sock * sk,int len,char __user * optval,int __user * optlen)7600 static int sctp_getsockopt_scheduler(struct sock *sk, int len,
7601 char __user *optval,
7602 int __user *optlen)
7603 {
7604 struct sctp_assoc_value params;
7605 struct sctp_association *asoc;
7606 int retval = -EFAULT;
7607
7608 if (len < sizeof(params)) {
7609 retval = -EINVAL;
7610 goto out;
7611 }
7612
7613 len = sizeof(params);
7614 if (copy_from_user(¶ms, optval, len))
7615 goto out;
7616
7617 asoc = sctp_id2assoc(sk, params.assoc_id);
7618 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7619 sctp_style(sk, UDP)) {
7620 retval = -EINVAL;
7621 goto out;
7622 }
7623
7624 params.assoc_value = asoc ? sctp_sched_get_sched(asoc)
7625 : sctp_sk(sk)->default_ss;
7626
7627 if (put_user(len, optlen))
7628 goto out;
7629
7630 if (copy_to_user(optval, ¶ms, len))
7631 goto out;
7632
7633 retval = 0;
7634
7635 out:
7636 return retval;
7637 }
7638
sctp_getsockopt_scheduler_value(struct sock * sk,int len,char __user * optval,int __user * optlen)7639 static int sctp_getsockopt_scheduler_value(struct sock *sk, int len,
7640 char __user *optval,
7641 int __user *optlen)
7642 {
7643 struct sctp_stream_value params;
7644 struct sctp_association *asoc;
7645 int retval = -EFAULT;
7646
7647 if (len < sizeof(params)) {
7648 retval = -EINVAL;
7649 goto out;
7650 }
7651
7652 len = sizeof(params);
7653 if (copy_from_user(¶ms, optval, len))
7654 goto out;
7655
7656 asoc = sctp_id2assoc(sk, params.assoc_id);
7657 if (!asoc) {
7658 retval = -EINVAL;
7659 goto out;
7660 }
7661
7662 retval = sctp_sched_get_value(asoc, params.stream_id,
7663 ¶ms.stream_value);
7664 if (retval)
7665 goto out;
7666
7667 if (put_user(len, optlen)) {
7668 retval = -EFAULT;
7669 goto out;
7670 }
7671
7672 if (copy_to_user(optval, ¶ms, len)) {
7673 retval = -EFAULT;
7674 goto out;
7675 }
7676
7677 out:
7678 return retval;
7679 }
7680
sctp_getsockopt_interleaving_supported(struct sock * sk,int len,char __user * optval,int __user * optlen)7681 static int sctp_getsockopt_interleaving_supported(struct sock *sk, int len,
7682 char __user *optval,
7683 int __user *optlen)
7684 {
7685 struct sctp_assoc_value params;
7686 struct sctp_association *asoc;
7687 int retval = -EFAULT;
7688
7689 if (len < sizeof(params)) {
7690 retval = -EINVAL;
7691 goto out;
7692 }
7693
7694 len = sizeof(params);
7695 if (copy_from_user(¶ms, optval, len))
7696 goto out;
7697
7698 asoc = sctp_id2assoc(sk, params.assoc_id);
7699 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7700 sctp_style(sk, UDP)) {
7701 retval = -EINVAL;
7702 goto out;
7703 }
7704
7705 params.assoc_value = asoc ? asoc->peer.intl_capable
7706 : sctp_sk(sk)->ep->intl_enable;
7707
7708 if (put_user(len, optlen))
7709 goto out;
7710
7711 if (copy_to_user(optval, ¶ms, len))
7712 goto out;
7713
7714 retval = 0;
7715
7716 out:
7717 return retval;
7718 }
7719
sctp_getsockopt_reuse_port(struct sock * sk,int len,char __user * optval,int __user * optlen)7720 static int sctp_getsockopt_reuse_port(struct sock *sk, int len,
7721 char __user *optval,
7722 int __user *optlen)
7723 {
7724 int val;
7725
7726 if (len < sizeof(int))
7727 return -EINVAL;
7728
7729 len = sizeof(int);
7730 val = sctp_sk(sk)->reuse;
7731 if (put_user(len, optlen))
7732 return -EFAULT;
7733
7734 if (copy_to_user(optval, &val, len))
7735 return -EFAULT;
7736
7737 return 0;
7738 }
7739
sctp_getsockopt_event(struct sock * sk,int len,char __user * optval,int __user * optlen)7740 static int sctp_getsockopt_event(struct sock *sk, int len, char __user *optval,
7741 int __user *optlen)
7742 {
7743 struct sctp_association *asoc;
7744 struct sctp_event param;
7745 __u16 subscribe;
7746
7747 if (len < sizeof(param))
7748 return -EINVAL;
7749
7750 len = sizeof(param);
7751 if (copy_from_user(¶m, optval, len))
7752 return -EFAULT;
7753
7754 if (param.se_type < SCTP_SN_TYPE_BASE ||
7755 param.se_type > SCTP_SN_TYPE_MAX)
7756 return -EINVAL;
7757
7758 asoc = sctp_id2assoc(sk, param.se_assoc_id);
7759 if (!asoc && param.se_assoc_id != SCTP_FUTURE_ASSOC &&
7760 sctp_style(sk, UDP))
7761 return -EINVAL;
7762
7763 subscribe = asoc ? asoc->subscribe : sctp_sk(sk)->subscribe;
7764 param.se_on = sctp_ulpevent_type_enabled(subscribe, param.se_type);
7765
7766 if (put_user(len, optlen))
7767 return -EFAULT;
7768
7769 if (copy_to_user(optval, ¶m, len))
7770 return -EFAULT;
7771
7772 return 0;
7773 }
7774
sctp_getsockopt_asconf_supported(struct sock * sk,int len,char __user * optval,int __user * optlen)7775 static int sctp_getsockopt_asconf_supported(struct sock *sk, int len,
7776 char __user *optval,
7777 int __user *optlen)
7778 {
7779 struct sctp_assoc_value params;
7780 struct sctp_association *asoc;
7781 int retval = -EFAULT;
7782
7783 if (len < sizeof(params)) {
7784 retval = -EINVAL;
7785 goto out;
7786 }
7787
7788 len = sizeof(params);
7789 if (copy_from_user(¶ms, optval, len))
7790 goto out;
7791
7792 asoc = sctp_id2assoc(sk, params.assoc_id);
7793 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7794 sctp_style(sk, UDP)) {
7795 retval = -EINVAL;
7796 goto out;
7797 }
7798
7799 params.assoc_value = asoc ? asoc->peer.asconf_capable
7800 : sctp_sk(sk)->ep->asconf_enable;
7801
7802 if (put_user(len, optlen))
7803 goto out;
7804
7805 if (copy_to_user(optval, ¶ms, len))
7806 goto out;
7807
7808 retval = 0;
7809
7810 out:
7811 return retval;
7812 }
7813
sctp_getsockopt_auth_supported(struct sock * sk,int len,char __user * optval,int __user * optlen)7814 static int sctp_getsockopt_auth_supported(struct sock *sk, int len,
7815 char __user *optval,
7816 int __user *optlen)
7817 {
7818 struct sctp_assoc_value params;
7819 struct sctp_association *asoc;
7820 int retval = -EFAULT;
7821
7822 if (len < sizeof(params)) {
7823 retval = -EINVAL;
7824 goto out;
7825 }
7826
7827 len = sizeof(params);
7828 if (copy_from_user(¶ms, optval, len))
7829 goto out;
7830
7831 asoc = sctp_id2assoc(sk, params.assoc_id);
7832 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7833 sctp_style(sk, UDP)) {
7834 retval = -EINVAL;
7835 goto out;
7836 }
7837
7838 params.assoc_value = asoc ? asoc->peer.auth_capable
7839 : sctp_sk(sk)->ep->auth_enable;
7840
7841 if (put_user(len, optlen))
7842 goto out;
7843
7844 if (copy_to_user(optval, ¶ms, len))
7845 goto out;
7846
7847 retval = 0;
7848
7849 out:
7850 return retval;
7851 }
7852
sctp_getsockopt_ecn_supported(struct sock * sk,int len,char __user * optval,int __user * optlen)7853 static int sctp_getsockopt_ecn_supported(struct sock *sk, int len,
7854 char __user *optval,
7855 int __user *optlen)
7856 {
7857 struct sctp_assoc_value params;
7858 struct sctp_association *asoc;
7859 int retval = -EFAULT;
7860
7861 if (len < sizeof(params)) {
7862 retval = -EINVAL;
7863 goto out;
7864 }
7865
7866 len = sizeof(params);
7867 if (copy_from_user(¶ms, optval, len))
7868 goto out;
7869
7870 asoc = sctp_id2assoc(sk, params.assoc_id);
7871 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7872 sctp_style(sk, UDP)) {
7873 retval = -EINVAL;
7874 goto out;
7875 }
7876
7877 params.assoc_value = asoc ? asoc->peer.ecn_capable
7878 : sctp_sk(sk)->ep->ecn_enable;
7879
7880 if (put_user(len, optlen))
7881 goto out;
7882
7883 if (copy_to_user(optval, ¶ms, len))
7884 goto out;
7885
7886 retval = 0;
7887
7888 out:
7889 return retval;
7890 }
7891
sctp_getsockopt_pf_expose(struct sock * sk,int len,char __user * optval,int __user * optlen)7892 static int sctp_getsockopt_pf_expose(struct sock *sk, int len,
7893 char __user *optval,
7894 int __user *optlen)
7895 {
7896 struct sctp_assoc_value params;
7897 struct sctp_association *asoc;
7898 int retval = -EFAULT;
7899
7900 if (len < sizeof(params)) {
7901 retval = -EINVAL;
7902 goto out;
7903 }
7904
7905 len = sizeof(params);
7906 if (copy_from_user(¶ms, optval, len))
7907 goto out;
7908
7909 asoc = sctp_id2assoc(sk, params.assoc_id);
7910 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7911 sctp_style(sk, UDP)) {
7912 retval = -EINVAL;
7913 goto out;
7914 }
7915
7916 params.assoc_value = asoc ? asoc->pf_expose
7917 : sctp_sk(sk)->pf_expose;
7918
7919 if (put_user(len, optlen))
7920 goto out;
7921
7922 if (copy_to_user(optval, ¶ms, len))
7923 goto out;
7924
7925 retval = 0;
7926
7927 out:
7928 return retval;
7929 }
7930
sctp_getsockopt_encap_port(struct sock * sk,int len,char __user * optval,int __user * optlen)7931 static int sctp_getsockopt_encap_port(struct sock *sk, int len,
7932 char __user *optval, int __user *optlen)
7933 {
7934 struct sctp_association *asoc;
7935 struct sctp_udpencaps encap;
7936 struct sctp_transport *t;
7937 __be16 encap_port;
7938
7939 if (len < sizeof(encap))
7940 return -EINVAL;
7941
7942 len = sizeof(encap);
7943 if (copy_from_user(&encap, optval, len))
7944 return -EFAULT;
7945
7946 /* If an address other than INADDR_ANY is specified, and
7947 * no transport is found, then the request is invalid.
7948 */
7949 if (!sctp_is_any(sk, (union sctp_addr *)&encap.sue_address)) {
7950 t = sctp_addr_id2transport(sk, &encap.sue_address,
7951 encap.sue_assoc_id);
7952 if (!t) {
7953 pr_debug("%s: failed no transport\n", __func__);
7954 return -EINVAL;
7955 }
7956
7957 encap_port = t->encap_port;
7958 goto out;
7959 }
7960
7961 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
7962 * socket is a one to many style socket, and an association
7963 * was not found, then the id was invalid.
7964 */
7965 asoc = sctp_id2assoc(sk, encap.sue_assoc_id);
7966 if (!asoc && encap.sue_assoc_id != SCTP_FUTURE_ASSOC &&
7967 sctp_style(sk, UDP)) {
7968 pr_debug("%s: failed no association\n", __func__);
7969 return -EINVAL;
7970 }
7971
7972 if (asoc) {
7973 encap_port = asoc->encap_port;
7974 goto out;
7975 }
7976
7977 encap_port = sctp_sk(sk)->encap_port;
7978
7979 out:
7980 encap.sue_port = (__force uint16_t)encap_port;
7981 if (copy_to_user(optval, &encap, len))
7982 return -EFAULT;
7983
7984 if (put_user(len, optlen))
7985 return -EFAULT;
7986
7987 return 0;
7988 }
7989
sctp_getsockopt_probe_interval(struct sock * sk,int len,char __user * optval,int __user * optlen)7990 static int sctp_getsockopt_probe_interval(struct sock *sk, int len,
7991 char __user *optval,
7992 int __user *optlen)
7993 {
7994 struct sctp_probeinterval params;
7995 struct sctp_association *asoc;
7996 struct sctp_transport *t;
7997 __u32 probe_interval;
7998
7999 if (len < sizeof(params))
8000 return -EINVAL;
8001
8002 len = sizeof(params);
8003 if (copy_from_user(¶ms, optval, len))
8004 return -EFAULT;
8005
8006 /* If an address other than INADDR_ANY is specified, and
8007 * no transport is found, then the request is invalid.
8008 */
8009 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spi_address)) {
8010 t = sctp_addr_id2transport(sk, ¶ms.spi_address,
8011 params.spi_assoc_id);
8012 if (!t) {
8013 pr_debug("%s: failed no transport\n", __func__);
8014 return -EINVAL;
8015 }
8016
8017 probe_interval = jiffies_to_msecs(t->probe_interval);
8018 goto out;
8019 }
8020
8021 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
8022 * socket is a one to many style socket, and an association
8023 * was not found, then the id was invalid.
8024 */
8025 asoc = sctp_id2assoc(sk, params.spi_assoc_id);
8026 if (!asoc && params.spi_assoc_id != SCTP_FUTURE_ASSOC &&
8027 sctp_style(sk, UDP)) {
8028 pr_debug("%s: failed no association\n", __func__);
8029 return -EINVAL;
8030 }
8031
8032 if (asoc) {
8033 probe_interval = jiffies_to_msecs(asoc->probe_interval);
8034 goto out;
8035 }
8036
8037 probe_interval = sctp_sk(sk)->probe_interval;
8038
8039 out:
8040 params.spi_interval = probe_interval;
8041 if (copy_to_user(optval, ¶ms, len))
8042 return -EFAULT;
8043
8044 if (put_user(len, optlen))
8045 return -EFAULT;
8046
8047 return 0;
8048 }
8049
sctp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)8050 static int sctp_getsockopt(struct sock *sk, int level, int optname,
8051 char __user *optval, int __user *optlen)
8052 {
8053 int retval = 0;
8054 int len;
8055
8056 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
8057
8058 /* I can hardly begin to describe how wrong this is. This is
8059 * so broken as to be worse than useless. The API draft
8060 * REALLY is NOT helpful here... I am not convinced that the
8061 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
8062 * are at all well-founded.
8063 */
8064 if (level != SOL_SCTP) {
8065 struct sctp_af *af = sctp_sk(sk)->pf->af;
8066
8067 retval = af->getsockopt(sk, level, optname, optval, optlen);
8068 return retval;
8069 }
8070
8071 if (get_user(len, optlen))
8072 return -EFAULT;
8073
8074 if (len < 0)
8075 return -EINVAL;
8076
8077 lock_sock(sk);
8078
8079 switch (optname) {
8080 case SCTP_STATUS:
8081 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
8082 break;
8083 case SCTP_DISABLE_FRAGMENTS:
8084 retval = sctp_getsockopt_disable_fragments(sk, len, optval,
8085 optlen);
8086 break;
8087 case SCTP_EVENTS:
8088 retval = sctp_getsockopt_events(sk, len, optval, optlen);
8089 break;
8090 case SCTP_AUTOCLOSE:
8091 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
8092 break;
8093 case SCTP_SOCKOPT_PEELOFF:
8094 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
8095 break;
8096 case SCTP_SOCKOPT_PEELOFF_FLAGS:
8097 retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen);
8098 break;
8099 case SCTP_PEER_ADDR_PARAMS:
8100 retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
8101 optlen);
8102 break;
8103 case SCTP_DELAYED_SACK:
8104 retval = sctp_getsockopt_delayed_ack(sk, len, optval,
8105 optlen);
8106 break;
8107 case SCTP_INITMSG:
8108 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
8109 break;
8110 case SCTP_GET_PEER_ADDRS:
8111 retval = sctp_getsockopt_peer_addrs(sk, len, optval,
8112 optlen);
8113 break;
8114 case SCTP_GET_LOCAL_ADDRS:
8115 retval = sctp_getsockopt_local_addrs(sk, len, optval,
8116 optlen);
8117 break;
8118 case SCTP_SOCKOPT_CONNECTX3:
8119 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
8120 break;
8121 case SCTP_DEFAULT_SEND_PARAM:
8122 retval = sctp_getsockopt_default_send_param(sk, len,
8123 optval, optlen);
8124 break;
8125 case SCTP_DEFAULT_SNDINFO:
8126 retval = sctp_getsockopt_default_sndinfo(sk, len,
8127 optval, optlen);
8128 break;
8129 case SCTP_PRIMARY_ADDR:
8130 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
8131 break;
8132 case SCTP_NODELAY:
8133 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
8134 break;
8135 case SCTP_RTOINFO:
8136 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
8137 break;
8138 case SCTP_ASSOCINFO:
8139 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
8140 break;
8141 case SCTP_I_WANT_MAPPED_V4_ADDR:
8142 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
8143 break;
8144 case SCTP_MAXSEG:
8145 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
8146 break;
8147 case SCTP_GET_PEER_ADDR_INFO:
8148 retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
8149 optlen);
8150 break;
8151 case SCTP_ADAPTATION_LAYER:
8152 retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
8153 optlen);
8154 break;
8155 case SCTP_CONTEXT:
8156 retval = sctp_getsockopt_context(sk, len, optval, optlen);
8157 break;
8158 case SCTP_FRAGMENT_INTERLEAVE:
8159 retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
8160 optlen);
8161 break;
8162 case SCTP_PARTIAL_DELIVERY_POINT:
8163 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
8164 optlen);
8165 break;
8166 case SCTP_MAX_BURST:
8167 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
8168 break;
8169 case SCTP_AUTH_KEY:
8170 case SCTP_AUTH_CHUNK:
8171 case SCTP_AUTH_DELETE_KEY:
8172 case SCTP_AUTH_DEACTIVATE_KEY:
8173 retval = -EOPNOTSUPP;
8174 break;
8175 case SCTP_HMAC_IDENT:
8176 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
8177 break;
8178 case SCTP_AUTH_ACTIVE_KEY:
8179 retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
8180 break;
8181 case SCTP_PEER_AUTH_CHUNKS:
8182 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
8183 optlen);
8184 break;
8185 case SCTP_LOCAL_AUTH_CHUNKS:
8186 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
8187 optlen);
8188 break;
8189 case SCTP_GET_ASSOC_NUMBER:
8190 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
8191 break;
8192 case SCTP_GET_ASSOC_ID_LIST:
8193 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
8194 break;
8195 case SCTP_AUTO_ASCONF:
8196 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
8197 break;
8198 case SCTP_PEER_ADDR_THLDS:
8199 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len,
8200 optlen, false);
8201 break;
8202 case SCTP_PEER_ADDR_THLDS_V2:
8203 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len,
8204 optlen, true);
8205 break;
8206 case SCTP_GET_ASSOC_STATS:
8207 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen);
8208 break;
8209 case SCTP_RECVRCVINFO:
8210 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen);
8211 break;
8212 case SCTP_RECVNXTINFO:
8213 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen);
8214 break;
8215 case SCTP_PR_SUPPORTED:
8216 retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen);
8217 break;
8218 case SCTP_DEFAULT_PRINFO:
8219 retval = sctp_getsockopt_default_prinfo(sk, len, optval,
8220 optlen);
8221 break;
8222 case SCTP_PR_ASSOC_STATUS:
8223 retval = sctp_getsockopt_pr_assocstatus(sk, len, optval,
8224 optlen);
8225 break;
8226 case SCTP_PR_STREAM_STATUS:
8227 retval = sctp_getsockopt_pr_streamstatus(sk, len, optval,
8228 optlen);
8229 break;
8230 case SCTP_RECONFIG_SUPPORTED:
8231 retval = sctp_getsockopt_reconfig_supported(sk, len, optval,
8232 optlen);
8233 break;
8234 case SCTP_ENABLE_STREAM_RESET:
8235 retval = sctp_getsockopt_enable_strreset(sk, len, optval,
8236 optlen);
8237 break;
8238 case SCTP_STREAM_SCHEDULER:
8239 retval = sctp_getsockopt_scheduler(sk, len, optval,
8240 optlen);
8241 break;
8242 case SCTP_STREAM_SCHEDULER_VALUE:
8243 retval = sctp_getsockopt_scheduler_value(sk, len, optval,
8244 optlen);
8245 break;
8246 case SCTP_INTERLEAVING_SUPPORTED:
8247 retval = sctp_getsockopt_interleaving_supported(sk, len, optval,
8248 optlen);
8249 break;
8250 case SCTP_REUSE_PORT:
8251 retval = sctp_getsockopt_reuse_port(sk, len, optval, optlen);
8252 break;
8253 case SCTP_EVENT:
8254 retval = sctp_getsockopt_event(sk, len, optval, optlen);
8255 break;
8256 case SCTP_ASCONF_SUPPORTED:
8257 retval = sctp_getsockopt_asconf_supported(sk, len, optval,
8258 optlen);
8259 break;
8260 case SCTP_AUTH_SUPPORTED:
8261 retval = sctp_getsockopt_auth_supported(sk, len, optval,
8262 optlen);
8263 break;
8264 case SCTP_ECN_SUPPORTED:
8265 retval = sctp_getsockopt_ecn_supported(sk, len, optval, optlen);
8266 break;
8267 case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE:
8268 retval = sctp_getsockopt_pf_expose(sk, len, optval, optlen);
8269 break;
8270 case SCTP_REMOTE_UDP_ENCAPS_PORT:
8271 retval = sctp_getsockopt_encap_port(sk, len, optval, optlen);
8272 break;
8273 case SCTP_PLPMTUD_PROBE_INTERVAL:
8274 retval = sctp_getsockopt_probe_interval(sk, len, optval, optlen);
8275 break;
8276 default:
8277 retval = -ENOPROTOOPT;
8278 break;
8279 }
8280
8281 release_sock(sk);
8282 return retval;
8283 }
8284
sctp_bpf_bypass_getsockopt(int level,int optname)8285 static bool sctp_bpf_bypass_getsockopt(int level, int optname)
8286 {
8287 if (level == SOL_SCTP) {
8288 switch (optname) {
8289 case SCTP_SOCKOPT_PEELOFF:
8290 case SCTP_SOCKOPT_PEELOFF_FLAGS:
8291 case SCTP_SOCKOPT_CONNECTX3:
8292 return true;
8293 default:
8294 return false;
8295 }
8296 }
8297
8298 return false;
8299 }
8300
sctp_hash(struct sock * sk)8301 static int sctp_hash(struct sock *sk)
8302 {
8303 /* STUB */
8304 return 0;
8305 }
8306
sctp_unhash(struct sock * sk)8307 static void sctp_unhash(struct sock *sk)
8308 {
8309 /* STUB */
8310 }
8311
8312 /* Check if port is acceptable. Possibly find first available port.
8313 *
8314 * The port hash table (contained in the 'global' SCTP protocol storage
8315 * returned by struct sctp_protocol *sctp_get_protocol()). The hash
8316 * table is an array of 4096 lists (sctp_bind_hashbucket). Each
8317 * list (the list number is the port number hashed out, so as you
8318 * would expect from a hash function, all the ports in a given list have
8319 * such a number that hashes out to the same list number; you were
8320 * expecting that, right?); so each list has a set of ports, with a
8321 * link to the socket (struct sock) that uses it, the port number and
8322 * a fastreuse flag (FIXME: NPI ipg).
8323 */
8324 static struct sctp_bind_bucket *sctp_bucket_create(
8325 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum);
8326
sctp_get_port_local(struct sock * sk,union sctp_addr * addr)8327 static int sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
8328 {
8329 struct sctp_sock *sp = sctp_sk(sk);
8330 bool reuse = (sk->sk_reuse || sp->reuse);
8331 struct sctp_bind_hashbucket *head; /* hash list */
8332 struct net *net = sock_net(sk);
8333 kuid_t uid = sock_i_uid(sk);
8334 struct sctp_bind_bucket *pp;
8335 unsigned short snum;
8336 int ret;
8337
8338 snum = ntohs(addr->v4.sin_port);
8339
8340 pr_debug("%s: begins, snum:%d\n", __func__, snum);
8341
8342 if (snum == 0) {
8343 /* Search for an available port. */
8344 int low, high, remaining, index;
8345 unsigned int rover;
8346
8347 inet_sk_get_local_port_range(sk, &low, &high);
8348 remaining = (high - low) + 1;
8349 rover = get_random_u32_below(remaining) + low;
8350
8351 do {
8352 rover++;
8353 if ((rover < low) || (rover > high))
8354 rover = low;
8355 if (inet_is_local_reserved_port(net, rover))
8356 continue;
8357 index = sctp_phashfn(net, rover);
8358 head = &sctp_port_hashtable[index];
8359 spin_lock_bh(&head->lock);
8360 sctp_for_each_hentry(pp, &head->chain)
8361 if ((pp->port == rover) &&
8362 net_eq(net, pp->net))
8363 goto next;
8364 break;
8365 next:
8366 spin_unlock_bh(&head->lock);
8367 cond_resched();
8368 } while (--remaining > 0);
8369
8370 /* Exhausted local port range during search? */
8371 ret = 1;
8372 if (remaining <= 0)
8373 return ret;
8374
8375 /* OK, here is the one we will use. HEAD (the port
8376 * hash table list entry) is non-NULL and we hold it's
8377 * mutex.
8378 */
8379 snum = rover;
8380 } else {
8381 /* We are given an specific port number; we verify
8382 * that it is not being used. If it is used, we will
8383 * exahust the search in the hash list corresponding
8384 * to the port number (snum) - we detect that with the
8385 * port iterator, pp being NULL.
8386 */
8387 head = &sctp_port_hashtable[sctp_phashfn(net, snum)];
8388 spin_lock_bh(&head->lock);
8389 sctp_for_each_hentry(pp, &head->chain) {
8390 if ((pp->port == snum) && net_eq(pp->net, net))
8391 goto pp_found;
8392 }
8393 }
8394 pp = NULL;
8395 goto pp_not_found;
8396 pp_found:
8397 if (!hlist_empty(&pp->owner)) {
8398 /* We had a port hash table hit - there is an
8399 * available port (pp != NULL) and it is being
8400 * used by other socket (pp->owner not empty); that other
8401 * socket is going to be sk2.
8402 */
8403 struct sock *sk2;
8404
8405 pr_debug("%s: found a possible match\n", __func__);
8406
8407 if ((pp->fastreuse && reuse &&
8408 sk->sk_state != SCTP_SS_LISTENING) ||
8409 (pp->fastreuseport && sk->sk_reuseport &&
8410 uid_eq(pp->fastuid, uid)))
8411 goto success;
8412
8413 /* Run through the list of sockets bound to the port
8414 * (pp->port) [via the pointers bind_next and
8415 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
8416 * we get the endpoint they describe and run through
8417 * the endpoint's list of IP (v4 or v6) addresses,
8418 * comparing each of the addresses with the address of
8419 * the socket sk. If we find a match, then that means
8420 * that this port/socket (sk) combination are already
8421 * in an endpoint.
8422 */
8423 sk_for_each_bound(sk2, &pp->owner) {
8424 int bound_dev_if2 = READ_ONCE(sk2->sk_bound_dev_if);
8425 struct sctp_sock *sp2 = sctp_sk(sk2);
8426 struct sctp_endpoint *ep2 = sp2->ep;
8427
8428 if (sk == sk2 ||
8429 (reuse && (sk2->sk_reuse || sp2->reuse) &&
8430 sk2->sk_state != SCTP_SS_LISTENING) ||
8431 (sk->sk_reuseport && sk2->sk_reuseport &&
8432 uid_eq(uid, sock_i_uid(sk2))))
8433 continue;
8434
8435 if ((!sk->sk_bound_dev_if || !bound_dev_if2 ||
8436 sk->sk_bound_dev_if == bound_dev_if2) &&
8437 sctp_bind_addr_conflict(&ep2->base.bind_addr,
8438 addr, sp2, sp)) {
8439 ret = 1;
8440 goto fail_unlock;
8441 }
8442 }
8443
8444 pr_debug("%s: found a match\n", __func__);
8445 }
8446 pp_not_found:
8447 /* If there was a hash table miss, create a new port. */
8448 ret = 1;
8449 if (!pp && !(pp = sctp_bucket_create(head, net, snum)))
8450 goto fail_unlock;
8451
8452 /* In either case (hit or miss), make sure fastreuse is 1 only
8453 * if sk->sk_reuse is too (that is, if the caller requested
8454 * SO_REUSEADDR on this socket -sk-).
8455 */
8456 if (hlist_empty(&pp->owner)) {
8457 if (reuse && sk->sk_state != SCTP_SS_LISTENING)
8458 pp->fastreuse = 1;
8459 else
8460 pp->fastreuse = 0;
8461
8462 if (sk->sk_reuseport) {
8463 pp->fastreuseport = 1;
8464 pp->fastuid = uid;
8465 } else {
8466 pp->fastreuseport = 0;
8467 }
8468 } else {
8469 if (pp->fastreuse &&
8470 (!reuse || sk->sk_state == SCTP_SS_LISTENING))
8471 pp->fastreuse = 0;
8472
8473 if (pp->fastreuseport &&
8474 (!sk->sk_reuseport || !uid_eq(pp->fastuid, uid)))
8475 pp->fastreuseport = 0;
8476 }
8477
8478 /* We are set, so fill up all the data in the hash table
8479 * entry, tie the socket list information with the rest of the
8480 * sockets FIXME: Blurry, NPI (ipg).
8481 */
8482 success:
8483 if (!sp->bind_hash) {
8484 inet_sk(sk)->inet_num = snum;
8485 sk_add_bind_node(sk, &pp->owner);
8486 sp->bind_hash = pp;
8487 }
8488 ret = 0;
8489
8490 fail_unlock:
8491 spin_unlock_bh(&head->lock);
8492 return ret;
8493 }
8494
8495 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral
8496 * port is requested.
8497 */
sctp_get_port(struct sock * sk,unsigned short snum)8498 static int sctp_get_port(struct sock *sk, unsigned short snum)
8499 {
8500 union sctp_addr addr;
8501 struct sctp_af *af = sctp_sk(sk)->pf->af;
8502
8503 /* Set up a dummy address struct from the sk. */
8504 af->from_sk(&addr, sk);
8505 addr.v4.sin_port = htons(snum);
8506
8507 /* Note: sk->sk_num gets filled in if ephemeral port request. */
8508 return sctp_get_port_local(sk, &addr);
8509 }
8510
8511 /*
8512 * Move a socket to LISTENING state.
8513 */
sctp_listen_start(struct sock * sk,int backlog)8514 static int sctp_listen_start(struct sock *sk, int backlog)
8515 {
8516 struct sctp_sock *sp = sctp_sk(sk);
8517 struct sctp_endpoint *ep = sp->ep;
8518 struct crypto_shash *tfm = NULL;
8519 char alg[32];
8520
8521 /* Allocate HMAC for generating cookie. */
8522 if (!sp->hmac && sp->sctp_hmac_alg) {
8523 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg);
8524 tfm = crypto_alloc_shash(alg, 0, 0);
8525 if (IS_ERR(tfm)) {
8526 net_info_ratelimited("failed to load transform for %s: %ld\n",
8527 sp->sctp_hmac_alg, PTR_ERR(tfm));
8528 return -ENOSYS;
8529 }
8530 sctp_sk(sk)->hmac = tfm;
8531 }
8532
8533 /*
8534 * If a bind() or sctp_bindx() is not called prior to a listen()
8535 * call that allows new associations to be accepted, the system
8536 * picks an ephemeral port and will choose an address set equivalent
8537 * to binding with a wildcard address.
8538 *
8539 * This is not currently spelled out in the SCTP sockets
8540 * extensions draft, but follows the practice as seen in TCP
8541 * sockets.
8542 *
8543 */
8544 inet_sk_set_state(sk, SCTP_SS_LISTENING);
8545 if (!ep->base.bind_addr.port) {
8546 if (sctp_autobind(sk))
8547 return -EAGAIN;
8548 } else {
8549 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
8550 inet_sk_set_state(sk, SCTP_SS_CLOSED);
8551 return -EADDRINUSE;
8552 }
8553 }
8554
8555 WRITE_ONCE(sk->sk_max_ack_backlog, backlog);
8556 return sctp_hash_endpoint(ep);
8557 }
8558
8559 /*
8560 * 4.1.3 / 5.1.3 listen()
8561 *
8562 * By default, new associations are not accepted for UDP style sockets.
8563 * An application uses listen() to mark a socket as being able to
8564 * accept new associations.
8565 *
8566 * On TCP style sockets, applications use listen() to ready the SCTP
8567 * endpoint for accepting inbound associations.
8568 *
8569 * On both types of endpoints a backlog of '0' disables listening.
8570 *
8571 * Move a socket to LISTENING state.
8572 */
sctp_inet_listen(struct socket * sock,int backlog)8573 int sctp_inet_listen(struct socket *sock, int backlog)
8574 {
8575 struct sock *sk = sock->sk;
8576 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
8577 int err = -EINVAL;
8578
8579 if (unlikely(backlog < 0))
8580 return err;
8581
8582 lock_sock(sk);
8583
8584 /* Peeled-off sockets are not allowed to listen(). */
8585 if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
8586 goto out;
8587
8588 if (sock->state != SS_UNCONNECTED)
8589 goto out;
8590
8591 if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED))
8592 goto out;
8593
8594 /* If backlog is zero, disable listening. */
8595 if (!backlog) {
8596 if (sctp_sstate(sk, CLOSED))
8597 goto out;
8598
8599 err = 0;
8600 sctp_unhash_endpoint(ep);
8601 sk->sk_state = SCTP_SS_CLOSED;
8602 if (sk->sk_reuse || sctp_sk(sk)->reuse)
8603 sctp_sk(sk)->bind_hash->fastreuse = 1;
8604 goto out;
8605 }
8606
8607 /* If we are already listening, just update the backlog */
8608 if (sctp_sstate(sk, LISTENING))
8609 WRITE_ONCE(sk->sk_max_ack_backlog, backlog);
8610 else {
8611 err = sctp_listen_start(sk, backlog);
8612 if (err)
8613 goto out;
8614 }
8615
8616 err = 0;
8617 out:
8618 release_sock(sk);
8619 return err;
8620 }
8621
8622 /*
8623 * This function is done by modeling the current datagram_poll() and the
8624 * tcp_poll(). Note that, based on these implementations, we don't
8625 * lock the socket in this function, even though it seems that,
8626 * ideally, locking or some other mechanisms can be used to ensure
8627 * the integrity of the counters (sndbuf and wmem_alloc) used
8628 * in this place. We assume that we don't need locks either until proven
8629 * otherwise.
8630 *
8631 * Another thing to note is that we include the Async I/O support
8632 * here, again, by modeling the current TCP/UDP code. We don't have
8633 * a good way to test with it yet.
8634 */
sctp_poll(struct file * file,struct socket * sock,poll_table * wait)8635 __poll_t sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
8636 {
8637 struct sock *sk = sock->sk;
8638 struct sctp_sock *sp = sctp_sk(sk);
8639 __poll_t mask;
8640
8641 poll_wait(file, sk_sleep(sk), wait);
8642
8643 sock_rps_record_flow(sk);
8644
8645 /* A TCP-style listening socket becomes readable when the accept queue
8646 * is not empty.
8647 */
8648 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
8649 return (!list_empty(&sp->ep->asocs)) ?
8650 (EPOLLIN | EPOLLRDNORM) : 0;
8651
8652 mask = 0;
8653
8654 /* Is there any exceptional events? */
8655 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
8656 mask |= EPOLLERR |
8657 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0);
8658 if (sk->sk_shutdown & RCV_SHUTDOWN)
8659 mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM;
8660 if (sk->sk_shutdown == SHUTDOWN_MASK)
8661 mask |= EPOLLHUP;
8662
8663 /* Is it readable? Reconsider this code with TCP-style support. */
8664 if (!skb_queue_empty_lockless(&sk->sk_receive_queue))
8665 mask |= EPOLLIN | EPOLLRDNORM;
8666
8667 /* The association is either gone or not ready. */
8668 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
8669 return mask;
8670
8671 /* Is it writable? */
8672 if (sctp_writeable(sk)) {
8673 mask |= EPOLLOUT | EPOLLWRNORM;
8674 } else {
8675 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
8676 /*
8677 * Since the socket is not locked, the buffer
8678 * might be made available after the writeable check and
8679 * before the bit is set. This could cause a lost I/O
8680 * signal. tcp_poll() has a race breaker for this race
8681 * condition. Based on their implementation, we put
8682 * in the following code to cover it as well.
8683 */
8684 if (sctp_writeable(sk))
8685 mask |= EPOLLOUT | EPOLLWRNORM;
8686 }
8687 return mask;
8688 }
8689
8690 /********************************************************************
8691 * 2nd Level Abstractions
8692 ********************************************************************/
8693
sctp_bucket_create(struct sctp_bind_hashbucket * head,struct net * net,unsigned short snum)8694 static struct sctp_bind_bucket *sctp_bucket_create(
8695 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum)
8696 {
8697 struct sctp_bind_bucket *pp;
8698
8699 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
8700 if (pp) {
8701 SCTP_DBG_OBJCNT_INC(bind_bucket);
8702 pp->port = snum;
8703 pp->fastreuse = 0;
8704 INIT_HLIST_HEAD(&pp->owner);
8705 pp->net = net;
8706 hlist_add_head(&pp->node, &head->chain);
8707 }
8708 return pp;
8709 }
8710
8711 /* Caller must hold hashbucket lock for this tb with local BH disabled */
sctp_bucket_destroy(struct sctp_bind_bucket * pp)8712 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
8713 {
8714 if (pp && hlist_empty(&pp->owner)) {
8715 __hlist_del(&pp->node);
8716 kmem_cache_free(sctp_bucket_cachep, pp);
8717 SCTP_DBG_OBJCNT_DEC(bind_bucket);
8718 }
8719 }
8720
8721 /* Release this socket's reference to a local port. */
__sctp_put_port(struct sock * sk)8722 static inline void __sctp_put_port(struct sock *sk)
8723 {
8724 struct sctp_bind_hashbucket *head =
8725 &sctp_port_hashtable[sctp_phashfn(sock_net(sk),
8726 inet_sk(sk)->inet_num)];
8727 struct sctp_bind_bucket *pp;
8728
8729 spin_lock(&head->lock);
8730 pp = sctp_sk(sk)->bind_hash;
8731 __sk_del_bind_node(sk);
8732 sctp_sk(sk)->bind_hash = NULL;
8733 inet_sk(sk)->inet_num = 0;
8734 sctp_bucket_destroy(pp);
8735 spin_unlock(&head->lock);
8736 }
8737
sctp_put_port(struct sock * sk)8738 void sctp_put_port(struct sock *sk)
8739 {
8740 local_bh_disable();
8741 __sctp_put_port(sk);
8742 local_bh_enable();
8743 }
8744
8745 /*
8746 * The system picks an ephemeral port and choose an address set equivalent
8747 * to binding with a wildcard address.
8748 * One of those addresses will be the primary address for the association.
8749 * This automatically enables the multihoming capability of SCTP.
8750 */
sctp_autobind(struct sock * sk)8751 static int sctp_autobind(struct sock *sk)
8752 {
8753 union sctp_addr autoaddr;
8754 struct sctp_af *af;
8755 __be16 port;
8756
8757 /* Initialize a local sockaddr structure to INADDR_ANY. */
8758 af = sctp_sk(sk)->pf->af;
8759
8760 port = htons(inet_sk(sk)->inet_num);
8761 af->inaddr_any(&autoaddr, port);
8762
8763 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
8764 }
8765
8766 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation.
8767 *
8768 * From RFC 2292
8769 * 4.2 The cmsghdr Structure *
8770 *
8771 * When ancillary data is sent or received, any number of ancillary data
8772 * objects can be specified by the msg_control and msg_controllen members of
8773 * the msghdr structure, because each object is preceded by
8774 * a cmsghdr structure defining the object's length (the cmsg_len member).
8775 * Historically Berkeley-derived implementations have passed only one object
8776 * at a time, but this API allows multiple objects to be
8777 * passed in a single call to sendmsg() or recvmsg(). The following example
8778 * shows two ancillary data objects in a control buffer.
8779 *
8780 * |<--------------------------- msg_controllen -------------------------->|
8781 * | |
8782 *
8783 * |<----- ancillary data object ----->|<----- ancillary data object ----->|
8784 *
8785 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
8786 * | | |
8787 *
8788 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| |
8789 *
8790 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| |
8791 * | | | | |
8792 *
8793 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
8794 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX|
8795 *
8796 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX|
8797 *
8798 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
8799 * ^
8800 * |
8801 *
8802 * msg_control
8803 * points here
8804 */
sctp_msghdr_parse(const struct msghdr * msg,struct sctp_cmsgs * cmsgs)8805 static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs)
8806 {
8807 struct msghdr *my_msg = (struct msghdr *)msg;
8808 struct cmsghdr *cmsg;
8809
8810 for_each_cmsghdr(cmsg, my_msg) {
8811 if (!CMSG_OK(my_msg, cmsg))
8812 return -EINVAL;
8813
8814 /* Should we parse this header or ignore? */
8815 if (cmsg->cmsg_level != IPPROTO_SCTP)
8816 continue;
8817
8818 /* Strictly check lengths following example in SCM code. */
8819 switch (cmsg->cmsg_type) {
8820 case SCTP_INIT:
8821 /* SCTP Socket API Extension
8822 * 5.3.1 SCTP Initiation Structure (SCTP_INIT)
8823 *
8824 * This cmsghdr structure provides information for
8825 * initializing new SCTP associations with sendmsg().
8826 * The SCTP_INITMSG socket option uses this same data
8827 * structure. This structure is not used for
8828 * recvmsg().
8829 *
8830 * cmsg_level cmsg_type cmsg_data[]
8831 * ------------ ------------ ----------------------
8832 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg
8833 */
8834 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg)))
8835 return -EINVAL;
8836
8837 cmsgs->init = CMSG_DATA(cmsg);
8838 break;
8839
8840 case SCTP_SNDRCV:
8841 /* SCTP Socket API Extension
8842 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV)
8843 *
8844 * This cmsghdr structure specifies SCTP options for
8845 * sendmsg() and describes SCTP header information
8846 * about a received message through recvmsg().
8847 *
8848 * cmsg_level cmsg_type cmsg_data[]
8849 * ------------ ------------ ----------------------
8850 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo
8851 */
8852 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
8853 return -EINVAL;
8854
8855 cmsgs->srinfo = CMSG_DATA(cmsg);
8856
8857 if (cmsgs->srinfo->sinfo_flags &
8858 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
8859 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL |
8860 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF))
8861 return -EINVAL;
8862 break;
8863
8864 case SCTP_SNDINFO:
8865 /* SCTP Socket API Extension
8866 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO)
8867 *
8868 * This cmsghdr structure specifies SCTP options for
8869 * sendmsg(). This structure and SCTP_RCVINFO replaces
8870 * SCTP_SNDRCV which has been deprecated.
8871 *
8872 * cmsg_level cmsg_type cmsg_data[]
8873 * ------------ ------------ ---------------------
8874 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo
8875 */
8876 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo)))
8877 return -EINVAL;
8878
8879 cmsgs->sinfo = CMSG_DATA(cmsg);
8880
8881 if (cmsgs->sinfo->snd_flags &
8882 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
8883 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL |
8884 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF))
8885 return -EINVAL;
8886 break;
8887 case SCTP_PRINFO:
8888 /* SCTP Socket API Extension
8889 * 5.3.7 SCTP PR-SCTP Information Structure (SCTP_PRINFO)
8890 *
8891 * This cmsghdr structure specifies SCTP options for sendmsg().
8892 *
8893 * cmsg_level cmsg_type cmsg_data[]
8894 * ------------ ------------ ---------------------
8895 * IPPROTO_SCTP SCTP_PRINFO struct sctp_prinfo
8896 */
8897 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_prinfo)))
8898 return -EINVAL;
8899
8900 cmsgs->prinfo = CMSG_DATA(cmsg);
8901 if (cmsgs->prinfo->pr_policy & ~SCTP_PR_SCTP_MASK)
8902 return -EINVAL;
8903
8904 if (cmsgs->prinfo->pr_policy == SCTP_PR_SCTP_NONE)
8905 cmsgs->prinfo->pr_value = 0;
8906 break;
8907 case SCTP_AUTHINFO:
8908 /* SCTP Socket API Extension
8909 * 5.3.8 SCTP AUTH Information Structure (SCTP_AUTHINFO)
8910 *
8911 * This cmsghdr structure specifies SCTP options for sendmsg().
8912 *
8913 * cmsg_level cmsg_type cmsg_data[]
8914 * ------------ ------------ ---------------------
8915 * IPPROTO_SCTP SCTP_AUTHINFO struct sctp_authinfo
8916 */
8917 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_authinfo)))
8918 return -EINVAL;
8919
8920 cmsgs->authinfo = CMSG_DATA(cmsg);
8921 break;
8922 case SCTP_DSTADDRV4:
8923 case SCTP_DSTADDRV6:
8924 /* SCTP Socket API Extension
8925 * 5.3.9/10 SCTP Destination IPv4/6 Address Structure (SCTP_DSTADDRV4/6)
8926 *
8927 * This cmsghdr structure specifies SCTP options for sendmsg().
8928 *
8929 * cmsg_level cmsg_type cmsg_data[]
8930 * ------------ ------------ ---------------------
8931 * IPPROTO_SCTP SCTP_DSTADDRV4 struct in_addr
8932 * ------------ ------------ ---------------------
8933 * IPPROTO_SCTP SCTP_DSTADDRV6 struct in6_addr
8934 */
8935 cmsgs->addrs_msg = my_msg;
8936 break;
8937 default:
8938 return -EINVAL;
8939 }
8940 }
8941
8942 return 0;
8943 }
8944
8945 /*
8946 * Wait for a packet..
8947 * Note: This function is the same function as in core/datagram.c
8948 * with a few modifications to make lksctp work.
8949 */
sctp_wait_for_packet(struct sock * sk,int * err,long * timeo_p)8950 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p)
8951 {
8952 int error;
8953 DEFINE_WAIT(wait);
8954
8955 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
8956
8957 /* Socket errors? */
8958 error = sock_error(sk);
8959 if (error)
8960 goto out;
8961
8962 if (!skb_queue_empty(&sk->sk_receive_queue))
8963 goto ready;
8964
8965 /* Socket shut down? */
8966 if (sk->sk_shutdown & RCV_SHUTDOWN)
8967 goto out;
8968
8969 /* Sequenced packets can come disconnected. If so we report the
8970 * problem.
8971 */
8972 error = -ENOTCONN;
8973
8974 /* Is there a good reason to think that we may receive some data? */
8975 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
8976 goto out;
8977
8978 /* Handle signals. */
8979 if (signal_pending(current))
8980 goto interrupted;
8981
8982 /* Let another process have a go. Since we are going to sleep
8983 * anyway. Note: This may cause odd behaviors if the message
8984 * does not fit in the user's buffer, but this seems to be the
8985 * only way to honor MSG_DONTWAIT realistically.
8986 */
8987 release_sock(sk);
8988 *timeo_p = schedule_timeout(*timeo_p);
8989 lock_sock(sk);
8990
8991 ready:
8992 finish_wait(sk_sleep(sk), &wait);
8993 return 0;
8994
8995 interrupted:
8996 error = sock_intr_errno(*timeo_p);
8997
8998 out:
8999 finish_wait(sk_sleep(sk), &wait);
9000 *err = error;
9001 return error;
9002 }
9003
9004 /* Receive a datagram.
9005 * Note: This is pretty much the same routine as in core/datagram.c
9006 * with a few changes to make lksctp work.
9007 */
sctp_skb_recv_datagram(struct sock * sk,int flags,int * err)9008 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, int *err)
9009 {
9010 int error;
9011 struct sk_buff *skb;
9012 long timeo;
9013
9014 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
9015
9016 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo,
9017 MAX_SCHEDULE_TIMEOUT);
9018
9019 do {
9020 /* Again only user level code calls this function,
9021 * so nothing interrupt level
9022 * will suddenly eat the receive_queue.
9023 *
9024 * Look at current nfs client by the way...
9025 * However, this function was correct in any case. 8)
9026 */
9027 if (flags & MSG_PEEK) {
9028 skb = skb_peek(&sk->sk_receive_queue);
9029 if (skb)
9030 refcount_inc(&skb->users);
9031 } else {
9032 skb = __skb_dequeue(&sk->sk_receive_queue);
9033 }
9034
9035 if (skb)
9036 return skb;
9037
9038 /* Caller is allowed not to check sk->sk_err before calling. */
9039 error = sock_error(sk);
9040 if (error)
9041 goto no_packet;
9042
9043 if (sk->sk_shutdown & RCV_SHUTDOWN)
9044 break;
9045
9046 if (sk_can_busy_loop(sk)) {
9047 sk_busy_loop(sk, flags & MSG_DONTWAIT);
9048
9049 if (!skb_queue_empty_lockless(&sk->sk_receive_queue))
9050 continue;
9051 }
9052
9053 /* User doesn't want to wait. */
9054 error = -EAGAIN;
9055 if (!timeo)
9056 goto no_packet;
9057 } while (sctp_wait_for_packet(sk, err, &timeo) == 0);
9058
9059 return NULL;
9060
9061 no_packet:
9062 *err = error;
9063 return NULL;
9064 }
9065
9066 /* If sndbuf has changed, wake up per association sndbuf waiters. */
__sctp_write_space(struct sctp_association * asoc)9067 static void __sctp_write_space(struct sctp_association *asoc)
9068 {
9069 struct sock *sk = asoc->base.sk;
9070
9071 if (sctp_wspace(asoc) <= 0)
9072 return;
9073
9074 if (waitqueue_active(&asoc->wait))
9075 wake_up_interruptible(&asoc->wait);
9076
9077 if (sctp_writeable(sk)) {
9078 struct socket_wq *wq;
9079
9080 rcu_read_lock();
9081 wq = rcu_dereference(sk->sk_wq);
9082 if (wq) {
9083 if (waitqueue_active(&wq->wait))
9084 wake_up_interruptible(&wq->wait);
9085
9086 /* Note that we try to include the Async I/O support
9087 * here by modeling from the current TCP/UDP code.
9088 * We have not tested with it yet.
9089 */
9090 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
9091 sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT);
9092 }
9093 rcu_read_unlock();
9094 }
9095 }
9096
sctp_wake_up_waiters(struct sock * sk,struct sctp_association * asoc)9097 static void sctp_wake_up_waiters(struct sock *sk,
9098 struct sctp_association *asoc)
9099 {
9100 struct sctp_association *tmp = asoc;
9101
9102 /* We do accounting for the sndbuf space per association,
9103 * so we only need to wake our own association.
9104 */
9105 if (asoc->ep->sndbuf_policy)
9106 return __sctp_write_space(asoc);
9107
9108 /* If association goes down and is just flushing its
9109 * outq, then just normally notify others.
9110 */
9111 if (asoc->base.dead)
9112 return sctp_write_space(sk);
9113
9114 /* Accounting for the sndbuf space is per socket, so we
9115 * need to wake up others, try to be fair and in case of
9116 * other associations, let them have a go first instead
9117 * of just doing a sctp_write_space() call.
9118 *
9119 * Note that we reach sctp_wake_up_waiters() only when
9120 * associations free up queued chunks, thus we are under
9121 * lock and the list of associations on a socket is
9122 * guaranteed not to change.
9123 */
9124 for (tmp = list_next_entry(tmp, asocs); 1;
9125 tmp = list_next_entry(tmp, asocs)) {
9126 /* Manually skip the head element. */
9127 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs))
9128 continue;
9129 /* Wake up association. */
9130 __sctp_write_space(tmp);
9131 /* We've reached the end. */
9132 if (tmp == asoc)
9133 break;
9134 }
9135 }
9136
9137 /* Do accounting for the sndbuf space.
9138 * Decrement the used sndbuf space of the corresponding association by the
9139 * data size which was just transmitted(freed).
9140 */
sctp_wfree(struct sk_buff * skb)9141 static void sctp_wfree(struct sk_buff *skb)
9142 {
9143 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg;
9144 struct sctp_association *asoc = chunk->asoc;
9145 struct sock *sk = asoc->base.sk;
9146
9147 sk_mem_uncharge(sk, skb->truesize);
9148 sk_wmem_queued_add(sk, -(skb->truesize + sizeof(struct sctp_chunk)));
9149 asoc->sndbuf_used -= skb->truesize + sizeof(struct sctp_chunk);
9150 WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk),
9151 &sk->sk_wmem_alloc));
9152
9153 if (chunk->shkey) {
9154 struct sctp_shared_key *shkey = chunk->shkey;
9155
9156 /* refcnt == 2 and !list_empty mean after this release, it's
9157 * not being used anywhere, and it's time to notify userland
9158 * that this shkey can be freed if it's been deactivated.
9159 */
9160 if (shkey->deactivated && !list_empty(&shkey->key_list) &&
9161 refcount_read(&shkey->refcnt) == 2) {
9162 struct sctp_ulpevent *ev;
9163
9164 ev = sctp_ulpevent_make_authkey(asoc, shkey->key_id,
9165 SCTP_AUTH_FREE_KEY,
9166 GFP_KERNEL);
9167 if (ev)
9168 asoc->stream.si->enqueue_event(&asoc->ulpq, ev);
9169 }
9170 sctp_auth_shkey_release(chunk->shkey);
9171 }
9172
9173 sock_wfree(skb);
9174 sctp_wake_up_waiters(sk, asoc);
9175
9176 sctp_association_put(asoc);
9177 }
9178
9179 /* Do accounting for the receive space on the socket.
9180 * Accounting for the association is done in ulpevent.c
9181 * We set this as a destructor for the cloned data skbs so that
9182 * accounting is done at the correct time.
9183 */
sctp_sock_rfree(struct sk_buff * skb)9184 void sctp_sock_rfree(struct sk_buff *skb)
9185 {
9186 struct sock *sk = skb->sk;
9187 struct sctp_ulpevent *event = sctp_skb2event(skb);
9188
9189 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
9190
9191 /*
9192 * Mimic the behavior of sock_rfree
9193 */
9194 sk_mem_uncharge(sk, event->rmem_len);
9195 }
9196
9197
9198 /* Helper function to wait for space in the sndbuf. */
sctp_wait_for_sndbuf(struct sctp_association * asoc,long * timeo_p,size_t msg_len)9199 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
9200 size_t msg_len)
9201 {
9202 struct sock *sk = asoc->base.sk;
9203 long current_timeo = *timeo_p;
9204 DEFINE_WAIT(wait);
9205 int err = 0;
9206
9207 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc,
9208 *timeo_p, msg_len);
9209
9210 /* Increment the association's refcnt. */
9211 sctp_association_hold(asoc);
9212
9213 /* Wait on the association specific sndbuf space. */
9214 for (;;) {
9215 prepare_to_wait_exclusive(&asoc->wait, &wait,
9216 TASK_INTERRUPTIBLE);
9217 if (asoc->base.dead)
9218 goto do_dead;
9219 if (!*timeo_p)
9220 goto do_nonblock;
9221 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING)
9222 goto do_error;
9223 if (signal_pending(current))
9224 goto do_interrupted;
9225 if ((int)msg_len <= sctp_wspace(asoc) &&
9226 sk_wmem_schedule(sk, msg_len))
9227 break;
9228
9229 /* Let another process have a go. Since we are going
9230 * to sleep anyway.
9231 */
9232 release_sock(sk);
9233 current_timeo = schedule_timeout(current_timeo);
9234 lock_sock(sk);
9235 if (sk != asoc->base.sk)
9236 goto do_error;
9237
9238 *timeo_p = current_timeo;
9239 }
9240
9241 out:
9242 finish_wait(&asoc->wait, &wait);
9243
9244 /* Release the association's refcnt. */
9245 sctp_association_put(asoc);
9246
9247 return err;
9248
9249 do_dead:
9250 err = -ESRCH;
9251 goto out;
9252
9253 do_error:
9254 err = -EPIPE;
9255 goto out;
9256
9257 do_interrupted:
9258 err = sock_intr_errno(*timeo_p);
9259 goto out;
9260
9261 do_nonblock:
9262 err = -EAGAIN;
9263 goto out;
9264 }
9265
sctp_data_ready(struct sock * sk)9266 void sctp_data_ready(struct sock *sk)
9267 {
9268 struct socket_wq *wq;
9269
9270 trace_sk_data_ready(sk);
9271
9272 rcu_read_lock();
9273 wq = rcu_dereference(sk->sk_wq);
9274 if (skwq_has_sleeper(wq))
9275 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN |
9276 EPOLLRDNORM | EPOLLRDBAND);
9277 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
9278 rcu_read_unlock();
9279 }
9280
9281 /* If socket sndbuf has changed, wake up all per association waiters. */
sctp_write_space(struct sock * sk)9282 void sctp_write_space(struct sock *sk)
9283 {
9284 struct sctp_association *asoc;
9285
9286 /* Wake up the tasks in each wait queue. */
9287 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
9288 __sctp_write_space(asoc);
9289 }
9290 }
9291
9292 /* Is there any sndbuf space available on the socket?
9293 *
9294 * Note that sk_wmem_alloc is the sum of the send buffers on all of the
9295 * associations on the same socket. For a UDP-style socket with
9296 * multiple associations, it is possible for it to be "unwriteable"
9297 * prematurely. I assume that this is acceptable because
9298 * a premature "unwriteable" is better than an accidental "writeable" which
9299 * would cause an unwanted block under certain circumstances. For the 1-1
9300 * UDP-style sockets or TCP-style sockets, this code should work.
9301 * - Daisy
9302 */
sctp_writeable(const struct sock * sk)9303 static bool sctp_writeable(const struct sock *sk)
9304 {
9305 return READ_ONCE(sk->sk_sndbuf) > READ_ONCE(sk->sk_wmem_queued);
9306 }
9307
9308 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
9309 * returns immediately with EINPROGRESS.
9310 */
sctp_wait_for_connect(struct sctp_association * asoc,long * timeo_p)9311 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
9312 {
9313 struct sock *sk = asoc->base.sk;
9314 int err = 0;
9315 long current_timeo = *timeo_p;
9316 DEFINE_WAIT(wait);
9317
9318 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p);
9319
9320 /* Increment the association's refcnt. */
9321 sctp_association_hold(asoc);
9322
9323 for (;;) {
9324 prepare_to_wait_exclusive(&asoc->wait, &wait,
9325 TASK_INTERRUPTIBLE);
9326 if (!*timeo_p)
9327 goto do_nonblock;
9328 if (sk->sk_shutdown & RCV_SHUTDOWN)
9329 break;
9330 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
9331 asoc->base.dead)
9332 goto do_error;
9333 if (signal_pending(current))
9334 goto do_interrupted;
9335
9336 if (sctp_state(asoc, ESTABLISHED))
9337 break;
9338
9339 /* Let another process have a go. Since we are going
9340 * to sleep anyway.
9341 */
9342 release_sock(sk);
9343 current_timeo = schedule_timeout(current_timeo);
9344 lock_sock(sk);
9345
9346 *timeo_p = current_timeo;
9347 }
9348
9349 out:
9350 finish_wait(&asoc->wait, &wait);
9351
9352 /* Release the association's refcnt. */
9353 sctp_association_put(asoc);
9354
9355 return err;
9356
9357 do_error:
9358 if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
9359 err = -ETIMEDOUT;
9360 else
9361 err = -ECONNREFUSED;
9362 goto out;
9363
9364 do_interrupted:
9365 err = sock_intr_errno(*timeo_p);
9366 goto out;
9367
9368 do_nonblock:
9369 err = -EINPROGRESS;
9370 goto out;
9371 }
9372
sctp_wait_for_accept(struct sock * sk,long timeo)9373 static int sctp_wait_for_accept(struct sock *sk, long timeo)
9374 {
9375 struct sctp_endpoint *ep;
9376 int err = 0;
9377 DEFINE_WAIT(wait);
9378
9379 ep = sctp_sk(sk)->ep;
9380
9381
9382 for (;;) {
9383 prepare_to_wait_exclusive(sk_sleep(sk), &wait,
9384 TASK_INTERRUPTIBLE);
9385
9386 if (list_empty(&ep->asocs)) {
9387 release_sock(sk);
9388 timeo = schedule_timeout(timeo);
9389 lock_sock(sk);
9390 }
9391
9392 err = -EINVAL;
9393 if (!sctp_sstate(sk, LISTENING))
9394 break;
9395
9396 err = 0;
9397 if (!list_empty(&ep->asocs))
9398 break;
9399
9400 err = sock_intr_errno(timeo);
9401 if (signal_pending(current))
9402 break;
9403
9404 err = -EAGAIN;
9405 if (!timeo)
9406 break;
9407 }
9408
9409 finish_wait(sk_sleep(sk), &wait);
9410
9411 return err;
9412 }
9413
sctp_wait_for_close(struct sock * sk,long timeout)9414 static void sctp_wait_for_close(struct sock *sk, long timeout)
9415 {
9416 DEFINE_WAIT(wait);
9417
9418 do {
9419 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
9420 if (list_empty(&sctp_sk(sk)->ep->asocs))
9421 break;
9422 release_sock(sk);
9423 timeout = schedule_timeout(timeout);
9424 lock_sock(sk);
9425 } while (!signal_pending(current) && timeout);
9426
9427 finish_wait(sk_sleep(sk), &wait);
9428 }
9429
sctp_skb_set_owner_r_frag(struct sk_buff * skb,struct sock * sk)9430 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
9431 {
9432 struct sk_buff *frag;
9433
9434 if (!skb->data_len)
9435 goto done;
9436
9437 /* Don't forget the fragments. */
9438 skb_walk_frags(skb, frag)
9439 sctp_skb_set_owner_r_frag(frag, sk);
9440
9441 done:
9442 sctp_skb_set_owner_r(skb, sk);
9443 }
9444
sctp_copy_sock(struct sock * newsk,struct sock * sk,struct sctp_association * asoc)9445 void sctp_copy_sock(struct sock *newsk, struct sock *sk,
9446 struct sctp_association *asoc)
9447 {
9448 struct inet_sock *inet = inet_sk(sk);
9449 struct inet_sock *newinet;
9450 struct sctp_sock *sp = sctp_sk(sk);
9451
9452 newsk->sk_type = sk->sk_type;
9453 newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
9454 newsk->sk_flags = sk->sk_flags;
9455 newsk->sk_tsflags = sk->sk_tsflags;
9456 newsk->sk_no_check_tx = sk->sk_no_check_tx;
9457 newsk->sk_no_check_rx = sk->sk_no_check_rx;
9458 newsk->sk_reuse = sk->sk_reuse;
9459 sctp_sk(newsk)->reuse = sp->reuse;
9460
9461 newsk->sk_shutdown = sk->sk_shutdown;
9462 newsk->sk_destruct = sk->sk_destruct;
9463 newsk->sk_family = sk->sk_family;
9464 newsk->sk_protocol = IPPROTO_SCTP;
9465 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
9466 newsk->sk_sndbuf = sk->sk_sndbuf;
9467 newsk->sk_rcvbuf = sk->sk_rcvbuf;
9468 newsk->sk_lingertime = sk->sk_lingertime;
9469 newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
9470 newsk->sk_sndtimeo = sk->sk_sndtimeo;
9471 newsk->sk_rxhash = sk->sk_rxhash;
9472
9473 newinet = inet_sk(newsk);
9474
9475 /* Initialize sk's sport, dport, rcv_saddr and daddr for
9476 * getsockname() and getpeername()
9477 */
9478 newinet->inet_sport = inet->inet_sport;
9479 newinet->inet_saddr = inet->inet_saddr;
9480 newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
9481 newinet->inet_dport = htons(asoc->peer.port);
9482 newinet->pmtudisc = inet->pmtudisc;
9483 atomic_set(&newinet->inet_id, get_random_u16());
9484
9485 newinet->uc_ttl = inet->uc_ttl;
9486 inet_set_bit(MC_LOOP, newsk);
9487 newinet->mc_ttl = 1;
9488 newinet->mc_index = 0;
9489 newinet->mc_list = NULL;
9490
9491 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
9492 net_enable_timestamp();
9493
9494 /* Set newsk security attributes from original sk and connection
9495 * security attribute from asoc.
9496 */
9497 security_sctp_sk_clone(asoc, sk, newsk);
9498 }
9499
sctp_copy_descendant(struct sock * sk_to,const struct sock * sk_from)9500 static inline void sctp_copy_descendant(struct sock *sk_to,
9501 const struct sock *sk_from)
9502 {
9503 size_t ancestor_size = sizeof(struct inet_sock);
9504
9505 ancestor_size += sk_from->sk_prot->obj_size;
9506 ancestor_size -= offsetof(struct sctp_sock, pd_lobby);
9507 __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size);
9508 }
9509
9510 /* Populate the fields of the newsk from the oldsk and migrate the assoc
9511 * and its messages to the newsk.
9512 */
sctp_sock_migrate(struct sock * oldsk,struct sock * newsk,struct sctp_association * assoc,enum sctp_socket_type type)9513 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
9514 struct sctp_association *assoc,
9515 enum sctp_socket_type type)
9516 {
9517 struct sctp_sock *oldsp = sctp_sk(oldsk);
9518 struct sctp_sock *newsp = sctp_sk(newsk);
9519 struct sctp_bind_bucket *pp; /* hash list port iterator */
9520 struct sctp_endpoint *newep = newsp->ep;
9521 struct sk_buff *skb, *tmp;
9522 struct sctp_ulpevent *event;
9523 struct sctp_bind_hashbucket *head;
9524 int err;
9525
9526 /* Migrate socket buffer sizes and all the socket level options to the
9527 * new socket.
9528 */
9529 newsk->sk_sndbuf = oldsk->sk_sndbuf;
9530 newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
9531 /* Brute force copy old sctp opt. */
9532 sctp_copy_descendant(newsk, oldsk);
9533
9534 /* Restore the ep value that was overwritten with the above structure
9535 * copy.
9536 */
9537 newsp->ep = newep;
9538 newsp->hmac = NULL;
9539
9540 /* Hook this new socket in to the bind_hash list. */
9541 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk),
9542 inet_sk(oldsk)->inet_num)];
9543 spin_lock_bh(&head->lock);
9544 pp = sctp_sk(oldsk)->bind_hash;
9545 sk_add_bind_node(newsk, &pp->owner);
9546 sctp_sk(newsk)->bind_hash = pp;
9547 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
9548 spin_unlock_bh(&head->lock);
9549
9550 /* Copy the bind_addr list from the original endpoint to the new
9551 * endpoint so that we can handle restarts properly
9552 */
9553 err = sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
9554 &oldsp->ep->base.bind_addr, GFP_KERNEL);
9555 if (err)
9556 return err;
9557
9558 /* New ep's auth_hmacs should be set if old ep's is set, in case
9559 * that net->sctp.auth_enable has been changed to 0 by users and
9560 * new ep's auth_hmacs couldn't be set in sctp_endpoint_init().
9561 */
9562 if (oldsp->ep->auth_hmacs) {
9563 err = sctp_auth_init_hmacs(newsp->ep, GFP_KERNEL);
9564 if (err)
9565 return err;
9566 }
9567
9568 sctp_auto_asconf_init(newsp);
9569
9570 /* Move any messages in the old socket's receive queue that are for the
9571 * peeled off association to the new socket's receive queue.
9572 */
9573 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
9574 event = sctp_skb2event(skb);
9575 if (event->asoc == assoc) {
9576 __skb_unlink(skb, &oldsk->sk_receive_queue);
9577 __skb_queue_tail(&newsk->sk_receive_queue, skb);
9578 sctp_skb_set_owner_r_frag(skb, newsk);
9579 }
9580 }
9581
9582 /* Clean up any messages pending delivery due to partial
9583 * delivery. Three cases:
9584 * 1) No partial deliver; no work.
9585 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
9586 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
9587 */
9588 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
9589
9590 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
9591 struct sk_buff_head *queue;
9592
9593 /* Decide which queue to move pd_lobby skbs to. */
9594 if (assoc->ulpq.pd_mode) {
9595 queue = &newsp->pd_lobby;
9596 } else
9597 queue = &newsk->sk_receive_queue;
9598
9599 /* Walk through the pd_lobby, looking for skbs that
9600 * need moved to the new socket.
9601 */
9602 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
9603 event = sctp_skb2event(skb);
9604 if (event->asoc == assoc) {
9605 __skb_unlink(skb, &oldsp->pd_lobby);
9606 __skb_queue_tail(queue, skb);
9607 sctp_skb_set_owner_r_frag(skb, newsk);
9608 }
9609 }
9610
9611 /* Clear up any skbs waiting for the partial
9612 * delivery to finish.
9613 */
9614 if (assoc->ulpq.pd_mode)
9615 sctp_clear_pd(oldsk, NULL);
9616
9617 }
9618
9619 sctp_for_each_rx_skb(assoc, newsk, sctp_skb_set_owner_r_frag);
9620
9621 /* Set the type of socket to indicate that it is peeled off from the
9622 * original UDP-style socket or created with the accept() call on a
9623 * TCP-style socket..
9624 */
9625 newsp->type = type;
9626
9627 /* Mark the new socket "in-use" by the user so that any packets
9628 * that may arrive on the association after we've moved it are
9629 * queued to the backlog. This prevents a potential race between
9630 * backlog processing on the old socket and new-packet processing
9631 * on the new socket.
9632 *
9633 * The caller has just allocated newsk so we can guarantee that other
9634 * paths won't try to lock it and then oldsk.
9635 */
9636 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
9637 sctp_for_each_tx_datachunk(assoc, true, sctp_clear_owner_w);
9638 sctp_assoc_migrate(assoc, newsk);
9639 sctp_for_each_tx_datachunk(assoc, false, sctp_set_owner_w);
9640
9641 /* If the association on the newsk is already closed before accept()
9642 * is called, set RCV_SHUTDOWN flag.
9643 */
9644 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) {
9645 inet_sk_set_state(newsk, SCTP_SS_CLOSED);
9646 newsk->sk_shutdown |= RCV_SHUTDOWN;
9647 } else {
9648 inet_sk_set_state(newsk, SCTP_SS_ESTABLISHED);
9649 }
9650
9651 release_sock(newsk);
9652
9653 return 0;
9654 }
9655
9656
9657 /* This proto struct describes the ULP interface for SCTP. */
9658 struct proto sctp_prot = {
9659 .name = "SCTP",
9660 .owner = THIS_MODULE,
9661 .close = sctp_close,
9662 .disconnect = sctp_disconnect,
9663 .accept = sctp_accept,
9664 .ioctl = sctp_ioctl,
9665 .init = sctp_init_sock,
9666 .destroy = sctp_destroy_sock,
9667 .shutdown = sctp_shutdown,
9668 .setsockopt = sctp_setsockopt,
9669 .getsockopt = sctp_getsockopt,
9670 .bpf_bypass_getsockopt = sctp_bpf_bypass_getsockopt,
9671 .sendmsg = sctp_sendmsg,
9672 .recvmsg = sctp_recvmsg,
9673 .bind = sctp_bind,
9674 .bind_add = sctp_bind_add,
9675 .backlog_rcv = sctp_backlog_rcv,
9676 .hash = sctp_hash,
9677 .unhash = sctp_unhash,
9678 .no_autobind = true,
9679 .obj_size = sizeof(struct sctp_sock),
9680 .useroffset = offsetof(struct sctp_sock, subscribe),
9681 .usersize = offsetof(struct sctp_sock, initmsg) -
9682 offsetof(struct sctp_sock, subscribe) +
9683 sizeof_field(struct sctp_sock, initmsg),
9684 .sysctl_mem = sysctl_sctp_mem,
9685 .sysctl_rmem = sysctl_sctp_rmem,
9686 .sysctl_wmem = sysctl_sctp_wmem,
9687 .memory_pressure = &sctp_memory_pressure,
9688 .enter_memory_pressure = sctp_enter_memory_pressure,
9689
9690 .memory_allocated = &sctp_memory_allocated,
9691 .per_cpu_fw_alloc = &sctp_memory_per_cpu_fw_alloc,
9692
9693 .sockets_allocated = &sctp_sockets_allocated,
9694 };
9695
9696 #if IS_ENABLED(CONFIG_IPV6)
9697
sctp_v6_destruct_sock(struct sock * sk)9698 static void sctp_v6_destruct_sock(struct sock *sk)
9699 {
9700 sctp_destruct_common(sk);
9701 inet6_sock_destruct(sk);
9702 }
9703
sctp_v6_init_sock(struct sock * sk)9704 static int sctp_v6_init_sock(struct sock *sk)
9705 {
9706 int ret = sctp_init_sock(sk);
9707
9708 if (!ret)
9709 sk->sk_destruct = sctp_v6_destruct_sock;
9710
9711 return ret;
9712 }
9713
9714 struct proto sctpv6_prot = {
9715 .name = "SCTPv6",
9716 .owner = THIS_MODULE,
9717 .close = sctp_close,
9718 .disconnect = sctp_disconnect,
9719 .accept = sctp_accept,
9720 .ioctl = sctp_ioctl,
9721 .init = sctp_v6_init_sock,
9722 .destroy = sctp_destroy_sock,
9723 .shutdown = sctp_shutdown,
9724 .setsockopt = sctp_setsockopt,
9725 .getsockopt = sctp_getsockopt,
9726 .bpf_bypass_getsockopt = sctp_bpf_bypass_getsockopt,
9727 .sendmsg = sctp_sendmsg,
9728 .recvmsg = sctp_recvmsg,
9729 .bind = sctp_bind,
9730 .bind_add = sctp_bind_add,
9731 .backlog_rcv = sctp_backlog_rcv,
9732 .hash = sctp_hash,
9733 .unhash = sctp_unhash,
9734 .no_autobind = true,
9735 .obj_size = sizeof(struct sctp6_sock),
9736 .ipv6_pinfo_offset = offsetof(struct sctp6_sock, inet6),
9737 .useroffset = offsetof(struct sctp6_sock, sctp.subscribe),
9738 .usersize = offsetof(struct sctp6_sock, sctp.initmsg) -
9739 offsetof(struct sctp6_sock, sctp.subscribe) +
9740 sizeof_field(struct sctp6_sock, sctp.initmsg),
9741 .sysctl_mem = sysctl_sctp_mem,
9742 .sysctl_rmem = sysctl_sctp_rmem,
9743 .sysctl_wmem = sysctl_sctp_wmem,
9744 .memory_pressure = &sctp_memory_pressure,
9745 .enter_memory_pressure = sctp_enter_memory_pressure,
9746
9747 .memory_allocated = &sctp_memory_allocated,
9748 .per_cpu_fw_alloc = &sctp_memory_per_cpu_fw_alloc,
9749
9750 .sockets_allocated = &sctp_sockets_allocated,
9751 };
9752 #endif /* IS_ENABLED(CONFIG_IPV6) */
9753