1 /*
2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
3 *
4 * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
15 *
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
19 *
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/init.h>
47 #include <linux/log2.h>
48 #include <linux/mdio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/mutex.h>
52 #include <linux/netdevice.h>
53 #include <linux/pci.h>
54 #include <linux/aer.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/sched.h>
57 #include <linux/seq_file.h>
58 #include <linux/sockios.h>
59 #include <linux/vmalloc.h>
60 #include <linux/workqueue.h>
61 #include <net/neighbour.h>
62 #include <net/netevent.h>
63 #include <net/addrconf.h>
64 #include <net/bonding.h>
65 #include <net/addrconf.h>
66 #include <linux/uaccess.h>
67 #include <linux/crash_dump.h>
68 #include <net/udp_tunnel.h>
69
70 #include "cxgb4.h"
71 #include "cxgb4_filter.h"
72 #include "t4_regs.h"
73 #include "t4_values.h"
74 #include "t4_msg.h"
75 #include "t4fw_api.h"
76 #include "t4fw_version.h"
77 #include "cxgb4_dcb.h"
78 #include "srq.h"
79 #include "cxgb4_debugfs.h"
80 #include "clip_tbl.h"
81 #include "l2t.h"
82 #include "smt.h"
83 #include "sched.h"
84 #include "cxgb4_tc_u32.h"
85 #include "cxgb4_tc_flower.h"
86 #include "cxgb4_ptp.h"
87 #include "cxgb4_cudbg.h"
88
89 char cxgb4_driver_name[] = KBUILD_MODNAME;
90
91 #ifdef DRV_VERSION
92 #undef DRV_VERSION
93 #endif
94 #define DRV_VERSION "2.0.0-ko"
95 const char cxgb4_driver_version[] = DRV_VERSION;
96 #define DRV_DESC "Chelsio T4/T5/T6 Network Driver"
97
98 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
99 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
100 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
101
102 /* Macros needed to support the PCI Device ID Table ...
103 */
104 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
105 static const struct pci_device_id cxgb4_pci_tbl[] = {
106 #define CXGB4_UNIFIED_PF 0x4
107
108 #define CH_PCI_DEVICE_ID_FUNCTION CXGB4_UNIFIED_PF
109
110 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
111 * called for both.
112 */
113 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0
114
115 #define CH_PCI_ID_TABLE_ENTRY(devid) \
116 {PCI_VDEVICE(CHELSIO, (devid)), CXGB4_UNIFIED_PF}
117
118 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
119 { 0, } \
120 }
121
122 #include "t4_pci_id_tbl.h"
123
124 #define FW4_FNAME "cxgb4/t4fw.bin"
125 #define FW5_FNAME "cxgb4/t5fw.bin"
126 #define FW6_FNAME "cxgb4/t6fw.bin"
127 #define FW4_CFNAME "cxgb4/t4-config.txt"
128 #define FW5_CFNAME "cxgb4/t5-config.txt"
129 #define FW6_CFNAME "cxgb4/t6-config.txt"
130 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld"
131 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin"
132 #define PHY_AQ1202_DEVICEID 0x4409
133 #define PHY_BCM84834_DEVICEID 0x4486
134
135 MODULE_DESCRIPTION(DRV_DESC);
136 MODULE_AUTHOR("Chelsio Communications");
137 MODULE_LICENSE("Dual BSD/GPL");
138 MODULE_VERSION(DRV_VERSION);
139 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
140 MODULE_FIRMWARE(FW4_FNAME);
141 MODULE_FIRMWARE(FW5_FNAME);
142 MODULE_FIRMWARE(FW6_FNAME);
143
144 /*
145 * The driver uses the best interrupt scheme available on a platform in the
146 * order MSI-X, MSI, legacy INTx interrupts. This parameter determines which
147 * of these schemes the driver may consider as follows:
148 *
149 * msi = 2: choose from among all three options
150 * msi = 1: only consider MSI and INTx interrupts
151 * msi = 0: force INTx interrupts
152 */
153 static int msi = 2;
154
155 module_param(msi, int, 0644);
156 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
157
158 /*
159 * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
160 * offset by 2 bytes in order to have the IP headers line up on 4-byte
161 * boundaries. This is a requirement for many architectures which will throw
162 * a machine check fault if an attempt is made to access one of the 4-byte IP
163 * header fields on a non-4-byte boundary. And it's a major performance issue
164 * even on some architectures which allow it like some implementations of the
165 * x86 ISA. However, some architectures don't mind this and for some very
166 * edge-case performance sensitive applications (like forwarding large volumes
167 * of small packets), setting this DMA offset to 0 will decrease the number of
168 * PCI-E Bus transfers enough to measurably affect performance.
169 */
170 static int rx_dma_offset = 2;
171
172 /* TX Queue select used to determine what algorithm to use for selecting TX
173 * queue. Select between the kernel provided function (select_queue=0) or user
174 * cxgb_select_queue function (select_queue=1)
175 *
176 * Default: select_queue=0
177 */
178 static int select_queue;
179 module_param(select_queue, int, 0644);
180 MODULE_PARM_DESC(select_queue,
181 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
182
183 static struct dentry *cxgb4_debugfs_root;
184
185 LIST_HEAD(adapter_list);
186 DEFINE_MUTEX(uld_mutex);
187
link_report(struct net_device * dev)188 static void link_report(struct net_device *dev)
189 {
190 if (!netif_carrier_ok(dev))
191 netdev_info(dev, "link down\n");
192 else {
193 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
194
195 const char *s;
196 const struct port_info *p = netdev_priv(dev);
197
198 switch (p->link_cfg.speed) {
199 case 100:
200 s = "100Mbps";
201 break;
202 case 1000:
203 s = "1Gbps";
204 break;
205 case 10000:
206 s = "10Gbps";
207 break;
208 case 25000:
209 s = "25Gbps";
210 break;
211 case 40000:
212 s = "40Gbps";
213 break;
214 case 50000:
215 s = "50Gbps";
216 break;
217 case 100000:
218 s = "100Gbps";
219 break;
220 default:
221 pr_info("%s: unsupported speed: %d\n",
222 dev->name, p->link_cfg.speed);
223 return;
224 }
225
226 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
227 fc[p->link_cfg.fc]);
228 }
229 }
230
231 #ifdef CONFIG_CHELSIO_T4_DCB
232 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */
dcb_tx_queue_prio_enable(struct net_device * dev,int enable)233 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
234 {
235 struct port_info *pi = netdev_priv(dev);
236 struct adapter *adap = pi->adapter;
237 struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
238 int i;
239
240 /* We use a simple mapping of Port TX Queue Index to DCB
241 * Priority when we're enabling DCB.
242 */
243 for (i = 0; i < pi->nqsets; i++, txq++) {
244 u32 name, value;
245 int err;
246
247 name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
248 FW_PARAMS_PARAM_X_V(
249 FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
250 FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
251 value = enable ? i : 0xffffffff;
252
253 /* Since we can be called while atomic (from "interrupt
254 * level") we need to issue the Set Parameters Commannd
255 * without sleeping (timeout < 0).
256 */
257 err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
258 &name, &value,
259 -FW_CMD_MAX_TIMEOUT);
260
261 if (err)
262 dev_err(adap->pdev_dev,
263 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
264 enable ? "set" : "unset", pi->port_id, i, -err);
265 else
266 txq->dcb_prio = enable ? value : 0;
267 }
268 }
269
cxgb4_dcb_enabled(const struct net_device * dev)270 int cxgb4_dcb_enabled(const struct net_device *dev)
271 {
272 struct port_info *pi = netdev_priv(dev);
273
274 if (!pi->dcb.enabled)
275 return 0;
276
277 return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
278 (pi->dcb.state == CXGB4_DCB_STATE_HOST));
279 }
280 #endif /* CONFIG_CHELSIO_T4_DCB */
281
t4_os_link_changed(struct adapter * adapter,int port_id,int link_stat)282 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
283 {
284 struct net_device *dev = adapter->port[port_id];
285
286 /* Skip changes from disabled ports. */
287 if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
288 if (link_stat)
289 netif_carrier_on(dev);
290 else {
291 #ifdef CONFIG_CHELSIO_T4_DCB
292 if (cxgb4_dcb_enabled(dev)) {
293 cxgb4_dcb_reset(dev);
294 dcb_tx_queue_prio_enable(dev, false);
295 }
296 #endif /* CONFIG_CHELSIO_T4_DCB */
297 netif_carrier_off(dev);
298 }
299
300 link_report(dev);
301 }
302 }
303
t4_os_portmod_changed(struct adapter * adap,int port_id)304 void t4_os_portmod_changed(struct adapter *adap, int port_id)
305 {
306 static const char *mod_str[] = {
307 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
308 };
309
310 struct net_device *dev = adap->port[port_id];
311 struct port_info *pi = netdev_priv(dev);
312
313 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
314 netdev_info(dev, "port module unplugged\n");
315 else if (pi->mod_type < ARRAY_SIZE(mod_str))
316 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
317 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
318 netdev_info(dev, "%s: unsupported port module inserted\n",
319 dev->name);
320 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
321 netdev_info(dev, "%s: unknown port module inserted\n",
322 dev->name);
323 else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
324 netdev_info(dev, "%s: transceiver module error\n", dev->name);
325 else
326 netdev_info(dev, "%s: unknown module type %d inserted\n",
327 dev->name, pi->mod_type);
328
329 /* If the interface is running, then we'll need any "sticky" Link
330 * Parameters redone with a new Transceiver Module.
331 */
332 pi->link_cfg.redo_l1cfg = netif_running(dev);
333 }
334
335 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
336 module_param(dbfifo_int_thresh, int, 0644);
337 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
338
339 /*
340 * usecs to sleep while draining the dbfifo
341 */
342 static int dbfifo_drain_delay = 1000;
343 module_param(dbfifo_drain_delay, int, 0644);
344 MODULE_PARM_DESC(dbfifo_drain_delay,
345 "usecs to sleep while draining the dbfifo");
346
cxgb4_set_addr_hash(struct port_info * pi)347 static inline int cxgb4_set_addr_hash(struct port_info *pi)
348 {
349 struct adapter *adap = pi->adapter;
350 u64 vec = 0;
351 bool ucast = false;
352 struct hash_mac_addr *entry;
353
354 /* Calculate the hash vector for the updated list and program it */
355 list_for_each_entry(entry, &adap->mac_hlist, list) {
356 ucast |= is_unicast_ether_addr(entry->addr);
357 vec |= (1ULL << hash_mac_addr(entry->addr));
358 }
359 return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast,
360 vec, false);
361 }
362
cxgb4_mac_sync(struct net_device * netdev,const u8 * mac_addr)363 static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr)
364 {
365 struct port_info *pi = netdev_priv(netdev);
366 struct adapter *adap = pi->adapter;
367 int ret;
368 u64 mhash = 0;
369 u64 uhash = 0;
370 bool free = false;
371 bool ucast = is_unicast_ether_addr(mac_addr);
372 const u8 *maclist[1] = {mac_addr};
373 struct hash_mac_addr *new_entry;
374
375 ret = t4_alloc_mac_filt(adap, adap->mbox, pi->viid, free, 1, maclist,
376 NULL, ucast ? &uhash : &mhash, false);
377 if (ret < 0)
378 goto out;
379 /* if hash != 0, then add the addr to hash addr list
380 * so on the end we will calculate the hash for the
381 * list and program it
382 */
383 if (uhash || mhash) {
384 new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC);
385 if (!new_entry)
386 return -ENOMEM;
387 ether_addr_copy(new_entry->addr, mac_addr);
388 list_add_tail(&new_entry->list, &adap->mac_hlist);
389 ret = cxgb4_set_addr_hash(pi);
390 }
391 out:
392 return ret < 0 ? ret : 0;
393 }
394
cxgb4_mac_unsync(struct net_device * netdev,const u8 * mac_addr)395 static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr)
396 {
397 struct port_info *pi = netdev_priv(netdev);
398 struct adapter *adap = pi->adapter;
399 int ret;
400 const u8 *maclist[1] = {mac_addr};
401 struct hash_mac_addr *entry, *tmp;
402
403 /* If the MAC address to be removed is in the hash addr
404 * list, delete it from the list and update hash vector
405 */
406 list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) {
407 if (ether_addr_equal(entry->addr, mac_addr)) {
408 list_del(&entry->list);
409 kfree(entry);
410 return cxgb4_set_addr_hash(pi);
411 }
412 }
413
414 ret = t4_free_mac_filt(adap, adap->mbox, pi->viid, 1, maclist, false);
415 return ret < 0 ? -EINVAL : 0;
416 }
417
418 /*
419 * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
420 * If @mtu is -1 it is left unchanged.
421 */
set_rxmode(struct net_device * dev,int mtu,bool sleep_ok)422 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
423 {
424 struct port_info *pi = netdev_priv(dev);
425 struct adapter *adapter = pi->adapter;
426
427 __dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
428 __dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
429
430 return t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu,
431 (dev->flags & IFF_PROMISC) ? 1 : 0,
432 (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
433 sleep_ok);
434 }
435
436 /**
437 * link_start - enable a port
438 * @dev: the port to enable
439 *
440 * Performs the MAC and PHY actions needed to enable a port.
441 */
link_start(struct net_device * dev)442 static int link_start(struct net_device *dev)
443 {
444 int ret;
445 struct port_info *pi = netdev_priv(dev);
446 unsigned int mb = pi->adapter->pf;
447
448 /*
449 * We do not set address filters and promiscuity here, the stack does
450 * that step explicitly.
451 */
452 ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
453 !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
454 if (ret == 0) {
455 ret = t4_change_mac(pi->adapter, mb, pi->viid,
456 pi->xact_addr_filt, dev->dev_addr, true,
457 true);
458 if (ret >= 0) {
459 pi->xact_addr_filt = ret;
460 ret = 0;
461 }
462 }
463 if (ret == 0)
464 ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan,
465 &pi->link_cfg);
466 if (ret == 0) {
467 local_bh_disable();
468 ret = t4_enable_pi_params(pi->adapter, mb, pi, true,
469 true, CXGB4_DCB_ENABLED);
470 local_bh_enable();
471 }
472
473 return ret;
474 }
475
476 #ifdef CONFIG_CHELSIO_T4_DCB
477 /* Handle a Data Center Bridging update message from the firmware. */
dcb_rpl(struct adapter * adap,const struct fw_port_cmd * pcmd)478 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
479 {
480 int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
481 struct net_device *dev = adap->port[adap->chan_map[port]];
482 int old_dcb_enabled = cxgb4_dcb_enabled(dev);
483 int new_dcb_enabled;
484
485 cxgb4_dcb_handle_fw_update(adap, pcmd);
486 new_dcb_enabled = cxgb4_dcb_enabled(dev);
487
488 /* If the DCB has become enabled or disabled on the port then we're
489 * going to need to set up/tear down DCB Priority parameters for the
490 * TX Queues associated with the port.
491 */
492 if (new_dcb_enabled != old_dcb_enabled)
493 dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
494 }
495 #endif /* CONFIG_CHELSIO_T4_DCB */
496
497 /* Response queue handler for the FW event queue.
498 */
fwevtq_handler(struct sge_rspq * q,const __be64 * rsp,const struct pkt_gl * gl)499 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
500 const struct pkt_gl *gl)
501 {
502 u8 opcode = ((const struct rss_header *)rsp)->opcode;
503
504 rsp++; /* skip RSS header */
505
506 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
507 */
508 if (unlikely(opcode == CPL_FW4_MSG &&
509 ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
510 rsp++;
511 opcode = ((const struct rss_header *)rsp)->opcode;
512 rsp++;
513 if (opcode != CPL_SGE_EGR_UPDATE) {
514 dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
515 , opcode);
516 goto out;
517 }
518 }
519
520 if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
521 const struct cpl_sge_egr_update *p = (void *)rsp;
522 unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
523 struct sge_txq *txq;
524
525 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
526 txq->restarts++;
527 if (txq->q_type == CXGB4_TXQ_ETH) {
528 struct sge_eth_txq *eq;
529
530 eq = container_of(txq, struct sge_eth_txq, q);
531 netif_tx_wake_queue(eq->txq);
532 } else {
533 struct sge_uld_txq *oq;
534
535 oq = container_of(txq, struct sge_uld_txq, q);
536 tasklet_schedule(&oq->qresume_tsk);
537 }
538 } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
539 const struct cpl_fw6_msg *p = (void *)rsp;
540
541 #ifdef CONFIG_CHELSIO_T4_DCB
542 const struct fw_port_cmd *pcmd = (const void *)p->data;
543 unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
544 unsigned int action =
545 FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
546
547 if (cmd == FW_PORT_CMD &&
548 (action == FW_PORT_ACTION_GET_PORT_INFO ||
549 action == FW_PORT_ACTION_GET_PORT_INFO32)) {
550 int port = FW_PORT_CMD_PORTID_G(
551 be32_to_cpu(pcmd->op_to_portid));
552 struct net_device *dev;
553 int dcbxdis, state_input;
554
555 dev = q->adap->port[q->adap->chan_map[port]];
556 dcbxdis = (action == FW_PORT_ACTION_GET_PORT_INFO
557 ? !!(pcmd->u.info.dcbxdis_pkd & FW_PORT_CMD_DCBXDIS_F)
558 : !!(be32_to_cpu(pcmd->u.info32.lstatus32_to_cbllen32)
559 & FW_PORT_CMD_DCBXDIS32_F));
560 state_input = (dcbxdis
561 ? CXGB4_DCB_INPUT_FW_DISABLED
562 : CXGB4_DCB_INPUT_FW_ENABLED);
563
564 cxgb4_dcb_state_fsm(dev, state_input);
565 }
566
567 if (cmd == FW_PORT_CMD &&
568 action == FW_PORT_ACTION_L2_DCB_CFG)
569 dcb_rpl(q->adap, pcmd);
570 else
571 #endif
572 if (p->type == 0)
573 t4_handle_fw_rpl(q->adap, p->data);
574 } else if (opcode == CPL_L2T_WRITE_RPL) {
575 const struct cpl_l2t_write_rpl *p = (void *)rsp;
576
577 do_l2t_write_rpl(q->adap, p);
578 } else if (opcode == CPL_SMT_WRITE_RPL) {
579 const struct cpl_smt_write_rpl *p = (void *)rsp;
580
581 do_smt_write_rpl(q->adap, p);
582 } else if (opcode == CPL_SET_TCB_RPL) {
583 const struct cpl_set_tcb_rpl *p = (void *)rsp;
584
585 filter_rpl(q->adap, p);
586 } else if (opcode == CPL_ACT_OPEN_RPL) {
587 const struct cpl_act_open_rpl *p = (void *)rsp;
588
589 hash_filter_rpl(q->adap, p);
590 } else if (opcode == CPL_ABORT_RPL_RSS) {
591 const struct cpl_abort_rpl_rss *p = (void *)rsp;
592
593 hash_del_filter_rpl(q->adap, p);
594 } else if (opcode == CPL_SRQ_TABLE_RPL) {
595 const struct cpl_srq_table_rpl *p = (void *)rsp;
596
597 do_srq_table_rpl(q->adap, p);
598 } else
599 dev_err(q->adap->pdev_dev,
600 "unexpected CPL %#x on FW event queue\n", opcode);
601 out:
602 return 0;
603 }
604
disable_msi(struct adapter * adapter)605 static void disable_msi(struct adapter *adapter)
606 {
607 if (adapter->flags & USING_MSIX) {
608 pci_disable_msix(adapter->pdev);
609 adapter->flags &= ~USING_MSIX;
610 } else if (adapter->flags & USING_MSI) {
611 pci_disable_msi(adapter->pdev);
612 adapter->flags &= ~USING_MSI;
613 }
614 }
615
616 /*
617 * Interrupt handler for non-data events used with MSI-X.
618 */
t4_nondata_intr(int irq,void * cookie)619 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
620 {
621 struct adapter *adap = cookie;
622 u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
623
624 if (v & PFSW_F) {
625 adap->swintr = 1;
626 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
627 }
628 if (adap->flags & MASTER_PF)
629 t4_slow_intr_handler(adap);
630 return IRQ_HANDLED;
631 }
632
633 /*
634 * Name the MSI-X interrupts.
635 */
name_msix_vecs(struct adapter * adap)636 static void name_msix_vecs(struct adapter *adap)
637 {
638 int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
639
640 /* non-data interrupts */
641 snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
642
643 /* FW events */
644 snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
645 adap->port[0]->name);
646
647 /* Ethernet queues */
648 for_each_port(adap, j) {
649 struct net_device *d = adap->port[j];
650 const struct port_info *pi = netdev_priv(d);
651
652 for (i = 0; i < pi->nqsets; i++, msi_idx++)
653 snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
654 d->name, i);
655 }
656 }
657
request_msix_queue_irqs(struct adapter * adap)658 static int request_msix_queue_irqs(struct adapter *adap)
659 {
660 struct sge *s = &adap->sge;
661 int err, ethqidx;
662 int msi_index = 2;
663
664 err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
665 adap->msix_info[1].desc, &s->fw_evtq);
666 if (err)
667 return err;
668
669 for_each_ethrxq(s, ethqidx) {
670 err = request_irq(adap->msix_info[msi_index].vec,
671 t4_sge_intr_msix, 0,
672 adap->msix_info[msi_index].desc,
673 &s->ethrxq[ethqidx].rspq);
674 if (err)
675 goto unwind;
676 msi_index++;
677 }
678 return 0;
679
680 unwind:
681 while (--ethqidx >= 0)
682 free_irq(adap->msix_info[--msi_index].vec,
683 &s->ethrxq[ethqidx].rspq);
684 free_irq(adap->msix_info[1].vec, &s->fw_evtq);
685 return err;
686 }
687
free_msix_queue_irqs(struct adapter * adap)688 static void free_msix_queue_irqs(struct adapter *adap)
689 {
690 int i, msi_index = 2;
691 struct sge *s = &adap->sge;
692
693 free_irq(adap->msix_info[1].vec, &s->fw_evtq);
694 for_each_ethrxq(s, i)
695 free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
696 }
697
698 /**
699 * cxgb4_write_rss - write the RSS table for a given port
700 * @pi: the port
701 * @queues: array of queue indices for RSS
702 *
703 * Sets up the portion of the HW RSS table for the port's VI to distribute
704 * packets to the Rx queues in @queues.
705 * Should never be called before setting up sge eth rx queues
706 */
cxgb4_write_rss(const struct port_info * pi,const u16 * queues)707 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
708 {
709 u16 *rss;
710 int i, err;
711 struct adapter *adapter = pi->adapter;
712 const struct sge_eth_rxq *rxq;
713
714 rxq = &adapter->sge.ethrxq[pi->first_qset];
715 rss = kmalloc_array(pi->rss_size, sizeof(u16), GFP_KERNEL);
716 if (!rss)
717 return -ENOMEM;
718
719 /* map the queue indices to queue ids */
720 for (i = 0; i < pi->rss_size; i++, queues++)
721 rss[i] = rxq[*queues].rspq.abs_id;
722
723 err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
724 pi->rss_size, rss, pi->rss_size);
725 /* If Tunnel All Lookup isn't specified in the global RSS
726 * Configuration, then we need to specify a default Ingress
727 * Queue for any ingress packets which aren't hashed. We'll
728 * use our first ingress queue ...
729 */
730 if (!err)
731 err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
732 FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F |
733 FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F |
734 FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F |
735 FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F |
736 FW_RSS_VI_CONFIG_CMD_UDPEN_F,
737 rss[0]);
738 kfree(rss);
739 return err;
740 }
741
742 /**
743 * setup_rss - configure RSS
744 * @adap: the adapter
745 *
746 * Sets up RSS for each port.
747 */
setup_rss(struct adapter * adap)748 static int setup_rss(struct adapter *adap)
749 {
750 int i, j, err;
751
752 for_each_port(adap, i) {
753 const struct port_info *pi = adap2pinfo(adap, i);
754
755 /* Fill default values with equal distribution */
756 for (j = 0; j < pi->rss_size; j++)
757 pi->rss[j] = j % pi->nqsets;
758
759 err = cxgb4_write_rss(pi, pi->rss);
760 if (err)
761 return err;
762 }
763 return 0;
764 }
765
766 /*
767 * Return the channel of the ingress queue with the given qid.
768 */
rxq_to_chan(const struct sge * p,unsigned int qid)769 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
770 {
771 qid -= p->ingr_start;
772 return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
773 }
774
775 /*
776 * Wait until all NAPI handlers are descheduled.
777 */
quiesce_rx(struct adapter * adap)778 static void quiesce_rx(struct adapter *adap)
779 {
780 int i;
781
782 for (i = 0; i < adap->sge.ingr_sz; i++) {
783 struct sge_rspq *q = adap->sge.ingr_map[i];
784
785 if (q && q->handler)
786 napi_disable(&q->napi);
787 }
788 }
789
790 /* Disable interrupt and napi handler */
disable_interrupts(struct adapter * adap)791 static void disable_interrupts(struct adapter *adap)
792 {
793 if (adap->flags & FULL_INIT_DONE) {
794 t4_intr_disable(adap);
795 if (adap->flags & USING_MSIX) {
796 free_msix_queue_irqs(adap);
797 free_irq(adap->msix_info[0].vec, adap);
798 } else {
799 free_irq(adap->pdev->irq, adap);
800 }
801 quiesce_rx(adap);
802 }
803 }
804
805 /*
806 * Enable NAPI scheduling and interrupt generation for all Rx queues.
807 */
enable_rx(struct adapter * adap)808 static void enable_rx(struct adapter *adap)
809 {
810 int i;
811
812 for (i = 0; i < adap->sge.ingr_sz; i++) {
813 struct sge_rspq *q = adap->sge.ingr_map[i];
814
815 if (!q)
816 continue;
817 if (q->handler)
818 napi_enable(&q->napi);
819
820 /* 0-increment GTS to start the timer and enable interrupts */
821 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
822 SEINTARM_V(q->intr_params) |
823 INGRESSQID_V(q->cntxt_id));
824 }
825 }
826
827
setup_fw_sge_queues(struct adapter * adap)828 static int setup_fw_sge_queues(struct adapter *adap)
829 {
830 struct sge *s = &adap->sge;
831 int err = 0;
832
833 bitmap_zero(s->starving_fl, s->egr_sz);
834 bitmap_zero(s->txq_maperr, s->egr_sz);
835
836 if (adap->flags & USING_MSIX)
837 adap->msi_idx = 1; /* vector 0 is for non-queue interrupts */
838 else {
839 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
840 NULL, NULL, NULL, -1);
841 if (err)
842 return err;
843 adap->msi_idx = -((int)s->intrq.abs_id + 1);
844 }
845
846 err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
847 adap->msi_idx, NULL, fwevtq_handler, NULL, -1);
848 return err;
849 }
850
851 /**
852 * setup_sge_queues - configure SGE Tx/Rx/response queues
853 * @adap: the adapter
854 *
855 * Determines how many sets of SGE queues to use and initializes them.
856 * We support multiple queue sets per port if we have MSI-X, otherwise
857 * just one queue set per port.
858 */
setup_sge_queues(struct adapter * adap)859 static int setup_sge_queues(struct adapter *adap)
860 {
861 int err, i, j;
862 struct sge *s = &adap->sge;
863 struct sge_uld_rxq_info *rxq_info = NULL;
864 unsigned int cmplqid = 0;
865
866 if (is_uld(adap))
867 rxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA];
868
869 for_each_port(adap, i) {
870 struct net_device *dev = adap->port[i];
871 struct port_info *pi = netdev_priv(dev);
872 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
873 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
874
875 for (j = 0; j < pi->nqsets; j++, q++) {
876 if (adap->msi_idx > 0)
877 adap->msi_idx++;
878 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
879 adap->msi_idx, &q->fl,
880 t4_ethrx_handler,
881 NULL,
882 t4_get_tp_ch_map(adap,
883 pi->tx_chan));
884 if (err)
885 goto freeout;
886 q->rspq.idx = j;
887 memset(&q->stats, 0, sizeof(q->stats));
888 }
889 for (j = 0; j < pi->nqsets; j++, t++) {
890 err = t4_sge_alloc_eth_txq(adap, t, dev,
891 netdev_get_tx_queue(dev, j),
892 s->fw_evtq.cntxt_id);
893 if (err)
894 goto freeout;
895 }
896 }
897
898 for_each_port(adap, i) {
899 /* Note that cmplqid below is 0 if we don't
900 * have RDMA queues, and that's the right value.
901 */
902 if (rxq_info)
903 cmplqid = rxq_info->uldrxq[i].rspq.cntxt_id;
904
905 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
906 s->fw_evtq.cntxt_id, cmplqid);
907 if (err)
908 goto freeout;
909 }
910
911 if (!is_t4(adap->params.chip)) {
912 err = t4_sge_alloc_eth_txq(adap, &s->ptptxq, adap->port[0],
913 netdev_get_tx_queue(adap->port[0], 0)
914 , s->fw_evtq.cntxt_id);
915 if (err)
916 goto freeout;
917 }
918
919 t4_write_reg(adap, is_t4(adap->params.chip) ?
920 MPS_TRC_RSS_CONTROL_A :
921 MPS_T5_TRC_RSS_CONTROL_A,
922 RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
923 QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
924 return 0;
925 freeout:
926 dev_err(adap->pdev_dev, "Can't allocate queues, err=%d\n", -err);
927 t4_free_sge_resources(adap);
928 return err;
929 }
930
cxgb_select_queue(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev,select_queue_fallback_t fallback)931 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
932 struct net_device *sb_dev,
933 select_queue_fallback_t fallback)
934 {
935 int txq;
936
937 #ifdef CONFIG_CHELSIO_T4_DCB
938 /* If a Data Center Bridging has been successfully negotiated on this
939 * link then we'll use the skb's priority to map it to a TX Queue.
940 * The skb's priority is determined via the VLAN Tag Priority Code
941 * Point field.
942 */
943 if (cxgb4_dcb_enabled(dev) && !is_kdump_kernel()) {
944 u16 vlan_tci;
945 int err;
946
947 err = vlan_get_tag(skb, &vlan_tci);
948 if (unlikely(err)) {
949 if (net_ratelimit())
950 netdev_warn(dev,
951 "TX Packet without VLAN Tag on DCB Link\n");
952 txq = 0;
953 } else {
954 txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
955 #ifdef CONFIG_CHELSIO_T4_FCOE
956 if (skb->protocol == htons(ETH_P_FCOE))
957 txq = skb->priority & 0x7;
958 #endif /* CONFIG_CHELSIO_T4_FCOE */
959 }
960 return txq;
961 }
962 #endif /* CONFIG_CHELSIO_T4_DCB */
963
964 if (select_queue) {
965 txq = (skb_rx_queue_recorded(skb)
966 ? skb_get_rx_queue(skb)
967 : smp_processor_id());
968
969 while (unlikely(txq >= dev->real_num_tx_queues))
970 txq -= dev->real_num_tx_queues;
971
972 return txq;
973 }
974
975 return fallback(dev, skb, NULL) % dev->real_num_tx_queues;
976 }
977
closest_timer(const struct sge * s,int time)978 static int closest_timer(const struct sge *s, int time)
979 {
980 int i, delta, match = 0, min_delta = INT_MAX;
981
982 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
983 delta = time - s->timer_val[i];
984 if (delta < 0)
985 delta = -delta;
986 if (delta < min_delta) {
987 min_delta = delta;
988 match = i;
989 }
990 }
991 return match;
992 }
993
closest_thres(const struct sge * s,int thres)994 static int closest_thres(const struct sge *s, int thres)
995 {
996 int i, delta, match = 0, min_delta = INT_MAX;
997
998 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
999 delta = thres - s->counter_val[i];
1000 if (delta < 0)
1001 delta = -delta;
1002 if (delta < min_delta) {
1003 min_delta = delta;
1004 match = i;
1005 }
1006 }
1007 return match;
1008 }
1009
1010 /**
1011 * cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
1012 * @q: the Rx queue
1013 * @us: the hold-off time in us, or 0 to disable timer
1014 * @cnt: the hold-off packet count, or 0 to disable counter
1015 *
1016 * Sets an Rx queue's interrupt hold-off time and packet count. At least
1017 * one of the two needs to be enabled for the queue to generate interrupts.
1018 */
cxgb4_set_rspq_intr_params(struct sge_rspq * q,unsigned int us,unsigned int cnt)1019 int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
1020 unsigned int us, unsigned int cnt)
1021 {
1022 struct adapter *adap = q->adap;
1023
1024 if ((us | cnt) == 0)
1025 cnt = 1;
1026
1027 if (cnt) {
1028 int err;
1029 u32 v, new_idx;
1030
1031 new_idx = closest_thres(&adap->sge, cnt);
1032 if (q->desc && q->pktcnt_idx != new_idx) {
1033 /* the queue has already been created, update it */
1034 v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1035 FW_PARAMS_PARAM_X_V(
1036 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1037 FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
1038 err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
1039 &v, &new_idx);
1040 if (err)
1041 return err;
1042 }
1043 q->pktcnt_idx = new_idx;
1044 }
1045
1046 us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1047 q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0);
1048 return 0;
1049 }
1050
cxgb_set_features(struct net_device * dev,netdev_features_t features)1051 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
1052 {
1053 const struct port_info *pi = netdev_priv(dev);
1054 netdev_features_t changed = dev->features ^ features;
1055 int err;
1056
1057 if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
1058 return 0;
1059
1060 err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1,
1061 -1, -1, -1,
1062 !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
1063 if (unlikely(err))
1064 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
1065 return err;
1066 }
1067
setup_debugfs(struct adapter * adap)1068 static int setup_debugfs(struct adapter *adap)
1069 {
1070 if (IS_ERR_OR_NULL(adap->debugfs_root))
1071 return -1;
1072
1073 #ifdef CONFIG_DEBUG_FS
1074 t4_setup_debugfs(adap);
1075 #endif
1076 return 0;
1077 }
1078
1079 /*
1080 * upper-layer driver support
1081 */
1082
1083 /*
1084 * Allocate an active-open TID and set it to the supplied value.
1085 */
cxgb4_alloc_atid(struct tid_info * t,void * data)1086 int cxgb4_alloc_atid(struct tid_info *t, void *data)
1087 {
1088 int atid = -1;
1089
1090 spin_lock_bh(&t->atid_lock);
1091 if (t->afree) {
1092 union aopen_entry *p = t->afree;
1093
1094 atid = (p - t->atid_tab) + t->atid_base;
1095 t->afree = p->next;
1096 p->data = data;
1097 t->atids_in_use++;
1098 }
1099 spin_unlock_bh(&t->atid_lock);
1100 return atid;
1101 }
1102 EXPORT_SYMBOL(cxgb4_alloc_atid);
1103
1104 /*
1105 * Release an active-open TID.
1106 */
cxgb4_free_atid(struct tid_info * t,unsigned int atid)1107 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
1108 {
1109 union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
1110
1111 spin_lock_bh(&t->atid_lock);
1112 p->next = t->afree;
1113 t->afree = p;
1114 t->atids_in_use--;
1115 spin_unlock_bh(&t->atid_lock);
1116 }
1117 EXPORT_SYMBOL(cxgb4_free_atid);
1118
1119 /*
1120 * Allocate a server TID and set it to the supplied value.
1121 */
cxgb4_alloc_stid(struct tid_info * t,int family,void * data)1122 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
1123 {
1124 int stid;
1125
1126 spin_lock_bh(&t->stid_lock);
1127 if (family == PF_INET) {
1128 stid = find_first_zero_bit(t->stid_bmap, t->nstids);
1129 if (stid < t->nstids)
1130 __set_bit(stid, t->stid_bmap);
1131 else
1132 stid = -1;
1133 } else {
1134 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1);
1135 if (stid < 0)
1136 stid = -1;
1137 }
1138 if (stid >= 0) {
1139 t->stid_tab[stid].data = data;
1140 stid += t->stid_base;
1141 /* IPv6 requires max of 520 bits or 16 cells in TCAM
1142 * This is equivalent to 4 TIDs. With CLIP enabled it
1143 * needs 2 TIDs.
1144 */
1145 if (family == PF_INET6) {
1146 t->stids_in_use += 2;
1147 t->v6_stids_in_use += 2;
1148 } else {
1149 t->stids_in_use++;
1150 }
1151 }
1152 spin_unlock_bh(&t->stid_lock);
1153 return stid;
1154 }
1155 EXPORT_SYMBOL(cxgb4_alloc_stid);
1156
1157 /* Allocate a server filter TID and set it to the supplied value.
1158 */
cxgb4_alloc_sftid(struct tid_info * t,int family,void * data)1159 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
1160 {
1161 int stid;
1162
1163 spin_lock_bh(&t->stid_lock);
1164 if (family == PF_INET) {
1165 stid = find_next_zero_bit(t->stid_bmap,
1166 t->nstids + t->nsftids, t->nstids);
1167 if (stid < (t->nstids + t->nsftids))
1168 __set_bit(stid, t->stid_bmap);
1169 else
1170 stid = -1;
1171 } else {
1172 stid = -1;
1173 }
1174 if (stid >= 0) {
1175 t->stid_tab[stid].data = data;
1176 stid -= t->nstids;
1177 stid += t->sftid_base;
1178 t->sftids_in_use++;
1179 }
1180 spin_unlock_bh(&t->stid_lock);
1181 return stid;
1182 }
1183 EXPORT_SYMBOL(cxgb4_alloc_sftid);
1184
1185 /* Release a server TID.
1186 */
cxgb4_free_stid(struct tid_info * t,unsigned int stid,int family)1187 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
1188 {
1189 /* Is it a server filter TID? */
1190 if (t->nsftids && (stid >= t->sftid_base)) {
1191 stid -= t->sftid_base;
1192 stid += t->nstids;
1193 } else {
1194 stid -= t->stid_base;
1195 }
1196
1197 spin_lock_bh(&t->stid_lock);
1198 if (family == PF_INET)
1199 __clear_bit(stid, t->stid_bmap);
1200 else
1201 bitmap_release_region(t->stid_bmap, stid, 1);
1202 t->stid_tab[stid].data = NULL;
1203 if (stid < t->nstids) {
1204 if (family == PF_INET6) {
1205 t->stids_in_use -= 2;
1206 t->v6_stids_in_use -= 2;
1207 } else {
1208 t->stids_in_use--;
1209 }
1210 } else {
1211 t->sftids_in_use--;
1212 }
1213
1214 spin_unlock_bh(&t->stid_lock);
1215 }
1216 EXPORT_SYMBOL(cxgb4_free_stid);
1217
1218 /*
1219 * Populate a TID_RELEASE WR. Caller must properly size the skb.
1220 */
mk_tid_release(struct sk_buff * skb,unsigned int chan,unsigned int tid)1221 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
1222 unsigned int tid)
1223 {
1224 struct cpl_tid_release *req;
1225
1226 set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
1227 req = __skb_put(skb, sizeof(*req));
1228 INIT_TP_WR(req, tid);
1229 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
1230 }
1231
1232 /*
1233 * Queue a TID release request and if necessary schedule a work queue to
1234 * process it.
1235 */
cxgb4_queue_tid_release(struct tid_info * t,unsigned int chan,unsigned int tid)1236 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
1237 unsigned int tid)
1238 {
1239 void **p = &t->tid_tab[tid];
1240 struct adapter *adap = container_of(t, struct adapter, tids);
1241
1242 spin_lock_bh(&adap->tid_release_lock);
1243 *p = adap->tid_release_head;
1244 /* Low 2 bits encode the Tx channel number */
1245 adap->tid_release_head = (void **)((uintptr_t)p | chan);
1246 if (!adap->tid_release_task_busy) {
1247 adap->tid_release_task_busy = true;
1248 queue_work(adap->workq, &adap->tid_release_task);
1249 }
1250 spin_unlock_bh(&adap->tid_release_lock);
1251 }
1252
1253 /*
1254 * Process the list of pending TID release requests.
1255 */
process_tid_release_list(struct work_struct * work)1256 static void process_tid_release_list(struct work_struct *work)
1257 {
1258 struct sk_buff *skb;
1259 struct adapter *adap;
1260
1261 adap = container_of(work, struct adapter, tid_release_task);
1262
1263 spin_lock_bh(&adap->tid_release_lock);
1264 while (adap->tid_release_head) {
1265 void **p = adap->tid_release_head;
1266 unsigned int chan = (uintptr_t)p & 3;
1267 p = (void *)p - chan;
1268
1269 adap->tid_release_head = *p;
1270 *p = NULL;
1271 spin_unlock_bh(&adap->tid_release_lock);
1272
1273 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
1274 GFP_KERNEL)))
1275 schedule_timeout_uninterruptible(1);
1276
1277 mk_tid_release(skb, chan, p - adap->tids.tid_tab);
1278 t4_ofld_send(adap, skb);
1279 spin_lock_bh(&adap->tid_release_lock);
1280 }
1281 adap->tid_release_task_busy = false;
1282 spin_unlock_bh(&adap->tid_release_lock);
1283 }
1284
1285 /*
1286 * Release a TID and inform HW. If we are unable to allocate the release
1287 * message we defer to a work queue.
1288 */
cxgb4_remove_tid(struct tid_info * t,unsigned int chan,unsigned int tid,unsigned short family)1289 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid,
1290 unsigned short family)
1291 {
1292 struct sk_buff *skb;
1293 struct adapter *adap = container_of(t, struct adapter, tids);
1294
1295 WARN_ON(tid >= t->ntids);
1296
1297 if (t->tid_tab[tid]) {
1298 t->tid_tab[tid] = NULL;
1299 atomic_dec(&t->conns_in_use);
1300 if (t->hash_base && (tid >= t->hash_base)) {
1301 if (family == AF_INET6)
1302 atomic_sub(2, &t->hash_tids_in_use);
1303 else
1304 atomic_dec(&t->hash_tids_in_use);
1305 } else {
1306 if (family == AF_INET6)
1307 atomic_sub(2, &t->tids_in_use);
1308 else
1309 atomic_dec(&t->tids_in_use);
1310 }
1311 }
1312
1313 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
1314 if (likely(skb)) {
1315 mk_tid_release(skb, chan, tid);
1316 t4_ofld_send(adap, skb);
1317 } else
1318 cxgb4_queue_tid_release(t, chan, tid);
1319 }
1320 EXPORT_SYMBOL(cxgb4_remove_tid);
1321
1322 /*
1323 * Allocate and initialize the TID tables. Returns 0 on success.
1324 */
tid_init(struct tid_info * t)1325 static int tid_init(struct tid_info *t)
1326 {
1327 struct adapter *adap = container_of(t, struct adapter, tids);
1328 unsigned int max_ftids = t->nftids + t->nsftids;
1329 unsigned int natids = t->natids;
1330 unsigned int stid_bmap_size;
1331 unsigned int ftid_bmap_size;
1332 size_t size;
1333
1334 stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
1335 ftid_bmap_size = BITS_TO_LONGS(t->nftids);
1336 size = t->ntids * sizeof(*t->tid_tab) +
1337 natids * sizeof(*t->atid_tab) +
1338 t->nstids * sizeof(*t->stid_tab) +
1339 t->nsftids * sizeof(*t->stid_tab) +
1340 stid_bmap_size * sizeof(long) +
1341 max_ftids * sizeof(*t->ftid_tab) +
1342 ftid_bmap_size * sizeof(long);
1343
1344 t->tid_tab = kvzalloc(size, GFP_KERNEL);
1345 if (!t->tid_tab)
1346 return -ENOMEM;
1347
1348 t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
1349 t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
1350 t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
1351 t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
1352 t->ftid_bmap = (unsigned long *)&t->ftid_tab[max_ftids];
1353 spin_lock_init(&t->stid_lock);
1354 spin_lock_init(&t->atid_lock);
1355 spin_lock_init(&t->ftid_lock);
1356
1357 t->stids_in_use = 0;
1358 t->v6_stids_in_use = 0;
1359 t->sftids_in_use = 0;
1360 t->afree = NULL;
1361 t->atids_in_use = 0;
1362 atomic_set(&t->tids_in_use, 0);
1363 atomic_set(&t->conns_in_use, 0);
1364 atomic_set(&t->hash_tids_in_use, 0);
1365
1366 /* Setup the free list for atid_tab and clear the stid bitmap. */
1367 if (natids) {
1368 while (--natids)
1369 t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1370 t->afree = t->atid_tab;
1371 }
1372
1373 if (is_offload(adap)) {
1374 bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
1375 /* Reserve stid 0 for T4/T5 adapters */
1376 if (!t->stid_base &&
1377 CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
1378 __set_bit(0, t->stid_bmap);
1379 }
1380
1381 bitmap_zero(t->ftid_bmap, t->nftids);
1382 return 0;
1383 }
1384
1385 /**
1386 * cxgb4_create_server - create an IP server
1387 * @dev: the device
1388 * @stid: the server TID
1389 * @sip: local IP address to bind server to
1390 * @sport: the server's TCP port
1391 * @queue: queue to direct messages from this server to
1392 *
1393 * Create an IP server for the given port and address.
1394 * Returns <0 on error and one of the %NET_XMIT_* values on success.
1395 */
cxgb4_create_server(const struct net_device * dev,unsigned int stid,__be32 sip,__be16 sport,__be16 vlan,unsigned int queue)1396 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
1397 __be32 sip, __be16 sport, __be16 vlan,
1398 unsigned int queue)
1399 {
1400 unsigned int chan;
1401 struct sk_buff *skb;
1402 struct adapter *adap;
1403 struct cpl_pass_open_req *req;
1404 int ret;
1405
1406 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1407 if (!skb)
1408 return -ENOMEM;
1409
1410 adap = netdev2adap(dev);
1411 req = __skb_put(skb, sizeof(*req));
1412 INIT_TP_WR(req, 0);
1413 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
1414 req->local_port = sport;
1415 req->peer_port = htons(0);
1416 req->local_ip = sip;
1417 req->peer_ip = htonl(0);
1418 chan = rxq_to_chan(&adap->sge, queue);
1419 req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1420 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1421 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1422 ret = t4_mgmt_tx(adap, skb);
1423 return net_xmit_eval(ret);
1424 }
1425 EXPORT_SYMBOL(cxgb4_create_server);
1426
1427 /* cxgb4_create_server6 - create an IPv6 server
1428 * @dev: the device
1429 * @stid: the server TID
1430 * @sip: local IPv6 address to bind server to
1431 * @sport: the server's TCP port
1432 * @queue: queue to direct messages from this server to
1433 *
1434 * Create an IPv6 server for the given port and address.
1435 * Returns <0 on error and one of the %NET_XMIT_* values on success.
1436 */
cxgb4_create_server6(const struct net_device * dev,unsigned int stid,const struct in6_addr * sip,__be16 sport,unsigned int queue)1437 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
1438 const struct in6_addr *sip, __be16 sport,
1439 unsigned int queue)
1440 {
1441 unsigned int chan;
1442 struct sk_buff *skb;
1443 struct adapter *adap;
1444 struct cpl_pass_open_req6 *req;
1445 int ret;
1446
1447 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1448 if (!skb)
1449 return -ENOMEM;
1450
1451 adap = netdev2adap(dev);
1452 req = __skb_put(skb, sizeof(*req));
1453 INIT_TP_WR(req, 0);
1454 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
1455 req->local_port = sport;
1456 req->peer_port = htons(0);
1457 req->local_ip_hi = *(__be64 *)(sip->s6_addr);
1458 req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
1459 req->peer_ip_hi = cpu_to_be64(0);
1460 req->peer_ip_lo = cpu_to_be64(0);
1461 chan = rxq_to_chan(&adap->sge, queue);
1462 req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1463 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1464 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1465 ret = t4_mgmt_tx(adap, skb);
1466 return net_xmit_eval(ret);
1467 }
1468 EXPORT_SYMBOL(cxgb4_create_server6);
1469
cxgb4_remove_server(const struct net_device * dev,unsigned int stid,unsigned int queue,bool ipv6)1470 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
1471 unsigned int queue, bool ipv6)
1472 {
1473 struct sk_buff *skb;
1474 struct adapter *adap;
1475 struct cpl_close_listsvr_req *req;
1476 int ret;
1477
1478 adap = netdev2adap(dev);
1479
1480 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1481 if (!skb)
1482 return -ENOMEM;
1483
1484 req = __skb_put(skb, sizeof(*req));
1485 INIT_TP_WR(req, 0);
1486 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
1487 req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
1488 LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
1489 ret = t4_mgmt_tx(adap, skb);
1490 return net_xmit_eval(ret);
1491 }
1492 EXPORT_SYMBOL(cxgb4_remove_server);
1493
1494 /**
1495 * cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
1496 * @mtus: the HW MTU table
1497 * @mtu: the target MTU
1498 * @idx: index of selected entry in the MTU table
1499 *
1500 * Returns the index and the value in the HW MTU table that is closest to
1501 * but does not exceed @mtu, unless @mtu is smaller than any value in the
1502 * table, in which case that smallest available value is selected.
1503 */
cxgb4_best_mtu(const unsigned short * mtus,unsigned short mtu,unsigned int * idx)1504 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
1505 unsigned int *idx)
1506 {
1507 unsigned int i = 0;
1508
1509 while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
1510 ++i;
1511 if (idx)
1512 *idx = i;
1513 return mtus[i];
1514 }
1515 EXPORT_SYMBOL(cxgb4_best_mtu);
1516
1517 /**
1518 * cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
1519 * @mtus: the HW MTU table
1520 * @header_size: Header Size
1521 * @data_size_max: maximum Data Segment Size
1522 * @data_size_align: desired Data Segment Size Alignment (2^N)
1523 * @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
1524 *
1525 * Similar to cxgb4_best_mtu() but instead of searching the Hardware
1526 * MTU Table based solely on a Maximum MTU parameter, we break that
1527 * parameter up into a Header Size and Maximum Data Segment Size, and
1528 * provide a desired Data Segment Size Alignment. If we find an MTU in
1529 * the Hardware MTU Table which will result in a Data Segment Size with
1530 * the requested alignment _and_ that MTU isn't "too far" from the
1531 * closest MTU, then we'll return that rather than the closest MTU.
1532 */
cxgb4_best_aligned_mtu(const unsigned short * mtus,unsigned short header_size,unsigned short data_size_max,unsigned short data_size_align,unsigned int * mtu_idxp)1533 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
1534 unsigned short header_size,
1535 unsigned short data_size_max,
1536 unsigned short data_size_align,
1537 unsigned int *mtu_idxp)
1538 {
1539 unsigned short max_mtu = header_size + data_size_max;
1540 unsigned short data_size_align_mask = data_size_align - 1;
1541 int mtu_idx, aligned_mtu_idx;
1542
1543 /* Scan the MTU Table till we find an MTU which is larger than our
1544 * Maximum MTU or we reach the end of the table. Along the way,
1545 * record the last MTU found, if any, which will result in a Data
1546 * Segment Length matching the requested alignment.
1547 */
1548 for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
1549 unsigned short data_size = mtus[mtu_idx] - header_size;
1550
1551 /* If this MTU minus the Header Size would result in a
1552 * Data Segment Size of the desired alignment, remember it.
1553 */
1554 if ((data_size & data_size_align_mask) == 0)
1555 aligned_mtu_idx = mtu_idx;
1556
1557 /* If we're not at the end of the Hardware MTU Table and the
1558 * next element is larger than our Maximum MTU, drop out of
1559 * the loop.
1560 */
1561 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
1562 break;
1563 }
1564
1565 /* If we fell out of the loop because we ran to the end of the table,
1566 * then we just have to use the last [largest] entry.
1567 */
1568 if (mtu_idx == NMTUS)
1569 mtu_idx--;
1570
1571 /* If we found an MTU which resulted in the requested Data Segment
1572 * Length alignment and that's "not far" from the largest MTU which is
1573 * less than or equal to the maximum MTU, then use that.
1574 */
1575 if (aligned_mtu_idx >= 0 &&
1576 mtu_idx - aligned_mtu_idx <= 1)
1577 mtu_idx = aligned_mtu_idx;
1578
1579 /* If the caller has passed in an MTU Index pointer, pass the
1580 * MTU Index back. Return the MTU value.
1581 */
1582 if (mtu_idxp)
1583 *mtu_idxp = mtu_idx;
1584 return mtus[mtu_idx];
1585 }
1586 EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
1587
1588 /**
1589 * cxgb4_tp_smt_idx - Get the Source Mac Table index for this VI
1590 * @chip: chip type
1591 * @viid: VI id of the given port
1592 *
1593 * Return the SMT index for this VI.
1594 */
cxgb4_tp_smt_idx(enum chip_type chip,unsigned int viid)1595 unsigned int cxgb4_tp_smt_idx(enum chip_type chip, unsigned int viid)
1596 {
1597 /* In T4/T5, SMT contains 256 SMAC entries organized in
1598 * 128 rows of 2 entries each.
1599 * In T6, SMT contains 256 SMAC entries in 256 rows.
1600 * TODO: The below code needs to be updated when we add support
1601 * for 256 VFs.
1602 */
1603 if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5)
1604 return ((viid & 0x7f) << 1);
1605 else
1606 return (viid & 0x7f);
1607 }
1608 EXPORT_SYMBOL(cxgb4_tp_smt_idx);
1609
1610 /**
1611 * cxgb4_port_chan - get the HW channel of a port
1612 * @dev: the net device for the port
1613 *
1614 * Return the HW Tx channel of the given port.
1615 */
cxgb4_port_chan(const struct net_device * dev)1616 unsigned int cxgb4_port_chan(const struct net_device *dev)
1617 {
1618 return netdev2pinfo(dev)->tx_chan;
1619 }
1620 EXPORT_SYMBOL(cxgb4_port_chan);
1621
cxgb4_dbfifo_count(const struct net_device * dev,int lpfifo)1622 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
1623 {
1624 struct adapter *adap = netdev2adap(dev);
1625 u32 v1, v2, lp_count, hp_count;
1626
1627 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
1628 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1629 if (is_t4(adap->params.chip)) {
1630 lp_count = LP_COUNT_G(v1);
1631 hp_count = HP_COUNT_G(v1);
1632 } else {
1633 lp_count = LP_COUNT_T5_G(v1);
1634 hp_count = HP_COUNT_T5_G(v2);
1635 }
1636 return lpfifo ? lp_count : hp_count;
1637 }
1638 EXPORT_SYMBOL(cxgb4_dbfifo_count);
1639
1640 /**
1641 * cxgb4_port_viid - get the VI id of a port
1642 * @dev: the net device for the port
1643 *
1644 * Return the VI id of the given port.
1645 */
cxgb4_port_viid(const struct net_device * dev)1646 unsigned int cxgb4_port_viid(const struct net_device *dev)
1647 {
1648 return netdev2pinfo(dev)->viid;
1649 }
1650 EXPORT_SYMBOL(cxgb4_port_viid);
1651
1652 /**
1653 * cxgb4_port_idx - get the index of a port
1654 * @dev: the net device for the port
1655 *
1656 * Return the index of the given port.
1657 */
cxgb4_port_idx(const struct net_device * dev)1658 unsigned int cxgb4_port_idx(const struct net_device *dev)
1659 {
1660 return netdev2pinfo(dev)->port_id;
1661 }
1662 EXPORT_SYMBOL(cxgb4_port_idx);
1663
cxgb4_get_tcp_stats(struct pci_dev * pdev,struct tp_tcp_stats * v4,struct tp_tcp_stats * v6)1664 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
1665 struct tp_tcp_stats *v6)
1666 {
1667 struct adapter *adap = pci_get_drvdata(pdev);
1668
1669 spin_lock(&adap->stats_lock);
1670 t4_tp_get_tcp_stats(adap, v4, v6, false);
1671 spin_unlock(&adap->stats_lock);
1672 }
1673 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
1674
cxgb4_iscsi_init(struct net_device * dev,unsigned int tag_mask,const unsigned int * pgsz_order)1675 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
1676 const unsigned int *pgsz_order)
1677 {
1678 struct adapter *adap = netdev2adap(dev);
1679
1680 t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
1681 t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
1682 HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
1683 HPZ3_V(pgsz_order[3]));
1684 }
1685 EXPORT_SYMBOL(cxgb4_iscsi_init);
1686
cxgb4_flush_eq_cache(struct net_device * dev)1687 int cxgb4_flush_eq_cache(struct net_device *dev)
1688 {
1689 struct adapter *adap = netdev2adap(dev);
1690
1691 return t4_sge_ctxt_flush(adap, adap->mbox, CTXT_EGRESS);
1692 }
1693 EXPORT_SYMBOL(cxgb4_flush_eq_cache);
1694
read_eq_indices(struct adapter * adap,u16 qid,u16 * pidx,u16 * cidx)1695 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
1696 {
1697 u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
1698 __be64 indices;
1699 int ret;
1700
1701 spin_lock(&adap->win0_lock);
1702 ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
1703 sizeof(indices), (__be32 *)&indices,
1704 T4_MEMORY_READ);
1705 spin_unlock(&adap->win0_lock);
1706 if (!ret) {
1707 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
1708 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
1709 }
1710 return ret;
1711 }
1712
cxgb4_sync_txq_pidx(struct net_device * dev,u16 qid,u16 pidx,u16 size)1713 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
1714 u16 size)
1715 {
1716 struct adapter *adap = netdev2adap(dev);
1717 u16 hw_pidx, hw_cidx;
1718 int ret;
1719
1720 ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
1721 if (ret)
1722 goto out;
1723
1724 if (pidx != hw_pidx) {
1725 u16 delta;
1726 u32 val;
1727
1728 if (pidx >= hw_pidx)
1729 delta = pidx - hw_pidx;
1730 else
1731 delta = size - hw_pidx + pidx;
1732
1733 if (is_t4(adap->params.chip))
1734 val = PIDX_V(delta);
1735 else
1736 val = PIDX_T5_V(delta);
1737 wmb();
1738 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
1739 QID_V(qid) | val);
1740 }
1741 out:
1742 return ret;
1743 }
1744 EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
1745
cxgb4_read_tpte(struct net_device * dev,u32 stag,__be32 * tpte)1746 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
1747 {
1748 u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
1749 u32 edc0_end, edc1_end, mc0_end, mc1_end;
1750 u32 offset, memtype, memaddr;
1751 struct adapter *adap;
1752 u32 hma_size = 0;
1753 int ret;
1754
1755 adap = netdev2adap(dev);
1756
1757 offset = ((stag >> 8) * 32) + adap->vres.stag.start;
1758
1759 /* Figure out where the offset lands in the Memory Type/Address scheme.
1760 * This code assumes that the memory is laid out starting at offset 0
1761 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
1762 * and EDC1. Some cards will have neither MC0 nor MC1, most cards have
1763 * MC0, and some have both MC0 and MC1.
1764 */
1765 size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
1766 edc0_size = EDRAM0_SIZE_G(size) << 20;
1767 size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
1768 edc1_size = EDRAM1_SIZE_G(size) << 20;
1769 size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
1770 mc0_size = EXT_MEM0_SIZE_G(size) << 20;
1771
1772 if (t4_read_reg(adap, MA_TARGET_MEM_ENABLE_A) & HMA_MUX_F) {
1773 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
1774 hma_size = EXT_MEM1_SIZE_G(size) << 20;
1775 }
1776 edc0_end = edc0_size;
1777 edc1_end = edc0_end + edc1_size;
1778 mc0_end = edc1_end + mc0_size;
1779
1780 if (offset < edc0_end) {
1781 memtype = MEM_EDC0;
1782 memaddr = offset;
1783 } else if (offset < edc1_end) {
1784 memtype = MEM_EDC1;
1785 memaddr = offset - edc0_end;
1786 } else {
1787 if (hma_size && (offset < (edc1_end + hma_size))) {
1788 memtype = MEM_HMA;
1789 memaddr = offset - edc1_end;
1790 } else if (offset < mc0_end) {
1791 memtype = MEM_MC0;
1792 memaddr = offset - edc1_end;
1793 } else if (is_t5(adap->params.chip)) {
1794 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
1795 mc1_size = EXT_MEM1_SIZE_G(size) << 20;
1796 mc1_end = mc0_end + mc1_size;
1797 if (offset < mc1_end) {
1798 memtype = MEM_MC1;
1799 memaddr = offset - mc0_end;
1800 } else {
1801 /* offset beyond the end of any memory */
1802 goto err;
1803 }
1804 } else {
1805 /* T4/T6 only has a single memory channel */
1806 goto err;
1807 }
1808 }
1809
1810 spin_lock(&adap->win0_lock);
1811 ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
1812 spin_unlock(&adap->win0_lock);
1813 return ret;
1814
1815 err:
1816 dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
1817 stag, offset);
1818 return -EINVAL;
1819 }
1820 EXPORT_SYMBOL(cxgb4_read_tpte);
1821
cxgb4_read_sge_timestamp(struct net_device * dev)1822 u64 cxgb4_read_sge_timestamp(struct net_device *dev)
1823 {
1824 u32 hi, lo;
1825 struct adapter *adap;
1826
1827 adap = netdev2adap(dev);
1828 lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
1829 hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
1830
1831 return ((u64)hi << 32) | (u64)lo;
1832 }
1833 EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
1834
cxgb4_bar2_sge_qregs(struct net_device * dev,unsigned int qid,enum cxgb4_bar2_qtype qtype,int user,u64 * pbar2_qoffset,unsigned int * pbar2_qid)1835 int cxgb4_bar2_sge_qregs(struct net_device *dev,
1836 unsigned int qid,
1837 enum cxgb4_bar2_qtype qtype,
1838 int user,
1839 u64 *pbar2_qoffset,
1840 unsigned int *pbar2_qid)
1841 {
1842 return t4_bar2_sge_qregs(netdev2adap(dev),
1843 qid,
1844 (qtype == CXGB4_BAR2_QTYPE_EGRESS
1845 ? T4_BAR2_QTYPE_EGRESS
1846 : T4_BAR2_QTYPE_INGRESS),
1847 user,
1848 pbar2_qoffset,
1849 pbar2_qid);
1850 }
1851 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);
1852
1853 static struct pci_driver cxgb4_driver;
1854
check_neigh_update(struct neighbour * neigh)1855 static void check_neigh_update(struct neighbour *neigh)
1856 {
1857 const struct device *parent;
1858 const struct net_device *netdev = neigh->dev;
1859
1860 if (is_vlan_dev(netdev))
1861 netdev = vlan_dev_real_dev(netdev);
1862 parent = netdev->dev.parent;
1863 if (parent && parent->driver == &cxgb4_driver.driver)
1864 t4_l2t_update(dev_get_drvdata(parent), neigh);
1865 }
1866
netevent_cb(struct notifier_block * nb,unsigned long event,void * data)1867 static int netevent_cb(struct notifier_block *nb, unsigned long event,
1868 void *data)
1869 {
1870 switch (event) {
1871 case NETEVENT_NEIGH_UPDATE:
1872 check_neigh_update(data);
1873 break;
1874 case NETEVENT_REDIRECT:
1875 default:
1876 break;
1877 }
1878 return 0;
1879 }
1880
1881 static bool netevent_registered;
1882 static struct notifier_block cxgb4_netevent_nb = {
1883 .notifier_call = netevent_cb
1884 };
1885
drain_db_fifo(struct adapter * adap,int usecs)1886 static void drain_db_fifo(struct adapter *adap, int usecs)
1887 {
1888 u32 v1, v2, lp_count, hp_count;
1889
1890 do {
1891 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
1892 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1893 if (is_t4(adap->params.chip)) {
1894 lp_count = LP_COUNT_G(v1);
1895 hp_count = HP_COUNT_G(v1);
1896 } else {
1897 lp_count = LP_COUNT_T5_G(v1);
1898 hp_count = HP_COUNT_T5_G(v2);
1899 }
1900
1901 if (lp_count == 0 && hp_count == 0)
1902 break;
1903 set_current_state(TASK_UNINTERRUPTIBLE);
1904 schedule_timeout(usecs_to_jiffies(usecs));
1905 } while (1);
1906 }
1907
disable_txq_db(struct sge_txq * q)1908 static void disable_txq_db(struct sge_txq *q)
1909 {
1910 unsigned long flags;
1911
1912 spin_lock_irqsave(&q->db_lock, flags);
1913 q->db_disabled = 1;
1914 spin_unlock_irqrestore(&q->db_lock, flags);
1915 }
1916
enable_txq_db(struct adapter * adap,struct sge_txq * q)1917 static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
1918 {
1919 spin_lock_irq(&q->db_lock);
1920 if (q->db_pidx_inc) {
1921 /* Make sure that all writes to the TX descriptors
1922 * are committed before we tell HW about them.
1923 */
1924 wmb();
1925 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
1926 QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
1927 q->db_pidx_inc = 0;
1928 }
1929 q->db_disabled = 0;
1930 spin_unlock_irq(&q->db_lock);
1931 }
1932
disable_dbs(struct adapter * adap)1933 static void disable_dbs(struct adapter *adap)
1934 {
1935 int i;
1936
1937 for_each_ethrxq(&adap->sge, i)
1938 disable_txq_db(&adap->sge.ethtxq[i].q);
1939 if (is_offload(adap)) {
1940 struct sge_uld_txq_info *txq_info =
1941 adap->sge.uld_txq_info[CXGB4_TX_OFLD];
1942
1943 if (txq_info) {
1944 for_each_ofldtxq(&adap->sge, i) {
1945 struct sge_uld_txq *txq = &txq_info->uldtxq[i];
1946
1947 disable_txq_db(&txq->q);
1948 }
1949 }
1950 }
1951 for_each_port(adap, i)
1952 disable_txq_db(&adap->sge.ctrlq[i].q);
1953 }
1954
enable_dbs(struct adapter * adap)1955 static void enable_dbs(struct adapter *adap)
1956 {
1957 int i;
1958
1959 for_each_ethrxq(&adap->sge, i)
1960 enable_txq_db(adap, &adap->sge.ethtxq[i].q);
1961 if (is_offload(adap)) {
1962 struct sge_uld_txq_info *txq_info =
1963 adap->sge.uld_txq_info[CXGB4_TX_OFLD];
1964
1965 if (txq_info) {
1966 for_each_ofldtxq(&adap->sge, i) {
1967 struct sge_uld_txq *txq = &txq_info->uldtxq[i];
1968
1969 enable_txq_db(adap, &txq->q);
1970 }
1971 }
1972 }
1973 for_each_port(adap, i)
1974 enable_txq_db(adap, &adap->sge.ctrlq[i].q);
1975 }
1976
notify_rdma_uld(struct adapter * adap,enum cxgb4_control cmd)1977 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
1978 {
1979 enum cxgb4_uld type = CXGB4_ULD_RDMA;
1980
1981 if (adap->uld && adap->uld[type].handle)
1982 adap->uld[type].control(adap->uld[type].handle, cmd);
1983 }
1984
process_db_full(struct work_struct * work)1985 static void process_db_full(struct work_struct *work)
1986 {
1987 struct adapter *adap;
1988
1989 adap = container_of(work, struct adapter, db_full_task);
1990
1991 drain_db_fifo(adap, dbfifo_drain_delay);
1992 enable_dbs(adap);
1993 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
1994 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
1995 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
1996 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
1997 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
1998 else
1999 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2000 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F);
2001 }
2002
sync_txq_pidx(struct adapter * adap,struct sge_txq * q)2003 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
2004 {
2005 u16 hw_pidx, hw_cidx;
2006 int ret;
2007
2008 spin_lock_irq(&q->db_lock);
2009 ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
2010 if (ret)
2011 goto out;
2012 if (q->db_pidx != hw_pidx) {
2013 u16 delta;
2014 u32 val;
2015
2016 if (q->db_pidx >= hw_pidx)
2017 delta = q->db_pidx - hw_pidx;
2018 else
2019 delta = q->size - hw_pidx + q->db_pidx;
2020
2021 if (is_t4(adap->params.chip))
2022 val = PIDX_V(delta);
2023 else
2024 val = PIDX_T5_V(delta);
2025 wmb();
2026 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2027 QID_V(q->cntxt_id) | val);
2028 }
2029 out:
2030 q->db_disabled = 0;
2031 q->db_pidx_inc = 0;
2032 spin_unlock_irq(&q->db_lock);
2033 if (ret)
2034 CH_WARN(adap, "DB drop recovery failed.\n");
2035 }
2036
recover_all_queues(struct adapter * adap)2037 static void recover_all_queues(struct adapter *adap)
2038 {
2039 int i;
2040
2041 for_each_ethrxq(&adap->sge, i)
2042 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
2043 if (is_offload(adap)) {
2044 struct sge_uld_txq_info *txq_info =
2045 adap->sge.uld_txq_info[CXGB4_TX_OFLD];
2046 if (txq_info) {
2047 for_each_ofldtxq(&adap->sge, i) {
2048 struct sge_uld_txq *txq = &txq_info->uldtxq[i];
2049
2050 sync_txq_pidx(adap, &txq->q);
2051 }
2052 }
2053 }
2054 for_each_port(adap, i)
2055 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
2056 }
2057
process_db_drop(struct work_struct * work)2058 static void process_db_drop(struct work_struct *work)
2059 {
2060 struct adapter *adap;
2061
2062 adap = container_of(work, struct adapter, db_drop_task);
2063
2064 if (is_t4(adap->params.chip)) {
2065 drain_db_fifo(adap, dbfifo_drain_delay);
2066 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
2067 drain_db_fifo(adap, dbfifo_drain_delay);
2068 recover_all_queues(adap);
2069 drain_db_fifo(adap, dbfifo_drain_delay);
2070 enable_dbs(adap);
2071 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2072 } else if (is_t5(adap->params.chip)) {
2073 u32 dropped_db = t4_read_reg(adap, 0x010ac);
2074 u16 qid = (dropped_db >> 15) & 0x1ffff;
2075 u16 pidx_inc = dropped_db & 0x1fff;
2076 u64 bar2_qoffset;
2077 unsigned int bar2_qid;
2078 int ret;
2079
2080 ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
2081 0, &bar2_qoffset, &bar2_qid);
2082 if (ret)
2083 dev_err(adap->pdev_dev, "doorbell drop recovery: "
2084 "qid=%d, pidx_inc=%d\n", qid, pidx_inc);
2085 else
2086 writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
2087 adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2088
2089 /* Re-enable BAR2 WC */
2090 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
2091 }
2092
2093 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2094 t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
2095 }
2096
t4_db_full(struct adapter * adap)2097 void t4_db_full(struct adapter *adap)
2098 {
2099 if (is_t4(adap->params.chip)) {
2100 disable_dbs(adap);
2101 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2102 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2103 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
2104 queue_work(adap->workq, &adap->db_full_task);
2105 }
2106 }
2107
t4_db_dropped(struct adapter * adap)2108 void t4_db_dropped(struct adapter *adap)
2109 {
2110 if (is_t4(adap->params.chip)) {
2111 disable_dbs(adap);
2112 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2113 }
2114 queue_work(adap->workq, &adap->db_drop_task);
2115 }
2116
t4_register_netevent_notifier(void)2117 void t4_register_netevent_notifier(void)
2118 {
2119 if (!netevent_registered) {
2120 register_netevent_notifier(&cxgb4_netevent_nb);
2121 netevent_registered = true;
2122 }
2123 }
2124
detach_ulds(struct adapter * adap)2125 static void detach_ulds(struct adapter *adap)
2126 {
2127 unsigned int i;
2128
2129 mutex_lock(&uld_mutex);
2130 list_del(&adap->list_node);
2131
2132 for (i = 0; i < CXGB4_ULD_MAX; i++)
2133 if (adap->uld && adap->uld[i].handle)
2134 adap->uld[i].state_change(adap->uld[i].handle,
2135 CXGB4_STATE_DETACH);
2136
2137 if (netevent_registered && list_empty(&adapter_list)) {
2138 unregister_netevent_notifier(&cxgb4_netevent_nb);
2139 netevent_registered = false;
2140 }
2141 mutex_unlock(&uld_mutex);
2142 }
2143
notify_ulds(struct adapter * adap,enum cxgb4_state new_state)2144 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2145 {
2146 unsigned int i;
2147
2148 mutex_lock(&uld_mutex);
2149 for (i = 0; i < CXGB4_ULD_MAX; i++)
2150 if (adap->uld && adap->uld[i].handle)
2151 adap->uld[i].state_change(adap->uld[i].handle,
2152 new_state);
2153 mutex_unlock(&uld_mutex);
2154 }
2155
2156 #if IS_ENABLED(CONFIG_IPV6)
cxgb4_inet6addr_handler(struct notifier_block * this,unsigned long event,void * data)2157 static int cxgb4_inet6addr_handler(struct notifier_block *this,
2158 unsigned long event, void *data)
2159 {
2160 struct inet6_ifaddr *ifa = data;
2161 struct net_device *event_dev = ifa->idev->dev;
2162 const struct device *parent = NULL;
2163 #if IS_ENABLED(CONFIG_BONDING)
2164 struct adapter *adap;
2165 #endif
2166 if (is_vlan_dev(event_dev))
2167 event_dev = vlan_dev_real_dev(event_dev);
2168 #if IS_ENABLED(CONFIG_BONDING)
2169 if (event_dev->flags & IFF_MASTER) {
2170 list_for_each_entry(adap, &adapter_list, list_node) {
2171 switch (event) {
2172 case NETDEV_UP:
2173 cxgb4_clip_get(adap->port[0],
2174 (const u32 *)ifa, 1);
2175 break;
2176 case NETDEV_DOWN:
2177 cxgb4_clip_release(adap->port[0],
2178 (const u32 *)ifa, 1);
2179 break;
2180 default:
2181 break;
2182 }
2183 }
2184 return NOTIFY_OK;
2185 }
2186 #endif
2187
2188 if (event_dev)
2189 parent = event_dev->dev.parent;
2190
2191 if (parent && parent->driver == &cxgb4_driver.driver) {
2192 switch (event) {
2193 case NETDEV_UP:
2194 cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
2195 break;
2196 case NETDEV_DOWN:
2197 cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
2198 break;
2199 default:
2200 break;
2201 }
2202 }
2203 return NOTIFY_OK;
2204 }
2205
2206 static bool inet6addr_registered;
2207 static struct notifier_block cxgb4_inet6addr_notifier = {
2208 .notifier_call = cxgb4_inet6addr_handler
2209 };
2210
update_clip(const struct adapter * adap)2211 static void update_clip(const struct adapter *adap)
2212 {
2213 int i;
2214 struct net_device *dev;
2215 int ret;
2216
2217 rcu_read_lock();
2218
2219 for (i = 0; i < MAX_NPORTS; i++) {
2220 dev = adap->port[i];
2221 ret = 0;
2222
2223 if (dev)
2224 ret = cxgb4_update_root_dev_clip(dev);
2225
2226 if (ret < 0)
2227 break;
2228 }
2229 rcu_read_unlock();
2230 }
2231 #endif /* IS_ENABLED(CONFIG_IPV6) */
2232
2233 /**
2234 * cxgb_up - enable the adapter
2235 * @adap: adapter being enabled
2236 *
2237 * Called when the first port is enabled, this function performs the
2238 * actions necessary to make an adapter operational, such as completing
2239 * the initialization of HW modules, and enabling interrupts.
2240 *
2241 * Must be called with the rtnl lock held.
2242 */
cxgb_up(struct adapter * adap)2243 static int cxgb_up(struct adapter *adap)
2244 {
2245 int err;
2246
2247 mutex_lock(&uld_mutex);
2248 err = setup_sge_queues(adap);
2249 if (err)
2250 goto rel_lock;
2251 err = setup_rss(adap);
2252 if (err)
2253 goto freeq;
2254
2255 if (adap->flags & USING_MSIX) {
2256 name_msix_vecs(adap);
2257 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
2258 adap->msix_info[0].desc, adap);
2259 if (err)
2260 goto irq_err;
2261 err = request_msix_queue_irqs(adap);
2262 if (err) {
2263 free_irq(adap->msix_info[0].vec, adap);
2264 goto irq_err;
2265 }
2266 } else {
2267 err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2268 (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
2269 adap->port[0]->name, adap);
2270 if (err)
2271 goto irq_err;
2272 }
2273
2274 enable_rx(adap);
2275 t4_sge_start(adap);
2276 t4_intr_enable(adap);
2277 adap->flags |= FULL_INIT_DONE;
2278 mutex_unlock(&uld_mutex);
2279
2280 notify_ulds(adap, CXGB4_STATE_UP);
2281 #if IS_ENABLED(CONFIG_IPV6)
2282 update_clip(adap);
2283 #endif
2284 /* Initialize hash mac addr list*/
2285 INIT_LIST_HEAD(&adap->mac_hlist);
2286 return err;
2287
2288 irq_err:
2289 dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2290 freeq:
2291 t4_free_sge_resources(adap);
2292 rel_lock:
2293 mutex_unlock(&uld_mutex);
2294 return err;
2295 }
2296
cxgb_down(struct adapter * adapter)2297 static void cxgb_down(struct adapter *adapter)
2298 {
2299 cancel_work_sync(&adapter->tid_release_task);
2300 cancel_work_sync(&adapter->db_full_task);
2301 cancel_work_sync(&adapter->db_drop_task);
2302 adapter->tid_release_task_busy = false;
2303 adapter->tid_release_head = NULL;
2304
2305 t4_sge_stop(adapter);
2306 t4_free_sge_resources(adapter);
2307 adapter->flags &= ~FULL_INIT_DONE;
2308 }
2309
2310 /*
2311 * net_device operations
2312 */
cxgb_open(struct net_device * dev)2313 static int cxgb_open(struct net_device *dev)
2314 {
2315 int err;
2316 struct port_info *pi = netdev_priv(dev);
2317 struct adapter *adapter = pi->adapter;
2318
2319 netif_carrier_off(dev);
2320
2321 if (!(adapter->flags & FULL_INIT_DONE)) {
2322 err = cxgb_up(adapter);
2323 if (err < 0)
2324 return err;
2325 }
2326
2327 /* It's possible that the basic port information could have
2328 * changed since we first read it.
2329 */
2330 err = t4_update_port_info(pi);
2331 if (err < 0)
2332 return err;
2333
2334 err = link_start(dev);
2335 if (!err)
2336 netif_tx_start_all_queues(dev);
2337 return err;
2338 }
2339
cxgb_close(struct net_device * dev)2340 static int cxgb_close(struct net_device *dev)
2341 {
2342 struct port_info *pi = netdev_priv(dev);
2343 struct adapter *adapter = pi->adapter;
2344 int ret;
2345
2346 netif_tx_stop_all_queues(dev);
2347 netif_carrier_off(dev);
2348 ret = t4_enable_pi_params(adapter, adapter->pf, pi,
2349 false, false, false);
2350 #ifdef CONFIG_CHELSIO_T4_DCB
2351 cxgb4_dcb_reset(dev);
2352 dcb_tx_queue_prio_enable(dev, false);
2353 #endif
2354 return ret;
2355 }
2356
cxgb4_create_server_filter(const struct net_device * dev,unsigned int stid,__be32 sip,__be16 sport,__be16 vlan,unsigned int queue,unsigned char port,unsigned char mask)2357 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
2358 __be32 sip, __be16 sport, __be16 vlan,
2359 unsigned int queue, unsigned char port, unsigned char mask)
2360 {
2361 int ret;
2362 struct filter_entry *f;
2363 struct adapter *adap;
2364 int i;
2365 u8 *val;
2366
2367 adap = netdev2adap(dev);
2368
2369 /* Adjust stid to correct filter index */
2370 stid -= adap->tids.sftid_base;
2371 stid += adap->tids.nftids;
2372
2373 /* Check to make sure the filter requested is writable ...
2374 */
2375 f = &adap->tids.ftid_tab[stid];
2376 ret = writable_filter(f);
2377 if (ret)
2378 return ret;
2379
2380 /* Clear out any old resources being used by the filter before
2381 * we start constructing the new filter.
2382 */
2383 if (f->valid)
2384 clear_filter(adap, f);
2385
2386 /* Clear out filter specifications */
2387 memset(&f->fs, 0, sizeof(struct ch_filter_specification));
2388 f->fs.val.lport = cpu_to_be16(sport);
2389 f->fs.mask.lport = ~0;
2390 val = (u8 *)&sip;
2391 if ((val[0] | val[1] | val[2] | val[3]) != 0) {
2392 for (i = 0; i < 4; i++) {
2393 f->fs.val.lip[i] = val[i];
2394 f->fs.mask.lip[i] = ~0;
2395 }
2396 if (adap->params.tp.vlan_pri_map & PORT_F) {
2397 f->fs.val.iport = port;
2398 f->fs.mask.iport = mask;
2399 }
2400 }
2401
2402 if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
2403 f->fs.val.proto = IPPROTO_TCP;
2404 f->fs.mask.proto = ~0;
2405 }
2406
2407 f->fs.dirsteer = 1;
2408 f->fs.iq = queue;
2409 /* Mark filter as locked */
2410 f->locked = 1;
2411 f->fs.rpttid = 1;
2412
2413 /* Save the actual tid. We need this to get the corresponding
2414 * filter entry structure in filter_rpl.
2415 */
2416 f->tid = stid + adap->tids.ftid_base;
2417 ret = set_filter_wr(adap, stid);
2418 if (ret) {
2419 clear_filter(adap, f);
2420 return ret;
2421 }
2422
2423 return 0;
2424 }
2425 EXPORT_SYMBOL(cxgb4_create_server_filter);
2426
cxgb4_remove_server_filter(const struct net_device * dev,unsigned int stid,unsigned int queue,bool ipv6)2427 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
2428 unsigned int queue, bool ipv6)
2429 {
2430 struct filter_entry *f;
2431 struct adapter *adap;
2432
2433 adap = netdev2adap(dev);
2434
2435 /* Adjust stid to correct filter index */
2436 stid -= adap->tids.sftid_base;
2437 stid += adap->tids.nftids;
2438
2439 f = &adap->tids.ftid_tab[stid];
2440 /* Unlock the filter */
2441 f->locked = 0;
2442
2443 return delete_filter(adap, stid);
2444 }
2445 EXPORT_SYMBOL(cxgb4_remove_server_filter);
2446
cxgb_get_stats(struct net_device * dev,struct rtnl_link_stats64 * ns)2447 static void cxgb_get_stats(struct net_device *dev,
2448 struct rtnl_link_stats64 *ns)
2449 {
2450 struct port_stats stats;
2451 struct port_info *p = netdev_priv(dev);
2452 struct adapter *adapter = p->adapter;
2453
2454 /* Block retrieving statistics during EEH error
2455 * recovery. Otherwise, the recovery might fail
2456 * and the PCI device will be removed permanently
2457 */
2458 spin_lock(&adapter->stats_lock);
2459 if (!netif_device_present(dev)) {
2460 spin_unlock(&adapter->stats_lock);
2461 return;
2462 }
2463 t4_get_port_stats_offset(adapter, p->tx_chan, &stats,
2464 &p->stats_base);
2465 spin_unlock(&adapter->stats_lock);
2466
2467 ns->tx_bytes = stats.tx_octets;
2468 ns->tx_packets = stats.tx_frames;
2469 ns->rx_bytes = stats.rx_octets;
2470 ns->rx_packets = stats.rx_frames;
2471 ns->multicast = stats.rx_mcast_frames;
2472
2473 /* detailed rx_errors */
2474 ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
2475 stats.rx_runt;
2476 ns->rx_over_errors = 0;
2477 ns->rx_crc_errors = stats.rx_fcs_err;
2478 ns->rx_frame_errors = stats.rx_symbol_err;
2479 ns->rx_dropped = stats.rx_ovflow0 + stats.rx_ovflow1 +
2480 stats.rx_ovflow2 + stats.rx_ovflow3 +
2481 stats.rx_trunc0 + stats.rx_trunc1 +
2482 stats.rx_trunc2 + stats.rx_trunc3;
2483 ns->rx_missed_errors = 0;
2484
2485 /* detailed tx_errors */
2486 ns->tx_aborted_errors = 0;
2487 ns->tx_carrier_errors = 0;
2488 ns->tx_fifo_errors = 0;
2489 ns->tx_heartbeat_errors = 0;
2490 ns->tx_window_errors = 0;
2491
2492 ns->tx_errors = stats.tx_error_frames;
2493 ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
2494 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
2495 }
2496
cxgb_ioctl(struct net_device * dev,struct ifreq * req,int cmd)2497 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2498 {
2499 unsigned int mbox;
2500 int ret = 0, prtad, devad;
2501 struct port_info *pi = netdev_priv(dev);
2502 struct adapter *adapter = pi->adapter;
2503 struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
2504
2505 switch (cmd) {
2506 case SIOCGMIIPHY:
2507 if (pi->mdio_addr < 0)
2508 return -EOPNOTSUPP;
2509 data->phy_id = pi->mdio_addr;
2510 break;
2511 case SIOCGMIIREG:
2512 case SIOCSMIIREG:
2513 if (mdio_phy_id_is_c45(data->phy_id)) {
2514 prtad = mdio_phy_id_prtad(data->phy_id);
2515 devad = mdio_phy_id_devad(data->phy_id);
2516 } else if (data->phy_id < 32) {
2517 prtad = data->phy_id;
2518 devad = 0;
2519 data->reg_num &= 0x1f;
2520 } else
2521 return -EINVAL;
2522
2523 mbox = pi->adapter->pf;
2524 if (cmd == SIOCGMIIREG)
2525 ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
2526 data->reg_num, &data->val_out);
2527 else
2528 ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
2529 data->reg_num, data->val_in);
2530 break;
2531 case SIOCGHWTSTAMP:
2532 return copy_to_user(req->ifr_data, &pi->tstamp_config,
2533 sizeof(pi->tstamp_config)) ?
2534 -EFAULT : 0;
2535 case SIOCSHWTSTAMP:
2536 if (copy_from_user(&pi->tstamp_config, req->ifr_data,
2537 sizeof(pi->tstamp_config)))
2538 return -EFAULT;
2539
2540 if (!is_t4(adapter->params.chip)) {
2541 switch (pi->tstamp_config.tx_type) {
2542 case HWTSTAMP_TX_OFF:
2543 case HWTSTAMP_TX_ON:
2544 break;
2545 default:
2546 return -ERANGE;
2547 }
2548
2549 switch (pi->tstamp_config.rx_filter) {
2550 case HWTSTAMP_FILTER_NONE:
2551 pi->rxtstamp = false;
2552 break;
2553 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
2554 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
2555 cxgb4_ptprx_timestamping(pi, pi->port_id,
2556 PTP_TS_L4);
2557 break;
2558 case HWTSTAMP_FILTER_PTP_V2_EVENT:
2559 cxgb4_ptprx_timestamping(pi, pi->port_id,
2560 PTP_TS_L2_L4);
2561 break;
2562 case HWTSTAMP_FILTER_ALL:
2563 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
2564 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
2565 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
2566 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
2567 pi->rxtstamp = true;
2568 break;
2569 default:
2570 pi->tstamp_config.rx_filter =
2571 HWTSTAMP_FILTER_NONE;
2572 return -ERANGE;
2573 }
2574
2575 if ((pi->tstamp_config.tx_type == HWTSTAMP_TX_OFF) &&
2576 (pi->tstamp_config.rx_filter ==
2577 HWTSTAMP_FILTER_NONE)) {
2578 if (cxgb4_ptp_txtype(adapter, pi->port_id) >= 0)
2579 pi->ptp_enable = false;
2580 }
2581
2582 if (pi->tstamp_config.rx_filter !=
2583 HWTSTAMP_FILTER_NONE) {
2584 if (cxgb4_ptp_redirect_rx_packet(adapter,
2585 pi) >= 0)
2586 pi->ptp_enable = true;
2587 }
2588 } else {
2589 /* For T4 Adapters */
2590 switch (pi->tstamp_config.rx_filter) {
2591 case HWTSTAMP_FILTER_NONE:
2592 pi->rxtstamp = false;
2593 break;
2594 case HWTSTAMP_FILTER_ALL:
2595 pi->rxtstamp = true;
2596 break;
2597 default:
2598 pi->tstamp_config.rx_filter =
2599 HWTSTAMP_FILTER_NONE;
2600 return -ERANGE;
2601 }
2602 }
2603 return copy_to_user(req->ifr_data, &pi->tstamp_config,
2604 sizeof(pi->tstamp_config)) ?
2605 -EFAULT : 0;
2606 default:
2607 return -EOPNOTSUPP;
2608 }
2609 return ret;
2610 }
2611
cxgb_set_rxmode(struct net_device * dev)2612 static void cxgb_set_rxmode(struct net_device *dev)
2613 {
2614 /* unfortunately we can't return errors to the stack */
2615 set_rxmode(dev, -1, false);
2616 }
2617
cxgb_change_mtu(struct net_device * dev,int new_mtu)2618 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2619 {
2620 int ret;
2621 struct port_info *pi = netdev_priv(dev);
2622
2623 ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1,
2624 -1, -1, -1, true);
2625 if (!ret)
2626 dev->mtu = new_mtu;
2627 return ret;
2628 }
2629
2630 #ifdef CONFIG_PCI_IOV
cxgb4_mgmt_open(struct net_device * dev)2631 static int cxgb4_mgmt_open(struct net_device *dev)
2632 {
2633 /* Turn carrier off since we don't have to transmit anything on this
2634 * interface.
2635 */
2636 netif_carrier_off(dev);
2637 return 0;
2638 }
2639
2640 /* Fill MAC address that will be assigned by the FW */
cxgb4_mgmt_fill_vf_station_mac_addr(struct adapter * adap)2641 static void cxgb4_mgmt_fill_vf_station_mac_addr(struct adapter *adap)
2642 {
2643 u8 hw_addr[ETH_ALEN], macaddr[ETH_ALEN];
2644 unsigned int i, vf, nvfs;
2645 u16 a, b;
2646 int err;
2647 u8 *na;
2648
2649 adap->params.pci.vpd_cap_addr = pci_find_capability(adap->pdev,
2650 PCI_CAP_ID_VPD);
2651 err = t4_get_raw_vpd_params(adap, &adap->params.vpd);
2652 if (err)
2653 return;
2654
2655 na = adap->params.vpd.na;
2656 for (i = 0; i < ETH_ALEN; i++)
2657 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
2658 hex2val(na[2 * i + 1]));
2659
2660 a = (hw_addr[0] << 8) | hw_addr[1];
2661 b = (hw_addr[1] << 8) | hw_addr[2];
2662 a ^= b;
2663 a |= 0x0200; /* locally assigned Ethernet MAC address */
2664 a &= ~0x0100; /* not a multicast Ethernet MAC address */
2665 macaddr[0] = a >> 8;
2666 macaddr[1] = a & 0xff;
2667
2668 for (i = 2; i < 5; i++)
2669 macaddr[i] = hw_addr[i + 1];
2670
2671 for (vf = 0, nvfs = pci_sriov_get_totalvfs(adap->pdev);
2672 vf < nvfs; vf++) {
2673 macaddr[5] = adap->pf * 16 + vf;
2674 ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, macaddr);
2675 }
2676 }
2677
cxgb4_mgmt_set_vf_mac(struct net_device * dev,int vf,u8 * mac)2678 static int cxgb4_mgmt_set_vf_mac(struct net_device *dev, int vf, u8 *mac)
2679 {
2680 struct port_info *pi = netdev_priv(dev);
2681 struct adapter *adap = pi->adapter;
2682 int ret;
2683
2684 /* verify MAC addr is valid */
2685 if (!is_valid_ether_addr(mac)) {
2686 dev_err(pi->adapter->pdev_dev,
2687 "Invalid Ethernet address %pM for VF %d\n",
2688 mac, vf);
2689 return -EINVAL;
2690 }
2691
2692 dev_info(pi->adapter->pdev_dev,
2693 "Setting MAC %pM on VF %d\n", mac, vf);
2694 ret = t4_set_vf_mac_acl(adap, vf + 1, 1, mac);
2695 if (!ret)
2696 ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, mac);
2697 return ret;
2698 }
2699
cxgb4_mgmt_get_vf_config(struct net_device * dev,int vf,struct ifla_vf_info * ivi)2700 static int cxgb4_mgmt_get_vf_config(struct net_device *dev,
2701 int vf, struct ifla_vf_info *ivi)
2702 {
2703 struct port_info *pi = netdev_priv(dev);
2704 struct adapter *adap = pi->adapter;
2705 struct vf_info *vfinfo;
2706
2707 if (vf >= adap->num_vfs)
2708 return -EINVAL;
2709 vfinfo = &adap->vfinfo[vf];
2710
2711 ivi->vf = vf;
2712 ivi->max_tx_rate = vfinfo->tx_rate;
2713 ivi->min_tx_rate = 0;
2714 ether_addr_copy(ivi->mac, vfinfo->vf_mac_addr);
2715 ivi->vlan = vfinfo->vlan;
2716 return 0;
2717 }
2718
cxgb4_mgmt_get_phys_port_id(struct net_device * dev,struct netdev_phys_item_id * ppid)2719 static int cxgb4_mgmt_get_phys_port_id(struct net_device *dev,
2720 struct netdev_phys_item_id *ppid)
2721 {
2722 struct port_info *pi = netdev_priv(dev);
2723 unsigned int phy_port_id;
2724
2725 phy_port_id = pi->adapter->adap_idx * 10 + pi->port_id;
2726 ppid->id_len = sizeof(phy_port_id);
2727 memcpy(ppid->id, &phy_port_id, ppid->id_len);
2728 return 0;
2729 }
2730
cxgb4_mgmt_set_vf_rate(struct net_device * dev,int vf,int min_tx_rate,int max_tx_rate)2731 static int cxgb4_mgmt_set_vf_rate(struct net_device *dev, int vf,
2732 int min_tx_rate, int max_tx_rate)
2733 {
2734 struct port_info *pi = netdev_priv(dev);
2735 struct adapter *adap = pi->adapter;
2736 unsigned int link_ok, speed, mtu;
2737 u32 fw_pfvf, fw_class;
2738 int class_id = vf;
2739 int ret;
2740 u16 pktsize;
2741
2742 if (vf >= adap->num_vfs)
2743 return -EINVAL;
2744
2745 if (min_tx_rate) {
2746 dev_err(adap->pdev_dev,
2747 "Min tx rate (%d) (> 0) for VF %d is Invalid.\n",
2748 min_tx_rate, vf);
2749 return -EINVAL;
2750 }
2751
2752 ret = t4_get_link_params(pi, &link_ok, &speed, &mtu);
2753 if (ret != FW_SUCCESS) {
2754 dev_err(adap->pdev_dev,
2755 "Failed to get link information for VF %d\n", vf);
2756 return -EINVAL;
2757 }
2758
2759 if (!link_ok) {
2760 dev_err(adap->pdev_dev, "Link down for VF %d\n", vf);
2761 return -EINVAL;
2762 }
2763
2764 if (max_tx_rate > speed) {
2765 dev_err(adap->pdev_dev,
2766 "Max tx rate %d for VF %d can't be > link-speed %u",
2767 max_tx_rate, vf, speed);
2768 return -EINVAL;
2769 }
2770
2771 pktsize = mtu;
2772 /* subtract ethhdr size and 4 bytes crc since, f/w appends it */
2773 pktsize = pktsize - sizeof(struct ethhdr) - 4;
2774 /* subtract ipv4 hdr size, tcp hdr size to get typical IPv4 MSS size */
2775 pktsize = pktsize - sizeof(struct iphdr) - sizeof(struct tcphdr);
2776 /* configure Traffic Class for rate-limiting */
2777 ret = t4_sched_params(adap, SCHED_CLASS_TYPE_PACKET,
2778 SCHED_CLASS_LEVEL_CL_RL,
2779 SCHED_CLASS_MODE_CLASS,
2780 SCHED_CLASS_RATEUNIT_BITS,
2781 SCHED_CLASS_RATEMODE_ABS,
2782 pi->tx_chan, class_id, 0,
2783 max_tx_rate * 1000, 0, pktsize);
2784 if (ret) {
2785 dev_err(adap->pdev_dev, "Err %d for Traffic Class config\n",
2786 ret);
2787 return -EINVAL;
2788 }
2789 dev_info(adap->pdev_dev,
2790 "Class %d with MSS %u configured with rate %u\n",
2791 class_id, pktsize, max_tx_rate);
2792
2793 /* bind VF to configured Traffic Class */
2794 fw_pfvf = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
2795 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH));
2796 fw_class = class_id;
2797 ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, &fw_pfvf,
2798 &fw_class);
2799 if (ret) {
2800 dev_err(adap->pdev_dev,
2801 "Err %d in binding VF %d to Traffic Class %d\n",
2802 ret, vf, class_id);
2803 return -EINVAL;
2804 }
2805 dev_info(adap->pdev_dev, "PF %d VF %d is bound to Class %d\n",
2806 adap->pf, vf, class_id);
2807 adap->vfinfo[vf].tx_rate = max_tx_rate;
2808 return 0;
2809 }
2810
cxgb4_mgmt_set_vf_vlan(struct net_device * dev,int vf,u16 vlan,u8 qos,__be16 vlan_proto)2811 static int cxgb4_mgmt_set_vf_vlan(struct net_device *dev, int vf,
2812 u16 vlan, u8 qos, __be16 vlan_proto)
2813 {
2814 struct port_info *pi = netdev_priv(dev);
2815 struct adapter *adap = pi->adapter;
2816 int ret;
2817
2818 if (vf >= adap->num_vfs || vlan > 4095 || qos > 7)
2819 return -EINVAL;
2820
2821 if (vlan_proto != htons(ETH_P_8021Q) || qos != 0)
2822 return -EPROTONOSUPPORT;
2823
2824 ret = t4_set_vlan_acl(adap, adap->mbox, vf + 1, vlan);
2825 if (!ret) {
2826 adap->vfinfo[vf].vlan = vlan;
2827 return 0;
2828 }
2829
2830 dev_err(adap->pdev_dev, "Err %d %s VLAN ACL for PF/VF %d/%d\n",
2831 ret, (vlan ? "setting" : "clearing"), adap->pf, vf);
2832 return ret;
2833 }
2834 #endif /* CONFIG_PCI_IOV */
2835
cxgb_set_mac_addr(struct net_device * dev,void * p)2836 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
2837 {
2838 int ret;
2839 struct sockaddr *addr = p;
2840 struct port_info *pi = netdev_priv(dev);
2841
2842 if (!is_valid_ether_addr(addr->sa_data))
2843 return -EADDRNOTAVAIL;
2844
2845 ret = t4_change_mac(pi->adapter, pi->adapter->pf, pi->viid,
2846 pi->xact_addr_filt, addr->sa_data, true, true);
2847 if (ret < 0)
2848 return ret;
2849
2850 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2851 pi->xact_addr_filt = ret;
2852 return 0;
2853 }
2854
2855 #ifdef CONFIG_NET_POLL_CONTROLLER
cxgb_netpoll(struct net_device * dev)2856 static void cxgb_netpoll(struct net_device *dev)
2857 {
2858 struct port_info *pi = netdev_priv(dev);
2859 struct adapter *adap = pi->adapter;
2860
2861 if (adap->flags & USING_MSIX) {
2862 int i;
2863 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
2864
2865 for (i = pi->nqsets; i; i--, rx++)
2866 t4_sge_intr_msix(0, &rx->rspq);
2867 } else
2868 t4_intr_handler(adap)(0, adap);
2869 }
2870 #endif
2871
cxgb_set_tx_maxrate(struct net_device * dev,int index,u32 rate)2872 static int cxgb_set_tx_maxrate(struct net_device *dev, int index, u32 rate)
2873 {
2874 struct port_info *pi = netdev_priv(dev);
2875 struct adapter *adap = pi->adapter;
2876 struct sched_class *e;
2877 struct ch_sched_params p;
2878 struct ch_sched_queue qe;
2879 u32 req_rate;
2880 int err = 0;
2881
2882 if (!can_sched(dev))
2883 return -ENOTSUPP;
2884
2885 if (index < 0 || index > pi->nqsets - 1)
2886 return -EINVAL;
2887
2888 if (!(adap->flags & FULL_INIT_DONE)) {
2889 dev_err(adap->pdev_dev,
2890 "Failed to rate limit on queue %d. Link Down?\n",
2891 index);
2892 return -EINVAL;
2893 }
2894
2895 /* Convert from Mbps to Kbps */
2896 req_rate = rate * 1000;
2897
2898 /* Max rate is 100 Gbps */
2899 if (req_rate > SCHED_MAX_RATE_KBPS) {
2900 dev_err(adap->pdev_dev,
2901 "Invalid rate %u Mbps, Max rate is %u Mbps\n",
2902 rate, SCHED_MAX_RATE_KBPS / 1000);
2903 return -ERANGE;
2904 }
2905
2906 /* First unbind the queue from any existing class */
2907 memset(&qe, 0, sizeof(qe));
2908 qe.queue = index;
2909 qe.class = SCHED_CLS_NONE;
2910
2911 err = cxgb4_sched_class_unbind(dev, (void *)(&qe), SCHED_QUEUE);
2912 if (err) {
2913 dev_err(adap->pdev_dev,
2914 "Unbinding Queue %d on port %d fail. Err: %d\n",
2915 index, pi->port_id, err);
2916 return err;
2917 }
2918
2919 /* Queue already unbound */
2920 if (!req_rate)
2921 return 0;
2922
2923 /* Fetch any available unused or matching scheduling class */
2924 memset(&p, 0, sizeof(p));
2925 p.type = SCHED_CLASS_TYPE_PACKET;
2926 p.u.params.level = SCHED_CLASS_LEVEL_CL_RL;
2927 p.u.params.mode = SCHED_CLASS_MODE_CLASS;
2928 p.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS;
2929 p.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS;
2930 p.u.params.channel = pi->tx_chan;
2931 p.u.params.class = SCHED_CLS_NONE;
2932 p.u.params.minrate = 0;
2933 p.u.params.maxrate = req_rate;
2934 p.u.params.weight = 0;
2935 p.u.params.pktsize = dev->mtu;
2936
2937 e = cxgb4_sched_class_alloc(dev, &p);
2938 if (!e)
2939 return -ENOMEM;
2940
2941 /* Bind the queue to a scheduling class */
2942 memset(&qe, 0, sizeof(qe));
2943 qe.queue = index;
2944 qe.class = e->idx;
2945
2946 err = cxgb4_sched_class_bind(dev, (void *)(&qe), SCHED_QUEUE);
2947 if (err)
2948 dev_err(adap->pdev_dev,
2949 "Queue rate limiting failed. Err: %d\n", err);
2950 return err;
2951 }
2952
cxgb_setup_tc_flower(struct net_device * dev,struct tc_cls_flower_offload * cls_flower)2953 static int cxgb_setup_tc_flower(struct net_device *dev,
2954 struct tc_cls_flower_offload *cls_flower)
2955 {
2956 switch (cls_flower->command) {
2957 case TC_CLSFLOWER_REPLACE:
2958 return cxgb4_tc_flower_replace(dev, cls_flower);
2959 case TC_CLSFLOWER_DESTROY:
2960 return cxgb4_tc_flower_destroy(dev, cls_flower);
2961 case TC_CLSFLOWER_STATS:
2962 return cxgb4_tc_flower_stats(dev, cls_flower);
2963 default:
2964 return -EOPNOTSUPP;
2965 }
2966 }
2967
cxgb_setup_tc_cls_u32(struct net_device * dev,struct tc_cls_u32_offload * cls_u32)2968 static int cxgb_setup_tc_cls_u32(struct net_device *dev,
2969 struct tc_cls_u32_offload *cls_u32)
2970 {
2971 switch (cls_u32->command) {
2972 case TC_CLSU32_NEW_KNODE:
2973 case TC_CLSU32_REPLACE_KNODE:
2974 return cxgb4_config_knode(dev, cls_u32);
2975 case TC_CLSU32_DELETE_KNODE:
2976 return cxgb4_delete_knode(dev, cls_u32);
2977 default:
2978 return -EOPNOTSUPP;
2979 }
2980 }
2981
cxgb_setup_tc_block_cb(enum tc_setup_type type,void * type_data,void * cb_priv)2982 static int cxgb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2983 void *cb_priv)
2984 {
2985 struct net_device *dev = cb_priv;
2986 struct port_info *pi = netdev2pinfo(dev);
2987 struct adapter *adap = netdev2adap(dev);
2988
2989 if (!(adap->flags & FULL_INIT_DONE)) {
2990 dev_err(adap->pdev_dev,
2991 "Failed to setup tc on port %d. Link Down?\n",
2992 pi->port_id);
2993 return -EINVAL;
2994 }
2995
2996 if (!tc_cls_can_offload_and_chain0(dev, type_data))
2997 return -EOPNOTSUPP;
2998
2999 switch (type) {
3000 case TC_SETUP_CLSU32:
3001 return cxgb_setup_tc_cls_u32(dev, type_data);
3002 case TC_SETUP_CLSFLOWER:
3003 return cxgb_setup_tc_flower(dev, type_data);
3004 default:
3005 return -EOPNOTSUPP;
3006 }
3007 }
3008
cxgb_setup_tc_block(struct net_device * dev,struct tc_block_offload * f)3009 static int cxgb_setup_tc_block(struct net_device *dev,
3010 struct tc_block_offload *f)
3011 {
3012 struct port_info *pi = netdev2pinfo(dev);
3013
3014 if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
3015 return -EOPNOTSUPP;
3016
3017 switch (f->command) {
3018 case TC_BLOCK_BIND:
3019 return tcf_block_cb_register(f->block, cxgb_setup_tc_block_cb,
3020 pi, dev, f->extack);
3021 case TC_BLOCK_UNBIND:
3022 tcf_block_cb_unregister(f->block, cxgb_setup_tc_block_cb, pi);
3023 return 0;
3024 default:
3025 return -EOPNOTSUPP;
3026 }
3027 }
3028
cxgb_setup_tc(struct net_device * dev,enum tc_setup_type type,void * type_data)3029 static int cxgb_setup_tc(struct net_device *dev, enum tc_setup_type type,
3030 void *type_data)
3031 {
3032 switch (type) {
3033 case TC_SETUP_BLOCK:
3034 return cxgb_setup_tc_block(dev, type_data);
3035 default:
3036 return -EOPNOTSUPP;
3037 }
3038 }
3039
cxgb_del_udp_tunnel(struct net_device * netdev,struct udp_tunnel_info * ti)3040 static void cxgb_del_udp_tunnel(struct net_device *netdev,
3041 struct udp_tunnel_info *ti)
3042 {
3043 struct port_info *pi = netdev_priv(netdev);
3044 struct adapter *adapter = pi->adapter;
3045 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip);
3046 u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 };
3047 int ret = 0, i;
3048
3049 if (chip_ver < CHELSIO_T6)
3050 return;
3051
3052 switch (ti->type) {
3053 case UDP_TUNNEL_TYPE_VXLAN:
3054 if (!adapter->vxlan_port_cnt ||
3055 adapter->vxlan_port != ti->port)
3056 return; /* Invalid VxLAN destination port */
3057
3058 adapter->vxlan_port_cnt--;
3059 if (adapter->vxlan_port_cnt)
3060 return;
3061
3062 adapter->vxlan_port = 0;
3063 t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A, 0);
3064 break;
3065 case UDP_TUNNEL_TYPE_GENEVE:
3066 if (!adapter->geneve_port_cnt ||
3067 adapter->geneve_port != ti->port)
3068 return; /* Invalid GENEVE destination port */
3069
3070 adapter->geneve_port_cnt--;
3071 if (adapter->geneve_port_cnt)
3072 return;
3073
3074 adapter->geneve_port = 0;
3075 t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A, 0);
3076 break;
3077 default:
3078 return;
3079 }
3080
3081 /* Matchall mac entries can be deleted only after all tunnel ports
3082 * are brought down or removed.
3083 */
3084 if (!adapter->rawf_cnt)
3085 return;
3086 for_each_port(adapter, i) {
3087 pi = adap2pinfo(adapter, i);
3088 ret = t4_free_raw_mac_filt(adapter, pi->viid,
3089 match_all_mac, match_all_mac,
3090 adapter->rawf_start +
3091 pi->port_id,
3092 1, pi->port_id, false);
3093 if (ret < 0) {
3094 netdev_info(netdev, "Failed to free mac filter entry, for port %d\n",
3095 i);
3096 return;
3097 }
3098 atomic_dec(&adapter->mps_encap[adapter->rawf_start +
3099 pi->port_id].refcnt);
3100 }
3101 }
3102
cxgb_add_udp_tunnel(struct net_device * netdev,struct udp_tunnel_info * ti)3103 static void cxgb_add_udp_tunnel(struct net_device *netdev,
3104 struct udp_tunnel_info *ti)
3105 {
3106 struct port_info *pi = netdev_priv(netdev);
3107 struct adapter *adapter = pi->adapter;
3108 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip);
3109 u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 };
3110 int i, ret;
3111
3112 if (chip_ver < CHELSIO_T6 || !adapter->rawf_cnt)
3113 return;
3114
3115 switch (ti->type) {
3116 case UDP_TUNNEL_TYPE_VXLAN:
3117 /* Callback for adding vxlan port can be called with the same
3118 * port for both IPv4 and IPv6. We should not disable the
3119 * offloading when the same port for both protocols is added
3120 * and later one of them is removed.
3121 */
3122 if (adapter->vxlan_port_cnt &&
3123 adapter->vxlan_port == ti->port) {
3124 adapter->vxlan_port_cnt++;
3125 return;
3126 }
3127
3128 /* We will support only one VxLAN port */
3129 if (adapter->vxlan_port_cnt) {
3130 netdev_info(netdev, "UDP port %d already offloaded, not adding port %d\n",
3131 be16_to_cpu(adapter->vxlan_port),
3132 be16_to_cpu(ti->port));
3133 return;
3134 }
3135
3136 adapter->vxlan_port = ti->port;
3137 adapter->vxlan_port_cnt = 1;
3138
3139 t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A,
3140 VXLAN_V(be16_to_cpu(ti->port)) | VXLAN_EN_F);
3141 break;
3142 case UDP_TUNNEL_TYPE_GENEVE:
3143 if (adapter->geneve_port_cnt &&
3144 adapter->geneve_port == ti->port) {
3145 adapter->geneve_port_cnt++;
3146 return;
3147 }
3148
3149 /* We will support only one GENEVE port */
3150 if (adapter->geneve_port_cnt) {
3151 netdev_info(netdev, "UDP port %d already offloaded, not adding port %d\n",
3152 be16_to_cpu(adapter->geneve_port),
3153 be16_to_cpu(ti->port));
3154 return;
3155 }
3156
3157 adapter->geneve_port = ti->port;
3158 adapter->geneve_port_cnt = 1;
3159
3160 t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A,
3161 GENEVE_V(be16_to_cpu(ti->port)) | GENEVE_EN_F);
3162 break;
3163 default:
3164 return;
3165 }
3166
3167 /* Create a 'match all' mac filter entry for inner mac,
3168 * if raw mac interface is supported. Once the linux kernel provides
3169 * driver entry points for adding/deleting the inner mac addresses,
3170 * we will remove this 'match all' entry and fallback to adding
3171 * exact match filters.
3172 */
3173 for_each_port(adapter, i) {
3174 pi = adap2pinfo(adapter, i);
3175
3176 ret = t4_alloc_raw_mac_filt(adapter, pi->viid,
3177 match_all_mac,
3178 match_all_mac,
3179 adapter->rawf_start +
3180 pi->port_id,
3181 1, pi->port_id, false);
3182 if (ret < 0) {
3183 netdev_info(netdev, "Failed to allocate a mac filter entry, not adding port %d\n",
3184 be16_to_cpu(ti->port));
3185 cxgb_del_udp_tunnel(netdev, ti);
3186 return;
3187 }
3188 atomic_inc(&adapter->mps_encap[ret].refcnt);
3189 }
3190 }
3191
cxgb_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3192 static netdev_features_t cxgb_features_check(struct sk_buff *skb,
3193 struct net_device *dev,
3194 netdev_features_t features)
3195 {
3196 struct port_info *pi = netdev_priv(dev);
3197 struct adapter *adapter = pi->adapter;
3198
3199 if (CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6)
3200 return features;
3201
3202 /* Check if hw supports offload for this packet */
3203 if (!skb->encapsulation || cxgb_encap_offload_supported(skb))
3204 return features;
3205
3206 /* Offload is not supported for this encapsulated packet */
3207 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3208 }
3209
cxgb_fix_features(struct net_device * dev,netdev_features_t features)3210 static netdev_features_t cxgb_fix_features(struct net_device *dev,
3211 netdev_features_t features)
3212 {
3213 /* Disable GRO, if RX_CSUM is disabled */
3214 if (!(features & NETIF_F_RXCSUM))
3215 features &= ~NETIF_F_GRO;
3216
3217 return features;
3218 }
3219
3220 static const struct net_device_ops cxgb4_netdev_ops = {
3221 .ndo_open = cxgb_open,
3222 .ndo_stop = cxgb_close,
3223 .ndo_start_xmit = t4_start_xmit,
3224 .ndo_select_queue = cxgb_select_queue,
3225 .ndo_get_stats64 = cxgb_get_stats,
3226 .ndo_set_rx_mode = cxgb_set_rxmode,
3227 .ndo_set_mac_address = cxgb_set_mac_addr,
3228 .ndo_set_features = cxgb_set_features,
3229 .ndo_validate_addr = eth_validate_addr,
3230 .ndo_do_ioctl = cxgb_ioctl,
3231 .ndo_change_mtu = cxgb_change_mtu,
3232 #ifdef CONFIG_NET_POLL_CONTROLLER
3233 .ndo_poll_controller = cxgb_netpoll,
3234 #endif
3235 #ifdef CONFIG_CHELSIO_T4_FCOE
3236 .ndo_fcoe_enable = cxgb_fcoe_enable,
3237 .ndo_fcoe_disable = cxgb_fcoe_disable,
3238 #endif /* CONFIG_CHELSIO_T4_FCOE */
3239 .ndo_set_tx_maxrate = cxgb_set_tx_maxrate,
3240 .ndo_setup_tc = cxgb_setup_tc,
3241 .ndo_udp_tunnel_add = cxgb_add_udp_tunnel,
3242 .ndo_udp_tunnel_del = cxgb_del_udp_tunnel,
3243 .ndo_features_check = cxgb_features_check,
3244 .ndo_fix_features = cxgb_fix_features,
3245 };
3246
3247 #ifdef CONFIG_PCI_IOV
3248 static const struct net_device_ops cxgb4_mgmt_netdev_ops = {
3249 .ndo_open = cxgb4_mgmt_open,
3250 .ndo_set_vf_mac = cxgb4_mgmt_set_vf_mac,
3251 .ndo_get_vf_config = cxgb4_mgmt_get_vf_config,
3252 .ndo_set_vf_rate = cxgb4_mgmt_set_vf_rate,
3253 .ndo_get_phys_port_id = cxgb4_mgmt_get_phys_port_id,
3254 .ndo_set_vf_vlan = cxgb4_mgmt_set_vf_vlan,
3255 };
3256 #endif
3257
cxgb4_mgmt_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)3258 static void cxgb4_mgmt_get_drvinfo(struct net_device *dev,
3259 struct ethtool_drvinfo *info)
3260 {
3261 struct adapter *adapter = netdev2adap(dev);
3262
3263 strlcpy(info->driver, cxgb4_driver_name, sizeof(info->driver));
3264 strlcpy(info->version, cxgb4_driver_version,
3265 sizeof(info->version));
3266 strlcpy(info->bus_info, pci_name(adapter->pdev),
3267 sizeof(info->bus_info));
3268 }
3269
3270 static const struct ethtool_ops cxgb4_mgmt_ethtool_ops = {
3271 .get_drvinfo = cxgb4_mgmt_get_drvinfo,
3272 };
3273
notify_fatal_err(struct work_struct * work)3274 static void notify_fatal_err(struct work_struct *work)
3275 {
3276 struct adapter *adap;
3277
3278 adap = container_of(work, struct adapter, fatal_err_notify_task);
3279 notify_ulds(adap, CXGB4_STATE_FATAL_ERROR);
3280 }
3281
t4_fatal_err(struct adapter * adap)3282 void t4_fatal_err(struct adapter *adap)
3283 {
3284 int port;
3285
3286 if (pci_channel_offline(adap->pdev))
3287 return;
3288
3289 /* Disable the SGE since ULDs are going to free resources that
3290 * could be exposed to the adapter. RDMA MWs for example...
3291 */
3292 t4_shutdown_adapter(adap);
3293 for_each_port(adap, port) {
3294 struct net_device *dev = adap->port[port];
3295
3296 /* If we get here in very early initialization the network
3297 * devices may not have been set up yet.
3298 */
3299 if (!dev)
3300 continue;
3301
3302 netif_tx_stop_all_queues(dev);
3303 netif_carrier_off(dev);
3304 }
3305 dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
3306 queue_work(adap->workq, &adap->fatal_err_notify_task);
3307 }
3308
setup_memwin(struct adapter * adap)3309 static void setup_memwin(struct adapter *adap)
3310 {
3311 u32 nic_win_base = t4_get_util_window(adap);
3312
3313 t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC);
3314 }
3315
setup_memwin_rdma(struct adapter * adap)3316 static void setup_memwin_rdma(struct adapter *adap)
3317 {
3318 if (adap->vres.ocq.size) {
3319 u32 start;
3320 unsigned int sz_kb;
3321
3322 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
3323 start &= PCI_BASE_ADDRESS_MEM_MASK;
3324 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
3325 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
3326 t4_write_reg(adap,
3327 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
3328 start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
3329 t4_write_reg(adap,
3330 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
3331 adap->vres.ocq.start);
3332 t4_read_reg(adap,
3333 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
3334 }
3335 }
3336
3337 /* HMA Definitions */
3338
3339 /* The maximum number of address that can be send in a single FW cmd */
3340 #define HMA_MAX_ADDR_IN_CMD 5
3341
3342 #define HMA_PAGE_SIZE PAGE_SIZE
3343
3344 #define HMA_MAX_NO_FW_ADDRESS (16 << 10) /* FW supports 16K addresses */
3345
3346 #define HMA_PAGE_ORDER \
3347 ((HMA_PAGE_SIZE < HMA_MAX_NO_FW_ADDRESS) ? \
3348 ilog2(HMA_MAX_NO_FW_ADDRESS / HMA_PAGE_SIZE) : 0)
3349
3350 /* The minimum and maximum possible HMA sizes that can be specified in the FW
3351 * configuration(in units of MB).
3352 */
3353 #define HMA_MIN_TOTAL_SIZE 1
3354 #define HMA_MAX_TOTAL_SIZE \
3355 (((HMA_PAGE_SIZE << HMA_PAGE_ORDER) * \
3356 HMA_MAX_NO_FW_ADDRESS) >> 20)
3357
adap_free_hma_mem(struct adapter * adapter)3358 static void adap_free_hma_mem(struct adapter *adapter)
3359 {
3360 struct scatterlist *iter;
3361 struct page *page;
3362 int i;
3363
3364 if (!adapter->hma.sgt)
3365 return;
3366
3367 if (adapter->hma.flags & HMA_DMA_MAPPED_FLAG) {
3368 dma_unmap_sg(adapter->pdev_dev, adapter->hma.sgt->sgl,
3369 adapter->hma.sgt->nents, PCI_DMA_BIDIRECTIONAL);
3370 adapter->hma.flags &= ~HMA_DMA_MAPPED_FLAG;
3371 }
3372
3373 for_each_sg(adapter->hma.sgt->sgl, iter,
3374 adapter->hma.sgt->orig_nents, i) {
3375 page = sg_page(iter);
3376 if (page)
3377 __free_pages(page, HMA_PAGE_ORDER);
3378 }
3379
3380 kfree(adapter->hma.phy_addr);
3381 sg_free_table(adapter->hma.sgt);
3382 kfree(adapter->hma.sgt);
3383 adapter->hma.sgt = NULL;
3384 }
3385
adap_config_hma(struct adapter * adapter)3386 static int adap_config_hma(struct adapter *adapter)
3387 {
3388 struct scatterlist *sgl, *iter;
3389 struct sg_table *sgt;
3390 struct page *newpage;
3391 unsigned int i, j, k;
3392 u32 param, hma_size;
3393 unsigned int ncmds;
3394 size_t page_size;
3395 u32 page_order;
3396 int node, ret;
3397
3398 /* HMA is supported only for T6+ cards.
3399 * Avoid initializing HMA in kdump kernels.
3400 */
3401 if (is_kdump_kernel() ||
3402 CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6)
3403 return 0;
3404
3405 /* Get the HMA region size required by fw */
3406 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3407 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HMA_SIZE));
3408 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3409 1, ¶m, &hma_size);
3410 /* An error means card has its own memory or HMA is not supported by
3411 * the firmware. Return without any errors.
3412 */
3413 if (ret || !hma_size)
3414 return 0;
3415
3416 if (hma_size < HMA_MIN_TOTAL_SIZE ||
3417 hma_size > HMA_MAX_TOTAL_SIZE) {
3418 dev_err(adapter->pdev_dev,
3419 "HMA size %uMB beyond bounds(%u-%lu)MB\n",
3420 hma_size, HMA_MIN_TOTAL_SIZE, HMA_MAX_TOTAL_SIZE);
3421 return -EINVAL;
3422 }
3423
3424 page_size = HMA_PAGE_SIZE;
3425 page_order = HMA_PAGE_ORDER;
3426 adapter->hma.sgt = kzalloc(sizeof(*adapter->hma.sgt), GFP_KERNEL);
3427 if (unlikely(!adapter->hma.sgt)) {
3428 dev_err(adapter->pdev_dev, "HMA SG table allocation failed\n");
3429 return -ENOMEM;
3430 }
3431 sgt = adapter->hma.sgt;
3432 /* FW returned value will be in MB's
3433 */
3434 sgt->orig_nents = (hma_size << 20) / (page_size << page_order);
3435 if (sg_alloc_table(sgt, sgt->orig_nents, GFP_KERNEL)) {
3436 dev_err(adapter->pdev_dev, "HMA SGL allocation failed\n");
3437 kfree(adapter->hma.sgt);
3438 adapter->hma.sgt = NULL;
3439 return -ENOMEM;
3440 }
3441
3442 sgl = adapter->hma.sgt->sgl;
3443 node = dev_to_node(adapter->pdev_dev);
3444 for_each_sg(sgl, iter, sgt->orig_nents, i) {
3445 newpage = alloc_pages_node(node, __GFP_NOWARN | GFP_KERNEL |
3446 __GFP_ZERO, page_order);
3447 if (!newpage) {
3448 dev_err(adapter->pdev_dev,
3449 "Not enough memory for HMA page allocation\n");
3450 ret = -ENOMEM;
3451 goto free_hma;
3452 }
3453 sg_set_page(iter, newpage, page_size << page_order, 0);
3454 }
3455
3456 sgt->nents = dma_map_sg(adapter->pdev_dev, sgl, sgt->orig_nents,
3457 DMA_BIDIRECTIONAL);
3458 if (!sgt->nents) {
3459 dev_err(adapter->pdev_dev,
3460 "Not enough memory for HMA DMA mapping");
3461 ret = -ENOMEM;
3462 goto free_hma;
3463 }
3464 adapter->hma.flags |= HMA_DMA_MAPPED_FLAG;
3465
3466 adapter->hma.phy_addr = kcalloc(sgt->nents, sizeof(dma_addr_t),
3467 GFP_KERNEL);
3468 if (unlikely(!adapter->hma.phy_addr))
3469 goto free_hma;
3470
3471 for_each_sg(sgl, iter, sgt->nents, i) {
3472 newpage = sg_page(iter);
3473 adapter->hma.phy_addr[i] = sg_dma_address(iter);
3474 }
3475
3476 ncmds = DIV_ROUND_UP(sgt->nents, HMA_MAX_ADDR_IN_CMD);
3477 /* Pass on the addresses to firmware */
3478 for (i = 0, k = 0; i < ncmds; i++, k += HMA_MAX_ADDR_IN_CMD) {
3479 struct fw_hma_cmd hma_cmd;
3480 u8 naddr = HMA_MAX_ADDR_IN_CMD;
3481 u8 soc = 0, eoc = 0;
3482 u8 hma_mode = 1; /* Presently we support only Page table mode */
3483
3484 soc = (i == 0) ? 1 : 0;
3485 eoc = (i == ncmds - 1) ? 1 : 0;
3486
3487 /* For last cmd, set naddr corresponding to remaining
3488 * addresses
3489 */
3490 if (i == ncmds - 1) {
3491 naddr = sgt->nents % HMA_MAX_ADDR_IN_CMD;
3492 naddr = naddr ? naddr : HMA_MAX_ADDR_IN_CMD;
3493 }
3494 memset(&hma_cmd, 0, sizeof(hma_cmd));
3495 hma_cmd.op_pkd = htonl(FW_CMD_OP_V(FW_HMA_CMD) |
3496 FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
3497 hma_cmd.retval_len16 = htonl(FW_LEN16(hma_cmd));
3498
3499 hma_cmd.mode_to_pcie_params =
3500 htonl(FW_HMA_CMD_MODE_V(hma_mode) |
3501 FW_HMA_CMD_SOC_V(soc) | FW_HMA_CMD_EOC_V(eoc));
3502
3503 /* HMA cmd size specified in MB's */
3504 hma_cmd.naddr_size =
3505 htonl(FW_HMA_CMD_SIZE_V(hma_size) |
3506 FW_HMA_CMD_NADDR_V(naddr));
3507
3508 /* Total Page size specified in units of 4K */
3509 hma_cmd.addr_size_pkd =
3510 htonl(FW_HMA_CMD_ADDR_SIZE_V
3511 ((page_size << page_order) >> 12));
3512
3513 /* Fill the 5 addresses */
3514 for (j = 0; j < naddr; j++) {
3515 hma_cmd.phy_address[j] =
3516 cpu_to_be64(adapter->hma.phy_addr[j + k]);
3517 }
3518 ret = t4_wr_mbox(adapter, adapter->mbox, &hma_cmd,
3519 sizeof(hma_cmd), &hma_cmd);
3520 if (ret) {
3521 dev_err(adapter->pdev_dev,
3522 "HMA FW command failed with err %d\n", ret);
3523 goto free_hma;
3524 }
3525 }
3526
3527 if (!ret)
3528 dev_info(adapter->pdev_dev,
3529 "Reserved %uMB host memory for HMA\n", hma_size);
3530 return ret;
3531
3532 free_hma:
3533 adap_free_hma_mem(adapter);
3534 return ret;
3535 }
3536
adap_init1(struct adapter * adap,struct fw_caps_config_cmd * c)3537 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
3538 {
3539 u32 v;
3540 int ret;
3541
3542 /* Now that we've successfully configured and initialized the adapter
3543 * can ask the Firmware what resources it has provisioned for us.
3544 */
3545 ret = t4_get_pfres(adap);
3546 if (ret) {
3547 dev_err(adap->pdev_dev,
3548 "Unable to retrieve resource provisioning information\n");
3549 return ret;
3550 }
3551
3552 /* get device capabilities */
3553 memset(c, 0, sizeof(*c));
3554 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3555 FW_CMD_REQUEST_F | FW_CMD_READ_F);
3556 c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
3557 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c);
3558 if (ret < 0)
3559 return ret;
3560
3561 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3562 FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
3563 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL);
3564 if (ret < 0)
3565 return ret;
3566
3567 ret = t4_config_glbl_rss(adap, adap->pf,
3568 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
3569 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
3570 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
3571 if (ret < 0)
3572 return ret;
3573
3574 ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64,
3575 MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
3576 FW_CMD_CAP_PF);
3577 if (ret < 0)
3578 return ret;
3579
3580 t4_sge_init(adap);
3581
3582 /* tweak some settings */
3583 t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
3584 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
3585 t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
3586 v = t4_read_reg(adap, TP_PIO_DATA_A);
3587 t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
3588
3589 /* first 4 Tx modulation queues point to consecutive Tx channels */
3590 adap->params.tp.tx_modq_map = 0xE4;
3591 t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
3592 TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
3593
3594 /* associate each Tx modulation queue with consecutive Tx channels */
3595 v = 0x84218421;
3596 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3597 &v, 1, TP_TX_SCHED_HDR_A);
3598 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3599 &v, 1, TP_TX_SCHED_FIFO_A);
3600 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3601 &v, 1, TP_TX_SCHED_PCMD_A);
3602
3603 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
3604 if (is_offload(adap)) {
3605 t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
3606 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3607 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3608 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3609 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3610 t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
3611 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3612 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3613 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3614 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3615 }
3616
3617 /* get basic stuff going */
3618 return t4_early_init(adap, adap->pf);
3619 }
3620
3621 /*
3622 * Max # of ATIDs. The absolute HW max is 16K but we keep it lower.
3623 */
3624 #define MAX_ATIDS 8192U
3625
3626 /*
3627 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3628 *
3629 * If the firmware we're dealing with has Configuration File support, then
3630 * we use that to perform all configuration
3631 */
3632
3633 /*
3634 * Tweak configuration based on module parameters, etc. Most of these have
3635 * defaults assigned to them by Firmware Configuration Files (if we're using
3636 * them) but need to be explicitly set if we're using hard-coded
3637 * initialization. But even in the case of using Firmware Configuration
3638 * Files, we'd like to expose the ability to change these via module
3639 * parameters so these are essentially common tweaks/settings for
3640 * Configuration Files and hard-coded initialization ...
3641 */
adap_init0_tweaks(struct adapter * adapter)3642 static int adap_init0_tweaks(struct adapter *adapter)
3643 {
3644 /*
3645 * Fix up various Host-Dependent Parameters like Page Size, Cache
3646 * Line Size, etc. The firmware default is for a 4KB Page Size and
3647 * 64B Cache Line Size ...
3648 */
3649 t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
3650
3651 /*
3652 * Process module parameters which affect early initialization.
3653 */
3654 if (rx_dma_offset != 2 && rx_dma_offset != 0) {
3655 dev_err(&adapter->pdev->dev,
3656 "Ignoring illegal rx_dma_offset=%d, using 2\n",
3657 rx_dma_offset);
3658 rx_dma_offset = 2;
3659 }
3660 t4_set_reg_field(adapter, SGE_CONTROL_A,
3661 PKTSHIFT_V(PKTSHIFT_M),
3662 PKTSHIFT_V(rx_dma_offset));
3663
3664 /*
3665 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
3666 * adds the pseudo header itself.
3667 */
3668 t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
3669 CSUM_HAS_PSEUDO_HDR_F, 0);
3670
3671 return 0;
3672 }
3673
3674 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips
3675 * unto themselves and they contain their own firmware to perform their
3676 * tasks ...
3677 */
phy_aq1202_version(const u8 * phy_fw_data,size_t phy_fw_size)3678 static int phy_aq1202_version(const u8 *phy_fw_data,
3679 size_t phy_fw_size)
3680 {
3681 int offset;
3682
3683 /* At offset 0x8 you're looking for the primary image's
3684 * starting offset which is 3 Bytes wide
3685 *
3686 * At offset 0xa of the primary image, you look for the offset
3687 * of the DRAM segment which is 3 Bytes wide.
3688 *
3689 * The FW version is at offset 0x27e of the DRAM and is 2 Bytes
3690 * wide
3691 */
3692 #define be16(__p) (((__p)[0] << 8) | (__p)[1])
3693 #define le16(__p) ((__p)[0] | ((__p)[1] << 8))
3694 #define le24(__p) (le16(__p) | ((__p)[2] << 16))
3695
3696 offset = le24(phy_fw_data + 0x8) << 12;
3697 offset = le24(phy_fw_data + offset + 0xa);
3698 return be16(phy_fw_data + offset + 0x27e);
3699
3700 #undef be16
3701 #undef le16
3702 #undef le24
3703 }
3704
3705 static struct info_10gbt_phy_fw {
3706 unsigned int phy_fw_id; /* PCI Device ID */
3707 char *phy_fw_file; /* /lib/firmware/ PHY Firmware file */
3708 int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size);
3709 int phy_flash; /* Has FLASH for PHY Firmware */
3710 } phy_info_array[] = {
3711 {
3712 PHY_AQ1202_DEVICEID,
3713 PHY_AQ1202_FIRMWARE,
3714 phy_aq1202_version,
3715 1,
3716 },
3717 {
3718 PHY_BCM84834_DEVICEID,
3719 PHY_BCM84834_FIRMWARE,
3720 NULL,
3721 0,
3722 },
3723 { 0, NULL, NULL },
3724 };
3725
find_phy_info(int devid)3726 static struct info_10gbt_phy_fw *find_phy_info(int devid)
3727 {
3728 int i;
3729
3730 for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) {
3731 if (phy_info_array[i].phy_fw_id == devid)
3732 return &phy_info_array[i];
3733 }
3734 return NULL;
3735 }
3736
3737 /* Handle updating of chip-external 10Gb/s-BT PHY firmware. This needs to
3738 * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD. On error
3739 * we return a negative error number. If we transfer new firmware we return 1
3740 * (from t4_load_phy_fw()). If we don't do anything we return 0.
3741 */
adap_init0_phy(struct adapter * adap)3742 static int adap_init0_phy(struct adapter *adap)
3743 {
3744 const struct firmware *phyf;
3745 int ret;
3746 struct info_10gbt_phy_fw *phy_info;
3747
3748 /* Use the device ID to determine which PHY file to flash.
3749 */
3750 phy_info = find_phy_info(adap->pdev->device);
3751 if (!phy_info) {
3752 dev_warn(adap->pdev_dev,
3753 "No PHY Firmware file found for this PHY\n");
3754 return -EOPNOTSUPP;
3755 }
3756
3757 /* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then
3758 * use that. The adapter firmware provides us with a memory buffer
3759 * where we can load a PHY firmware file from the host if we want to
3760 * override the PHY firmware File in flash.
3761 */
3762 ret = request_firmware_direct(&phyf, phy_info->phy_fw_file,
3763 adap->pdev_dev);
3764 if (ret < 0) {
3765 /* For adapters without FLASH attached to PHY for their
3766 * firmware, it's obviously a fatal error if we can't get the
3767 * firmware to the adapter. For adapters with PHY firmware
3768 * FLASH storage, it's worth a warning if we can't find the
3769 * PHY Firmware but we'll neuter the error ...
3770 */
3771 dev_err(adap->pdev_dev, "unable to find PHY Firmware image "
3772 "/lib/firmware/%s, error %d\n",
3773 phy_info->phy_fw_file, -ret);
3774 if (phy_info->phy_flash) {
3775 int cur_phy_fw_ver = 0;
3776
3777 t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3778 dev_warn(adap->pdev_dev, "continuing with, on-adapter "
3779 "FLASH copy, version %#x\n", cur_phy_fw_ver);
3780 ret = 0;
3781 }
3782
3783 return ret;
3784 }
3785
3786 /* Load PHY Firmware onto adapter.
3787 */
3788 ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock,
3789 phy_info->phy_fw_version,
3790 (u8 *)phyf->data, phyf->size);
3791 if (ret < 0)
3792 dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n",
3793 -ret);
3794 else if (ret > 0) {
3795 int new_phy_fw_ver = 0;
3796
3797 if (phy_info->phy_fw_version)
3798 new_phy_fw_ver = phy_info->phy_fw_version(phyf->data,
3799 phyf->size);
3800 dev_info(adap->pdev_dev, "Successfully transferred PHY "
3801 "Firmware /lib/firmware/%s, version %#x\n",
3802 phy_info->phy_fw_file, new_phy_fw_ver);
3803 }
3804
3805 release_firmware(phyf);
3806
3807 return ret;
3808 }
3809
3810 /*
3811 * Attempt to initialize the adapter via a Firmware Configuration File.
3812 */
adap_init0_config(struct adapter * adapter,int reset)3813 static int adap_init0_config(struct adapter *adapter, int reset)
3814 {
3815 struct fw_caps_config_cmd caps_cmd;
3816 const struct firmware *cf;
3817 unsigned long mtype = 0, maddr = 0;
3818 u32 finiver, finicsum, cfcsum;
3819 int ret;
3820 int config_issued = 0;
3821 char *fw_config_file, fw_config_file_path[256];
3822 char *config_name = NULL;
3823
3824 /*
3825 * Reset device if necessary.
3826 */
3827 if (reset) {
3828 ret = t4_fw_reset(adapter, adapter->mbox,
3829 PIORSTMODE_F | PIORST_F);
3830 if (ret < 0)
3831 goto bye;
3832 }
3833
3834 /* If this is a 10Gb/s-BT adapter make sure the chip-external
3835 * 10Gb/s-BT PHYs have up-to-date firmware. Note that this step needs
3836 * to be performed after any global adapter RESET above since some
3837 * PHYs only have local RAM copies of the PHY firmware.
3838 */
3839 if (is_10gbt_device(adapter->pdev->device)) {
3840 ret = adap_init0_phy(adapter);
3841 if (ret < 0)
3842 goto bye;
3843 }
3844 /*
3845 * If we have a T4 configuration file under /lib/firmware/cxgb4/,
3846 * then use that. Otherwise, use the configuration file stored
3847 * in the adapter flash ...
3848 */
3849 switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
3850 case CHELSIO_T4:
3851 fw_config_file = FW4_CFNAME;
3852 break;
3853 case CHELSIO_T5:
3854 fw_config_file = FW5_CFNAME;
3855 break;
3856 case CHELSIO_T6:
3857 fw_config_file = FW6_CFNAME;
3858 break;
3859 default:
3860 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
3861 adapter->pdev->device);
3862 ret = -EINVAL;
3863 goto bye;
3864 }
3865
3866 ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
3867 if (ret < 0) {
3868 config_name = "On FLASH";
3869 mtype = FW_MEMTYPE_CF_FLASH;
3870 maddr = t4_flash_cfg_addr(adapter);
3871 } else {
3872 u32 params[7], val[7];
3873
3874 sprintf(fw_config_file_path,
3875 "/lib/firmware/%s", fw_config_file);
3876 config_name = fw_config_file_path;
3877
3878 if (cf->size >= FLASH_CFG_MAX_SIZE)
3879 ret = -ENOMEM;
3880 else {
3881 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3882 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3883 ret = t4_query_params(adapter, adapter->mbox,
3884 adapter->pf, 0, 1, params, val);
3885 if (ret == 0) {
3886 /*
3887 * For t4_memory_rw() below addresses and
3888 * sizes have to be in terms of multiples of 4
3889 * bytes. So, if the Configuration File isn't
3890 * a multiple of 4 bytes in length we'll have
3891 * to write that out separately since we can't
3892 * guarantee that the bytes following the
3893 * residual byte in the buffer returned by
3894 * request_firmware() are zeroed out ...
3895 */
3896 size_t resid = cf->size & 0x3;
3897 size_t size = cf->size & ~0x3;
3898 __be32 *data = (__be32 *)cf->data;
3899
3900 mtype = FW_PARAMS_PARAM_Y_G(val[0]);
3901 maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
3902
3903 spin_lock(&adapter->win0_lock);
3904 ret = t4_memory_rw(adapter, 0, mtype, maddr,
3905 size, data, T4_MEMORY_WRITE);
3906 if (ret == 0 && resid != 0) {
3907 union {
3908 __be32 word;
3909 char buf[4];
3910 } last;
3911 int i;
3912
3913 last.word = data[size >> 2];
3914 for (i = resid; i < 4; i++)
3915 last.buf[i] = 0;
3916 ret = t4_memory_rw(adapter, 0, mtype,
3917 maddr + size,
3918 4, &last.word,
3919 T4_MEMORY_WRITE);
3920 }
3921 spin_unlock(&adapter->win0_lock);
3922 }
3923 }
3924
3925 release_firmware(cf);
3926 if (ret)
3927 goto bye;
3928 }
3929
3930 /*
3931 * Issue a Capability Configuration command to the firmware to get it
3932 * to parse the Configuration File. We don't use t4_fw_config_file()
3933 * because we want the ability to modify various features after we've
3934 * processed the configuration file ...
3935 */
3936 memset(&caps_cmd, 0, sizeof(caps_cmd));
3937 caps_cmd.op_to_write =
3938 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3939 FW_CMD_REQUEST_F |
3940 FW_CMD_READ_F);
3941 caps_cmd.cfvalid_to_len16 =
3942 htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
3943 FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
3944 FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
3945 FW_LEN16(caps_cmd));
3946 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3947 &caps_cmd);
3948
3949 /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
3950 * Configuration File in FLASH), our last gasp effort is to use the
3951 * Firmware Configuration File which is embedded in the firmware. A
3952 * very few early versions of the firmware didn't have one embedded
3953 * but we can ignore those.
3954 */
3955 if (ret == -ENOENT) {
3956 memset(&caps_cmd, 0, sizeof(caps_cmd));
3957 caps_cmd.op_to_write =
3958 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3959 FW_CMD_REQUEST_F |
3960 FW_CMD_READ_F);
3961 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3962 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
3963 sizeof(caps_cmd), &caps_cmd);
3964 config_name = "Firmware Default";
3965 }
3966
3967 config_issued = 1;
3968 if (ret < 0)
3969 goto bye;
3970
3971 finiver = ntohl(caps_cmd.finiver);
3972 finicsum = ntohl(caps_cmd.finicsum);
3973 cfcsum = ntohl(caps_cmd.cfcsum);
3974 if (finicsum != cfcsum)
3975 dev_warn(adapter->pdev_dev, "Configuration File checksum "\
3976 "mismatch: [fini] csum=%#x, computed csum=%#x\n",
3977 finicsum, cfcsum);
3978
3979 /*
3980 * And now tell the firmware to use the configuration we just loaded.
3981 */
3982 caps_cmd.op_to_write =
3983 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3984 FW_CMD_REQUEST_F |
3985 FW_CMD_WRITE_F);
3986 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3987 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3988 NULL);
3989 if (ret < 0)
3990 goto bye;
3991
3992 /*
3993 * Tweak configuration based on system architecture, module
3994 * parameters, etc.
3995 */
3996 ret = adap_init0_tweaks(adapter);
3997 if (ret < 0)
3998 goto bye;
3999
4000 /* We will proceed even if HMA init fails. */
4001 ret = adap_config_hma(adapter);
4002 if (ret)
4003 dev_err(adapter->pdev_dev,
4004 "HMA configuration failed with error %d\n", ret);
4005
4006 /*
4007 * And finally tell the firmware to initialize itself using the
4008 * parameters from the Configuration File.
4009 */
4010 ret = t4_fw_initialize(adapter, adapter->mbox);
4011 if (ret < 0)
4012 goto bye;
4013
4014 /* Emit Firmware Configuration File information and return
4015 * successfully.
4016 */
4017 dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
4018 "Configuration File \"%s\", version %#x, computed checksum %#x\n",
4019 config_name, finiver, cfcsum);
4020 return 0;
4021
4022 /*
4023 * Something bad happened. Return the error ... (If the "error"
4024 * is that there's no Configuration File on the adapter we don't
4025 * want to issue a warning since this is fairly common.)
4026 */
4027 bye:
4028 if (config_issued && ret != -ENOENT)
4029 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
4030 config_name, -ret);
4031 return ret;
4032 }
4033
4034 static struct fw_info fw_info_array[] = {
4035 {
4036 .chip = CHELSIO_T4,
4037 .fs_name = FW4_CFNAME,
4038 .fw_mod_name = FW4_FNAME,
4039 .fw_hdr = {
4040 .chip = FW_HDR_CHIP_T4,
4041 .fw_ver = __cpu_to_be32(FW_VERSION(T4)),
4042 .intfver_nic = FW_INTFVER(T4, NIC),
4043 .intfver_vnic = FW_INTFVER(T4, VNIC),
4044 .intfver_ri = FW_INTFVER(T4, RI),
4045 .intfver_iscsi = FW_INTFVER(T4, ISCSI),
4046 .intfver_fcoe = FW_INTFVER(T4, FCOE),
4047 },
4048 }, {
4049 .chip = CHELSIO_T5,
4050 .fs_name = FW5_CFNAME,
4051 .fw_mod_name = FW5_FNAME,
4052 .fw_hdr = {
4053 .chip = FW_HDR_CHIP_T5,
4054 .fw_ver = __cpu_to_be32(FW_VERSION(T5)),
4055 .intfver_nic = FW_INTFVER(T5, NIC),
4056 .intfver_vnic = FW_INTFVER(T5, VNIC),
4057 .intfver_ri = FW_INTFVER(T5, RI),
4058 .intfver_iscsi = FW_INTFVER(T5, ISCSI),
4059 .intfver_fcoe = FW_INTFVER(T5, FCOE),
4060 },
4061 }, {
4062 .chip = CHELSIO_T6,
4063 .fs_name = FW6_CFNAME,
4064 .fw_mod_name = FW6_FNAME,
4065 .fw_hdr = {
4066 .chip = FW_HDR_CHIP_T6,
4067 .fw_ver = __cpu_to_be32(FW_VERSION(T6)),
4068 .intfver_nic = FW_INTFVER(T6, NIC),
4069 .intfver_vnic = FW_INTFVER(T6, VNIC),
4070 .intfver_ofld = FW_INTFVER(T6, OFLD),
4071 .intfver_ri = FW_INTFVER(T6, RI),
4072 .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
4073 .intfver_iscsi = FW_INTFVER(T6, ISCSI),
4074 .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
4075 .intfver_fcoe = FW_INTFVER(T6, FCOE),
4076 },
4077 }
4078
4079 };
4080
find_fw_info(int chip)4081 static struct fw_info *find_fw_info(int chip)
4082 {
4083 int i;
4084
4085 for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
4086 if (fw_info_array[i].chip == chip)
4087 return &fw_info_array[i];
4088 }
4089 return NULL;
4090 }
4091
4092 /*
4093 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
4094 */
adap_init0(struct adapter * adap)4095 static int adap_init0(struct adapter *adap)
4096 {
4097 int ret;
4098 u32 v, port_vec;
4099 enum dev_state state;
4100 u32 params[7], val[7];
4101 struct fw_caps_config_cmd caps_cmd;
4102 int reset = 1;
4103
4104 /* Grab Firmware Device Log parameters as early as possible so we have
4105 * access to it for debugging, etc.
4106 */
4107 ret = t4_init_devlog_params(adap);
4108 if (ret < 0)
4109 return ret;
4110
4111 /* Contact FW, advertising Master capability */
4112 ret = t4_fw_hello(adap, adap->mbox, adap->mbox,
4113 is_kdump_kernel() ? MASTER_MUST : MASTER_MAY, &state);
4114 if (ret < 0) {
4115 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
4116 ret);
4117 return ret;
4118 }
4119 if (ret == adap->mbox)
4120 adap->flags |= MASTER_PF;
4121
4122 /*
4123 * If we're the Master PF Driver and the device is uninitialized,
4124 * then let's consider upgrading the firmware ... (We always want
4125 * to check the firmware version number in order to A. get it for
4126 * later reporting and B. to warn if the currently loaded firmware
4127 * is excessively mismatched relative to the driver.)
4128 */
4129
4130 t4_get_version_info(adap);
4131 ret = t4_check_fw_version(adap);
4132 /* If firmware is too old (not supported by driver) force an update. */
4133 if (ret)
4134 state = DEV_STATE_UNINIT;
4135 if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
4136 struct fw_info *fw_info;
4137 struct fw_hdr *card_fw;
4138 const struct firmware *fw;
4139 const u8 *fw_data = NULL;
4140 unsigned int fw_size = 0;
4141
4142 /* This is the firmware whose headers the driver was compiled
4143 * against
4144 */
4145 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
4146 if (fw_info == NULL) {
4147 dev_err(adap->pdev_dev,
4148 "unable to get firmware info for chip %d.\n",
4149 CHELSIO_CHIP_VERSION(adap->params.chip));
4150 return -EINVAL;
4151 }
4152
4153 /* allocate memory to read the header of the firmware on the
4154 * card
4155 */
4156 card_fw = kvzalloc(sizeof(*card_fw), GFP_KERNEL);
4157 if (!card_fw) {
4158 ret = -ENOMEM;
4159 goto bye;
4160 }
4161
4162 /* Get FW from from /lib/firmware/ */
4163 ret = request_firmware(&fw, fw_info->fw_mod_name,
4164 adap->pdev_dev);
4165 if (ret < 0) {
4166 dev_err(adap->pdev_dev,
4167 "unable to load firmware image %s, error %d\n",
4168 fw_info->fw_mod_name, ret);
4169 } else {
4170 fw_data = fw->data;
4171 fw_size = fw->size;
4172 }
4173
4174 /* upgrade FW logic */
4175 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
4176 state, &reset);
4177
4178 /* Cleaning up */
4179 release_firmware(fw);
4180 kvfree(card_fw);
4181
4182 if (ret < 0)
4183 goto bye;
4184 }
4185
4186 /* If the firmware is initialized already, emit a simply note to that
4187 * effect. Otherwise, it's time to try initializing the adapter.
4188 */
4189 if (state == DEV_STATE_INIT) {
4190 ret = adap_config_hma(adap);
4191 if (ret)
4192 dev_err(adap->pdev_dev,
4193 "HMA configuration failed with error %d\n",
4194 ret);
4195 dev_info(adap->pdev_dev, "Coming up as %s: "\
4196 "Adapter already initialized\n",
4197 adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
4198 } else {
4199 dev_info(adap->pdev_dev, "Coming up as MASTER: "\
4200 "Initializing adapter\n");
4201
4202 /* Find out whether we're dealing with a version of the
4203 * firmware which has configuration file support.
4204 */
4205 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4206 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
4207 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
4208 params, val);
4209
4210 /* If the firmware doesn't support Configuration Files,
4211 * return an error.
4212 */
4213 if (ret < 0) {
4214 dev_err(adap->pdev_dev, "firmware doesn't support "
4215 "Firmware Configuration Files\n");
4216 goto bye;
4217 }
4218
4219 /* The firmware provides us with a memory buffer where we can
4220 * load a Configuration File from the host if we want to
4221 * override the Configuration File in flash.
4222 */
4223 ret = adap_init0_config(adap, reset);
4224 if (ret == -ENOENT) {
4225 dev_err(adap->pdev_dev, "no Configuration File "
4226 "present on adapter.\n");
4227 goto bye;
4228 }
4229 if (ret < 0) {
4230 dev_err(adap->pdev_dev, "could not initialize "
4231 "adapter, error %d\n", -ret);
4232 goto bye;
4233 }
4234 }
4235
4236 /* Now that we've successfully configured and initialized the adapter
4237 * (or found it already initialized), we can ask the Firmware what
4238 * resources it has provisioned for us.
4239 */
4240 ret = t4_get_pfres(adap);
4241 if (ret) {
4242 dev_err(adap->pdev_dev,
4243 "Unable to retrieve resource provisioning information\n");
4244 goto bye;
4245 }
4246
4247 /* Grab VPD parameters. This should be done after we establish a
4248 * connection to the firmware since some of the VPD parameters
4249 * (notably the Core Clock frequency) are retrieved via requests to
4250 * the firmware. On the other hand, we need these fairly early on
4251 * so we do this right after getting ahold of the firmware.
4252 *
4253 * We need to do this after initializing the adapter because someone
4254 * could have FLASHed a new VPD which won't be read by the firmware
4255 * until we do the RESET ...
4256 */
4257 ret = t4_get_vpd_params(adap, &adap->params.vpd);
4258 if (ret < 0)
4259 goto bye;
4260
4261 /* Find out what ports are available to us. Note that we need to do
4262 * this before calling adap_init0_no_config() since it needs nports
4263 * and portvec ...
4264 */
4265 v =
4266 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4267 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
4268 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
4269 if (ret < 0)
4270 goto bye;
4271
4272 adap->params.nports = hweight32(port_vec);
4273 adap->params.portvec = port_vec;
4274
4275 /* Give the SGE code a chance to pull in anything that it needs ...
4276 * Note that this must be called after we retrieve our VPD parameters
4277 * in order to know how to convert core ticks to seconds, etc.
4278 */
4279 ret = t4_sge_init(adap);
4280 if (ret < 0)
4281 goto bye;
4282
4283 if (is_bypass_device(adap->pdev->device))
4284 adap->params.bypass = 1;
4285
4286 /*
4287 * Grab some of our basic fundamental operating parameters.
4288 */
4289 #define FW_PARAM_DEV(param) \
4290 (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \
4291 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param))
4292
4293 #define FW_PARAM_PFVF(param) \
4294 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \
4295 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)| \
4296 FW_PARAMS_PARAM_Y_V(0) | \
4297 FW_PARAMS_PARAM_Z_V(0)
4298
4299 params[0] = FW_PARAM_PFVF(EQ_START);
4300 params[1] = FW_PARAM_PFVF(L2T_START);
4301 params[2] = FW_PARAM_PFVF(L2T_END);
4302 params[3] = FW_PARAM_PFVF(FILTER_START);
4303 params[4] = FW_PARAM_PFVF(FILTER_END);
4304 params[5] = FW_PARAM_PFVF(IQFLINT_START);
4305 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val);
4306 if (ret < 0)
4307 goto bye;
4308 adap->sge.egr_start = val[0];
4309 adap->l2t_start = val[1];
4310 adap->l2t_end = val[2];
4311 adap->tids.ftid_base = val[3];
4312 adap->tids.nftids = val[4] - val[3] + 1;
4313 adap->sge.ingr_start = val[5];
4314
4315 if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
4316 /* Read the raw mps entries. In T6, the last 2 tcam entries
4317 * are reserved for raw mac addresses (rawf = 2, one per port).
4318 */
4319 params[0] = FW_PARAM_PFVF(RAWF_START);
4320 params[1] = FW_PARAM_PFVF(RAWF_END);
4321 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4322 params, val);
4323 if (ret == 0) {
4324 adap->rawf_start = val[0];
4325 adap->rawf_cnt = val[1] - val[0] + 1;
4326 }
4327 }
4328
4329 /* qids (ingress/egress) returned from firmware can be anywhere
4330 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
4331 * Hence driver needs to allocate memory for this range to
4332 * store the queue info. Get the highest IQFLINT/EQ index returned
4333 * in FW_EQ_*_CMD.alloc command.
4334 */
4335 params[0] = FW_PARAM_PFVF(EQ_END);
4336 params[1] = FW_PARAM_PFVF(IQFLINT_END);
4337 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
4338 if (ret < 0)
4339 goto bye;
4340 adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
4341 adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;
4342
4343 adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
4344 sizeof(*adap->sge.egr_map), GFP_KERNEL);
4345 if (!adap->sge.egr_map) {
4346 ret = -ENOMEM;
4347 goto bye;
4348 }
4349
4350 adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
4351 sizeof(*adap->sge.ingr_map), GFP_KERNEL);
4352 if (!adap->sge.ingr_map) {
4353 ret = -ENOMEM;
4354 goto bye;
4355 }
4356
4357 /* Allocate the memory for the vaious egress queue bitmaps
4358 * ie starving_fl, txq_maperr and blocked_fl.
4359 */
4360 adap->sge.starving_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
4361 sizeof(long), GFP_KERNEL);
4362 if (!adap->sge.starving_fl) {
4363 ret = -ENOMEM;
4364 goto bye;
4365 }
4366
4367 adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
4368 sizeof(long), GFP_KERNEL);
4369 if (!adap->sge.txq_maperr) {
4370 ret = -ENOMEM;
4371 goto bye;
4372 }
4373
4374 #ifdef CONFIG_DEBUG_FS
4375 adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
4376 sizeof(long), GFP_KERNEL);
4377 if (!adap->sge.blocked_fl) {
4378 ret = -ENOMEM;
4379 goto bye;
4380 }
4381 #endif
4382
4383 params[0] = FW_PARAM_PFVF(CLIP_START);
4384 params[1] = FW_PARAM_PFVF(CLIP_END);
4385 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
4386 if (ret < 0)
4387 goto bye;
4388 adap->clipt_start = val[0];
4389 adap->clipt_end = val[1];
4390
4391 /* We don't yet have a PARAMs calls to retrieve the number of Traffic
4392 * Classes supported by the hardware/firmware so we hard code it here
4393 * for now.
4394 */
4395 adap->params.nsched_cls = is_t4(adap->params.chip) ? 15 : 16;
4396
4397 /* query params related to active filter region */
4398 params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
4399 params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
4400 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
4401 /* If Active filter size is set we enable establishing
4402 * offload connection through firmware work request
4403 */
4404 if ((val[0] != val[1]) && (ret >= 0)) {
4405 adap->flags |= FW_OFLD_CONN;
4406 adap->tids.aftid_base = val[0];
4407 adap->tids.aftid_end = val[1];
4408 }
4409
4410 /* If we're running on newer firmware, let it know that we're
4411 * prepared to deal with encapsulated CPL messages. Older
4412 * firmware won't understand this and we'll just get
4413 * unencapsulated messages ...
4414 */
4415 params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
4416 val[0] = 1;
4417 (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
4418
4419 /*
4420 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
4421 * capability. Earlier versions of the firmware didn't have the
4422 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
4423 * permission to use ULPTX MEMWRITE DSGL.
4424 */
4425 if (is_t4(adap->params.chip)) {
4426 adap->params.ulptx_memwrite_dsgl = false;
4427 } else {
4428 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
4429 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4430 1, params, val);
4431 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
4432 }
4433
4434 /* See if FW supports FW_RI_FR_NSMR_TPTE_WR work request */
4435 params[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR);
4436 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4437 1, params, val);
4438 adap->params.fr_nsmr_tpte_wr_support = (ret == 0 && val[0] != 0);
4439
4440 /* See if FW supports FW_FILTER2 work request */
4441 if (is_t4(adap->params.chip)) {
4442 adap->params.filter2_wr_support = 0;
4443 } else {
4444 params[0] = FW_PARAM_DEV(FILTER2_WR);
4445 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4446 1, params, val);
4447 adap->params.filter2_wr_support = (ret == 0 && val[0] != 0);
4448 }
4449
4450 /*
4451 * Get device capabilities so we can determine what resources we need
4452 * to manage.
4453 */
4454 memset(&caps_cmd, 0, sizeof(caps_cmd));
4455 caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4456 FW_CMD_REQUEST_F | FW_CMD_READ_F);
4457 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4458 ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
4459 &caps_cmd);
4460 if (ret < 0)
4461 goto bye;
4462
4463 if (caps_cmd.ofldcaps ||
4464 (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER))) {
4465 /* query offload-related parameters */
4466 params[0] = FW_PARAM_DEV(NTID);
4467 params[1] = FW_PARAM_PFVF(SERVER_START);
4468 params[2] = FW_PARAM_PFVF(SERVER_END);
4469 params[3] = FW_PARAM_PFVF(TDDP_START);
4470 params[4] = FW_PARAM_PFVF(TDDP_END);
4471 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
4472 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
4473 params, val);
4474 if (ret < 0)
4475 goto bye;
4476 adap->tids.ntids = val[0];
4477 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
4478 adap->tids.stid_base = val[1];
4479 adap->tids.nstids = val[2] - val[1] + 1;
4480 /*
4481 * Setup server filter region. Divide the available filter
4482 * region into two parts. Regular filters get 1/3rd and server
4483 * filters get 2/3rd part. This is only enabled if workarond
4484 * path is enabled.
4485 * 1. For regular filters.
4486 * 2. Server filter: This are special filters which are used
4487 * to redirect SYN packets to offload queue.
4488 */
4489 if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
4490 adap->tids.sftid_base = adap->tids.ftid_base +
4491 DIV_ROUND_UP(adap->tids.nftids, 3);
4492 adap->tids.nsftids = adap->tids.nftids -
4493 DIV_ROUND_UP(adap->tids.nftids, 3);
4494 adap->tids.nftids = adap->tids.sftid_base -
4495 adap->tids.ftid_base;
4496 }
4497 adap->vres.ddp.start = val[3];
4498 adap->vres.ddp.size = val[4] - val[3] + 1;
4499 adap->params.ofldq_wr_cred = val[5];
4500
4501 if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER)) {
4502 ret = init_hash_filter(adap);
4503 if (ret < 0)
4504 goto bye;
4505 } else {
4506 adap->params.offload = 1;
4507 adap->num_ofld_uld += 1;
4508 }
4509 }
4510 if (caps_cmd.rdmacaps) {
4511 params[0] = FW_PARAM_PFVF(STAG_START);
4512 params[1] = FW_PARAM_PFVF(STAG_END);
4513 params[2] = FW_PARAM_PFVF(RQ_START);
4514 params[3] = FW_PARAM_PFVF(RQ_END);
4515 params[4] = FW_PARAM_PFVF(PBL_START);
4516 params[5] = FW_PARAM_PFVF(PBL_END);
4517 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
4518 params, val);
4519 if (ret < 0)
4520 goto bye;
4521 adap->vres.stag.start = val[0];
4522 adap->vres.stag.size = val[1] - val[0] + 1;
4523 adap->vres.rq.start = val[2];
4524 adap->vres.rq.size = val[3] - val[2] + 1;
4525 adap->vres.pbl.start = val[4];
4526 adap->vres.pbl.size = val[5] - val[4] + 1;
4527
4528 params[0] = FW_PARAM_PFVF(SRQ_START);
4529 params[1] = FW_PARAM_PFVF(SRQ_END);
4530 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4531 params, val);
4532 if (!ret) {
4533 adap->vres.srq.start = val[0];
4534 adap->vres.srq.size = val[1] - val[0] + 1;
4535 }
4536 if (adap->vres.srq.size) {
4537 adap->srq = t4_init_srq(adap->vres.srq.size);
4538 if (!adap->srq)
4539 dev_warn(&adap->pdev->dev, "could not allocate SRQ, continuing\n");
4540 }
4541
4542 params[0] = FW_PARAM_PFVF(SQRQ_START);
4543 params[1] = FW_PARAM_PFVF(SQRQ_END);
4544 params[2] = FW_PARAM_PFVF(CQ_START);
4545 params[3] = FW_PARAM_PFVF(CQ_END);
4546 params[4] = FW_PARAM_PFVF(OCQ_START);
4547 params[5] = FW_PARAM_PFVF(OCQ_END);
4548 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params,
4549 val);
4550 if (ret < 0)
4551 goto bye;
4552 adap->vres.qp.start = val[0];
4553 adap->vres.qp.size = val[1] - val[0] + 1;
4554 adap->vres.cq.start = val[2];
4555 adap->vres.cq.size = val[3] - val[2] + 1;
4556 adap->vres.ocq.start = val[4];
4557 adap->vres.ocq.size = val[5] - val[4] + 1;
4558
4559 params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
4560 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
4561 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params,
4562 val);
4563 if (ret < 0) {
4564 adap->params.max_ordird_qp = 8;
4565 adap->params.max_ird_adapter = 32 * adap->tids.ntids;
4566 ret = 0;
4567 } else {
4568 adap->params.max_ordird_qp = val[0];
4569 adap->params.max_ird_adapter = val[1];
4570 }
4571 dev_info(adap->pdev_dev,
4572 "max_ordird_qp %d max_ird_adapter %d\n",
4573 adap->params.max_ordird_qp,
4574 adap->params.max_ird_adapter);
4575
4576 /* Enable write_with_immediate if FW supports it */
4577 params[0] = FW_PARAM_DEV(RDMA_WRITE_WITH_IMM);
4578 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params,
4579 val);
4580 adap->params.write_w_imm_support = (ret == 0 && val[0] != 0);
4581
4582 /* Enable write_cmpl if FW supports it */
4583 params[0] = FW_PARAM_DEV(RI_WRITE_CMPL_WR);
4584 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params,
4585 val);
4586 adap->params.write_cmpl_support = (ret == 0 && val[0] != 0);
4587 adap->num_ofld_uld += 2;
4588 }
4589 if (caps_cmd.iscsicaps) {
4590 params[0] = FW_PARAM_PFVF(ISCSI_START);
4591 params[1] = FW_PARAM_PFVF(ISCSI_END);
4592 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4593 params, val);
4594 if (ret < 0)
4595 goto bye;
4596 adap->vres.iscsi.start = val[0];
4597 adap->vres.iscsi.size = val[1] - val[0] + 1;
4598 /* LIO target and cxgb4i initiaitor */
4599 adap->num_ofld_uld += 2;
4600 }
4601 if (caps_cmd.cryptocaps) {
4602 if (ntohs(caps_cmd.cryptocaps) &
4603 FW_CAPS_CONFIG_CRYPTO_LOOKASIDE) {
4604 params[0] = FW_PARAM_PFVF(NCRYPTO_LOOKASIDE);
4605 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4606 2, params, val);
4607 if (ret < 0) {
4608 if (ret != -EINVAL)
4609 goto bye;
4610 } else {
4611 adap->vres.ncrypto_fc = val[0];
4612 }
4613 adap->num_ofld_uld += 1;
4614 }
4615 if (ntohs(caps_cmd.cryptocaps) &
4616 FW_CAPS_CONFIG_TLS_INLINE) {
4617 params[0] = FW_PARAM_PFVF(TLS_START);
4618 params[1] = FW_PARAM_PFVF(TLS_END);
4619 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4620 2, params, val);
4621 if (ret < 0)
4622 goto bye;
4623 adap->vres.key.start = val[0];
4624 adap->vres.key.size = val[1] - val[0] + 1;
4625 adap->num_uld += 1;
4626 }
4627 adap->params.crypto = ntohs(caps_cmd.cryptocaps);
4628 }
4629 #undef FW_PARAM_PFVF
4630 #undef FW_PARAM_DEV
4631
4632 /* The MTU/MSS Table is initialized by now, so load their values. If
4633 * we're initializing the adapter, then we'll make any modifications
4634 * we want to the MTU/MSS Table and also initialize the congestion
4635 * parameters.
4636 */
4637 t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
4638 if (state != DEV_STATE_INIT) {
4639 int i;
4640
4641 /* The default MTU Table contains values 1492 and 1500.
4642 * However, for TCP, it's better to have two values which are
4643 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
4644 * This allows us to have a TCP Data Payload which is a
4645 * multiple of 8 regardless of what combination of TCP Options
4646 * are in use (always a multiple of 4 bytes) which is
4647 * important for performance reasons. For instance, if no
4648 * options are in use, then we have a 20-byte IP header and a
4649 * 20-byte TCP header. In this case, a 1500-byte MSS would
4650 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
4651 * which is not a multiple of 8. So using an MSS of 1488 in
4652 * this case results in a TCP Data Payload of 1448 bytes which
4653 * is a multiple of 8. On the other hand, if 12-byte TCP Time
4654 * Stamps have been negotiated, then an MTU of 1500 bytes
4655 * results in a TCP Data Payload of 1448 bytes which, as
4656 * above, is a multiple of 8 bytes ...
4657 */
4658 for (i = 0; i < NMTUS; i++)
4659 if (adap->params.mtus[i] == 1492) {
4660 adap->params.mtus[i] = 1488;
4661 break;
4662 }
4663
4664 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4665 adap->params.b_wnd);
4666 }
4667 t4_init_sge_params(adap);
4668 adap->flags |= FW_OK;
4669 t4_init_tp_params(adap, true);
4670 return 0;
4671
4672 /*
4673 * Something bad happened. If a command timed out or failed with EIO
4674 * FW does not operate within its spec or something catastrophic
4675 * happened to HW/FW, stop issuing commands.
4676 */
4677 bye:
4678 adap_free_hma_mem(adap);
4679 kfree(adap->sge.egr_map);
4680 kfree(adap->sge.ingr_map);
4681 kfree(adap->sge.starving_fl);
4682 kfree(adap->sge.txq_maperr);
4683 #ifdef CONFIG_DEBUG_FS
4684 kfree(adap->sge.blocked_fl);
4685 #endif
4686 if (ret != -ETIMEDOUT && ret != -EIO)
4687 t4_fw_bye(adap, adap->mbox);
4688 return ret;
4689 }
4690
4691 /* EEH callbacks */
4692
eeh_err_detected(struct pci_dev * pdev,pci_channel_state_t state)4693 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
4694 pci_channel_state_t state)
4695 {
4696 int i;
4697 struct adapter *adap = pci_get_drvdata(pdev);
4698
4699 if (!adap)
4700 goto out;
4701
4702 rtnl_lock();
4703 adap->flags &= ~FW_OK;
4704 notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
4705 spin_lock(&adap->stats_lock);
4706 for_each_port(adap, i) {
4707 struct net_device *dev = adap->port[i];
4708 if (dev) {
4709 netif_device_detach(dev);
4710 netif_carrier_off(dev);
4711 }
4712 }
4713 spin_unlock(&adap->stats_lock);
4714 disable_interrupts(adap);
4715 if (adap->flags & FULL_INIT_DONE)
4716 cxgb_down(adap);
4717 rtnl_unlock();
4718 if ((adap->flags & DEV_ENABLED)) {
4719 pci_disable_device(pdev);
4720 adap->flags &= ~DEV_ENABLED;
4721 }
4722 out: return state == pci_channel_io_perm_failure ?
4723 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
4724 }
4725
eeh_slot_reset(struct pci_dev * pdev)4726 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
4727 {
4728 int i, ret;
4729 struct fw_caps_config_cmd c;
4730 struct adapter *adap = pci_get_drvdata(pdev);
4731
4732 if (!adap) {
4733 pci_restore_state(pdev);
4734 pci_save_state(pdev);
4735 return PCI_ERS_RESULT_RECOVERED;
4736 }
4737
4738 if (!(adap->flags & DEV_ENABLED)) {
4739 if (pci_enable_device(pdev)) {
4740 dev_err(&pdev->dev, "Cannot reenable PCI "
4741 "device after reset\n");
4742 return PCI_ERS_RESULT_DISCONNECT;
4743 }
4744 adap->flags |= DEV_ENABLED;
4745 }
4746
4747 pci_set_master(pdev);
4748 pci_restore_state(pdev);
4749 pci_save_state(pdev);
4750 pci_cleanup_aer_uncorrect_error_status(pdev);
4751
4752 if (t4_wait_dev_ready(adap->regs) < 0)
4753 return PCI_ERS_RESULT_DISCONNECT;
4754 if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0)
4755 return PCI_ERS_RESULT_DISCONNECT;
4756 adap->flags |= FW_OK;
4757 if (adap_init1(adap, &c))
4758 return PCI_ERS_RESULT_DISCONNECT;
4759
4760 for_each_port(adap, i) {
4761 struct port_info *p = adap2pinfo(adap, i);
4762
4763 ret = t4_alloc_vi(adap, adap->mbox, p->tx_chan, adap->pf, 0, 1,
4764 NULL, NULL);
4765 if (ret < 0)
4766 return PCI_ERS_RESULT_DISCONNECT;
4767 p->viid = ret;
4768 p->xact_addr_filt = -1;
4769 }
4770
4771 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4772 adap->params.b_wnd);
4773 setup_memwin(adap);
4774 if (cxgb_up(adap))
4775 return PCI_ERS_RESULT_DISCONNECT;
4776 return PCI_ERS_RESULT_RECOVERED;
4777 }
4778
eeh_resume(struct pci_dev * pdev)4779 static void eeh_resume(struct pci_dev *pdev)
4780 {
4781 int i;
4782 struct adapter *adap = pci_get_drvdata(pdev);
4783
4784 if (!adap)
4785 return;
4786
4787 rtnl_lock();
4788 for_each_port(adap, i) {
4789 struct net_device *dev = adap->port[i];
4790 if (dev) {
4791 if (netif_running(dev)) {
4792 link_start(dev);
4793 cxgb_set_rxmode(dev);
4794 }
4795 netif_device_attach(dev);
4796 }
4797 }
4798 rtnl_unlock();
4799 }
4800
4801 static const struct pci_error_handlers cxgb4_eeh = {
4802 .error_detected = eeh_err_detected,
4803 .slot_reset = eeh_slot_reset,
4804 .resume = eeh_resume,
4805 };
4806
4807 /* Return true if the Link Configuration supports "High Speeds" (those greater
4808 * than 1Gb/s).
4809 */
is_x_10g_port(const struct link_config * lc)4810 static inline bool is_x_10g_port(const struct link_config *lc)
4811 {
4812 unsigned int speeds, high_speeds;
4813
4814 speeds = FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_G(lc->pcaps));
4815 high_speeds = speeds &
4816 ~(FW_PORT_CAP32_SPEED_100M | FW_PORT_CAP32_SPEED_1G);
4817
4818 return high_speeds != 0;
4819 }
4820
4821 /*
4822 * Perform default configuration of DMA queues depending on the number and type
4823 * of ports we found and the number of available CPUs. Most settings can be
4824 * modified by the admin prior to actual use.
4825 */
cfg_queues(struct adapter * adap)4826 static int cfg_queues(struct adapter *adap)
4827 {
4828 struct sge *s = &adap->sge;
4829 int i, n10g = 0, qidx = 0;
4830 int niqflint, neq, avail_eth_qsets;
4831 int max_eth_qsets = 32;
4832 #ifndef CONFIG_CHELSIO_T4_DCB
4833 int q10g = 0;
4834 #endif
4835
4836 /* Reduce memory usage in kdump environment, disable all offload.
4837 */
4838 if (is_kdump_kernel() || (is_uld(adap) && t4_uld_mem_alloc(adap))) {
4839 adap->params.offload = 0;
4840 adap->params.crypto = 0;
4841 }
4842
4843 /* Calculate the number of Ethernet Queue Sets available based on
4844 * resources provisioned for us. We always have an Asynchronous
4845 * Firmware Event Ingress Queue. If we're operating in MSI or Legacy
4846 * IRQ Pin Interrupt mode, then we'll also have a Forwarded Interrupt
4847 * Ingress Queue. Meanwhile, we need two Egress Queues for each
4848 * Queue Set: one for the Free List and one for the Ethernet TX Queue.
4849 *
4850 * Note that we should also take into account all of the various
4851 * Offload Queues. But, in any situation where we're operating in
4852 * a Resource Constrained Provisioning environment, doing any Offload
4853 * at all is problematic ...
4854 */
4855 niqflint = adap->params.pfres.niqflint - 1;
4856 if (!(adap->flags & USING_MSIX))
4857 niqflint--;
4858 neq = adap->params.pfres.neq / 2;
4859 avail_eth_qsets = min(niqflint, neq);
4860
4861 if (avail_eth_qsets > max_eth_qsets)
4862 avail_eth_qsets = max_eth_qsets;
4863
4864 if (avail_eth_qsets < adap->params.nports) {
4865 dev_err(adap->pdev_dev, "avail_eth_qsets=%d < nports=%d\n",
4866 avail_eth_qsets, adap->params.nports);
4867 return -ENOMEM;
4868 }
4869
4870 /* Count the number of 10Gb/s or better ports */
4871 for_each_port(adap, i)
4872 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
4873
4874 #ifdef CONFIG_CHELSIO_T4_DCB
4875 /* For Data Center Bridging support we need to be able to support up
4876 * to 8 Traffic Priorities; each of which will be assigned to its
4877 * own TX Queue in order to prevent Head-Of-Line Blocking.
4878 */
4879 if (adap->params.nports * 8 > avail_eth_qsets) {
4880 dev_err(adap->pdev_dev, "DCB avail_eth_qsets=%d < %d!\n",
4881 avail_eth_qsets, adap->params.nports * 8);
4882 return -ENOMEM;
4883 }
4884
4885 for_each_port(adap, i) {
4886 struct port_info *pi = adap2pinfo(adap, i);
4887
4888 pi->first_qset = qidx;
4889 pi->nqsets = is_kdump_kernel() ? 1 : 8;
4890 qidx += pi->nqsets;
4891 }
4892 #else /* !CONFIG_CHELSIO_T4_DCB */
4893 /*
4894 * We default to 1 queue per non-10G port and up to # of cores queues
4895 * per 10G port.
4896 */
4897 if (n10g)
4898 q10g = (avail_eth_qsets - (adap->params.nports - n10g)) / n10g;
4899 if (q10g > netif_get_num_default_rss_queues())
4900 q10g = netif_get_num_default_rss_queues();
4901
4902 if (is_kdump_kernel())
4903 q10g = 1;
4904
4905 for_each_port(adap, i) {
4906 struct port_info *pi = adap2pinfo(adap, i);
4907
4908 pi->first_qset = qidx;
4909 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
4910 qidx += pi->nqsets;
4911 }
4912 #endif /* !CONFIG_CHELSIO_T4_DCB */
4913
4914 s->ethqsets = qidx;
4915 s->max_ethqsets = qidx; /* MSI-X may lower it later */
4916
4917 if (is_uld(adap)) {
4918 /*
4919 * For offload we use 1 queue/channel if all ports are up to 1G,
4920 * otherwise we divide all available queues amongst the channels
4921 * capped by the number of available cores.
4922 */
4923 if (n10g) {
4924 i = min_t(int, MAX_OFLD_QSETS, num_online_cpus());
4925 s->ofldqsets = roundup(i, adap->params.nports);
4926 } else {
4927 s->ofldqsets = adap->params.nports;
4928 }
4929 }
4930
4931 for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
4932 struct sge_eth_rxq *r = &s->ethrxq[i];
4933
4934 init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
4935 r->fl.size = 72;
4936 }
4937
4938 for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
4939 s->ethtxq[i].q.size = 1024;
4940
4941 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
4942 s->ctrlq[i].q.size = 512;
4943
4944 if (!is_t4(adap->params.chip))
4945 s->ptptxq.q.size = 8;
4946
4947 init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
4948 init_rspq(adap, &s->intrq, 0, 1, 512, 64);
4949
4950 return 0;
4951 }
4952
4953 /*
4954 * Reduce the number of Ethernet queues across all ports to at most n.
4955 * n provides at least one queue per port.
4956 */
reduce_ethqs(struct adapter * adap,int n)4957 static void reduce_ethqs(struct adapter *adap, int n)
4958 {
4959 int i;
4960 struct port_info *pi;
4961
4962 while (n < adap->sge.ethqsets)
4963 for_each_port(adap, i) {
4964 pi = adap2pinfo(adap, i);
4965 if (pi->nqsets > 1) {
4966 pi->nqsets--;
4967 adap->sge.ethqsets--;
4968 if (adap->sge.ethqsets <= n)
4969 break;
4970 }
4971 }
4972
4973 n = 0;
4974 for_each_port(adap, i) {
4975 pi = adap2pinfo(adap, i);
4976 pi->first_qset = n;
4977 n += pi->nqsets;
4978 }
4979 }
4980
get_msix_info(struct adapter * adap)4981 static int get_msix_info(struct adapter *adap)
4982 {
4983 struct uld_msix_info *msix_info;
4984 unsigned int max_ingq = 0;
4985
4986 if (is_offload(adap))
4987 max_ingq += MAX_OFLD_QSETS * adap->num_ofld_uld;
4988 if (is_pci_uld(adap))
4989 max_ingq += MAX_OFLD_QSETS * adap->num_uld;
4990
4991 if (!max_ingq)
4992 goto out;
4993
4994 msix_info = kcalloc(max_ingq, sizeof(*msix_info), GFP_KERNEL);
4995 if (!msix_info)
4996 return -ENOMEM;
4997
4998 adap->msix_bmap_ulds.msix_bmap = kcalloc(BITS_TO_LONGS(max_ingq),
4999 sizeof(long), GFP_KERNEL);
5000 if (!adap->msix_bmap_ulds.msix_bmap) {
5001 kfree(msix_info);
5002 return -ENOMEM;
5003 }
5004 spin_lock_init(&adap->msix_bmap_ulds.lock);
5005 adap->msix_info_ulds = msix_info;
5006 out:
5007 return 0;
5008 }
5009
free_msix_info(struct adapter * adap)5010 static void free_msix_info(struct adapter *adap)
5011 {
5012 if (!(adap->num_uld && adap->num_ofld_uld))
5013 return;
5014
5015 kfree(adap->msix_info_ulds);
5016 kfree(adap->msix_bmap_ulds.msix_bmap);
5017 }
5018
5019 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
5020 #define EXTRA_VECS 2
5021
enable_msix(struct adapter * adap)5022 static int enable_msix(struct adapter *adap)
5023 {
5024 int ofld_need = 0, uld_need = 0;
5025 int i, j, want, need, allocated;
5026 struct sge *s = &adap->sge;
5027 unsigned int nchan = adap->params.nports;
5028 struct msix_entry *entries;
5029 int max_ingq = MAX_INGQ;
5030
5031 if (is_pci_uld(adap))
5032 max_ingq += (MAX_OFLD_QSETS * adap->num_uld);
5033 if (is_offload(adap))
5034 max_ingq += (MAX_OFLD_QSETS * adap->num_ofld_uld);
5035 entries = kmalloc_array(max_ingq + 1, sizeof(*entries),
5036 GFP_KERNEL);
5037 if (!entries)
5038 return -ENOMEM;
5039
5040 /* map for msix */
5041 if (get_msix_info(adap)) {
5042 adap->params.offload = 0;
5043 adap->params.crypto = 0;
5044 }
5045
5046 for (i = 0; i < max_ingq + 1; ++i)
5047 entries[i].entry = i;
5048
5049 want = s->max_ethqsets + EXTRA_VECS;
5050 if (is_offload(adap)) {
5051 want += adap->num_ofld_uld * s->ofldqsets;
5052 ofld_need = adap->num_ofld_uld * nchan;
5053 }
5054 if (is_pci_uld(adap)) {
5055 want += adap->num_uld * s->ofldqsets;
5056 uld_need = adap->num_uld * nchan;
5057 }
5058 #ifdef CONFIG_CHELSIO_T4_DCB
5059 /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
5060 * each port.
5061 */
5062 need = 8 * adap->params.nports + EXTRA_VECS + ofld_need + uld_need;
5063 #else
5064 need = adap->params.nports + EXTRA_VECS + ofld_need + uld_need;
5065 #endif
5066 allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
5067 if (allocated < 0) {
5068 dev_info(adap->pdev_dev, "not enough MSI-X vectors left,"
5069 " not using MSI-X\n");
5070 kfree(entries);
5071 return allocated;
5072 }
5073
5074 /* Distribute available vectors to the various queue groups.
5075 * Every group gets its minimum requirement and NIC gets top
5076 * priority for leftovers.
5077 */
5078 i = allocated - EXTRA_VECS - ofld_need - uld_need;
5079 if (i < s->max_ethqsets) {
5080 s->max_ethqsets = i;
5081 if (i < s->ethqsets)
5082 reduce_ethqs(adap, i);
5083 }
5084 if (is_uld(adap)) {
5085 if (allocated < want)
5086 s->nqs_per_uld = nchan;
5087 else
5088 s->nqs_per_uld = s->ofldqsets;
5089 }
5090
5091 for (i = 0; i < (s->max_ethqsets + EXTRA_VECS); ++i)
5092 adap->msix_info[i].vec = entries[i].vector;
5093 if (is_uld(adap)) {
5094 for (j = 0 ; i < allocated; ++i, j++) {
5095 adap->msix_info_ulds[j].vec = entries[i].vector;
5096 adap->msix_info_ulds[j].idx = i;
5097 }
5098 adap->msix_bmap_ulds.mapsize = j;
5099 }
5100 dev_info(adap->pdev_dev, "%d MSI-X vectors allocated, "
5101 "nic %d per uld %d\n",
5102 allocated, s->max_ethqsets, s->nqs_per_uld);
5103
5104 kfree(entries);
5105 return 0;
5106 }
5107
5108 #undef EXTRA_VECS
5109
init_rss(struct adapter * adap)5110 static int init_rss(struct adapter *adap)
5111 {
5112 unsigned int i;
5113 int err;
5114
5115 err = t4_init_rss_mode(adap, adap->mbox);
5116 if (err)
5117 return err;
5118
5119 for_each_port(adap, i) {
5120 struct port_info *pi = adap2pinfo(adap, i);
5121
5122 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
5123 if (!pi->rss)
5124 return -ENOMEM;
5125 }
5126 return 0;
5127 }
5128
5129 /* Dump basic information about the adapter */
print_adapter_info(struct adapter * adapter)5130 static void print_adapter_info(struct adapter *adapter)
5131 {
5132 /* Hardware/Firmware/etc. Version/Revision IDs */
5133 t4_dump_version_info(adapter);
5134
5135 /* Software/Hardware configuration */
5136 dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n",
5137 is_offload(adapter) ? "R" : "",
5138 ((adapter->flags & USING_MSIX) ? "MSI-X" :
5139 (adapter->flags & USING_MSI) ? "MSI" : ""),
5140 is_offload(adapter) ? "Offload" : "non-Offload");
5141 }
5142
print_port_info(const struct net_device * dev)5143 static void print_port_info(const struct net_device *dev)
5144 {
5145 char buf[80];
5146 char *bufp = buf;
5147 const struct port_info *pi = netdev_priv(dev);
5148 const struct adapter *adap = pi->adapter;
5149
5150 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100M)
5151 bufp += sprintf(bufp, "100M/");
5152 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_1G)
5153 bufp += sprintf(bufp, "1G/");
5154 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_10G)
5155 bufp += sprintf(bufp, "10G/");
5156 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_25G)
5157 bufp += sprintf(bufp, "25G/");
5158 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_40G)
5159 bufp += sprintf(bufp, "40G/");
5160 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_50G)
5161 bufp += sprintf(bufp, "50G/");
5162 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100G)
5163 bufp += sprintf(bufp, "100G/");
5164 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_200G)
5165 bufp += sprintf(bufp, "200G/");
5166 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_400G)
5167 bufp += sprintf(bufp, "400G/");
5168 if (bufp != buf)
5169 --bufp;
5170 sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
5171
5172 netdev_info(dev, "%s: Chelsio %s (%s) %s\n",
5173 dev->name, adap->params.vpd.id, adap->name, buf);
5174 }
5175
5176 /*
5177 * Free the following resources:
5178 * - memory used for tables
5179 * - MSI/MSI-X
5180 * - net devices
5181 * - resources FW is holding for us
5182 */
free_some_resources(struct adapter * adapter)5183 static void free_some_resources(struct adapter *adapter)
5184 {
5185 unsigned int i;
5186
5187 kvfree(adapter->mps_encap);
5188 kvfree(adapter->smt);
5189 kvfree(adapter->l2t);
5190 kvfree(adapter->srq);
5191 t4_cleanup_sched(adapter);
5192 kvfree(adapter->tids.tid_tab);
5193 cxgb4_cleanup_tc_flower(adapter);
5194 cxgb4_cleanup_tc_u32(adapter);
5195 kfree(adapter->sge.egr_map);
5196 kfree(adapter->sge.ingr_map);
5197 kfree(adapter->sge.starving_fl);
5198 kfree(adapter->sge.txq_maperr);
5199 #ifdef CONFIG_DEBUG_FS
5200 kfree(adapter->sge.blocked_fl);
5201 #endif
5202 disable_msi(adapter);
5203
5204 for_each_port(adapter, i)
5205 if (adapter->port[i]) {
5206 struct port_info *pi = adap2pinfo(adapter, i);
5207
5208 if (pi->viid != 0)
5209 t4_free_vi(adapter, adapter->mbox, adapter->pf,
5210 0, pi->viid);
5211 kfree(adap2pinfo(adapter, i)->rss);
5212 free_netdev(adapter->port[i]);
5213 }
5214 if (adapter->flags & FW_OK)
5215 t4_fw_bye(adapter, adapter->pf);
5216 }
5217
5218 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
5219 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
5220 NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
5221 #define SEGMENT_SIZE 128
5222
t4_get_chip_type(struct adapter * adap,int ver)5223 static int t4_get_chip_type(struct adapter *adap, int ver)
5224 {
5225 u32 pl_rev = REV_G(t4_read_reg(adap, PL_REV_A));
5226
5227 switch (ver) {
5228 case CHELSIO_T4:
5229 return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
5230 case CHELSIO_T5:
5231 return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
5232 case CHELSIO_T6:
5233 return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
5234 default:
5235 break;
5236 }
5237 return -EINVAL;
5238 }
5239
5240 #ifdef CONFIG_PCI_IOV
cxgb4_mgmt_setup(struct net_device * dev)5241 static void cxgb4_mgmt_setup(struct net_device *dev)
5242 {
5243 dev->type = ARPHRD_NONE;
5244 dev->mtu = 0;
5245 dev->hard_header_len = 0;
5246 dev->addr_len = 0;
5247 dev->tx_queue_len = 0;
5248 dev->flags |= IFF_NOARP;
5249 dev->priv_flags |= IFF_NO_QUEUE;
5250
5251 /* Initialize the device structure. */
5252 dev->netdev_ops = &cxgb4_mgmt_netdev_ops;
5253 dev->ethtool_ops = &cxgb4_mgmt_ethtool_ops;
5254 }
5255
cxgb4_iov_configure(struct pci_dev * pdev,int num_vfs)5256 static int cxgb4_iov_configure(struct pci_dev *pdev, int num_vfs)
5257 {
5258 struct adapter *adap = pci_get_drvdata(pdev);
5259 int err = 0;
5260 int current_vfs = pci_num_vf(pdev);
5261 u32 pcie_fw;
5262
5263 pcie_fw = readl(adap->regs + PCIE_FW_A);
5264 /* Check if fw is initialized */
5265 if (!(pcie_fw & PCIE_FW_INIT_F)) {
5266 dev_warn(&pdev->dev, "Device not initialized\n");
5267 return -EOPNOTSUPP;
5268 }
5269
5270 /* If any of the VF's is already assigned to Guest OS, then
5271 * SRIOV for the same cannot be modified
5272 */
5273 if (current_vfs && pci_vfs_assigned(pdev)) {
5274 dev_err(&pdev->dev,
5275 "Cannot modify SR-IOV while VFs are assigned\n");
5276 return current_vfs;
5277 }
5278 /* Note that the upper-level code ensures that we're never called with
5279 * a non-zero "num_vfs" when we already have VFs instantiated. But
5280 * it never hurts to code defensively.
5281 */
5282 if (num_vfs != 0 && current_vfs != 0)
5283 return -EBUSY;
5284
5285 /* Nothing to do for no change. */
5286 if (num_vfs == current_vfs)
5287 return num_vfs;
5288
5289 /* Disable SRIOV when zero is passed. */
5290 if (!num_vfs) {
5291 pci_disable_sriov(pdev);
5292 /* free VF Management Interface */
5293 unregister_netdev(adap->port[0]);
5294 free_netdev(adap->port[0]);
5295 adap->port[0] = NULL;
5296
5297 /* free VF resources */
5298 adap->num_vfs = 0;
5299 kfree(adap->vfinfo);
5300 adap->vfinfo = NULL;
5301 return 0;
5302 }
5303
5304 if (!current_vfs) {
5305 struct fw_pfvf_cmd port_cmd, port_rpl;
5306 struct net_device *netdev;
5307 unsigned int pmask, port;
5308 struct pci_dev *pbridge;
5309 struct port_info *pi;
5310 char name[IFNAMSIZ];
5311 u32 devcap2;
5312 u16 flags;
5313 int pos;
5314
5315 /* If we want to instantiate Virtual Functions, then our
5316 * parent bridge's PCI-E needs to support Alternative Routing
5317 * ID (ARI) because our VFs will show up at function offset 8
5318 * and above.
5319 */
5320 pbridge = pdev->bus->self;
5321 pos = pci_find_capability(pbridge, PCI_CAP_ID_EXP);
5322 pci_read_config_word(pbridge, pos + PCI_EXP_FLAGS, &flags);
5323 pci_read_config_dword(pbridge, pos + PCI_EXP_DEVCAP2, &devcap2);
5324
5325 if ((flags & PCI_EXP_FLAGS_VERS) < 2 ||
5326 !(devcap2 & PCI_EXP_DEVCAP2_ARI)) {
5327 /* Our parent bridge does not support ARI so issue a
5328 * warning and skip instantiating the VFs. They
5329 * won't be reachable.
5330 */
5331 dev_warn(&pdev->dev, "Parent bridge %02x:%02x.%x doesn't support ARI; can't instantiate Virtual Functions\n",
5332 pbridge->bus->number, PCI_SLOT(pbridge->devfn),
5333 PCI_FUNC(pbridge->devfn));
5334 return -ENOTSUPP;
5335 }
5336 memset(&port_cmd, 0, sizeof(port_cmd));
5337 port_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
5338 FW_CMD_REQUEST_F |
5339 FW_CMD_READ_F |
5340 FW_PFVF_CMD_PFN_V(adap->pf) |
5341 FW_PFVF_CMD_VFN_V(0));
5342 port_cmd.retval_len16 = cpu_to_be32(FW_LEN16(port_cmd));
5343 err = t4_wr_mbox(adap, adap->mbox, &port_cmd, sizeof(port_cmd),
5344 &port_rpl);
5345 if (err)
5346 return err;
5347 pmask = FW_PFVF_CMD_PMASK_G(be32_to_cpu(port_rpl.type_to_neq));
5348 port = ffs(pmask) - 1;
5349 /* Allocate VF Management Interface. */
5350 snprintf(name, IFNAMSIZ, "mgmtpf%d,%d", adap->adap_idx,
5351 adap->pf);
5352 netdev = alloc_netdev(sizeof(struct port_info),
5353 name, NET_NAME_UNKNOWN, cxgb4_mgmt_setup);
5354 if (!netdev)
5355 return -ENOMEM;
5356
5357 pi = netdev_priv(netdev);
5358 pi->adapter = adap;
5359 pi->lport = port;
5360 pi->tx_chan = port;
5361 SET_NETDEV_DEV(netdev, &pdev->dev);
5362
5363 adap->port[0] = netdev;
5364 pi->port_id = 0;
5365
5366 err = register_netdev(adap->port[0]);
5367 if (err) {
5368 pr_info("Unable to register VF mgmt netdev %s\n", name);
5369 free_netdev(adap->port[0]);
5370 adap->port[0] = NULL;
5371 return err;
5372 }
5373 /* Allocate and set up VF Information. */
5374 adap->vfinfo = kcalloc(pci_sriov_get_totalvfs(pdev),
5375 sizeof(struct vf_info), GFP_KERNEL);
5376 if (!adap->vfinfo) {
5377 unregister_netdev(adap->port[0]);
5378 free_netdev(adap->port[0]);
5379 adap->port[0] = NULL;
5380 return -ENOMEM;
5381 }
5382 cxgb4_mgmt_fill_vf_station_mac_addr(adap);
5383 }
5384 /* Instantiate the requested number of VFs. */
5385 err = pci_enable_sriov(pdev, num_vfs);
5386 if (err) {
5387 pr_info("Unable to instantiate %d VFs\n", num_vfs);
5388 if (!current_vfs) {
5389 unregister_netdev(adap->port[0]);
5390 free_netdev(adap->port[0]);
5391 adap->port[0] = NULL;
5392 kfree(adap->vfinfo);
5393 adap->vfinfo = NULL;
5394 }
5395 return err;
5396 }
5397
5398 adap->num_vfs = num_vfs;
5399 return num_vfs;
5400 }
5401 #endif /* CONFIG_PCI_IOV */
5402
init_one(struct pci_dev * pdev,const struct pci_device_id * ent)5403 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
5404 {
5405 struct net_device *netdev;
5406 struct adapter *adapter;
5407 static int adap_idx = 1;
5408 int s_qpp, qpp, num_seg;
5409 struct port_info *pi;
5410 bool highdma = false;
5411 enum chip_type chip;
5412 void __iomem *regs;
5413 int func, chip_ver;
5414 u16 device_id;
5415 int i, err;
5416 u32 whoami;
5417
5418 printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
5419
5420 err = pci_request_regions(pdev, KBUILD_MODNAME);
5421 if (err) {
5422 /* Just info, some other driver may have claimed the device. */
5423 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
5424 return err;
5425 }
5426
5427 err = pci_enable_device(pdev);
5428 if (err) {
5429 dev_err(&pdev->dev, "cannot enable PCI device\n");
5430 goto out_release_regions;
5431 }
5432
5433 regs = pci_ioremap_bar(pdev, 0);
5434 if (!regs) {
5435 dev_err(&pdev->dev, "cannot map device registers\n");
5436 err = -ENOMEM;
5437 goto out_disable_device;
5438 }
5439
5440 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
5441 if (!adapter) {
5442 err = -ENOMEM;
5443 goto out_unmap_bar0;
5444 }
5445
5446 adapter->regs = regs;
5447 err = t4_wait_dev_ready(regs);
5448 if (err < 0)
5449 goto out_free_adapter;
5450
5451 /* We control everything through one PF */
5452 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
5453 pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id);
5454 chip = t4_get_chip_type(adapter, CHELSIO_PCI_ID_VER(device_id));
5455 if (chip < 0) {
5456 dev_err(&pdev->dev, "Device %d is not supported\n", device_id);
5457 err = chip;
5458 goto out_free_adapter;
5459 }
5460 chip_ver = CHELSIO_CHIP_VERSION(chip);
5461 func = chip_ver <= CHELSIO_T5 ?
5462 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
5463
5464 adapter->pdev = pdev;
5465 adapter->pdev_dev = &pdev->dev;
5466 adapter->name = pci_name(pdev);
5467 adapter->mbox = func;
5468 adapter->pf = func;
5469 adapter->params.chip = chip;
5470 adapter->adap_idx = adap_idx;
5471 adapter->msg_enable = DFLT_MSG_ENABLE;
5472 adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
5473 (sizeof(struct mbox_cmd) *
5474 T4_OS_LOG_MBOX_CMDS),
5475 GFP_KERNEL);
5476 if (!adapter->mbox_log) {
5477 err = -ENOMEM;
5478 goto out_free_adapter;
5479 }
5480 spin_lock_init(&adapter->mbox_lock);
5481 INIT_LIST_HEAD(&adapter->mlist.list);
5482 adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS;
5483 pci_set_drvdata(pdev, adapter);
5484
5485 if (func != ent->driver_data) {
5486 pci_disable_device(pdev);
5487 pci_save_state(pdev); /* to restore SR-IOV later */
5488 return 0;
5489 }
5490
5491 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
5492 highdma = true;
5493 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
5494 if (err) {
5495 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
5496 "coherent allocations\n");
5497 goto out_free_adapter;
5498 }
5499 } else {
5500 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
5501 if (err) {
5502 dev_err(&pdev->dev, "no usable DMA configuration\n");
5503 goto out_free_adapter;
5504 }
5505 }
5506
5507 pci_enable_pcie_error_reporting(pdev);
5508 pci_set_master(pdev);
5509 pci_save_state(pdev);
5510 adap_idx++;
5511 adapter->workq = create_singlethread_workqueue("cxgb4");
5512 if (!adapter->workq) {
5513 err = -ENOMEM;
5514 goto out_free_adapter;
5515 }
5516
5517 /* PCI device has been enabled */
5518 adapter->flags |= DEV_ENABLED;
5519 memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
5520
5521 /* If possible, we use PCIe Relaxed Ordering Attribute to deliver
5522 * Ingress Packet Data to Free List Buffers in order to allow for
5523 * chipset performance optimizations between the Root Complex and
5524 * Memory Controllers. (Messages to the associated Ingress Queue
5525 * notifying new Packet Placement in the Free Lists Buffers will be
5526 * send without the Relaxed Ordering Attribute thus guaranteeing that
5527 * all preceding PCIe Transaction Layer Packets will be processed
5528 * first.) But some Root Complexes have various issues with Upstream
5529 * Transaction Layer Packets with the Relaxed Ordering Attribute set.
5530 * The PCIe devices which under the Root Complexes will be cleared the
5531 * Relaxed Ordering bit in the configuration space, So we check our
5532 * PCIe configuration space to see if it's flagged with advice against
5533 * using Relaxed Ordering.
5534 */
5535 if (!pcie_relaxed_ordering_enabled(pdev))
5536 adapter->flags |= ROOT_NO_RELAXED_ORDERING;
5537
5538 spin_lock_init(&adapter->stats_lock);
5539 spin_lock_init(&adapter->tid_release_lock);
5540 spin_lock_init(&adapter->win0_lock);
5541
5542 INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
5543 INIT_WORK(&adapter->db_full_task, process_db_full);
5544 INIT_WORK(&adapter->db_drop_task, process_db_drop);
5545 INIT_WORK(&adapter->fatal_err_notify_task, notify_fatal_err);
5546
5547 err = t4_prep_adapter(adapter);
5548 if (err)
5549 goto out_free_adapter;
5550
5551 if (is_kdump_kernel()) {
5552 /* Collect hardware state and append to /proc/vmcore */
5553 err = cxgb4_cudbg_vmcore_add_dump(adapter);
5554 if (err) {
5555 dev_warn(adapter->pdev_dev,
5556 "Fail collecting vmcore device dump, err: %d. Continuing\n",
5557 err);
5558 err = 0;
5559 }
5560 }
5561
5562 if (!is_t4(adapter->params.chip)) {
5563 s_qpp = (QUEUESPERPAGEPF0_S +
5564 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
5565 adapter->pf);
5566 qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
5567 SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
5568 num_seg = PAGE_SIZE / SEGMENT_SIZE;
5569
5570 /* Each segment size is 128B. Write coalescing is enabled only
5571 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
5572 * queue is less no of segments that can be accommodated in
5573 * a page size.
5574 */
5575 if (qpp > num_seg) {
5576 dev_err(&pdev->dev,
5577 "Incorrect number of egress queues per page\n");
5578 err = -EINVAL;
5579 goto out_free_adapter;
5580 }
5581 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
5582 pci_resource_len(pdev, 2));
5583 if (!adapter->bar2) {
5584 dev_err(&pdev->dev, "cannot map device bar2 region\n");
5585 err = -ENOMEM;
5586 goto out_free_adapter;
5587 }
5588 }
5589
5590 setup_memwin(adapter);
5591 err = adap_init0(adapter);
5592 #ifdef CONFIG_DEBUG_FS
5593 bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz);
5594 #endif
5595 setup_memwin_rdma(adapter);
5596 if (err)
5597 goto out_unmap_bar;
5598
5599 /* configure SGE_STAT_CFG_A to read WC stats */
5600 if (!is_t4(adapter->params.chip))
5601 t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) |
5602 (is_t5(adapter->params.chip) ? STATMODE_V(0) :
5603 T6_STATMODE_V(0)));
5604
5605 for_each_port(adapter, i) {
5606 netdev = alloc_etherdev_mq(sizeof(struct port_info),
5607 MAX_ETH_QSETS);
5608 if (!netdev) {
5609 err = -ENOMEM;
5610 goto out_free_dev;
5611 }
5612
5613 SET_NETDEV_DEV(netdev, &pdev->dev);
5614
5615 adapter->port[i] = netdev;
5616 pi = netdev_priv(netdev);
5617 pi->adapter = adapter;
5618 pi->xact_addr_filt = -1;
5619 pi->port_id = i;
5620 netdev->irq = pdev->irq;
5621
5622 netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
5623 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
5624 NETIF_F_RXCSUM | NETIF_F_RXHASH |
5625 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
5626 NETIF_F_HW_TC;
5627
5628 if (chip_ver > CHELSIO_T5) {
5629 netdev->hw_enc_features |= NETIF_F_IP_CSUM |
5630 NETIF_F_IPV6_CSUM |
5631 NETIF_F_RXCSUM |
5632 NETIF_F_GSO_UDP_TUNNEL |
5633 NETIF_F_TSO | NETIF_F_TSO6;
5634
5635 netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL;
5636 }
5637
5638 if (highdma)
5639 netdev->hw_features |= NETIF_F_HIGHDMA;
5640 netdev->features |= netdev->hw_features;
5641 netdev->vlan_features = netdev->features & VLAN_FEAT;
5642
5643 netdev->priv_flags |= IFF_UNICAST_FLT;
5644
5645 /* MTU range: 81 - 9600 */
5646 netdev->min_mtu = 81; /* accommodate SACK */
5647 netdev->max_mtu = MAX_MTU;
5648
5649 netdev->netdev_ops = &cxgb4_netdev_ops;
5650 #ifdef CONFIG_CHELSIO_T4_DCB
5651 netdev->dcbnl_ops = &cxgb4_dcb_ops;
5652 cxgb4_dcb_state_init(netdev);
5653 cxgb4_dcb_version_init(netdev);
5654 #endif
5655 cxgb4_set_ethtool_ops(netdev);
5656 }
5657
5658 cxgb4_init_ethtool_dump(adapter);
5659
5660 pci_set_drvdata(pdev, adapter);
5661
5662 if (adapter->flags & FW_OK) {
5663 err = t4_port_init(adapter, func, func, 0);
5664 if (err)
5665 goto out_free_dev;
5666 } else if (adapter->params.nports == 1) {
5667 /* If we don't have a connection to the firmware -- possibly
5668 * because of an error -- grab the raw VPD parameters so we
5669 * can set the proper MAC Address on the debug network
5670 * interface that we've created.
5671 */
5672 u8 hw_addr[ETH_ALEN];
5673 u8 *na = adapter->params.vpd.na;
5674
5675 err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd);
5676 if (!err) {
5677 for (i = 0; i < ETH_ALEN; i++)
5678 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
5679 hex2val(na[2 * i + 1]));
5680 t4_set_hw_addr(adapter, 0, hw_addr);
5681 }
5682 }
5683
5684 if (!(adapter->flags & FW_OK))
5685 goto fw_attach_fail;
5686
5687 /* Configure queues and allocate tables now, they can be needed as
5688 * soon as the first register_netdev completes.
5689 */
5690 err = cfg_queues(adapter);
5691 if (err)
5692 goto out_free_dev;
5693
5694 adapter->smt = t4_init_smt();
5695 if (!adapter->smt) {
5696 /* We tolerate a lack of SMT, giving up some functionality */
5697 dev_warn(&pdev->dev, "could not allocate SMT, continuing\n");
5698 }
5699
5700 adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
5701 if (!adapter->l2t) {
5702 /* We tolerate a lack of L2T, giving up some functionality */
5703 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
5704 adapter->params.offload = 0;
5705 }
5706
5707 adapter->mps_encap = kvcalloc(adapter->params.arch.mps_tcam_size,
5708 sizeof(struct mps_encap_entry),
5709 GFP_KERNEL);
5710 if (!adapter->mps_encap)
5711 dev_warn(&pdev->dev, "could not allocate MPS Encap entries, continuing\n");
5712
5713 #if IS_ENABLED(CONFIG_IPV6)
5714 if (chip_ver <= CHELSIO_T5 &&
5715 (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) {
5716 /* CLIP functionality is not present in hardware,
5717 * hence disable all offload features
5718 */
5719 dev_warn(&pdev->dev,
5720 "CLIP not enabled in hardware, continuing\n");
5721 adapter->params.offload = 0;
5722 } else {
5723 adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
5724 adapter->clipt_end);
5725 if (!adapter->clipt) {
5726 /* We tolerate a lack of clip_table, giving up
5727 * some functionality
5728 */
5729 dev_warn(&pdev->dev,
5730 "could not allocate Clip table, continuing\n");
5731 adapter->params.offload = 0;
5732 }
5733 }
5734 #endif
5735
5736 for_each_port(adapter, i) {
5737 pi = adap2pinfo(adapter, i);
5738 pi->sched_tbl = t4_init_sched(adapter->params.nsched_cls);
5739 if (!pi->sched_tbl)
5740 dev_warn(&pdev->dev,
5741 "could not activate scheduling on port %d\n",
5742 i);
5743 }
5744
5745 if (tid_init(&adapter->tids) < 0) {
5746 dev_warn(&pdev->dev, "could not allocate TID table, "
5747 "continuing\n");
5748 adapter->params.offload = 0;
5749 } else {
5750 adapter->tc_u32 = cxgb4_init_tc_u32(adapter);
5751 if (!adapter->tc_u32)
5752 dev_warn(&pdev->dev,
5753 "could not offload tc u32, continuing\n");
5754
5755 if (cxgb4_init_tc_flower(adapter))
5756 dev_warn(&pdev->dev,
5757 "could not offload tc flower, continuing\n");
5758 }
5759
5760 if (is_offload(adapter) || is_hashfilter(adapter)) {
5761 if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) {
5762 u32 hash_base, hash_reg;
5763
5764 if (chip_ver <= CHELSIO_T5) {
5765 hash_reg = LE_DB_TID_HASHBASE_A;
5766 hash_base = t4_read_reg(adapter, hash_reg);
5767 adapter->tids.hash_base = hash_base / 4;
5768 } else {
5769 hash_reg = T6_LE_DB_HASH_TID_BASE_A;
5770 hash_base = t4_read_reg(adapter, hash_reg);
5771 adapter->tids.hash_base = hash_base;
5772 }
5773 }
5774 }
5775
5776 /* See what interrupts we'll be using */
5777 if (msi > 1 && enable_msix(adapter) == 0)
5778 adapter->flags |= USING_MSIX;
5779 else if (msi > 0 && pci_enable_msi(pdev) == 0) {
5780 adapter->flags |= USING_MSI;
5781 if (msi > 1)
5782 free_msix_info(adapter);
5783 }
5784
5785 /* check for PCI Express bandwidth capabiltites */
5786 pcie_print_link_status(pdev);
5787
5788 err = init_rss(adapter);
5789 if (err)
5790 goto out_free_dev;
5791
5792 err = setup_fw_sge_queues(adapter);
5793 if (err) {
5794 dev_err(adapter->pdev_dev,
5795 "FW sge queue allocation failed, err %d", err);
5796 goto out_free_dev;
5797 }
5798
5799 fw_attach_fail:
5800 /*
5801 * The card is now ready to go. If any errors occur during device
5802 * registration we do not fail the whole card but rather proceed only
5803 * with the ports we manage to register successfully. However we must
5804 * register at least one net device.
5805 */
5806 for_each_port(adapter, i) {
5807 pi = adap2pinfo(adapter, i);
5808 adapter->port[i]->dev_port = pi->lport;
5809 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
5810 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
5811
5812 netif_carrier_off(adapter->port[i]);
5813
5814 err = register_netdev(adapter->port[i]);
5815 if (err)
5816 break;
5817 adapter->chan_map[pi->tx_chan] = i;
5818 print_port_info(adapter->port[i]);
5819 }
5820 if (i == 0) {
5821 dev_err(&pdev->dev, "could not register any net devices\n");
5822 goto out_free_dev;
5823 }
5824 if (err) {
5825 dev_warn(&pdev->dev, "only %d net devices registered\n", i);
5826 err = 0;
5827 }
5828
5829 if (cxgb4_debugfs_root) {
5830 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
5831 cxgb4_debugfs_root);
5832 setup_debugfs(adapter);
5833 }
5834
5835 /* PCIe EEH recovery on powerpc platforms needs fundamental reset */
5836 pdev->needs_freset = 1;
5837
5838 if (is_uld(adapter)) {
5839 mutex_lock(&uld_mutex);
5840 list_add_tail(&adapter->list_node, &adapter_list);
5841 mutex_unlock(&uld_mutex);
5842 }
5843
5844 if (!is_t4(adapter->params.chip))
5845 cxgb4_ptp_init(adapter);
5846
5847 print_adapter_info(adapter);
5848 return 0;
5849
5850 out_free_dev:
5851 t4_free_sge_resources(adapter);
5852 free_some_resources(adapter);
5853 if (adapter->flags & USING_MSIX)
5854 free_msix_info(adapter);
5855 if (adapter->num_uld || adapter->num_ofld_uld)
5856 t4_uld_mem_free(adapter);
5857 out_unmap_bar:
5858 if (!is_t4(adapter->params.chip))
5859 iounmap(adapter->bar2);
5860 out_free_adapter:
5861 if (adapter->workq)
5862 destroy_workqueue(adapter->workq);
5863
5864 kfree(adapter->mbox_log);
5865 kfree(adapter);
5866 out_unmap_bar0:
5867 iounmap(regs);
5868 out_disable_device:
5869 pci_disable_pcie_error_reporting(pdev);
5870 pci_disable_device(pdev);
5871 out_release_regions:
5872 pci_release_regions(pdev);
5873 return err;
5874 }
5875
remove_one(struct pci_dev * pdev)5876 static void remove_one(struct pci_dev *pdev)
5877 {
5878 struct adapter *adapter = pci_get_drvdata(pdev);
5879
5880 if (!adapter) {
5881 pci_release_regions(pdev);
5882 return;
5883 }
5884
5885 adapter->flags |= SHUTTING_DOWN;
5886
5887 if (adapter->pf == 4) {
5888 int i;
5889
5890 /* Tear down per-adapter Work Queue first since it can contain
5891 * references to our adapter data structure.
5892 */
5893 destroy_workqueue(adapter->workq);
5894
5895 if (is_uld(adapter)) {
5896 detach_ulds(adapter);
5897 t4_uld_clean_up(adapter);
5898 }
5899
5900 adap_free_hma_mem(adapter);
5901
5902 disable_interrupts(adapter);
5903
5904 for_each_port(adapter, i)
5905 if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5906 unregister_netdev(adapter->port[i]);
5907
5908 debugfs_remove_recursive(adapter->debugfs_root);
5909
5910 if (!is_t4(adapter->params.chip))
5911 cxgb4_ptp_stop(adapter);
5912
5913 /* If we allocated filters, free up state associated with any
5914 * valid filters ...
5915 */
5916 clear_all_filters(adapter);
5917
5918 if (adapter->flags & FULL_INIT_DONE)
5919 cxgb_down(adapter);
5920
5921 if (adapter->flags & USING_MSIX)
5922 free_msix_info(adapter);
5923 if (adapter->num_uld || adapter->num_ofld_uld)
5924 t4_uld_mem_free(adapter);
5925 free_some_resources(adapter);
5926 #if IS_ENABLED(CONFIG_IPV6)
5927 t4_cleanup_clip_tbl(adapter);
5928 #endif
5929 if (!is_t4(adapter->params.chip))
5930 iounmap(adapter->bar2);
5931 }
5932 #ifdef CONFIG_PCI_IOV
5933 else {
5934 cxgb4_iov_configure(adapter->pdev, 0);
5935 }
5936 #endif
5937 iounmap(adapter->regs);
5938 pci_disable_pcie_error_reporting(pdev);
5939 if ((adapter->flags & DEV_ENABLED)) {
5940 pci_disable_device(pdev);
5941 adapter->flags &= ~DEV_ENABLED;
5942 }
5943 pci_release_regions(pdev);
5944 kfree(adapter->mbox_log);
5945 synchronize_rcu();
5946 kfree(adapter);
5947 }
5948
5949 /* "Shutdown" quiesces the device, stopping Ingress Packet and Interrupt
5950 * delivery. This is essentially a stripped down version of the PCI remove()
5951 * function where we do the minimal amount of work necessary to shutdown any
5952 * further activity.
5953 */
shutdown_one(struct pci_dev * pdev)5954 static void shutdown_one(struct pci_dev *pdev)
5955 {
5956 struct adapter *adapter = pci_get_drvdata(pdev);
5957
5958 /* As with remove_one() above (see extended comment), we only want do
5959 * do cleanup on PCI Devices which went all the way through init_one()
5960 * ...
5961 */
5962 if (!adapter) {
5963 pci_release_regions(pdev);
5964 return;
5965 }
5966
5967 adapter->flags |= SHUTTING_DOWN;
5968
5969 if (adapter->pf == 4) {
5970 int i;
5971
5972 for_each_port(adapter, i)
5973 if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5974 cxgb_close(adapter->port[i]);
5975
5976 if (is_uld(adapter)) {
5977 detach_ulds(adapter);
5978 t4_uld_clean_up(adapter);
5979 }
5980
5981 disable_interrupts(adapter);
5982 disable_msi(adapter);
5983
5984 t4_sge_stop(adapter);
5985 if (adapter->flags & FW_OK)
5986 t4_fw_bye(adapter, adapter->mbox);
5987 }
5988 }
5989
5990 static struct pci_driver cxgb4_driver = {
5991 .name = KBUILD_MODNAME,
5992 .id_table = cxgb4_pci_tbl,
5993 .probe = init_one,
5994 .remove = remove_one,
5995 .shutdown = shutdown_one,
5996 #ifdef CONFIG_PCI_IOV
5997 .sriov_configure = cxgb4_iov_configure,
5998 #endif
5999 .err_handler = &cxgb4_eeh,
6000 };
6001
cxgb4_init_module(void)6002 static int __init cxgb4_init_module(void)
6003 {
6004 int ret;
6005
6006 /* Debugfs support is optional, just warn if this fails */
6007 cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
6008 if (!cxgb4_debugfs_root)
6009 pr_warn("could not create debugfs entry, continuing\n");
6010
6011 ret = pci_register_driver(&cxgb4_driver);
6012 if (ret < 0)
6013 debugfs_remove(cxgb4_debugfs_root);
6014
6015 #if IS_ENABLED(CONFIG_IPV6)
6016 if (!inet6addr_registered) {
6017 register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
6018 inet6addr_registered = true;
6019 }
6020 #endif
6021
6022 return ret;
6023 }
6024
cxgb4_cleanup_module(void)6025 static void __exit cxgb4_cleanup_module(void)
6026 {
6027 #if IS_ENABLED(CONFIG_IPV6)
6028 if (inet6addr_registered) {
6029 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
6030 inet6addr_registered = false;
6031 }
6032 #endif
6033 pci_unregister_driver(&cxgb4_driver);
6034 debugfs_remove(cxgb4_debugfs_root); /* NULL ok */
6035 }
6036
6037 module_init(cxgb4_init_module);
6038 module_exit(cxgb4_cleanup_module);
6039