1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright 2014 IBM Corp.
4 */
5
6 #include <linux/spinlock.h>
7 #include <linux/sched.h>
8 #include <linux/sched/clock.h>
9 #include <linux/slab.h>
10 #include <linux/mutex.h>
11 #include <linux/mm.h>
12 #include <linux/uaccess.h>
13 #include <linux/delay.h>
14 #include <asm/synch.h>
15 #include <asm/switch_to.h>
16 #include <misc/cxl-base.h>
17
18 #include "cxl.h"
19 #include "trace.h"
20
afu_control(struct cxl_afu * afu,u64 command,u64 clear,u64 result,u64 mask,bool enabled)21 static int afu_control(struct cxl_afu *afu, u64 command, u64 clear,
22 u64 result, u64 mask, bool enabled)
23 {
24 u64 AFU_Cntl;
25 unsigned long timeout = jiffies + (HZ * CXL_TIMEOUT);
26 int rc = 0;
27
28 spin_lock(&afu->afu_cntl_lock);
29 pr_devel("AFU command starting: %llx\n", command);
30
31 trace_cxl_afu_ctrl(afu, command);
32
33 AFU_Cntl = cxl_p2n_read(afu, CXL_AFU_Cntl_An);
34 cxl_p2n_write(afu, CXL_AFU_Cntl_An, (AFU_Cntl & ~clear) | command);
35
36 AFU_Cntl = cxl_p2n_read(afu, CXL_AFU_Cntl_An);
37 while ((AFU_Cntl & mask) != result) {
38 if (time_after_eq(jiffies, timeout)) {
39 dev_warn(&afu->dev, "WARNING: AFU control timed out!\n");
40 rc = -EBUSY;
41 goto out;
42 }
43
44 if (!cxl_ops->link_ok(afu->adapter, afu)) {
45 afu->enabled = enabled;
46 rc = -EIO;
47 goto out;
48 }
49
50 pr_devel_ratelimited("AFU control... (0x%016llx)\n",
51 AFU_Cntl | command);
52 cpu_relax();
53 AFU_Cntl = cxl_p2n_read(afu, CXL_AFU_Cntl_An);
54 }
55
56 if (AFU_Cntl & CXL_AFU_Cntl_An_RA) {
57 /*
58 * Workaround for a bug in the XSL used in the Mellanox CX4
59 * that fails to clear the RA bit after an AFU reset,
60 * preventing subsequent AFU resets from working.
61 */
62 cxl_p2n_write(afu, CXL_AFU_Cntl_An, AFU_Cntl & ~CXL_AFU_Cntl_An_RA);
63 }
64
65 pr_devel("AFU command complete: %llx\n", command);
66 afu->enabled = enabled;
67 out:
68 trace_cxl_afu_ctrl_done(afu, command, rc);
69 spin_unlock(&afu->afu_cntl_lock);
70
71 return rc;
72 }
73
afu_enable(struct cxl_afu * afu)74 static int afu_enable(struct cxl_afu *afu)
75 {
76 pr_devel("AFU enable request\n");
77
78 return afu_control(afu, CXL_AFU_Cntl_An_E, 0,
79 CXL_AFU_Cntl_An_ES_Enabled,
80 CXL_AFU_Cntl_An_ES_MASK, true);
81 }
82
cxl_afu_disable(struct cxl_afu * afu)83 int cxl_afu_disable(struct cxl_afu *afu)
84 {
85 pr_devel("AFU disable request\n");
86
87 return afu_control(afu, 0, CXL_AFU_Cntl_An_E,
88 CXL_AFU_Cntl_An_ES_Disabled,
89 CXL_AFU_Cntl_An_ES_MASK, false);
90 }
91
92 /* This will disable as well as reset */
native_afu_reset(struct cxl_afu * afu)93 static int native_afu_reset(struct cxl_afu *afu)
94 {
95 int rc;
96 u64 serr;
97
98 pr_devel("AFU reset request\n");
99
100 rc = afu_control(afu, CXL_AFU_Cntl_An_RA, 0,
101 CXL_AFU_Cntl_An_RS_Complete | CXL_AFU_Cntl_An_ES_Disabled,
102 CXL_AFU_Cntl_An_RS_MASK | CXL_AFU_Cntl_An_ES_MASK,
103 false);
104
105 /*
106 * Re-enable any masked interrupts when the AFU is not
107 * activated to avoid side effects after attaching a process
108 * in dedicated mode.
109 */
110 if (afu->current_mode == 0) {
111 serr = cxl_p1n_read(afu, CXL_PSL_SERR_An);
112 serr &= ~CXL_PSL_SERR_An_IRQ_MASKS;
113 cxl_p1n_write(afu, CXL_PSL_SERR_An, serr);
114 }
115
116 return rc;
117 }
118
native_afu_check_and_enable(struct cxl_afu * afu)119 static int native_afu_check_and_enable(struct cxl_afu *afu)
120 {
121 if (!cxl_ops->link_ok(afu->adapter, afu)) {
122 WARN(1, "Refusing to enable afu while link down!\n");
123 return -EIO;
124 }
125 if (afu->enabled)
126 return 0;
127 return afu_enable(afu);
128 }
129
cxl_psl_purge(struct cxl_afu * afu)130 int cxl_psl_purge(struct cxl_afu *afu)
131 {
132 u64 PSL_CNTL = cxl_p1n_read(afu, CXL_PSL_SCNTL_An);
133 u64 AFU_Cntl = cxl_p2n_read(afu, CXL_AFU_Cntl_An);
134 u64 dsisr, dar;
135 u64 start, end;
136 u64 trans_fault = 0x0ULL;
137 unsigned long timeout = jiffies + (HZ * CXL_TIMEOUT);
138 int rc = 0;
139
140 trace_cxl_psl_ctrl(afu, CXL_PSL_SCNTL_An_Pc);
141
142 pr_devel("PSL purge request\n");
143
144 if (cxl_is_power8())
145 trans_fault = CXL_PSL_DSISR_TRANS;
146 if (cxl_is_power9())
147 trans_fault = CXL_PSL9_DSISR_An_TF;
148
149 if (!cxl_ops->link_ok(afu->adapter, afu)) {
150 dev_warn(&afu->dev, "PSL Purge called with link down, ignoring\n");
151 rc = -EIO;
152 goto out;
153 }
154
155 if ((AFU_Cntl & CXL_AFU_Cntl_An_ES_MASK) != CXL_AFU_Cntl_An_ES_Disabled) {
156 WARN(1, "psl_purge request while AFU not disabled!\n");
157 cxl_afu_disable(afu);
158 }
159
160 cxl_p1n_write(afu, CXL_PSL_SCNTL_An,
161 PSL_CNTL | CXL_PSL_SCNTL_An_Pc);
162 start = local_clock();
163 PSL_CNTL = cxl_p1n_read(afu, CXL_PSL_SCNTL_An);
164 while ((PSL_CNTL & CXL_PSL_SCNTL_An_Ps_MASK)
165 == CXL_PSL_SCNTL_An_Ps_Pending) {
166 if (time_after_eq(jiffies, timeout)) {
167 dev_warn(&afu->dev, "WARNING: PSL Purge timed out!\n");
168 rc = -EBUSY;
169 goto out;
170 }
171 if (!cxl_ops->link_ok(afu->adapter, afu)) {
172 rc = -EIO;
173 goto out;
174 }
175
176 dsisr = cxl_p2n_read(afu, CXL_PSL_DSISR_An);
177 pr_devel_ratelimited("PSL purging... PSL_CNTL: 0x%016llx PSL_DSISR: 0x%016llx\n",
178 PSL_CNTL, dsisr);
179
180 if (dsisr & trans_fault) {
181 dar = cxl_p2n_read(afu, CXL_PSL_DAR_An);
182 dev_notice(&afu->dev, "PSL purge terminating pending translation, DSISR: 0x%016llx, DAR: 0x%016llx\n",
183 dsisr, dar);
184 cxl_p2n_write(afu, CXL_PSL_TFC_An, CXL_PSL_TFC_An_AE);
185 } else if (dsisr) {
186 dev_notice(&afu->dev, "PSL purge acknowledging pending non-translation fault, DSISR: 0x%016llx\n",
187 dsisr);
188 cxl_p2n_write(afu, CXL_PSL_TFC_An, CXL_PSL_TFC_An_A);
189 } else {
190 cpu_relax();
191 }
192 PSL_CNTL = cxl_p1n_read(afu, CXL_PSL_SCNTL_An);
193 }
194 end = local_clock();
195 pr_devel("PSL purged in %lld ns\n", end - start);
196
197 cxl_p1n_write(afu, CXL_PSL_SCNTL_An,
198 PSL_CNTL & ~CXL_PSL_SCNTL_An_Pc);
199 out:
200 trace_cxl_psl_ctrl_done(afu, CXL_PSL_SCNTL_An_Pc, rc);
201 return rc;
202 }
203
spa_max_procs(int spa_size)204 static int spa_max_procs(int spa_size)
205 {
206 /*
207 * From the CAIA:
208 * end_of_SPA_area = SPA_Base + ((n+4) * 128) + (( ((n*8) + 127) >> 7) * 128) + 255
209 * Most of that junk is really just an overly-complicated way of saying
210 * the last 256 bytes are __aligned(128), so it's really:
211 * end_of_SPA_area = end_of_PSL_queue_area + __aligned(128) 255
212 * and
213 * end_of_PSL_queue_area = SPA_Base + ((n+4) * 128) + (n*8) - 1
214 * so
215 * sizeof(SPA) = ((n+4) * 128) + (n*8) + __aligned(128) 256
216 * Ignore the alignment (which is safe in this case as long as we are
217 * careful with our rounding) and solve for n:
218 */
219 return ((spa_size / 8) - 96) / 17;
220 }
221
cxl_alloc_spa(struct cxl_afu * afu,int mode)222 static int cxl_alloc_spa(struct cxl_afu *afu, int mode)
223 {
224 unsigned spa_size;
225
226 /* Work out how many pages to allocate */
227 afu->native->spa_order = -1;
228 do {
229 afu->native->spa_order++;
230 spa_size = (1 << afu->native->spa_order) * PAGE_SIZE;
231
232 if (spa_size > 0x100000) {
233 dev_warn(&afu->dev, "num_of_processes too large for the SPA, limiting to %i (0x%x)\n",
234 afu->native->spa_max_procs, afu->native->spa_size);
235 if (mode != CXL_MODE_DEDICATED)
236 afu->num_procs = afu->native->spa_max_procs;
237 break;
238 }
239
240 afu->native->spa_size = spa_size;
241 afu->native->spa_max_procs = spa_max_procs(afu->native->spa_size);
242 } while (afu->native->spa_max_procs < afu->num_procs);
243
244 if (!(afu->native->spa = (struct cxl_process_element *)
245 __get_free_pages(GFP_KERNEL | __GFP_ZERO, afu->native->spa_order))) {
246 pr_err("cxl_alloc_spa: Unable to allocate scheduled process area\n");
247 return -ENOMEM;
248 }
249 pr_devel("spa pages: %i afu->spa_max_procs: %i afu->num_procs: %i\n",
250 1<<afu->native->spa_order, afu->native->spa_max_procs, afu->num_procs);
251
252 return 0;
253 }
254
attach_spa(struct cxl_afu * afu)255 static void attach_spa(struct cxl_afu *afu)
256 {
257 u64 spap;
258
259 afu->native->sw_command_status = (__be64 *)((char *)afu->native->spa +
260 ((afu->native->spa_max_procs + 3) * 128));
261
262 spap = virt_to_phys(afu->native->spa) & CXL_PSL_SPAP_Addr;
263 spap |= ((afu->native->spa_size >> (12 - CXL_PSL_SPAP_Size_Shift)) - 1) & CXL_PSL_SPAP_Size;
264 spap |= CXL_PSL_SPAP_V;
265 pr_devel("cxl: SPA allocated at 0x%p. Max processes: %i, sw_command_status: 0x%p CXL_PSL_SPAP_An=0x%016llx\n",
266 afu->native->spa, afu->native->spa_max_procs,
267 afu->native->sw_command_status, spap);
268 cxl_p1n_write(afu, CXL_PSL_SPAP_An, spap);
269 }
270
detach_spa(struct cxl_afu * afu)271 static inline void detach_spa(struct cxl_afu *afu)
272 {
273 cxl_p1n_write(afu, CXL_PSL_SPAP_An, 0);
274 }
275
cxl_release_spa(struct cxl_afu * afu)276 void cxl_release_spa(struct cxl_afu *afu)
277 {
278 if (afu->native->spa) {
279 free_pages((unsigned long) afu->native->spa,
280 afu->native->spa_order);
281 afu->native->spa = NULL;
282 }
283 }
284
285 /*
286 * Invalidation of all ERAT entries is no longer required by CAIA2. Use
287 * only for debug.
288 */
cxl_invalidate_all_psl9(struct cxl * adapter)289 int cxl_invalidate_all_psl9(struct cxl *adapter)
290 {
291 unsigned long timeout = jiffies + (HZ * CXL_TIMEOUT);
292 u64 ierat;
293
294 pr_devel("CXL adapter - invalidation of all ERAT entries\n");
295
296 /* Invalidates all ERAT entries for Radix or HPT */
297 ierat = CXL_XSL9_IERAT_IALL;
298 if (radix_enabled())
299 ierat |= CXL_XSL9_IERAT_INVR;
300 cxl_p1_write(adapter, CXL_XSL9_IERAT, ierat);
301
302 while (cxl_p1_read(adapter, CXL_XSL9_IERAT) & CXL_XSL9_IERAT_IINPROG) {
303 if (time_after_eq(jiffies, timeout)) {
304 dev_warn(&adapter->dev,
305 "WARNING: CXL adapter invalidation of all ERAT entries timed out!\n");
306 return -EBUSY;
307 }
308 if (!cxl_ops->link_ok(adapter, NULL))
309 return -EIO;
310 cpu_relax();
311 }
312 return 0;
313 }
314
cxl_invalidate_all_psl8(struct cxl * adapter)315 int cxl_invalidate_all_psl8(struct cxl *adapter)
316 {
317 unsigned long timeout = jiffies + (HZ * CXL_TIMEOUT);
318
319 pr_devel("CXL adapter wide TLBIA & SLBIA\n");
320
321 cxl_p1_write(adapter, CXL_PSL_AFUSEL, CXL_PSL_AFUSEL_A);
322
323 cxl_p1_write(adapter, CXL_PSL_TLBIA, CXL_TLB_SLB_IQ_ALL);
324 while (cxl_p1_read(adapter, CXL_PSL_TLBIA) & CXL_TLB_SLB_P) {
325 if (time_after_eq(jiffies, timeout)) {
326 dev_warn(&adapter->dev, "WARNING: CXL adapter wide TLBIA timed out!\n");
327 return -EBUSY;
328 }
329 if (!cxl_ops->link_ok(adapter, NULL))
330 return -EIO;
331 cpu_relax();
332 }
333
334 cxl_p1_write(adapter, CXL_PSL_SLBIA, CXL_TLB_SLB_IQ_ALL);
335 while (cxl_p1_read(adapter, CXL_PSL_SLBIA) & CXL_TLB_SLB_P) {
336 if (time_after_eq(jiffies, timeout)) {
337 dev_warn(&adapter->dev, "WARNING: CXL adapter wide SLBIA timed out!\n");
338 return -EBUSY;
339 }
340 if (!cxl_ops->link_ok(adapter, NULL))
341 return -EIO;
342 cpu_relax();
343 }
344 return 0;
345 }
346
cxl_data_cache_flush(struct cxl * adapter)347 int cxl_data_cache_flush(struct cxl *adapter)
348 {
349 u64 reg;
350 unsigned long timeout = jiffies + (HZ * CXL_TIMEOUT);
351
352 /*
353 * Do a datacache flush only if datacache is available.
354 * In case of PSL9D datacache absent hence flush operation.
355 * would timeout.
356 */
357 if (adapter->native->no_data_cache) {
358 pr_devel("No PSL data cache. Ignoring cache flush req.\n");
359 return 0;
360 }
361
362 pr_devel("Flushing data cache\n");
363 reg = cxl_p1_read(adapter, CXL_PSL_Control);
364 reg |= CXL_PSL_Control_Fr;
365 cxl_p1_write(adapter, CXL_PSL_Control, reg);
366
367 reg = cxl_p1_read(adapter, CXL_PSL_Control);
368 while ((reg & CXL_PSL_Control_Fs_MASK) != CXL_PSL_Control_Fs_Complete) {
369 if (time_after_eq(jiffies, timeout)) {
370 dev_warn(&adapter->dev, "WARNING: cache flush timed out!\n");
371 return -EBUSY;
372 }
373
374 if (!cxl_ops->link_ok(adapter, NULL)) {
375 dev_warn(&adapter->dev, "WARNING: link down when flushing cache\n");
376 return -EIO;
377 }
378 cpu_relax();
379 reg = cxl_p1_read(adapter, CXL_PSL_Control);
380 }
381
382 reg &= ~CXL_PSL_Control_Fr;
383 cxl_p1_write(adapter, CXL_PSL_Control, reg);
384 return 0;
385 }
386
cxl_write_sstp(struct cxl_afu * afu,u64 sstp0,u64 sstp1)387 static int cxl_write_sstp(struct cxl_afu *afu, u64 sstp0, u64 sstp1)
388 {
389 int rc;
390
391 /* 1. Disable SSTP by writing 0 to SSTP1[V] */
392 cxl_p2n_write(afu, CXL_SSTP1_An, 0);
393
394 /* 2. Invalidate all SLB entries */
395 if ((rc = cxl_afu_slbia(afu)))
396 return rc;
397
398 /* 3. Set SSTP0_An */
399 cxl_p2n_write(afu, CXL_SSTP0_An, sstp0);
400
401 /* 4. Set SSTP1_An */
402 cxl_p2n_write(afu, CXL_SSTP1_An, sstp1);
403
404 return 0;
405 }
406
407 /* Using per slice version may improve performance here. (ie. SLBIA_An) */
slb_invalid(struct cxl_context * ctx)408 static void slb_invalid(struct cxl_context *ctx)
409 {
410 struct cxl *adapter = ctx->afu->adapter;
411 u64 slbia;
412
413 WARN_ON(!mutex_is_locked(&ctx->afu->native->spa_mutex));
414
415 cxl_p1_write(adapter, CXL_PSL_LBISEL,
416 ((u64)be32_to_cpu(ctx->elem->common.pid) << 32) |
417 be32_to_cpu(ctx->elem->lpid));
418 cxl_p1_write(adapter, CXL_PSL_SLBIA, CXL_TLB_SLB_IQ_LPIDPID);
419
420 while (1) {
421 if (!cxl_ops->link_ok(adapter, NULL))
422 break;
423 slbia = cxl_p1_read(adapter, CXL_PSL_SLBIA);
424 if (!(slbia & CXL_TLB_SLB_P))
425 break;
426 cpu_relax();
427 }
428 }
429
do_process_element_cmd(struct cxl_context * ctx,u64 cmd,u64 pe_state)430 static int do_process_element_cmd(struct cxl_context *ctx,
431 u64 cmd, u64 pe_state)
432 {
433 u64 state;
434 unsigned long timeout = jiffies + (HZ * CXL_TIMEOUT);
435 int rc = 0;
436
437 trace_cxl_llcmd(ctx, cmd);
438
439 WARN_ON(!ctx->afu->enabled);
440
441 ctx->elem->software_state = cpu_to_be32(pe_state);
442 smp_wmb();
443 *(ctx->afu->native->sw_command_status) = cpu_to_be64(cmd | 0 | ctx->pe);
444 smp_mb();
445 cxl_p1n_write(ctx->afu, CXL_PSL_LLCMD_An, cmd | ctx->pe);
446 while (1) {
447 if (time_after_eq(jiffies, timeout)) {
448 dev_warn(&ctx->afu->dev, "WARNING: Process Element Command timed out!\n");
449 rc = -EBUSY;
450 goto out;
451 }
452 if (!cxl_ops->link_ok(ctx->afu->adapter, ctx->afu)) {
453 dev_warn(&ctx->afu->dev, "WARNING: Device link down, aborting Process Element Command!\n");
454 rc = -EIO;
455 goto out;
456 }
457 state = be64_to_cpup(ctx->afu->native->sw_command_status);
458 if (state == ~0ULL) {
459 pr_err("cxl: Error adding process element to AFU\n");
460 rc = -1;
461 goto out;
462 }
463 if ((state & (CXL_SPA_SW_CMD_MASK | CXL_SPA_SW_STATE_MASK | CXL_SPA_SW_LINK_MASK)) ==
464 (cmd | (cmd >> 16) | ctx->pe))
465 break;
466 /*
467 * The command won't finish in the PSL if there are
468 * outstanding DSIs. Hence we need to yield here in
469 * case there are outstanding DSIs that we need to
470 * service. Tuning possiblity: we could wait for a
471 * while before sched
472 */
473 schedule();
474
475 }
476 out:
477 trace_cxl_llcmd_done(ctx, cmd, rc);
478 return rc;
479 }
480
add_process_element(struct cxl_context * ctx)481 static int add_process_element(struct cxl_context *ctx)
482 {
483 int rc = 0;
484
485 mutex_lock(&ctx->afu->native->spa_mutex);
486 pr_devel("%s Adding pe: %i started\n", __func__, ctx->pe);
487 if (!(rc = do_process_element_cmd(ctx, CXL_SPA_SW_CMD_ADD, CXL_PE_SOFTWARE_STATE_V)))
488 ctx->pe_inserted = true;
489 pr_devel("%s Adding pe: %i finished\n", __func__, ctx->pe);
490 mutex_unlock(&ctx->afu->native->spa_mutex);
491 return rc;
492 }
493
terminate_process_element(struct cxl_context * ctx)494 static int terminate_process_element(struct cxl_context *ctx)
495 {
496 int rc = 0;
497
498 /* fast path terminate if it's already invalid */
499 if (!(ctx->elem->software_state & cpu_to_be32(CXL_PE_SOFTWARE_STATE_V)))
500 return rc;
501
502 mutex_lock(&ctx->afu->native->spa_mutex);
503 pr_devel("%s Terminate pe: %i started\n", __func__, ctx->pe);
504 /* We could be asked to terminate when the hw is down. That
505 * should always succeed: it's not running if the hw has gone
506 * away and is being reset.
507 */
508 if (cxl_ops->link_ok(ctx->afu->adapter, ctx->afu))
509 rc = do_process_element_cmd(ctx, CXL_SPA_SW_CMD_TERMINATE,
510 CXL_PE_SOFTWARE_STATE_V | CXL_PE_SOFTWARE_STATE_T);
511 ctx->elem->software_state = 0; /* Remove Valid bit */
512 pr_devel("%s Terminate pe: %i finished\n", __func__, ctx->pe);
513 mutex_unlock(&ctx->afu->native->spa_mutex);
514 return rc;
515 }
516
remove_process_element(struct cxl_context * ctx)517 static int remove_process_element(struct cxl_context *ctx)
518 {
519 int rc = 0;
520
521 mutex_lock(&ctx->afu->native->spa_mutex);
522 pr_devel("%s Remove pe: %i started\n", __func__, ctx->pe);
523
524 /* We could be asked to remove when the hw is down. Again, if
525 * the hw is down, the PE is gone, so we succeed.
526 */
527 if (cxl_ops->link_ok(ctx->afu->adapter, ctx->afu))
528 rc = do_process_element_cmd(ctx, CXL_SPA_SW_CMD_REMOVE, 0);
529
530 if (!rc)
531 ctx->pe_inserted = false;
532 if (cxl_is_power8())
533 slb_invalid(ctx);
534 pr_devel("%s Remove pe: %i finished\n", __func__, ctx->pe);
535 mutex_unlock(&ctx->afu->native->spa_mutex);
536
537 return rc;
538 }
539
cxl_assign_psn_space(struct cxl_context * ctx)540 void cxl_assign_psn_space(struct cxl_context *ctx)
541 {
542 if (!ctx->afu->pp_size || ctx->master) {
543 ctx->psn_phys = ctx->afu->psn_phys;
544 ctx->psn_size = ctx->afu->adapter->ps_size;
545 } else {
546 ctx->psn_phys = ctx->afu->psn_phys +
547 (ctx->afu->native->pp_offset + ctx->afu->pp_size * ctx->pe);
548 ctx->psn_size = ctx->afu->pp_size;
549 }
550 }
551
activate_afu_directed(struct cxl_afu * afu)552 static int activate_afu_directed(struct cxl_afu *afu)
553 {
554 int rc;
555
556 dev_info(&afu->dev, "Activating AFU directed mode\n");
557
558 afu->num_procs = afu->max_procs_virtualised;
559 if (afu->native->spa == NULL) {
560 if (cxl_alloc_spa(afu, CXL_MODE_DIRECTED))
561 return -ENOMEM;
562 }
563 attach_spa(afu);
564
565 cxl_p1n_write(afu, CXL_PSL_SCNTL_An, CXL_PSL_SCNTL_An_PM_AFU);
566 if (cxl_is_power8())
567 cxl_p1n_write(afu, CXL_PSL_AMOR_An, 0xFFFFFFFFFFFFFFFFULL);
568 cxl_p1n_write(afu, CXL_PSL_ID_An, CXL_PSL_ID_An_F | CXL_PSL_ID_An_L);
569
570 afu->current_mode = CXL_MODE_DIRECTED;
571
572 if ((rc = cxl_chardev_m_afu_add(afu)))
573 return rc;
574
575 if ((rc = cxl_sysfs_afu_m_add(afu)))
576 goto err;
577
578 if ((rc = cxl_chardev_s_afu_add(afu)))
579 goto err1;
580
581 return 0;
582 err1:
583 cxl_sysfs_afu_m_remove(afu);
584 err:
585 cxl_chardev_afu_remove(afu);
586 return rc;
587 }
588
589 #ifdef CONFIG_CPU_LITTLE_ENDIAN
590 #define set_endian(sr) ((sr) |= CXL_PSL_SR_An_LE)
591 #else
592 #define set_endian(sr) ((sr) &= ~(CXL_PSL_SR_An_LE))
593 #endif
594
cxl_calculate_sr(bool master,bool kernel,bool real_mode,bool p9)595 u64 cxl_calculate_sr(bool master, bool kernel, bool real_mode, bool p9)
596 {
597 u64 sr = 0;
598
599 set_endian(sr);
600 if (master)
601 sr |= CXL_PSL_SR_An_MP;
602 if (mfspr(SPRN_LPCR) & LPCR_TC)
603 sr |= CXL_PSL_SR_An_TC;
604
605 if (kernel) {
606 if (!real_mode)
607 sr |= CXL_PSL_SR_An_R;
608 sr |= (mfmsr() & MSR_SF) | CXL_PSL_SR_An_HV;
609 } else {
610 sr |= CXL_PSL_SR_An_PR | CXL_PSL_SR_An_R;
611 if (radix_enabled())
612 sr |= CXL_PSL_SR_An_HV;
613 else
614 sr &= ~(CXL_PSL_SR_An_HV);
615 if (!test_tsk_thread_flag(current, TIF_32BIT))
616 sr |= CXL_PSL_SR_An_SF;
617 }
618 if (p9) {
619 if (radix_enabled())
620 sr |= CXL_PSL_SR_An_XLAT_ror;
621 else
622 sr |= CXL_PSL_SR_An_XLAT_hpt;
623 }
624 return sr;
625 }
626
calculate_sr(struct cxl_context * ctx)627 static u64 calculate_sr(struct cxl_context *ctx)
628 {
629 return cxl_calculate_sr(ctx->master, ctx->kernel, false,
630 cxl_is_power9());
631 }
632
update_ivtes_directed(struct cxl_context * ctx)633 static void update_ivtes_directed(struct cxl_context *ctx)
634 {
635 bool need_update = (ctx->status == STARTED);
636 int r;
637
638 if (need_update) {
639 WARN_ON(terminate_process_element(ctx));
640 WARN_ON(remove_process_element(ctx));
641 }
642
643 for (r = 0; r < CXL_IRQ_RANGES; r++) {
644 ctx->elem->ivte_offsets[r] = cpu_to_be16(ctx->irqs.offset[r]);
645 ctx->elem->ivte_ranges[r] = cpu_to_be16(ctx->irqs.range[r]);
646 }
647
648 /*
649 * Theoretically we could use the update llcmd, instead of a
650 * terminate/remove/add (or if an atomic update was required we could
651 * do a suspend/update/resume), however it seems there might be issues
652 * with the update llcmd on some cards (including those using an XSL on
653 * an ASIC) so for now it's safest to go with the commands that are
654 * known to work. In the future if we come across a situation where the
655 * card may be performing transactions using the same PE while we are
656 * doing this update we might need to revisit this.
657 */
658 if (need_update)
659 WARN_ON(add_process_element(ctx));
660 }
661
process_element_entry_psl9(struct cxl_context * ctx,u64 wed,u64 amr)662 static int process_element_entry_psl9(struct cxl_context *ctx, u64 wed, u64 amr)
663 {
664 u32 pid;
665 int rc;
666
667 cxl_assign_psn_space(ctx);
668
669 ctx->elem->ctxtime = 0; /* disable */
670 ctx->elem->lpid = cpu_to_be32(mfspr(SPRN_LPID));
671 ctx->elem->haurp = 0; /* disable */
672
673 if (ctx->kernel)
674 pid = 0;
675 else {
676 if (ctx->mm == NULL) {
677 pr_devel("%s: unable to get mm for pe=%d pid=%i\n",
678 __func__, ctx->pe, pid_nr(ctx->pid));
679 return -EINVAL;
680 }
681 pid = ctx->mm->context.id;
682 }
683
684 /* Assign a unique TIDR (thread id) for the current thread */
685 if (!(ctx->tidr) && (ctx->assign_tidr)) {
686 rc = set_thread_tidr(current);
687 if (rc)
688 return -ENODEV;
689 ctx->tidr = current->thread.tidr;
690 pr_devel("%s: current tidr: %d\n", __func__, ctx->tidr);
691 }
692
693 ctx->elem->common.tid = cpu_to_be32(ctx->tidr);
694 ctx->elem->common.pid = cpu_to_be32(pid);
695
696 ctx->elem->sr = cpu_to_be64(calculate_sr(ctx));
697
698 ctx->elem->common.csrp = 0; /* disable */
699
700 cxl_prefault(ctx, wed);
701
702 /*
703 * Ensure we have the multiplexed PSL interrupt set up to take faults
704 * for kernel contexts that may not have allocated any AFU IRQs at all:
705 */
706 if (ctx->irqs.range[0] == 0) {
707 ctx->irqs.offset[0] = ctx->afu->native->psl_hwirq;
708 ctx->irqs.range[0] = 1;
709 }
710
711 ctx->elem->common.amr = cpu_to_be64(amr);
712 ctx->elem->common.wed = cpu_to_be64(wed);
713
714 return 0;
715 }
716
cxl_attach_afu_directed_psl9(struct cxl_context * ctx,u64 wed,u64 amr)717 int cxl_attach_afu_directed_psl9(struct cxl_context *ctx, u64 wed, u64 amr)
718 {
719 int result;
720
721 /* fill the process element entry */
722 result = process_element_entry_psl9(ctx, wed, amr);
723 if (result)
724 return result;
725
726 update_ivtes_directed(ctx);
727
728 /* first guy needs to enable */
729 result = cxl_ops->afu_check_and_enable(ctx->afu);
730 if (result)
731 return result;
732
733 return add_process_element(ctx);
734 }
735
cxl_attach_afu_directed_psl8(struct cxl_context * ctx,u64 wed,u64 amr)736 int cxl_attach_afu_directed_psl8(struct cxl_context *ctx, u64 wed, u64 amr)
737 {
738 u32 pid;
739 int result;
740
741 cxl_assign_psn_space(ctx);
742
743 ctx->elem->ctxtime = 0; /* disable */
744 ctx->elem->lpid = cpu_to_be32(mfspr(SPRN_LPID));
745 ctx->elem->haurp = 0; /* disable */
746 ctx->elem->u.sdr = cpu_to_be64(mfspr(SPRN_SDR1));
747
748 pid = current->pid;
749 if (ctx->kernel)
750 pid = 0;
751 ctx->elem->common.tid = 0;
752 ctx->elem->common.pid = cpu_to_be32(pid);
753
754 ctx->elem->sr = cpu_to_be64(calculate_sr(ctx));
755
756 ctx->elem->common.csrp = 0; /* disable */
757 ctx->elem->common.u.psl8.aurp0 = 0; /* disable */
758 ctx->elem->common.u.psl8.aurp1 = 0; /* disable */
759
760 cxl_prefault(ctx, wed);
761
762 ctx->elem->common.u.psl8.sstp0 = cpu_to_be64(ctx->sstp0);
763 ctx->elem->common.u.psl8.sstp1 = cpu_to_be64(ctx->sstp1);
764
765 /*
766 * Ensure we have the multiplexed PSL interrupt set up to take faults
767 * for kernel contexts that may not have allocated any AFU IRQs at all:
768 */
769 if (ctx->irqs.range[0] == 0) {
770 ctx->irqs.offset[0] = ctx->afu->native->psl_hwirq;
771 ctx->irqs.range[0] = 1;
772 }
773
774 update_ivtes_directed(ctx);
775
776 ctx->elem->common.amr = cpu_to_be64(amr);
777 ctx->elem->common.wed = cpu_to_be64(wed);
778
779 /* first guy needs to enable */
780 if ((result = cxl_ops->afu_check_and_enable(ctx->afu)))
781 return result;
782
783 return add_process_element(ctx);
784 }
785
deactivate_afu_directed(struct cxl_afu * afu)786 static int deactivate_afu_directed(struct cxl_afu *afu)
787 {
788 dev_info(&afu->dev, "Deactivating AFU directed mode\n");
789
790 afu->current_mode = 0;
791 afu->num_procs = 0;
792
793 cxl_sysfs_afu_m_remove(afu);
794 cxl_chardev_afu_remove(afu);
795
796 /*
797 * The CAIA section 2.2.1 indicates that the procedure for starting and
798 * stopping an AFU in AFU directed mode is AFU specific, which is not
799 * ideal since this code is generic and with one exception has no
800 * knowledge of the AFU. This is in contrast to the procedure for
801 * disabling a dedicated process AFU, which is documented to just
802 * require a reset. The architecture does indicate that both an AFU
803 * reset and an AFU disable should result in the AFU being disabled and
804 * we do both followed by a PSL purge for safety.
805 *
806 * Notably we used to have some issues with the disable sequence on PSL
807 * cards, which is why we ended up using this heavy weight procedure in
808 * the first place, however a bug was discovered that had rendered the
809 * disable operation ineffective, so it is conceivable that was the
810 * sole explanation for those difficulties. Careful regression testing
811 * is recommended if anyone attempts to remove or reorder these
812 * operations.
813 *
814 * The XSL on the Mellanox CX4 behaves a little differently from the
815 * PSL based cards and will time out an AFU reset if the AFU is still
816 * enabled. That card is special in that we do have a means to identify
817 * it from this code, so in that case we skip the reset and just use a
818 * disable/purge to avoid the timeout and corresponding noise in the
819 * kernel log.
820 */
821 if (afu->adapter->native->sl_ops->needs_reset_before_disable)
822 cxl_ops->afu_reset(afu);
823 cxl_afu_disable(afu);
824 cxl_psl_purge(afu);
825
826 return 0;
827 }
828
cxl_activate_dedicated_process_psl9(struct cxl_afu * afu)829 int cxl_activate_dedicated_process_psl9(struct cxl_afu *afu)
830 {
831 dev_info(&afu->dev, "Activating dedicated process mode\n");
832
833 /*
834 * If XSL is set to dedicated mode (Set in PSL_SCNTL reg), the
835 * XSL and AFU are programmed to work with a single context.
836 * The context information should be configured in the SPA area
837 * index 0 (so PSL_SPAP must be configured before enabling the
838 * AFU).
839 */
840 afu->num_procs = 1;
841 if (afu->native->spa == NULL) {
842 if (cxl_alloc_spa(afu, CXL_MODE_DEDICATED))
843 return -ENOMEM;
844 }
845 attach_spa(afu);
846
847 cxl_p1n_write(afu, CXL_PSL_SCNTL_An, CXL_PSL_SCNTL_An_PM_Process);
848 cxl_p1n_write(afu, CXL_PSL_ID_An, CXL_PSL_ID_An_F | CXL_PSL_ID_An_L);
849
850 afu->current_mode = CXL_MODE_DEDICATED;
851
852 return cxl_chardev_d_afu_add(afu);
853 }
854
cxl_activate_dedicated_process_psl8(struct cxl_afu * afu)855 int cxl_activate_dedicated_process_psl8(struct cxl_afu *afu)
856 {
857 dev_info(&afu->dev, "Activating dedicated process mode\n");
858
859 cxl_p1n_write(afu, CXL_PSL_SCNTL_An, CXL_PSL_SCNTL_An_PM_Process);
860
861 cxl_p1n_write(afu, CXL_PSL_CtxTime_An, 0); /* disable */
862 cxl_p1n_write(afu, CXL_PSL_SPAP_An, 0); /* disable */
863 cxl_p1n_write(afu, CXL_PSL_AMOR_An, 0xFFFFFFFFFFFFFFFFULL);
864 cxl_p1n_write(afu, CXL_PSL_LPID_An, mfspr(SPRN_LPID));
865 cxl_p1n_write(afu, CXL_HAURP_An, 0); /* disable */
866 cxl_p1n_write(afu, CXL_PSL_SDR_An, mfspr(SPRN_SDR1));
867
868 cxl_p2n_write(afu, CXL_CSRP_An, 0); /* disable */
869 cxl_p2n_write(afu, CXL_AURP0_An, 0); /* disable */
870 cxl_p2n_write(afu, CXL_AURP1_An, 0); /* disable */
871
872 afu->current_mode = CXL_MODE_DEDICATED;
873 afu->num_procs = 1;
874
875 return cxl_chardev_d_afu_add(afu);
876 }
877
cxl_update_dedicated_ivtes_psl9(struct cxl_context * ctx)878 void cxl_update_dedicated_ivtes_psl9(struct cxl_context *ctx)
879 {
880 int r;
881
882 for (r = 0; r < CXL_IRQ_RANGES; r++) {
883 ctx->elem->ivte_offsets[r] = cpu_to_be16(ctx->irqs.offset[r]);
884 ctx->elem->ivte_ranges[r] = cpu_to_be16(ctx->irqs.range[r]);
885 }
886 }
887
cxl_update_dedicated_ivtes_psl8(struct cxl_context * ctx)888 void cxl_update_dedicated_ivtes_psl8(struct cxl_context *ctx)
889 {
890 struct cxl_afu *afu = ctx->afu;
891
892 cxl_p1n_write(afu, CXL_PSL_IVTE_Offset_An,
893 (((u64)ctx->irqs.offset[0] & 0xffff) << 48) |
894 (((u64)ctx->irqs.offset[1] & 0xffff) << 32) |
895 (((u64)ctx->irqs.offset[2] & 0xffff) << 16) |
896 ((u64)ctx->irqs.offset[3] & 0xffff));
897 cxl_p1n_write(afu, CXL_PSL_IVTE_Limit_An, (u64)
898 (((u64)ctx->irqs.range[0] & 0xffff) << 48) |
899 (((u64)ctx->irqs.range[1] & 0xffff) << 32) |
900 (((u64)ctx->irqs.range[2] & 0xffff) << 16) |
901 ((u64)ctx->irqs.range[3] & 0xffff));
902 }
903
cxl_attach_dedicated_process_psl9(struct cxl_context * ctx,u64 wed,u64 amr)904 int cxl_attach_dedicated_process_psl9(struct cxl_context *ctx, u64 wed, u64 amr)
905 {
906 struct cxl_afu *afu = ctx->afu;
907 int result;
908
909 /* fill the process element entry */
910 result = process_element_entry_psl9(ctx, wed, amr);
911 if (result)
912 return result;
913
914 if (ctx->afu->adapter->native->sl_ops->update_dedicated_ivtes)
915 afu->adapter->native->sl_ops->update_dedicated_ivtes(ctx);
916
917 ctx->elem->software_state = cpu_to_be32(CXL_PE_SOFTWARE_STATE_V);
918 /*
919 * Ideally we should do a wmb() here to make sure the changes to the
920 * PE are visible to the card before we call afu_enable.
921 * On ppc64 though all mmios are preceded by a 'sync' instruction hence
922 * we dont dont need one here.
923 */
924
925 result = cxl_ops->afu_reset(afu);
926 if (result)
927 return result;
928
929 return afu_enable(afu);
930 }
931
cxl_attach_dedicated_process_psl8(struct cxl_context * ctx,u64 wed,u64 amr)932 int cxl_attach_dedicated_process_psl8(struct cxl_context *ctx, u64 wed, u64 amr)
933 {
934 struct cxl_afu *afu = ctx->afu;
935 u64 pid;
936 int rc;
937
938 pid = (u64)current->pid << 32;
939 if (ctx->kernel)
940 pid = 0;
941 cxl_p2n_write(afu, CXL_PSL_PID_TID_An, pid);
942
943 cxl_p1n_write(afu, CXL_PSL_SR_An, calculate_sr(ctx));
944
945 if ((rc = cxl_write_sstp(afu, ctx->sstp0, ctx->sstp1)))
946 return rc;
947
948 cxl_prefault(ctx, wed);
949
950 if (ctx->afu->adapter->native->sl_ops->update_dedicated_ivtes)
951 afu->adapter->native->sl_ops->update_dedicated_ivtes(ctx);
952
953 cxl_p2n_write(afu, CXL_PSL_AMR_An, amr);
954
955 /* master only context for dedicated */
956 cxl_assign_psn_space(ctx);
957
958 if ((rc = cxl_ops->afu_reset(afu)))
959 return rc;
960
961 cxl_p2n_write(afu, CXL_PSL_WED_An, wed);
962
963 return afu_enable(afu);
964 }
965
deactivate_dedicated_process(struct cxl_afu * afu)966 static int deactivate_dedicated_process(struct cxl_afu *afu)
967 {
968 dev_info(&afu->dev, "Deactivating dedicated process mode\n");
969
970 afu->current_mode = 0;
971 afu->num_procs = 0;
972
973 cxl_chardev_afu_remove(afu);
974
975 return 0;
976 }
977
native_afu_deactivate_mode(struct cxl_afu * afu,int mode)978 static int native_afu_deactivate_mode(struct cxl_afu *afu, int mode)
979 {
980 if (mode == CXL_MODE_DIRECTED)
981 return deactivate_afu_directed(afu);
982 if (mode == CXL_MODE_DEDICATED)
983 return deactivate_dedicated_process(afu);
984 return 0;
985 }
986
native_afu_activate_mode(struct cxl_afu * afu,int mode)987 static int native_afu_activate_mode(struct cxl_afu *afu, int mode)
988 {
989 if (!mode)
990 return 0;
991 if (!(mode & afu->modes_supported))
992 return -EINVAL;
993
994 if (!cxl_ops->link_ok(afu->adapter, afu)) {
995 WARN(1, "Device link is down, refusing to activate!\n");
996 return -EIO;
997 }
998
999 if (mode == CXL_MODE_DIRECTED)
1000 return activate_afu_directed(afu);
1001 if ((mode == CXL_MODE_DEDICATED) &&
1002 (afu->adapter->native->sl_ops->activate_dedicated_process))
1003 return afu->adapter->native->sl_ops->activate_dedicated_process(afu);
1004
1005 return -EINVAL;
1006 }
1007
native_attach_process(struct cxl_context * ctx,bool kernel,u64 wed,u64 amr)1008 static int native_attach_process(struct cxl_context *ctx, bool kernel,
1009 u64 wed, u64 amr)
1010 {
1011 if (!cxl_ops->link_ok(ctx->afu->adapter, ctx->afu)) {
1012 WARN(1, "Device link is down, refusing to attach process!\n");
1013 return -EIO;
1014 }
1015
1016 ctx->kernel = kernel;
1017 if ((ctx->afu->current_mode == CXL_MODE_DIRECTED) &&
1018 (ctx->afu->adapter->native->sl_ops->attach_afu_directed))
1019 return ctx->afu->adapter->native->sl_ops->attach_afu_directed(ctx, wed, amr);
1020
1021 if ((ctx->afu->current_mode == CXL_MODE_DEDICATED) &&
1022 (ctx->afu->adapter->native->sl_ops->attach_dedicated_process))
1023 return ctx->afu->adapter->native->sl_ops->attach_dedicated_process(ctx, wed, amr);
1024
1025 return -EINVAL;
1026 }
1027
detach_process_native_dedicated(struct cxl_context * ctx)1028 static inline int detach_process_native_dedicated(struct cxl_context *ctx)
1029 {
1030 /*
1031 * The CAIA section 2.1.1 indicates that we need to do an AFU reset to
1032 * stop the AFU in dedicated mode (we therefore do not make that
1033 * optional like we do in the afu directed path). It does not indicate
1034 * that we need to do an explicit disable (which should occur
1035 * implicitly as part of the reset) or purge, but we do these as well
1036 * to be on the safe side.
1037 *
1038 * Notably we used to have some issues with the disable sequence
1039 * (before the sequence was spelled out in the architecture) which is
1040 * why we were so heavy weight in the first place, however a bug was
1041 * discovered that had rendered the disable operation ineffective, so
1042 * it is conceivable that was the sole explanation for those
1043 * difficulties. Point is, we should be careful and do some regression
1044 * testing if we ever attempt to remove any part of this procedure.
1045 */
1046 cxl_ops->afu_reset(ctx->afu);
1047 cxl_afu_disable(ctx->afu);
1048 cxl_psl_purge(ctx->afu);
1049 return 0;
1050 }
1051
native_update_ivtes(struct cxl_context * ctx)1052 static void native_update_ivtes(struct cxl_context *ctx)
1053 {
1054 if (ctx->afu->current_mode == CXL_MODE_DIRECTED)
1055 return update_ivtes_directed(ctx);
1056 if ((ctx->afu->current_mode == CXL_MODE_DEDICATED) &&
1057 (ctx->afu->adapter->native->sl_ops->update_dedicated_ivtes))
1058 return ctx->afu->adapter->native->sl_ops->update_dedicated_ivtes(ctx);
1059 WARN(1, "native_update_ivtes: Bad mode\n");
1060 }
1061
detach_process_native_afu_directed(struct cxl_context * ctx)1062 static inline int detach_process_native_afu_directed(struct cxl_context *ctx)
1063 {
1064 if (!ctx->pe_inserted)
1065 return 0;
1066 if (terminate_process_element(ctx))
1067 return -1;
1068 if (remove_process_element(ctx))
1069 return -1;
1070
1071 return 0;
1072 }
1073
native_detach_process(struct cxl_context * ctx)1074 static int native_detach_process(struct cxl_context *ctx)
1075 {
1076 trace_cxl_detach(ctx);
1077
1078 if (ctx->afu->current_mode == CXL_MODE_DEDICATED)
1079 return detach_process_native_dedicated(ctx);
1080
1081 return detach_process_native_afu_directed(ctx);
1082 }
1083
native_get_irq_info(struct cxl_afu * afu,struct cxl_irq_info * info)1084 static int native_get_irq_info(struct cxl_afu *afu, struct cxl_irq_info *info)
1085 {
1086 /* If the adapter has gone away, we can't get any meaningful
1087 * information.
1088 */
1089 if (!cxl_ops->link_ok(afu->adapter, afu))
1090 return -EIO;
1091
1092 info->dsisr = cxl_p2n_read(afu, CXL_PSL_DSISR_An);
1093 info->dar = cxl_p2n_read(afu, CXL_PSL_DAR_An);
1094 if (cxl_is_power8())
1095 info->dsr = cxl_p2n_read(afu, CXL_PSL_DSR_An);
1096 info->afu_err = cxl_p2n_read(afu, CXL_AFU_ERR_An);
1097 info->errstat = cxl_p2n_read(afu, CXL_PSL_ErrStat_An);
1098 info->proc_handle = 0;
1099
1100 return 0;
1101 }
1102
cxl_native_irq_dump_regs_psl9(struct cxl_context * ctx)1103 void cxl_native_irq_dump_regs_psl9(struct cxl_context *ctx)
1104 {
1105 u64 fir1, serr;
1106
1107 fir1 = cxl_p1_read(ctx->afu->adapter, CXL_PSL9_FIR1);
1108
1109 dev_crit(&ctx->afu->dev, "PSL_FIR1: 0x%016llx\n", fir1);
1110 if (ctx->afu->adapter->native->sl_ops->register_serr_irq) {
1111 serr = cxl_p1n_read(ctx->afu, CXL_PSL_SERR_An);
1112 cxl_afu_decode_psl_serr(ctx->afu, serr);
1113 }
1114 }
1115
cxl_native_irq_dump_regs_psl8(struct cxl_context * ctx)1116 void cxl_native_irq_dump_regs_psl8(struct cxl_context *ctx)
1117 {
1118 u64 fir1, fir2, fir_slice, serr, afu_debug;
1119
1120 fir1 = cxl_p1_read(ctx->afu->adapter, CXL_PSL_FIR1);
1121 fir2 = cxl_p1_read(ctx->afu->adapter, CXL_PSL_FIR2);
1122 fir_slice = cxl_p1n_read(ctx->afu, CXL_PSL_FIR_SLICE_An);
1123 afu_debug = cxl_p1n_read(ctx->afu, CXL_AFU_DEBUG_An);
1124
1125 dev_crit(&ctx->afu->dev, "PSL_FIR1: 0x%016llx\n", fir1);
1126 dev_crit(&ctx->afu->dev, "PSL_FIR2: 0x%016llx\n", fir2);
1127 if (ctx->afu->adapter->native->sl_ops->register_serr_irq) {
1128 serr = cxl_p1n_read(ctx->afu, CXL_PSL_SERR_An);
1129 cxl_afu_decode_psl_serr(ctx->afu, serr);
1130 }
1131 dev_crit(&ctx->afu->dev, "PSL_FIR_SLICE_An: 0x%016llx\n", fir_slice);
1132 dev_crit(&ctx->afu->dev, "CXL_PSL_AFU_DEBUG_An: 0x%016llx\n", afu_debug);
1133 }
1134
native_handle_psl_slice_error(struct cxl_context * ctx,u64 dsisr,u64 errstat)1135 static irqreturn_t native_handle_psl_slice_error(struct cxl_context *ctx,
1136 u64 dsisr, u64 errstat)
1137 {
1138
1139 dev_crit(&ctx->afu->dev, "PSL ERROR STATUS: 0x%016llx\n", errstat);
1140
1141 if (ctx->afu->adapter->native->sl_ops->psl_irq_dump_registers)
1142 ctx->afu->adapter->native->sl_ops->psl_irq_dump_registers(ctx);
1143
1144 if (ctx->afu->adapter->native->sl_ops->debugfs_stop_trace) {
1145 dev_crit(&ctx->afu->dev, "STOPPING CXL TRACE\n");
1146 ctx->afu->adapter->native->sl_ops->debugfs_stop_trace(ctx->afu->adapter);
1147 }
1148
1149 return cxl_ops->ack_irq(ctx, 0, errstat);
1150 }
1151
cxl_is_translation_fault(struct cxl_afu * afu,u64 dsisr)1152 static bool cxl_is_translation_fault(struct cxl_afu *afu, u64 dsisr)
1153 {
1154 if ((cxl_is_power8()) && (dsisr & CXL_PSL_DSISR_TRANS))
1155 return true;
1156
1157 if ((cxl_is_power9()) && (dsisr & CXL_PSL9_DSISR_An_TF))
1158 return true;
1159
1160 return false;
1161 }
1162
cxl_fail_irq_psl(struct cxl_afu * afu,struct cxl_irq_info * irq_info)1163 irqreturn_t cxl_fail_irq_psl(struct cxl_afu *afu, struct cxl_irq_info *irq_info)
1164 {
1165 if (cxl_is_translation_fault(afu, irq_info->dsisr))
1166 cxl_p2n_write(afu, CXL_PSL_TFC_An, CXL_PSL_TFC_An_AE);
1167 else
1168 cxl_p2n_write(afu, CXL_PSL_TFC_An, CXL_PSL_TFC_An_A);
1169
1170 return IRQ_HANDLED;
1171 }
1172
native_irq_multiplexed(int irq,void * data)1173 static irqreturn_t native_irq_multiplexed(int irq, void *data)
1174 {
1175 struct cxl_afu *afu = data;
1176 struct cxl_context *ctx;
1177 struct cxl_irq_info irq_info;
1178 u64 phreg = cxl_p2n_read(afu, CXL_PSL_PEHandle_An);
1179 int ph, ret = IRQ_HANDLED, res;
1180
1181 /* check if eeh kicked in while the interrupt was in flight */
1182 if (unlikely(phreg == ~0ULL)) {
1183 dev_warn(&afu->dev,
1184 "Ignoring slice interrupt(%d) due to fenced card",
1185 irq);
1186 return IRQ_HANDLED;
1187 }
1188 /* Mask the pe-handle from register value */
1189 ph = phreg & 0xffff;
1190 if ((res = native_get_irq_info(afu, &irq_info))) {
1191 WARN(1, "Unable to get CXL IRQ Info: %i\n", res);
1192 if (afu->adapter->native->sl_ops->fail_irq)
1193 return afu->adapter->native->sl_ops->fail_irq(afu, &irq_info);
1194 return ret;
1195 }
1196
1197 rcu_read_lock();
1198 ctx = idr_find(&afu->contexts_idr, ph);
1199 if (ctx) {
1200 if (afu->adapter->native->sl_ops->handle_interrupt)
1201 ret = afu->adapter->native->sl_ops->handle_interrupt(irq, ctx, &irq_info);
1202 rcu_read_unlock();
1203 return ret;
1204 }
1205 rcu_read_unlock();
1206
1207 WARN(1, "Unable to demultiplex CXL PSL IRQ for PE %i DSISR %016llx DAR"
1208 " %016llx\n(Possible AFU HW issue - was a term/remove acked"
1209 " with outstanding transactions?)\n", ph, irq_info.dsisr,
1210 irq_info.dar);
1211 if (afu->adapter->native->sl_ops->fail_irq)
1212 ret = afu->adapter->native->sl_ops->fail_irq(afu, &irq_info);
1213 return ret;
1214 }
1215
native_irq_wait(struct cxl_context * ctx)1216 static void native_irq_wait(struct cxl_context *ctx)
1217 {
1218 u64 dsisr;
1219 int timeout = 1000;
1220 int ph;
1221
1222 /*
1223 * Wait until no further interrupts are presented by the PSL
1224 * for this context.
1225 */
1226 while (timeout--) {
1227 ph = cxl_p2n_read(ctx->afu, CXL_PSL_PEHandle_An) & 0xffff;
1228 if (ph != ctx->pe)
1229 return;
1230 dsisr = cxl_p2n_read(ctx->afu, CXL_PSL_DSISR_An);
1231 if (cxl_is_power8() &&
1232 ((dsisr & CXL_PSL_DSISR_PENDING) == 0))
1233 return;
1234 if (cxl_is_power9() &&
1235 ((dsisr & CXL_PSL9_DSISR_PENDING) == 0))
1236 return;
1237 /*
1238 * We are waiting for the workqueue to process our
1239 * irq, so need to let that run here.
1240 */
1241 msleep(1);
1242 }
1243
1244 dev_warn(&ctx->afu->dev, "WARNING: waiting on DSI for PE %i"
1245 " DSISR %016llx!\n", ph, dsisr);
1246 return;
1247 }
1248
native_slice_irq_err(int irq,void * data)1249 static irqreturn_t native_slice_irq_err(int irq, void *data)
1250 {
1251 struct cxl_afu *afu = data;
1252 u64 errstat, serr, afu_error, dsisr;
1253 u64 fir_slice, afu_debug, irq_mask;
1254
1255 /*
1256 * slice err interrupt is only used with full PSL (no XSL)
1257 */
1258 serr = cxl_p1n_read(afu, CXL_PSL_SERR_An);
1259 errstat = cxl_p2n_read(afu, CXL_PSL_ErrStat_An);
1260 afu_error = cxl_p2n_read(afu, CXL_AFU_ERR_An);
1261 dsisr = cxl_p2n_read(afu, CXL_PSL_DSISR_An);
1262 cxl_afu_decode_psl_serr(afu, serr);
1263
1264 if (cxl_is_power8()) {
1265 fir_slice = cxl_p1n_read(afu, CXL_PSL_FIR_SLICE_An);
1266 afu_debug = cxl_p1n_read(afu, CXL_AFU_DEBUG_An);
1267 dev_crit(&afu->dev, "PSL_FIR_SLICE_An: 0x%016llx\n", fir_slice);
1268 dev_crit(&afu->dev, "CXL_PSL_AFU_DEBUG_An: 0x%016llx\n", afu_debug);
1269 }
1270 dev_crit(&afu->dev, "CXL_PSL_ErrStat_An: 0x%016llx\n", errstat);
1271 dev_crit(&afu->dev, "AFU_ERR_An: 0x%.16llx\n", afu_error);
1272 dev_crit(&afu->dev, "PSL_DSISR_An: 0x%.16llx\n", dsisr);
1273
1274 /* mask off the IRQ so it won't retrigger until the AFU is reset */
1275 irq_mask = (serr & CXL_PSL_SERR_An_IRQS) >> 32;
1276 serr |= irq_mask;
1277 cxl_p1n_write(afu, CXL_PSL_SERR_An, serr);
1278 dev_info(&afu->dev, "Further such interrupts will be masked until the AFU is reset\n");
1279
1280 return IRQ_HANDLED;
1281 }
1282
cxl_native_err_irq_dump_regs_psl9(struct cxl * adapter)1283 void cxl_native_err_irq_dump_regs_psl9(struct cxl *adapter)
1284 {
1285 u64 fir1;
1286
1287 fir1 = cxl_p1_read(adapter, CXL_PSL9_FIR1);
1288 dev_crit(&adapter->dev, "PSL_FIR: 0x%016llx\n", fir1);
1289 }
1290
cxl_native_err_irq_dump_regs_psl8(struct cxl * adapter)1291 void cxl_native_err_irq_dump_regs_psl8(struct cxl *adapter)
1292 {
1293 u64 fir1, fir2;
1294
1295 fir1 = cxl_p1_read(adapter, CXL_PSL_FIR1);
1296 fir2 = cxl_p1_read(adapter, CXL_PSL_FIR2);
1297 dev_crit(&adapter->dev,
1298 "PSL_FIR1: 0x%016llx\nPSL_FIR2: 0x%016llx\n",
1299 fir1, fir2);
1300 }
1301
native_irq_err(int irq,void * data)1302 static irqreturn_t native_irq_err(int irq, void *data)
1303 {
1304 struct cxl *adapter = data;
1305 u64 err_ivte;
1306
1307 WARN(1, "CXL ERROR interrupt %i\n", irq);
1308
1309 err_ivte = cxl_p1_read(adapter, CXL_PSL_ErrIVTE);
1310 dev_crit(&adapter->dev, "PSL_ErrIVTE: 0x%016llx\n", err_ivte);
1311
1312 if (adapter->native->sl_ops->debugfs_stop_trace) {
1313 dev_crit(&adapter->dev, "STOPPING CXL TRACE\n");
1314 adapter->native->sl_ops->debugfs_stop_trace(adapter);
1315 }
1316
1317 if (adapter->native->sl_ops->err_irq_dump_registers)
1318 adapter->native->sl_ops->err_irq_dump_registers(adapter);
1319
1320 return IRQ_HANDLED;
1321 }
1322
cxl_native_register_psl_err_irq(struct cxl * adapter)1323 int cxl_native_register_psl_err_irq(struct cxl *adapter)
1324 {
1325 int rc;
1326
1327 adapter->irq_name = kasprintf(GFP_KERNEL, "cxl-%s-err",
1328 dev_name(&adapter->dev));
1329 if (!adapter->irq_name)
1330 return -ENOMEM;
1331
1332 if ((rc = cxl_register_one_irq(adapter, native_irq_err, adapter,
1333 &adapter->native->err_hwirq,
1334 &adapter->native->err_virq,
1335 adapter->irq_name))) {
1336 kfree(adapter->irq_name);
1337 adapter->irq_name = NULL;
1338 return rc;
1339 }
1340
1341 cxl_p1_write(adapter, CXL_PSL_ErrIVTE, adapter->native->err_hwirq & 0xffff);
1342
1343 return 0;
1344 }
1345
cxl_native_release_psl_err_irq(struct cxl * adapter)1346 void cxl_native_release_psl_err_irq(struct cxl *adapter)
1347 {
1348 if (adapter->native->err_virq == 0 ||
1349 adapter->native->err_virq !=
1350 irq_find_mapping(NULL, adapter->native->err_hwirq))
1351 return;
1352
1353 cxl_p1_write(adapter, CXL_PSL_ErrIVTE, 0x0000000000000000);
1354 cxl_unmap_irq(adapter->native->err_virq, adapter);
1355 cxl_ops->release_one_irq(adapter, adapter->native->err_hwirq);
1356 kfree(adapter->irq_name);
1357 adapter->native->err_virq = 0;
1358 }
1359
cxl_native_register_serr_irq(struct cxl_afu * afu)1360 int cxl_native_register_serr_irq(struct cxl_afu *afu)
1361 {
1362 u64 serr;
1363 int rc;
1364
1365 afu->err_irq_name = kasprintf(GFP_KERNEL, "cxl-%s-err",
1366 dev_name(&afu->dev));
1367 if (!afu->err_irq_name)
1368 return -ENOMEM;
1369
1370 if ((rc = cxl_register_one_irq(afu->adapter, native_slice_irq_err, afu,
1371 &afu->serr_hwirq,
1372 &afu->serr_virq, afu->err_irq_name))) {
1373 kfree(afu->err_irq_name);
1374 afu->err_irq_name = NULL;
1375 return rc;
1376 }
1377
1378 serr = cxl_p1n_read(afu, CXL_PSL_SERR_An);
1379 if (cxl_is_power8())
1380 serr = (serr & 0x00ffffffffff0000ULL) | (afu->serr_hwirq & 0xffff);
1381 if (cxl_is_power9()) {
1382 /*
1383 * By default, all errors are masked. So don't set all masks.
1384 * Slice errors will be transfered.
1385 */
1386 serr = (serr & ~0xff0000007fffffffULL) | (afu->serr_hwirq & 0xffff);
1387 }
1388 cxl_p1n_write(afu, CXL_PSL_SERR_An, serr);
1389
1390 return 0;
1391 }
1392
cxl_native_release_serr_irq(struct cxl_afu * afu)1393 void cxl_native_release_serr_irq(struct cxl_afu *afu)
1394 {
1395 if (afu->serr_virq == 0 ||
1396 afu->serr_virq != irq_find_mapping(NULL, afu->serr_hwirq))
1397 return;
1398
1399 cxl_p1n_write(afu, CXL_PSL_SERR_An, 0x0000000000000000);
1400 cxl_unmap_irq(afu->serr_virq, afu);
1401 cxl_ops->release_one_irq(afu->adapter, afu->serr_hwirq);
1402 kfree(afu->err_irq_name);
1403 afu->serr_virq = 0;
1404 }
1405
cxl_native_register_psl_irq(struct cxl_afu * afu)1406 int cxl_native_register_psl_irq(struct cxl_afu *afu)
1407 {
1408 int rc;
1409
1410 afu->psl_irq_name = kasprintf(GFP_KERNEL, "cxl-%s",
1411 dev_name(&afu->dev));
1412 if (!afu->psl_irq_name)
1413 return -ENOMEM;
1414
1415 if ((rc = cxl_register_one_irq(afu->adapter, native_irq_multiplexed,
1416 afu, &afu->native->psl_hwirq, &afu->native->psl_virq,
1417 afu->psl_irq_name))) {
1418 kfree(afu->psl_irq_name);
1419 afu->psl_irq_name = NULL;
1420 }
1421 return rc;
1422 }
1423
cxl_native_release_psl_irq(struct cxl_afu * afu)1424 void cxl_native_release_psl_irq(struct cxl_afu *afu)
1425 {
1426 if (afu->native->psl_virq == 0 ||
1427 afu->native->psl_virq !=
1428 irq_find_mapping(NULL, afu->native->psl_hwirq))
1429 return;
1430
1431 cxl_unmap_irq(afu->native->psl_virq, afu);
1432 cxl_ops->release_one_irq(afu->adapter, afu->native->psl_hwirq);
1433 kfree(afu->psl_irq_name);
1434 afu->native->psl_virq = 0;
1435 }
1436
recover_psl_err(struct cxl_afu * afu,u64 errstat)1437 static void recover_psl_err(struct cxl_afu *afu, u64 errstat)
1438 {
1439 u64 dsisr;
1440
1441 pr_devel("RECOVERING FROM PSL ERROR... (0x%016llx)\n", errstat);
1442
1443 /* Clear PSL_DSISR[PE] */
1444 dsisr = cxl_p2n_read(afu, CXL_PSL_DSISR_An);
1445 cxl_p2n_write(afu, CXL_PSL_DSISR_An, dsisr & ~CXL_PSL_DSISR_An_PE);
1446
1447 /* Write 1s to clear error status bits */
1448 cxl_p2n_write(afu, CXL_PSL_ErrStat_An, errstat);
1449 }
1450
native_ack_irq(struct cxl_context * ctx,u64 tfc,u64 psl_reset_mask)1451 static int native_ack_irq(struct cxl_context *ctx, u64 tfc, u64 psl_reset_mask)
1452 {
1453 trace_cxl_psl_irq_ack(ctx, tfc);
1454 if (tfc)
1455 cxl_p2n_write(ctx->afu, CXL_PSL_TFC_An, tfc);
1456 if (psl_reset_mask)
1457 recover_psl_err(ctx->afu, psl_reset_mask);
1458
1459 return 0;
1460 }
1461
cxl_check_error(struct cxl_afu * afu)1462 int cxl_check_error(struct cxl_afu *afu)
1463 {
1464 return (cxl_p1n_read(afu, CXL_PSL_SCNTL_An) == ~0ULL);
1465 }
1466
native_support_attributes(const char * attr_name,enum cxl_attrs type)1467 static bool native_support_attributes(const char *attr_name,
1468 enum cxl_attrs type)
1469 {
1470 return true;
1471 }
1472
native_afu_cr_read64(struct cxl_afu * afu,int cr,u64 off,u64 * out)1473 static int native_afu_cr_read64(struct cxl_afu *afu, int cr, u64 off, u64 *out)
1474 {
1475 if (unlikely(!cxl_ops->link_ok(afu->adapter, afu)))
1476 return -EIO;
1477 if (unlikely(off >= afu->crs_len))
1478 return -ERANGE;
1479 *out = in_le64(afu->native->afu_desc_mmio + afu->crs_offset +
1480 (cr * afu->crs_len) + off);
1481 return 0;
1482 }
1483
native_afu_cr_read32(struct cxl_afu * afu,int cr,u64 off,u32 * out)1484 static int native_afu_cr_read32(struct cxl_afu *afu, int cr, u64 off, u32 *out)
1485 {
1486 if (unlikely(!cxl_ops->link_ok(afu->adapter, afu)))
1487 return -EIO;
1488 if (unlikely(off >= afu->crs_len))
1489 return -ERANGE;
1490 *out = in_le32(afu->native->afu_desc_mmio + afu->crs_offset +
1491 (cr * afu->crs_len) + off);
1492 return 0;
1493 }
1494
native_afu_cr_read16(struct cxl_afu * afu,int cr,u64 off,u16 * out)1495 static int native_afu_cr_read16(struct cxl_afu *afu, int cr, u64 off, u16 *out)
1496 {
1497 u64 aligned_off = off & ~0x3L;
1498 u32 val;
1499 int rc;
1500
1501 rc = native_afu_cr_read32(afu, cr, aligned_off, &val);
1502 if (!rc)
1503 *out = (val >> ((off & 0x3) * 8)) & 0xffff;
1504 return rc;
1505 }
1506
native_afu_cr_read8(struct cxl_afu * afu,int cr,u64 off,u8 * out)1507 static int native_afu_cr_read8(struct cxl_afu *afu, int cr, u64 off, u8 *out)
1508 {
1509 u64 aligned_off = off & ~0x3L;
1510 u32 val;
1511 int rc;
1512
1513 rc = native_afu_cr_read32(afu, cr, aligned_off, &val);
1514 if (!rc)
1515 *out = (val >> ((off & 0x3) * 8)) & 0xff;
1516 return rc;
1517 }
1518
native_afu_cr_write32(struct cxl_afu * afu,int cr,u64 off,u32 in)1519 static int native_afu_cr_write32(struct cxl_afu *afu, int cr, u64 off, u32 in)
1520 {
1521 if (unlikely(!cxl_ops->link_ok(afu->adapter, afu)))
1522 return -EIO;
1523 if (unlikely(off >= afu->crs_len))
1524 return -ERANGE;
1525 out_le32(afu->native->afu_desc_mmio + afu->crs_offset +
1526 (cr * afu->crs_len) + off, in);
1527 return 0;
1528 }
1529
native_afu_cr_write16(struct cxl_afu * afu,int cr,u64 off,u16 in)1530 static int native_afu_cr_write16(struct cxl_afu *afu, int cr, u64 off, u16 in)
1531 {
1532 u64 aligned_off = off & ~0x3L;
1533 u32 val32, mask, shift;
1534 int rc;
1535
1536 rc = native_afu_cr_read32(afu, cr, aligned_off, &val32);
1537 if (rc)
1538 return rc;
1539 shift = (off & 0x3) * 8;
1540 WARN_ON(shift == 24);
1541 mask = 0xffff << shift;
1542 val32 = (val32 & ~mask) | (in << shift);
1543
1544 rc = native_afu_cr_write32(afu, cr, aligned_off, val32);
1545 return rc;
1546 }
1547
native_afu_cr_write8(struct cxl_afu * afu,int cr,u64 off,u8 in)1548 static int native_afu_cr_write8(struct cxl_afu *afu, int cr, u64 off, u8 in)
1549 {
1550 u64 aligned_off = off & ~0x3L;
1551 u32 val32, mask, shift;
1552 int rc;
1553
1554 rc = native_afu_cr_read32(afu, cr, aligned_off, &val32);
1555 if (rc)
1556 return rc;
1557 shift = (off & 0x3) * 8;
1558 mask = 0xff << shift;
1559 val32 = (val32 & ~mask) | (in << shift);
1560
1561 rc = native_afu_cr_write32(afu, cr, aligned_off, val32);
1562 return rc;
1563 }
1564
1565 const struct cxl_backend_ops cxl_native_ops = {
1566 .module = THIS_MODULE,
1567 .adapter_reset = cxl_pci_reset,
1568 .alloc_one_irq = cxl_pci_alloc_one_irq,
1569 .release_one_irq = cxl_pci_release_one_irq,
1570 .alloc_irq_ranges = cxl_pci_alloc_irq_ranges,
1571 .release_irq_ranges = cxl_pci_release_irq_ranges,
1572 .setup_irq = cxl_pci_setup_irq,
1573 .handle_psl_slice_error = native_handle_psl_slice_error,
1574 .psl_interrupt = NULL,
1575 .ack_irq = native_ack_irq,
1576 .irq_wait = native_irq_wait,
1577 .attach_process = native_attach_process,
1578 .detach_process = native_detach_process,
1579 .update_ivtes = native_update_ivtes,
1580 .support_attributes = native_support_attributes,
1581 .link_ok = cxl_adapter_link_ok,
1582 .release_afu = cxl_pci_release_afu,
1583 .afu_read_err_buffer = cxl_pci_afu_read_err_buffer,
1584 .afu_check_and_enable = native_afu_check_and_enable,
1585 .afu_activate_mode = native_afu_activate_mode,
1586 .afu_deactivate_mode = native_afu_deactivate_mode,
1587 .afu_reset = native_afu_reset,
1588 .afu_cr_read8 = native_afu_cr_read8,
1589 .afu_cr_read16 = native_afu_cr_read16,
1590 .afu_cr_read32 = native_afu_cr_read32,
1591 .afu_cr_read64 = native_afu_cr_read64,
1592 .afu_cr_write8 = native_afu_cr_write8,
1593 .afu_cr_write16 = native_afu_cr_write16,
1594 .afu_cr_write32 = native_afu_cr_write32,
1595 .read_adapter_vpd = cxl_pci_read_adapter_vpd,
1596 };
1597