1 /*
2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
3 *
4 * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
15 *
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
19 *
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/init.h>
47 #include <linux/log2.h>
48 #include <linux/mdio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/mutex.h>
52 #include <linux/netdevice.h>
53 #include <linux/pci.h>
54 #include <linux/aer.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/sched.h>
57 #include <linux/seq_file.h>
58 #include <linux/sockios.h>
59 #include <linux/vmalloc.h>
60 #include <linux/workqueue.h>
61 #include <net/neighbour.h>
62 #include <net/netevent.h>
63 #include <net/addrconf.h>
64 #include <net/bonding.h>
65 #include <linux/uaccess.h>
66 #include <linux/crash_dump.h>
67 #include <net/udp_tunnel.h>
68
69 #include "cxgb4.h"
70 #include "cxgb4_filter.h"
71 #include "t4_regs.h"
72 #include "t4_values.h"
73 #include "t4_msg.h"
74 #include "t4fw_api.h"
75 #include "t4fw_version.h"
76 #include "cxgb4_dcb.h"
77 #include "srq.h"
78 #include "cxgb4_debugfs.h"
79 #include "clip_tbl.h"
80 #include "l2t.h"
81 #include "smt.h"
82 #include "sched.h"
83 #include "cxgb4_tc_u32.h"
84 #include "cxgb4_tc_flower.h"
85 #include "cxgb4_ptp.h"
86 #include "cxgb4_cudbg.h"
87
88 char cxgb4_driver_name[] = KBUILD_MODNAME;
89
90 #ifdef DRV_VERSION
91 #undef DRV_VERSION
92 #endif
93 #define DRV_VERSION "2.0.0-ko"
94 const char cxgb4_driver_version[] = DRV_VERSION;
95 #define DRV_DESC "Chelsio T4/T5/T6 Network Driver"
96
97 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
98 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
99 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
100
101 /* Macros needed to support the PCI Device ID Table ...
102 */
103 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
104 static const struct pci_device_id cxgb4_pci_tbl[] = {
105 #define CXGB4_UNIFIED_PF 0x4
106
107 #define CH_PCI_DEVICE_ID_FUNCTION CXGB4_UNIFIED_PF
108
109 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
110 * called for both.
111 */
112 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0
113
114 #define CH_PCI_ID_TABLE_ENTRY(devid) \
115 {PCI_VDEVICE(CHELSIO, (devid)), CXGB4_UNIFIED_PF}
116
117 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
118 { 0, } \
119 }
120
121 #include "t4_pci_id_tbl.h"
122
123 #define FW4_FNAME "cxgb4/t4fw.bin"
124 #define FW5_FNAME "cxgb4/t5fw.bin"
125 #define FW6_FNAME "cxgb4/t6fw.bin"
126 #define FW4_CFNAME "cxgb4/t4-config.txt"
127 #define FW5_CFNAME "cxgb4/t5-config.txt"
128 #define FW6_CFNAME "cxgb4/t6-config.txt"
129 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld"
130 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin"
131 #define PHY_AQ1202_DEVICEID 0x4409
132 #define PHY_BCM84834_DEVICEID 0x4486
133
134 MODULE_DESCRIPTION(DRV_DESC);
135 MODULE_AUTHOR("Chelsio Communications");
136 MODULE_LICENSE("Dual BSD/GPL");
137 MODULE_VERSION(DRV_VERSION);
138 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
139 MODULE_FIRMWARE(FW4_FNAME);
140 MODULE_FIRMWARE(FW5_FNAME);
141 MODULE_FIRMWARE(FW6_FNAME);
142
143 /*
144 * The driver uses the best interrupt scheme available on a platform in the
145 * order MSI-X, MSI, legacy INTx interrupts. This parameter determines which
146 * of these schemes the driver may consider as follows:
147 *
148 * msi = 2: choose from among all three options
149 * msi = 1: only consider MSI and INTx interrupts
150 * msi = 0: force INTx interrupts
151 */
152 static int msi = 2;
153
154 module_param(msi, int, 0644);
155 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
156
157 /*
158 * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
159 * offset by 2 bytes in order to have the IP headers line up on 4-byte
160 * boundaries. This is a requirement for many architectures which will throw
161 * a machine check fault if an attempt is made to access one of the 4-byte IP
162 * header fields on a non-4-byte boundary. And it's a major performance issue
163 * even on some architectures which allow it like some implementations of the
164 * x86 ISA. However, some architectures don't mind this and for some very
165 * edge-case performance sensitive applications (like forwarding large volumes
166 * of small packets), setting this DMA offset to 0 will decrease the number of
167 * PCI-E Bus transfers enough to measurably affect performance.
168 */
169 static int rx_dma_offset = 2;
170
171 /* TX Queue select used to determine what algorithm to use for selecting TX
172 * queue. Select between the kernel provided function (select_queue=0) or user
173 * cxgb_select_queue function (select_queue=1)
174 *
175 * Default: select_queue=0
176 */
177 static int select_queue;
178 module_param(select_queue, int, 0644);
179 MODULE_PARM_DESC(select_queue,
180 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
181
182 static struct dentry *cxgb4_debugfs_root;
183
184 LIST_HEAD(adapter_list);
185 DEFINE_MUTEX(uld_mutex);
186
link_report(struct net_device * dev)187 static void link_report(struct net_device *dev)
188 {
189 if (!netif_carrier_ok(dev))
190 netdev_info(dev, "link down\n");
191 else {
192 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
193
194 const char *s;
195 const struct port_info *p = netdev_priv(dev);
196
197 switch (p->link_cfg.speed) {
198 case 100:
199 s = "100Mbps";
200 break;
201 case 1000:
202 s = "1Gbps";
203 break;
204 case 10000:
205 s = "10Gbps";
206 break;
207 case 25000:
208 s = "25Gbps";
209 break;
210 case 40000:
211 s = "40Gbps";
212 break;
213 case 50000:
214 s = "50Gbps";
215 break;
216 case 100000:
217 s = "100Gbps";
218 break;
219 default:
220 pr_info("%s: unsupported speed: %d\n",
221 dev->name, p->link_cfg.speed);
222 return;
223 }
224
225 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
226 fc[p->link_cfg.fc]);
227 }
228 }
229
230 #ifdef CONFIG_CHELSIO_T4_DCB
231 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */
dcb_tx_queue_prio_enable(struct net_device * dev,int enable)232 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
233 {
234 struct port_info *pi = netdev_priv(dev);
235 struct adapter *adap = pi->adapter;
236 struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
237 int i;
238
239 /* We use a simple mapping of Port TX Queue Index to DCB
240 * Priority when we're enabling DCB.
241 */
242 for (i = 0; i < pi->nqsets; i++, txq++) {
243 u32 name, value;
244 int err;
245
246 name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
247 FW_PARAMS_PARAM_X_V(
248 FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
249 FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
250 value = enable ? i : 0xffffffff;
251
252 /* Since we can be called while atomic (from "interrupt
253 * level") we need to issue the Set Parameters Commannd
254 * without sleeping (timeout < 0).
255 */
256 err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
257 &name, &value,
258 -FW_CMD_MAX_TIMEOUT);
259
260 if (err)
261 dev_err(adap->pdev_dev,
262 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
263 enable ? "set" : "unset", pi->port_id, i, -err);
264 else
265 txq->dcb_prio = enable ? value : 0;
266 }
267 }
268
cxgb4_dcb_enabled(const struct net_device * dev)269 int cxgb4_dcb_enabled(const struct net_device *dev)
270 {
271 struct port_info *pi = netdev_priv(dev);
272
273 if (!pi->dcb.enabled)
274 return 0;
275
276 return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
277 (pi->dcb.state == CXGB4_DCB_STATE_HOST));
278 }
279 #endif /* CONFIG_CHELSIO_T4_DCB */
280
t4_os_link_changed(struct adapter * adapter,int port_id,int link_stat)281 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
282 {
283 struct net_device *dev = adapter->port[port_id];
284
285 /* Skip changes from disabled ports. */
286 if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
287 if (link_stat)
288 netif_carrier_on(dev);
289 else {
290 #ifdef CONFIG_CHELSIO_T4_DCB
291 if (cxgb4_dcb_enabled(dev)) {
292 cxgb4_dcb_reset(dev);
293 dcb_tx_queue_prio_enable(dev, false);
294 }
295 #endif /* CONFIG_CHELSIO_T4_DCB */
296 netif_carrier_off(dev);
297 }
298
299 link_report(dev);
300 }
301 }
302
t4_os_portmod_changed(struct adapter * adap,int port_id)303 void t4_os_portmod_changed(struct adapter *adap, int port_id)
304 {
305 static const char *mod_str[] = {
306 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
307 };
308
309 struct net_device *dev = adap->port[port_id];
310 struct port_info *pi = netdev_priv(dev);
311
312 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
313 netdev_info(dev, "port module unplugged\n");
314 else if (pi->mod_type < ARRAY_SIZE(mod_str))
315 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
316 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
317 netdev_info(dev, "%s: unsupported port module inserted\n",
318 dev->name);
319 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
320 netdev_info(dev, "%s: unknown port module inserted\n",
321 dev->name);
322 else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
323 netdev_info(dev, "%s: transceiver module error\n", dev->name);
324 else
325 netdev_info(dev, "%s: unknown module type %d inserted\n",
326 dev->name, pi->mod_type);
327
328 /* If the interface is running, then we'll need any "sticky" Link
329 * Parameters redone with a new Transceiver Module.
330 */
331 pi->link_cfg.redo_l1cfg = netif_running(dev);
332 }
333
334 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
335 module_param(dbfifo_int_thresh, int, 0644);
336 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
337
338 /*
339 * usecs to sleep while draining the dbfifo
340 */
341 static int dbfifo_drain_delay = 1000;
342 module_param(dbfifo_drain_delay, int, 0644);
343 MODULE_PARM_DESC(dbfifo_drain_delay,
344 "usecs to sleep while draining the dbfifo");
345
cxgb4_set_addr_hash(struct port_info * pi)346 static inline int cxgb4_set_addr_hash(struct port_info *pi)
347 {
348 struct adapter *adap = pi->adapter;
349 u64 vec = 0;
350 bool ucast = false;
351 struct hash_mac_addr *entry;
352
353 /* Calculate the hash vector for the updated list and program it */
354 list_for_each_entry(entry, &adap->mac_hlist, list) {
355 ucast |= is_unicast_ether_addr(entry->addr);
356 vec |= (1ULL << hash_mac_addr(entry->addr));
357 }
358 return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast,
359 vec, false);
360 }
361
cxgb4_mac_sync(struct net_device * netdev,const u8 * mac_addr)362 static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr)
363 {
364 struct port_info *pi = netdev_priv(netdev);
365 struct adapter *adap = pi->adapter;
366 int ret;
367 u64 mhash = 0;
368 u64 uhash = 0;
369 /* idx stores the index of allocated filters,
370 * its size should be modified based on the number of
371 * MAC addresses that we allocate filters for
372 */
373
374 u16 idx[1] = {};
375 bool free = false;
376 bool ucast = is_unicast_ether_addr(mac_addr);
377 const u8 *maclist[1] = {mac_addr};
378 struct hash_mac_addr *new_entry;
379
380 ret = cxgb4_alloc_mac_filt(adap, pi->viid, free, 1, maclist,
381 idx, ucast ? &uhash : &mhash, false);
382 if (ret < 0)
383 goto out;
384 /* if hash != 0, then add the addr to hash addr list
385 * so on the end we will calculate the hash for the
386 * list and program it
387 */
388 if (uhash || mhash) {
389 new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC);
390 if (!new_entry)
391 return -ENOMEM;
392 ether_addr_copy(new_entry->addr, mac_addr);
393 list_add_tail(&new_entry->list, &adap->mac_hlist);
394 ret = cxgb4_set_addr_hash(pi);
395 }
396 out:
397 return ret < 0 ? ret : 0;
398 }
399
cxgb4_mac_unsync(struct net_device * netdev,const u8 * mac_addr)400 static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr)
401 {
402 struct port_info *pi = netdev_priv(netdev);
403 struct adapter *adap = pi->adapter;
404 int ret;
405 const u8 *maclist[1] = {mac_addr};
406 struct hash_mac_addr *entry, *tmp;
407
408 /* If the MAC address to be removed is in the hash addr
409 * list, delete it from the list and update hash vector
410 */
411 list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) {
412 if (ether_addr_equal(entry->addr, mac_addr)) {
413 list_del(&entry->list);
414 kfree(entry);
415 return cxgb4_set_addr_hash(pi);
416 }
417 }
418
419 ret = cxgb4_free_mac_filt(adap, pi->viid, 1, maclist, false);
420 return ret < 0 ? -EINVAL : 0;
421 }
422
423 /*
424 * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
425 * If @mtu is -1 it is left unchanged.
426 */
set_rxmode(struct net_device * dev,int mtu,bool sleep_ok)427 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
428 {
429 struct port_info *pi = netdev_priv(dev);
430 struct adapter *adapter = pi->adapter;
431
432 __dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
433 __dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
434
435 return t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu,
436 (dev->flags & IFF_PROMISC) ? 1 : 0,
437 (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
438 sleep_ok);
439 }
440
441 /**
442 * cxgb4_change_mac - Update match filter for a MAC address.
443 * @pi: the port_info
444 * @viid: the VI id
445 * @tcam_idx: TCAM index of existing filter for old value of MAC address,
446 * or -1
447 * @addr: the new MAC address value
448 * @persist: whether a new MAC allocation should be persistent
449 * @add_smt: if true also add the address to the HW SMT
450 *
451 * Modifies an MPS filter and sets it to the new MAC address if
452 * @tcam_idx >= 0, or adds the MAC address to a new filter if
453 * @tcam_idx < 0. In the latter case the address is added persistently
454 * if @persist is %true.
455 * Addresses are programmed to hash region, if tcam runs out of entries.
456 *
457 */
cxgb4_change_mac(struct port_info * pi,unsigned int viid,int * tcam_idx,const u8 * addr,bool persist,u8 * smt_idx)458 int cxgb4_change_mac(struct port_info *pi, unsigned int viid,
459 int *tcam_idx, const u8 *addr, bool persist,
460 u8 *smt_idx)
461 {
462 struct adapter *adapter = pi->adapter;
463 struct hash_mac_addr *entry, *new_entry;
464 int ret;
465
466 ret = t4_change_mac(adapter, adapter->mbox, viid,
467 *tcam_idx, addr, persist, smt_idx);
468 /* We ran out of TCAM entries. try programming hash region. */
469 if (ret == -ENOMEM) {
470 /* If the MAC address to be updated is in the hash addr
471 * list, update it from the list
472 */
473 list_for_each_entry(entry, &adapter->mac_hlist, list) {
474 if (entry->iface_mac) {
475 ether_addr_copy(entry->addr, addr);
476 goto set_hash;
477 }
478 }
479 new_entry = kzalloc(sizeof(*new_entry), GFP_KERNEL);
480 if (!new_entry)
481 return -ENOMEM;
482 ether_addr_copy(new_entry->addr, addr);
483 new_entry->iface_mac = true;
484 list_add_tail(&new_entry->list, &adapter->mac_hlist);
485 set_hash:
486 ret = cxgb4_set_addr_hash(pi);
487 } else if (ret >= 0) {
488 *tcam_idx = ret;
489 ret = 0;
490 }
491
492 return ret;
493 }
494
495 /*
496 * link_start - enable a port
497 * @dev: the port to enable
498 *
499 * Performs the MAC and PHY actions needed to enable a port.
500 */
link_start(struct net_device * dev)501 static int link_start(struct net_device *dev)
502 {
503 int ret;
504 struct port_info *pi = netdev_priv(dev);
505 unsigned int mb = pi->adapter->pf;
506
507 /*
508 * We do not set address filters and promiscuity here, the stack does
509 * that step explicitly.
510 */
511 ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
512 !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
513 if (ret == 0)
514 ret = cxgb4_update_mac_filt(pi, pi->viid, &pi->xact_addr_filt,
515 dev->dev_addr, true, &pi->smt_idx);
516 if (ret == 0)
517 ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan,
518 &pi->link_cfg);
519 if (ret == 0) {
520 local_bh_disable();
521 ret = t4_enable_pi_params(pi->adapter, mb, pi, true,
522 true, CXGB4_DCB_ENABLED);
523 local_bh_enable();
524 }
525
526 return ret;
527 }
528
529 #ifdef CONFIG_CHELSIO_T4_DCB
530 /* Handle a Data Center Bridging update message from the firmware. */
dcb_rpl(struct adapter * adap,const struct fw_port_cmd * pcmd)531 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
532 {
533 int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
534 struct net_device *dev = adap->port[adap->chan_map[port]];
535 int old_dcb_enabled = cxgb4_dcb_enabled(dev);
536 int new_dcb_enabled;
537
538 cxgb4_dcb_handle_fw_update(adap, pcmd);
539 new_dcb_enabled = cxgb4_dcb_enabled(dev);
540
541 /* If the DCB has become enabled or disabled on the port then we're
542 * going to need to set up/tear down DCB Priority parameters for the
543 * TX Queues associated with the port.
544 */
545 if (new_dcb_enabled != old_dcb_enabled)
546 dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
547 }
548 #endif /* CONFIG_CHELSIO_T4_DCB */
549
550 /* Response queue handler for the FW event queue.
551 */
fwevtq_handler(struct sge_rspq * q,const __be64 * rsp,const struct pkt_gl * gl)552 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
553 const struct pkt_gl *gl)
554 {
555 u8 opcode = ((const struct rss_header *)rsp)->opcode;
556
557 rsp++; /* skip RSS header */
558
559 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
560 */
561 if (unlikely(opcode == CPL_FW4_MSG &&
562 ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
563 rsp++;
564 opcode = ((const struct rss_header *)rsp)->opcode;
565 rsp++;
566 if (opcode != CPL_SGE_EGR_UPDATE) {
567 dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
568 , opcode);
569 goto out;
570 }
571 }
572
573 if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
574 const struct cpl_sge_egr_update *p = (void *)rsp;
575 unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
576 struct sge_txq *txq;
577
578 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
579 txq->restarts++;
580 if (txq->q_type == CXGB4_TXQ_ETH) {
581 struct sge_eth_txq *eq;
582
583 eq = container_of(txq, struct sge_eth_txq, q);
584 t4_sge_eth_txq_egress_update(q->adap, eq, -1);
585 } else {
586 struct sge_uld_txq *oq;
587
588 oq = container_of(txq, struct sge_uld_txq, q);
589 tasklet_schedule(&oq->qresume_tsk);
590 }
591 } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
592 const struct cpl_fw6_msg *p = (void *)rsp;
593
594 #ifdef CONFIG_CHELSIO_T4_DCB
595 const struct fw_port_cmd *pcmd = (const void *)p->data;
596 unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
597 unsigned int action =
598 FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
599
600 if (cmd == FW_PORT_CMD &&
601 (action == FW_PORT_ACTION_GET_PORT_INFO ||
602 action == FW_PORT_ACTION_GET_PORT_INFO32)) {
603 int port = FW_PORT_CMD_PORTID_G(
604 be32_to_cpu(pcmd->op_to_portid));
605 struct net_device *dev;
606 int dcbxdis, state_input;
607
608 dev = q->adap->port[q->adap->chan_map[port]];
609 dcbxdis = (action == FW_PORT_ACTION_GET_PORT_INFO
610 ? !!(pcmd->u.info.dcbxdis_pkd & FW_PORT_CMD_DCBXDIS_F)
611 : !!(be32_to_cpu(pcmd->u.info32.lstatus32_to_cbllen32)
612 & FW_PORT_CMD_DCBXDIS32_F));
613 state_input = (dcbxdis
614 ? CXGB4_DCB_INPUT_FW_DISABLED
615 : CXGB4_DCB_INPUT_FW_ENABLED);
616
617 cxgb4_dcb_state_fsm(dev, state_input);
618 }
619
620 if (cmd == FW_PORT_CMD &&
621 action == FW_PORT_ACTION_L2_DCB_CFG)
622 dcb_rpl(q->adap, pcmd);
623 else
624 #endif
625 if (p->type == 0)
626 t4_handle_fw_rpl(q->adap, p->data);
627 } else if (opcode == CPL_L2T_WRITE_RPL) {
628 const struct cpl_l2t_write_rpl *p = (void *)rsp;
629
630 do_l2t_write_rpl(q->adap, p);
631 } else if (opcode == CPL_SMT_WRITE_RPL) {
632 const struct cpl_smt_write_rpl *p = (void *)rsp;
633
634 do_smt_write_rpl(q->adap, p);
635 } else if (opcode == CPL_SET_TCB_RPL) {
636 const struct cpl_set_tcb_rpl *p = (void *)rsp;
637
638 filter_rpl(q->adap, p);
639 } else if (opcode == CPL_ACT_OPEN_RPL) {
640 const struct cpl_act_open_rpl *p = (void *)rsp;
641
642 hash_filter_rpl(q->adap, p);
643 } else if (opcode == CPL_ABORT_RPL_RSS) {
644 const struct cpl_abort_rpl_rss *p = (void *)rsp;
645
646 hash_del_filter_rpl(q->adap, p);
647 } else if (opcode == CPL_SRQ_TABLE_RPL) {
648 const struct cpl_srq_table_rpl *p = (void *)rsp;
649
650 do_srq_table_rpl(q->adap, p);
651 } else
652 dev_err(q->adap->pdev_dev,
653 "unexpected CPL %#x on FW event queue\n", opcode);
654 out:
655 return 0;
656 }
657
disable_msi(struct adapter * adapter)658 static void disable_msi(struct adapter *adapter)
659 {
660 if (adapter->flags & CXGB4_USING_MSIX) {
661 pci_disable_msix(adapter->pdev);
662 adapter->flags &= ~CXGB4_USING_MSIX;
663 } else if (adapter->flags & CXGB4_USING_MSI) {
664 pci_disable_msi(adapter->pdev);
665 adapter->flags &= ~CXGB4_USING_MSI;
666 }
667 }
668
669 /*
670 * Interrupt handler for non-data events used with MSI-X.
671 */
t4_nondata_intr(int irq,void * cookie)672 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
673 {
674 struct adapter *adap = cookie;
675 u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
676
677 if (v & PFSW_F) {
678 adap->swintr = 1;
679 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
680 }
681 if (adap->flags & CXGB4_MASTER_PF)
682 t4_slow_intr_handler(adap);
683 return IRQ_HANDLED;
684 }
685
686 /*
687 * Name the MSI-X interrupts.
688 */
name_msix_vecs(struct adapter * adap)689 static void name_msix_vecs(struct adapter *adap)
690 {
691 int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
692
693 /* non-data interrupts */
694 snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
695
696 /* FW events */
697 snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
698 adap->port[0]->name);
699
700 /* Ethernet queues */
701 for_each_port(adap, j) {
702 struct net_device *d = adap->port[j];
703 const struct port_info *pi = netdev_priv(d);
704
705 for (i = 0; i < pi->nqsets; i++, msi_idx++)
706 snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
707 d->name, i);
708 }
709 }
710
cxgb4_set_msix_aff(struct adapter * adap,unsigned short vec,cpumask_var_t * aff_mask,int idx)711 int cxgb4_set_msix_aff(struct adapter *adap, unsigned short vec,
712 cpumask_var_t *aff_mask, int idx)
713 {
714 int rv;
715
716 if (!zalloc_cpumask_var(aff_mask, GFP_KERNEL)) {
717 dev_err(adap->pdev_dev, "alloc_cpumask_var failed\n");
718 return -ENOMEM;
719 }
720
721 cpumask_set_cpu(cpumask_local_spread(idx, dev_to_node(adap->pdev_dev)),
722 *aff_mask);
723
724 rv = irq_set_affinity_hint(vec, *aff_mask);
725 if (rv)
726 dev_warn(adap->pdev_dev,
727 "irq_set_affinity_hint %u failed %d\n",
728 vec, rv);
729
730 return 0;
731 }
732
cxgb4_clear_msix_aff(unsigned short vec,cpumask_var_t aff_mask)733 void cxgb4_clear_msix_aff(unsigned short vec, cpumask_var_t aff_mask)
734 {
735 irq_set_affinity_hint(vec, NULL);
736 free_cpumask_var(aff_mask);
737 }
738
request_msix_queue_irqs(struct adapter * adap)739 static int request_msix_queue_irqs(struct adapter *adap)
740 {
741 struct sge *s = &adap->sge;
742 struct msix_info *minfo;
743 int err, ethqidx;
744 int msi_index = 2;
745
746 err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
747 adap->msix_info[1].desc, &s->fw_evtq);
748 if (err)
749 return err;
750
751 for_each_ethrxq(s, ethqidx) {
752 minfo = &adap->msix_info[msi_index];
753 err = request_irq(minfo->vec,
754 t4_sge_intr_msix, 0,
755 minfo->desc,
756 &s->ethrxq[ethqidx].rspq);
757 if (err)
758 goto unwind;
759
760 cxgb4_set_msix_aff(adap, minfo->vec,
761 &minfo->aff_mask, ethqidx);
762 msi_index++;
763 }
764 return 0;
765
766 unwind:
767 while (--ethqidx >= 0) {
768 msi_index--;
769 minfo = &adap->msix_info[msi_index];
770 cxgb4_clear_msix_aff(minfo->vec, minfo->aff_mask);
771 free_irq(minfo->vec, &s->ethrxq[ethqidx].rspq);
772 }
773 free_irq(adap->msix_info[1].vec, &s->fw_evtq);
774 return err;
775 }
776
free_msix_queue_irqs(struct adapter * adap)777 static void free_msix_queue_irqs(struct adapter *adap)
778 {
779 struct sge *s = &adap->sge;
780 struct msix_info *minfo;
781 int i, msi_index = 2;
782
783 free_irq(adap->msix_info[1].vec, &s->fw_evtq);
784 for_each_ethrxq(s, i) {
785 minfo = &adap->msix_info[msi_index++];
786 cxgb4_clear_msix_aff(minfo->vec, minfo->aff_mask);
787 free_irq(minfo->vec, &s->ethrxq[i].rspq);
788 }
789 }
790
setup_ppod_edram(struct adapter * adap)791 static int setup_ppod_edram(struct adapter *adap)
792 {
793 unsigned int param, val;
794 int ret;
795
796 /* Driver sends FW_PARAMS_PARAM_DEV_PPOD_EDRAM read command to check
797 * if firmware supports ppod edram feature or not. If firmware
798 * returns 1, then driver can enable this feature by sending
799 * FW_PARAMS_PARAM_DEV_PPOD_EDRAM write command with value 1 to
800 * enable ppod edram feature.
801 */
802 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
803 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PPOD_EDRAM));
804
805 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, ¶m, &val);
806 if (ret < 0) {
807 dev_warn(adap->pdev_dev,
808 "querying PPOD_EDRAM support failed: %d\n",
809 ret);
810 return -1;
811 }
812
813 if (val != 1)
814 return -1;
815
816 ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, ¶m, &val);
817 if (ret < 0) {
818 dev_err(adap->pdev_dev,
819 "setting PPOD_EDRAM failed: %d\n", ret);
820 return -1;
821 }
822 return 0;
823 }
824
825 /**
826 * cxgb4_write_rss - write the RSS table for a given port
827 * @pi: the port
828 * @queues: array of queue indices for RSS
829 *
830 * Sets up the portion of the HW RSS table for the port's VI to distribute
831 * packets to the Rx queues in @queues.
832 * Should never be called before setting up sge eth rx queues
833 */
cxgb4_write_rss(const struct port_info * pi,const u16 * queues)834 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
835 {
836 u16 *rss;
837 int i, err;
838 struct adapter *adapter = pi->adapter;
839 const struct sge_eth_rxq *rxq;
840
841 rxq = &adapter->sge.ethrxq[pi->first_qset];
842 rss = kmalloc_array(pi->rss_size, sizeof(u16), GFP_KERNEL);
843 if (!rss)
844 return -ENOMEM;
845
846 /* map the queue indices to queue ids */
847 for (i = 0; i < pi->rss_size; i++, queues++)
848 rss[i] = rxq[*queues].rspq.abs_id;
849
850 err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
851 pi->rss_size, rss, pi->rss_size);
852 /* If Tunnel All Lookup isn't specified in the global RSS
853 * Configuration, then we need to specify a default Ingress
854 * Queue for any ingress packets which aren't hashed. We'll
855 * use our first ingress queue ...
856 */
857 if (!err)
858 err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
859 FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F |
860 FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F |
861 FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F |
862 FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F |
863 FW_RSS_VI_CONFIG_CMD_UDPEN_F,
864 rss[0]);
865 kfree(rss);
866 return err;
867 }
868
869 /**
870 * setup_rss - configure RSS
871 * @adap: the adapter
872 *
873 * Sets up RSS for each port.
874 */
setup_rss(struct adapter * adap)875 static int setup_rss(struct adapter *adap)
876 {
877 int i, j, err;
878
879 for_each_port(adap, i) {
880 const struct port_info *pi = adap2pinfo(adap, i);
881
882 /* Fill default values with equal distribution */
883 for (j = 0; j < pi->rss_size; j++)
884 pi->rss[j] = j % pi->nqsets;
885
886 err = cxgb4_write_rss(pi, pi->rss);
887 if (err)
888 return err;
889 }
890 return 0;
891 }
892
893 /*
894 * Return the channel of the ingress queue with the given qid.
895 */
rxq_to_chan(const struct sge * p,unsigned int qid)896 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
897 {
898 qid -= p->ingr_start;
899 return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
900 }
901
902 /*
903 * Wait until all NAPI handlers are descheduled.
904 */
quiesce_rx(struct adapter * adap)905 static void quiesce_rx(struct adapter *adap)
906 {
907 int i;
908
909 for (i = 0; i < adap->sge.ingr_sz; i++) {
910 struct sge_rspq *q = adap->sge.ingr_map[i];
911
912 if (q && q->handler)
913 napi_disable(&q->napi);
914 }
915 }
916
917 /* Disable interrupt and napi handler */
disable_interrupts(struct adapter * adap)918 static void disable_interrupts(struct adapter *adap)
919 {
920 if (adap->flags & CXGB4_FULL_INIT_DONE) {
921 t4_intr_disable(adap);
922 if (adap->flags & CXGB4_USING_MSIX) {
923 free_msix_queue_irqs(adap);
924 free_irq(adap->msix_info[0].vec, adap);
925 } else {
926 free_irq(adap->pdev->irq, adap);
927 }
928 quiesce_rx(adap);
929 }
930 }
931
932 /*
933 * Enable NAPI scheduling and interrupt generation for all Rx queues.
934 */
enable_rx(struct adapter * adap)935 static void enable_rx(struct adapter *adap)
936 {
937 int i;
938
939 for (i = 0; i < adap->sge.ingr_sz; i++) {
940 struct sge_rspq *q = adap->sge.ingr_map[i];
941
942 if (!q)
943 continue;
944 if (q->handler)
945 napi_enable(&q->napi);
946
947 /* 0-increment GTS to start the timer and enable interrupts */
948 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
949 SEINTARM_V(q->intr_params) |
950 INGRESSQID_V(q->cntxt_id));
951 }
952 }
953
954
setup_fw_sge_queues(struct adapter * adap)955 static int setup_fw_sge_queues(struct adapter *adap)
956 {
957 struct sge *s = &adap->sge;
958 int err = 0;
959
960 bitmap_zero(s->starving_fl, s->egr_sz);
961 bitmap_zero(s->txq_maperr, s->egr_sz);
962
963 if (adap->flags & CXGB4_USING_MSIX)
964 adap->msi_idx = 1; /* vector 0 is for non-queue interrupts */
965 else {
966 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
967 NULL, NULL, NULL, -1);
968 if (err)
969 return err;
970 adap->msi_idx = -((int)s->intrq.abs_id + 1);
971 }
972
973 err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
974 adap->msi_idx, NULL, fwevtq_handler, NULL, -1);
975 return err;
976 }
977
978 /**
979 * setup_sge_queues - configure SGE Tx/Rx/response queues
980 * @adap: the adapter
981 *
982 * Determines how many sets of SGE queues to use and initializes them.
983 * We support multiple queue sets per port if we have MSI-X, otherwise
984 * just one queue set per port.
985 */
setup_sge_queues(struct adapter * adap)986 static int setup_sge_queues(struct adapter *adap)
987 {
988 int err, i, j;
989 struct sge *s = &adap->sge;
990 struct sge_uld_rxq_info *rxq_info = NULL;
991 unsigned int cmplqid = 0;
992
993 if (is_uld(adap))
994 rxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA];
995
996 for_each_port(adap, i) {
997 struct net_device *dev = adap->port[i];
998 struct port_info *pi = netdev_priv(dev);
999 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
1000 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
1001
1002 for (j = 0; j < pi->nqsets; j++, q++) {
1003 if (adap->msi_idx > 0)
1004 adap->msi_idx++;
1005 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
1006 adap->msi_idx, &q->fl,
1007 t4_ethrx_handler,
1008 NULL,
1009 t4_get_tp_ch_map(adap,
1010 pi->tx_chan));
1011 if (err)
1012 goto freeout;
1013 q->rspq.idx = j;
1014 memset(&q->stats, 0, sizeof(q->stats));
1015 }
1016
1017 q = &s->ethrxq[pi->first_qset];
1018 for (j = 0; j < pi->nqsets; j++, t++, q++) {
1019 err = t4_sge_alloc_eth_txq(adap, t, dev,
1020 netdev_get_tx_queue(dev, j),
1021 q->rspq.cntxt_id,
1022 !!(adap->flags & CXGB4_SGE_DBQ_TIMER));
1023 if (err)
1024 goto freeout;
1025 }
1026 }
1027
1028 for_each_port(adap, i) {
1029 /* Note that cmplqid below is 0 if we don't
1030 * have RDMA queues, and that's the right value.
1031 */
1032 if (rxq_info)
1033 cmplqid = rxq_info->uldrxq[i].rspq.cntxt_id;
1034
1035 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
1036 s->fw_evtq.cntxt_id, cmplqid);
1037 if (err)
1038 goto freeout;
1039 }
1040
1041 if (!is_t4(adap->params.chip)) {
1042 err = t4_sge_alloc_eth_txq(adap, &s->ptptxq, adap->port[0],
1043 netdev_get_tx_queue(adap->port[0], 0)
1044 , s->fw_evtq.cntxt_id, false);
1045 if (err)
1046 goto freeout;
1047 }
1048
1049 t4_write_reg(adap, is_t4(adap->params.chip) ?
1050 MPS_TRC_RSS_CONTROL_A :
1051 MPS_T5_TRC_RSS_CONTROL_A,
1052 RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
1053 QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
1054 return 0;
1055 freeout:
1056 dev_err(adap->pdev_dev, "Can't allocate queues, err=%d\n", -err);
1057 t4_free_sge_resources(adap);
1058 return err;
1059 }
1060
cxgb_select_queue(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)1061 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
1062 struct net_device *sb_dev)
1063 {
1064 int txq;
1065
1066 #ifdef CONFIG_CHELSIO_T4_DCB
1067 /* If a Data Center Bridging has been successfully negotiated on this
1068 * link then we'll use the skb's priority to map it to a TX Queue.
1069 * The skb's priority is determined via the VLAN Tag Priority Code
1070 * Point field.
1071 */
1072 if (cxgb4_dcb_enabled(dev) && !is_kdump_kernel()) {
1073 u16 vlan_tci;
1074 int err;
1075
1076 err = vlan_get_tag(skb, &vlan_tci);
1077 if (unlikely(err)) {
1078 if (net_ratelimit())
1079 netdev_warn(dev,
1080 "TX Packet without VLAN Tag on DCB Link\n");
1081 txq = 0;
1082 } else {
1083 txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
1084 #ifdef CONFIG_CHELSIO_T4_FCOE
1085 if (skb->protocol == htons(ETH_P_FCOE))
1086 txq = skb->priority & 0x7;
1087 #endif /* CONFIG_CHELSIO_T4_FCOE */
1088 }
1089 return txq;
1090 }
1091 #endif /* CONFIG_CHELSIO_T4_DCB */
1092
1093 if (select_queue) {
1094 txq = (skb_rx_queue_recorded(skb)
1095 ? skb_get_rx_queue(skb)
1096 : smp_processor_id());
1097
1098 while (unlikely(txq >= dev->real_num_tx_queues))
1099 txq -= dev->real_num_tx_queues;
1100
1101 return txq;
1102 }
1103
1104 return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
1105 }
1106
closest_timer(const struct sge * s,int time)1107 static int closest_timer(const struct sge *s, int time)
1108 {
1109 int i, delta, match = 0, min_delta = INT_MAX;
1110
1111 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
1112 delta = time - s->timer_val[i];
1113 if (delta < 0)
1114 delta = -delta;
1115 if (delta < min_delta) {
1116 min_delta = delta;
1117 match = i;
1118 }
1119 }
1120 return match;
1121 }
1122
closest_thres(const struct sge * s,int thres)1123 static int closest_thres(const struct sge *s, int thres)
1124 {
1125 int i, delta, match = 0, min_delta = INT_MAX;
1126
1127 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1128 delta = thres - s->counter_val[i];
1129 if (delta < 0)
1130 delta = -delta;
1131 if (delta < min_delta) {
1132 min_delta = delta;
1133 match = i;
1134 }
1135 }
1136 return match;
1137 }
1138
1139 /**
1140 * cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
1141 * @q: the Rx queue
1142 * @us: the hold-off time in us, or 0 to disable timer
1143 * @cnt: the hold-off packet count, or 0 to disable counter
1144 *
1145 * Sets an Rx queue's interrupt hold-off time and packet count. At least
1146 * one of the two needs to be enabled for the queue to generate interrupts.
1147 */
cxgb4_set_rspq_intr_params(struct sge_rspq * q,unsigned int us,unsigned int cnt)1148 int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
1149 unsigned int us, unsigned int cnt)
1150 {
1151 struct adapter *adap = q->adap;
1152
1153 if ((us | cnt) == 0)
1154 cnt = 1;
1155
1156 if (cnt) {
1157 int err;
1158 u32 v, new_idx;
1159
1160 new_idx = closest_thres(&adap->sge, cnt);
1161 if (q->desc && q->pktcnt_idx != new_idx) {
1162 /* the queue has already been created, update it */
1163 v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1164 FW_PARAMS_PARAM_X_V(
1165 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1166 FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
1167 err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
1168 &v, &new_idx);
1169 if (err)
1170 return err;
1171 }
1172 q->pktcnt_idx = new_idx;
1173 }
1174
1175 us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1176 q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0);
1177 return 0;
1178 }
1179
cxgb_set_features(struct net_device * dev,netdev_features_t features)1180 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
1181 {
1182 const struct port_info *pi = netdev_priv(dev);
1183 netdev_features_t changed = dev->features ^ features;
1184 int err;
1185
1186 if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
1187 return 0;
1188
1189 err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1,
1190 -1, -1, -1,
1191 !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
1192 if (unlikely(err))
1193 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
1194 return err;
1195 }
1196
setup_debugfs(struct adapter * adap)1197 static int setup_debugfs(struct adapter *adap)
1198 {
1199 if (IS_ERR_OR_NULL(adap->debugfs_root))
1200 return -1;
1201
1202 #ifdef CONFIG_DEBUG_FS
1203 t4_setup_debugfs(adap);
1204 #endif
1205 return 0;
1206 }
1207
1208 /*
1209 * upper-layer driver support
1210 */
1211
1212 /*
1213 * Allocate an active-open TID and set it to the supplied value.
1214 */
cxgb4_alloc_atid(struct tid_info * t,void * data)1215 int cxgb4_alloc_atid(struct tid_info *t, void *data)
1216 {
1217 int atid = -1;
1218
1219 spin_lock_bh(&t->atid_lock);
1220 if (t->afree) {
1221 union aopen_entry *p = t->afree;
1222
1223 atid = (p - t->atid_tab) + t->atid_base;
1224 t->afree = p->next;
1225 p->data = data;
1226 t->atids_in_use++;
1227 }
1228 spin_unlock_bh(&t->atid_lock);
1229 return atid;
1230 }
1231 EXPORT_SYMBOL(cxgb4_alloc_atid);
1232
1233 /*
1234 * Release an active-open TID.
1235 */
cxgb4_free_atid(struct tid_info * t,unsigned int atid)1236 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
1237 {
1238 union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
1239
1240 spin_lock_bh(&t->atid_lock);
1241 p->next = t->afree;
1242 t->afree = p;
1243 t->atids_in_use--;
1244 spin_unlock_bh(&t->atid_lock);
1245 }
1246 EXPORT_SYMBOL(cxgb4_free_atid);
1247
1248 /*
1249 * Allocate a server TID and set it to the supplied value.
1250 */
cxgb4_alloc_stid(struct tid_info * t,int family,void * data)1251 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
1252 {
1253 int stid;
1254
1255 spin_lock_bh(&t->stid_lock);
1256 if (family == PF_INET) {
1257 stid = find_first_zero_bit(t->stid_bmap, t->nstids);
1258 if (stid < t->nstids)
1259 __set_bit(stid, t->stid_bmap);
1260 else
1261 stid = -1;
1262 } else {
1263 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1);
1264 if (stid < 0)
1265 stid = -1;
1266 }
1267 if (stid >= 0) {
1268 t->stid_tab[stid].data = data;
1269 stid += t->stid_base;
1270 /* IPv6 requires max of 520 bits or 16 cells in TCAM
1271 * This is equivalent to 4 TIDs. With CLIP enabled it
1272 * needs 2 TIDs.
1273 */
1274 if (family == PF_INET6) {
1275 t->stids_in_use += 2;
1276 t->v6_stids_in_use += 2;
1277 } else {
1278 t->stids_in_use++;
1279 }
1280 }
1281 spin_unlock_bh(&t->stid_lock);
1282 return stid;
1283 }
1284 EXPORT_SYMBOL(cxgb4_alloc_stid);
1285
1286 /* Allocate a server filter TID and set it to the supplied value.
1287 */
cxgb4_alloc_sftid(struct tid_info * t,int family,void * data)1288 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
1289 {
1290 int stid;
1291
1292 spin_lock_bh(&t->stid_lock);
1293 if (family == PF_INET) {
1294 stid = find_next_zero_bit(t->stid_bmap,
1295 t->nstids + t->nsftids, t->nstids);
1296 if (stid < (t->nstids + t->nsftids))
1297 __set_bit(stid, t->stid_bmap);
1298 else
1299 stid = -1;
1300 } else {
1301 stid = -1;
1302 }
1303 if (stid >= 0) {
1304 t->stid_tab[stid].data = data;
1305 stid -= t->nstids;
1306 stid += t->sftid_base;
1307 t->sftids_in_use++;
1308 }
1309 spin_unlock_bh(&t->stid_lock);
1310 return stid;
1311 }
1312 EXPORT_SYMBOL(cxgb4_alloc_sftid);
1313
1314 /* Release a server TID.
1315 */
cxgb4_free_stid(struct tid_info * t,unsigned int stid,int family)1316 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
1317 {
1318 /* Is it a server filter TID? */
1319 if (t->nsftids && (stid >= t->sftid_base)) {
1320 stid -= t->sftid_base;
1321 stid += t->nstids;
1322 } else {
1323 stid -= t->stid_base;
1324 }
1325
1326 spin_lock_bh(&t->stid_lock);
1327 if (family == PF_INET)
1328 __clear_bit(stid, t->stid_bmap);
1329 else
1330 bitmap_release_region(t->stid_bmap, stid, 1);
1331 t->stid_tab[stid].data = NULL;
1332 if (stid < t->nstids) {
1333 if (family == PF_INET6) {
1334 t->stids_in_use -= 2;
1335 t->v6_stids_in_use -= 2;
1336 } else {
1337 t->stids_in_use--;
1338 }
1339 } else {
1340 t->sftids_in_use--;
1341 }
1342
1343 spin_unlock_bh(&t->stid_lock);
1344 }
1345 EXPORT_SYMBOL(cxgb4_free_stid);
1346
1347 /*
1348 * Populate a TID_RELEASE WR. Caller must properly size the skb.
1349 */
mk_tid_release(struct sk_buff * skb,unsigned int chan,unsigned int tid)1350 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
1351 unsigned int tid)
1352 {
1353 struct cpl_tid_release *req;
1354
1355 set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
1356 req = __skb_put(skb, sizeof(*req));
1357 INIT_TP_WR(req, tid);
1358 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
1359 }
1360
1361 /*
1362 * Queue a TID release request and if necessary schedule a work queue to
1363 * process it.
1364 */
cxgb4_queue_tid_release(struct tid_info * t,unsigned int chan,unsigned int tid)1365 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
1366 unsigned int tid)
1367 {
1368 void **p = &t->tid_tab[tid];
1369 struct adapter *adap = container_of(t, struct adapter, tids);
1370
1371 spin_lock_bh(&adap->tid_release_lock);
1372 *p = adap->tid_release_head;
1373 /* Low 2 bits encode the Tx channel number */
1374 adap->tid_release_head = (void **)((uintptr_t)p | chan);
1375 if (!adap->tid_release_task_busy) {
1376 adap->tid_release_task_busy = true;
1377 queue_work(adap->workq, &adap->tid_release_task);
1378 }
1379 spin_unlock_bh(&adap->tid_release_lock);
1380 }
1381
1382 /*
1383 * Process the list of pending TID release requests.
1384 */
process_tid_release_list(struct work_struct * work)1385 static void process_tid_release_list(struct work_struct *work)
1386 {
1387 struct sk_buff *skb;
1388 struct adapter *adap;
1389
1390 adap = container_of(work, struct adapter, tid_release_task);
1391
1392 spin_lock_bh(&adap->tid_release_lock);
1393 while (adap->tid_release_head) {
1394 void **p = adap->tid_release_head;
1395 unsigned int chan = (uintptr_t)p & 3;
1396 p = (void *)p - chan;
1397
1398 adap->tid_release_head = *p;
1399 *p = NULL;
1400 spin_unlock_bh(&adap->tid_release_lock);
1401
1402 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
1403 GFP_KERNEL)))
1404 schedule_timeout_uninterruptible(1);
1405
1406 mk_tid_release(skb, chan, p - adap->tids.tid_tab);
1407 t4_ofld_send(adap, skb);
1408 spin_lock_bh(&adap->tid_release_lock);
1409 }
1410 adap->tid_release_task_busy = false;
1411 spin_unlock_bh(&adap->tid_release_lock);
1412 }
1413
1414 /*
1415 * Release a TID and inform HW. If we are unable to allocate the release
1416 * message we defer to a work queue.
1417 */
cxgb4_remove_tid(struct tid_info * t,unsigned int chan,unsigned int tid,unsigned short family)1418 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid,
1419 unsigned short family)
1420 {
1421 struct sk_buff *skb;
1422 struct adapter *adap = container_of(t, struct adapter, tids);
1423
1424 WARN_ON(tid >= t->ntids);
1425
1426 if (t->tid_tab[tid]) {
1427 t->tid_tab[tid] = NULL;
1428 atomic_dec(&t->conns_in_use);
1429 if (t->hash_base && (tid >= t->hash_base)) {
1430 if (family == AF_INET6)
1431 atomic_sub(2, &t->hash_tids_in_use);
1432 else
1433 atomic_dec(&t->hash_tids_in_use);
1434 } else {
1435 if (family == AF_INET6)
1436 atomic_sub(2, &t->tids_in_use);
1437 else
1438 atomic_dec(&t->tids_in_use);
1439 }
1440 }
1441
1442 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
1443 if (likely(skb)) {
1444 mk_tid_release(skb, chan, tid);
1445 t4_ofld_send(adap, skb);
1446 } else
1447 cxgb4_queue_tid_release(t, chan, tid);
1448 }
1449 EXPORT_SYMBOL(cxgb4_remove_tid);
1450
1451 /*
1452 * Allocate and initialize the TID tables. Returns 0 on success.
1453 */
tid_init(struct tid_info * t)1454 static int tid_init(struct tid_info *t)
1455 {
1456 struct adapter *adap = container_of(t, struct adapter, tids);
1457 unsigned int max_ftids = t->nftids + t->nsftids;
1458 unsigned int natids = t->natids;
1459 unsigned int stid_bmap_size;
1460 unsigned int ftid_bmap_size;
1461 size_t size;
1462
1463 stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
1464 ftid_bmap_size = BITS_TO_LONGS(t->nftids);
1465 size = t->ntids * sizeof(*t->tid_tab) +
1466 natids * sizeof(*t->atid_tab) +
1467 t->nstids * sizeof(*t->stid_tab) +
1468 t->nsftids * sizeof(*t->stid_tab) +
1469 stid_bmap_size * sizeof(long) +
1470 max_ftids * sizeof(*t->ftid_tab) +
1471 ftid_bmap_size * sizeof(long);
1472
1473 t->tid_tab = kvzalloc(size, GFP_KERNEL);
1474 if (!t->tid_tab)
1475 return -ENOMEM;
1476
1477 t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
1478 t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
1479 t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
1480 t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
1481 t->ftid_bmap = (unsigned long *)&t->ftid_tab[max_ftids];
1482 spin_lock_init(&t->stid_lock);
1483 spin_lock_init(&t->atid_lock);
1484 spin_lock_init(&t->ftid_lock);
1485
1486 t->stids_in_use = 0;
1487 t->v6_stids_in_use = 0;
1488 t->sftids_in_use = 0;
1489 t->afree = NULL;
1490 t->atids_in_use = 0;
1491 atomic_set(&t->tids_in_use, 0);
1492 atomic_set(&t->conns_in_use, 0);
1493 atomic_set(&t->hash_tids_in_use, 0);
1494
1495 /* Setup the free list for atid_tab and clear the stid bitmap. */
1496 if (natids) {
1497 while (--natids)
1498 t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1499 t->afree = t->atid_tab;
1500 }
1501
1502 if (is_offload(adap)) {
1503 bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
1504 /* Reserve stid 0 for T4/T5 adapters */
1505 if (!t->stid_base &&
1506 CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
1507 __set_bit(0, t->stid_bmap);
1508 }
1509
1510 bitmap_zero(t->ftid_bmap, t->nftids);
1511 return 0;
1512 }
1513
1514 /**
1515 * cxgb4_create_server - create an IP server
1516 * @dev: the device
1517 * @stid: the server TID
1518 * @sip: local IP address to bind server to
1519 * @sport: the server's TCP port
1520 * @queue: queue to direct messages from this server to
1521 *
1522 * Create an IP server for the given port and address.
1523 * Returns <0 on error and one of the %NET_XMIT_* values on success.
1524 */
cxgb4_create_server(const struct net_device * dev,unsigned int stid,__be32 sip,__be16 sport,__be16 vlan,unsigned int queue)1525 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
1526 __be32 sip, __be16 sport, __be16 vlan,
1527 unsigned int queue)
1528 {
1529 unsigned int chan;
1530 struct sk_buff *skb;
1531 struct adapter *adap;
1532 struct cpl_pass_open_req *req;
1533 int ret;
1534
1535 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1536 if (!skb)
1537 return -ENOMEM;
1538
1539 adap = netdev2adap(dev);
1540 req = __skb_put(skb, sizeof(*req));
1541 INIT_TP_WR(req, 0);
1542 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
1543 req->local_port = sport;
1544 req->peer_port = htons(0);
1545 req->local_ip = sip;
1546 req->peer_ip = htonl(0);
1547 chan = rxq_to_chan(&adap->sge, queue);
1548 req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1549 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1550 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1551 ret = t4_mgmt_tx(adap, skb);
1552 return net_xmit_eval(ret);
1553 }
1554 EXPORT_SYMBOL(cxgb4_create_server);
1555
1556 /* cxgb4_create_server6 - create an IPv6 server
1557 * @dev: the device
1558 * @stid: the server TID
1559 * @sip: local IPv6 address to bind server to
1560 * @sport: the server's TCP port
1561 * @queue: queue to direct messages from this server to
1562 *
1563 * Create an IPv6 server for the given port and address.
1564 * Returns <0 on error and one of the %NET_XMIT_* values on success.
1565 */
cxgb4_create_server6(const struct net_device * dev,unsigned int stid,const struct in6_addr * sip,__be16 sport,unsigned int queue)1566 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
1567 const struct in6_addr *sip, __be16 sport,
1568 unsigned int queue)
1569 {
1570 unsigned int chan;
1571 struct sk_buff *skb;
1572 struct adapter *adap;
1573 struct cpl_pass_open_req6 *req;
1574 int ret;
1575
1576 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1577 if (!skb)
1578 return -ENOMEM;
1579
1580 adap = netdev2adap(dev);
1581 req = __skb_put(skb, sizeof(*req));
1582 INIT_TP_WR(req, 0);
1583 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
1584 req->local_port = sport;
1585 req->peer_port = htons(0);
1586 req->local_ip_hi = *(__be64 *)(sip->s6_addr);
1587 req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
1588 req->peer_ip_hi = cpu_to_be64(0);
1589 req->peer_ip_lo = cpu_to_be64(0);
1590 chan = rxq_to_chan(&adap->sge, queue);
1591 req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1592 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1593 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1594 ret = t4_mgmt_tx(adap, skb);
1595 return net_xmit_eval(ret);
1596 }
1597 EXPORT_SYMBOL(cxgb4_create_server6);
1598
cxgb4_remove_server(const struct net_device * dev,unsigned int stid,unsigned int queue,bool ipv6)1599 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
1600 unsigned int queue, bool ipv6)
1601 {
1602 struct sk_buff *skb;
1603 struct adapter *adap;
1604 struct cpl_close_listsvr_req *req;
1605 int ret;
1606
1607 adap = netdev2adap(dev);
1608
1609 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1610 if (!skb)
1611 return -ENOMEM;
1612
1613 req = __skb_put(skb, sizeof(*req));
1614 INIT_TP_WR(req, 0);
1615 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
1616 req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
1617 LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
1618 ret = t4_mgmt_tx(adap, skb);
1619 return net_xmit_eval(ret);
1620 }
1621 EXPORT_SYMBOL(cxgb4_remove_server);
1622
1623 /**
1624 * cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
1625 * @mtus: the HW MTU table
1626 * @mtu: the target MTU
1627 * @idx: index of selected entry in the MTU table
1628 *
1629 * Returns the index and the value in the HW MTU table that is closest to
1630 * but does not exceed @mtu, unless @mtu is smaller than any value in the
1631 * table, in which case that smallest available value is selected.
1632 */
cxgb4_best_mtu(const unsigned short * mtus,unsigned short mtu,unsigned int * idx)1633 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
1634 unsigned int *idx)
1635 {
1636 unsigned int i = 0;
1637
1638 while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
1639 ++i;
1640 if (idx)
1641 *idx = i;
1642 return mtus[i];
1643 }
1644 EXPORT_SYMBOL(cxgb4_best_mtu);
1645
1646 /**
1647 * cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
1648 * @mtus: the HW MTU table
1649 * @header_size: Header Size
1650 * @data_size_max: maximum Data Segment Size
1651 * @data_size_align: desired Data Segment Size Alignment (2^N)
1652 * @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
1653 *
1654 * Similar to cxgb4_best_mtu() but instead of searching the Hardware
1655 * MTU Table based solely on a Maximum MTU parameter, we break that
1656 * parameter up into a Header Size and Maximum Data Segment Size, and
1657 * provide a desired Data Segment Size Alignment. If we find an MTU in
1658 * the Hardware MTU Table which will result in a Data Segment Size with
1659 * the requested alignment _and_ that MTU isn't "too far" from the
1660 * closest MTU, then we'll return that rather than the closest MTU.
1661 */
cxgb4_best_aligned_mtu(const unsigned short * mtus,unsigned short header_size,unsigned short data_size_max,unsigned short data_size_align,unsigned int * mtu_idxp)1662 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
1663 unsigned short header_size,
1664 unsigned short data_size_max,
1665 unsigned short data_size_align,
1666 unsigned int *mtu_idxp)
1667 {
1668 unsigned short max_mtu = header_size + data_size_max;
1669 unsigned short data_size_align_mask = data_size_align - 1;
1670 int mtu_idx, aligned_mtu_idx;
1671
1672 /* Scan the MTU Table till we find an MTU which is larger than our
1673 * Maximum MTU or we reach the end of the table. Along the way,
1674 * record the last MTU found, if any, which will result in a Data
1675 * Segment Length matching the requested alignment.
1676 */
1677 for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
1678 unsigned short data_size = mtus[mtu_idx] - header_size;
1679
1680 /* If this MTU minus the Header Size would result in a
1681 * Data Segment Size of the desired alignment, remember it.
1682 */
1683 if ((data_size & data_size_align_mask) == 0)
1684 aligned_mtu_idx = mtu_idx;
1685
1686 /* If we're not at the end of the Hardware MTU Table and the
1687 * next element is larger than our Maximum MTU, drop out of
1688 * the loop.
1689 */
1690 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
1691 break;
1692 }
1693
1694 /* If we fell out of the loop because we ran to the end of the table,
1695 * then we just have to use the last [largest] entry.
1696 */
1697 if (mtu_idx == NMTUS)
1698 mtu_idx--;
1699
1700 /* If we found an MTU which resulted in the requested Data Segment
1701 * Length alignment and that's "not far" from the largest MTU which is
1702 * less than or equal to the maximum MTU, then use that.
1703 */
1704 if (aligned_mtu_idx >= 0 &&
1705 mtu_idx - aligned_mtu_idx <= 1)
1706 mtu_idx = aligned_mtu_idx;
1707
1708 /* If the caller has passed in an MTU Index pointer, pass the
1709 * MTU Index back. Return the MTU value.
1710 */
1711 if (mtu_idxp)
1712 *mtu_idxp = mtu_idx;
1713 return mtus[mtu_idx];
1714 }
1715 EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
1716
1717 /**
1718 * cxgb4_port_chan - get the HW channel of a port
1719 * @dev: the net device for the port
1720 *
1721 * Return the HW Tx channel of the given port.
1722 */
cxgb4_port_chan(const struct net_device * dev)1723 unsigned int cxgb4_port_chan(const struct net_device *dev)
1724 {
1725 return netdev2pinfo(dev)->tx_chan;
1726 }
1727 EXPORT_SYMBOL(cxgb4_port_chan);
1728
1729 /**
1730 * cxgb4_port_e2cchan - get the HW c-channel of a port
1731 * @dev: the net device for the port
1732 *
1733 * Return the HW RX c-channel of the given port.
1734 */
cxgb4_port_e2cchan(const struct net_device * dev)1735 unsigned int cxgb4_port_e2cchan(const struct net_device *dev)
1736 {
1737 return netdev2pinfo(dev)->rx_cchan;
1738 }
1739 EXPORT_SYMBOL(cxgb4_port_e2cchan);
1740
cxgb4_dbfifo_count(const struct net_device * dev,int lpfifo)1741 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
1742 {
1743 struct adapter *adap = netdev2adap(dev);
1744 u32 v1, v2, lp_count, hp_count;
1745
1746 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
1747 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1748 if (is_t4(adap->params.chip)) {
1749 lp_count = LP_COUNT_G(v1);
1750 hp_count = HP_COUNT_G(v1);
1751 } else {
1752 lp_count = LP_COUNT_T5_G(v1);
1753 hp_count = HP_COUNT_T5_G(v2);
1754 }
1755 return lpfifo ? lp_count : hp_count;
1756 }
1757 EXPORT_SYMBOL(cxgb4_dbfifo_count);
1758
1759 /**
1760 * cxgb4_port_viid - get the VI id of a port
1761 * @dev: the net device for the port
1762 *
1763 * Return the VI id of the given port.
1764 */
cxgb4_port_viid(const struct net_device * dev)1765 unsigned int cxgb4_port_viid(const struct net_device *dev)
1766 {
1767 return netdev2pinfo(dev)->viid;
1768 }
1769 EXPORT_SYMBOL(cxgb4_port_viid);
1770
1771 /**
1772 * cxgb4_port_idx - get the index of a port
1773 * @dev: the net device for the port
1774 *
1775 * Return the index of the given port.
1776 */
cxgb4_port_idx(const struct net_device * dev)1777 unsigned int cxgb4_port_idx(const struct net_device *dev)
1778 {
1779 return netdev2pinfo(dev)->port_id;
1780 }
1781 EXPORT_SYMBOL(cxgb4_port_idx);
1782
cxgb4_get_tcp_stats(struct pci_dev * pdev,struct tp_tcp_stats * v4,struct tp_tcp_stats * v6)1783 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
1784 struct tp_tcp_stats *v6)
1785 {
1786 struct adapter *adap = pci_get_drvdata(pdev);
1787
1788 spin_lock(&adap->stats_lock);
1789 t4_tp_get_tcp_stats(adap, v4, v6, false);
1790 spin_unlock(&adap->stats_lock);
1791 }
1792 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
1793
cxgb4_iscsi_init(struct net_device * dev,unsigned int tag_mask,const unsigned int * pgsz_order)1794 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
1795 const unsigned int *pgsz_order)
1796 {
1797 struct adapter *adap = netdev2adap(dev);
1798
1799 t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
1800 t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
1801 HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
1802 HPZ3_V(pgsz_order[3]));
1803 }
1804 EXPORT_SYMBOL(cxgb4_iscsi_init);
1805
cxgb4_flush_eq_cache(struct net_device * dev)1806 int cxgb4_flush_eq_cache(struct net_device *dev)
1807 {
1808 struct adapter *adap = netdev2adap(dev);
1809
1810 return t4_sge_ctxt_flush(adap, adap->mbox, CTXT_EGRESS);
1811 }
1812 EXPORT_SYMBOL(cxgb4_flush_eq_cache);
1813
read_eq_indices(struct adapter * adap,u16 qid,u16 * pidx,u16 * cidx)1814 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
1815 {
1816 u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
1817 __be64 indices;
1818 int ret;
1819
1820 spin_lock(&adap->win0_lock);
1821 ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
1822 sizeof(indices), (__be32 *)&indices,
1823 T4_MEMORY_READ);
1824 spin_unlock(&adap->win0_lock);
1825 if (!ret) {
1826 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
1827 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
1828 }
1829 return ret;
1830 }
1831
cxgb4_sync_txq_pidx(struct net_device * dev,u16 qid,u16 pidx,u16 size)1832 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
1833 u16 size)
1834 {
1835 struct adapter *adap = netdev2adap(dev);
1836 u16 hw_pidx, hw_cidx;
1837 int ret;
1838
1839 ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
1840 if (ret)
1841 goto out;
1842
1843 if (pidx != hw_pidx) {
1844 u16 delta;
1845 u32 val;
1846
1847 if (pidx >= hw_pidx)
1848 delta = pidx - hw_pidx;
1849 else
1850 delta = size - hw_pidx + pidx;
1851
1852 if (is_t4(adap->params.chip))
1853 val = PIDX_V(delta);
1854 else
1855 val = PIDX_T5_V(delta);
1856 wmb();
1857 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
1858 QID_V(qid) | val);
1859 }
1860 out:
1861 return ret;
1862 }
1863 EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
1864
cxgb4_read_tpte(struct net_device * dev,u32 stag,__be32 * tpte)1865 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
1866 {
1867 u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
1868 u32 edc0_end, edc1_end, mc0_end, mc1_end;
1869 u32 offset, memtype, memaddr;
1870 struct adapter *adap;
1871 u32 hma_size = 0;
1872 int ret;
1873
1874 adap = netdev2adap(dev);
1875
1876 offset = ((stag >> 8) * 32) + adap->vres.stag.start;
1877
1878 /* Figure out where the offset lands in the Memory Type/Address scheme.
1879 * This code assumes that the memory is laid out starting at offset 0
1880 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
1881 * and EDC1. Some cards will have neither MC0 nor MC1, most cards have
1882 * MC0, and some have both MC0 and MC1.
1883 */
1884 size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
1885 edc0_size = EDRAM0_SIZE_G(size) << 20;
1886 size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
1887 edc1_size = EDRAM1_SIZE_G(size) << 20;
1888 size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
1889 mc0_size = EXT_MEM0_SIZE_G(size) << 20;
1890
1891 if (t4_read_reg(adap, MA_TARGET_MEM_ENABLE_A) & HMA_MUX_F) {
1892 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
1893 hma_size = EXT_MEM1_SIZE_G(size) << 20;
1894 }
1895 edc0_end = edc0_size;
1896 edc1_end = edc0_end + edc1_size;
1897 mc0_end = edc1_end + mc0_size;
1898
1899 if (offset < edc0_end) {
1900 memtype = MEM_EDC0;
1901 memaddr = offset;
1902 } else if (offset < edc1_end) {
1903 memtype = MEM_EDC1;
1904 memaddr = offset - edc0_end;
1905 } else {
1906 if (hma_size && (offset < (edc1_end + hma_size))) {
1907 memtype = MEM_HMA;
1908 memaddr = offset - edc1_end;
1909 } else if (offset < mc0_end) {
1910 memtype = MEM_MC0;
1911 memaddr = offset - edc1_end;
1912 } else if (is_t5(adap->params.chip)) {
1913 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
1914 mc1_size = EXT_MEM1_SIZE_G(size) << 20;
1915 mc1_end = mc0_end + mc1_size;
1916 if (offset < mc1_end) {
1917 memtype = MEM_MC1;
1918 memaddr = offset - mc0_end;
1919 } else {
1920 /* offset beyond the end of any memory */
1921 goto err;
1922 }
1923 } else {
1924 /* T4/T6 only has a single memory channel */
1925 goto err;
1926 }
1927 }
1928
1929 spin_lock(&adap->win0_lock);
1930 ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
1931 spin_unlock(&adap->win0_lock);
1932 return ret;
1933
1934 err:
1935 dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
1936 stag, offset);
1937 return -EINVAL;
1938 }
1939 EXPORT_SYMBOL(cxgb4_read_tpte);
1940
cxgb4_read_sge_timestamp(struct net_device * dev)1941 u64 cxgb4_read_sge_timestamp(struct net_device *dev)
1942 {
1943 u32 hi, lo;
1944 struct adapter *adap;
1945
1946 adap = netdev2adap(dev);
1947 lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
1948 hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
1949
1950 return ((u64)hi << 32) | (u64)lo;
1951 }
1952 EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
1953
cxgb4_bar2_sge_qregs(struct net_device * dev,unsigned int qid,enum cxgb4_bar2_qtype qtype,int user,u64 * pbar2_qoffset,unsigned int * pbar2_qid)1954 int cxgb4_bar2_sge_qregs(struct net_device *dev,
1955 unsigned int qid,
1956 enum cxgb4_bar2_qtype qtype,
1957 int user,
1958 u64 *pbar2_qoffset,
1959 unsigned int *pbar2_qid)
1960 {
1961 return t4_bar2_sge_qregs(netdev2adap(dev),
1962 qid,
1963 (qtype == CXGB4_BAR2_QTYPE_EGRESS
1964 ? T4_BAR2_QTYPE_EGRESS
1965 : T4_BAR2_QTYPE_INGRESS),
1966 user,
1967 pbar2_qoffset,
1968 pbar2_qid);
1969 }
1970 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);
1971
1972 static struct pci_driver cxgb4_driver;
1973
check_neigh_update(struct neighbour * neigh)1974 static void check_neigh_update(struct neighbour *neigh)
1975 {
1976 const struct device *parent;
1977 const struct net_device *netdev = neigh->dev;
1978
1979 if (is_vlan_dev(netdev))
1980 netdev = vlan_dev_real_dev(netdev);
1981 parent = netdev->dev.parent;
1982 if (parent && parent->driver == &cxgb4_driver.driver)
1983 t4_l2t_update(dev_get_drvdata(parent), neigh);
1984 }
1985
netevent_cb(struct notifier_block * nb,unsigned long event,void * data)1986 static int netevent_cb(struct notifier_block *nb, unsigned long event,
1987 void *data)
1988 {
1989 switch (event) {
1990 case NETEVENT_NEIGH_UPDATE:
1991 check_neigh_update(data);
1992 break;
1993 case NETEVENT_REDIRECT:
1994 default:
1995 break;
1996 }
1997 return 0;
1998 }
1999
2000 static bool netevent_registered;
2001 static struct notifier_block cxgb4_netevent_nb = {
2002 .notifier_call = netevent_cb
2003 };
2004
drain_db_fifo(struct adapter * adap,int usecs)2005 static void drain_db_fifo(struct adapter *adap, int usecs)
2006 {
2007 u32 v1, v2, lp_count, hp_count;
2008
2009 do {
2010 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
2011 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
2012 if (is_t4(adap->params.chip)) {
2013 lp_count = LP_COUNT_G(v1);
2014 hp_count = HP_COUNT_G(v1);
2015 } else {
2016 lp_count = LP_COUNT_T5_G(v1);
2017 hp_count = HP_COUNT_T5_G(v2);
2018 }
2019
2020 if (lp_count == 0 && hp_count == 0)
2021 break;
2022 set_current_state(TASK_UNINTERRUPTIBLE);
2023 schedule_timeout(usecs_to_jiffies(usecs));
2024 } while (1);
2025 }
2026
disable_txq_db(struct sge_txq * q)2027 static void disable_txq_db(struct sge_txq *q)
2028 {
2029 unsigned long flags;
2030
2031 spin_lock_irqsave(&q->db_lock, flags);
2032 q->db_disabled = 1;
2033 spin_unlock_irqrestore(&q->db_lock, flags);
2034 }
2035
enable_txq_db(struct adapter * adap,struct sge_txq * q)2036 static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
2037 {
2038 spin_lock_irq(&q->db_lock);
2039 if (q->db_pidx_inc) {
2040 /* Make sure that all writes to the TX descriptors
2041 * are committed before we tell HW about them.
2042 */
2043 wmb();
2044 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2045 QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
2046 q->db_pidx_inc = 0;
2047 }
2048 q->db_disabled = 0;
2049 spin_unlock_irq(&q->db_lock);
2050 }
2051
disable_dbs(struct adapter * adap)2052 static void disable_dbs(struct adapter *adap)
2053 {
2054 int i;
2055
2056 for_each_ethrxq(&adap->sge, i)
2057 disable_txq_db(&adap->sge.ethtxq[i].q);
2058 if (is_offload(adap)) {
2059 struct sge_uld_txq_info *txq_info =
2060 adap->sge.uld_txq_info[CXGB4_TX_OFLD];
2061
2062 if (txq_info) {
2063 for_each_ofldtxq(&adap->sge, i) {
2064 struct sge_uld_txq *txq = &txq_info->uldtxq[i];
2065
2066 disable_txq_db(&txq->q);
2067 }
2068 }
2069 }
2070 for_each_port(adap, i)
2071 disable_txq_db(&adap->sge.ctrlq[i].q);
2072 }
2073
enable_dbs(struct adapter * adap)2074 static void enable_dbs(struct adapter *adap)
2075 {
2076 int i;
2077
2078 for_each_ethrxq(&adap->sge, i)
2079 enable_txq_db(adap, &adap->sge.ethtxq[i].q);
2080 if (is_offload(adap)) {
2081 struct sge_uld_txq_info *txq_info =
2082 adap->sge.uld_txq_info[CXGB4_TX_OFLD];
2083
2084 if (txq_info) {
2085 for_each_ofldtxq(&adap->sge, i) {
2086 struct sge_uld_txq *txq = &txq_info->uldtxq[i];
2087
2088 enable_txq_db(adap, &txq->q);
2089 }
2090 }
2091 }
2092 for_each_port(adap, i)
2093 enable_txq_db(adap, &adap->sge.ctrlq[i].q);
2094 }
2095
notify_rdma_uld(struct adapter * adap,enum cxgb4_control cmd)2096 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
2097 {
2098 enum cxgb4_uld type = CXGB4_ULD_RDMA;
2099
2100 if (adap->uld && adap->uld[type].handle)
2101 adap->uld[type].control(adap->uld[type].handle, cmd);
2102 }
2103
process_db_full(struct work_struct * work)2104 static void process_db_full(struct work_struct *work)
2105 {
2106 struct adapter *adap;
2107
2108 adap = container_of(work, struct adapter, db_full_task);
2109
2110 drain_db_fifo(adap, dbfifo_drain_delay);
2111 enable_dbs(adap);
2112 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2113 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2114 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2115 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
2116 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
2117 else
2118 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2119 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F);
2120 }
2121
sync_txq_pidx(struct adapter * adap,struct sge_txq * q)2122 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
2123 {
2124 u16 hw_pidx, hw_cidx;
2125 int ret;
2126
2127 spin_lock_irq(&q->db_lock);
2128 ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
2129 if (ret)
2130 goto out;
2131 if (q->db_pidx != hw_pidx) {
2132 u16 delta;
2133 u32 val;
2134
2135 if (q->db_pidx >= hw_pidx)
2136 delta = q->db_pidx - hw_pidx;
2137 else
2138 delta = q->size - hw_pidx + q->db_pidx;
2139
2140 if (is_t4(adap->params.chip))
2141 val = PIDX_V(delta);
2142 else
2143 val = PIDX_T5_V(delta);
2144 wmb();
2145 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2146 QID_V(q->cntxt_id) | val);
2147 }
2148 out:
2149 q->db_disabled = 0;
2150 q->db_pidx_inc = 0;
2151 spin_unlock_irq(&q->db_lock);
2152 if (ret)
2153 CH_WARN(adap, "DB drop recovery failed.\n");
2154 }
2155
recover_all_queues(struct adapter * adap)2156 static void recover_all_queues(struct adapter *adap)
2157 {
2158 int i;
2159
2160 for_each_ethrxq(&adap->sge, i)
2161 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
2162 if (is_offload(adap)) {
2163 struct sge_uld_txq_info *txq_info =
2164 adap->sge.uld_txq_info[CXGB4_TX_OFLD];
2165 if (txq_info) {
2166 for_each_ofldtxq(&adap->sge, i) {
2167 struct sge_uld_txq *txq = &txq_info->uldtxq[i];
2168
2169 sync_txq_pidx(adap, &txq->q);
2170 }
2171 }
2172 }
2173 for_each_port(adap, i)
2174 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
2175 }
2176
process_db_drop(struct work_struct * work)2177 static void process_db_drop(struct work_struct *work)
2178 {
2179 struct adapter *adap;
2180
2181 adap = container_of(work, struct adapter, db_drop_task);
2182
2183 if (is_t4(adap->params.chip)) {
2184 drain_db_fifo(adap, dbfifo_drain_delay);
2185 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
2186 drain_db_fifo(adap, dbfifo_drain_delay);
2187 recover_all_queues(adap);
2188 drain_db_fifo(adap, dbfifo_drain_delay);
2189 enable_dbs(adap);
2190 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2191 } else if (is_t5(adap->params.chip)) {
2192 u32 dropped_db = t4_read_reg(adap, 0x010ac);
2193 u16 qid = (dropped_db >> 15) & 0x1ffff;
2194 u16 pidx_inc = dropped_db & 0x1fff;
2195 u64 bar2_qoffset;
2196 unsigned int bar2_qid;
2197 int ret;
2198
2199 ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
2200 0, &bar2_qoffset, &bar2_qid);
2201 if (ret)
2202 dev_err(adap->pdev_dev, "doorbell drop recovery: "
2203 "qid=%d, pidx_inc=%d\n", qid, pidx_inc);
2204 else
2205 writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
2206 adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2207
2208 /* Re-enable BAR2 WC */
2209 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
2210 }
2211
2212 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2213 t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
2214 }
2215
t4_db_full(struct adapter * adap)2216 void t4_db_full(struct adapter *adap)
2217 {
2218 if (is_t4(adap->params.chip)) {
2219 disable_dbs(adap);
2220 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2221 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2222 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
2223 queue_work(adap->workq, &adap->db_full_task);
2224 }
2225 }
2226
t4_db_dropped(struct adapter * adap)2227 void t4_db_dropped(struct adapter *adap)
2228 {
2229 if (is_t4(adap->params.chip)) {
2230 disable_dbs(adap);
2231 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2232 }
2233 queue_work(adap->workq, &adap->db_drop_task);
2234 }
2235
t4_register_netevent_notifier(void)2236 void t4_register_netevent_notifier(void)
2237 {
2238 if (!netevent_registered) {
2239 register_netevent_notifier(&cxgb4_netevent_nb);
2240 netevent_registered = true;
2241 }
2242 }
2243
detach_ulds(struct adapter * adap)2244 static void detach_ulds(struct adapter *adap)
2245 {
2246 unsigned int i;
2247
2248 mutex_lock(&uld_mutex);
2249 list_del(&adap->list_node);
2250
2251 for (i = 0; i < CXGB4_ULD_MAX; i++)
2252 if (adap->uld && adap->uld[i].handle)
2253 adap->uld[i].state_change(adap->uld[i].handle,
2254 CXGB4_STATE_DETACH);
2255
2256 if (netevent_registered && list_empty(&adapter_list)) {
2257 unregister_netevent_notifier(&cxgb4_netevent_nb);
2258 netevent_registered = false;
2259 }
2260 mutex_unlock(&uld_mutex);
2261 }
2262
notify_ulds(struct adapter * adap,enum cxgb4_state new_state)2263 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2264 {
2265 unsigned int i;
2266
2267 mutex_lock(&uld_mutex);
2268 for (i = 0; i < CXGB4_ULD_MAX; i++)
2269 if (adap->uld && adap->uld[i].handle)
2270 adap->uld[i].state_change(adap->uld[i].handle,
2271 new_state);
2272 mutex_unlock(&uld_mutex);
2273 }
2274
2275 #if IS_ENABLED(CONFIG_IPV6)
cxgb4_inet6addr_handler(struct notifier_block * this,unsigned long event,void * data)2276 static int cxgb4_inet6addr_handler(struct notifier_block *this,
2277 unsigned long event, void *data)
2278 {
2279 struct inet6_ifaddr *ifa = data;
2280 struct net_device *event_dev = ifa->idev->dev;
2281 const struct device *parent = NULL;
2282 #if IS_ENABLED(CONFIG_BONDING)
2283 struct adapter *adap;
2284 #endif
2285 if (is_vlan_dev(event_dev))
2286 event_dev = vlan_dev_real_dev(event_dev);
2287 #if IS_ENABLED(CONFIG_BONDING)
2288 if (event_dev->flags & IFF_MASTER) {
2289 list_for_each_entry(adap, &adapter_list, list_node) {
2290 switch (event) {
2291 case NETDEV_UP:
2292 cxgb4_clip_get(adap->port[0],
2293 (const u32 *)ifa, 1);
2294 break;
2295 case NETDEV_DOWN:
2296 cxgb4_clip_release(adap->port[0],
2297 (const u32 *)ifa, 1);
2298 break;
2299 default:
2300 break;
2301 }
2302 }
2303 return NOTIFY_OK;
2304 }
2305 #endif
2306
2307 if (event_dev)
2308 parent = event_dev->dev.parent;
2309
2310 if (parent && parent->driver == &cxgb4_driver.driver) {
2311 switch (event) {
2312 case NETDEV_UP:
2313 cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
2314 break;
2315 case NETDEV_DOWN:
2316 cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
2317 break;
2318 default:
2319 break;
2320 }
2321 }
2322 return NOTIFY_OK;
2323 }
2324
2325 static bool inet6addr_registered;
2326 static struct notifier_block cxgb4_inet6addr_notifier = {
2327 .notifier_call = cxgb4_inet6addr_handler
2328 };
2329
update_clip(const struct adapter * adap)2330 static void update_clip(const struct adapter *adap)
2331 {
2332 int i;
2333 struct net_device *dev;
2334 int ret;
2335
2336 rcu_read_lock();
2337
2338 for (i = 0; i < MAX_NPORTS; i++) {
2339 dev = adap->port[i];
2340 ret = 0;
2341
2342 if (dev)
2343 ret = cxgb4_update_root_dev_clip(dev);
2344
2345 if (ret < 0)
2346 break;
2347 }
2348 rcu_read_unlock();
2349 }
2350 #endif /* IS_ENABLED(CONFIG_IPV6) */
2351
2352 /**
2353 * cxgb_up - enable the adapter
2354 * @adap: adapter being enabled
2355 *
2356 * Called when the first port is enabled, this function performs the
2357 * actions necessary to make an adapter operational, such as completing
2358 * the initialization of HW modules, and enabling interrupts.
2359 *
2360 * Must be called with the rtnl lock held.
2361 */
cxgb_up(struct adapter * adap)2362 static int cxgb_up(struct adapter *adap)
2363 {
2364 int err;
2365
2366 mutex_lock(&uld_mutex);
2367 err = setup_sge_queues(adap);
2368 if (err)
2369 goto rel_lock;
2370 err = setup_rss(adap);
2371 if (err)
2372 goto freeq;
2373
2374 if (adap->flags & CXGB4_USING_MSIX) {
2375 name_msix_vecs(adap);
2376 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
2377 adap->msix_info[0].desc, adap);
2378 if (err)
2379 goto irq_err;
2380 err = request_msix_queue_irqs(adap);
2381 if (err) {
2382 free_irq(adap->msix_info[0].vec, adap);
2383 goto irq_err;
2384 }
2385 } else {
2386 err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2387 (adap->flags & CXGB4_USING_MSI) ? 0
2388 : IRQF_SHARED,
2389 adap->port[0]->name, adap);
2390 if (err)
2391 goto irq_err;
2392 }
2393
2394 enable_rx(adap);
2395 t4_sge_start(adap);
2396 t4_intr_enable(adap);
2397 adap->flags |= CXGB4_FULL_INIT_DONE;
2398 mutex_unlock(&uld_mutex);
2399
2400 notify_ulds(adap, CXGB4_STATE_UP);
2401 #if IS_ENABLED(CONFIG_IPV6)
2402 update_clip(adap);
2403 #endif
2404 return err;
2405
2406 irq_err:
2407 dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2408 freeq:
2409 t4_free_sge_resources(adap);
2410 rel_lock:
2411 mutex_unlock(&uld_mutex);
2412 return err;
2413 }
2414
cxgb_down(struct adapter * adapter)2415 static void cxgb_down(struct adapter *adapter)
2416 {
2417 cancel_work_sync(&adapter->tid_release_task);
2418 cancel_work_sync(&adapter->db_full_task);
2419 cancel_work_sync(&adapter->db_drop_task);
2420 adapter->tid_release_task_busy = false;
2421 adapter->tid_release_head = NULL;
2422
2423 t4_sge_stop(adapter);
2424 t4_free_sge_resources(adapter);
2425
2426 adapter->flags &= ~CXGB4_FULL_INIT_DONE;
2427 }
2428
2429 /*
2430 * net_device operations
2431 */
cxgb_open(struct net_device * dev)2432 static int cxgb_open(struct net_device *dev)
2433 {
2434 int err;
2435 struct port_info *pi = netdev_priv(dev);
2436 struct adapter *adapter = pi->adapter;
2437
2438 netif_carrier_off(dev);
2439
2440 if (!(adapter->flags & CXGB4_FULL_INIT_DONE)) {
2441 err = cxgb_up(adapter);
2442 if (err < 0)
2443 return err;
2444 }
2445
2446 /* It's possible that the basic port information could have
2447 * changed since we first read it.
2448 */
2449 err = t4_update_port_info(pi);
2450 if (err < 0)
2451 return err;
2452
2453 err = link_start(dev);
2454 if (!err)
2455 netif_tx_start_all_queues(dev);
2456 return err;
2457 }
2458
cxgb_close(struct net_device * dev)2459 static int cxgb_close(struct net_device *dev)
2460 {
2461 struct port_info *pi = netdev_priv(dev);
2462 struct adapter *adapter = pi->adapter;
2463 int ret;
2464
2465 netif_tx_stop_all_queues(dev);
2466 netif_carrier_off(dev);
2467 ret = t4_enable_pi_params(adapter, adapter->pf, pi,
2468 false, false, false);
2469 #ifdef CONFIG_CHELSIO_T4_DCB
2470 cxgb4_dcb_reset(dev);
2471 dcb_tx_queue_prio_enable(dev, false);
2472 #endif
2473 return ret;
2474 }
2475
cxgb4_create_server_filter(const struct net_device * dev,unsigned int stid,__be32 sip,__be16 sport,__be16 vlan,unsigned int queue,unsigned char port,unsigned char mask)2476 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
2477 __be32 sip, __be16 sport, __be16 vlan,
2478 unsigned int queue, unsigned char port, unsigned char mask)
2479 {
2480 int ret;
2481 struct filter_entry *f;
2482 struct adapter *adap;
2483 int i;
2484 u8 *val;
2485
2486 adap = netdev2adap(dev);
2487
2488 /* Adjust stid to correct filter index */
2489 stid -= adap->tids.sftid_base;
2490 stid += adap->tids.nftids;
2491
2492 /* Check to make sure the filter requested is writable ...
2493 */
2494 f = &adap->tids.ftid_tab[stid];
2495 ret = writable_filter(f);
2496 if (ret)
2497 return ret;
2498
2499 /* Clear out any old resources being used by the filter before
2500 * we start constructing the new filter.
2501 */
2502 if (f->valid)
2503 clear_filter(adap, f);
2504
2505 /* Clear out filter specifications */
2506 memset(&f->fs, 0, sizeof(struct ch_filter_specification));
2507 f->fs.val.lport = cpu_to_be16(sport);
2508 f->fs.mask.lport = ~0;
2509 val = (u8 *)&sip;
2510 if ((val[0] | val[1] | val[2] | val[3]) != 0) {
2511 for (i = 0; i < 4; i++) {
2512 f->fs.val.lip[i] = val[i];
2513 f->fs.mask.lip[i] = ~0;
2514 }
2515 if (adap->params.tp.vlan_pri_map & PORT_F) {
2516 f->fs.val.iport = port;
2517 f->fs.mask.iport = mask;
2518 }
2519 }
2520
2521 if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
2522 f->fs.val.proto = IPPROTO_TCP;
2523 f->fs.mask.proto = ~0;
2524 }
2525
2526 f->fs.dirsteer = 1;
2527 f->fs.iq = queue;
2528 /* Mark filter as locked */
2529 f->locked = 1;
2530 f->fs.rpttid = 1;
2531
2532 /* Save the actual tid. We need this to get the corresponding
2533 * filter entry structure in filter_rpl.
2534 */
2535 f->tid = stid + adap->tids.ftid_base;
2536 ret = set_filter_wr(adap, stid);
2537 if (ret) {
2538 clear_filter(adap, f);
2539 return ret;
2540 }
2541
2542 return 0;
2543 }
2544 EXPORT_SYMBOL(cxgb4_create_server_filter);
2545
cxgb4_remove_server_filter(const struct net_device * dev,unsigned int stid,unsigned int queue,bool ipv6)2546 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
2547 unsigned int queue, bool ipv6)
2548 {
2549 struct filter_entry *f;
2550 struct adapter *adap;
2551
2552 adap = netdev2adap(dev);
2553
2554 /* Adjust stid to correct filter index */
2555 stid -= adap->tids.sftid_base;
2556 stid += adap->tids.nftids;
2557
2558 f = &adap->tids.ftid_tab[stid];
2559 /* Unlock the filter */
2560 f->locked = 0;
2561
2562 return delete_filter(adap, stid);
2563 }
2564 EXPORT_SYMBOL(cxgb4_remove_server_filter);
2565
cxgb_get_stats(struct net_device * dev,struct rtnl_link_stats64 * ns)2566 static void cxgb_get_stats(struct net_device *dev,
2567 struct rtnl_link_stats64 *ns)
2568 {
2569 struct port_stats stats;
2570 struct port_info *p = netdev_priv(dev);
2571 struct adapter *adapter = p->adapter;
2572
2573 /* Block retrieving statistics during EEH error
2574 * recovery. Otherwise, the recovery might fail
2575 * and the PCI device will be removed permanently
2576 */
2577 spin_lock(&adapter->stats_lock);
2578 if (!netif_device_present(dev)) {
2579 spin_unlock(&adapter->stats_lock);
2580 return;
2581 }
2582 t4_get_port_stats_offset(adapter, p->tx_chan, &stats,
2583 &p->stats_base);
2584 spin_unlock(&adapter->stats_lock);
2585
2586 ns->tx_bytes = stats.tx_octets;
2587 ns->tx_packets = stats.tx_frames;
2588 ns->rx_bytes = stats.rx_octets;
2589 ns->rx_packets = stats.rx_frames;
2590 ns->multicast = stats.rx_mcast_frames;
2591
2592 /* detailed rx_errors */
2593 ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
2594 stats.rx_runt;
2595 ns->rx_over_errors = 0;
2596 ns->rx_crc_errors = stats.rx_fcs_err;
2597 ns->rx_frame_errors = stats.rx_symbol_err;
2598 ns->rx_dropped = stats.rx_ovflow0 + stats.rx_ovflow1 +
2599 stats.rx_ovflow2 + stats.rx_ovflow3 +
2600 stats.rx_trunc0 + stats.rx_trunc1 +
2601 stats.rx_trunc2 + stats.rx_trunc3;
2602 ns->rx_missed_errors = 0;
2603
2604 /* detailed tx_errors */
2605 ns->tx_aborted_errors = 0;
2606 ns->tx_carrier_errors = 0;
2607 ns->tx_fifo_errors = 0;
2608 ns->tx_heartbeat_errors = 0;
2609 ns->tx_window_errors = 0;
2610
2611 ns->tx_errors = stats.tx_error_frames;
2612 ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
2613 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
2614 }
2615
cxgb_ioctl(struct net_device * dev,struct ifreq * req,int cmd)2616 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2617 {
2618 unsigned int mbox;
2619 int ret = 0, prtad, devad;
2620 struct port_info *pi = netdev_priv(dev);
2621 struct adapter *adapter = pi->adapter;
2622 struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
2623
2624 switch (cmd) {
2625 case SIOCGMIIPHY:
2626 if (pi->mdio_addr < 0)
2627 return -EOPNOTSUPP;
2628 data->phy_id = pi->mdio_addr;
2629 break;
2630 case SIOCGMIIREG:
2631 case SIOCSMIIREG:
2632 if (mdio_phy_id_is_c45(data->phy_id)) {
2633 prtad = mdio_phy_id_prtad(data->phy_id);
2634 devad = mdio_phy_id_devad(data->phy_id);
2635 } else if (data->phy_id < 32) {
2636 prtad = data->phy_id;
2637 devad = 0;
2638 data->reg_num &= 0x1f;
2639 } else
2640 return -EINVAL;
2641
2642 mbox = pi->adapter->pf;
2643 if (cmd == SIOCGMIIREG)
2644 ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
2645 data->reg_num, &data->val_out);
2646 else
2647 ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
2648 data->reg_num, data->val_in);
2649 break;
2650 case SIOCGHWTSTAMP:
2651 return copy_to_user(req->ifr_data, &pi->tstamp_config,
2652 sizeof(pi->tstamp_config)) ?
2653 -EFAULT : 0;
2654 case SIOCSHWTSTAMP:
2655 if (copy_from_user(&pi->tstamp_config, req->ifr_data,
2656 sizeof(pi->tstamp_config)))
2657 return -EFAULT;
2658
2659 if (!is_t4(adapter->params.chip)) {
2660 switch (pi->tstamp_config.tx_type) {
2661 case HWTSTAMP_TX_OFF:
2662 case HWTSTAMP_TX_ON:
2663 break;
2664 default:
2665 return -ERANGE;
2666 }
2667
2668 switch (pi->tstamp_config.rx_filter) {
2669 case HWTSTAMP_FILTER_NONE:
2670 pi->rxtstamp = false;
2671 break;
2672 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
2673 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
2674 cxgb4_ptprx_timestamping(pi, pi->port_id,
2675 PTP_TS_L4);
2676 break;
2677 case HWTSTAMP_FILTER_PTP_V2_EVENT:
2678 cxgb4_ptprx_timestamping(pi, pi->port_id,
2679 PTP_TS_L2_L4);
2680 break;
2681 case HWTSTAMP_FILTER_ALL:
2682 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
2683 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
2684 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
2685 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
2686 pi->rxtstamp = true;
2687 break;
2688 default:
2689 pi->tstamp_config.rx_filter =
2690 HWTSTAMP_FILTER_NONE;
2691 return -ERANGE;
2692 }
2693
2694 if ((pi->tstamp_config.tx_type == HWTSTAMP_TX_OFF) &&
2695 (pi->tstamp_config.rx_filter ==
2696 HWTSTAMP_FILTER_NONE)) {
2697 if (cxgb4_ptp_txtype(adapter, pi->port_id) >= 0)
2698 pi->ptp_enable = false;
2699 }
2700
2701 if (pi->tstamp_config.rx_filter !=
2702 HWTSTAMP_FILTER_NONE) {
2703 if (cxgb4_ptp_redirect_rx_packet(adapter,
2704 pi) >= 0)
2705 pi->ptp_enable = true;
2706 }
2707 } else {
2708 /* For T4 Adapters */
2709 switch (pi->tstamp_config.rx_filter) {
2710 case HWTSTAMP_FILTER_NONE:
2711 pi->rxtstamp = false;
2712 break;
2713 case HWTSTAMP_FILTER_ALL:
2714 pi->rxtstamp = true;
2715 break;
2716 default:
2717 pi->tstamp_config.rx_filter =
2718 HWTSTAMP_FILTER_NONE;
2719 return -ERANGE;
2720 }
2721 }
2722 return copy_to_user(req->ifr_data, &pi->tstamp_config,
2723 sizeof(pi->tstamp_config)) ?
2724 -EFAULT : 0;
2725 default:
2726 return -EOPNOTSUPP;
2727 }
2728 return ret;
2729 }
2730
cxgb_set_rxmode(struct net_device * dev)2731 static void cxgb_set_rxmode(struct net_device *dev)
2732 {
2733 /* unfortunately we can't return errors to the stack */
2734 set_rxmode(dev, -1, false);
2735 }
2736
cxgb_change_mtu(struct net_device * dev,int new_mtu)2737 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2738 {
2739 int ret;
2740 struct port_info *pi = netdev_priv(dev);
2741
2742 ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1,
2743 -1, -1, -1, true);
2744 if (!ret)
2745 dev->mtu = new_mtu;
2746 return ret;
2747 }
2748
2749 #ifdef CONFIG_PCI_IOV
cxgb4_mgmt_open(struct net_device * dev)2750 static int cxgb4_mgmt_open(struct net_device *dev)
2751 {
2752 /* Turn carrier off since we don't have to transmit anything on this
2753 * interface.
2754 */
2755 netif_carrier_off(dev);
2756 return 0;
2757 }
2758
2759 /* Fill MAC address that will be assigned by the FW */
cxgb4_mgmt_fill_vf_station_mac_addr(struct adapter * adap)2760 static void cxgb4_mgmt_fill_vf_station_mac_addr(struct adapter *adap)
2761 {
2762 u8 hw_addr[ETH_ALEN], macaddr[ETH_ALEN];
2763 unsigned int i, vf, nvfs;
2764 u16 a, b;
2765 int err;
2766 u8 *na;
2767
2768 adap->params.pci.vpd_cap_addr = pci_find_capability(adap->pdev,
2769 PCI_CAP_ID_VPD);
2770 err = t4_get_raw_vpd_params(adap, &adap->params.vpd);
2771 if (err)
2772 return;
2773
2774 na = adap->params.vpd.na;
2775 for (i = 0; i < ETH_ALEN; i++)
2776 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
2777 hex2val(na[2 * i + 1]));
2778
2779 a = (hw_addr[0] << 8) | hw_addr[1];
2780 b = (hw_addr[1] << 8) | hw_addr[2];
2781 a ^= b;
2782 a |= 0x0200; /* locally assigned Ethernet MAC address */
2783 a &= ~0x0100; /* not a multicast Ethernet MAC address */
2784 macaddr[0] = a >> 8;
2785 macaddr[1] = a & 0xff;
2786
2787 for (i = 2; i < 5; i++)
2788 macaddr[i] = hw_addr[i + 1];
2789
2790 for (vf = 0, nvfs = pci_sriov_get_totalvfs(adap->pdev);
2791 vf < nvfs; vf++) {
2792 macaddr[5] = adap->pf * nvfs + vf;
2793 ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, macaddr);
2794 }
2795 }
2796
cxgb4_mgmt_set_vf_mac(struct net_device * dev,int vf,u8 * mac)2797 static int cxgb4_mgmt_set_vf_mac(struct net_device *dev, int vf, u8 *mac)
2798 {
2799 struct port_info *pi = netdev_priv(dev);
2800 struct adapter *adap = pi->adapter;
2801 int ret;
2802
2803 /* verify MAC addr is valid */
2804 if (!is_valid_ether_addr(mac)) {
2805 dev_err(pi->adapter->pdev_dev,
2806 "Invalid Ethernet address %pM for VF %d\n",
2807 mac, vf);
2808 return -EINVAL;
2809 }
2810
2811 dev_info(pi->adapter->pdev_dev,
2812 "Setting MAC %pM on VF %d\n", mac, vf);
2813 ret = t4_set_vf_mac_acl(adap, vf + 1, 1, mac);
2814 if (!ret)
2815 ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, mac);
2816 return ret;
2817 }
2818
cxgb4_mgmt_get_vf_config(struct net_device * dev,int vf,struct ifla_vf_info * ivi)2819 static int cxgb4_mgmt_get_vf_config(struct net_device *dev,
2820 int vf, struct ifla_vf_info *ivi)
2821 {
2822 struct port_info *pi = netdev_priv(dev);
2823 struct adapter *adap = pi->adapter;
2824 struct vf_info *vfinfo;
2825
2826 if (vf >= adap->num_vfs)
2827 return -EINVAL;
2828 vfinfo = &adap->vfinfo[vf];
2829
2830 ivi->vf = vf;
2831 ivi->max_tx_rate = vfinfo->tx_rate;
2832 ivi->min_tx_rate = 0;
2833 ether_addr_copy(ivi->mac, vfinfo->vf_mac_addr);
2834 ivi->vlan = vfinfo->vlan;
2835 ivi->linkstate = vfinfo->link_state;
2836 return 0;
2837 }
2838
cxgb4_mgmt_get_phys_port_id(struct net_device * dev,struct netdev_phys_item_id * ppid)2839 static int cxgb4_mgmt_get_phys_port_id(struct net_device *dev,
2840 struct netdev_phys_item_id *ppid)
2841 {
2842 struct port_info *pi = netdev_priv(dev);
2843 unsigned int phy_port_id;
2844
2845 phy_port_id = pi->adapter->adap_idx * 10 + pi->port_id;
2846 ppid->id_len = sizeof(phy_port_id);
2847 memcpy(ppid->id, &phy_port_id, ppid->id_len);
2848 return 0;
2849 }
2850
cxgb4_mgmt_set_vf_rate(struct net_device * dev,int vf,int min_tx_rate,int max_tx_rate)2851 static int cxgb4_mgmt_set_vf_rate(struct net_device *dev, int vf,
2852 int min_tx_rate, int max_tx_rate)
2853 {
2854 struct port_info *pi = netdev_priv(dev);
2855 struct adapter *adap = pi->adapter;
2856 unsigned int link_ok, speed, mtu;
2857 u32 fw_pfvf, fw_class;
2858 int class_id = vf;
2859 int ret;
2860 u16 pktsize;
2861
2862 if (vf >= adap->num_vfs)
2863 return -EINVAL;
2864
2865 if (min_tx_rate) {
2866 dev_err(adap->pdev_dev,
2867 "Min tx rate (%d) (> 0) for VF %d is Invalid.\n",
2868 min_tx_rate, vf);
2869 return -EINVAL;
2870 }
2871
2872 if (max_tx_rate == 0) {
2873 /* unbind VF to to any Traffic Class */
2874 fw_pfvf =
2875 (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
2876 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH));
2877 fw_class = 0xffffffff;
2878 ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1,
2879 &fw_pfvf, &fw_class);
2880 if (ret) {
2881 dev_err(adap->pdev_dev,
2882 "Err %d in unbinding PF %d VF %d from TX Rate Limiting\n",
2883 ret, adap->pf, vf);
2884 return -EINVAL;
2885 }
2886 dev_info(adap->pdev_dev,
2887 "PF %d VF %d is unbound from TX Rate Limiting\n",
2888 adap->pf, vf);
2889 adap->vfinfo[vf].tx_rate = 0;
2890 return 0;
2891 }
2892
2893 ret = t4_get_link_params(pi, &link_ok, &speed, &mtu);
2894 if (ret != FW_SUCCESS) {
2895 dev_err(adap->pdev_dev,
2896 "Failed to get link information for VF %d\n", vf);
2897 return -EINVAL;
2898 }
2899
2900 if (!link_ok) {
2901 dev_err(adap->pdev_dev, "Link down for VF %d\n", vf);
2902 return -EINVAL;
2903 }
2904
2905 if (max_tx_rate > speed) {
2906 dev_err(adap->pdev_dev,
2907 "Max tx rate %d for VF %d can't be > link-speed %u",
2908 max_tx_rate, vf, speed);
2909 return -EINVAL;
2910 }
2911
2912 pktsize = mtu;
2913 /* subtract ethhdr size and 4 bytes crc since, f/w appends it */
2914 pktsize = pktsize - sizeof(struct ethhdr) - 4;
2915 /* subtract ipv4 hdr size, tcp hdr size to get typical IPv4 MSS size */
2916 pktsize = pktsize - sizeof(struct iphdr) - sizeof(struct tcphdr);
2917 /* configure Traffic Class for rate-limiting */
2918 ret = t4_sched_params(adap, SCHED_CLASS_TYPE_PACKET,
2919 SCHED_CLASS_LEVEL_CL_RL,
2920 SCHED_CLASS_MODE_CLASS,
2921 SCHED_CLASS_RATEUNIT_BITS,
2922 SCHED_CLASS_RATEMODE_ABS,
2923 pi->tx_chan, class_id, 0,
2924 max_tx_rate * 1000, 0, pktsize);
2925 if (ret) {
2926 dev_err(adap->pdev_dev, "Err %d for Traffic Class config\n",
2927 ret);
2928 return -EINVAL;
2929 }
2930 dev_info(adap->pdev_dev,
2931 "Class %d with MSS %u configured with rate %u\n",
2932 class_id, pktsize, max_tx_rate);
2933
2934 /* bind VF to configured Traffic Class */
2935 fw_pfvf = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
2936 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH));
2937 fw_class = class_id;
2938 ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, &fw_pfvf,
2939 &fw_class);
2940 if (ret) {
2941 dev_err(adap->pdev_dev,
2942 "Err %d in binding PF %d VF %d to Traffic Class %d\n",
2943 ret, adap->pf, vf, class_id);
2944 return -EINVAL;
2945 }
2946 dev_info(adap->pdev_dev, "PF %d VF %d is bound to Class %d\n",
2947 adap->pf, vf, class_id);
2948 adap->vfinfo[vf].tx_rate = max_tx_rate;
2949 return 0;
2950 }
2951
cxgb4_mgmt_set_vf_vlan(struct net_device * dev,int vf,u16 vlan,u8 qos,__be16 vlan_proto)2952 static int cxgb4_mgmt_set_vf_vlan(struct net_device *dev, int vf,
2953 u16 vlan, u8 qos, __be16 vlan_proto)
2954 {
2955 struct port_info *pi = netdev_priv(dev);
2956 struct adapter *adap = pi->adapter;
2957 int ret;
2958
2959 if (vf >= adap->num_vfs || vlan > 4095 || qos > 7)
2960 return -EINVAL;
2961
2962 if (vlan_proto != htons(ETH_P_8021Q) || qos != 0)
2963 return -EPROTONOSUPPORT;
2964
2965 ret = t4_set_vlan_acl(adap, adap->mbox, vf + 1, vlan);
2966 if (!ret) {
2967 adap->vfinfo[vf].vlan = vlan;
2968 return 0;
2969 }
2970
2971 dev_err(adap->pdev_dev, "Err %d %s VLAN ACL for PF/VF %d/%d\n",
2972 ret, (vlan ? "setting" : "clearing"), adap->pf, vf);
2973 return ret;
2974 }
2975
cxgb4_mgmt_set_vf_link_state(struct net_device * dev,int vf,int link)2976 static int cxgb4_mgmt_set_vf_link_state(struct net_device *dev, int vf,
2977 int link)
2978 {
2979 struct port_info *pi = netdev_priv(dev);
2980 struct adapter *adap = pi->adapter;
2981 u32 param, val;
2982 int ret = 0;
2983
2984 if (vf >= adap->num_vfs)
2985 return -EINVAL;
2986
2987 switch (link) {
2988 case IFLA_VF_LINK_STATE_AUTO:
2989 val = FW_VF_LINK_STATE_AUTO;
2990 break;
2991
2992 case IFLA_VF_LINK_STATE_ENABLE:
2993 val = FW_VF_LINK_STATE_ENABLE;
2994 break;
2995
2996 case IFLA_VF_LINK_STATE_DISABLE:
2997 val = FW_VF_LINK_STATE_DISABLE;
2998 break;
2999
3000 default:
3001 return -EINVAL;
3002 }
3003
3004 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
3005 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_LINK_STATE));
3006 ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1,
3007 ¶m, &val);
3008 if (ret) {
3009 dev_err(adap->pdev_dev,
3010 "Error %d in setting PF %d VF %d link state\n",
3011 ret, adap->pf, vf);
3012 return -EINVAL;
3013 }
3014
3015 adap->vfinfo[vf].link_state = link;
3016 return ret;
3017 }
3018 #endif /* CONFIG_PCI_IOV */
3019
cxgb_set_mac_addr(struct net_device * dev,void * p)3020 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
3021 {
3022 int ret;
3023 struct sockaddr *addr = p;
3024 struct port_info *pi = netdev_priv(dev);
3025
3026 if (!is_valid_ether_addr(addr->sa_data))
3027 return -EADDRNOTAVAIL;
3028
3029 ret = cxgb4_update_mac_filt(pi, pi->viid, &pi->xact_addr_filt,
3030 addr->sa_data, true, &pi->smt_idx);
3031 if (ret < 0)
3032 return ret;
3033
3034 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
3035 pi->xact_addr_filt = ret;
3036 return 0;
3037 }
3038
3039 #ifdef CONFIG_NET_POLL_CONTROLLER
cxgb_netpoll(struct net_device * dev)3040 static void cxgb_netpoll(struct net_device *dev)
3041 {
3042 struct port_info *pi = netdev_priv(dev);
3043 struct adapter *adap = pi->adapter;
3044
3045 if (adap->flags & CXGB4_USING_MSIX) {
3046 int i;
3047 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
3048
3049 for (i = pi->nqsets; i; i--, rx++)
3050 t4_sge_intr_msix(0, &rx->rspq);
3051 } else
3052 t4_intr_handler(adap)(0, adap);
3053 }
3054 #endif
3055
cxgb_set_tx_maxrate(struct net_device * dev,int index,u32 rate)3056 static int cxgb_set_tx_maxrate(struct net_device *dev, int index, u32 rate)
3057 {
3058 struct port_info *pi = netdev_priv(dev);
3059 struct adapter *adap = pi->adapter;
3060 struct sched_class *e;
3061 struct ch_sched_params p;
3062 struct ch_sched_queue qe;
3063 u32 req_rate;
3064 int err = 0;
3065
3066 if (!can_sched(dev))
3067 return -ENOTSUPP;
3068
3069 if (index < 0 || index > pi->nqsets - 1)
3070 return -EINVAL;
3071
3072 if (!(adap->flags & CXGB4_FULL_INIT_DONE)) {
3073 dev_err(adap->pdev_dev,
3074 "Failed to rate limit on queue %d. Link Down?\n",
3075 index);
3076 return -EINVAL;
3077 }
3078
3079 /* Convert from Mbps to Kbps */
3080 req_rate = rate * 1000;
3081
3082 /* Max rate is 100 Gbps */
3083 if (req_rate > SCHED_MAX_RATE_KBPS) {
3084 dev_err(adap->pdev_dev,
3085 "Invalid rate %u Mbps, Max rate is %u Mbps\n",
3086 rate, SCHED_MAX_RATE_KBPS / 1000);
3087 return -ERANGE;
3088 }
3089
3090 /* First unbind the queue from any existing class */
3091 memset(&qe, 0, sizeof(qe));
3092 qe.queue = index;
3093 qe.class = SCHED_CLS_NONE;
3094
3095 err = cxgb4_sched_class_unbind(dev, (void *)(&qe), SCHED_QUEUE);
3096 if (err) {
3097 dev_err(adap->pdev_dev,
3098 "Unbinding Queue %d on port %d fail. Err: %d\n",
3099 index, pi->port_id, err);
3100 return err;
3101 }
3102
3103 /* Queue already unbound */
3104 if (!req_rate)
3105 return 0;
3106
3107 /* Fetch any available unused or matching scheduling class */
3108 memset(&p, 0, sizeof(p));
3109 p.type = SCHED_CLASS_TYPE_PACKET;
3110 p.u.params.level = SCHED_CLASS_LEVEL_CL_RL;
3111 p.u.params.mode = SCHED_CLASS_MODE_CLASS;
3112 p.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS;
3113 p.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS;
3114 p.u.params.channel = pi->tx_chan;
3115 p.u.params.class = SCHED_CLS_NONE;
3116 p.u.params.minrate = 0;
3117 p.u.params.maxrate = req_rate;
3118 p.u.params.weight = 0;
3119 p.u.params.pktsize = dev->mtu;
3120
3121 e = cxgb4_sched_class_alloc(dev, &p);
3122 if (!e)
3123 return -ENOMEM;
3124
3125 /* Bind the queue to a scheduling class */
3126 memset(&qe, 0, sizeof(qe));
3127 qe.queue = index;
3128 qe.class = e->idx;
3129
3130 err = cxgb4_sched_class_bind(dev, (void *)(&qe), SCHED_QUEUE);
3131 if (err)
3132 dev_err(adap->pdev_dev,
3133 "Queue rate limiting failed. Err: %d\n", err);
3134 return err;
3135 }
3136
cxgb_setup_tc_flower(struct net_device * dev,struct flow_cls_offload * cls_flower)3137 static int cxgb_setup_tc_flower(struct net_device *dev,
3138 struct flow_cls_offload *cls_flower)
3139 {
3140 switch (cls_flower->command) {
3141 case FLOW_CLS_REPLACE:
3142 return cxgb4_tc_flower_replace(dev, cls_flower);
3143 case FLOW_CLS_DESTROY:
3144 return cxgb4_tc_flower_destroy(dev, cls_flower);
3145 case FLOW_CLS_STATS:
3146 return cxgb4_tc_flower_stats(dev, cls_flower);
3147 default:
3148 return -EOPNOTSUPP;
3149 }
3150 }
3151
cxgb_setup_tc_cls_u32(struct net_device * dev,struct tc_cls_u32_offload * cls_u32)3152 static int cxgb_setup_tc_cls_u32(struct net_device *dev,
3153 struct tc_cls_u32_offload *cls_u32)
3154 {
3155 switch (cls_u32->command) {
3156 case TC_CLSU32_NEW_KNODE:
3157 case TC_CLSU32_REPLACE_KNODE:
3158 return cxgb4_config_knode(dev, cls_u32);
3159 case TC_CLSU32_DELETE_KNODE:
3160 return cxgb4_delete_knode(dev, cls_u32);
3161 default:
3162 return -EOPNOTSUPP;
3163 }
3164 }
3165
cxgb_setup_tc_block_cb(enum tc_setup_type type,void * type_data,void * cb_priv)3166 static int cxgb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
3167 void *cb_priv)
3168 {
3169 struct net_device *dev = cb_priv;
3170 struct port_info *pi = netdev2pinfo(dev);
3171 struct adapter *adap = netdev2adap(dev);
3172
3173 if (!(adap->flags & CXGB4_FULL_INIT_DONE)) {
3174 dev_err(adap->pdev_dev,
3175 "Failed to setup tc on port %d. Link Down?\n",
3176 pi->port_id);
3177 return -EINVAL;
3178 }
3179
3180 if (!tc_cls_can_offload_and_chain0(dev, type_data))
3181 return -EOPNOTSUPP;
3182
3183 switch (type) {
3184 case TC_SETUP_CLSU32:
3185 return cxgb_setup_tc_cls_u32(dev, type_data);
3186 case TC_SETUP_CLSFLOWER:
3187 return cxgb_setup_tc_flower(dev, type_data);
3188 default:
3189 return -EOPNOTSUPP;
3190 }
3191 }
3192
3193 static LIST_HEAD(cxgb_block_cb_list);
3194
cxgb_setup_tc(struct net_device * dev,enum tc_setup_type type,void * type_data)3195 static int cxgb_setup_tc(struct net_device *dev, enum tc_setup_type type,
3196 void *type_data)
3197 {
3198 struct port_info *pi = netdev2pinfo(dev);
3199
3200 switch (type) {
3201 case TC_SETUP_BLOCK:
3202 return flow_block_cb_setup_simple(type_data,
3203 &cxgb_block_cb_list,
3204 cxgb_setup_tc_block_cb,
3205 pi, dev, true);
3206 default:
3207 return -EOPNOTSUPP;
3208 }
3209 }
3210
cxgb_del_udp_tunnel(struct net_device * netdev,struct udp_tunnel_info * ti)3211 static void cxgb_del_udp_tunnel(struct net_device *netdev,
3212 struct udp_tunnel_info *ti)
3213 {
3214 struct port_info *pi = netdev_priv(netdev);
3215 struct adapter *adapter = pi->adapter;
3216 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip);
3217 u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 };
3218 int ret = 0, i;
3219
3220 if (chip_ver < CHELSIO_T6)
3221 return;
3222
3223 switch (ti->type) {
3224 case UDP_TUNNEL_TYPE_VXLAN:
3225 if (!adapter->vxlan_port_cnt ||
3226 adapter->vxlan_port != ti->port)
3227 return; /* Invalid VxLAN destination port */
3228
3229 adapter->vxlan_port_cnt--;
3230 if (adapter->vxlan_port_cnt)
3231 return;
3232
3233 adapter->vxlan_port = 0;
3234 t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A, 0);
3235 break;
3236 case UDP_TUNNEL_TYPE_GENEVE:
3237 if (!adapter->geneve_port_cnt ||
3238 adapter->geneve_port != ti->port)
3239 return; /* Invalid GENEVE destination port */
3240
3241 adapter->geneve_port_cnt--;
3242 if (adapter->geneve_port_cnt)
3243 return;
3244
3245 adapter->geneve_port = 0;
3246 t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A, 0);
3247 break;
3248 default:
3249 return;
3250 }
3251
3252 /* Matchall mac entries can be deleted only after all tunnel ports
3253 * are brought down or removed.
3254 */
3255 if (!adapter->rawf_cnt)
3256 return;
3257 for_each_port(adapter, i) {
3258 pi = adap2pinfo(adapter, i);
3259 ret = t4_free_raw_mac_filt(adapter, pi->viid,
3260 match_all_mac, match_all_mac,
3261 adapter->rawf_start +
3262 pi->port_id,
3263 1, pi->port_id, false);
3264 if (ret < 0) {
3265 netdev_info(netdev, "Failed to free mac filter entry, for port %d\n",
3266 i);
3267 return;
3268 }
3269 }
3270 }
3271
cxgb_add_udp_tunnel(struct net_device * netdev,struct udp_tunnel_info * ti)3272 static void cxgb_add_udp_tunnel(struct net_device *netdev,
3273 struct udp_tunnel_info *ti)
3274 {
3275 struct port_info *pi = netdev_priv(netdev);
3276 struct adapter *adapter = pi->adapter;
3277 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip);
3278 u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 };
3279 int i, ret;
3280
3281 if (chip_ver < CHELSIO_T6 || !adapter->rawf_cnt)
3282 return;
3283
3284 switch (ti->type) {
3285 case UDP_TUNNEL_TYPE_VXLAN:
3286 /* Callback for adding vxlan port can be called with the same
3287 * port for both IPv4 and IPv6. We should not disable the
3288 * offloading when the same port for both protocols is added
3289 * and later one of them is removed.
3290 */
3291 if (adapter->vxlan_port_cnt &&
3292 adapter->vxlan_port == ti->port) {
3293 adapter->vxlan_port_cnt++;
3294 return;
3295 }
3296
3297 /* We will support only one VxLAN port */
3298 if (adapter->vxlan_port_cnt) {
3299 netdev_info(netdev, "UDP port %d already offloaded, not adding port %d\n",
3300 be16_to_cpu(adapter->vxlan_port),
3301 be16_to_cpu(ti->port));
3302 return;
3303 }
3304
3305 adapter->vxlan_port = ti->port;
3306 adapter->vxlan_port_cnt = 1;
3307
3308 t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A,
3309 VXLAN_V(be16_to_cpu(ti->port)) | VXLAN_EN_F);
3310 break;
3311 case UDP_TUNNEL_TYPE_GENEVE:
3312 if (adapter->geneve_port_cnt &&
3313 adapter->geneve_port == ti->port) {
3314 adapter->geneve_port_cnt++;
3315 return;
3316 }
3317
3318 /* We will support only one GENEVE port */
3319 if (adapter->geneve_port_cnt) {
3320 netdev_info(netdev, "UDP port %d already offloaded, not adding port %d\n",
3321 be16_to_cpu(adapter->geneve_port),
3322 be16_to_cpu(ti->port));
3323 return;
3324 }
3325
3326 adapter->geneve_port = ti->port;
3327 adapter->geneve_port_cnt = 1;
3328
3329 t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A,
3330 GENEVE_V(be16_to_cpu(ti->port)) | GENEVE_EN_F);
3331 break;
3332 default:
3333 return;
3334 }
3335
3336 /* Create a 'match all' mac filter entry for inner mac,
3337 * if raw mac interface is supported. Once the linux kernel provides
3338 * driver entry points for adding/deleting the inner mac addresses,
3339 * we will remove this 'match all' entry and fallback to adding
3340 * exact match filters.
3341 */
3342 for_each_port(adapter, i) {
3343 pi = adap2pinfo(adapter, i);
3344
3345 ret = t4_alloc_raw_mac_filt(adapter, pi->viid,
3346 match_all_mac,
3347 match_all_mac,
3348 adapter->rawf_start +
3349 pi->port_id,
3350 1, pi->port_id, false);
3351 if (ret < 0) {
3352 netdev_info(netdev, "Failed to allocate a mac filter entry, not adding port %d\n",
3353 be16_to_cpu(ti->port));
3354 cxgb_del_udp_tunnel(netdev, ti);
3355 return;
3356 }
3357 }
3358 }
3359
cxgb_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3360 static netdev_features_t cxgb_features_check(struct sk_buff *skb,
3361 struct net_device *dev,
3362 netdev_features_t features)
3363 {
3364 struct port_info *pi = netdev_priv(dev);
3365 struct adapter *adapter = pi->adapter;
3366
3367 if (CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6)
3368 return features;
3369
3370 /* Check if hw supports offload for this packet */
3371 if (!skb->encapsulation || cxgb_encap_offload_supported(skb))
3372 return features;
3373
3374 /* Offload is not supported for this encapsulated packet */
3375 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3376 }
3377
cxgb_fix_features(struct net_device * dev,netdev_features_t features)3378 static netdev_features_t cxgb_fix_features(struct net_device *dev,
3379 netdev_features_t features)
3380 {
3381 /* Disable GRO, if RX_CSUM is disabled */
3382 if (!(features & NETIF_F_RXCSUM))
3383 features &= ~NETIF_F_GRO;
3384
3385 return features;
3386 }
3387
3388 static const struct net_device_ops cxgb4_netdev_ops = {
3389 .ndo_open = cxgb_open,
3390 .ndo_stop = cxgb_close,
3391 .ndo_start_xmit = t4_start_xmit,
3392 .ndo_select_queue = cxgb_select_queue,
3393 .ndo_get_stats64 = cxgb_get_stats,
3394 .ndo_set_rx_mode = cxgb_set_rxmode,
3395 .ndo_set_mac_address = cxgb_set_mac_addr,
3396 .ndo_set_features = cxgb_set_features,
3397 .ndo_validate_addr = eth_validate_addr,
3398 .ndo_do_ioctl = cxgb_ioctl,
3399 .ndo_change_mtu = cxgb_change_mtu,
3400 #ifdef CONFIG_NET_POLL_CONTROLLER
3401 .ndo_poll_controller = cxgb_netpoll,
3402 #endif
3403 #ifdef CONFIG_CHELSIO_T4_FCOE
3404 .ndo_fcoe_enable = cxgb_fcoe_enable,
3405 .ndo_fcoe_disable = cxgb_fcoe_disable,
3406 #endif /* CONFIG_CHELSIO_T4_FCOE */
3407 .ndo_set_tx_maxrate = cxgb_set_tx_maxrate,
3408 .ndo_setup_tc = cxgb_setup_tc,
3409 .ndo_udp_tunnel_add = cxgb_add_udp_tunnel,
3410 .ndo_udp_tunnel_del = cxgb_del_udp_tunnel,
3411 .ndo_features_check = cxgb_features_check,
3412 .ndo_fix_features = cxgb_fix_features,
3413 };
3414
3415 #ifdef CONFIG_PCI_IOV
3416 static const struct net_device_ops cxgb4_mgmt_netdev_ops = {
3417 .ndo_open = cxgb4_mgmt_open,
3418 .ndo_set_vf_mac = cxgb4_mgmt_set_vf_mac,
3419 .ndo_get_vf_config = cxgb4_mgmt_get_vf_config,
3420 .ndo_set_vf_rate = cxgb4_mgmt_set_vf_rate,
3421 .ndo_get_phys_port_id = cxgb4_mgmt_get_phys_port_id,
3422 .ndo_set_vf_vlan = cxgb4_mgmt_set_vf_vlan,
3423 .ndo_set_vf_link_state = cxgb4_mgmt_set_vf_link_state,
3424 };
3425 #endif
3426
cxgb4_mgmt_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)3427 static void cxgb4_mgmt_get_drvinfo(struct net_device *dev,
3428 struct ethtool_drvinfo *info)
3429 {
3430 struct adapter *adapter = netdev2adap(dev);
3431
3432 strlcpy(info->driver, cxgb4_driver_name, sizeof(info->driver));
3433 strlcpy(info->version, cxgb4_driver_version,
3434 sizeof(info->version));
3435 strlcpy(info->bus_info, pci_name(adapter->pdev),
3436 sizeof(info->bus_info));
3437 }
3438
3439 static const struct ethtool_ops cxgb4_mgmt_ethtool_ops = {
3440 .get_drvinfo = cxgb4_mgmt_get_drvinfo,
3441 };
3442
notify_fatal_err(struct work_struct * work)3443 static void notify_fatal_err(struct work_struct *work)
3444 {
3445 struct adapter *adap;
3446
3447 adap = container_of(work, struct adapter, fatal_err_notify_task);
3448 notify_ulds(adap, CXGB4_STATE_FATAL_ERROR);
3449 }
3450
t4_fatal_err(struct adapter * adap)3451 void t4_fatal_err(struct adapter *adap)
3452 {
3453 int port;
3454
3455 if (pci_channel_offline(adap->pdev))
3456 return;
3457
3458 /* Disable the SGE since ULDs are going to free resources that
3459 * could be exposed to the adapter. RDMA MWs for example...
3460 */
3461 t4_shutdown_adapter(adap);
3462 for_each_port(adap, port) {
3463 struct net_device *dev = adap->port[port];
3464
3465 /* If we get here in very early initialization the network
3466 * devices may not have been set up yet.
3467 */
3468 if (!dev)
3469 continue;
3470
3471 netif_tx_stop_all_queues(dev);
3472 netif_carrier_off(dev);
3473 }
3474 dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
3475 queue_work(adap->workq, &adap->fatal_err_notify_task);
3476 }
3477
setup_memwin(struct adapter * adap)3478 static void setup_memwin(struct adapter *adap)
3479 {
3480 u32 nic_win_base = t4_get_util_window(adap);
3481
3482 t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC);
3483 }
3484
setup_memwin_rdma(struct adapter * adap)3485 static void setup_memwin_rdma(struct adapter *adap)
3486 {
3487 if (adap->vres.ocq.size) {
3488 u32 start;
3489 unsigned int sz_kb;
3490
3491 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
3492 start &= PCI_BASE_ADDRESS_MEM_MASK;
3493 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
3494 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
3495 t4_write_reg(adap,
3496 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
3497 start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
3498 t4_write_reg(adap,
3499 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
3500 adap->vres.ocq.start);
3501 t4_read_reg(adap,
3502 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
3503 }
3504 }
3505
3506 /* HMA Definitions */
3507
3508 /* The maximum number of address that can be send in a single FW cmd */
3509 #define HMA_MAX_ADDR_IN_CMD 5
3510
3511 #define HMA_PAGE_SIZE PAGE_SIZE
3512
3513 #define HMA_MAX_NO_FW_ADDRESS (16 << 10) /* FW supports 16K addresses */
3514
3515 #define HMA_PAGE_ORDER \
3516 ((HMA_PAGE_SIZE < HMA_MAX_NO_FW_ADDRESS) ? \
3517 ilog2(HMA_MAX_NO_FW_ADDRESS / HMA_PAGE_SIZE) : 0)
3518
3519 /* The minimum and maximum possible HMA sizes that can be specified in the FW
3520 * configuration(in units of MB).
3521 */
3522 #define HMA_MIN_TOTAL_SIZE 1
3523 #define HMA_MAX_TOTAL_SIZE \
3524 (((HMA_PAGE_SIZE << HMA_PAGE_ORDER) * \
3525 HMA_MAX_NO_FW_ADDRESS) >> 20)
3526
adap_free_hma_mem(struct adapter * adapter)3527 static void adap_free_hma_mem(struct adapter *adapter)
3528 {
3529 struct scatterlist *iter;
3530 struct page *page;
3531 int i;
3532
3533 if (!adapter->hma.sgt)
3534 return;
3535
3536 if (adapter->hma.flags & HMA_DMA_MAPPED_FLAG) {
3537 dma_unmap_sg(adapter->pdev_dev, adapter->hma.sgt->sgl,
3538 adapter->hma.sgt->nents, PCI_DMA_BIDIRECTIONAL);
3539 adapter->hma.flags &= ~HMA_DMA_MAPPED_FLAG;
3540 }
3541
3542 for_each_sg(adapter->hma.sgt->sgl, iter,
3543 adapter->hma.sgt->orig_nents, i) {
3544 page = sg_page(iter);
3545 if (page)
3546 __free_pages(page, HMA_PAGE_ORDER);
3547 }
3548
3549 kfree(adapter->hma.phy_addr);
3550 sg_free_table(adapter->hma.sgt);
3551 kfree(adapter->hma.sgt);
3552 adapter->hma.sgt = NULL;
3553 }
3554
adap_config_hma(struct adapter * adapter)3555 static int adap_config_hma(struct adapter *adapter)
3556 {
3557 struct scatterlist *sgl, *iter;
3558 struct sg_table *sgt;
3559 struct page *newpage;
3560 unsigned int i, j, k;
3561 u32 param, hma_size;
3562 unsigned int ncmds;
3563 size_t page_size;
3564 u32 page_order;
3565 int node, ret;
3566
3567 /* HMA is supported only for T6+ cards.
3568 * Avoid initializing HMA in kdump kernels.
3569 */
3570 if (is_kdump_kernel() ||
3571 CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6)
3572 return 0;
3573
3574 /* Get the HMA region size required by fw */
3575 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3576 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HMA_SIZE));
3577 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3578 1, ¶m, &hma_size);
3579 /* An error means card has its own memory or HMA is not supported by
3580 * the firmware. Return without any errors.
3581 */
3582 if (ret || !hma_size)
3583 return 0;
3584
3585 if (hma_size < HMA_MIN_TOTAL_SIZE ||
3586 hma_size > HMA_MAX_TOTAL_SIZE) {
3587 dev_err(adapter->pdev_dev,
3588 "HMA size %uMB beyond bounds(%u-%lu)MB\n",
3589 hma_size, HMA_MIN_TOTAL_SIZE, HMA_MAX_TOTAL_SIZE);
3590 return -EINVAL;
3591 }
3592
3593 page_size = HMA_PAGE_SIZE;
3594 page_order = HMA_PAGE_ORDER;
3595 adapter->hma.sgt = kzalloc(sizeof(*adapter->hma.sgt), GFP_KERNEL);
3596 if (unlikely(!adapter->hma.sgt)) {
3597 dev_err(adapter->pdev_dev, "HMA SG table allocation failed\n");
3598 return -ENOMEM;
3599 }
3600 sgt = adapter->hma.sgt;
3601 /* FW returned value will be in MB's
3602 */
3603 sgt->orig_nents = (hma_size << 20) / (page_size << page_order);
3604 if (sg_alloc_table(sgt, sgt->orig_nents, GFP_KERNEL)) {
3605 dev_err(adapter->pdev_dev, "HMA SGL allocation failed\n");
3606 kfree(adapter->hma.sgt);
3607 adapter->hma.sgt = NULL;
3608 return -ENOMEM;
3609 }
3610
3611 sgl = adapter->hma.sgt->sgl;
3612 node = dev_to_node(adapter->pdev_dev);
3613 for_each_sg(sgl, iter, sgt->orig_nents, i) {
3614 newpage = alloc_pages_node(node, __GFP_NOWARN | GFP_KERNEL |
3615 __GFP_ZERO, page_order);
3616 if (!newpage) {
3617 dev_err(adapter->pdev_dev,
3618 "Not enough memory for HMA page allocation\n");
3619 ret = -ENOMEM;
3620 goto free_hma;
3621 }
3622 sg_set_page(iter, newpage, page_size << page_order, 0);
3623 }
3624
3625 sgt->nents = dma_map_sg(adapter->pdev_dev, sgl, sgt->orig_nents,
3626 DMA_BIDIRECTIONAL);
3627 if (!sgt->nents) {
3628 dev_err(adapter->pdev_dev,
3629 "Not enough memory for HMA DMA mapping");
3630 ret = -ENOMEM;
3631 goto free_hma;
3632 }
3633 adapter->hma.flags |= HMA_DMA_MAPPED_FLAG;
3634
3635 adapter->hma.phy_addr = kcalloc(sgt->nents, sizeof(dma_addr_t),
3636 GFP_KERNEL);
3637 if (unlikely(!adapter->hma.phy_addr))
3638 goto free_hma;
3639
3640 for_each_sg(sgl, iter, sgt->nents, i) {
3641 newpage = sg_page(iter);
3642 adapter->hma.phy_addr[i] = sg_dma_address(iter);
3643 }
3644
3645 ncmds = DIV_ROUND_UP(sgt->nents, HMA_MAX_ADDR_IN_CMD);
3646 /* Pass on the addresses to firmware */
3647 for (i = 0, k = 0; i < ncmds; i++, k += HMA_MAX_ADDR_IN_CMD) {
3648 struct fw_hma_cmd hma_cmd;
3649 u8 naddr = HMA_MAX_ADDR_IN_CMD;
3650 u8 soc = 0, eoc = 0;
3651 u8 hma_mode = 1; /* Presently we support only Page table mode */
3652
3653 soc = (i == 0) ? 1 : 0;
3654 eoc = (i == ncmds - 1) ? 1 : 0;
3655
3656 /* For last cmd, set naddr corresponding to remaining
3657 * addresses
3658 */
3659 if (i == ncmds - 1) {
3660 naddr = sgt->nents % HMA_MAX_ADDR_IN_CMD;
3661 naddr = naddr ? naddr : HMA_MAX_ADDR_IN_CMD;
3662 }
3663 memset(&hma_cmd, 0, sizeof(hma_cmd));
3664 hma_cmd.op_pkd = htonl(FW_CMD_OP_V(FW_HMA_CMD) |
3665 FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
3666 hma_cmd.retval_len16 = htonl(FW_LEN16(hma_cmd));
3667
3668 hma_cmd.mode_to_pcie_params =
3669 htonl(FW_HMA_CMD_MODE_V(hma_mode) |
3670 FW_HMA_CMD_SOC_V(soc) | FW_HMA_CMD_EOC_V(eoc));
3671
3672 /* HMA cmd size specified in MB's */
3673 hma_cmd.naddr_size =
3674 htonl(FW_HMA_CMD_SIZE_V(hma_size) |
3675 FW_HMA_CMD_NADDR_V(naddr));
3676
3677 /* Total Page size specified in units of 4K */
3678 hma_cmd.addr_size_pkd =
3679 htonl(FW_HMA_CMD_ADDR_SIZE_V
3680 ((page_size << page_order) >> 12));
3681
3682 /* Fill the 5 addresses */
3683 for (j = 0; j < naddr; j++) {
3684 hma_cmd.phy_address[j] =
3685 cpu_to_be64(adapter->hma.phy_addr[j + k]);
3686 }
3687 ret = t4_wr_mbox(adapter, adapter->mbox, &hma_cmd,
3688 sizeof(hma_cmd), &hma_cmd);
3689 if (ret) {
3690 dev_err(adapter->pdev_dev,
3691 "HMA FW command failed with err %d\n", ret);
3692 goto free_hma;
3693 }
3694 }
3695
3696 if (!ret)
3697 dev_info(adapter->pdev_dev,
3698 "Reserved %uMB host memory for HMA\n", hma_size);
3699 return ret;
3700
3701 free_hma:
3702 adap_free_hma_mem(adapter);
3703 return ret;
3704 }
3705
adap_init1(struct adapter * adap,struct fw_caps_config_cmd * c)3706 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
3707 {
3708 u32 v;
3709 int ret;
3710
3711 /* Now that we've successfully configured and initialized the adapter
3712 * can ask the Firmware what resources it has provisioned for us.
3713 */
3714 ret = t4_get_pfres(adap);
3715 if (ret) {
3716 dev_err(adap->pdev_dev,
3717 "Unable to retrieve resource provisioning information\n");
3718 return ret;
3719 }
3720
3721 /* get device capabilities */
3722 memset(c, 0, sizeof(*c));
3723 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3724 FW_CMD_REQUEST_F | FW_CMD_READ_F);
3725 c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
3726 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c);
3727 if (ret < 0)
3728 return ret;
3729
3730 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3731 FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
3732 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL);
3733 if (ret < 0)
3734 return ret;
3735
3736 ret = t4_config_glbl_rss(adap, adap->pf,
3737 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
3738 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
3739 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
3740 if (ret < 0)
3741 return ret;
3742
3743 ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64,
3744 MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
3745 FW_CMD_CAP_PF);
3746 if (ret < 0)
3747 return ret;
3748
3749 t4_sge_init(adap);
3750
3751 /* tweak some settings */
3752 t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
3753 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
3754 t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
3755 v = t4_read_reg(adap, TP_PIO_DATA_A);
3756 t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
3757
3758 /* first 4 Tx modulation queues point to consecutive Tx channels */
3759 adap->params.tp.tx_modq_map = 0xE4;
3760 t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
3761 TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
3762
3763 /* associate each Tx modulation queue with consecutive Tx channels */
3764 v = 0x84218421;
3765 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3766 &v, 1, TP_TX_SCHED_HDR_A);
3767 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3768 &v, 1, TP_TX_SCHED_FIFO_A);
3769 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3770 &v, 1, TP_TX_SCHED_PCMD_A);
3771
3772 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
3773 if (is_offload(adap)) {
3774 t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
3775 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3776 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3777 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3778 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3779 t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
3780 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3781 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3782 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3783 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3784 }
3785
3786 /* get basic stuff going */
3787 return t4_early_init(adap, adap->pf);
3788 }
3789
3790 /*
3791 * Max # of ATIDs. The absolute HW max is 16K but we keep it lower.
3792 */
3793 #define MAX_ATIDS 8192U
3794
3795 /*
3796 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3797 *
3798 * If the firmware we're dealing with has Configuration File support, then
3799 * we use that to perform all configuration
3800 */
3801
3802 /*
3803 * Tweak configuration based on module parameters, etc. Most of these have
3804 * defaults assigned to them by Firmware Configuration Files (if we're using
3805 * them) but need to be explicitly set if we're using hard-coded
3806 * initialization. But even in the case of using Firmware Configuration
3807 * Files, we'd like to expose the ability to change these via module
3808 * parameters so these are essentially common tweaks/settings for
3809 * Configuration Files and hard-coded initialization ...
3810 */
adap_init0_tweaks(struct adapter * adapter)3811 static int adap_init0_tweaks(struct adapter *adapter)
3812 {
3813 /*
3814 * Fix up various Host-Dependent Parameters like Page Size, Cache
3815 * Line Size, etc. The firmware default is for a 4KB Page Size and
3816 * 64B Cache Line Size ...
3817 */
3818 t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
3819
3820 /*
3821 * Process module parameters which affect early initialization.
3822 */
3823 if (rx_dma_offset != 2 && rx_dma_offset != 0) {
3824 dev_err(&adapter->pdev->dev,
3825 "Ignoring illegal rx_dma_offset=%d, using 2\n",
3826 rx_dma_offset);
3827 rx_dma_offset = 2;
3828 }
3829 t4_set_reg_field(adapter, SGE_CONTROL_A,
3830 PKTSHIFT_V(PKTSHIFT_M),
3831 PKTSHIFT_V(rx_dma_offset));
3832
3833 /*
3834 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
3835 * adds the pseudo header itself.
3836 */
3837 t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
3838 CSUM_HAS_PSEUDO_HDR_F, 0);
3839
3840 return 0;
3841 }
3842
3843 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips
3844 * unto themselves and they contain their own firmware to perform their
3845 * tasks ...
3846 */
phy_aq1202_version(const u8 * phy_fw_data,size_t phy_fw_size)3847 static int phy_aq1202_version(const u8 *phy_fw_data,
3848 size_t phy_fw_size)
3849 {
3850 int offset;
3851
3852 /* At offset 0x8 you're looking for the primary image's
3853 * starting offset which is 3 Bytes wide
3854 *
3855 * At offset 0xa of the primary image, you look for the offset
3856 * of the DRAM segment which is 3 Bytes wide.
3857 *
3858 * The FW version is at offset 0x27e of the DRAM and is 2 Bytes
3859 * wide
3860 */
3861 #define be16(__p) (((__p)[0] << 8) | (__p)[1])
3862 #define le16(__p) ((__p)[0] | ((__p)[1] << 8))
3863 #define le24(__p) (le16(__p) | ((__p)[2] << 16))
3864
3865 offset = le24(phy_fw_data + 0x8) << 12;
3866 offset = le24(phy_fw_data + offset + 0xa);
3867 return be16(phy_fw_data + offset + 0x27e);
3868
3869 #undef be16
3870 #undef le16
3871 #undef le24
3872 }
3873
3874 static struct info_10gbt_phy_fw {
3875 unsigned int phy_fw_id; /* PCI Device ID */
3876 char *phy_fw_file; /* /lib/firmware/ PHY Firmware file */
3877 int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size);
3878 int phy_flash; /* Has FLASH for PHY Firmware */
3879 } phy_info_array[] = {
3880 {
3881 PHY_AQ1202_DEVICEID,
3882 PHY_AQ1202_FIRMWARE,
3883 phy_aq1202_version,
3884 1,
3885 },
3886 {
3887 PHY_BCM84834_DEVICEID,
3888 PHY_BCM84834_FIRMWARE,
3889 NULL,
3890 0,
3891 },
3892 { 0, NULL, NULL },
3893 };
3894
find_phy_info(int devid)3895 static struct info_10gbt_phy_fw *find_phy_info(int devid)
3896 {
3897 int i;
3898
3899 for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) {
3900 if (phy_info_array[i].phy_fw_id == devid)
3901 return &phy_info_array[i];
3902 }
3903 return NULL;
3904 }
3905
3906 /* Handle updating of chip-external 10Gb/s-BT PHY firmware. This needs to
3907 * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD. On error
3908 * we return a negative error number. If we transfer new firmware we return 1
3909 * (from t4_load_phy_fw()). If we don't do anything we return 0.
3910 */
adap_init0_phy(struct adapter * adap)3911 static int adap_init0_phy(struct adapter *adap)
3912 {
3913 const struct firmware *phyf;
3914 int ret;
3915 struct info_10gbt_phy_fw *phy_info;
3916
3917 /* Use the device ID to determine which PHY file to flash.
3918 */
3919 phy_info = find_phy_info(adap->pdev->device);
3920 if (!phy_info) {
3921 dev_warn(adap->pdev_dev,
3922 "No PHY Firmware file found for this PHY\n");
3923 return -EOPNOTSUPP;
3924 }
3925
3926 /* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then
3927 * use that. The adapter firmware provides us with a memory buffer
3928 * where we can load a PHY firmware file from the host if we want to
3929 * override the PHY firmware File in flash.
3930 */
3931 ret = request_firmware_direct(&phyf, phy_info->phy_fw_file,
3932 adap->pdev_dev);
3933 if (ret < 0) {
3934 /* For adapters without FLASH attached to PHY for their
3935 * firmware, it's obviously a fatal error if we can't get the
3936 * firmware to the adapter. For adapters with PHY firmware
3937 * FLASH storage, it's worth a warning if we can't find the
3938 * PHY Firmware but we'll neuter the error ...
3939 */
3940 dev_err(adap->pdev_dev, "unable to find PHY Firmware image "
3941 "/lib/firmware/%s, error %d\n",
3942 phy_info->phy_fw_file, -ret);
3943 if (phy_info->phy_flash) {
3944 int cur_phy_fw_ver = 0;
3945
3946 t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3947 dev_warn(adap->pdev_dev, "continuing with, on-adapter "
3948 "FLASH copy, version %#x\n", cur_phy_fw_ver);
3949 ret = 0;
3950 }
3951
3952 return ret;
3953 }
3954
3955 /* Load PHY Firmware onto adapter.
3956 */
3957 ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock,
3958 phy_info->phy_fw_version,
3959 (u8 *)phyf->data, phyf->size);
3960 if (ret < 0)
3961 dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n",
3962 -ret);
3963 else if (ret > 0) {
3964 int new_phy_fw_ver = 0;
3965
3966 if (phy_info->phy_fw_version)
3967 new_phy_fw_ver = phy_info->phy_fw_version(phyf->data,
3968 phyf->size);
3969 dev_info(adap->pdev_dev, "Successfully transferred PHY "
3970 "Firmware /lib/firmware/%s, version %#x\n",
3971 phy_info->phy_fw_file, new_phy_fw_ver);
3972 }
3973
3974 release_firmware(phyf);
3975
3976 return ret;
3977 }
3978
3979 /*
3980 * Attempt to initialize the adapter via a Firmware Configuration File.
3981 */
adap_init0_config(struct adapter * adapter,int reset)3982 static int adap_init0_config(struct adapter *adapter, int reset)
3983 {
3984 char *fw_config_file, fw_config_file_path[256];
3985 u32 finiver, finicsum, cfcsum, param, val;
3986 struct fw_caps_config_cmd caps_cmd;
3987 unsigned long mtype = 0, maddr = 0;
3988 const struct firmware *cf;
3989 char *config_name = NULL;
3990 int config_issued = 0;
3991 int ret;
3992
3993 /*
3994 * Reset device if necessary.
3995 */
3996 if (reset) {
3997 ret = t4_fw_reset(adapter, adapter->mbox,
3998 PIORSTMODE_F | PIORST_F);
3999 if (ret < 0)
4000 goto bye;
4001 }
4002
4003 /* If this is a 10Gb/s-BT adapter make sure the chip-external
4004 * 10Gb/s-BT PHYs have up-to-date firmware. Note that this step needs
4005 * to be performed after any global adapter RESET above since some
4006 * PHYs only have local RAM copies of the PHY firmware.
4007 */
4008 if (is_10gbt_device(adapter->pdev->device)) {
4009 ret = adap_init0_phy(adapter);
4010 if (ret < 0)
4011 goto bye;
4012 }
4013 /*
4014 * If we have a T4 configuration file under /lib/firmware/cxgb4/,
4015 * then use that. Otherwise, use the configuration file stored
4016 * in the adapter flash ...
4017 */
4018 switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
4019 case CHELSIO_T4:
4020 fw_config_file = FW4_CFNAME;
4021 break;
4022 case CHELSIO_T5:
4023 fw_config_file = FW5_CFNAME;
4024 break;
4025 case CHELSIO_T6:
4026 fw_config_file = FW6_CFNAME;
4027 break;
4028 default:
4029 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
4030 adapter->pdev->device);
4031 ret = -EINVAL;
4032 goto bye;
4033 }
4034
4035 ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
4036 if (ret < 0) {
4037 config_name = "On FLASH";
4038 mtype = FW_MEMTYPE_CF_FLASH;
4039 maddr = t4_flash_cfg_addr(adapter);
4040 } else {
4041 u32 params[7], val[7];
4042
4043 sprintf(fw_config_file_path,
4044 "/lib/firmware/%s", fw_config_file);
4045 config_name = fw_config_file_path;
4046
4047 if (cf->size >= FLASH_CFG_MAX_SIZE)
4048 ret = -ENOMEM;
4049 else {
4050 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4051 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
4052 ret = t4_query_params(adapter, adapter->mbox,
4053 adapter->pf, 0, 1, params, val);
4054 if (ret == 0) {
4055 /*
4056 * For t4_memory_rw() below addresses and
4057 * sizes have to be in terms of multiples of 4
4058 * bytes. So, if the Configuration File isn't
4059 * a multiple of 4 bytes in length we'll have
4060 * to write that out separately since we can't
4061 * guarantee that the bytes following the
4062 * residual byte in the buffer returned by
4063 * request_firmware() are zeroed out ...
4064 */
4065 size_t resid = cf->size & 0x3;
4066 size_t size = cf->size & ~0x3;
4067 __be32 *data = (__be32 *)cf->data;
4068
4069 mtype = FW_PARAMS_PARAM_Y_G(val[0]);
4070 maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
4071
4072 spin_lock(&adapter->win0_lock);
4073 ret = t4_memory_rw(adapter, 0, mtype, maddr,
4074 size, data, T4_MEMORY_WRITE);
4075 if (ret == 0 && resid != 0) {
4076 union {
4077 __be32 word;
4078 char buf[4];
4079 } last;
4080 int i;
4081
4082 last.word = data[size >> 2];
4083 for (i = resid; i < 4; i++)
4084 last.buf[i] = 0;
4085 ret = t4_memory_rw(adapter, 0, mtype,
4086 maddr + size,
4087 4, &last.word,
4088 T4_MEMORY_WRITE);
4089 }
4090 spin_unlock(&adapter->win0_lock);
4091 }
4092 }
4093
4094 release_firmware(cf);
4095 if (ret)
4096 goto bye;
4097 }
4098
4099 val = 0;
4100
4101 /* Ofld + Hash filter is supported. Older fw will fail this request and
4102 * it is fine.
4103 */
4104 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4105 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HASHFILTER_WITH_OFLD));
4106 ret = t4_set_params(adapter, adapter->mbox, adapter->pf, 0,
4107 1, ¶m, &val);
4108
4109 /* FW doesn't know about Hash filter + ofld support,
4110 * it's not a problem, don't return an error.
4111 */
4112 if (ret < 0) {
4113 dev_warn(adapter->pdev_dev,
4114 "Hash filter with ofld is not supported by FW\n");
4115 }
4116
4117 /*
4118 * Issue a Capability Configuration command to the firmware to get it
4119 * to parse the Configuration File. We don't use t4_fw_config_file()
4120 * because we want the ability to modify various features after we've
4121 * processed the configuration file ...
4122 */
4123 memset(&caps_cmd, 0, sizeof(caps_cmd));
4124 caps_cmd.op_to_write =
4125 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4126 FW_CMD_REQUEST_F |
4127 FW_CMD_READ_F);
4128 caps_cmd.cfvalid_to_len16 =
4129 htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
4130 FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
4131 FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
4132 FW_LEN16(caps_cmd));
4133 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
4134 &caps_cmd);
4135
4136 /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
4137 * Configuration File in FLASH), our last gasp effort is to use the
4138 * Firmware Configuration File which is embedded in the firmware. A
4139 * very few early versions of the firmware didn't have one embedded
4140 * but we can ignore those.
4141 */
4142 if (ret == -ENOENT) {
4143 memset(&caps_cmd, 0, sizeof(caps_cmd));
4144 caps_cmd.op_to_write =
4145 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4146 FW_CMD_REQUEST_F |
4147 FW_CMD_READ_F);
4148 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4149 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
4150 sizeof(caps_cmd), &caps_cmd);
4151 config_name = "Firmware Default";
4152 }
4153
4154 config_issued = 1;
4155 if (ret < 0)
4156 goto bye;
4157
4158 finiver = ntohl(caps_cmd.finiver);
4159 finicsum = ntohl(caps_cmd.finicsum);
4160 cfcsum = ntohl(caps_cmd.cfcsum);
4161 if (finicsum != cfcsum)
4162 dev_warn(adapter->pdev_dev, "Configuration File checksum "\
4163 "mismatch: [fini] csum=%#x, computed csum=%#x\n",
4164 finicsum, cfcsum);
4165
4166 /*
4167 * And now tell the firmware to use the configuration we just loaded.
4168 */
4169 caps_cmd.op_to_write =
4170 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4171 FW_CMD_REQUEST_F |
4172 FW_CMD_WRITE_F);
4173 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4174 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
4175 NULL);
4176 if (ret < 0)
4177 goto bye;
4178
4179 /*
4180 * Tweak configuration based on system architecture, module
4181 * parameters, etc.
4182 */
4183 ret = adap_init0_tweaks(adapter);
4184 if (ret < 0)
4185 goto bye;
4186
4187 /* We will proceed even if HMA init fails. */
4188 ret = adap_config_hma(adapter);
4189 if (ret)
4190 dev_err(adapter->pdev_dev,
4191 "HMA configuration failed with error %d\n", ret);
4192
4193 if (is_t6(adapter->params.chip)) {
4194 ret = setup_ppod_edram(adapter);
4195 if (!ret)
4196 dev_info(adapter->pdev_dev, "Successfully enabled "
4197 "ppod edram feature\n");
4198 }
4199
4200 /*
4201 * And finally tell the firmware to initialize itself using the
4202 * parameters from the Configuration File.
4203 */
4204 ret = t4_fw_initialize(adapter, adapter->mbox);
4205 if (ret < 0)
4206 goto bye;
4207
4208 /* Emit Firmware Configuration File information and return
4209 * successfully.
4210 */
4211 dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
4212 "Configuration File \"%s\", version %#x, computed checksum %#x\n",
4213 config_name, finiver, cfcsum);
4214 return 0;
4215
4216 /*
4217 * Something bad happened. Return the error ... (If the "error"
4218 * is that there's no Configuration File on the adapter we don't
4219 * want to issue a warning since this is fairly common.)
4220 */
4221 bye:
4222 if (config_issued && ret != -ENOENT)
4223 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
4224 config_name, -ret);
4225 return ret;
4226 }
4227
4228 static struct fw_info fw_info_array[] = {
4229 {
4230 .chip = CHELSIO_T4,
4231 .fs_name = FW4_CFNAME,
4232 .fw_mod_name = FW4_FNAME,
4233 .fw_hdr = {
4234 .chip = FW_HDR_CHIP_T4,
4235 .fw_ver = __cpu_to_be32(FW_VERSION(T4)),
4236 .intfver_nic = FW_INTFVER(T4, NIC),
4237 .intfver_vnic = FW_INTFVER(T4, VNIC),
4238 .intfver_ri = FW_INTFVER(T4, RI),
4239 .intfver_iscsi = FW_INTFVER(T4, ISCSI),
4240 .intfver_fcoe = FW_INTFVER(T4, FCOE),
4241 },
4242 }, {
4243 .chip = CHELSIO_T5,
4244 .fs_name = FW5_CFNAME,
4245 .fw_mod_name = FW5_FNAME,
4246 .fw_hdr = {
4247 .chip = FW_HDR_CHIP_T5,
4248 .fw_ver = __cpu_to_be32(FW_VERSION(T5)),
4249 .intfver_nic = FW_INTFVER(T5, NIC),
4250 .intfver_vnic = FW_INTFVER(T5, VNIC),
4251 .intfver_ri = FW_INTFVER(T5, RI),
4252 .intfver_iscsi = FW_INTFVER(T5, ISCSI),
4253 .intfver_fcoe = FW_INTFVER(T5, FCOE),
4254 },
4255 }, {
4256 .chip = CHELSIO_T6,
4257 .fs_name = FW6_CFNAME,
4258 .fw_mod_name = FW6_FNAME,
4259 .fw_hdr = {
4260 .chip = FW_HDR_CHIP_T6,
4261 .fw_ver = __cpu_to_be32(FW_VERSION(T6)),
4262 .intfver_nic = FW_INTFVER(T6, NIC),
4263 .intfver_vnic = FW_INTFVER(T6, VNIC),
4264 .intfver_ofld = FW_INTFVER(T6, OFLD),
4265 .intfver_ri = FW_INTFVER(T6, RI),
4266 .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
4267 .intfver_iscsi = FW_INTFVER(T6, ISCSI),
4268 .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
4269 .intfver_fcoe = FW_INTFVER(T6, FCOE),
4270 },
4271 }
4272
4273 };
4274
find_fw_info(int chip)4275 static struct fw_info *find_fw_info(int chip)
4276 {
4277 int i;
4278
4279 for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
4280 if (fw_info_array[i].chip == chip)
4281 return &fw_info_array[i];
4282 }
4283 return NULL;
4284 }
4285
4286 /*
4287 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
4288 */
adap_init0(struct adapter * adap)4289 static int adap_init0(struct adapter *adap)
4290 {
4291 int ret;
4292 u32 v, port_vec;
4293 enum dev_state state;
4294 u32 params[7], val[7];
4295 struct fw_caps_config_cmd caps_cmd;
4296 int reset = 1;
4297
4298 /* Grab Firmware Device Log parameters as early as possible so we have
4299 * access to it for debugging, etc.
4300 */
4301 ret = t4_init_devlog_params(adap);
4302 if (ret < 0)
4303 return ret;
4304
4305 /* Contact FW, advertising Master capability */
4306 ret = t4_fw_hello(adap, adap->mbox, adap->mbox,
4307 is_kdump_kernel() ? MASTER_MUST : MASTER_MAY, &state);
4308 if (ret < 0) {
4309 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
4310 ret);
4311 return ret;
4312 }
4313 if (ret == adap->mbox)
4314 adap->flags |= CXGB4_MASTER_PF;
4315
4316 /*
4317 * If we're the Master PF Driver and the device is uninitialized,
4318 * then let's consider upgrading the firmware ... (We always want
4319 * to check the firmware version number in order to A. get it for
4320 * later reporting and B. to warn if the currently loaded firmware
4321 * is excessively mismatched relative to the driver.)
4322 */
4323
4324 t4_get_version_info(adap);
4325 ret = t4_check_fw_version(adap);
4326 /* If firmware is too old (not supported by driver) force an update. */
4327 if (ret)
4328 state = DEV_STATE_UNINIT;
4329 if ((adap->flags & CXGB4_MASTER_PF) && state != DEV_STATE_INIT) {
4330 struct fw_info *fw_info;
4331 struct fw_hdr *card_fw;
4332 const struct firmware *fw;
4333 const u8 *fw_data = NULL;
4334 unsigned int fw_size = 0;
4335
4336 /* This is the firmware whose headers the driver was compiled
4337 * against
4338 */
4339 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
4340 if (fw_info == NULL) {
4341 dev_err(adap->pdev_dev,
4342 "unable to get firmware info for chip %d.\n",
4343 CHELSIO_CHIP_VERSION(adap->params.chip));
4344 return -EINVAL;
4345 }
4346
4347 /* allocate memory to read the header of the firmware on the
4348 * card
4349 */
4350 card_fw = kvzalloc(sizeof(*card_fw), GFP_KERNEL);
4351 if (!card_fw) {
4352 ret = -ENOMEM;
4353 goto bye;
4354 }
4355
4356 /* Get FW from from /lib/firmware/ */
4357 ret = request_firmware(&fw, fw_info->fw_mod_name,
4358 adap->pdev_dev);
4359 if (ret < 0) {
4360 dev_err(adap->pdev_dev,
4361 "unable to load firmware image %s, error %d\n",
4362 fw_info->fw_mod_name, ret);
4363 } else {
4364 fw_data = fw->data;
4365 fw_size = fw->size;
4366 }
4367
4368 /* upgrade FW logic */
4369 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
4370 state, &reset);
4371
4372 /* Cleaning up */
4373 release_firmware(fw);
4374 kvfree(card_fw);
4375
4376 if (ret < 0)
4377 goto bye;
4378 }
4379
4380 /* If the firmware is initialized already, emit a simply note to that
4381 * effect. Otherwise, it's time to try initializing the adapter.
4382 */
4383 if (state == DEV_STATE_INIT) {
4384 ret = adap_config_hma(adap);
4385 if (ret)
4386 dev_err(adap->pdev_dev,
4387 "HMA configuration failed with error %d\n",
4388 ret);
4389 dev_info(adap->pdev_dev, "Coming up as %s: "\
4390 "Adapter already initialized\n",
4391 adap->flags & CXGB4_MASTER_PF ? "MASTER" : "SLAVE");
4392 } else {
4393 dev_info(adap->pdev_dev, "Coming up as MASTER: "\
4394 "Initializing adapter\n");
4395
4396 /* Find out whether we're dealing with a version of the
4397 * firmware which has configuration file support.
4398 */
4399 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4400 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
4401 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
4402 params, val);
4403
4404 /* If the firmware doesn't support Configuration Files,
4405 * return an error.
4406 */
4407 if (ret < 0) {
4408 dev_err(adap->pdev_dev, "firmware doesn't support "
4409 "Firmware Configuration Files\n");
4410 goto bye;
4411 }
4412
4413 /* The firmware provides us with a memory buffer where we can
4414 * load a Configuration File from the host if we want to
4415 * override the Configuration File in flash.
4416 */
4417 ret = adap_init0_config(adap, reset);
4418 if (ret == -ENOENT) {
4419 dev_err(adap->pdev_dev, "no Configuration File "
4420 "present on adapter.\n");
4421 goto bye;
4422 }
4423 if (ret < 0) {
4424 dev_err(adap->pdev_dev, "could not initialize "
4425 "adapter, error %d\n", -ret);
4426 goto bye;
4427 }
4428 }
4429
4430 /* Now that we've successfully configured and initialized the adapter
4431 * (or found it already initialized), we can ask the Firmware what
4432 * resources it has provisioned for us.
4433 */
4434 ret = t4_get_pfres(adap);
4435 if (ret) {
4436 dev_err(adap->pdev_dev,
4437 "Unable to retrieve resource provisioning information\n");
4438 goto bye;
4439 }
4440
4441 /* Grab VPD parameters. This should be done after we establish a
4442 * connection to the firmware since some of the VPD parameters
4443 * (notably the Core Clock frequency) are retrieved via requests to
4444 * the firmware. On the other hand, we need these fairly early on
4445 * so we do this right after getting ahold of the firmware.
4446 *
4447 * We need to do this after initializing the adapter because someone
4448 * could have FLASHed a new VPD which won't be read by the firmware
4449 * until we do the RESET ...
4450 */
4451 ret = t4_get_vpd_params(adap, &adap->params.vpd);
4452 if (ret < 0)
4453 goto bye;
4454
4455 /* Find out what ports are available to us. Note that we need to do
4456 * this before calling adap_init0_no_config() since it needs nports
4457 * and portvec ...
4458 */
4459 v =
4460 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4461 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
4462 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
4463 if (ret < 0)
4464 goto bye;
4465
4466 adap->params.nports = hweight32(port_vec);
4467 adap->params.portvec = port_vec;
4468
4469 /* Give the SGE code a chance to pull in anything that it needs ...
4470 * Note that this must be called after we retrieve our VPD parameters
4471 * in order to know how to convert core ticks to seconds, etc.
4472 */
4473 ret = t4_sge_init(adap);
4474 if (ret < 0)
4475 goto bye;
4476
4477 /* Grab the SGE Doorbell Queue Timer values. If successful, that
4478 * indicates that the Firmware and Hardware support this.
4479 */
4480 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4481 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DBQ_TIMERTICK));
4482 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4483 1, params, val);
4484
4485 if (!ret) {
4486 adap->sge.dbqtimer_tick = val[0];
4487 ret = t4_read_sge_dbqtimers(adap,
4488 ARRAY_SIZE(adap->sge.dbqtimer_val),
4489 adap->sge.dbqtimer_val);
4490 }
4491
4492 if (!ret)
4493 adap->flags |= CXGB4_SGE_DBQ_TIMER;
4494
4495 if (is_bypass_device(adap->pdev->device))
4496 adap->params.bypass = 1;
4497
4498 /*
4499 * Grab some of our basic fundamental operating parameters.
4500 */
4501 #define FW_PARAM_DEV(param) \
4502 (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \
4503 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param))
4504
4505 #define FW_PARAM_PFVF(param) \
4506 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \
4507 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)| \
4508 FW_PARAMS_PARAM_Y_V(0) | \
4509 FW_PARAMS_PARAM_Z_V(0)
4510
4511 params[0] = FW_PARAM_PFVF(EQ_START);
4512 params[1] = FW_PARAM_PFVF(L2T_START);
4513 params[2] = FW_PARAM_PFVF(L2T_END);
4514 params[3] = FW_PARAM_PFVF(FILTER_START);
4515 params[4] = FW_PARAM_PFVF(FILTER_END);
4516 params[5] = FW_PARAM_PFVF(IQFLINT_START);
4517 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val);
4518 if (ret < 0)
4519 goto bye;
4520 adap->sge.egr_start = val[0];
4521 adap->l2t_start = val[1];
4522 adap->l2t_end = val[2];
4523 adap->tids.ftid_base = val[3];
4524 adap->tids.nftids = val[4] - val[3] + 1;
4525 adap->sge.ingr_start = val[5];
4526
4527 if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
4528 /* Read the raw mps entries. In T6, the last 2 tcam entries
4529 * are reserved for raw mac addresses (rawf = 2, one per port).
4530 */
4531 params[0] = FW_PARAM_PFVF(RAWF_START);
4532 params[1] = FW_PARAM_PFVF(RAWF_END);
4533 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4534 params, val);
4535 if (ret == 0) {
4536 adap->rawf_start = val[0];
4537 adap->rawf_cnt = val[1] - val[0] + 1;
4538 }
4539 }
4540
4541 /* qids (ingress/egress) returned from firmware can be anywhere
4542 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
4543 * Hence driver needs to allocate memory for this range to
4544 * store the queue info. Get the highest IQFLINT/EQ index returned
4545 * in FW_EQ_*_CMD.alloc command.
4546 */
4547 params[0] = FW_PARAM_PFVF(EQ_END);
4548 params[1] = FW_PARAM_PFVF(IQFLINT_END);
4549 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
4550 if (ret < 0)
4551 goto bye;
4552 adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
4553 adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;
4554
4555 adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
4556 sizeof(*adap->sge.egr_map), GFP_KERNEL);
4557 if (!adap->sge.egr_map) {
4558 ret = -ENOMEM;
4559 goto bye;
4560 }
4561
4562 adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
4563 sizeof(*adap->sge.ingr_map), GFP_KERNEL);
4564 if (!adap->sge.ingr_map) {
4565 ret = -ENOMEM;
4566 goto bye;
4567 }
4568
4569 /* Allocate the memory for the vaious egress queue bitmaps
4570 * ie starving_fl, txq_maperr and blocked_fl.
4571 */
4572 adap->sge.starving_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
4573 sizeof(long), GFP_KERNEL);
4574 if (!adap->sge.starving_fl) {
4575 ret = -ENOMEM;
4576 goto bye;
4577 }
4578
4579 adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
4580 sizeof(long), GFP_KERNEL);
4581 if (!adap->sge.txq_maperr) {
4582 ret = -ENOMEM;
4583 goto bye;
4584 }
4585
4586 #ifdef CONFIG_DEBUG_FS
4587 adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
4588 sizeof(long), GFP_KERNEL);
4589 if (!adap->sge.blocked_fl) {
4590 ret = -ENOMEM;
4591 goto bye;
4592 }
4593 #endif
4594
4595 params[0] = FW_PARAM_PFVF(CLIP_START);
4596 params[1] = FW_PARAM_PFVF(CLIP_END);
4597 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
4598 if (ret < 0)
4599 goto bye;
4600 adap->clipt_start = val[0];
4601 adap->clipt_end = val[1];
4602
4603 /* We don't yet have a PARAMs calls to retrieve the number of Traffic
4604 * Classes supported by the hardware/firmware so we hard code it here
4605 * for now.
4606 */
4607 adap->params.nsched_cls = is_t4(adap->params.chip) ? 15 : 16;
4608
4609 /* query params related to active filter region */
4610 params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
4611 params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
4612 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
4613 /* If Active filter size is set we enable establishing
4614 * offload connection through firmware work request
4615 */
4616 if ((val[0] != val[1]) && (ret >= 0)) {
4617 adap->flags |= CXGB4_FW_OFLD_CONN;
4618 adap->tids.aftid_base = val[0];
4619 adap->tids.aftid_end = val[1];
4620 }
4621
4622 /* If we're running on newer firmware, let it know that we're
4623 * prepared to deal with encapsulated CPL messages. Older
4624 * firmware won't understand this and we'll just get
4625 * unencapsulated messages ...
4626 */
4627 params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
4628 val[0] = 1;
4629 (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
4630
4631 /*
4632 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
4633 * capability. Earlier versions of the firmware didn't have the
4634 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
4635 * permission to use ULPTX MEMWRITE DSGL.
4636 */
4637 if (is_t4(adap->params.chip)) {
4638 adap->params.ulptx_memwrite_dsgl = false;
4639 } else {
4640 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
4641 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4642 1, params, val);
4643 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
4644 }
4645
4646 /* See if FW supports FW_RI_FR_NSMR_TPTE_WR work request */
4647 params[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR);
4648 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4649 1, params, val);
4650 adap->params.fr_nsmr_tpte_wr_support = (ret == 0 && val[0] != 0);
4651
4652 /* See if FW supports FW_FILTER2 work request */
4653 if (is_t4(adap->params.chip)) {
4654 adap->params.filter2_wr_support = 0;
4655 } else {
4656 params[0] = FW_PARAM_DEV(FILTER2_WR);
4657 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4658 1, params, val);
4659 adap->params.filter2_wr_support = (ret == 0 && val[0] != 0);
4660 }
4661
4662 /* Check if FW supports returning vin and smt index.
4663 * If this is not supported, driver will interpret
4664 * these values from viid.
4665 */
4666 params[0] = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN);
4667 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4668 1, params, val);
4669 adap->params.viid_smt_extn_support = (ret == 0 && val[0] != 0);
4670
4671 /*
4672 * Get device capabilities so we can determine what resources we need
4673 * to manage.
4674 */
4675 memset(&caps_cmd, 0, sizeof(caps_cmd));
4676 caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4677 FW_CMD_REQUEST_F | FW_CMD_READ_F);
4678 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4679 ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
4680 &caps_cmd);
4681 if (ret < 0)
4682 goto bye;
4683
4684 /* hash filter has some mandatory register settings to be tested and for
4685 * that it needs to test whether offload is enabled or not, hence
4686 * checking and setting it here.
4687 */
4688 if (caps_cmd.ofldcaps)
4689 adap->params.offload = 1;
4690
4691 if (caps_cmd.ofldcaps ||
4692 (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER))) {
4693 /* query offload-related parameters */
4694 params[0] = FW_PARAM_DEV(NTID);
4695 params[1] = FW_PARAM_PFVF(SERVER_START);
4696 params[2] = FW_PARAM_PFVF(SERVER_END);
4697 params[3] = FW_PARAM_PFVF(TDDP_START);
4698 params[4] = FW_PARAM_PFVF(TDDP_END);
4699 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
4700 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
4701 params, val);
4702 if (ret < 0)
4703 goto bye;
4704 adap->tids.ntids = val[0];
4705 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
4706 adap->tids.stid_base = val[1];
4707 adap->tids.nstids = val[2] - val[1] + 1;
4708 /*
4709 * Setup server filter region. Divide the available filter
4710 * region into two parts. Regular filters get 1/3rd and server
4711 * filters get 2/3rd part. This is only enabled if workarond
4712 * path is enabled.
4713 * 1. For regular filters.
4714 * 2. Server filter: This are special filters which are used
4715 * to redirect SYN packets to offload queue.
4716 */
4717 if (adap->flags & CXGB4_FW_OFLD_CONN && !is_bypass(adap)) {
4718 adap->tids.sftid_base = adap->tids.ftid_base +
4719 DIV_ROUND_UP(adap->tids.nftids, 3);
4720 adap->tids.nsftids = adap->tids.nftids -
4721 DIV_ROUND_UP(adap->tids.nftids, 3);
4722 adap->tids.nftids = adap->tids.sftid_base -
4723 adap->tids.ftid_base;
4724 }
4725 adap->vres.ddp.start = val[3];
4726 adap->vres.ddp.size = val[4] - val[3] + 1;
4727 adap->params.ofldq_wr_cred = val[5];
4728
4729 if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER)) {
4730 init_hash_filter(adap);
4731 } else {
4732 adap->num_ofld_uld += 1;
4733 }
4734 }
4735 if (caps_cmd.rdmacaps) {
4736 params[0] = FW_PARAM_PFVF(STAG_START);
4737 params[1] = FW_PARAM_PFVF(STAG_END);
4738 params[2] = FW_PARAM_PFVF(RQ_START);
4739 params[3] = FW_PARAM_PFVF(RQ_END);
4740 params[4] = FW_PARAM_PFVF(PBL_START);
4741 params[5] = FW_PARAM_PFVF(PBL_END);
4742 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
4743 params, val);
4744 if (ret < 0)
4745 goto bye;
4746 adap->vres.stag.start = val[0];
4747 adap->vres.stag.size = val[1] - val[0] + 1;
4748 adap->vres.rq.start = val[2];
4749 adap->vres.rq.size = val[3] - val[2] + 1;
4750 adap->vres.pbl.start = val[4];
4751 adap->vres.pbl.size = val[5] - val[4] + 1;
4752
4753 params[0] = FW_PARAM_PFVF(SRQ_START);
4754 params[1] = FW_PARAM_PFVF(SRQ_END);
4755 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4756 params, val);
4757 if (!ret) {
4758 adap->vres.srq.start = val[0];
4759 adap->vres.srq.size = val[1] - val[0] + 1;
4760 }
4761 if (adap->vres.srq.size) {
4762 adap->srq = t4_init_srq(adap->vres.srq.size);
4763 if (!adap->srq)
4764 dev_warn(&adap->pdev->dev, "could not allocate SRQ, continuing\n");
4765 }
4766
4767 params[0] = FW_PARAM_PFVF(SQRQ_START);
4768 params[1] = FW_PARAM_PFVF(SQRQ_END);
4769 params[2] = FW_PARAM_PFVF(CQ_START);
4770 params[3] = FW_PARAM_PFVF(CQ_END);
4771 params[4] = FW_PARAM_PFVF(OCQ_START);
4772 params[5] = FW_PARAM_PFVF(OCQ_END);
4773 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params,
4774 val);
4775 if (ret < 0)
4776 goto bye;
4777 adap->vres.qp.start = val[0];
4778 adap->vres.qp.size = val[1] - val[0] + 1;
4779 adap->vres.cq.start = val[2];
4780 adap->vres.cq.size = val[3] - val[2] + 1;
4781 adap->vres.ocq.start = val[4];
4782 adap->vres.ocq.size = val[5] - val[4] + 1;
4783
4784 params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
4785 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
4786 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params,
4787 val);
4788 if (ret < 0) {
4789 adap->params.max_ordird_qp = 8;
4790 adap->params.max_ird_adapter = 32 * adap->tids.ntids;
4791 ret = 0;
4792 } else {
4793 adap->params.max_ordird_qp = val[0];
4794 adap->params.max_ird_adapter = val[1];
4795 }
4796 dev_info(adap->pdev_dev,
4797 "max_ordird_qp %d max_ird_adapter %d\n",
4798 adap->params.max_ordird_qp,
4799 adap->params.max_ird_adapter);
4800
4801 /* Enable write_with_immediate if FW supports it */
4802 params[0] = FW_PARAM_DEV(RDMA_WRITE_WITH_IMM);
4803 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params,
4804 val);
4805 adap->params.write_w_imm_support = (ret == 0 && val[0] != 0);
4806
4807 /* Enable write_cmpl if FW supports it */
4808 params[0] = FW_PARAM_DEV(RI_WRITE_CMPL_WR);
4809 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params,
4810 val);
4811 adap->params.write_cmpl_support = (ret == 0 && val[0] != 0);
4812 adap->num_ofld_uld += 2;
4813 }
4814 if (caps_cmd.iscsicaps) {
4815 params[0] = FW_PARAM_PFVF(ISCSI_START);
4816 params[1] = FW_PARAM_PFVF(ISCSI_END);
4817 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4818 params, val);
4819 if (ret < 0)
4820 goto bye;
4821 adap->vres.iscsi.start = val[0];
4822 adap->vres.iscsi.size = val[1] - val[0] + 1;
4823 if (is_t6(adap->params.chip)) {
4824 params[0] = FW_PARAM_PFVF(PPOD_EDRAM_START);
4825 params[1] = FW_PARAM_PFVF(PPOD_EDRAM_END);
4826 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4827 params, val);
4828 if (!ret) {
4829 adap->vres.ppod_edram.start = val[0];
4830 adap->vres.ppod_edram.size =
4831 val[1] - val[0] + 1;
4832
4833 dev_info(adap->pdev_dev,
4834 "ppod edram start 0x%x end 0x%x size 0x%x\n",
4835 val[0], val[1],
4836 adap->vres.ppod_edram.size);
4837 }
4838 }
4839 /* LIO target and cxgb4i initiaitor */
4840 adap->num_ofld_uld += 2;
4841 }
4842 if (caps_cmd.cryptocaps) {
4843 if (ntohs(caps_cmd.cryptocaps) &
4844 FW_CAPS_CONFIG_CRYPTO_LOOKASIDE) {
4845 params[0] = FW_PARAM_PFVF(NCRYPTO_LOOKASIDE);
4846 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4847 2, params, val);
4848 if (ret < 0) {
4849 if (ret != -EINVAL)
4850 goto bye;
4851 } else {
4852 adap->vres.ncrypto_fc = val[0];
4853 }
4854 adap->num_ofld_uld += 1;
4855 }
4856 if (ntohs(caps_cmd.cryptocaps) &
4857 FW_CAPS_CONFIG_TLS_INLINE) {
4858 params[0] = FW_PARAM_PFVF(TLS_START);
4859 params[1] = FW_PARAM_PFVF(TLS_END);
4860 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4861 2, params, val);
4862 if (ret < 0)
4863 goto bye;
4864 adap->vres.key.start = val[0];
4865 adap->vres.key.size = val[1] - val[0] + 1;
4866 adap->num_uld += 1;
4867 }
4868 adap->params.crypto = ntohs(caps_cmd.cryptocaps);
4869 }
4870 #undef FW_PARAM_PFVF
4871 #undef FW_PARAM_DEV
4872
4873 /* The MTU/MSS Table is initialized by now, so load their values. If
4874 * we're initializing the adapter, then we'll make any modifications
4875 * we want to the MTU/MSS Table and also initialize the congestion
4876 * parameters.
4877 */
4878 t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
4879 if (state != DEV_STATE_INIT) {
4880 int i;
4881
4882 /* The default MTU Table contains values 1492 and 1500.
4883 * However, for TCP, it's better to have two values which are
4884 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
4885 * This allows us to have a TCP Data Payload which is a
4886 * multiple of 8 regardless of what combination of TCP Options
4887 * are in use (always a multiple of 4 bytes) which is
4888 * important for performance reasons. For instance, if no
4889 * options are in use, then we have a 20-byte IP header and a
4890 * 20-byte TCP header. In this case, a 1500-byte MSS would
4891 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
4892 * which is not a multiple of 8. So using an MSS of 1488 in
4893 * this case results in a TCP Data Payload of 1448 bytes which
4894 * is a multiple of 8. On the other hand, if 12-byte TCP Time
4895 * Stamps have been negotiated, then an MTU of 1500 bytes
4896 * results in a TCP Data Payload of 1448 bytes which, as
4897 * above, is a multiple of 8 bytes ...
4898 */
4899 for (i = 0; i < NMTUS; i++)
4900 if (adap->params.mtus[i] == 1492) {
4901 adap->params.mtus[i] = 1488;
4902 break;
4903 }
4904
4905 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4906 adap->params.b_wnd);
4907 }
4908 t4_init_sge_params(adap);
4909 adap->flags |= CXGB4_FW_OK;
4910 t4_init_tp_params(adap, true);
4911 return 0;
4912
4913 /*
4914 * Something bad happened. If a command timed out or failed with EIO
4915 * FW does not operate within its spec or something catastrophic
4916 * happened to HW/FW, stop issuing commands.
4917 */
4918 bye:
4919 adap_free_hma_mem(adap);
4920 kfree(adap->sge.egr_map);
4921 kfree(adap->sge.ingr_map);
4922 kfree(adap->sge.starving_fl);
4923 kfree(adap->sge.txq_maperr);
4924 #ifdef CONFIG_DEBUG_FS
4925 kfree(adap->sge.blocked_fl);
4926 #endif
4927 if (ret != -ETIMEDOUT && ret != -EIO)
4928 t4_fw_bye(adap, adap->mbox);
4929 return ret;
4930 }
4931
4932 /* EEH callbacks */
4933
eeh_err_detected(struct pci_dev * pdev,pci_channel_state_t state)4934 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
4935 pci_channel_state_t state)
4936 {
4937 int i;
4938 struct adapter *adap = pci_get_drvdata(pdev);
4939
4940 if (!adap)
4941 goto out;
4942
4943 rtnl_lock();
4944 adap->flags &= ~CXGB4_FW_OK;
4945 notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
4946 spin_lock(&adap->stats_lock);
4947 for_each_port(adap, i) {
4948 struct net_device *dev = adap->port[i];
4949 if (dev) {
4950 netif_device_detach(dev);
4951 netif_carrier_off(dev);
4952 }
4953 }
4954 spin_unlock(&adap->stats_lock);
4955 disable_interrupts(adap);
4956 if (adap->flags & CXGB4_FULL_INIT_DONE)
4957 cxgb_down(adap);
4958 rtnl_unlock();
4959 if ((adap->flags & CXGB4_DEV_ENABLED)) {
4960 pci_disable_device(pdev);
4961 adap->flags &= ~CXGB4_DEV_ENABLED;
4962 }
4963 out: return state == pci_channel_io_perm_failure ?
4964 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
4965 }
4966
eeh_slot_reset(struct pci_dev * pdev)4967 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
4968 {
4969 int i, ret;
4970 struct fw_caps_config_cmd c;
4971 struct adapter *adap = pci_get_drvdata(pdev);
4972
4973 if (!adap) {
4974 pci_restore_state(pdev);
4975 pci_save_state(pdev);
4976 return PCI_ERS_RESULT_RECOVERED;
4977 }
4978
4979 if (!(adap->flags & CXGB4_DEV_ENABLED)) {
4980 if (pci_enable_device(pdev)) {
4981 dev_err(&pdev->dev, "Cannot reenable PCI "
4982 "device after reset\n");
4983 return PCI_ERS_RESULT_DISCONNECT;
4984 }
4985 adap->flags |= CXGB4_DEV_ENABLED;
4986 }
4987
4988 pci_set_master(pdev);
4989 pci_restore_state(pdev);
4990 pci_save_state(pdev);
4991
4992 if (t4_wait_dev_ready(adap->regs) < 0)
4993 return PCI_ERS_RESULT_DISCONNECT;
4994 if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0)
4995 return PCI_ERS_RESULT_DISCONNECT;
4996 adap->flags |= CXGB4_FW_OK;
4997 if (adap_init1(adap, &c))
4998 return PCI_ERS_RESULT_DISCONNECT;
4999
5000 for_each_port(adap, i) {
5001 struct port_info *pi = adap2pinfo(adap, i);
5002 u8 vivld = 0, vin = 0;
5003
5004 ret = t4_alloc_vi(adap, adap->mbox, pi->tx_chan, adap->pf, 0, 1,
5005 NULL, NULL, &vivld, &vin);
5006 if (ret < 0)
5007 return PCI_ERS_RESULT_DISCONNECT;
5008 pi->viid = ret;
5009 pi->xact_addr_filt = -1;
5010 /* If fw supports returning the VIN as part of FW_VI_CMD,
5011 * save the returned values.
5012 */
5013 if (adap->params.viid_smt_extn_support) {
5014 pi->vivld = vivld;
5015 pi->vin = vin;
5016 } else {
5017 /* Retrieve the values from VIID */
5018 pi->vivld = FW_VIID_VIVLD_G(pi->viid);
5019 pi->vin = FW_VIID_VIN_G(pi->viid);
5020 }
5021 }
5022
5023 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
5024 adap->params.b_wnd);
5025 setup_memwin(adap);
5026 if (cxgb_up(adap))
5027 return PCI_ERS_RESULT_DISCONNECT;
5028 return PCI_ERS_RESULT_RECOVERED;
5029 }
5030
eeh_resume(struct pci_dev * pdev)5031 static void eeh_resume(struct pci_dev *pdev)
5032 {
5033 int i;
5034 struct adapter *adap = pci_get_drvdata(pdev);
5035
5036 if (!adap)
5037 return;
5038
5039 rtnl_lock();
5040 for_each_port(adap, i) {
5041 struct net_device *dev = adap->port[i];
5042 if (dev) {
5043 if (netif_running(dev)) {
5044 link_start(dev);
5045 cxgb_set_rxmode(dev);
5046 }
5047 netif_device_attach(dev);
5048 }
5049 }
5050 rtnl_unlock();
5051 }
5052
5053 static const struct pci_error_handlers cxgb4_eeh = {
5054 .error_detected = eeh_err_detected,
5055 .slot_reset = eeh_slot_reset,
5056 .resume = eeh_resume,
5057 };
5058
5059 /* Return true if the Link Configuration supports "High Speeds" (those greater
5060 * than 1Gb/s).
5061 */
is_x_10g_port(const struct link_config * lc)5062 static inline bool is_x_10g_port(const struct link_config *lc)
5063 {
5064 unsigned int speeds, high_speeds;
5065
5066 speeds = FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_G(lc->pcaps));
5067 high_speeds = speeds &
5068 ~(FW_PORT_CAP32_SPEED_100M | FW_PORT_CAP32_SPEED_1G);
5069
5070 return high_speeds != 0;
5071 }
5072
5073 /*
5074 * Perform default configuration of DMA queues depending on the number and type
5075 * of ports we found and the number of available CPUs. Most settings can be
5076 * modified by the admin prior to actual use.
5077 */
cfg_queues(struct adapter * adap)5078 static int cfg_queues(struct adapter *adap)
5079 {
5080 struct sge *s = &adap->sge;
5081 int i, n10g = 0, qidx = 0;
5082 int niqflint, neq, avail_eth_qsets;
5083 int max_eth_qsets = 32;
5084 #ifndef CONFIG_CHELSIO_T4_DCB
5085 int q10g = 0;
5086 #endif
5087
5088 /* Reduce memory usage in kdump environment, disable all offload.
5089 */
5090 if (is_kdump_kernel() || (is_uld(adap) && t4_uld_mem_alloc(adap))) {
5091 adap->params.offload = 0;
5092 adap->params.crypto = 0;
5093 }
5094
5095 /* Calculate the number of Ethernet Queue Sets available based on
5096 * resources provisioned for us. We always have an Asynchronous
5097 * Firmware Event Ingress Queue. If we're operating in MSI or Legacy
5098 * IRQ Pin Interrupt mode, then we'll also have a Forwarded Interrupt
5099 * Ingress Queue. Meanwhile, we need two Egress Queues for each
5100 * Queue Set: one for the Free List and one for the Ethernet TX Queue.
5101 *
5102 * Note that we should also take into account all of the various
5103 * Offload Queues. But, in any situation where we're operating in
5104 * a Resource Constrained Provisioning environment, doing any Offload
5105 * at all is problematic ...
5106 */
5107 niqflint = adap->params.pfres.niqflint - 1;
5108 if (!(adap->flags & CXGB4_USING_MSIX))
5109 niqflint--;
5110 neq = adap->params.pfres.neq / 2;
5111 avail_eth_qsets = min(niqflint, neq);
5112
5113 if (avail_eth_qsets > max_eth_qsets)
5114 avail_eth_qsets = max_eth_qsets;
5115
5116 if (avail_eth_qsets < adap->params.nports) {
5117 dev_err(adap->pdev_dev, "avail_eth_qsets=%d < nports=%d\n",
5118 avail_eth_qsets, adap->params.nports);
5119 return -ENOMEM;
5120 }
5121
5122 /* Count the number of 10Gb/s or better ports */
5123 for_each_port(adap, i)
5124 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
5125
5126 #ifdef CONFIG_CHELSIO_T4_DCB
5127 /* For Data Center Bridging support we need to be able to support up
5128 * to 8 Traffic Priorities; each of which will be assigned to its
5129 * own TX Queue in order to prevent Head-Of-Line Blocking.
5130 */
5131 if (adap->params.nports * 8 > avail_eth_qsets) {
5132 dev_err(adap->pdev_dev, "DCB avail_eth_qsets=%d < %d!\n",
5133 avail_eth_qsets, adap->params.nports * 8);
5134 return -ENOMEM;
5135 }
5136
5137 for_each_port(adap, i) {
5138 struct port_info *pi = adap2pinfo(adap, i);
5139
5140 pi->first_qset = qidx;
5141 pi->nqsets = is_kdump_kernel() ? 1 : 8;
5142 qidx += pi->nqsets;
5143 }
5144 #else /* !CONFIG_CHELSIO_T4_DCB */
5145 /*
5146 * We default to 1 queue per non-10G port and up to # of cores queues
5147 * per 10G port.
5148 */
5149 if (n10g)
5150 q10g = (avail_eth_qsets - (adap->params.nports - n10g)) / n10g;
5151 if (q10g > netif_get_num_default_rss_queues())
5152 q10g = netif_get_num_default_rss_queues();
5153
5154 if (is_kdump_kernel())
5155 q10g = 1;
5156
5157 for_each_port(adap, i) {
5158 struct port_info *pi = adap2pinfo(adap, i);
5159
5160 pi->first_qset = qidx;
5161 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
5162 qidx += pi->nqsets;
5163 }
5164 #endif /* !CONFIG_CHELSIO_T4_DCB */
5165
5166 s->ethqsets = qidx;
5167 s->max_ethqsets = qidx; /* MSI-X may lower it later */
5168
5169 if (is_uld(adap)) {
5170 /*
5171 * For offload we use 1 queue/channel if all ports are up to 1G,
5172 * otherwise we divide all available queues amongst the channels
5173 * capped by the number of available cores.
5174 */
5175 if (n10g) {
5176 i = min_t(int, MAX_OFLD_QSETS, num_online_cpus());
5177 s->ofldqsets = roundup(i, adap->params.nports);
5178 } else {
5179 s->ofldqsets = adap->params.nports;
5180 }
5181 }
5182
5183 for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
5184 struct sge_eth_rxq *r = &s->ethrxq[i];
5185
5186 init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
5187 r->fl.size = 72;
5188 }
5189
5190 for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
5191 s->ethtxq[i].q.size = 1024;
5192
5193 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
5194 s->ctrlq[i].q.size = 512;
5195
5196 if (!is_t4(adap->params.chip))
5197 s->ptptxq.q.size = 8;
5198
5199 init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
5200 init_rspq(adap, &s->intrq, 0, 1, 512, 64);
5201
5202 return 0;
5203 }
5204
5205 /*
5206 * Reduce the number of Ethernet queues across all ports to at most n.
5207 * n provides at least one queue per port.
5208 */
reduce_ethqs(struct adapter * adap,int n)5209 static void reduce_ethqs(struct adapter *adap, int n)
5210 {
5211 int i;
5212 struct port_info *pi;
5213
5214 while (n < adap->sge.ethqsets)
5215 for_each_port(adap, i) {
5216 pi = adap2pinfo(adap, i);
5217 if (pi->nqsets > 1) {
5218 pi->nqsets--;
5219 adap->sge.ethqsets--;
5220 if (adap->sge.ethqsets <= n)
5221 break;
5222 }
5223 }
5224
5225 n = 0;
5226 for_each_port(adap, i) {
5227 pi = adap2pinfo(adap, i);
5228 pi->first_qset = n;
5229 n += pi->nqsets;
5230 }
5231 }
5232
get_msix_info(struct adapter * adap)5233 static int get_msix_info(struct adapter *adap)
5234 {
5235 struct uld_msix_info *msix_info;
5236 unsigned int max_ingq = 0;
5237
5238 if (is_offload(adap))
5239 max_ingq += MAX_OFLD_QSETS * adap->num_ofld_uld;
5240 if (is_pci_uld(adap))
5241 max_ingq += MAX_OFLD_QSETS * adap->num_uld;
5242
5243 if (!max_ingq)
5244 goto out;
5245
5246 msix_info = kcalloc(max_ingq, sizeof(*msix_info), GFP_KERNEL);
5247 if (!msix_info)
5248 return -ENOMEM;
5249
5250 adap->msix_bmap_ulds.msix_bmap = kcalloc(BITS_TO_LONGS(max_ingq),
5251 sizeof(long), GFP_KERNEL);
5252 if (!adap->msix_bmap_ulds.msix_bmap) {
5253 kfree(msix_info);
5254 return -ENOMEM;
5255 }
5256 spin_lock_init(&adap->msix_bmap_ulds.lock);
5257 adap->msix_info_ulds = msix_info;
5258 out:
5259 return 0;
5260 }
5261
free_msix_info(struct adapter * adap)5262 static void free_msix_info(struct adapter *adap)
5263 {
5264 if (!(adap->num_uld && adap->num_ofld_uld))
5265 return;
5266
5267 kfree(adap->msix_info_ulds);
5268 kfree(adap->msix_bmap_ulds.msix_bmap);
5269 }
5270
5271 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
5272 #define EXTRA_VECS 2
5273
enable_msix(struct adapter * adap)5274 static int enable_msix(struct adapter *adap)
5275 {
5276 int ofld_need = 0, uld_need = 0;
5277 int i, j, want, need, allocated;
5278 struct sge *s = &adap->sge;
5279 unsigned int nchan = adap->params.nports;
5280 struct msix_entry *entries;
5281 int max_ingq = MAX_INGQ;
5282
5283 if (is_pci_uld(adap))
5284 max_ingq += (MAX_OFLD_QSETS * adap->num_uld);
5285 if (is_offload(adap))
5286 max_ingq += (MAX_OFLD_QSETS * adap->num_ofld_uld);
5287 entries = kmalloc_array(max_ingq + 1, sizeof(*entries),
5288 GFP_KERNEL);
5289 if (!entries)
5290 return -ENOMEM;
5291
5292 /* map for msix */
5293 if (get_msix_info(adap)) {
5294 adap->params.offload = 0;
5295 adap->params.crypto = 0;
5296 }
5297
5298 for (i = 0; i < max_ingq + 1; ++i)
5299 entries[i].entry = i;
5300
5301 want = s->max_ethqsets + EXTRA_VECS;
5302 if (is_offload(adap)) {
5303 want += adap->num_ofld_uld * s->ofldqsets;
5304 ofld_need = adap->num_ofld_uld * nchan;
5305 }
5306 if (is_pci_uld(adap)) {
5307 want += adap->num_uld * s->ofldqsets;
5308 uld_need = adap->num_uld * nchan;
5309 }
5310 #ifdef CONFIG_CHELSIO_T4_DCB
5311 /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
5312 * each port.
5313 */
5314 need = 8 * adap->params.nports + EXTRA_VECS + ofld_need + uld_need;
5315 #else
5316 need = adap->params.nports + EXTRA_VECS + ofld_need + uld_need;
5317 #endif
5318 allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
5319 if (allocated < 0) {
5320 dev_info(adap->pdev_dev, "not enough MSI-X vectors left,"
5321 " not using MSI-X\n");
5322 kfree(entries);
5323 return allocated;
5324 }
5325
5326 /* Distribute available vectors to the various queue groups.
5327 * Every group gets its minimum requirement and NIC gets top
5328 * priority for leftovers.
5329 */
5330 i = allocated - EXTRA_VECS - ofld_need - uld_need;
5331 if (i < s->max_ethqsets) {
5332 s->max_ethqsets = i;
5333 if (i < s->ethqsets)
5334 reduce_ethqs(adap, i);
5335 }
5336 if (is_uld(adap)) {
5337 if (allocated < want)
5338 s->nqs_per_uld = nchan;
5339 else
5340 s->nqs_per_uld = s->ofldqsets;
5341 }
5342
5343 for (i = 0; i < (s->max_ethqsets + EXTRA_VECS); ++i)
5344 adap->msix_info[i].vec = entries[i].vector;
5345 if (is_uld(adap)) {
5346 for (j = 0 ; i < allocated; ++i, j++) {
5347 adap->msix_info_ulds[j].vec = entries[i].vector;
5348 adap->msix_info_ulds[j].idx = i;
5349 }
5350 adap->msix_bmap_ulds.mapsize = j;
5351 }
5352 dev_info(adap->pdev_dev, "%d MSI-X vectors allocated, "
5353 "nic %d per uld %d\n",
5354 allocated, s->max_ethqsets, s->nqs_per_uld);
5355
5356 kfree(entries);
5357 return 0;
5358 }
5359
5360 #undef EXTRA_VECS
5361
init_rss(struct adapter * adap)5362 static int init_rss(struct adapter *adap)
5363 {
5364 unsigned int i;
5365 int err;
5366
5367 err = t4_init_rss_mode(adap, adap->mbox);
5368 if (err)
5369 return err;
5370
5371 for_each_port(adap, i) {
5372 struct port_info *pi = adap2pinfo(adap, i);
5373
5374 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
5375 if (!pi->rss)
5376 return -ENOMEM;
5377 }
5378 return 0;
5379 }
5380
5381 /* Dump basic information about the adapter */
print_adapter_info(struct adapter * adapter)5382 static void print_adapter_info(struct adapter *adapter)
5383 {
5384 /* Hardware/Firmware/etc. Version/Revision IDs */
5385 t4_dump_version_info(adapter);
5386
5387 /* Software/Hardware configuration */
5388 dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n",
5389 is_offload(adapter) ? "R" : "",
5390 ((adapter->flags & CXGB4_USING_MSIX) ? "MSI-X" :
5391 (adapter->flags & CXGB4_USING_MSI) ? "MSI" : ""),
5392 is_offload(adapter) ? "Offload" : "non-Offload");
5393 }
5394
print_port_info(const struct net_device * dev)5395 static void print_port_info(const struct net_device *dev)
5396 {
5397 char buf[80];
5398 char *bufp = buf;
5399 const struct port_info *pi = netdev_priv(dev);
5400 const struct adapter *adap = pi->adapter;
5401
5402 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100M)
5403 bufp += sprintf(bufp, "100M/");
5404 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_1G)
5405 bufp += sprintf(bufp, "1G/");
5406 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_10G)
5407 bufp += sprintf(bufp, "10G/");
5408 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_25G)
5409 bufp += sprintf(bufp, "25G/");
5410 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_40G)
5411 bufp += sprintf(bufp, "40G/");
5412 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_50G)
5413 bufp += sprintf(bufp, "50G/");
5414 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100G)
5415 bufp += sprintf(bufp, "100G/");
5416 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_200G)
5417 bufp += sprintf(bufp, "200G/");
5418 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_400G)
5419 bufp += sprintf(bufp, "400G/");
5420 if (bufp != buf)
5421 --bufp;
5422 sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
5423
5424 netdev_info(dev, "%s: Chelsio %s (%s) %s\n",
5425 dev->name, adap->params.vpd.id, adap->name, buf);
5426 }
5427
5428 /*
5429 * Free the following resources:
5430 * - memory used for tables
5431 * - MSI/MSI-X
5432 * - net devices
5433 * - resources FW is holding for us
5434 */
free_some_resources(struct adapter * adapter)5435 static void free_some_resources(struct adapter *adapter)
5436 {
5437 unsigned int i;
5438
5439 kvfree(adapter->smt);
5440 kvfree(adapter->l2t);
5441 kvfree(adapter->srq);
5442 t4_cleanup_sched(adapter);
5443 kvfree(adapter->tids.tid_tab);
5444 cxgb4_cleanup_tc_flower(adapter);
5445 cxgb4_cleanup_tc_u32(adapter);
5446 kfree(adapter->sge.egr_map);
5447 kfree(adapter->sge.ingr_map);
5448 kfree(adapter->sge.starving_fl);
5449 kfree(adapter->sge.txq_maperr);
5450 #ifdef CONFIG_DEBUG_FS
5451 kfree(adapter->sge.blocked_fl);
5452 #endif
5453 disable_msi(adapter);
5454
5455 for_each_port(adapter, i)
5456 if (adapter->port[i]) {
5457 struct port_info *pi = adap2pinfo(adapter, i);
5458
5459 if (pi->viid != 0)
5460 t4_free_vi(adapter, adapter->mbox, adapter->pf,
5461 0, pi->viid);
5462 kfree(adap2pinfo(adapter, i)->rss);
5463 free_netdev(adapter->port[i]);
5464 }
5465 if (adapter->flags & CXGB4_FW_OK)
5466 t4_fw_bye(adapter, adapter->pf);
5467 }
5468
5469 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
5470 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
5471 NETIF_F_GRO | NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
5472 #define SEGMENT_SIZE 128
5473
t4_get_chip_type(struct adapter * adap,int ver)5474 static int t4_get_chip_type(struct adapter *adap, int ver)
5475 {
5476 u32 pl_rev = REV_G(t4_read_reg(adap, PL_REV_A));
5477
5478 switch (ver) {
5479 case CHELSIO_T4:
5480 return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
5481 case CHELSIO_T5:
5482 return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
5483 case CHELSIO_T6:
5484 return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
5485 default:
5486 break;
5487 }
5488 return -EINVAL;
5489 }
5490
5491 #ifdef CONFIG_PCI_IOV
cxgb4_mgmt_setup(struct net_device * dev)5492 static void cxgb4_mgmt_setup(struct net_device *dev)
5493 {
5494 dev->type = ARPHRD_NONE;
5495 dev->mtu = 0;
5496 dev->hard_header_len = 0;
5497 dev->addr_len = 0;
5498 dev->tx_queue_len = 0;
5499 dev->flags |= IFF_NOARP;
5500 dev->priv_flags |= IFF_NO_QUEUE;
5501
5502 /* Initialize the device structure. */
5503 dev->netdev_ops = &cxgb4_mgmt_netdev_ops;
5504 dev->ethtool_ops = &cxgb4_mgmt_ethtool_ops;
5505 }
5506
cxgb4_iov_configure(struct pci_dev * pdev,int num_vfs)5507 static int cxgb4_iov_configure(struct pci_dev *pdev, int num_vfs)
5508 {
5509 struct adapter *adap = pci_get_drvdata(pdev);
5510 int err = 0;
5511 int current_vfs = pci_num_vf(pdev);
5512 u32 pcie_fw;
5513
5514 pcie_fw = readl(adap->regs + PCIE_FW_A);
5515 /* Check if fw is initialized */
5516 if (!(pcie_fw & PCIE_FW_INIT_F)) {
5517 dev_warn(&pdev->dev, "Device not initialized\n");
5518 return -EOPNOTSUPP;
5519 }
5520
5521 /* If any of the VF's is already assigned to Guest OS, then
5522 * SRIOV for the same cannot be modified
5523 */
5524 if (current_vfs && pci_vfs_assigned(pdev)) {
5525 dev_err(&pdev->dev,
5526 "Cannot modify SR-IOV while VFs are assigned\n");
5527 return current_vfs;
5528 }
5529 /* Note that the upper-level code ensures that we're never called with
5530 * a non-zero "num_vfs" when we already have VFs instantiated. But
5531 * it never hurts to code defensively.
5532 */
5533 if (num_vfs != 0 && current_vfs != 0)
5534 return -EBUSY;
5535
5536 /* Nothing to do for no change. */
5537 if (num_vfs == current_vfs)
5538 return num_vfs;
5539
5540 /* Disable SRIOV when zero is passed. */
5541 if (!num_vfs) {
5542 pci_disable_sriov(pdev);
5543 /* free VF Management Interface */
5544 unregister_netdev(adap->port[0]);
5545 free_netdev(adap->port[0]);
5546 adap->port[0] = NULL;
5547
5548 /* free VF resources */
5549 adap->num_vfs = 0;
5550 kfree(adap->vfinfo);
5551 adap->vfinfo = NULL;
5552 return 0;
5553 }
5554
5555 if (!current_vfs) {
5556 struct fw_pfvf_cmd port_cmd, port_rpl;
5557 struct net_device *netdev;
5558 unsigned int pmask, port;
5559 struct pci_dev *pbridge;
5560 struct port_info *pi;
5561 char name[IFNAMSIZ];
5562 u32 devcap2;
5563 u16 flags;
5564
5565 /* If we want to instantiate Virtual Functions, then our
5566 * parent bridge's PCI-E needs to support Alternative Routing
5567 * ID (ARI) because our VFs will show up at function offset 8
5568 * and above.
5569 */
5570 pbridge = pdev->bus->self;
5571 pcie_capability_read_word(pbridge, PCI_EXP_FLAGS, &flags);
5572 pcie_capability_read_dword(pbridge, PCI_EXP_DEVCAP2, &devcap2);
5573
5574 if ((flags & PCI_EXP_FLAGS_VERS) < 2 ||
5575 !(devcap2 & PCI_EXP_DEVCAP2_ARI)) {
5576 /* Our parent bridge does not support ARI so issue a
5577 * warning and skip instantiating the VFs. They
5578 * won't be reachable.
5579 */
5580 dev_warn(&pdev->dev, "Parent bridge %02x:%02x.%x doesn't support ARI; can't instantiate Virtual Functions\n",
5581 pbridge->bus->number, PCI_SLOT(pbridge->devfn),
5582 PCI_FUNC(pbridge->devfn));
5583 return -ENOTSUPP;
5584 }
5585 memset(&port_cmd, 0, sizeof(port_cmd));
5586 port_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
5587 FW_CMD_REQUEST_F |
5588 FW_CMD_READ_F |
5589 FW_PFVF_CMD_PFN_V(adap->pf) |
5590 FW_PFVF_CMD_VFN_V(0));
5591 port_cmd.retval_len16 = cpu_to_be32(FW_LEN16(port_cmd));
5592 err = t4_wr_mbox(adap, adap->mbox, &port_cmd, sizeof(port_cmd),
5593 &port_rpl);
5594 if (err)
5595 return err;
5596 pmask = FW_PFVF_CMD_PMASK_G(be32_to_cpu(port_rpl.type_to_neq));
5597 port = ffs(pmask) - 1;
5598 /* Allocate VF Management Interface. */
5599 snprintf(name, IFNAMSIZ, "mgmtpf%d,%d", adap->adap_idx,
5600 adap->pf);
5601 netdev = alloc_netdev(sizeof(struct port_info),
5602 name, NET_NAME_UNKNOWN, cxgb4_mgmt_setup);
5603 if (!netdev)
5604 return -ENOMEM;
5605
5606 pi = netdev_priv(netdev);
5607 pi->adapter = adap;
5608 pi->lport = port;
5609 pi->tx_chan = port;
5610 SET_NETDEV_DEV(netdev, &pdev->dev);
5611
5612 adap->port[0] = netdev;
5613 pi->port_id = 0;
5614
5615 err = register_netdev(adap->port[0]);
5616 if (err) {
5617 pr_info("Unable to register VF mgmt netdev %s\n", name);
5618 free_netdev(adap->port[0]);
5619 adap->port[0] = NULL;
5620 return err;
5621 }
5622 /* Allocate and set up VF Information. */
5623 adap->vfinfo = kcalloc(pci_sriov_get_totalvfs(pdev),
5624 sizeof(struct vf_info), GFP_KERNEL);
5625 if (!adap->vfinfo) {
5626 unregister_netdev(adap->port[0]);
5627 free_netdev(adap->port[0]);
5628 adap->port[0] = NULL;
5629 return -ENOMEM;
5630 }
5631 cxgb4_mgmt_fill_vf_station_mac_addr(adap);
5632 }
5633 /* Instantiate the requested number of VFs. */
5634 err = pci_enable_sriov(pdev, num_vfs);
5635 if (err) {
5636 pr_info("Unable to instantiate %d VFs\n", num_vfs);
5637 if (!current_vfs) {
5638 unregister_netdev(adap->port[0]);
5639 free_netdev(adap->port[0]);
5640 adap->port[0] = NULL;
5641 kfree(adap->vfinfo);
5642 adap->vfinfo = NULL;
5643 }
5644 return err;
5645 }
5646
5647 adap->num_vfs = num_vfs;
5648 return num_vfs;
5649 }
5650 #endif /* CONFIG_PCI_IOV */
5651
init_one(struct pci_dev * pdev,const struct pci_device_id * ent)5652 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
5653 {
5654 struct net_device *netdev;
5655 struct adapter *adapter;
5656 static int adap_idx = 1;
5657 int s_qpp, qpp, num_seg;
5658 struct port_info *pi;
5659 bool highdma = false;
5660 enum chip_type chip;
5661 void __iomem *regs;
5662 int func, chip_ver;
5663 u16 device_id;
5664 int i, err;
5665 u32 whoami;
5666
5667 printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
5668
5669 err = pci_request_regions(pdev, KBUILD_MODNAME);
5670 if (err) {
5671 /* Just info, some other driver may have claimed the device. */
5672 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
5673 return err;
5674 }
5675
5676 err = pci_enable_device(pdev);
5677 if (err) {
5678 dev_err(&pdev->dev, "cannot enable PCI device\n");
5679 goto out_release_regions;
5680 }
5681
5682 regs = pci_ioremap_bar(pdev, 0);
5683 if (!regs) {
5684 dev_err(&pdev->dev, "cannot map device registers\n");
5685 err = -ENOMEM;
5686 goto out_disable_device;
5687 }
5688
5689 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
5690 if (!adapter) {
5691 err = -ENOMEM;
5692 goto out_unmap_bar0;
5693 }
5694
5695 adapter->regs = regs;
5696 err = t4_wait_dev_ready(regs);
5697 if (err < 0)
5698 goto out_free_adapter;
5699
5700 /* We control everything through one PF */
5701 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
5702 pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id);
5703 chip = t4_get_chip_type(adapter, CHELSIO_PCI_ID_VER(device_id));
5704 if ((int)chip < 0) {
5705 dev_err(&pdev->dev, "Device %d is not supported\n", device_id);
5706 err = chip;
5707 goto out_free_adapter;
5708 }
5709 chip_ver = CHELSIO_CHIP_VERSION(chip);
5710 func = chip_ver <= CHELSIO_T5 ?
5711 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
5712
5713 adapter->pdev = pdev;
5714 adapter->pdev_dev = &pdev->dev;
5715 adapter->name = pci_name(pdev);
5716 adapter->mbox = func;
5717 adapter->pf = func;
5718 adapter->params.chip = chip;
5719 adapter->adap_idx = adap_idx;
5720 adapter->msg_enable = DFLT_MSG_ENABLE;
5721 adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
5722 (sizeof(struct mbox_cmd) *
5723 T4_OS_LOG_MBOX_CMDS),
5724 GFP_KERNEL);
5725 if (!adapter->mbox_log) {
5726 err = -ENOMEM;
5727 goto out_free_adapter;
5728 }
5729 spin_lock_init(&adapter->mbox_lock);
5730 INIT_LIST_HEAD(&adapter->mlist.list);
5731 adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS;
5732 pci_set_drvdata(pdev, adapter);
5733
5734 if (func != ent->driver_data) {
5735 pci_disable_device(pdev);
5736 pci_save_state(pdev); /* to restore SR-IOV later */
5737 return 0;
5738 }
5739
5740 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
5741 highdma = true;
5742 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
5743 if (err) {
5744 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
5745 "coherent allocations\n");
5746 goto out_free_adapter;
5747 }
5748 } else {
5749 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
5750 if (err) {
5751 dev_err(&pdev->dev, "no usable DMA configuration\n");
5752 goto out_free_adapter;
5753 }
5754 }
5755
5756 pci_enable_pcie_error_reporting(pdev);
5757 pci_set_master(pdev);
5758 pci_save_state(pdev);
5759 adap_idx++;
5760 adapter->workq = create_singlethread_workqueue("cxgb4");
5761 if (!adapter->workq) {
5762 err = -ENOMEM;
5763 goto out_free_adapter;
5764 }
5765
5766 /* PCI device has been enabled */
5767 adapter->flags |= CXGB4_DEV_ENABLED;
5768 memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
5769
5770 /* If possible, we use PCIe Relaxed Ordering Attribute to deliver
5771 * Ingress Packet Data to Free List Buffers in order to allow for
5772 * chipset performance optimizations between the Root Complex and
5773 * Memory Controllers. (Messages to the associated Ingress Queue
5774 * notifying new Packet Placement in the Free Lists Buffers will be
5775 * send without the Relaxed Ordering Attribute thus guaranteeing that
5776 * all preceding PCIe Transaction Layer Packets will be processed
5777 * first.) But some Root Complexes have various issues with Upstream
5778 * Transaction Layer Packets with the Relaxed Ordering Attribute set.
5779 * The PCIe devices which under the Root Complexes will be cleared the
5780 * Relaxed Ordering bit in the configuration space, So we check our
5781 * PCIe configuration space to see if it's flagged with advice against
5782 * using Relaxed Ordering.
5783 */
5784 if (!pcie_relaxed_ordering_enabled(pdev))
5785 adapter->flags |= CXGB4_ROOT_NO_RELAXED_ORDERING;
5786
5787 spin_lock_init(&adapter->stats_lock);
5788 spin_lock_init(&adapter->tid_release_lock);
5789 spin_lock_init(&adapter->win0_lock);
5790
5791 INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
5792 INIT_WORK(&adapter->db_full_task, process_db_full);
5793 INIT_WORK(&adapter->db_drop_task, process_db_drop);
5794 INIT_WORK(&adapter->fatal_err_notify_task, notify_fatal_err);
5795
5796 err = t4_prep_adapter(adapter);
5797 if (err)
5798 goto out_free_adapter;
5799
5800 if (is_kdump_kernel()) {
5801 /* Collect hardware state and append to /proc/vmcore */
5802 err = cxgb4_cudbg_vmcore_add_dump(adapter);
5803 if (err) {
5804 dev_warn(adapter->pdev_dev,
5805 "Fail collecting vmcore device dump, err: %d. Continuing\n",
5806 err);
5807 err = 0;
5808 }
5809 }
5810
5811 if (!is_t4(adapter->params.chip)) {
5812 s_qpp = (QUEUESPERPAGEPF0_S +
5813 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
5814 adapter->pf);
5815 qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
5816 SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
5817 num_seg = PAGE_SIZE / SEGMENT_SIZE;
5818
5819 /* Each segment size is 128B. Write coalescing is enabled only
5820 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
5821 * queue is less no of segments that can be accommodated in
5822 * a page size.
5823 */
5824 if (qpp > num_seg) {
5825 dev_err(&pdev->dev,
5826 "Incorrect number of egress queues per page\n");
5827 err = -EINVAL;
5828 goto out_free_adapter;
5829 }
5830 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
5831 pci_resource_len(pdev, 2));
5832 if (!adapter->bar2) {
5833 dev_err(&pdev->dev, "cannot map device bar2 region\n");
5834 err = -ENOMEM;
5835 goto out_free_adapter;
5836 }
5837 }
5838
5839 setup_memwin(adapter);
5840 err = adap_init0(adapter);
5841 #ifdef CONFIG_DEBUG_FS
5842 bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz);
5843 #endif
5844 setup_memwin_rdma(adapter);
5845 if (err)
5846 goto out_unmap_bar;
5847
5848 /* configure SGE_STAT_CFG_A to read WC stats */
5849 if (!is_t4(adapter->params.chip))
5850 t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) |
5851 (is_t5(adapter->params.chip) ? STATMODE_V(0) :
5852 T6_STATMODE_V(0)));
5853
5854 /* Initialize hash mac addr list */
5855 INIT_LIST_HEAD(&adapter->mac_hlist);
5856
5857 for_each_port(adapter, i) {
5858 netdev = alloc_etherdev_mq(sizeof(struct port_info),
5859 MAX_ETH_QSETS);
5860 if (!netdev) {
5861 err = -ENOMEM;
5862 goto out_free_dev;
5863 }
5864
5865 SET_NETDEV_DEV(netdev, &pdev->dev);
5866
5867 adapter->port[i] = netdev;
5868 pi = netdev_priv(netdev);
5869 pi->adapter = adapter;
5870 pi->xact_addr_filt = -1;
5871 pi->port_id = i;
5872 netdev->irq = pdev->irq;
5873
5874 netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
5875 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
5876 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_GRO |
5877 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
5878 NETIF_F_HW_TC;
5879
5880 if (chip_ver > CHELSIO_T5) {
5881 netdev->hw_enc_features |= NETIF_F_IP_CSUM |
5882 NETIF_F_IPV6_CSUM |
5883 NETIF_F_RXCSUM |
5884 NETIF_F_GSO_UDP_TUNNEL |
5885 NETIF_F_GSO_UDP_TUNNEL_CSUM |
5886 NETIF_F_TSO | NETIF_F_TSO6;
5887
5888 netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL |
5889 NETIF_F_GSO_UDP_TUNNEL_CSUM |
5890 NETIF_F_HW_TLS_RECORD;
5891 }
5892
5893 if (highdma)
5894 netdev->hw_features |= NETIF_F_HIGHDMA;
5895 netdev->features |= netdev->hw_features;
5896 netdev->vlan_features = netdev->features & VLAN_FEAT;
5897
5898 netdev->priv_flags |= IFF_UNICAST_FLT;
5899
5900 /* MTU range: 81 - 9600 */
5901 netdev->min_mtu = 81; /* accommodate SACK */
5902 netdev->max_mtu = MAX_MTU;
5903
5904 netdev->netdev_ops = &cxgb4_netdev_ops;
5905 #ifdef CONFIG_CHELSIO_T4_DCB
5906 netdev->dcbnl_ops = &cxgb4_dcb_ops;
5907 cxgb4_dcb_state_init(netdev);
5908 cxgb4_dcb_version_init(netdev);
5909 #endif
5910 cxgb4_set_ethtool_ops(netdev);
5911 }
5912
5913 cxgb4_init_ethtool_dump(adapter);
5914
5915 pci_set_drvdata(pdev, adapter);
5916
5917 if (adapter->flags & CXGB4_FW_OK) {
5918 err = t4_port_init(adapter, func, func, 0);
5919 if (err)
5920 goto out_free_dev;
5921 } else if (adapter->params.nports == 1) {
5922 /* If we don't have a connection to the firmware -- possibly
5923 * because of an error -- grab the raw VPD parameters so we
5924 * can set the proper MAC Address on the debug network
5925 * interface that we've created.
5926 */
5927 u8 hw_addr[ETH_ALEN];
5928 u8 *na = adapter->params.vpd.na;
5929
5930 err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd);
5931 if (!err) {
5932 for (i = 0; i < ETH_ALEN; i++)
5933 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
5934 hex2val(na[2 * i + 1]));
5935 t4_set_hw_addr(adapter, 0, hw_addr);
5936 }
5937 }
5938
5939 if (!(adapter->flags & CXGB4_FW_OK))
5940 goto fw_attach_fail;
5941
5942 /* Configure queues and allocate tables now, they can be needed as
5943 * soon as the first register_netdev completes.
5944 */
5945 err = cfg_queues(adapter);
5946 if (err)
5947 goto out_free_dev;
5948
5949 adapter->smt = t4_init_smt();
5950 if (!adapter->smt) {
5951 /* We tolerate a lack of SMT, giving up some functionality */
5952 dev_warn(&pdev->dev, "could not allocate SMT, continuing\n");
5953 }
5954
5955 adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
5956 if (!adapter->l2t) {
5957 /* We tolerate a lack of L2T, giving up some functionality */
5958 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
5959 adapter->params.offload = 0;
5960 }
5961
5962 #if IS_ENABLED(CONFIG_IPV6)
5963 if (chip_ver <= CHELSIO_T5 &&
5964 (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) {
5965 /* CLIP functionality is not present in hardware,
5966 * hence disable all offload features
5967 */
5968 dev_warn(&pdev->dev,
5969 "CLIP not enabled in hardware, continuing\n");
5970 adapter->params.offload = 0;
5971 } else {
5972 adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
5973 adapter->clipt_end);
5974 if (!adapter->clipt) {
5975 /* We tolerate a lack of clip_table, giving up
5976 * some functionality
5977 */
5978 dev_warn(&pdev->dev,
5979 "could not allocate Clip table, continuing\n");
5980 adapter->params.offload = 0;
5981 }
5982 }
5983 #endif
5984
5985 for_each_port(adapter, i) {
5986 pi = adap2pinfo(adapter, i);
5987 pi->sched_tbl = t4_init_sched(adapter->params.nsched_cls);
5988 if (!pi->sched_tbl)
5989 dev_warn(&pdev->dev,
5990 "could not activate scheduling on port %d\n",
5991 i);
5992 }
5993
5994 if (tid_init(&adapter->tids) < 0) {
5995 dev_warn(&pdev->dev, "could not allocate TID table, "
5996 "continuing\n");
5997 adapter->params.offload = 0;
5998 } else {
5999 adapter->tc_u32 = cxgb4_init_tc_u32(adapter);
6000 if (!adapter->tc_u32)
6001 dev_warn(&pdev->dev,
6002 "could not offload tc u32, continuing\n");
6003
6004 if (cxgb4_init_tc_flower(adapter))
6005 dev_warn(&pdev->dev,
6006 "could not offload tc flower, continuing\n");
6007 }
6008
6009 if (is_offload(adapter) || is_hashfilter(adapter)) {
6010 if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) {
6011 u32 hash_base, hash_reg;
6012
6013 if (chip_ver <= CHELSIO_T5) {
6014 hash_reg = LE_DB_TID_HASHBASE_A;
6015 hash_base = t4_read_reg(adapter, hash_reg);
6016 adapter->tids.hash_base = hash_base / 4;
6017 } else {
6018 hash_reg = T6_LE_DB_HASH_TID_BASE_A;
6019 hash_base = t4_read_reg(adapter, hash_reg);
6020 adapter->tids.hash_base = hash_base;
6021 }
6022 }
6023 }
6024
6025 /* See what interrupts we'll be using */
6026 if (msi > 1 && enable_msix(adapter) == 0)
6027 adapter->flags |= CXGB4_USING_MSIX;
6028 else if (msi > 0 && pci_enable_msi(pdev) == 0) {
6029 adapter->flags |= CXGB4_USING_MSI;
6030 if (msi > 1)
6031 free_msix_info(adapter);
6032 }
6033
6034 /* check for PCI Express bandwidth capabiltites */
6035 pcie_print_link_status(pdev);
6036
6037 cxgb4_init_mps_ref_entries(adapter);
6038
6039 err = init_rss(adapter);
6040 if (err)
6041 goto out_free_dev;
6042
6043 err = setup_fw_sge_queues(adapter);
6044 if (err) {
6045 dev_err(adapter->pdev_dev,
6046 "FW sge queue allocation failed, err %d", err);
6047 goto out_free_dev;
6048 }
6049
6050 fw_attach_fail:
6051 /*
6052 * The card is now ready to go. If any errors occur during device
6053 * registration we do not fail the whole card but rather proceed only
6054 * with the ports we manage to register successfully. However we must
6055 * register at least one net device.
6056 */
6057 for_each_port(adapter, i) {
6058 pi = adap2pinfo(adapter, i);
6059 adapter->port[i]->dev_port = pi->lport;
6060 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
6061 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
6062
6063 netif_carrier_off(adapter->port[i]);
6064
6065 err = register_netdev(adapter->port[i]);
6066 if (err)
6067 break;
6068 adapter->chan_map[pi->tx_chan] = i;
6069 print_port_info(adapter->port[i]);
6070 }
6071 if (i == 0) {
6072 dev_err(&pdev->dev, "could not register any net devices\n");
6073 goto out_free_dev;
6074 }
6075 if (err) {
6076 dev_warn(&pdev->dev, "only %d net devices registered\n", i);
6077 err = 0;
6078 }
6079
6080 if (cxgb4_debugfs_root) {
6081 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
6082 cxgb4_debugfs_root);
6083 setup_debugfs(adapter);
6084 }
6085
6086 /* PCIe EEH recovery on powerpc platforms needs fundamental reset */
6087 pdev->needs_freset = 1;
6088
6089 if (is_uld(adapter)) {
6090 mutex_lock(&uld_mutex);
6091 list_add_tail(&adapter->list_node, &adapter_list);
6092 mutex_unlock(&uld_mutex);
6093 }
6094
6095 if (!is_t4(adapter->params.chip))
6096 cxgb4_ptp_init(adapter);
6097
6098 if (IS_REACHABLE(CONFIG_THERMAL) &&
6099 !is_t4(adapter->params.chip) && (adapter->flags & CXGB4_FW_OK))
6100 cxgb4_thermal_init(adapter);
6101
6102 print_adapter_info(adapter);
6103 return 0;
6104
6105 out_free_dev:
6106 t4_free_sge_resources(adapter);
6107 free_some_resources(adapter);
6108 if (adapter->flags & CXGB4_USING_MSIX)
6109 free_msix_info(adapter);
6110 if (adapter->num_uld || adapter->num_ofld_uld)
6111 t4_uld_mem_free(adapter);
6112 out_unmap_bar:
6113 if (!is_t4(adapter->params.chip))
6114 iounmap(adapter->bar2);
6115 out_free_adapter:
6116 if (adapter->workq)
6117 destroy_workqueue(adapter->workq);
6118
6119 kfree(adapter->mbox_log);
6120 kfree(adapter);
6121 out_unmap_bar0:
6122 iounmap(regs);
6123 out_disable_device:
6124 pci_disable_pcie_error_reporting(pdev);
6125 pci_disable_device(pdev);
6126 out_release_regions:
6127 pci_release_regions(pdev);
6128 return err;
6129 }
6130
remove_one(struct pci_dev * pdev)6131 static void remove_one(struct pci_dev *pdev)
6132 {
6133 struct adapter *adapter = pci_get_drvdata(pdev);
6134 struct hash_mac_addr *entry, *tmp;
6135
6136 if (!adapter) {
6137 pci_release_regions(pdev);
6138 return;
6139 }
6140
6141 /* If we allocated filters, free up state associated with any
6142 * valid filters ...
6143 */
6144 clear_all_filters(adapter);
6145
6146 adapter->flags |= CXGB4_SHUTTING_DOWN;
6147
6148 if (adapter->pf == 4) {
6149 int i;
6150
6151 /* Tear down per-adapter Work Queue first since it can contain
6152 * references to our adapter data structure.
6153 */
6154 destroy_workqueue(adapter->workq);
6155
6156 if (is_uld(adapter)) {
6157 detach_ulds(adapter);
6158 t4_uld_clean_up(adapter);
6159 }
6160
6161 adap_free_hma_mem(adapter);
6162
6163 disable_interrupts(adapter);
6164
6165 cxgb4_free_mps_ref_entries(adapter);
6166
6167 for_each_port(adapter, i)
6168 if (adapter->port[i]->reg_state == NETREG_REGISTERED)
6169 unregister_netdev(adapter->port[i]);
6170
6171 debugfs_remove_recursive(adapter->debugfs_root);
6172
6173 if (!is_t4(adapter->params.chip))
6174 cxgb4_ptp_stop(adapter);
6175 if (IS_REACHABLE(CONFIG_THERMAL))
6176 cxgb4_thermal_remove(adapter);
6177
6178 if (adapter->flags & CXGB4_FULL_INIT_DONE)
6179 cxgb_down(adapter);
6180
6181 if (adapter->flags & CXGB4_USING_MSIX)
6182 free_msix_info(adapter);
6183 if (adapter->num_uld || adapter->num_ofld_uld)
6184 t4_uld_mem_free(adapter);
6185 free_some_resources(adapter);
6186 list_for_each_entry_safe(entry, tmp, &adapter->mac_hlist,
6187 list) {
6188 list_del(&entry->list);
6189 kfree(entry);
6190 }
6191
6192 #if IS_ENABLED(CONFIG_IPV6)
6193 t4_cleanup_clip_tbl(adapter);
6194 #endif
6195 if (!is_t4(adapter->params.chip))
6196 iounmap(adapter->bar2);
6197 }
6198 #ifdef CONFIG_PCI_IOV
6199 else {
6200 cxgb4_iov_configure(adapter->pdev, 0);
6201 }
6202 #endif
6203 iounmap(adapter->regs);
6204 pci_disable_pcie_error_reporting(pdev);
6205 if ((adapter->flags & CXGB4_DEV_ENABLED)) {
6206 pci_disable_device(pdev);
6207 adapter->flags &= ~CXGB4_DEV_ENABLED;
6208 }
6209 pci_release_regions(pdev);
6210 kfree(adapter->mbox_log);
6211 synchronize_rcu();
6212 kfree(adapter);
6213 }
6214
6215 /* "Shutdown" quiesces the device, stopping Ingress Packet and Interrupt
6216 * delivery. This is essentially a stripped down version of the PCI remove()
6217 * function where we do the minimal amount of work necessary to shutdown any
6218 * further activity.
6219 */
shutdown_one(struct pci_dev * pdev)6220 static void shutdown_one(struct pci_dev *pdev)
6221 {
6222 struct adapter *adapter = pci_get_drvdata(pdev);
6223
6224 /* As with remove_one() above (see extended comment), we only want do
6225 * do cleanup on PCI Devices which went all the way through init_one()
6226 * ...
6227 */
6228 if (!adapter) {
6229 pci_release_regions(pdev);
6230 return;
6231 }
6232
6233 adapter->flags |= CXGB4_SHUTTING_DOWN;
6234
6235 if (adapter->pf == 4) {
6236 int i;
6237
6238 for_each_port(adapter, i)
6239 if (adapter->port[i]->reg_state == NETREG_REGISTERED)
6240 cxgb_close(adapter->port[i]);
6241
6242 if (is_uld(adapter)) {
6243 detach_ulds(adapter);
6244 t4_uld_clean_up(adapter);
6245 }
6246
6247 disable_interrupts(adapter);
6248 disable_msi(adapter);
6249
6250 t4_sge_stop(adapter);
6251 if (adapter->flags & CXGB4_FW_OK)
6252 t4_fw_bye(adapter, adapter->mbox);
6253 }
6254 }
6255
6256 static struct pci_driver cxgb4_driver = {
6257 .name = KBUILD_MODNAME,
6258 .id_table = cxgb4_pci_tbl,
6259 .probe = init_one,
6260 .remove = remove_one,
6261 .shutdown = shutdown_one,
6262 #ifdef CONFIG_PCI_IOV
6263 .sriov_configure = cxgb4_iov_configure,
6264 #endif
6265 .err_handler = &cxgb4_eeh,
6266 };
6267
cxgb4_init_module(void)6268 static int __init cxgb4_init_module(void)
6269 {
6270 int ret;
6271
6272 cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
6273
6274 ret = pci_register_driver(&cxgb4_driver);
6275 if (ret < 0)
6276 goto err_pci;
6277
6278 #if IS_ENABLED(CONFIG_IPV6)
6279 if (!inet6addr_registered) {
6280 ret = register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
6281 if (ret)
6282 pci_unregister_driver(&cxgb4_driver);
6283 else
6284 inet6addr_registered = true;
6285 }
6286 #endif
6287
6288 if (ret == 0)
6289 return ret;
6290
6291 err_pci:
6292 debugfs_remove(cxgb4_debugfs_root);
6293
6294 return ret;
6295 }
6296
cxgb4_cleanup_module(void)6297 static void __exit cxgb4_cleanup_module(void)
6298 {
6299 #if IS_ENABLED(CONFIG_IPV6)
6300 if (inet6addr_registered) {
6301 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
6302 inet6addr_registered = false;
6303 }
6304 #endif
6305 pci_unregister_driver(&cxgb4_driver);
6306 debugfs_remove(cxgb4_debugfs_root); /* NULL ok */
6307 }
6308
6309 module_init(cxgb4_init_module);
6310 module_exit(cxgb4_cleanup_module);
6311