1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 2013-2015 Chelsio Communications.  All rights reserved.
4  */
5 
6 #include <linux/firmware.h>
7 #include <linux/mdio.h>
8 
9 #include "cxgb4.h"
10 #include "t4_regs.h"
11 #include "t4fw_api.h"
12 #include "cxgb4_cudbg.h"
13 
14 #define EEPROM_MAGIC 0x38E2F10C
15 
get_msglevel(struct net_device * dev)16 static u32 get_msglevel(struct net_device *dev)
17 {
18 	return netdev2adap(dev)->msg_enable;
19 }
20 
set_msglevel(struct net_device * dev,u32 val)21 static void set_msglevel(struct net_device *dev, u32 val)
22 {
23 	netdev2adap(dev)->msg_enable = val;
24 }
25 
26 static const char stats_strings[][ETH_GSTRING_LEN] = {
27 	"tx_octets_ok           ",
28 	"tx_frames_ok           ",
29 	"tx_broadcast_frames    ",
30 	"tx_multicast_frames    ",
31 	"tx_unicast_frames      ",
32 	"tx_error_frames        ",
33 
34 	"tx_frames_64           ",
35 	"tx_frames_65_to_127    ",
36 	"tx_frames_128_to_255   ",
37 	"tx_frames_256_to_511   ",
38 	"tx_frames_512_to_1023  ",
39 	"tx_frames_1024_to_1518 ",
40 	"tx_frames_1519_to_max  ",
41 
42 	"tx_frames_dropped      ",
43 	"tx_pause_frames        ",
44 	"tx_ppp0_frames         ",
45 	"tx_ppp1_frames         ",
46 	"tx_ppp2_frames         ",
47 	"tx_ppp3_frames         ",
48 	"tx_ppp4_frames         ",
49 	"tx_ppp5_frames         ",
50 	"tx_ppp6_frames         ",
51 	"tx_ppp7_frames         ",
52 
53 	"rx_octets_ok           ",
54 	"rx_frames_ok           ",
55 	"rx_broadcast_frames    ",
56 	"rx_multicast_frames    ",
57 	"rx_unicast_frames      ",
58 
59 	"rx_frames_too_long     ",
60 	"rx_jabber_errors       ",
61 	"rx_fcs_errors          ",
62 	"rx_length_errors       ",
63 	"rx_symbol_errors       ",
64 	"rx_runt_frames         ",
65 
66 	"rx_frames_64           ",
67 	"rx_frames_65_to_127    ",
68 	"rx_frames_128_to_255   ",
69 	"rx_frames_256_to_511   ",
70 	"rx_frames_512_to_1023  ",
71 	"rx_frames_1024_to_1518 ",
72 	"rx_frames_1519_to_max  ",
73 
74 	"rx_pause_frames        ",
75 	"rx_ppp0_frames         ",
76 	"rx_ppp1_frames         ",
77 	"rx_ppp2_frames         ",
78 	"rx_ppp3_frames         ",
79 	"rx_ppp4_frames         ",
80 	"rx_ppp5_frames         ",
81 	"rx_ppp6_frames         ",
82 	"rx_ppp7_frames         ",
83 
84 	"rx_bg0_frames_dropped  ",
85 	"rx_bg1_frames_dropped  ",
86 	"rx_bg2_frames_dropped  ",
87 	"rx_bg3_frames_dropped  ",
88 	"rx_bg0_frames_trunc    ",
89 	"rx_bg1_frames_trunc    ",
90 	"rx_bg2_frames_trunc    ",
91 	"rx_bg3_frames_trunc    ",
92 
93 	"tso                    ",
94 	"tx_csum_offload        ",
95 	"rx_csum_good           ",
96 	"vlan_extractions       ",
97 	"vlan_insertions        ",
98 	"gro_packets            ",
99 	"gro_merged             ",
100 };
101 
102 static char adapter_stats_strings[][ETH_GSTRING_LEN] = {
103 	"db_drop                ",
104 	"db_full                ",
105 	"db_empty               ",
106 	"write_coal_success     ",
107 	"write_coal_fail        ",
108 };
109 
110 static char loopback_stats_strings[][ETH_GSTRING_LEN] = {
111 	"-------Loopback----------- ",
112 	"octets_ok              ",
113 	"frames_ok              ",
114 	"bcast_frames           ",
115 	"mcast_frames           ",
116 	"ucast_frames           ",
117 	"error_frames           ",
118 	"frames_64              ",
119 	"frames_65_to_127       ",
120 	"frames_128_to_255      ",
121 	"frames_256_to_511      ",
122 	"frames_512_to_1023     ",
123 	"frames_1024_to_1518    ",
124 	"frames_1519_to_max     ",
125 	"frames_dropped         ",
126 	"bg0_frames_dropped     ",
127 	"bg1_frames_dropped     ",
128 	"bg2_frames_dropped     ",
129 	"bg3_frames_dropped     ",
130 	"bg0_frames_trunc       ",
131 	"bg1_frames_trunc       ",
132 	"bg2_frames_trunc       ",
133 	"bg3_frames_trunc       ",
134 };
135 
136 static const char cxgb4_priv_flags_strings[][ETH_GSTRING_LEN] = {
137 	[PRIV_FLAG_PORT_TX_VM_BIT] = "port_tx_vm_wr",
138 };
139 
get_sset_count(struct net_device * dev,int sset)140 static int get_sset_count(struct net_device *dev, int sset)
141 {
142 	switch (sset) {
143 	case ETH_SS_STATS:
144 		return ARRAY_SIZE(stats_strings) +
145 		       ARRAY_SIZE(adapter_stats_strings) +
146 		       ARRAY_SIZE(loopback_stats_strings);
147 	case ETH_SS_PRIV_FLAGS:
148 		return ARRAY_SIZE(cxgb4_priv_flags_strings);
149 	default:
150 		return -EOPNOTSUPP;
151 	}
152 }
153 
get_regs_len(struct net_device * dev)154 static int get_regs_len(struct net_device *dev)
155 {
156 	struct adapter *adap = netdev2adap(dev);
157 
158 	return t4_get_regs_len(adap);
159 }
160 
get_eeprom_len(struct net_device * dev)161 static int get_eeprom_len(struct net_device *dev)
162 {
163 	return EEPROMSIZE;
164 }
165 
get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)166 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
167 {
168 	struct adapter *adapter = netdev2adap(dev);
169 	u32 exprom_vers;
170 
171 	strlcpy(info->driver, cxgb4_driver_name, sizeof(info->driver));
172 	strlcpy(info->version, cxgb4_driver_version,
173 		sizeof(info->version));
174 	strlcpy(info->bus_info, pci_name(adapter->pdev),
175 		sizeof(info->bus_info));
176 	info->regdump_len = get_regs_len(dev);
177 
178 	if (!adapter->params.fw_vers)
179 		strcpy(info->fw_version, "N/A");
180 	else
181 		snprintf(info->fw_version, sizeof(info->fw_version),
182 			 "%u.%u.%u.%u, TP %u.%u.%u.%u",
183 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers),
184 			 FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers),
185 			 FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers),
186 			 FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers),
187 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers),
188 			 FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers),
189 			 FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers),
190 			 FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers));
191 
192 	if (!t4_get_exprom_version(adapter, &exprom_vers))
193 		snprintf(info->erom_version, sizeof(info->erom_version),
194 			 "%u.%u.%u.%u",
195 			 FW_HDR_FW_VER_MAJOR_G(exprom_vers),
196 			 FW_HDR_FW_VER_MINOR_G(exprom_vers),
197 			 FW_HDR_FW_VER_MICRO_G(exprom_vers),
198 			 FW_HDR_FW_VER_BUILD_G(exprom_vers));
199 	info->n_priv_flags = ARRAY_SIZE(cxgb4_priv_flags_strings);
200 }
201 
get_strings(struct net_device * dev,u32 stringset,u8 * data)202 static void get_strings(struct net_device *dev, u32 stringset, u8 *data)
203 {
204 	if (stringset == ETH_SS_STATS) {
205 		memcpy(data, stats_strings, sizeof(stats_strings));
206 		data += sizeof(stats_strings);
207 		memcpy(data, adapter_stats_strings,
208 		       sizeof(adapter_stats_strings));
209 		data += sizeof(adapter_stats_strings);
210 		memcpy(data, loopback_stats_strings,
211 		       sizeof(loopback_stats_strings));
212 	} else if (stringset == ETH_SS_PRIV_FLAGS) {
213 		memcpy(data, cxgb4_priv_flags_strings,
214 		       sizeof(cxgb4_priv_flags_strings));
215 	}
216 }
217 
218 /* port stats maintained per queue of the port. They should be in the same
219  * order as in stats_strings above.
220  */
221 struct queue_port_stats {
222 	u64 tso;
223 	u64 tx_csum;
224 	u64 rx_csum;
225 	u64 vlan_ex;
226 	u64 vlan_ins;
227 	u64 gro_pkts;
228 	u64 gro_merged;
229 };
230 
231 struct adapter_stats {
232 	u64 db_drop;
233 	u64 db_full;
234 	u64 db_empty;
235 	u64 wc_success;
236 	u64 wc_fail;
237 };
238 
collect_sge_port_stats(const struct adapter * adap,const struct port_info * p,struct queue_port_stats * s)239 static void collect_sge_port_stats(const struct adapter *adap,
240 				   const struct port_info *p,
241 				   struct queue_port_stats *s)
242 {
243 	int i;
244 	const struct sge_eth_txq *tx = &adap->sge.ethtxq[p->first_qset];
245 	const struct sge_eth_rxq *rx = &adap->sge.ethrxq[p->first_qset];
246 
247 	memset(s, 0, sizeof(*s));
248 	for (i = 0; i < p->nqsets; i++, rx++, tx++) {
249 		s->tso += tx->tso;
250 		s->tx_csum += tx->tx_cso;
251 		s->rx_csum += rx->stats.rx_cso;
252 		s->vlan_ex += rx->stats.vlan_ex;
253 		s->vlan_ins += tx->vlan_ins;
254 		s->gro_pkts += rx->stats.lro_pkts;
255 		s->gro_merged += rx->stats.lro_merged;
256 	}
257 }
258 
collect_adapter_stats(struct adapter * adap,struct adapter_stats * s)259 static void collect_adapter_stats(struct adapter *adap, struct adapter_stats *s)
260 {
261 	u64 val1, val2;
262 
263 	memset(s, 0, sizeof(*s));
264 
265 	s->db_drop = adap->db_stats.db_drop;
266 	s->db_full = adap->db_stats.db_full;
267 	s->db_empty = adap->db_stats.db_empty;
268 
269 	if (!is_t4(adap->params.chip)) {
270 		int v;
271 
272 		v = t4_read_reg(adap, SGE_STAT_CFG_A);
273 		if (STATSOURCE_T5_G(v) == 7) {
274 			val2 = t4_read_reg(adap, SGE_STAT_MATCH_A);
275 			val1 = t4_read_reg(adap, SGE_STAT_TOTAL_A);
276 			s->wc_success = val1 - val2;
277 			s->wc_fail = val2;
278 		}
279 	}
280 }
281 
get_stats(struct net_device * dev,struct ethtool_stats * stats,u64 * data)282 static void get_stats(struct net_device *dev, struct ethtool_stats *stats,
283 		      u64 *data)
284 {
285 	struct port_info *pi = netdev_priv(dev);
286 	struct adapter *adapter = pi->adapter;
287 	struct lb_port_stats s;
288 	int i;
289 	u64 *p0;
290 
291 	t4_get_port_stats_offset(adapter, pi->tx_chan,
292 				 (struct port_stats *)data,
293 				 &pi->stats_base);
294 
295 	data += sizeof(struct port_stats) / sizeof(u64);
296 	collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data);
297 	data += sizeof(struct queue_port_stats) / sizeof(u64);
298 	collect_adapter_stats(adapter, (struct adapter_stats *)data);
299 	data += sizeof(struct adapter_stats) / sizeof(u64);
300 
301 	*data++ = (u64)pi->port_id;
302 	memset(&s, 0, sizeof(s));
303 	t4_get_lb_stats(adapter, pi->port_id, &s);
304 
305 	p0 = &s.octets;
306 	for (i = 0; i < ARRAY_SIZE(loopback_stats_strings) - 1; i++)
307 		*data++ = (unsigned long long)*p0++;
308 }
309 
get_regs(struct net_device * dev,struct ethtool_regs * regs,void * buf)310 static void get_regs(struct net_device *dev, struct ethtool_regs *regs,
311 		     void *buf)
312 {
313 	struct adapter *adap = netdev2adap(dev);
314 	size_t buf_size;
315 
316 	buf_size = t4_get_regs_len(adap);
317 	regs->version = mk_adap_vers(adap);
318 	t4_get_regs(adap, buf, buf_size);
319 }
320 
restart_autoneg(struct net_device * dev)321 static int restart_autoneg(struct net_device *dev)
322 {
323 	struct port_info *p = netdev_priv(dev);
324 
325 	if (!netif_running(dev))
326 		return -EAGAIN;
327 	if (p->link_cfg.autoneg != AUTONEG_ENABLE)
328 		return -EINVAL;
329 	t4_restart_aneg(p->adapter, p->adapter->pf, p->tx_chan);
330 	return 0;
331 }
332 
identify_port(struct net_device * dev,enum ethtool_phys_id_state state)333 static int identify_port(struct net_device *dev,
334 			 enum ethtool_phys_id_state state)
335 {
336 	unsigned int val;
337 	struct adapter *adap = netdev2adap(dev);
338 
339 	if (state == ETHTOOL_ID_ACTIVE)
340 		val = 0xffff;
341 	else if (state == ETHTOOL_ID_INACTIVE)
342 		val = 0;
343 	else
344 		return -EINVAL;
345 
346 	return t4_identify_port(adap, adap->pf, netdev2pinfo(dev)->viid, val);
347 }
348 
349 /**
350  *	from_fw_port_mod_type - translate Firmware Port/Module type to Ethtool
351  *	@port_type: Firmware Port Type
352  *	@mod_type: Firmware Module Type
353  *
354  *	Translate Firmware Port/Module type to Ethtool Port Type.
355  */
from_fw_port_mod_type(enum fw_port_type port_type,enum fw_port_module_type mod_type)356 static int from_fw_port_mod_type(enum fw_port_type port_type,
357 				 enum fw_port_module_type mod_type)
358 {
359 	if (port_type == FW_PORT_TYPE_BT_SGMII ||
360 	    port_type == FW_PORT_TYPE_BT_XFI ||
361 	    port_type == FW_PORT_TYPE_BT_XAUI) {
362 		return PORT_TP;
363 	} else if (port_type == FW_PORT_TYPE_FIBER_XFI ||
364 		   port_type == FW_PORT_TYPE_FIBER_XAUI) {
365 		return PORT_FIBRE;
366 	} else if (port_type == FW_PORT_TYPE_SFP ||
367 		   port_type == FW_PORT_TYPE_QSFP_10G ||
368 		   port_type == FW_PORT_TYPE_QSA ||
369 		   port_type == FW_PORT_TYPE_QSFP ||
370 		   port_type == FW_PORT_TYPE_CR4_QSFP ||
371 		   port_type == FW_PORT_TYPE_CR_QSFP ||
372 		   port_type == FW_PORT_TYPE_CR2_QSFP ||
373 		   port_type == FW_PORT_TYPE_SFP28) {
374 		if (mod_type == FW_PORT_MOD_TYPE_LR ||
375 		    mod_type == FW_PORT_MOD_TYPE_SR ||
376 		    mod_type == FW_PORT_MOD_TYPE_ER ||
377 		    mod_type == FW_PORT_MOD_TYPE_LRM)
378 			return PORT_FIBRE;
379 		else if (mod_type == FW_PORT_MOD_TYPE_TWINAX_PASSIVE ||
380 			 mod_type == FW_PORT_MOD_TYPE_TWINAX_ACTIVE)
381 			return PORT_DA;
382 		else
383 			return PORT_OTHER;
384 	} else if (port_type == FW_PORT_TYPE_KR4_100G ||
385 		   port_type == FW_PORT_TYPE_KR_SFP28 ||
386 		   port_type == FW_PORT_TYPE_KR_XLAUI) {
387 		return PORT_NONE;
388 	}
389 
390 	return PORT_OTHER;
391 }
392 
393 /**
394  *	speed_to_fw_caps - translate Port Speed to Firmware Port Capabilities
395  *	@speed: speed in Kb/s
396  *
397  *	Translates a specific Port Speed into a Firmware Port Capabilities
398  *	value.
399  */
speed_to_fw_caps(int speed)400 static unsigned int speed_to_fw_caps(int speed)
401 {
402 	if (speed == 100)
403 		return FW_PORT_CAP32_SPEED_100M;
404 	if (speed == 1000)
405 		return FW_PORT_CAP32_SPEED_1G;
406 	if (speed == 10000)
407 		return FW_PORT_CAP32_SPEED_10G;
408 	if (speed == 25000)
409 		return FW_PORT_CAP32_SPEED_25G;
410 	if (speed == 40000)
411 		return FW_PORT_CAP32_SPEED_40G;
412 	if (speed == 50000)
413 		return FW_PORT_CAP32_SPEED_50G;
414 	if (speed == 100000)
415 		return FW_PORT_CAP32_SPEED_100G;
416 	if (speed == 200000)
417 		return FW_PORT_CAP32_SPEED_200G;
418 	if (speed == 400000)
419 		return FW_PORT_CAP32_SPEED_400G;
420 	return 0;
421 }
422 
423 /**
424  *	fw_caps_to_lmm - translate Firmware to ethtool Link Mode Mask
425  *	@port_type: Firmware Port Type
426  *	@fw_caps: Firmware Port Capabilities
427  *	@link_mode_mask: ethtool Link Mode Mask
428  *
429  *	Translate a Firmware Port Capabilities specification to an ethtool
430  *	Link Mode Mask.
431  */
fw_caps_to_lmm(enum fw_port_type port_type,fw_port_cap32_t fw_caps,unsigned long * link_mode_mask)432 static void fw_caps_to_lmm(enum fw_port_type port_type,
433 			   fw_port_cap32_t fw_caps,
434 			   unsigned long *link_mode_mask)
435 {
436 	#define SET_LMM(__lmm_name) \
437 		do { \
438 			__set_bit(ETHTOOL_LINK_MODE_ ## __lmm_name ## _BIT, \
439 				  link_mode_mask); \
440 		} while (0)
441 
442 	#define FW_CAPS_TO_LMM(__fw_name, __lmm_name) \
443 		do { \
444 			if (fw_caps & FW_PORT_CAP32_ ## __fw_name) \
445 				SET_LMM(__lmm_name); \
446 		} while (0)
447 
448 	switch (port_type) {
449 	case FW_PORT_TYPE_BT_SGMII:
450 	case FW_PORT_TYPE_BT_XFI:
451 	case FW_PORT_TYPE_BT_XAUI:
452 		SET_LMM(TP);
453 		FW_CAPS_TO_LMM(SPEED_100M, 100baseT_Full);
454 		FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
455 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full);
456 		break;
457 
458 	case FW_PORT_TYPE_KX4:
459 	case FW_PORT_TYPE_KX:
460 		SET_LMM(Backplane);
461 		FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full);
462 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseKX4_Full);
463 		break;
464 
465 	case FW_PORT_TYPE_KR:
466 		SET_LMM(Backplane);
467 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
468 		break;
469 
470 	case FW_PORT_TYPE_BP_AP:
471 		SET_LMM(Backplane);
472 		FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full);
473 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseR_FEC);
474 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
475 		break;
476 
477 	case FW_PORT_TYPE_BP4_AP:
478 		SET_LMM(Backplane);
479 		FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full);
480 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseR_FEC);
481 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
482 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseKX4_Full);
483 		break;
484 
485 	case FW_PORT_TYPE_FIBER_XFI:
486 	case FW_PORT_TYPE_FIBER_XAUI:
487 	case FW_PORT_TYPE_SFP:
488 	case FW_PORT_TYPE_QSFP_10G:
489 	case FW_PORT_TYPE_QSA:
490 		SET_LMM(FIBRE);
491 		FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
492 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full);
493 		break;
494 
495 	case FW_PORT_TYPE_BP40_BA:
496 	case FW_PORT_TYPE_QSFP:
497 		SET_LMM(FIBRE);
498 		FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
499 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full);
500 		FW_CAPS_TO_LMM(SPEED_40G, 40000baseSR4_Full);
501 		break;
502 
503 	case FW_PORT_TYPE_CR_QSFP:
504 	case FW_PORT_TYPE_SFP28:
505 		SET_LMM(FIBRE);
506 		FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
507 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full);
508 		FW_CAPS_TO_LMM(SPEED_25G, 25000baseCR_Full);
509 		break;
510 
511 	case FW_PORT_TYPE_KR_SFP28:
512 		SET_LMM(Backplane);
513 		FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
514 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
515 		FW_CAPS_TO_LMM(SPEED_25G, 25000baseKR_Full);
516 		break;
517 
518 	case FW_PORT_TYPE_KR_XLAUI:
519 		SET_LMM(Backplane);
520 		FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full);
521 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
522 		FW_CAPS_TO_LMM(SPEED_40G, 40000baseKR4_Full);
523 		break;
524 
525 	case FW_PORT_TYPE_CR2_QSFP:
526 		SET_LMM(FIBRE);
527 		FW_CAPS_TO_LMM(SPEED_50G, 50000baseSR2_Full);
528 		break;
529 
530 	case FW_PORT_TYPE_KR4_100G:
531 	case FW_PORT_TYPE_CR4_QSFP:
532 		SET_LMM(FIBRE);
533 		FW_CAPS_TO_LMM(SPEED_1G,  1000baseT_Full);
534 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
535 		FW_CAPS_TO_LMM(SPEED_40G, 40000baseSR4_Full);
536 		FW_CAPS_TO_LMM(SPEED_25G, 25000baseCR_Full);
537 		FW_CAPS_TO_LMM(SPEED_50G, 50000baseCR2_Full);
538 		FW_CAPS_TO_LMM(SPEED_100G, 100000baseCR4_Full);
539 		break;
540 
541 	default:
542 		break;
543 	}
544 
545 	if (fw_caps & FW_PORT_CAP32_FEC_V(FW_PORT_CAP32_FEC_M)) {
546 		FW_CAPS_TO_LMM(FEC_RS, FEC_RS);
547 		FW_CAPS_TO_LMM(FEC_BASER_RS, FEC_BASER);
548 	} else {
549 		SET_LMM(FEC_NONE);
550 	}
551 
552 	FW_CAPS_TO_LMM(ANEG, Autoneg);
553 	FW_CAPS_TO_LMM(802_3_PAUSE, Pause);
554 	FW_CAPS_TO_LMM(802_3_ASM_DIR, Asym_Pause);
555 
556 	#undef FW_CAPS_TO_LMM
557 	#undef SET_LMM
558 }
559 
560 /**
561  *	lmm_to_fw_caps - translate ethtool Link Mode Mask to Firmware
562  *	capabilities
563  *	@et_lmm: ethtool Link Mode Mask
564  *
565  *	Translate ethtool Link Mode Mask into a Firmware Port capabilities
566  *	value.
567  */
lmm_to_fw_caps(const unsigned long * link_mode_mask)568 static unsigned int lmm_to_fw_caps(const unsigned long *link_mode_mask)
569 {
570 	unsigned int fw_caps = 0;
571 
572 	#define LMM_TO_FW_CAPS(__lmm_name, __fw_name) \
573 		do { \
574 			if (test_bit(ETHTOOL_LINK_MODE_ ## __lmm_name ## _BIT, \
575 				     link_mode_mask)) \
576 				fw_caps |= FW_PORT_CAP32_ ## __fw_name; \
577 		} while (0)
578 
579 	LMM_TO_FW_CAPS(100baseT_Full, SPEED_100M);
580 	LMM_TO_FW_CAPS(1000baseT_Full, SPEED_1G);
581 	LMM_TO_FW_CAPS(10000baseT_Full, SPEED_10G);
582 	LMM_TO_FW_CAPS(40000baseSR4_Full, SPEED_40G);
583 	LMM_TO_FW_CAPS(25000baseCR_Full, SPEED_25G);
584 	LMM_TO_FW_CAPS(50000baseCR2_Full, SPEED_50G);
585 	LMM_TO_FW_CAPS(100000baseCR4_Full, SPEED_100G);
586 
587 	#undef LMM_TO_FW_CAPS
588 
589 	return fw_caps;
590 }
591 
get_link_ksettings(struct net_device * dev,struct ethtool_link_ksettings * link_ksettings)592 static int get_link_ksettings(struct net_device *dev,
593 			      struct ethtool_link_ksettings *link_ksettings)
594 {
595 	struct port_info *pi = netdev_priv(dev);
596 	struct ethtool_link_settings *base = &link_ksettings->base;
597 
598 	/* For the nonce, the Firmware doesn't send up Port State changes
599 	 * when the Virtual Interface attached to the Port is down.  So
600 	 * if it's down, let's grab any changes.
601 	 */
602 	if (!netif_running(dev))
603 		(void)t4_update_port_info(pi);
604 
605 	ethtool_link_ksettings_zero_link_mode(link_ksettings, supported);
606 	ethtool_link_ksettings_zero_link_mode(link_ksettings, advertising);
607 	ethtool_link_ksettings_zero_link_mode(link_ksettings, lp_advertising);
608 
609 	base->port = from_fw_port_mod_type(pi->port_type, pi->mod_type);
610 
611 	if (pi->mdio_addr >= 0) {
612 		base->phy_address = pi->mdio_addr;
613 		base->mdio_support = (pi->port_type == FW_PORT_TYPE_BT_SGMII
614 				      ? ETH_MDIO_SUPPORTS_C22
615 				      : ETH_MDIO_SUPPORTS_C45);
616 	} else {
617 		base->phy_address = 255;
618 		base->mdio_support = 0;
619 	}
620 
621 	fw_caps_to_lmm(pi->port_type, pi->link_cfg.pcaps,
622 		       link_ksettings->link_modes.supported);
623 	fw_caps_to_lmm(pi->port_type,
624 		       t4_link_acaps(pi->adapter,
625 				     pi->lport,
626 				     &pi->link_cfg),
627 		       link_ksettings->link_modes.advertising);
628 	fw_caps_to_lmm(pi->port_type, pi->link_cfg.lpacaps,
629 		       link_ksettings->link_modes.lp_advertising);
630 
631 	base->speed = (netif_carrier_ok(dev)
632 		       ? pi->link_cfg.speed
633 		       : SPEED_UNKNOWN);
634 	base->duplex = DUPLEX_FULL;
635 
636 	base->autoneg = pi->link_cfg.autoneg;
637 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_ANEG)
638 		ethtool_link_ksettings_add_link_mode(link_ksettings,
639 						     supported, Autoneg);
640 	if (pi->link_cfg.autoneg)
641 		ethtool_link_ksettings_add_link_mode(link_ksettings,
642 						     advertising, Autoneg);
643 
644 	return 0;
645 }
646 
set_link_ksettings(struct net_device * dev,const struct ethtool_link_ksettings * link_ksettings)647 static int set_link_ksettings(struct net_device *dev,
648 			    const struct ethtool_link_ksettings *link_ksettings)
649 {
650 	struct port_info *pi = netdev_priv(dev);
651 	struct link_config *lc = &pi->link_cfg;
652 	const struct ethtool_link_settings *base = &link_ksettings->base;
653 	struct link_config old_lc;
654 	unsigned int fw_caps;
655 	int ret = 0;
656 
657 	/* only full-duplex supported */
658 	if (base->duplex != DUPLEX_FULL)
659 		return -EINVAL;
660 
661 	old_lc = *lc;
662 	if (!(lc->pcaps & FW_PORT_CAP32_ANEG) ||
663 	    base->autoneg == AUTONEG_DISABLE) {
664 		fw_caps = speed_to_fw_caps(base->speed);
665 
666 		/* Speed must be supported by Physical Port Capabilities. */
667 		if (!(lc->pcaps & fw_caps))
668 			return -EINVAL;
669 
670 		lc->speed_caps = fw_caps;
671 		lc->acaps = fw_caps;
672 	} else {
673 		fw_caps =
674 			lmm_to_fw_caps(link_ksettings->link_modes.advertising);
675 		if (!(lc->pcaps & fw_caps))
676 			return -EINVAL;
677 		lc->speed_caps = 0;
678 		lc->acaps = fw_caps | FW_PORT_CAP32_ANEG;
679 	}
680 	lc->autoneg = base->autoneg;
681 
682 	/* If the firmware rejects the Link Configuration request, back out
683 	 * the changes and report the error.
684 	 */
685 	ret = t4_link_l1cfg(pi->adapter, pi->adapter->mbox, pi->tx_chan, lc);
686 	if (ret)
687 		*lc = old_lc;
688 
689 	return ret;
690 }
691 
692 /* Translate the Firmware FEC value into the ethtool value. */
fwcap_to_eth_fec(unsigned int fw_fec)693 static inline unsigned int fwcap_to_eth_fec(unsigned int fw_fec)
694 {
695 	unsigned int eth_fec = 0;
696 
697 	if (fw_fec & FW_PORT_CAP32_FEC_RS)
698 		eth_fec |= ETHTOOL_FEC_RS;
699 	if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS)
700 		eth_fec |= ETHTOOL_FEC_BASER;
701 
702 	/* if nothing is set, then FEC is off */
703 	if (!eth_fec)
704 		eth_fec = ETHTOOL_FEC_OFF;
705 
706 	return eth_fec;
707 }
708 
709 /* Translate Common Code FEC value into ethtool value. */
cc_to_eth_fec(unsigned int cc_fec)710 static inline unsigned int cc_to_eth_fec(unsigned int cc_fec)
711 {
712 	unsigned int eth_fec = 0;
713 
714 	if (cc_fec & FEC_AUTO)
715 		eth_fec |= ETHTOOL_FEC_AUTO;
716 	if (cc_fec & FEC_RS)
717 		eth_fec |= ETHTOOL_FEC_RS;
718 	if (cc_fec & FEC_BASER_RS)
719 		eth_fec |= ETHTOOL_FEC_BASER;
720 
721 	/* if nothing is set, then FEC is off */
722 	if (!eth_fec)
723 		eth_fec = ETHTOOL_FEC_OFF;
724 
725 	return eth_fec;
726 }
727 
728 /* Translate ethtool FEC value into Common Code value. */
eth_to_cc_fec(unsigned int eth_fec)729 static inline unsigned int eth_to_cc_fec(unsigned int eth_fec)
730 {
731 	unsigned int cc_fec = 0;
732 
733 	if (eth_fec & ETHTOOL_FEC_OFF)
734 		return cc_fec;
735 
736 	if (eth_fec & ETHTOOL_FEC_AUTO)
737 		cc_fec |= FEC_AUTO;
738 	if (eth_fec & ETHTOOL_FEC_RS)
739 		cc_fec |= FEC_RS;
740 	if (eth_fec & ETHTOOL_FEC_BASER)
741 		cc_fec |= FEC_BASER_RS;
742 
743 	return cc_fec;
744 }
745 
get_fecparam(struct net_device * dev,struct ethtool_fecparam * fec)746 static int get_fecparam(struct net_device *dev, struct ethtool_fecparam *fec)
747 {
748 	const struct port_info *pi = netdev_priv(dev);
749 	const struct link_config *lc = &pi->link_cfg;
750 
751 	/* Translate the Firmware FEC Support into the ethtool value.  We
752 	 * always support IEEE 802.3 "automatic" selection of Link FEC type if
753 	 * any FEC is supported.
754 	 */
755 	fec->fec = fwcap_to_eth_fec(lc->pcaps);
756 	if (fec->fec != ETHTOOL_FEC_OFF)
757 		fec->fec |= ETHTOOL_FEC_AUTO;
758 
759 	/* Translate the current internal FEC parameters into the
760 	 * ethtool values.
761 	 */
762 	fec->active_fec = cc_to_eth_fec(lc->fec);
763 
764 	return 0;
765 }
766 
set_fecparam(struct net_device * dev,struct ethtool_fecparam * fec)767 static int set_fecparam(struct net_device *dev, struct ethtool_fecparam *fec)
768 {
769 	struct port_info *pi = netdev_priv(dev);
770 	struct link_config *lc = &pi->link_cfg;
771 	struct link_config old_lc;
772 	int ret;
773 
774 	/* Save old Link Configuration in case the L1 Configure below
775 	 * fails.
776 	 */
777 	old_lc = *lc;
778 
779 	/* Try to perform the L1 Configure and return the result of that
780 	 * effort.  If it fails, revert the attempted change.
781 	 */
782 	lc->requested_fec = eth_to_cc_fec(fec->fec);
783 	ret = t4_link_l1cfg(pi->adapter, pi->adapter->mbox,
784 			    pi->tx_chan, lc);
785 	if (ret)
786 		*lc = old_lc;
787 	return ret;
788 }
789 
get_pauseparam(struct net_device * dev,struct ethtool_pauseparam * epause)790 static void get_pauseparam(struct net_device *dev,
791 			   struct ethtool_pauseparam *epause)
792 {
793 	struct port_info *p = netdev_priv(dev);
794 
795 	epause->autoneg = (p->link_cfg.requested_fc & PAUSE_AUTONEG) != 0;
796 	epause->rx_pause = (p->link_cfg.fc & PAUSE_RX) != 0;
797 	epause->tx_pause = (p->link_cfg.fc & PAUSE_TX) != 0;
798 }
799 
set_pauseparam(struct net_device * dev,struct ethtool_pauseparam * epause)800 static int set_pauseparam(struct net_device *dev,
801 			  struct ethtool_pauseparam *epause)
802 {
803 	struct port_info *p = netdev_priv(dev);
804 	struct link_config *lc = &p->link_cfg;
805 
806 	if (epause->autoneg == AUTONEG_DISABLE)
807 		lc->requested_fc = 0;
808 	else if (lc->pcaps & FW_PORT_CAP32_ANEG)
809 		lc->requested_fc = PAUSE_AUTONEG;
810 	else
811 		return -EINVAL;
812 
813 	if (epause->rx_pause)
814 		lc->requested_fc |= PAUSE_RX;
815 	if (epause->tx_pause)
816 		lc->requested_fc |= PAUSE_TX;
817 	if (netif_running(dev))
818 		return t4_link_l1cfg(p->adapter, p->adapter->mbox, p->tx_chan,
819 				     lc);
820 	return 0;
821 }
822 
get_sge_param(struct net_device * dev,struct ethtool_ringparam * e)823 static void get_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
824 {
825 	const struct port_info *pi = netdev_priv(dev);
826 	const struct sge *s = &pi->adapter->sge;
827 
828 	e->rx_max_pending = MAX_RX_BUFFERS;
829 	e->rx_mini_max_pending = MAX_RSPQ_ENTRIES;
830 	e->rx_jumbo_max_pending = 0;
831 	e->tx_max_pending = MAX_TXQ_ENTRIES;
832 
833 	e->rx_pending = s->ethrxq[pi->first_qset].fl.size - 8;
834 	e->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size;
835 	e->rx_jumbo_pending = 0;
836 	e->tx_pending = s->ethtxq[pi->first_qset].q.size;
837 }
838 
set_sge_param(struct net_device * dev,struct ethtool_ringparam * e)839 static int set_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
840 {
841 	int i;
842 	const struct port_info *pi = netdev_priv(dev);
843 	struct adapter *adapter = pi->adapter;
844 	struct sge *s = &adapter->sge;
845 
846 	if (e->rx_pending > MAX_RX_BUFFERS || e->rx_jumbo_pending ||
847 	    e->tx_pending > MAX_TXQ_ENTRIES ||
848 	    e->rx_mini_pending > MAX_RSPQ_ENTRIES ||
849 	    e->rx_mini_pending < MIN_RSPQ_ENTRIES ||
850 	    e->rx_pending < MIN_FL_ENTRIES || e->tx_pending < MIN_TXQ_ENTRIES)
851 		return -EINVAL;
852 
853 	if (adapter->flags & CXGB4_FULL_INIT_DONE)
854 		return -EBUSY;
855 
856 	for (i = 0; i < pi->nqsets; ++i) {
857 		s->ethtxq[pi->first_qset + i].q.size = e->tx_pending;
858 		s->ethrxq[pi->first_qset + i].fl.size = e->rx_pending + 8;
859 		s->ethrxq[pi->first_qset + i].rspq.size = e->rx_mini_pending;
860 	}
861 	return 0;
862 }
863 
864 /**
865  * set_rx_intr_params - set a net devices's RX interrupt holdoff paramete!
866  * @dev: the network device
867  * @us: the hold-off time in us, or 0 to disable timer
868  * @cnt: the hold-off packet count, or 0 to disable counter
869  *
870  * Set the RX interrupt hold-off parameters for a network device.
871  */
set_rx_intr_params(struct net_device * dev,unsigned int us,unsigned int cnt)872 static int set_rx_intr_params(struct net_device *dev,
873 			      unsigned int us, unsigned int cnt)
874 {
875 	int i, err;
876 	struct port_info *pi = netdev_priv(dev);
877 	struct adapter *adap = pi->adapter;
878 	struct sge_eth_rxq *q = &adap->sge.ethrxq[pi->first_qset];
879 
880 	for (i = 0; i < pi->nqsets; i++, q++) {
881 		err = cxgb4_set_rspq_intr_params(&q->rspq, us, cnt);
882 		if (err)
883 			return err;
884 	}
885 	return 0;
886 }
887 
set_adaptive_rx_setting(struct net_device * dev,int adaptive_rx)888 static int set_adaptive_rx_setting(struct net_device *dev, int adaptive_rx)
889 {
890 	int i;
891 	struct port_info *pi = netdev_priv(dev);
892 	struct adapter *adap = pi->adapter;
893 	struct sge_eth_rxq *q = &adap->sge.ethrxq[pi->first_qset];
894 
895 	for (i = 0; i < pi->nqsets; i++, q++)
896 		q->rspq.adaptive_rx = adaptive_rx;
897 
898 	return 0;
899 }
900 
get_adaptive_rx_setting(struct net_device * dev)901 static int get_adaptive_rx_setting(struct net_device *dev)
902 {
903 	struct port_info *pi = netdev_priv(dev);
904 	struct adapter *adap = pi->adapter;
905 	struct sge_eth_rxq *q = &adap->sge.ethrxq[pi->first_qset];
906 
907 	return q->rspq.adaptive_rx;
908 }
909 
910 /* Return the current global Adapter SGE Doorbell Queue Timer Tick for all
911  * Ethernet TX Queues.
912  */
get_dbqtimer_tick(struct net_device * dev)913 static int get_dbqtimer_tick(struct net_device *dev)
914 {
915 	struct port_info *pi = netdev_priv(dev);
916 	struct adapter *adap = pi->adapter;
917 
918 	if (!(adap->flags & CXGB4_SGE_DBQ_TIMER))
919 		return 0;
920 
921 	return adap->sge.dbqtimer_tick;
922 }
923 
924 /* Return the SGE Doorbell Queue Timer Value for the Ethernet TX Queues
925  * associated with a Network Device.
926  */
get_dbqtimer(struct net_device * dev)927 static int get_dbqtimer(struct net_device *dev)
928 {
929 	struct port_info *pi = netdev_priv(dev);
930 	struct adapter *adap = pi->adapter;
931 	struct sge_eth_txq *txq;
932 
933 	txq = &adap->sge.ethtxq[pi->first_qset];
934 
935 	if (!(adap->flags & CXGB4_SGE_DBQ_TIMER))
936 		return 0;
937 
938 	/* all of the TX Queues use the same Timer Index */
939 	return adap->sge.dbqtimer_val[txq->dbqtimerix];
940 }
941 
942 /* Set the global Adapter SGE Doorbell Queue Timer Tick for all Ethernet TX
943  * Queues.  This is the fundamental "Tick" that sets the scale of values which
944  * can be used.  Individual Ethernet TX Queues index into a relatively small
945  * array of Tick Multipliers.  Changing the base Tick will thus change all of
946  * the resulting Timer Values associated with those multipliers for all
947  * Ethernet TX Queues.
948  */
set_dbqtimer_tick(struct net_device * dev,int usecs)949 static int set_dbqtimer_tick(struct net_device *dev, int usecs)
950 {
951 	struct port_info *pi = netdev_priv(dev);
952 	struct adapter *adap = pi->adapter;
953 	struct sge *s = &adap->sge;
954 	u32 param, val;
955 	int ret;
956 
957 	if (!(adap->flags & CXGB4_SGE_DBQ_TIMER))
958 		return 0;
959 
960 	/* return early if it's the same Timer Tick we're already using */
961 	if (s->dbqtimer_tick == usecs)
962 		return 0;
963 
964 	/* attempt to set the new Timer Tick value */
965 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
966 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DBQ_TIMERTICK));
967 	val = usecs;
968 	ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
969 	if (ret)
970 		return ret;
971 	s->dbqtimer_tick = usecs;
972 
973 	/* if successful, reread resulting dependent Timer values */
974 	ret = t4_read_sge_dbqtimers(adap, ARRAY_SIZE(s->dbqtimer_val),
975 				    s->dbqtimer_val);
976 	return ret;
977 }
978 
979 /* Set the SGE Doorbell Queue Timer Value for the Ethernet TX Queues
980  * associated with a Network Device.  There is a relatively small array of
981  * possible Timer Values so we need to pick the closest value available.
982  */
set_dbqtimer(struct net_device * dev,int usecs)983 static int set_dbqtimer(struct net_device *dev, int usecs)
984 {
985 	int qix, timerix, min_timerix, delta, min_delta;
986 	struct port_info *pi = netdev_priv(dev);
987 	struct adapter *adap = pi->adapter;
988 	struct sge *s = &adap->sge;
989 	struct sge_eth_txq *txq;
990 	u32 param, val;
991 	int ret;
992 
993 	if (!(adap->flags & CXGB4_SGE_DBQ_TIMER))
994 		return 0;
995 
996 	/* Find the SGE Doorbell Timer Value that's closest to the requested
997 	 * value.
998 	 */
999 	min_delta = INT_MAX;
1000 	min_timerix = 0;
1001 	for (timerix = 0; timerix < ARRAY_SIZE(s->dbqtimer_val); timerix++) {
1002 		delta = s->dbqtimer_val[timerix] - usecs;
1003 		if (delta < 0)
1004 			delta = -delta;
1005 		if (delta < min_delta) {
1006 			min_delta = delta;
1007 			min_timerix = timerix;
1008 		}
1009 	}
1010 
1011 	/* Return early if it's the same Timer Index we're already using.
1012 	 * We use the same Timer Index for all of the TX Queues for an
1013 	 * interface so it's only necessary to check the first one.
1014 	 */
1015 	txq = &s->ethtxq[pi->first_qset];
1016 	if (txq->dbqtimerix == min_timerix)
1017 		return 0;
1018 
1019 	for (qix = 0; qix < pi->nqsets; qix++, txq++) {
1020 		if (adap->flags & CXGB4_FULL_INIT_DONE) {
1021 			param =
1022 			 (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1023 			  FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_EQ_TIMERIX) |
1024 			  FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
1025 			val = min_timerix;
1026 			ret = t4_set_params(adap, adap->mbox, adap->pf, 0,
1027 					    1, &param, &val);
1028 			if (ret)
1029 				return ret;
1030 		}
1031 		txq->dbqtimerix = min_timerix;
1032 	}
1033 	return 0;
1034 }
1035 
1036 /* Set the global Adapter SGE Doorbell Queue Timer Tick for all Ethernet TX
1037  * Queues and the Timer Value for the Ethernet TX Queues associated with a
1038  * Network Device.  Since changing the global Tick changes all of the
1039  * available Timer Values, we need to do this first before selecting the
1040  * resulting closest Timer Value.  Moreover, since the Tick is global,
1041  * changing it affects the Timer Values for all Network Devices on the
1042  * adapter.  So, before changing the Tick, we grab all of the current Timer
1043  * Values for other Network Devices on this Adapter and then attempt to select
1044  * new Timer Values which are close to the old values ...
1045  */
set_dbqtimer_tickval(struct net_device * dev,int tick_usecs,int timer_usecs)1046 static int set_dbqtimer_tickval(struct net_device *dev,
1047 				int tick_usecs, int timer_usecs)
1048 {
1049 	struct port_info *pi = netdev_priv(dev);
1050 	struct adapter *adap = pi->adapter;
1051 	int timer[MAX_NPORTS];
1052 	unsigned int port;
1053 	int ret;
1054 
1055 	/* Grab the other adapter Network Interface current timers and fill in
1056 	 * the new one for this Network Interface.
1057 	 */
1058 	for_each_port(adap, port)
1059 		if (port == pi->port_id)
1060 			timer[port] = timer_usecs;
1061 		else
1062 			timer[port] = get_dbqtimer(adap->port[port]);
1063 
1064 	/* Change the global Tick first ... */
1065 	ret = set_dbqtimer_tick(dev, tick_usecs);
1066 	if (ret)
1067 		return ret;
1068 
1069 	/* ... and then set all of the Network Interface Timer Values ... */
1070 	for_each_port(adap, port) {
1071 		ret = set_dbqtimer(adap->port[port], timer[port]);
1072 		if (ret)
1073 			return ret;
1074 	}
1075 
1076 	return 0;
1077 }
1078 
set_coalesce(struct net_device * dev,struct ethtool_coalesce * coalesce)1079 static int set_coalesce(struct net_device *dev,
1080 			struct ethtool_coalesce *coalesce)
1081 {
1082 	int ret;
1083 
1084 	set_adaptive_rx_setting(dev, coalesce->use_adaptive_rx_coalesce);
1085 
1086 	ret = set_rx_intr_params(dev, coalesce->rx_coalesce_usecs,
1087 				 coalesce->rx_max_coalesced_frames);
1088 	if (ret)
1089 		return ret;
1090 
1091 	return set_dbqtimer_tickval(dev,
1092 				    coalesce->tx_coalesce_usecs_irq,
1093 				    coalesce->tx_coalesce_usecs);
1094 }
1095 
get_coalesce(struct net_device * dev,struct ethtool_coalesce * c)1096 static int get_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
1097 {
1098 	const struct port_info *pi = netdev_priv(dev);
1099 	const struct adapter *adap = pi->adapter;
1100 	const struct sge_rspq *rq = &adap->sge.ethrxq[pi->first_qset].rspq;
1101 
1102 	c->rx_coalesce_usecs = qtimer_val(adap, rq);
1103 	c->rx_max_coalesced_frames = (rq->intr_params & QINTR_CNT_EN_F) ?
1104 		adap->sge.counter_val[rq->pktcnt_idx] : 0;
1105 	c->use_adaptive_rx_coalesce = get_adaptive_rx_setting(dev);
1106 	c->tx_coalesce_usecs_irq = get_dbqtimer_tick(dev);
1107 	c->tx_coalesce_usecs = get_dbqtimer(dev);
1108 	return 0;
1109 }
1110 
1111 /* The next two routines implement eeprom read/write from physical addresses.
1112  */
eeprom_rd_phys(struct adapter * adap,unsigned int phys_addr,u32 * v)1113 static int eeprom_rd_phys(struct adapter *adap, unsigned int phys_addr, u32 *v)
1114 {
1115 	int vaddr = t4_eeprom_ptov(phys_addr, adap->pf, EEPROMPFSIZE);
1116 
1117 	if (vaddr >= 0)
1118 		vaddr = pci_read_vpd(adap->pdev, vaddr, sizeof(u32), v);
1119 	return vaddr < 0 ? vaddr : 0;
1120 }
1121 
eeprom_wr_phys(struct adapter * adap,unsigned int phys_addr,u32 v)1122 static int eeprom_wr_phys(struct adapter *adap, unsigned int phys_addr, u32 v)
1123 {
1124 	int vaddr = t4_eeprom_ptov(phys_addr, adap->pf, EEPROMPFSIZE);
1125 
1126 	if (vaddr >= 0)
1127 		vaddr = pci_write_vpd(adap->pdev, vaddr, sizeof(u32), &v);
1128 	return vaddr < 0 ? vaddr : 0;
1129 }
1130 
1131 #define EEPROM_MAGIC 0x38E2F10C
1132 
get_eeprom(struct net_device * dev,struct ethtool_eeprom * e,u8 * data)1133 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *e,
1134 		      u8 *data)
1135 {
1136 	int i, err = 0;
1137 	struct adapter *adapter = netdev2adap(dev);
1138 	u8 *buf = kvzalloc(EEPROMSIZE, GFP_KERNEL);
1139 
1140 	if (!buf)
1141 		return -ENOMEM;
1142 
1143 	e->magic = EEPROM_MAGIC;
1144 	for (i = e->offset & ~3; !err && i < e->offset + e->len; i += 4)
1145 		err = eeprom_rd_phys(adapter, i, (u32 *)&buf[i]);
1146 
1147 	if (!err)
1148 		memcpy(data, buf + e->offset, e->len);
1149 	kvfree(buf);
1150 	return err;
1151 }
1152 
set_eeprom(struct net_device * dev,struct ethtool_eeprom * eeprom,u8 * data)1153 static int set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
1154 		      u8 *data)
1155 {
1156 	u8 *buf;
1157 	int err = 0;
1158 	u32 aligned_offset, aligned_len, *p;
1159 	struct adapter *adapter = netdev2adap(dev);
1160 
1161 	if (eeprom->magic != EEPROM_MAGIC)
1162 		return -EINVAL;
1163 
1164 	aligned_offset = eeprom->offset & ~3;
1165 	aligned_len = (eeprom->len + (eeprom->offset & 3) + 3) & ~3;
1166 
1167 	if (adapter->pf > 0) {
1168 		u32 start = 1024 + adapter->pf * EEPROMPFSIZE;
1169 
1170 		if (aligned_offset < start ||
1171 		    aligned_offset + aligned_len > start + EEPROMPFSIZE)
1172 			return -EPERM;
1173 	}
1174 
1175 	if (aligned_offset != eeprom->offset || aligned_len != eeprom->len) {
1176 		/* RMW possibly needed for first or last words.
1177 		 */
1178 		buf = kvzalloc(aligned_len, GFP_KERNEL);
1179 		if (!buf)
1180 			return -ENOMEM;
1181 		err = eeprom_rd_phys(adapter, aligned_offset, (u32 *)buf);
1182 		if (!err && aligned_len > 4)
1183 			err = eeprom_rd_phys(adapter,
1184 					     aligned_offset + aligned_len - 4,
1185 					     (u32 *)&buf[aligned_len - 4]);
1186 		if (err)
1187 			goto out;
1188 		memcpy(buf + (eeprom->offset & 3), data, eeprom->len);
1189 	} else {
1190 		buf = data;
1191 	}
1192 
1193 	err = t4_seeprom_wp(adapter, false);
1194 	if (err)
1195 		goto out;
1196 
1197 	for (p = (u32 *)buf; !err && aligned_len; aligned_len -= 4, p++) {
1198 		err = eeprom_wr_phys(adapter, aligned_offset, *p);
1199 		aligned_offset += 4;
1200 	}
1201 
1202 	if (!err)
1203 		err = t4_seeprom_wp(adapter, true);
1204 out:
1205 	if (buf != data)
1206 		kvfree(buf);
1207 	return err;
1208 }
1209 
set_flash(struct net_device * netdev,struct ethtool_flash * ef)1210 static int set_flash(struct net_device *netdev, struct ethtool_flash *ef)
1211 {
1212 	int ret;
1213 	const struct firmware *fw;
1214 	struct adapter *adap = netdev2adap(netdev);
1215 	unsigned int mbox = PCIE_FW_MASTER_M + 1;
1216 	u32 pcie_fw;
1217 	unsigned int master;
1218 	u8 master_vld = 0;
1219 
1220 	pcie_fw = t4_read_reg(adap, PCIE_FW_A);
1221 	master = PCIE_FW_MASTER_G(pcie_fw);
1222 	if (pcie_fw & PCIE_FW_MASTER_VLD_F)
1223 		master_vld = 1;
1224 	/* if csiostor is the master return */
1225 	if (master_vld && (master != adap->pf)) {
1226 		dev_warn(adap->pdev_dev,
1227 			 "cxgb4 driver needs to be loaded as MASTER to support FW flash\n");
1228 		return -EOPNOTSUPP;
1229 	}
1230 
1231 	ef->data[sizeof(ef->data) - 1] = '\0';
1232 	ret = request_firmware(&fw, ef->data, adap->pdev_dev);
1233 	if (ret < 0)
1234 		return ret;
1235 
1236 	/* If the adapter has been fully initialized then we'll go ahead and
1237 	 * try to get the firmware's cooperation in upgrading to the new
1238 	 * firmware image otherwise we'll try to do the entire job from the
1239 	 * host ... and we always "force" the operation in this path.
1240 	 */
1241 	if (adap->flags & CXGB4_FULL_INIT_DONE)
1242 		mbox = adap->mbox;
1243 
1244 	ret = t4_fw_upgrade(adap, mbox, fw->data, fw->size, 1);
1245 	release_firmware(fw);
1246 	if (!ret)
1247 		dev_info(adap->pdev_dev,
1248 			 "loaded firmware %s, reload cxgb4 driver\n", ef->data);
1249 	return ret;
1250 }
1251 
get_ts_info(struct net_device * dev,struct ethtool_ts_info * ts_info)1252 static int get_ts_info(struct net_device *dev, struct ethtool_ts_info *ts_info)
1253 {
1254 	struct port_info *pi = netdev_priv(dev);
1255 	struct  adapter *adapter = pi->adapter;
1256 
1257 	ts_info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
1258 				   SOF_TIMESTAMPING_RX_SOFTWARE |
1259 				   SOF_TIMESTAMPING_SOFTWARE;
1260 
1261 	ts_info->so_timestamping |= SOF_TIMESTAMPING_RX_HARDWARE |
1262 				    SOF_TIMESTAMPING_TX_HARDWARE |
1263 				    SOF_TIMESTAMPING_RAW_HARDWARE;
1264 
1265 	ts_info->tx_types = (1 << HWTSTAMP_TX_OFF) |
1266 			    (1 << HWTSTAMP_TX_ON);
1267 
1268 	ts_info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
1269 			      (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) |
1270 			      (1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
1271 			      (1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
1272 			      (1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
1273 			      (1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ);
1274 
1275 	if (adapter->ptp_clock)
1276 		ts_info->phc_index = ptp_clock_index(adapter->ptp_clock);
1277 	else
1278 		ts_info->phc_index = -1;
1279 
1280 	return 0;
1281 }
1282 
get_rss_table_size(struct net_device * dev)1283 static u32 get_rss_table_size(struct net_device *dev)
1284 {
1285 	const struct port_info *pi = netdev_priv(dev);
1286 
1287 	return pi->rss_size;
1288 }
1289 
get_rss_table(struct net_device * dev,u32 * p,u8 * key,u8 * hfunc)1290 static int get_rss_table(struct net_device *dev, u32 *p, u8 *key, u8 *hfunc)
1291 {
1292 	const struct port_info *pi = netdev_priv(dev);
1293 	unsigned int n = pi->rss_size;
1294 
1295 	if (hfunc)
1296 		*hfunc = ETH_RSS_HASH_TOP;
1297 	if (!p)
1298 		return 0;
1299 	while (n--)
1300 		p[n] = pi->rss[n];
1301 	return 0;
1302 }
1303 
set_rss_table(struct net_device * dev,const u32 * p,const u8 * key,const u8 hfunc)1304 static int set_rss_table(struct net_device *dev, const u32 *p, const u8 *key,
1305 			 const u8 hfunc)
1306 {
1307 	unsigned int i;
1308 	struct port_info *pi = netdev_priv(dev);
1309 
1310 	/* We require at least one supported parameter to be changed and no
1311 	 * change in any of the unsupported parameters
1312 	 */
1313 	if (key ||
1314 	    (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
1315 		return -EOPNOTSUPP;
1316 	if (!p)
1317 		return 0;
1318 
1319 	/* Interface must be brought up atleast once */
1320 	if (pi->adapter->flags & CXGB4_FULL_INIT_DONE) {
1321 		for (i = 0; i < pi->rss_size; i++)
1322 			pi->rss[i] = p[i];
1323 
1324 		return cxgb4_write_rss(pi, pi->rss);
1325 	}
1326 
1327 	return -EPERM;
1328 }
1329 
get_rxnfc(struct net_device * dev,struct ethtool_rxnfc * info,u32 * rules)1330 static int get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1331 		     u32 *rules)
1332 {
1333 	const struct port_info *pi = netdev_priv(dev);
1334 
1335 	switch (info->cmd) {
1336 	case ETHTOOL_GRXFH: {
1337 		unsigned int v = pi->rss_mode;
1338 
1339 		info->data = 0;
1340 		switch (info->flow_type) {
1341 		case TCP_V4_FLOW:
1342 			if (v & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F)
1343 				info->data = RXH_IP_SRC | RXH_IP_DST |
1344 					     RXH_L4_B_0_1 | RXH_L4_B_2_3;
1345 			else if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F)
1346 				info->data = RXH_IP_SRC | RXH_IP_DST;
1347 			break;
1348 		case UDP_V4_FLOW:
1349 			if ((v & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F) &&
1350 			    (v & FW_RSS_VI_CONFIG_CMD_UDPEN_F))
1351 				info->data = RXH_IP_SRC | RXH_IP_DST |
1352 					     RXH_L4_B_0_1 | RXH_L4_B_2_3;
1353 			else if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F)
1354 				info->data = RXH_IP_SRC | RXH_IP_DST;
1355 			break;
1356 		case SCTP_V4_FLOW:
1357 		case AH_ESP_V4_FLOW:
1358 		case IPV4_FLOW:
1359 			if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F)
1360 				info->data = RXH_IP_SRC | RXH_IP_DST;
1361 			break;
1362 		case TCP_V6_FLOW:
1363 			if (v & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F)
1364 				info->data = RXH_IP_SRC | RXH_IP_DST |
1365 					     RXH_L4_B_0_1 | RXH_L4_B_2_3;
1366 			else if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F)
1367 				info->data = RXH_IP_SRC | RXH_IP_DST;
1368 			break;
1369 		case UDP_V6_FLOW:
1370 			if ((v & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F) &&
1371 			    (v & FW_RSS_VI_CONFIG_CMD_UDPEN_F))
1372 				info->data = RXH_IP_SRC | RXH_IP_DST |
1373 					     RXH_L4_B_0_1 | RXH_L4_B_2_3;
1374 			else if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F)
1375 				info->data = RXH_IP_SRC | RXH_IP_DST;
1376 			break;
1377 		case SCTP_V6_FLOW:
1378 		case AH_ESP_V6_FLOW:
1379 		case IPV6_FLOW:
1380 			if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F)
1381 				info->data = RXH_IP_SRC | RXH_IP_DST;
1382 			break;
1383 		}
1384 		return 0;
1385 	}
1386 	case ETHTOOL_GRXRINGS:
1387 		info->data = pi->nqsets;
1388 		return 0;
1389 	}
1390 	return -EOPNOTSUPP;
1391 }
1392 
set_dump(struct net_device * dev,struct ethtool_dump * eth_dump)1393 static int set_dump(struct net_device *dev, struct ethtool_dump *eth_dump)
1394 {
1395 	struct adapter *adapter = netdev2adap(dev);
1396 	u32 len = 0;
1397 
1398 	len = sizeof(struct cudbg_hdr) +
1399 	      sizeof(struct cudbg_entity_hdr) * CUDBG_MAX_ENTITY;
1400 	len += cxgb4_get_dump_length(adapter, eth_dump->flag);
1401 
1402 	adapter->eth_dump.flag = eth_dump->flag;
1403 	adapter->eth_dump.len = len;
1404 	return 0;
1405 }
1406 
get_dump_flag(struct net_device * dev,struct ethtool_dump * eth_dump)1407 static int get_dump_flag(struct net_device *dev, struct ethtool_dump *eth_dump)
1408 {
1409 	struct adapter *adapter = netdev2adap(dev);
1410 
1411 	eth_dump->flag = adapter->eth_dump.flag;
1412 	eth_dump->len = adapter->eth_dump.len;
1413 	eth_dump->version = adapter->eth_dump.version;
1414 	return 0;
1415 }
1416 
get_dump_data(struct net_device * dev,struct ethtool_dump * eth_dump,void * buf)1417 static int get_dump_data(struct net_device *dev, struct ethtool_dump *eth_dump,
1418 			 void *buf)
1419 {
1420 	struct adapter *adapter = netdev2adap(dev);
1421 	u32 len = 0;
1422 	int ret = 0;
1423 
1424 	if (adapter->eth_dump.flag == CXGB4_ETH_DUMP_NONE)
1425 		return -ENOENT;
1426 
1427 	len = sizeof(struct cudbg_hdr) +
1428 	      sizeof(struct cudbg_entity_hdr) * CUDBG_MAX_ENTITY;
1429 	len += cxgb4_get_dump_length(adapter, adapter->eth_dump.flag);
1430 	if (eth_dump->len < len)
1431 		return -ENOMEM;
1432 
1433 	ret = cxgb4_cudbg_collect(adapter, buf, &len, adapter->eth_dump.flag);
1434 	if (ret)
1435 		return ret;
1436 
1437 	eth_dump->flag = adapter->eth_dump.flag;
1438 	eth_dump->len = len;
1439 	eth_dump->version = adapter->eth_dump.version;
1440 	return 0;
1441 }
1442 
cxgb4_get_module_info(struct net_device * dev,struct ethtool_modinfo * modinfo)1443 static int cxgb4_get_module_info(struct net_device *dev,
1444 				 struct ethtool_modinfo *modinfo)
1445 {
1446 	struct port_info *pi = netdev_priv(dev);
1447 	u8 sff8472_comp, sff_diag_type, sff_rev;
1448 	struct adapter *adapter = pi->adapter;
1449 	int ret;
1450 
1451 	if (!t4_is_inserted_mod_type(pi->mod_type))
1452 		return -EINVAL;
1453 
1454 	switch (pi->port_type) {
1455 	case FW_PORT_TYPE_SFP:
1456 	case FW_PORT_TYPE_QSA:
1457 	case FW_PORT_TYPE_SFP28:
1458 		ret = t4_i2c_rd(adapter, adapter->mbox, pi->tx_chan,
1459 				I2C_DEV_ADDR_A0, SFF_8472_COMP_ADDR,
1460 				SFF_8472_COMP_LEN, &sff8472_comp);
1461 		if (ret)
1462 			return ret;
1463 		ret = t4_i2c_rd(adapter, adapter->mbox, pi->tx_chan,
1464 				I2C_DEV_ADDR_A0, SFP_DIAG_TYPE_ADDR,
1465 				SFP_DIAG_TYPE_LEN, &sff_diag_type);
1466 		if (ret)
1467 			return ret;
1468 
1469 		if (!sff8472_comp || (sff_diag_type & 4)) {
1470 			modinfo->type = ETH_MODULE_SFF_8079;
1471 			modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
1472 		} else {
1473 			modinfo->type = ETH_MODULE_SFF_8472;
1474 			modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
1475 		}
1476 		break;
1477 
1478 	case FW_PORT_TYPE_QSFP:
1479 	case FW_PORT_TYPE_QSFP_10G:
1480 	case FW_PORT_TYPE_CR_QSFP:
1481 	case FW_PORT_TYPE_CR2_QSFP:
1482 	case FW_PORT_TYPE_CR4_QSFP:
1483 		ret = t4_i2c_rd(adapter, adapter->mbox, pi->tx_chan,
1484 				I2C_DEV_ADDR_A0, SFF_REV_ADDR,
1485 				SFF_REV_LEN, &sff_rev);
1486 		/* For QSFP type ports, revision value >= 3
1487 		 * means the SFP is 8636 compliant.
1488 		 */
1489 		if (ret)
1490 			return ret;
1491 		if (sff_rev >= 0x3) {
1492 			modinfo->type = ETH_MODULE_SFF_8636;
1493 			modinfo->eeprom_len = ETH_MODULE_SFF_8636_LEN;
1494 		} else {
1495 			modinfo->type = ETH_MODULE_SFF_8436;
1496 			modinfo->eeprom_len = ETH_MODULE_SFF_8436_LEN;
1497 		}
1498 		break;
1499 
1500 	default:
1501 		return -EINVAL;
1502 	}
1503 
1504 	return 0;
1505 }
1506 
cxgb4_get_module_eeprom(struct net_device * dev,struct ethtool_eeprom * eprom,u8 * data)1507 static int cxgb4_get_module_eeprom(struct net_device *dev,
1508 				   struct ethtool_eeprom *eprom, u8 *data)
1509 {
1510 	int ret = 0, offset = eprom->offset, len = eprom->len;
1511 	struct port_info *pi = netdev_priv(dev);
1512 	struct adapter *adapter = pi->adapter;
1513 
1514 	memset(data, 0, eprom->len);
1515 	if (offset + len <= I2C_PAGE_SIZE)
1516 		return t4_i2c_rd(adapter, adapter->mbox, pi->tx_chan,
1517 				 I2C_DEV_ADDR_A0, offset, len, data);
1518 
1519 	/* offset + len spans 0xa0 and 0xa1 pages */
1520 	if (offset <= I2C_PAGE_SIZE) {
1521 		/* read 0xa0 page */
1522 		len = I2C_PAGE_SIZE - offset;
1523 		ret =  t4_i2c_rd(adapter, adapter->mbox, pi->tx_chan,
1524 				 I2C_DEV_ADDR_A0, offset, len, data);
1525 		if (ret)
1526 			return ret;
1527 		offset = I2C_PAGE_SIZE;
1528 		/* Remaining bytes to be read from second page =
1529 		 * Total length - bytes read from first page
1530 		 */
1531 		len = eprom->len - len;
1532 	}
1533 	/* Read additional optical diagnostics from page 0xa2 if supported */
1534 	return t4_i2c_rd(adapter, adapter->mbox, pi->tx_chan, I2C_DEV_ADDR_A2,
1535 			 offset, len, &data[eprom->len - len]);
1536 }
1537 
cxgb4_get_priv_flags(struct net_device * netdev)1538 static u32 cxgb4_get_priv_flags(struct net_device *netdev)
1539 {
1540 	struct port_info *pi = netdev_priv(netdev);
1541 	struct adapter *adapter = pi->adapter;
1542 
1543 	return (adapter->eth_flags | pi->eth_flags);
1544 }
1545 
1546 /**
1547  *	set_flags - set/unset specified flags if passed in new_flags
1548  *	@cur_flags: pointer to current flags
1549  *	@new_flags: new incoming flags
1550  *	@flags: set of flags to set/unset
1551  */
set_flags(u32 * cur_flags,u32 new_flags,u32 flags)1552 static inline void set_flags(u32 *cur_flags, u32 new_flags, u32 flags)
1553 {
1554 	*cur_flags = (*cur_flags & ~flags) | (new_flags & flags);
1555 }
1556 
cxgb4_set_priv_flags(struct net_device * netdev,u32 flags)1557 static int cxgb4_set_priv_flags(struct net_device *netdev, u32 flags)
1558 {
1559 	struct port_info *pi = netdev_priv(netdev);
1560 	struct adapter *adapter = pi->adapter;
1561 
1562 	set_flags(&adapter->eth_flags, flags, PRIV_FLAGS_ADAP);
1563 	set_flags(&pi->eth_flags, flags, PRIV_FLAGS_PORT);
1564 
1565 	return 0;
1566 }
1567 
1568 static const struct ethtool_ops cxgb_ethtool_ops = {
1569 	.get_link_ksettings = get_link_ksettings,
1570 	.set_link_ksettings = set_link_ksettings,
1571 	.get_fecparam      = get_fecparam,
1572 	.set_fecparam      = set_fecparam,
1573 	.get_drvinfo       = get_drvinfo,
1574 	.get_msglevel      = get_msglevel,
1575 	.set_msglevel      = set_msglevel,
1576 	.get_ringparam     = get_sge_param,
1577 	.set_ringparam     = set_sge_param,
1578 	.get_coalesce      = get_coalesce,
1579 	.set_coalesce      = set_coalesce,
1580 	.get_eeprom_len    = get_eeprom_len,
1581 	.get_eeprom        = get_eeprom,
1582 	.set_eeprom        = set_eeprom,
1583 	.get_pauseparam    = get_pauseparam,
1584 	.set_pauseparam    = set_pauseparam,
1585 	.get_link          = ethtool_op_get_link,
1586 	.get_strings       = get_strings,
1587 	.set_phys_id       = identify_port,
1588 	.nway_reset        = restart_autoneg,
1589 	.get_sset_count    = get_sset_count,
1590 	.get_ethtool_stats = get_stats,
1591 	.get_regs_len      = get_regs_len,
1592 	.get_regs          = get_regs,
1593 	.get_rxnfc         = get_rxnfc,
1594 	.get_rxfh_indir_size = get_rss_table_size,
1595 	.get_rxfh	   = get_rss_table,
1596 	.set_rxfh	   = set_rss_table,
1597 	.flash_device      = set_flash,
1598 	.get_ts_info       = get_ts_info,
1599 	.set_dump          = set_dump,
1600 	.get_dump_flag     = get_dump_flag,
1601 	.get_dump_data     = get_dump_data,
1602 	.get_module_info   = cxgb4_get_module_info,
1603 	.get_module_eeprom = cxgb4_get_module_eeprom,
1604 	.get_priv_flags    = cxgb4_get_priv_flags,
1605 	.set_priv_flags    = cxgb4_set_priv_flags,
1606 };
1607 
cxgb4_set_ethtool_ops(struct net_device * netdev)1608 void cxgb4_set_ethtool_ops(struct net_device *netdev)
1609 {
1610 	netdev->ethtool_ops = &cxgb_ethtool_ops;
1611 }
1612