1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Hardware monitoring driver for PMBus devices
4 *
5 * Copyright (c) 2010, 2011 Ericsson AB.
6 * Copyright (c) 2012 Guenter Roeck
7 */
8
9 #include <linux/debugfs.h>
10 #include <linux/kernel.h>
11 #include <linux/math64.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/err.h>
15 #include <linux/slab.h>
16 #include <linux/i2c.h>
17 #include <linux/hwmon.h>
18 #include <linux/hwmon-sysfs.h>
19 #include <linux/pmbus.h>
20 #include <linux/regulator/driver.h>
21 #include <linux/regulator/machine.h>
22 #include "pmbus.h"
23
24 /*
25 * Number of additional attribute pointers to allocate
26 * with each call to krealloc
27 */
28 #define PMBUS_ATTR_ALLOC_SIZE 32
29 #define PMBUS_NAME_SIZE 24
30
31 struct pmbus_sensor {
32 struct pmbus_sensor *next;
33 char name[PMBUS_NAME_SIZE]; /* sysfs sensor name */
34 struct device_attribute attribute;
35 u8 page; /* page number */
36 u8 phase; /* phase number, 0xff for all phases */
37 u16 reg; /* register */
38 enum pmbus_sensor_classes class; /* sensor class */
39 bool update; /* runtime sensor update needed */
40 bool convert; /* Whether or not to apply linear/vid/direct */
41 int data; /* Sensor data.
42 Negative if there was a read error */
43 };
44 #define to_pmbus_sensor(_attr) \
45 container_of(_attr, struct pmbus_sensor, attribute)
46
47 struct pmbus_boolean {
48 char name[PMBUS_NAME_SIZE]; /* sysfs boolean name */
49 struct sensor_device_attribute attribute;
50 struct pmbus_sensor *s1;
51 struct pmbus_sensor *s2;
52 };
53 #define to_pmbus_boolean(_attr) \
54 container_of(_attr, struct pmbus_boolean, attribute)
55
56 struct pmbus_label {
57 char name[PMBUS_NAME_SIZE]; /* sysfs label name */
58 struct device_attribute attribute;
59 char label[PMBUS_NAME_SIZE]; /* label */
60 };
61 #define to_pmbus_label(_attr) \
62 container_of(_attr, struct pmbus_label, attribute)
63
64 /* Macros for converting between sensor index and register/page/status mask */
65
66 #define PB_STATUS_MASK 0xffff
67 #define PB_REG_SHIFT 16
68 #define PB_REG_MASK 0x3ff
69 #define PB_PAGE_SHIFT 26
70 #define PB_PAGE_MASK 0x3f
71
72 #define pb_reg_to_index(page, reg, mask) (((page) << PB_PAGE_SHIFT) | \
73 ((reg) << PB_REG_SHIFT) | (mask))
74
75 #define pb_index_to_page(index) (((index) >> PB_PAGE_SHIFT) & PB_PAGE_MASK)
76 #define pb_index_to_reg(index) (((index) >> PB_REG_SHIFT) & PB_REG_MASK)
77 #define pb_index_to_mask(index) ((index) & PB_STATUS_MASK)
78
79 struct pmbus_data {
80 struct device *dev;
81 struct device *hwmon_dev;
82
83 u32 flags; /* from platform data */
84
85 int exponent[PMBUS_PAGES];
86 /* linear mode: exponent for output voltages */
87
88 const struct pmbus_driver_info *info;
89
90 int max_attributes;
91 int num_attributes;
92 struct attribute_group group;
93 const struct attribute_group **groups;
94 struct dentry *debugfs; /* debugfs device directory */
95
96 struct pmbus_sensor *sensors;
97
98 struct mutex update_lock;
99
100 bool has_status_word; /* device uses STATUS_WORD register */
101 int (*read_status)(struct i2c_client *client, int page);
102
103 s16 currpage; /* current page, -1 for unknown/unset */
104 s16 currphase; /* current phase, 0xff for all, -1 for unknown/unset */
105 };
106
107 struct pmbus_debugfs_entry {
108 struct i2c_client *client;
109 u8 page;
110 u8 reg;
111 };
112
113 static const int pmbus_fan_rpm_mask[] = {
114 PB_FAN_1_RPM,
115 PB_FAN_2_RPM,
116 PB_FAN_1_RPM,
117 PB_FAN_2_RPM,
118 };
119
120 static const int pmbus_fan_config_registers[] = {
121 PMBUS_FAN_CONFIG_12,
122 PMBUS_FAN_CONFIG_12,
123 PMBUS_FAN_CONFIG_34,
124 PMBUS_FAN_CONFIG_34
125 };
126
127 static const int pmbus_fan_command_registers[] = {
128 PMBUS_FAN_COMMAND_1,
129 PMBUS_FAN_COMMAND_2,
130 PMBUS_FAN_COMMAND_3,
131 PMBUS_FAN_COMMAND_4,
132 };
133
pmbus_clear_cache(struct i2c_client * client)134 void pmbus_clear_cache(struct i2c_client *client)
135 {
136 struct pmbus_data *data = i2c_get_clientdata(client);
137 struct pmbus_sensor *sensor;
138
139 for (sensor = data->sensors; sensor; sensor = sensor->next)
140 sensor->data = -ENODATA;
141 }
142 EXPORT_SYMBOL_NS_GPL(pmbus_clear_cache, PMBUS);
143
pmbus_set_update(struct i2c_client * client,u8 reg,bool update)144 void pmbus_set_update(struct i2c_client *client, u8 reg, bool update)
145 {
146 struct pmbus_data *data = i2c_get_clientdata(client);
147 struct pmbus_sensor *sensor;
148
149 for (sensor = data->sensors; sensor; sensor = sensor->next)
150 if (sensor->reg == reg)
151 sensor->update = update;
152 }
153 EXPORT_SYMBOL_NS_GPL(pmbus_set_update, PMBUS);
154
pmbus_set_page(struct i2c_client * client,int page,int phase)155 int pmbus_set_page(struct i2c_client *client, int page, int phase)
156 {
157 struct pmbus_data *data = i2c_get_clientdata(client);
158 int rv;
159
160 if (page < 0)
161 return 0;
162
163 if (!(data->info->func[page] & PMBUS_PAGE_VIRTUAL) &&
164 data->info->pages > 1 && page != data->currpage) {
165 rv = i2c_smbus_write_byte_data(client, PMBUS_PAGE, page);
166 if (rv < 0)
167 return rv;
168
169 rv = i2c_smbus_read_byte_data(client, PMBUS_PAGE);
170 if (rv < 0)
171 return rv;
172
173 if (rv != page)
174 return -EIO;
175 }
176 data->currpage = page;
177
178 if (data->info->phases[page] && data->currphase != phase &&
179 !(data->info->func[page] & PMBUS_PHASE_VIRTUAL)) {
180 rv = i2c_smbus_write_byte_data(client, PMBUS_PHASE,
181 phase);
182 if (rv)
183 return rv;
184 }
185 data->currphase = phase;
186
187 return 0;
188 }
189 EXPORT_SYMBOL_NS_GPL(pmbus_set_page, PMBUS);
190
pmbus_write_byte(struct i2c_client * client,int page,u8 value)191 int pmbus_write_byte(struct i2c_client *client, int page, u8 value)
192 {
193 int rv;
194
195 rv = pmbus_set_page(client, page, 0xff);
196 if (rv < 0)
197 return rv;
198
199 return i2c_smbus_write_byte(client, value);
200 }
201 EXPORT_SYMBOL_NS_GPL(pmbus_write_byte, PMBUS);
202
203 /*
204 * _pmbus_write_byte() is similar to pmbus_write_byte(), but checks if
205 * a device specific mapping function exists and calls it if necessary.
206 */
_pmbus_write_byte(struct i2c_client * client,int page,u8 value)207 static int _pmbus_write_byte(struct i2c_client *client, int page, u8 value)
208 {
209 struct pmbus_data *data = i2c_get_clientdata(client);
210 const struct pmbus_driver_info *info = data->info;
211 int status;
212
213 if (info->write_byte) {
214 status = info->write_byte(client, page, value);
215 if (status != -ENODATA)
216 return status;
217 }
218 return pmbus_write_byte(client, page, value);
219 }
220
pmbus_write_word_data(struct i2c_client * client,int page,u8 reg,u16 word)221 int pmbus_write_word_data(struct i2c_client *client, int page, u8 reg,
222 u16 word)
223 {
224 int rv;
225
226 rv = pmbus_set_page(client, page, 0xff);
227 if (rv < 0)
228 return rv;
229
230 return i2c_smbus_write_word_data(client, reg, word);
231 }
232 EXPORT_SYMBOL_NS_GPL(pmbus_write_word_data, PMBUS);
233
234
pmbus_write_virt_reg(struct i2c_client * client,int page,int reg,u16 word)235 static int pmbus_write_virt_reg(struct i2c_client *client, int page, int reg,
236 u16 word)
237 {
238 int bit;
239 int id;
240 int rv;
241
242 switch (reg) {
243 case PMBUS_VIRT_FAN_TARGET_1 ... PMBUS_VIRT_FAN_TARGET_4:
244 id = reg - PMBUS_VIRT_FAN_TARGET_1;
245 bit = pmbus_fan_rpm_mask[id];
246 rv = pmbus_update_fan(client, page, id, bit, bit, word);
247 break;
248 default:
249 rv = -ENXIO;
250 break;
251 }
252
253 return rv;
254 }
255
256 /*
257 * _pmbus_write_word_data() is similar to pmbus_write_word_data(), but checks if
258 * a device specific mapping function exists and calls it if necessary.
259 */
_pmbus_write_word_data(struct i2c_client * client,int page,int reg,u16 word)260 static int _pmbus_write_word_data(struct i2c_client *client, int page, int reg,
261 u16 word)
262 {
263 struct pmbus_data *data = i2c_get_clientdata(client);
264 const struct pmbus_driver_info *info = data->info;
265 int status;
266
267 if (info->write_word_data) {
268 status = info->write_word_data(client, page, reg, word);
269 if (status != -ENODATA)
270 return status;
271 }
272
273 if (reg >= PMBUS_VIRT_BASE)
274 return pmbus_write_virt_reg(client, page, reg, word);
275
276 return pmbus_write_word_data(client, page, reg, word);
277 }
278
pmbus_update_fan(struct i2c_client * client,int page,int id,u8 config,u8 mask,u16 command)279 int pmbus_update_fan(struct i2c_client *client, int page, int id,
280 u8 config, u8 mask, u16 command)
281 {
282 int from;
283 int rv;
284 u8 to;
285
286 from = pmbus_read_byte_data(client, page,
287 pmbus_fan_config_registers[id]);
288 if (from < 0)
289 return from;
290
291 to = (from & ~mask) | (config & mask);
292 if (to != from) {
293 rv = pmbus_write_byte_data(client, page,
294 pmbus_fan_config_registers[id], to);
295 if (rv < 0)
296 return rv;
297 }
298
299 return _pmbus_write_word_data(client, page,
300 pmbus_fan_command_registers[id], command);
301 }
302 EXPORT_SYMBOL_NS_GPL(pmbus_update_fan, PMBUS);
303
pmbus_read_word_data(struct i2c_client * client,int page,int phase,u8 reg)304 int pmbus_read_word_data(struct i2c_client *client, int page, int phase, u8 reg)
305 {
306 int rv;
307
308 rv = pmbus_set_page(client, page, phase);
309 if (rv < 0)
310 return rv;
311
312 return i2c_smbus_read_word_data(client, reg);
313 }
314 EXPORT_SYMBOL_NS_GPL(pmbus_read_word_data, PMBUS);
315
pmbus_read_virt_reg(struct i2c_client * client,int page,int reg)316 static int pmbus_read_virt_reg(struct i2c_client *client, int page, int reg)
317 {
318 int rv;
319 int id;
320
321 switch (reg) {
322 case PMBUS_VIRT_FAN_TARGET_1 ... PMBUS_VIRT_FAN_TARGET_4:
323 id = reg - PMBUS_VIRT_FAN_TARGET_1;
324 rv = pmbus_get_fan_rate_device(client, page, id, rpm);
325 break;
326 default:
327 rv = -ENXIO;
328 break;
329 }
330
331 return rv;
332 }
333
334 /*
335 * _pmbus_read_word_data() is similar to pmbus_read_word_data(), but checks if
336 * a device specific mapping function exists and calls it if necessary.
337 */
_pmbus_read_word_data(struct i2c_client * client,int page,int phase,int reg)338 static int _pmbus_read_word_data(struct i2c_client *client, int page,
339 int phase, int reg)
340 {
341 struct pmbus_data *data = i2c_get_clientdata(client);
342 const struct pmbus_driver_info *info = data->info;
343 int status;
344
345 if (info->read_word_data) {
346 status = info->read_word_data(client, page, phase, reg);
347 if (status != -ENODATA)
348 return status;
349 }
350
351 if (reg >= PMBUS_VIRT_BASE)
352 return pmbus_read_virt_reg(client, page, reg);
353
354 return pmbus_read_word_data(client, page, phase, reg);
355 }
356
357 /* Same as above, but without phase parameter, for use in check functions */
__pmbus_read_word_data(struct i2c_client * client,int page,int reg)358 static int __pmbus_read_word_data(struct i2c_client *client, int page, int reg)
359 {
360 return _pmbus_read_word_data(client, page, 0xff, reg);
361 }
362
pmbus_read_byte_data(struct i2c_client * client,int page,u8 reg)363 int pmbus_read_byte_data(struct i2c_client *client, int page, u8 reg)
364 {
365 int rv;
366
367 rv = pmbus_set_page(client, page, 0xff);
368 if (rv < 0)
369 return rv;
370
371 return i2c_smbus_read_byte_data(client, reg);
372 }
373 EXPORT_SYMBOL_NS_GPL(pmbus_read_byte_data, PMBUS);
374
pmbus_write_byte_data(struct i2c_client * client,int page,u8 reg,u8 value)375 int pmbus_write_byte_data(struct i2c_client *client, int page, u8 reg, u8 value)
376 {
377 int rv;
378
379 rv = pmbus_set_page(client, page, 0xff);
380 if (rv < 0)
381 return rv;
382
383 return i2c_smbus_write_byte_data(client, reg, value);
384 }
385 EXPORT_SYMBOL_NS_GPL(pmbus_write_byte_data, PMBUS);
386
pmbus_update_byte_data(struct i2c_client * client,int page,u8 reg,u8 mask,u8 value)387 int pmbus_update_byte_data(struct i2c_client *client, int page, u8 reg,
388 u8 mask, u8 value)
389 {
390 unsigned int tmp;
391 int rv;
392
393 rv = pmbus_read_byte_data(client, page, reg);
394 if (rv < 0)
395 return rv;
396
397 tmp = (rv & ~mask) | (value & mask);
398
399 if (tmp != rv)
400 rv = pmbus_write_byte_data(client, page, reg, tmp);
401
402 return rv;
403 }
404 EXPORT_SYMBOL_NS_GPL(pmbus_update_byte_data, PMBUS);
405
406 /*
407 * _pmbus_read_byte_data() is similar to pmbus_read_byte_data(), but checks if
408 * a device specific mapping function exists and calls it if necessary.
409 */
_pmbus_read_byte_data(struct i2c_client * client,int page,int reg)410 static int _pmbus_read_byte_data(struct i2c_client *client, int page, int reg)
411 {
412 struct pmbus_data *data = i2c_get_clientdata(client);
413 const struct pmbus_driver_info *info = data->info;
414 int status;
415
416 if (info->read_byte_data) {
417 status = info->read_byte_data(client, page, reg);
418 if (status != -ENODATA)
419 return status;
420 }
421 return pmbus_read_byte_data(client, page, reg);
422 }
423
pmbus_find_sensor(struct pmbus_data * data,int page,int reg)424 static struct pmbus_sensor *pmbus_find_sensor(struct pmbus_data *data, int page,
425 int reg)
426 {
427 struct pmbus_sensor *sensor;
428
429 for (sensor = data->sensors; sensor; sensor = sensor->next) {
430 if (sensor->page == page && sensor->reg == reg)
431 return sensor;
432 }
433
434 return ERR_PTR(-EINVAL);
435 }
436
pmbus_get_fan_rate(struct i2c_client * client,int page,int id,enum pmbus_fan_mode mode,bool from_cache)437 static int pmbus_get_fan_rate(struct i2c_client *client, int page, int id,
438 enum pmbus_fan_mode mode,
439 bool from_cache)
440 {
441 struct pmbus_data *data = i2c_get_clientdata(client);
442 bool want_rpm, have_rpm;
443 struct pmbus_sensor *s;
444 int config;
445 int reg;
446
447 want_rpm = (mode == rpm);
448
449 if (from_cache) {
450 reg = want_rpm ? PMBUS_VIRT_FAN_TARGET_1 : PMBUS_VIRT_PWM_1;
451 s = pmbus_find_sensor(data, page, reg + id);
452 if (IS_ERR(s))
453 return PTR_ERR(s);
454
455 return s->data;
456 }
457
458 config = pmbus_read_byte_data(client, page,
459 pmbus_fan_config_registers[id]);
460 if (config < 0)
461 return config;
462
463 have_rpm = !!(config & pmbus_fan_rpm_mask[id]);
464 if (want_rpm == have_rpm)
465 return pmbus_read_word_data(client, page, 0xff,
466 pmbus_fan_command_registers[id]);
467
468 /* Can't sensibly map between RPM and PWM, just return zero */
469 return 0;
470 }
471
pmbus_get_fan_rate_device(struct i2c_client * client,int page,int id,enum pmbus_fan_mode mode)472 int pmbus_get_fan_rate_device(struct i2c_client *client, int page, int id,
473 enum pmbus_fan_mode mode)
474 {
475 return pmbus_get_fan_rate(client, page, id, mode, false);
476 }
477 EXPORT_SYMBOL_NS_GPL(pmbus_get_fan_rate_device, PMBUS);
478
pmbus_get_fan_rate_cached(struct i2c_client * client,int page,int id,enum pmbus_fan_mode mode)479 int pmbus_get_fan_rate_cached(struct i2c_client *client, int page, int id,
480 enum pmbus_fan_mode mode)
481 {
482 return pmbus_get_fan_rate(client, page, id, mode, true);
483 }
484 EXPORT_SYMBOL_NS_GPL(pmbus_get_fan_rate_cached, PMBUS);
485
pmbus_clear_fault_page(struct i2c_client * client,int page)486 static void pmbus_clear_fault_page(struct i2c_client *client, int page)
487 {
488 _pmbus_write_byte(client, page, PMBUS_CLEAR_FAULTS);
489 }
490
pmbus_clear_faults(struct i2c_client * client)491 void pmbus_clear_faults(struct i2c_client *client)
492 {
493 struct pmbus_data *data = i2c_get_clientdata(client);
494 int i;
495
496 for (i = 0; i < data->info->pages; i++)
497 pmbus_clear_fault_page(client, i);
498 }
499 EXPORT_SYMBOL_NS_GPL(pmbus_clear_faults, PMBUS);
500
pmbus_check_status_cml(struct i2c_client * client)501 static int pmbus_check_status_cml(struct i2c_client *client)
502 {
503 struct pmbus_data *data = i2c_get_clientdata(client);
504 int status, status2;
505
506 status = data->read_status(client, -1);
507 if (status < 0 || (status & PB_STATUS_CML)) {
508 status2 = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML);
509 if (status2 < 0 || (status2 & PB_CML_FAULT_INVALID_COMMAND))
510 return -EIO;
511 }
512 return 0;
513 }
514
pmbus_check_register(struct i2c_client * client,int (* func)(struct i2c_client * client,int page,int reg),int page,int reg)515 static bool pmbus_check_register(struct i2c_client *client,
516 int (*func)(struct i2c_client *client,
517 int page, int reg),
518 int page, int reg)
519 {
520 int rv;
521 struct pmbus_data *data = i2c_get_clientdata(client);
522
523 rv = func(client, page, reg);
524 if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK))
525 rv = pmbus_check_status_cml(client);
526 if (rv < 0 && (data->flags & PMBUS_READ_STATUS_AFTER_FAILED_CHECK))
527 data->read_status(client, -1);
528 pmbus_clear_fault_page(client, -1);
529 return rv >= 0;
530 }
531
pmbus_check_status_register(struct i2c_client * client,int page)532 static bool pmbus_check_status_register(struct i2c_client *client, int page)
533 {
534 int status;
535 struct pmbus_data *data = i2c_get_clientdata(client);
536
537 status = data->read_status(client, page);
538 if (status >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK) &&
539 (status & PB_STATUS_CML)) {
540 status = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML);
541 if (status < 0 || (status & PB_CML_FAULT_INVALID_COMMAND))
542 status = -EIO;
543 }
544
545 pmbus_clear_fault_page(client, -1);
546 return status >= 0;
547 }
548
pmbus_check_byte_register(struct i2c_client * client,int page,int reg)549 bool pmbus_check_byte_register(struct i2c_client *client, int page, int reg)
550 {
551 return pmbus_check_register(client, _pmbus_read_byte_data, page, reg);
552 }
553 EXPORT_SYMBOL_NS_GPL(pmbus_check_byte_register, PMBUS);
554
pmbus_check_word_register(struct i2c_client * client,int page,int reg)555 bool pmbus_check_word_register(struct i2c_client *client, int page, int reg)
556 {
557 return pmbus_check_register(client, __pmbus_read_word_data, page, reg);
558 }
559 EXPORT_SYMBOL_NS_GPL(pmbus_check_word_register, PMBUS);
560
pmbus_get_driver_info(struct i2c_client * client)561 const struct pmbus_driver_info *pmbus_get_driver_info(struct i2c_client *client)
562 {
563 struct pmbus_data *data = i2c_get_clientdata(client);
564
565 return data->info;
566 }
567 EXPORT_SYMBOL_NS_GPL(pmbus_get_driver_info, PMBUS);
568
pmbus_get_status(struct i2c_client * client,int page,int reg)569 static int pmbus_get_status(struct i2c_client *client, int page, int reg)
570 {
571 struct pmbus_data *data = i2c_get_clientdata(client);
572 int status;
573
574 switch (reg) {
575 case PMBUS_STATUS_WORD:
576 status = data->read_status(client, page);
577 break;
578 default:
579 status = _pmbus_read_byte_data(client, page, reg);
580 break;
581 }
582 if (status < 0)
583 pmbus_clear_faults(client);
584 return status;
585 }
586
pmbus_update_sensor_data(struct i2c_client * client,struct pmbus_sensor * sensor)587 static void pmbus_update_sensor_data(struct i2c_client *client, struct pmbus_sensor *sensor)
588 {
589 if (sensor->data < 0 || sensor->update)
590 sensor->data = _pmbus_read_word_data(client, sensor->page,
591 sensor->phase, sensor->reg);
592 }
593
594 /*
595 * Convert linear sensor values to milli- or micro-units
596 * depending on sensor type.
597 */
pmbus_reg2data_linear(struct pmbus_data * data,struct pmbus_sensor * sensor)598 static s64 pmbus_reg2data_linear(struct pmbus_data *data,
599 struct pmbus_sensor *sensor)
600 {
601 s16 exponent;
602 s32 mantissa;
603 s64 val;
604
605 if (sensor->class == PSC_VOLTAGE_OUT) { /* LINEAR16 */
606 exponent = data->exponent[sensor->page];
607 mantissa = (u16) sensor->data;
608 } else { /* LINEAR11 */
609 exponent = ((s16)sensor->data) >> 11;
610 mantissa = ((s16)((sensor->data & 0x7ff) << 5)) >> 5;
611 }
612
613 val = mantissa;
614
615 /* scale result to milli-units for all sensors except fans */
616 if (sensor->class != PSC_FAN)
617 val = val * 1000LL;
618
619 /* scale result to micro-units for power sensors */
620 if (sensor->class == PSC_POWER)
621 val = val * 1000LL;
622
623 if (exponent >= 0)
624 val <<= exponent;
625 else
626 val >>= -exponent;
627
628 return val;
629 }
630
631 /*
632 * Convert direct sensor values to milli- or micro-units
633 * depending on sensor type.
634 */
pmbus_reg2data_direct(struct pmbus_data * data,struct pmbus_sensor * sensor)635 static s64 pmbus_reg2data_direct(struct pmbus_data *data,
636 struct pmbus_sensor *sensor)
637 {
638 s64 b, val = (s16)sensor->data;
639 s32 m, R;
640
641 m = data->info->m[sensor->class];
642 b = data->info->b[sensor->class];
643 R = data->info->R[sensor->class];
644
645 if (m == 0)
646 return 0;
647
648 /* X = 1/m * (Y * 10^-R - b) */
649 R = -R;
650 /* scale result to milli-units for everything but fans */
651 if (!(sensor->class == PSC_FAN || sensor->class == PSC_PWM)) {
652 R += 3;
653 b *= 1000;
654 }
655
656 /* scale result to micro-units for power sensors */
657 if (sensor->class == PSC_POWER) {
658 R += 3;
659 b *= 1000;
660 }
661
662 while (R > 0) {
663 val *= 10;
664 R--;
665 }
666 while (R < 0) {
667 val = div_s64(val + 5LL, 10L); /* round closest */
668 R++;
669 }
670
671 val = div_s64(val - b, m);
672 return val;
673 }
674
675 /*
676 * Convert VID sensor values to milli- or micro-units
677 * depending on sensor type.
678 */
pmbus_reg2data_vid(struct pmbus_data * data,struct pmbus_sensor * sensor)679 static s64 pmbus_reg2data_vid(struct pmbus_data *data,
680 struct pmbus_sensor *sensor)
681 {
682 long val = sensor->data;
683 long rv = 0;
684
685 switch (data->info->vrm_version[sensor->page]) {
686 case vr11:
687 if (val >= 0x02 && val <= 0xb2)
688 rv = DIV_ROUND_CLOSEST(160000 - (val - 2) * 625, 100);
689 break;
690 case vr12:
691 if (val >= 0x01)
692 rv = 250 + (val - 1) * 5;
693 break;
694 case vr13:
695 if (val >= 0x01)
696 rv = 500 + (val - 1) * 10;
697 break;
698 case imvp9:
699 if (val >= 0x01)
700 rv = 200 + (val - 1) * 10;
701 break;
702 case amd625mv:
703 if (val >= 0x0 && val <= 0xd8)
704 rv = DIV_ROUND_CLOSEST(155000 - val * 625, 100);
705 break;
706 }
707 return rv;
708 }
709
pmbus_reg2data(struct pmbus_data * data,struct pmbus_sensor * sensor)710 static s64 pmbus_reg2data(struct pmbus_data *data, struct pmbus_sensor *sensor)
711 {
712 s64 val;
713
714 if (!sensor->convert)
715 return sensor->data;
716
717 switch (data->info->format[sensor->class]) {
718 case direct:
719 val = pmbus_reg2data_direct(data, sensor);
720 break;
721 case vid:
722 val = pmbus_reg2data_vid(data, sensor);
723 break;
724 case linear:
725 default:
726 val = pmbus_reg2data_linear(data, sensor);
727 break;
728 }
729 return val;
730 }
731
732 #define MAX_MANTISSA (1023 * 1000)
733 #define MIN_MANTISSA (511 * 1000)
734
pmbus_data2reg_linear(struct pmbus_data * data,struct pmbus_sensor * sensor,s64 val)735 static u16 pmbus_data2reg_linear(struct pmbus_data *data,
736 struct pmbus_sensor *sensor, s64 val)
737 {
738 s16 exponent = 0, mantissa;
739 bool negative = false;
740
741 /* simple case */
742 if (val == 0)
743 return 0;
744
745 if (sensor->class == PSC_VOLTAGE_OUT) {
746 /* LINEAR16 does not support negative voltages */
747 if (val < 0)
748 return 0;
749
750 /*
751 * For a static exponents, we don't have a choice
752 * but to adjust the value to it.
753 */
754 if (data->exponent[sensor->page] < 0)
755 val <<= -data->exponent[sensor->page];
756 else
757 val >>= data->exponent[sensor->page];
758 val = DIV_ROUND_CLOSEST_ULL(val, 1000);
759 return clamp_val(val, 0, 0xffff);
760 }
761
762 if (val < 0) {
763 negative = true;
764 val = -val;
765 }
766
767 /* Power is in uW. Convert to mW before converting. */
768 if (sensor->class == PSC_POWER)
769 val = DIV_ROUND_CLOSEST_ULL(val, 1000);
770
771 /*
772 * For simplicity, convert fan data to milli-units
773 * before calculating the exponent.
774 */
775 if (sensor->class == PSC_FAN)
776 val = val * 1000LL;
777
778 /* Reduce large mantissa until it fits into 10 bit */
779 while (val >= MAX_MANTISSA && exponent < 15) {
780 exponent++;
781 val >>= 1;
782 }
783 /* Increase small mantissa to improve precision */
784 while (val < MIN_MANTISSA && exponent > -15) {
785 exponent--;
786 val <<= 1;
787 }
788
789 /* Convert mantissa from milli-units to units */
790 mantissa = clamp_val(DIV_ROUND_CLOSEST_ULL(val, 1000), 0, 0x3ff);
791
792 /* restore sign */
793 if (negative)
794 mantissa = -mantissa;
795
796 /* Convert to 5 bit exponent, 11 bit mantissa */
797 return (mantissa & 0x7ff) | ((exponent << 11) & 0xf800);
798 }
799
pmbus_data2reg_direct(struct pmbus_data * data,struct pmbus_sensor * sensor,s64 val)800 static u16 pmbus_data2reg_direct(struct pmbus_data *data,
801 struct pmbus_sensor *sensor, s64 val)
802 {
803 s64 b;
804 s32 m, R;
805
806 m = data->info->m[sensor->class];
807 b = data->info->b[sensor->class];
808 R = data->info->R[sensor->class];
809
810 /* Power is in uW. Adjust R and b. */
811 if (sensor->class == PSC_POWER) {
812 R -= 3;
813 b *= 1000;
814 }
815
816 /* Calculate Y = (m * X + b) * 10^R */
817 if (!(sensor->class == PSC_FAN || sensor->class == PSC_PWM)) {
818 R -= 3; /* Adjust R and b for data in milli-units */
819 b *= 1000;
820 }
821 val = val * m + b;
822
823 while (R > 0) {
824 val *= 10;
825 R--;
826 }
827 while (R < 0) {
828 val = div_s64(val + 5LL, 10L); /* round closest */
829 R++;
830 }
831
832 return (u16)clamp_val(val, S16_MIN, S16_MAX);
833 }
834
pmbus_data2reg_vid(struct pmbus_data * data,struct pmbus_sensor * sensor,s64 val)835 static u16 pmbus_data2reg_vid(struct pmbus_data *data,
836 struct pmbus_sensor *sensor, s64 val)
837 {
838 val = clamp_val(val, 500, 1600);
839
840 return 2 + DIV_ROUND_CLOSEST_ULL((1600LL - val) * 100LL, 625);
841 }
842
pmbus_data2reg(struct pmbus_data * data,struct pmbus_sensor * sensor,s64 val)843 static u16 pmbus_data2reg(struct pmbus_data *data,
844 struct pmbus_sensor *sensor, s64 val)
845 {
846 u16 regval;
847
848 if (!sensor->convert)
849 return val;
850
851 switch (data->info->format[sensor->class]) {
852 case direct:
853 regval = pmbus_data2reg_direct(data, sensor, val);
854 break;
855 case vid:
856 regval = pmbus_data2reg_vid(data, sensor, val);
857 break;
858 case linear:
859 default:
860 regval = pmbus_data2reg_linear(data, sensor, val);
861 break;
862 }
863 return regval;
864 }
865
866 /*
867 * Return boolean calculated from converted data.
868 * <index> defines a status register index and mask.
869 * The mask is in the lower 8 bits, the register index is in bits 8..23.
870 *
871 * The associated pmbus_boolean structure contains optional pointers to two
872 * sensor attributes. If specified, those attributes are compared against each
873 * other to determine if a limit has been exceeded.
874 *
875 * If the sensor attribute pointers are NULL, the function returns true if
876 * (status[reg] & mask) is true.
877 *
878 * If sensor attribute pointers are provided, a comparison against a specified
879 * limit has to be performed to determine the boolean result.
880 * In this case, the function returns true if v1 >= v2 (where v1 and v2 are
881 * sensor values referenced by sensor attribute pointers s1 and s2).
882 *
883 * To determine if an object exceeds upper limits, specify <s1,s2> = <v,limit>.
884 * To determine if an object exceeds lower limits, specify <s1,s2> = <limit,v>.
885 *
886 * If a negative value is stored in any of the referenced registers, this value
887 * reflects an error code which will be returned.
888 */
pmbus_get_boolean(struct i2c_client * client,struct pmbus_boolean * b,int index)889 static int pmbus_get_boolean(struct i2c_client *client, struct pmbus_boolean *b,
890 int index)
891 {
892 struct pmbus_data *data = i2c_get_clientdata(client);
893 struct pmbus_sensor *s1 = b->s1;
894 struct pmbus_sensor *s2 = b->s2;
895 u16 mask = pb_index_to_mask(index);
896 u8 page = pb_index_to_page(index);
897 u16 reg = pb_index_to_reg(index);
898 int ret, status;
899 u16 regval;
900
901 mutex_lock(&data->update_lock);
902 status = pmbus_get_status(client, page, reg);
903 if (status < 0) {
904 ret = status;
905 goto unlock;
906 }
907
908 if (s1)
909 pmbus_update_sensor_data(client, s1);
910 if (s2)
911 pmbus_update_sensor_data(client, s2);
912
913 regval = status & mask;
914 if (s1 && s2) {
915 s64 v1, v2;
916
917 if (s1->data < 0) {
918 ret = s1->data;
919 goto unlock;
920 }
921 if (s2->data < 0) {
922 ret = s2->data;
923 goto unlock;
924 }
925
926 v1 = pmbus_reg2data(data, s1);
927 v2 = pmbus_reg2data(data, s2);
928 ret = !!(regval && v1 >= v2);
929 } else {
930 ret = !!regval;
931 }
932 unlock:
933 mutex_unlock(&data->update_lock);
934 return ret;
935 }
936
pmbus_show_boolean(struct device * dev,struct device_attribute * da,char * buf)937 static ssize_t pmbus_show_boolean(struct device *dev,
938 struct device_attribute *da, char *buf)
939 {
940 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
941 struct pmbus_boolean *boolean = to_pmbus_boolean(attr);
942 struct i2c_client *client = to_i2c_client(dev->parent);
943 int val;
944
945 val = pmbus_get_boolean(client, boolean, attr->index);
946 if (val < 0)
947 return val;
948 return sysfs_emit(buf, "%d\n", val);
949 }
950
pmbus_show_sensor(struct device * dev,struct device_attribute * devattr,char * buf)951 static ssize_t pmbus_show_sensor(struct device *dev,
952 struct device_attribute *devattr, char *buf)
953 {
954 struct i2c_client *client = to_i2c_client(dev->parent);
955 struct pmbus_sensor *sensor = to_pmbus_sensor(devattr);
956 struct pmbus_data *data = i2c_get_clientdata(client);
957 ssize_t ret;
958
959 mutex_lock(&data->update_lock);
960 pmbus_update_sensor_data(client, sensor);
961 if (sensor->data < 0)
962 ret = sensor->data;
963 else
964 ret = sysfs_emit(buf, "%lld\n", pmbus_reg2data(data, sensor));
965 mutex_unlock(&data->update_lock);
966 return ret;
967 }
968
pmbus_set_sensor(struct device * dev,struct device_attribute * devattr,const char * buf,size_t count)969 static ssize_t pmbus_set_sensor(struct device *dev,
970 struct device_attribute *devattr,
971 const char *buf, size_t count)
972 {
973 struct i2c_client *client = to_i2c_client(dev->parent);
974 struct pmbus_data *data = i2c_get_clientdata(client);
975 struct pmbus_sensor *sensor = to_pmbus_sensor(devattr);
976 ssize_t rv = count;
977 s64 val;
978 int ret;
979 u16 regval;
980
981 if (kstrtos64(buf, 10, &val) < 0)
982 return -EINVAL;
983
984 mutex_lock(&data->update_lock);
985 regval = pmbus_data2reg(data, sensor, val);
986 ret = _pmbus_write_word_data(client, sensor->page, sensor->reg, regval);
987 if (ret < 0)
988 rv = ret;
989 else
990 sensor->data = -ENODATA;
991 mutex_unlock(&data->update_lock);
992 return rv;
993 }
994
pmbus_show_label(struct device * dev,struct device_attribute * da,char * buf)995 static ssize_t pmbus_show_label(struct device *dev,
996 struct device_attribute *da, char *buf)
997 {
998 struct pmbus_label *label = to_pmbus_label(da);
999
1000 return sysfs_emit(buf, "%s\n", label->label);
1001 }
1002
pmbus_add_attribute(struct pmbus_data * data,struct attribute * attr)1003 static int pmbus_add_attribute(struct pmbus_data *data, struct attribute *attr)
1004 {
1005 if (data->num_attributes >= data->max_attributes - 1) {
1006 int new_max_attrs = data->max_attributes + PMBUS_ATTR_ALLOC_SIZE;
1007 void *new_attrs = devm_krealloc(data->dev, data->group.attrs,
1008 new_max_attrs * sizeof(void *),
1009 GFP_KERNEL);
1010 if (!new_attrs)
1011 return -ENOMEM;
1012 data->group.attrs = new_attrs;
1013 data->max_attributes = new_max_attrs;
1014 }
1015
1016 data->group.attrs[data->num_attributes++] = attr;
1017 data->group.attrs[data->num_attributes] = NULL;
1018 return 0;
1019 }
1020
pmbus_dev_attr_init(struct device_attribute * dev_attr,const char * name,umode_t mode,ssize_t (* show)(struct device * dev,struct device_attribute * attr,char * buf),ssize_t (* store)(struct device * dev,struct device_attribute * attr,const char * buf,size_t count))1021 static void pmbus_dev_attr_init(struct device_attribute *dev_attr,
1022 const char *name,
1023 umode_t mode,
1024 ssize_t (*show)(struct device *dev,
1025 struct device_attribute *attr,
1026 char *buf),
1027 ssize_t (*store)(struct device *dev,
1028 struct device_attribute *attr,
1029 const char *buf, size_t count))
1030 {
1031 sysfs_attr_init(&dev_attr->attr);
1032 dev_attr->attr.name = name;
1033 dev_attr->attr.mode = mode;
1034 dev_attr->show = show;
1035 dev_attr->store = store;
1036 }
1037
pmbus_attr_init(struct sensor_device_attribute * a,const char * name,umode_t mode,ssize_t (* show)(struct device * dev,struct device_attribute * attr,char * buf),ssize_t (* store)(struct device * dev,struct device_attribute * attr,const char * buf,size_t count),int idx)1038 static void pmbus_attr_init(struct sensor_device_attribute *a,
1039 const char *name,
1040 umode_t mode,
1041 ssize_t (*show)(struct device *dev,
1042 struct device_attribute *attr,
1043 char *buf),
1044 ssize_t (*store)(struct device *dev,
1045 struct device_attribute *attr,
1046 const char *buf, size_t count),
1047 int idx)
1048 {
1049 pmbus_dev_attr_init(&a->dev_attr, name, mode, show, store);
1050 a->index = idx;
1051 }
1052
pmbus_add_boolean(struct pmbus_data * data,const char * name,const char * type,int seq,struct pmbus_sensor * s1,struct pmbus_sensor * s2,u8 page,u16 reg,u16 mask)1053 static int pmbus_add_boolean(struct pmbus_data *data,
1054 const char *name, const char *type, int seq,
1055 struct pmbus_sensor *s1,
1056 struct pmbus_sensor *s2,
1057 u8 page, u16 reg, u16 mask)
1058 {
1059 struct pmbus_boolean *boolean;
1060 struct sensor_device_attribute *a;
1061
1062 if (WARN((s1 && !s2) || (!s1 && s2), "Bad s1/s2 parameters\n"))
1063 return -EINVAL;
1064
1065 boolean = devm_kzalloc(data->dev, sizeof(*boolean), GFP_KERNEL);
1066 if (!boolean)
1067 return -ENOMEM;
1068
1069 a = &boolean->attribute;
1070
1071 snprintf(boolean->name, sizeof(boolean->name), "%s%d_%s",
1072 name, seq, type);
1073 boolean->s1 = s1;
1074 boolean->s2 = s2;
1075 pmbus_attr_init(a, boolean->name, 0444, pmbus_show_boolean, NULL,
1076 pb_reg_to_index(page, reg, mask));
1077
1078 return pmbus_add_attribute(data, &a->dev_attr.attr);
1079 }
1080
pmbus_add_sensor(struct pmbus_data * data,const char * name,const char * type,int seq,int page,int phase,int reg,enum pmbus_sensor_classes class,bool update,bool readonly,bool convert)1081 static struct pmbus_sensor *pmbus_add_sensor(struct pmbus_data *data,
1082 const char *name, const char *type,
1083 int seq, int page, int phase,
1084 int reg,
1085 enum pmbus_sensor_classes class,
1086 bool update, bool readonly,
1087 bool convert)
1088 {
1089 struct pmbus_sensor *sensor;
1090 struct device_attribute *a;
1091
1092 sensor = devm_kzalloc(data->dev, sizeof(*sensor), GFP_KERNEL);
1093 if (!sensor)
1094 return NULL;
1095 a = &sensor->attribute;
1096
1097 if (type)
1098 snprintf(sensor->name, sizeof(sensor->name), "%s%d_%s",
1099 name, seq, type);
1100 else
1101 snprintf(sensor->name, sizeof(sensor->name), "%s%d",
1102 name, seq);
1103
1104 if (data->flags & PMBUS_WRITE_PROTECTED)
1105 readonly = true;
1106
1107 sensor->page = page;
1108 sensor->phase = phase;
1109 sensor->reg = reg;
1110 sensor->class = class;
1111 sensor->update = update;
1112 sensor->convert = convert;
1113 sensor->data = -ENODATA;
1114 pmbus_dev_attr_init(a, sensor->name,
1115 readonly ? 0444 : 0644,
1116 pmbus_show_sensor, pmbus_set_sensor);
1117
1118 if (pmbus_add_attribute(data, &a->attr))
1119 return NULL;
1120
1121 sensor->next = data->sensors;
1122 data->sensors = sensor;
1123
1124 return sensor;
1125 }
1126
pmbus_add_label(struct pmbus_data * data,const char * name,int seq,const char * lstring,int index,int phase)1127 static int pmbus_add_label(struct pmbus_data *data,
1128 const char *name, int seq,
1129 const char *lstring, int index, int phase)
1130 {
1131 struct pmbus_label *label;
1132 struct device_attribute *a;
1133
1134 label = devm_kzalloc(data->dev, sizeof(*label), GFP_KERNEL);
1135 if (!label)
1136 return -ENOMEM;
1137
1138 a = &label->attribute;
1139
1140 snprintf(label->name, sizeof(label->name), "%s%d_label", name, seq);
1141 if (!index) {
1142 if (phase == 0xff)
1143 strncpy(label->label, lstring,
1144 sizeof(label->label) - 1);
1145 else
1146 snprintf(label->label, sizeof(label->label), "%s.%d",
1147 lstring, phase);
1148 } else {
1149 if (phase == 0xff)
1150 snprintf(label->label, sizeof(label->label), "%s%d",
1151 lstring, index);
1152 else
1153 snprintf(label->label, sizeof(label->label), "%s%d.%d",
1154 lstring, index, phase);
1155 }
1156
1157 pmbus_dev_attr_init(a, label->name, 0444, pmbus_show_label, NULL);
1158 return pmbus_add_attribute(data, &a->attr);
1159 }
1160
1161 /*
1162 * Search for attributes. Allocate sensors, booleans, and labels as needed.
1163 */
1164
1165 /*
1166 * The pmbus_limit_attr structure describes a single limit attribute
1167 * and its associated alarm attribute.
1168 */
1169 struct pmbus_limit_attr {
1170 u16 reg; /* Limit register */
1171 u16 sbit; /* Alarm attribute status bit */
1172 bool update; /* True if register needs updates */
1173 bool low; /* True if low limit; for limits with compare
1174 functions only */
1175 const char *attr; /* Attribute name */
1176 const char *alarm; /* Alarm attribute name */
1177 };
1178
1179 /*
1180 * The pmbus_sensor_attr structure describes one sensor attribute. This
1181 * description includes a reference to the associated limit attributes.
1182 */
1183 struct pmbus_sensor_attr {
1184 u16 reg; /* sensor register */
1185 u16 gbit; /* generic status bit */
1186 u8 nlimit; /* # of limit registers */
1187 enum pmbus_sensor_classes class;/* sensor class */
1188 const char *label; /* sensor label */
1189 bool paged; /* true if paged sensor */
1190 bool update; /* true if update needed */
1191 bool compare; /* true if compare function needed */
1192 u32 func; /* sensor mask */
1193 u32 sfunc; /* sensor status mask */
1194 int sreg; /* status register */
1195 const struct pmbus_limit_attr *limit;/* limit registers */
1196 };
1197
1198 /*
1199 * Add a set of limit attributes and, if supported, the associated
1200 * alarm attributes.
1201 * returns 0 if no alarm register found, 1 if an alarm register was found,
1202 * < 0 on errors.
1203 */
pmbus_add_limit_attrs(struct i2c_client * client,struct pmbus_data * data,const struct pmbus_driver_info * info,const char * name,int index,int page,struct pmbus_sensor * base,const struct pmbus_sensor_attr * attr)1204 static int pmbus_add_limit_attrs(struct i2c_client *client,
1205 struct pmbus_data *data,
1206 const struct pmbus_driver_info *info,
1207 const char *name, int index, int page,
1208 struct pmbus_sensor *base,
1209 const struct pmbus_sensor_attr *attr)
1210 {
1211 const struct pmbus_limit_attr *l = attr->limit;
1212 int nlimit = attr->nlimit;
1213 int have_alarm = 0;
1214 int i, ret;
1215 struct pmbus_sensor *curr;
1216
1217 for (i = 0; i < nlimit; i++) {
1218 if (pmbus_check_word_register(client, page, l->reg)) {
1219 curr = pmbus_add_sensor(data, name, l->attr, index,
1220 page, 0xff, l->reg, attr->class,
1221 attr->update || l->update,
1222 false, true);
1223 if (!curr)
1224 return -ENOMEM;
1225 if (l->sbit && (info->func[page] & attr->sfunc)) {
1226 ret = pmbus_add_boolean(data, name,
1227 l->alarm, index,
1228 attr->compare ? l->low ? curr : base
1229 : NULL,
1230 attr->compare ? l->low ? base : curr
1231 : NULL,
1232 page, attr->sreg, l->sbit);
1233 if (ret)
1234 return ret;
1235 have_alarm = 1;
1236 }
1237 }
1238 l++;
1239 }
1240 return have_alarm;
1241 }
1242
pmbus_add_sensor_attrs_one(struct i2c_client * client,struct pmbus_data * data,const struct pmbus_driver_info * info,const char * name,int index,int page,int phase,const struct pmbus_sensor_attr * attr,bool paged)1243 static int pmbus_add_sensor_attrs_one(struct i2c_client *client,
1244 struct pmbus_data *data,
1245 const struct pmbus_driver_info *info,
1246 const char *name,
1247 int index, int page, int phase,
1248 const struct pmbus_sensor_attr *attr,
1249 bool paged)
1250 {
1251 struct pmbus_sensor *base;
1252 bool upper = !!(attr->gbit & 0xff00); /* need to check STATUS_WORD */
1253 int ret;
1254
1255 if (attr->label) {
1256 ret = pmbus_add_label(data, name, index, attr->label,
1257 paged ? page + 1 : 0, phase);
1258 if (ret)
1259 return ret;
1260 }
1261 base = pmbus_add_sensor(data, name, "input", index, page, phase,
1262 attr->reg, attr->class, true, true, true);
1263 if (!base)
1264 return -ENOMEM;
1265 /* No limit and alarm attributes for phase specific sensors */
1266 if (attr->sfunc && phase == 0xff) {
1267 ret = pmbus_add_limit_attrs(client, data, info, name,
1268 index, page, base, attr);
1269 if (ret < 0)
1270 return ret;
1271 /*
1272 * Add generic alarm attribute only if there are no individual
1273 * alarm attributes, if there is a global alarm bit, and if
1274 * the generic status register (word or byte, depending on
1275 * which global bit is set) for this page is accessible.
1276 */
1277 if (!ret && attr->gbit &&
1278 (!upper || data->has_status_word) &&
1279 pmbus_check_status_register(client, page)) {
1280 ret = pmbus_add_boolean(data, name, "alarm", index,
1281 NULL, NULL,
1282 page, PMBUS_STATUS_WORD,
1283 attr->gbit);
1284 if (ret)
1285 return ret;
1286 }
1287 }
1288 return 0;
1289 }
1290
pmbus_sensor_is_paged(const struct pmbus_driver_info * info,const struct pmbus_sensor_attr * attr)1291 static bool pmbus_sensor_is_paged(const struct pmbus_driver_info *info,
1292 const struct pmbus_sensor_attr *attr)
1293 {
1294 int p;
1295
1296 if (attr->paged)
1297 return true;
1298
1299 /*
1300 * Some attributes may be present on more than one page despite
1301 * not being marked with the paged attribute. If that is the case,
1302 * then treat the sensor as being paged and add the page suffix to the
1303 * attribute name.
1304 * We don't just add the paged attribute to all such attributes, in
1305 * order to maintain the un-suffixed labels in the case where the
1306 * attribute is only on page 0.
1307 */
1308 for (p = 1; p < info->pages; p++) {
1309 if (info->func[p] & attr->func)
1310 return true;
1311 }
1312 return false;
1313 }
1314
pmbus_add_sensor_attrs(struct i2c_client * client,struct pmbus_data * data,const char * name,const struct pmbus_sensor_attr * attrs,int nattrs)1315 static int pmbus_add_sensor_attrs(struct i2c_client *client,
1316 struct pmbus_data *data,
1317 const char *name,
1318 const struct pmbus_sensor_attr *attrs,
1319 int nattrs)
1320 {
1321 const struct pmbus_driver_info *info = data->info;
1322 int index, i;
1323 int ret;
1324
1325 index = 1;
1326 for (i = 0; i < nattrs; i++) {
1327 int page, pages;
1328 bool paged = pmbus_sensor_is_paged(info, attrs);
1329
1330 pages = paged ? info->pages : 1;
1331 for (page = 0; page < pages; page++) {
1332 if (info->func[page] & attrs->func) {
1333 ret = pmbus_add_sensor_attrs_one(client, data, info,
1334 name, index, page,
1335 0xff, attrs, paged);
1336 if (ret)
1337 return ret;
1338 index++;
1339 }
1340 if (info->phases[page]) {
1341 int phase;
1342
1343 for (phase = 0; phase < info->phases[page];
1344 phase++) {
1345 if (!(info->pfunc[phase] & attrs->func))
1346 continue;
1347 ret = pmbus_add_sensor_attrs_one(client,
1348 data, info, name, index, page,
1349 phase, attrs, paged);
1350 if (ret)
1351 return ret;
1352 index++;
1353 }
1354 }
1355 }
1356 attrs++;
1357 }
1358 return 0;
1359 }
1360
1361 static const struct pmbus_limit_attr vin_limit_attrs[] = {
1362 {
1363 .reg = PMBUS_VIN_UV_WARN_LIMIT,
1364 .attr = "min",
1365 .alarm = "min_alarm",
1366 .sbit = PB_VOLTAGE_UV_WARNING,
1367 }, {
1368 .reg = PMBUS_VIN_UV_FAULT_LIMIT,
1369 .attr = "lcrit",
1370 .alarm = "lcrit_alarm",
1371 .sbit = PB_VOLTAGE_UV_FAULT,
1372 }, {
1373 .reg = PMBUS_VIN_OV_WARN_LIMIT,
1374 .attr = "max",
1375 .alarm = "max_alarm",
1376 .sbit = PB_VOLTAGE_OV_WARNING,
1377 }, {
1378 .reg = PMBUS_VIN_OV_FAULT_LIMIT,
1379 .attr = "crit",
1380 .alarm = "crit_alarm",
1381 .sbit = PB_VOLTAGE_OV_FAULT,
1382 }, {
1383 .reg = PMBUS_VIRT_READ_VIN_AVG,
1384 .update = true,
1385 .attr = "average",
1386 }, {
1387 .reg = PMBUS_VIRT_READ_VIN_MIN,
1388 .update = true,
1389 .attr = "lowest",
1390 }, {
1391 .reg = PMBUS_VIRT_READ_VIN_MAX,
1392 .update = true,
1393 .attr = "highest",
1394 }, {
1395 .reg = PMBUS_VIRT_RESET_VIN_HISTORY,
1396 .attr = "reset_history",
1397 }, {
1398 .reg = PMBUS_MFR_VIN_MIN,
1399 .attr = "rated_min",
1400 }, {
1401 .reg = PMBUS_MFR_VIN_MAX,
1402 .attr = "rated_max",
1403 },
1404 };
1405
1406 static const struct pmbus_limit_attr vmon_limit_attrs[] = {
1407 {
1408 .reg = PMBUS_VIRT_VMON_UV_WARN_LIMIT,
1409 .attr = "min",
1410 .alarm = "min_alarm",
1411 .sbit = PB_VOLTAGE_UV_WARNING,
1412 }, {
1413 .reg = PMBUS_VIRT_VMON_UV_FAULT_LIMIT,
1414 .attr = "lcrit",
1415 .alarm = "lcrit_alarm",
1416 .sbit = PB_VOLTAGE_UV_FAULT,
1417 }, {
1418 .reg = PMBUS_VIRT_VMON_OV_WARN_LIMIT,
1419 .attr = "max",
1420 .alarm = "max_alarm",
1421 .sbit = PB_VOLTAGE_OV_WARNING,
1422 }, {
1423 .reg = PMBUS_VIRT_VMON_OV_FAULT_LIMIT,
1424 .attr = "crit",
1425 .alarm = "crit_alarm",
1426 .sbit = PB_VOLTAGE_OV_FAULT,
1427 }
1428 };
1429
1430 static const struct pmbus_limit_attr vout_limit_attrs[] = {
1431 {
1432 .reg = PMBUS_VOUT_UV_WARN_LIMIT,
1433 .attr = "min",
1434 .alarm = "min_alarm",
1435 .sbit = PB_VOLTAGE_UV_WARNING,
1436 }, {
1437 .reg = PMBUS_VOUT_UV_FAULT_LIMIT,
1438 .attr = "lcrit",
1439 .alarm = "lcrit_alarm",
1440 .sbit = PB_VOLTAGE_UV_FAULT,
1441 }, {
1442 .reg = PMBUS_VOUT_OV_WARN_LIMIT,
1443 .attr = "max",
1444 .alarm = "max_alarm",
1445 .sbit = PB_VOLTAGE_OV_WARNING,
1446 }, {
1447 .reg = PMBUS_VOUT_OV_FAULT_LIMIT,
1448 .attr = "crit",
1449 .alarm = "crit_alarm",
1450 .sbit = PB_VOLTAGE_OV_FAULT,
1451 }, {
1452 .reg = PMBUS_VIRT_READ_VOUT_AVG,
1453 .update = true,
1454 .attr = "average",
1455 }, {
1456 .reg = PMBUS_VIRT_READ_VOUT_MIN,
1457 .update = true,
1458 .attr = "lowest",
1459 }, {
1460 .reg = PMBUS_VIRT_READ_VOUT_MAX,
1461 .update = true,
1462 .attr = "highest",
1463 }, {
1464 .reg = PMBUS_VIRT_RESET_VOUT_HISTORY,
1465 .attr = "reset_history",
1466 }, {
1467 .reg = PMBUS_MFR_VOUT_MIN,
1468 .attr = "rated_min",
1469 }, {
1470 .reg = PMBUS_MFR_VOUT_MAX,
1471 .attr = "rated_max",
1472 },
1473 };
1474
1475 static const struct pmbus_sensor_attr voltage_attributes[] = {
1476 {
1477 .reg = PMBUS_READ_VIN,
1478 .class = PSC_VOLTAGE_IN,
1479 .label = "vin",
1480 .func = PMBUS_HAVE_VIN,
1481 .sfunc = PMBUS_HAVE_STATUS_INPUT,
1482 .sreg = PMBUS_STATUS_INPUT,
1483 .gbit = PB_STATUS_VIN_UV,
1484 .limit = vin_limit_attrs,
1485 .nlimit = ARRAY_SIZE(vin_limit_attrs),
1486 }, {
1487 .reg = PMBUS_VIRT_READ_VMON,
1488 .class = PSC_VOLTAGE_IN,
1489 .label = "vmon",
1490 .func = PMBUS_HAVE_VMON,
1491 .sfunc = PMBUS_HAVE_STATUS_VMON,
1492 .sreg = PMBUS_VIRT_STATUS_VMON,
1493 .limit = vmon_limit_attrs,
1494 .nlimit = ARRAY_SIZE(vmon_limit_attrs),
1495 }, {
1496 .reg = PMBUS_READ_VCAP,
1497 .class = PSC_VOLTAGE_IN,
1498 .label = "vcap",
1499 .func = PMBUS_HAVE_VCAP,
1500 }, {
1501 .reg = PMBUS_READ_VOUT,
1502 .class = PSC_VOLTAGE_OUT,
1503 .label = "vout",
1504 .paged = true,
1505 .func = PMBUS_HAVE_VOUT,
1506 .sfunc = PMBUS_HAVE_STATUS_VOUT,
1507 .sreg = PMBUS_STATUS_VOUT,
1508 .gbit = PB_STATUS_VOUT_OV,
1509 .limit = vout_limit_attrs,
1510 .nlimit = ARRAY_SIZE(vout_limit_attrs),
1511 }
1512 };
1513
1514 /* Current attributes */
1515
1516 static const struct pmbus_limit_attr iin_limit_attrs[] = {
1517 {
1518 .reg = PMBUS_IIN_OC_WARN_LIMIT,
1519 .attr = "max",
1520 .alarm = "max_alarm",
1521 .sbit = PB_IIN_OC_WARNING,
1522 }, {
1523 .reg = PMBUS_IIN_OC_FAULT_LIMIT,
1524 .attr = "crit",
1525 .alarm = "crit_alarm",
1526 .sbit = PB_IIN_OC_FAULT,
1527 }, {
1528 .reg = PMBUS_VIRT_READ_IIN_AVG,
1529 .update = true,
1530 .attr = "average",
1531 }, {
1532 .reg = PMBUS_VIRT_READ_IIN_MIN,
1533 .update = true,
1534 .attr = "lowest",
1535 }, {
1536 .reg = PMBUS_VIRT_READ_IIN_MAX,
1537 .update = true,
1538 .attr = "highest",
1539 }, {
1540 .reg = PMBUS_VIRT_RESET_IIN_HISTORY,
1541 .attr = "reset_history",
1542 }, {
1543 .reg = PMBUS_MFR_IIN_MAX,
1544 .attr = "rated_max",
1545 },
1546 };
1547
1548 static const struct pmbus_limit_attr iout_limit_attrs[] = {
1549 {
1550 .reg = PMBUS_IOUT_OC_WARN_LIMIT,
1551 .attr = "max",
1552 .alarm = "max_alarm",
1553 .sbit = PB_IOUT_OC_WARNING,
1554 }, {
1555 .reg = PMBUS_IOUT_UC_FAULT_LIMIT,
1556 .attr = "lcrit",
1557 .alarm = "lcrit_alarm",
1558 .sbit = PB_IOUT_UC_FAULT,
1559 }, {
1560 .reg = PMBUS_IOUT_OC_FAULT_LIMIT,
1561 .attr = "crit",
1562 .alarm = "crit_alarm",
1563 .sbit = PB_IOUT_OC_FAULT,
1564 }, {
1565 .reg = PMBUS_VIRT_READ_IOUT_AVG,
1566 .update = true,
1567 .attr = "average",
1568 }, {
1569 .reg = PMBUS_VIRT_READ_IOUT_MIN,
1570 .update = true,
1571 .attr = "lowest",
1572 }, {
1573 .reg = PMBUS_VIRT_READ_IOUT_MAX,
1574 .update = true,
1575 .attr = "highest",
1576 }, {
1577 .reg = PMBUS_VIRT_RESET_IOUT_HISTORY,
1578 .attr = "reset_history",
1579 }, {
1580 .reg = PMBUS_MFR_IOUT_MAX,
1581 .attr = "rated_max",
1582 },
1583 };
1584
1585 static const struct pmbus_sensor_attr current_attributes[] = {
1586 {
1587 .reg = PMBUS_READ_IIN,
1588 .class = PSC_CURRENT_IN,
1589 .label = "iin",
1590 .func = PMBUS_HAVE_IIN,
1591 .sfunc = PMBUS_HAVE_STATUS_INPUT,
1592 .sreg = PMBUS_STATUS_INPUT,
1593 .gbit = PB_STATUS_INPUT,
1594 .limit = iin_limit_attrs,
1595 .nlimit = ARRAY_SIZE(iin_limit_attrs),
1596 }, {
1597 .reg = PMBUS_READ_IOUT,
1598 .class = PSC_CURRENT_OUT,
1599 .label = "iout",
1600 .paged = true,
1601 .func = PMBUS_HAVE_IOUT,
1602 .sfunc = PMBUS_HAVE_STATUS_IOUT,
1603 .sreg = PMBUS_STATUS_IOUT,
1604 .gbit = PB_STATUS_IOUT_OC,
1605 .limit = iout_limit_attrs,
1606 .nlimit = ARRAY_SIZE(iout_limit_attrs),
1607 }
1608 };
1609
1610 /* Power attributes */
1611
1612 static const struct pmbus_limit_attr pin_limit_attrs[] = {
1613 {
1614 .reg = PMBUS_PIN_OP_WARN_LIMIT,
1615 .attr = "max",
1616 .alarm = "alarm",
1617 .sbit = PB_PIN_OP_WARNING,
1618 }, {
1619 .reg = PMBUS_VIRT_READ_PIN_AVG,
1620 .update = true,
1621 .attr = "average",
1622 }, {
1623 .reg = PMBUS_VIRT_READ_PIN_MIN,
1624 .update = true,
1625 .attr = "input_lowest",
1626 }, {
1627 .reg = PMBUS_VIRT_READ_PIN_MAX,
1628 .update = true,
1629 .attr = "input_highest",
1630 }, {
1631 .reg = PMBUS_VIRT_RESET_PIN_HISTORY,
1632 .attr = "reset_history",
1633 }, {
1634 .reg = PMBUS_MFR_PIN_MAX,
1635 .attr = "rated_max",
1636 },
1637 };
1638
1639 static const struct pmbus_limit_attr pout_limit_attrs[] = {
1640 {
1641 .reg = PMBUS_POUT_MAX,
1642 .attr = "cap",
1643 .alarm = "cap_alarm",
1644 .sbit = PB_POWER_LIMITING,
1645 }, {
1646 .reg = PMBUS_POUT_OP_WARN_LIMIT,
1647 .attr = "max",
1648 .alarm = "max_alarm",
1649 .sbit = PB_POUT_OP_WARNING,
1650 }, {
1651 .reg = PMBUS_POUT_OP_FAULT_LIMIT,
1652 .attr = "crit",
1653 .alarm = "crit_alarm",
1654 .sbit = PB_POUT_OP_FAULT,
1655 }, {
1656 .reg = PMBUS_VIRT_READ_POUT_AVG,
1657 .update = true,
1658 .attr = "average",
1659 }, {
1660 .reg = PMBUS_VIRT_READ_POUT_MIN,
1661 .update = true,
1662 .attr = "input_lowest",
1663 }, {
1664 .reg = PMBUS_VIRT_READ_POUT_MAX,
1665 .update = true,
1666 .attr = "input_highest",
1667 }, {
1668 .reg = PMBUS_VIRT_RESET_POUT_HISTORY,
1669 .attr = "reset_history",
1670 }, {
1671 .reg = PMBUS_MFR_POUT_MAX,
1672 .attr = "rated_max",
1673 },
1674 };
1675
1676 static const struct pmbus_sensor_attr power_attributes[] = {
1677 {
1678 .reg = PMBUS_READ_PIN,
1679 .class = PSC_POWER,
1680 .label = "pin",
1681 .func = PMBUS_HAVE_PIN,
1682 .sfunc = PMBUS_HAVE_STATUS_INPUT,
1683 .sreg = PMBUS_STATUS_INPUT,
1684 .gbit = PB_STATUS_INPUT,
1685 .limit = pin_limit_attrs,
1686 .nlimit = ARRAY_SIZE(pin_limit_attrs),
1687 }, {
1688 .reg = PMBUS_READ_POUT,
1689 .class = PSC_POWER,
1690 .label = "pout",
1691 .paged = true,
1692 .func = PMBUS_HAVE_POUT,
1693 .sfunc = PMBUS_HAVE_STATUS_IOUT,
1694 .sreg = PMBUS_STATUS_IOUT,
1695 .limit = pout_limit_attrs,
1696 .nlimit = ARRAY_SIZE(pout_limit_attrs),
1697 }
1698 };
1699
1700 /* Temperature atributes */
1701
1702 static const struct pmbus_limit_attr temp_limit_attrs[] = {
1703 {
1704 .reg = PMBUS_UT_WARN_LIMIT,
1705 .low = true,
1706 .attr = "min",
1707 .alarm = "min_alarm",
1708 .sbit = PB_TEMP_UT_WARNING,
1709 }, {
1710 .reg = PMBUS_UT_FAULT_LIMIT,
1711 .low = true,
1712 .attr = "lcrit",
1713 .alarm = "lcrit_alarm",
1714 .sbit = PB_TEMP_UT_FAULT,
1715 }, {
1716 .reg = PMBUS_OT_WARN_LIMIT,
1717 .attr = "max",
1718 .alarm = "max_alarm",
1719 .sbit = PB_TEMP_OT_WARNING,
1720 }, {
1721 .reg = PMBUS_OT_FAULT_LIMIT,
1722 .attr = "crit",
1723 .alarm = "crit_alarm",
1724 .sbit = PB_TEMP_OT_FAULT,
1725 }, {
1726 .reg = PMBUS_VIRT_READ_TEMP_MIN,
1727 .attr = "lowest",
1728 }, {
1729 .reg = PMBUS_VIRT_READ_TEMP_AVG,
1730 .attr = "average",
1731 }, {
1732 .reg = PMBUS_VIRT_READ_TEMP_MAX,
1733 .attr = "highest",
1734 }, {
1735 .reg = PMBUS_VIRT_RESET_TEMP_HISTORY,
1736 .attr = "reset_history",
1737 }, {
1738 .reg = PMBUS_MFR_MAX_TEMP_1,
1739 .attr = "rated_max",
1740 },
1741 };
1742
1743 static const struct pmbus_limit_attr temp_limit_attrs2[] = {
1744 {
1745 .reg = PMBUS_UT_WARN_LIMIT,
1746 .low = true,
1747 .attr = "min",
1748 .alarm = "min_alarm",
1749 .sbit = PB_TEMP_UT_WARNING,
1750 }, {
1751 .reg = PMBUS_UT_FAULT_LIMIT,
1752 .low = true,
1753 .attr = "lcrit",
1754 .alarm = "lcrit_alarm",
1755 .sbit = PB_TEMP_UT_FAULT,
1756 }, {
1757 .reg = PMBUS_OT_WARN_LIMIT,
1758 .attr = "max",
1759 .alarm = "max_alarm",
1760 .sbit = PB_TEMP_OT_WARNING,
1761 }, {
1762 .reg = PMBUS_OT_FAULT_LIMIT,
1763 .attr = "crit",
1764 .alarm = "crit_alarm",
1765 .sbit = PB_TEMP_OT_FAULT,
1766 }, {
1767 .reg = PMBUS_VIRT_READ_TEMP2_MIN,
1768 .attr = "lowest",
1769 }, {
1770 .reg = PMBUS_VIRT_READ_TEMP2_AVG,
1771 .attr = "average",
1772 }, {
1773 .reg = PMBUS_VIRT_READ_TEMP2_MAX,
1774 .attr = "highest",
1775 }, {
1776 .reg = PMBUS_VIRT_RESET_TEMP2_HISTORY,
1777 .attr = "reset_history",
1778 }, {
1779 .reg = PMBUS_MFR_MAX_TEMP_2,
1780 .attr = "rated_max",
1781 },
1782 };
1783
1784 static const struct pmbus_limit_attr temp_limit_attrs3[] = {
1785 {
1786 .reg = PMBUS_UT_WARN_LIMIT,
1787 .low = true,
1788 .attr = "min",
1789 .alarm = "min_alarm",
1790 .sbit = PB_TEMP_UT_WARNING,
1791 }, {
1792 .reg = PMBUS_UT_FAULT_LIMIT,
1793 .low = true,
1794 .attr = "lcrit",
1795 .alarm = "lcrit_alarm",
1796 .sbit = PB_TEMP_UT_FAULT,
1797 }, {
1798 .reg = PMBUS_OT_WARN_LIMIT,
1799 .attr = "max",
1800 .alarm = "max_alarm",
1801 .sbit = PB_TEMP_OT_WARNING,
1802 }, {
1803 .reg = PMBUS_OT_FAULT_LIMIT,
1804 .attr = "crit",
1805 .alarm = "crit_alarm",
1806 .sbit = PB_TEMP_OT_FAULT,
1807 }, {
1808 .reg = PMBUS_MFR_MAX_TEMP_3,
1809 .attr = "rated_max",
1810 },
1811 };
1812
1813 static const struct pmbus_sensor_attr temp_attributes[] = {
1814 {
1815 .reg = PMBUS_READ_TEMPERATURE_1,
1816 .class = PSC_TEMPERATURE,
1817 .paged = true,
1818 .update = true,
1819 .compare = true,
1820 .func = PMBUS_HAVE_TEMP,
1821 .sfunc = PMBUS_HAVE_STATUS_TEMP,
1822 .sreg = PMBUS_STATUS_TEMPERATURE,
1823 .gbit = PB_STATUS_TEMPERATURE,
1824 .limit = temp_limit_attrs,
1825 .nlimit = ARRAY_SIZE(temp_limit_attrs),
1826 }, {
1827 .reg = PMBUS_READ_TEMPERATURE_2,
1828 .class = PSC_TEMPERATURE,
1829 .paged = true,
1830 .update = true,
1831 .compare = true,
1832 .func = PMBUS_HAVE_TEMP2,
1833 .sfunc = PMBUS_HAVE_STATUS_TEMP,
1834 .sreg = PMBUS_STATUS_TEMPERATURE,
1835 .gbit = PB_STATUS_TEMPERATURE,
1836 .limit = temp_limit_attrs2,
1837 .nlimit = ARRAY_SIZE(temp_limit_attrs2),
1838 }, {
1839 .reg = PMBUS_READ_TEMPERATURE_3,
1840 .class = PSC_TEMPERATURE,
1841 .paged = true,
1842 .update = true,
1843 .compare = true,
1844 .func = PMBUS_HAVE_TEMP3,
1845 .sfunc = PMBUS_HAVE_STATUS_TEMP,
1846 .sreg = PMBUS_STATUS_TEMPERATURE,
1847 .gbit = PB_STATUS_TEMPERATURE,
1848 .limit = temp_limit_attrs3,
1849 .nlimit = ARRAY_SIZE(temp_limit_attrs3),
1850 }
1851 };
1852
1853 static const int pmbus_fan_registers[] = {
1854 PMBUS_READ_FAN_SPEED_1,
1855 PMBUS_READ_FAN_SPEED_2,
1856 PMBUS_READ_FAN_SPEED_3,
1857 PMBUS_READ_FAN_SPEED_4
1858 };
1859
1860 static const int pmbus_fan_status_registers[] = {
1861 PMBUS_STATUS_FAN_12,
1862 PMBUS_STATUS_FAN_12,
1863 PMBUS_STATUS_FAN_34,
1864 PMBUS_STATUS_FAN_34
1865 };
1866
1867 static const u32 pmbus_fan_flags[] = {
1868 PMBUS_HAVE_FAN12,
1869 PMBUS_HAVE_FAN12,
1870 PMBUS_HAVE_FAN34,
1871 PMBUS_HAVE_FAN34
1872 };
1873
1874 static const u32 pmbus_fan_status_flags[] = {
1875 PMBUS_HAVE_STATUS_FAN12,
1876 PMBUS_HAVE_STATUS_FAN12,
1877 PMBUS_HAVE_STATUS_FAN34,
1878 PMBUS_HAVE_STATUS_FAN34
1879 };
1880
1881 /* Fans */
1882
1883 /* Precondition: FAN_CONFIG_x_y and FAN_COMMAND_x must exist for the fan ID */
pmbus_add_fan_ctrl(struct i2c_client * client,struct pmbus_data * data,int index,int page,int id,u8 config)1884 static int pmbus_add_fan_ctrl(struct i2c_client *client,
1885 struct pmbus_data *data, int index, int page, int id,
1886 u8 config)
1887 {
1888 struct pmbus_sensor *sensor;
1889
1890 sensor = pmbus_add_sensor(data, "fan", "target", index, page,
1891 0xff, PMBUS_VIRT_FAN_TARGET_1 + id, PSC_FAN,
1892 false, false, true);
1893
1894 if (!sensor)
1895 return -ENOMEM;
1896
1897 if (!((data->info->func[page] & PMBUS_HAVE_PWM12) ||
1898 (data->info->func[page] & PMBUS_HAVE_PWM34)))
1899 return 0;
1900
1901 sensor = pmbus_add_sensor(data, "pwm", NULL, index, page,
1902 0xff, PMBUS_VIRT_PWM_1 + id, PSC_PWM,
1903 false, false, true);
1904
1905 if (!sensor)
1906 return -ENOMEM;
1907
1908 sensor = pmbus_add_sensor(data, "pwm", "enable", index, page,
1909 0xff, PMBUS_VIRT_PWM_ENABLE_1 + id, PSC_PWM,
1910 true, false, false);
1911
1912 if (!sensor)
1913 return -ENOMEM;
1914
1915 return 0;
1916 }
1917
pmbus_add_fan_attributes(struct i2c_client * client,struct pmbus_data * data)1918 static int pmbus_add_fan_attributes(struct i2c_client *client,
1919 struct pmbus_data *data)
1920 {
1921 const struct pmbus_driver_info *info = data->info;
1922 int index = 1;
1923 int page;
1924 int ret;
1925
1926 for (page = 0; page < info->pages; page++) {
1927 int f;
1928
1929 for (f = 0; f < ARRAY_SIZE(pmbus_fan_registers); f++) {
1930 int regval;
1931
1932 if (!(info->func[page] & pmbus_fan_flags[f]))
1933 break;
1934
1935 if (!pmbus_check_word_register(client, page,
1936 pmbus_fan_registers[f]))
1937 break;
1938
1939 /*
1940 * Skip fan if not installed.
1941 * Each fan configuration register covers multiple fans,
1942 * so we have to do some magic.
1943 */
1944 regval = _pmbus_read_byte_data(client, page,
1945 pmbus_fan_config_registers[f]);
1946 if (regval < 0 ||
1947 (!(regval & (PB_FAN_1_INSTALLED >> ((f & 1) * 4)))))
1948 continue;
1949
1950 if (pmbus_add_sensor(data, "fan", "input", index,
1951 page, 0xff, pmbus_fan_registers[f],
1952 PSC_FAN, true, true, true) == NULL)
1953 return -ENOMEM;
1954
1955 /* Fan control */
1956 if (pmbus_check_word_register(client, page,
1957 pmbus_fan_command_registers[f])) {
1958 ret = pmbus_add_fan_ctrl(client, data, index,
1959 page, f, regval);
1960 if (ret < 0)
1961 return ret;
1962 }
1963
1964 /*
1965 * Each fan status register covers multiple fans,
1966 * so we have to do some magic.
1967 */
1968 if ((info->func[page] & pmbus_fan_status_flags[f]) &&
1969 pmbus_check_byte_register(client,
1970 page, pmbus_fan_status_registers[f])) {
1971 int reg;
1972
1973 if (f > 1) /* fan 3, 4 */
1974 reg = PMBUS_STATUS_FAN_34;
1975 else
1976 reg = PMBUS_STATUS_FAN_12;
1977 ret = pmbus_add_boolean(data, "fan",
1978 "alarm", index, NULL, NULL, page, reg,
1979 PB_FAN_FAN1_WARNING >> (f & 1));
1980 if (ret)
1981 return ret;
1982 ret = pmbus_add_boolean(data, "fan",
1983 "fault", index, NULL, NULL, page, reg,
1984 PB_FAN_FAN1_FAULT >> (f & 1));
1985 if (ret)
1986 return ret;
1987 }
1988 index++;
1989 }
1990 }
1991 return 0;
1992 }
1993
1994 struct pmbus_samples_attr {
1995 int reg;
1996 char *name;
1997 };
1998
1999 struct pmbus_samples_reg {
2000 int page;
2001 struct pmbus_samples_attr *attr;
2002 struct device_attribute dev_attr;
2003 };
2004
2005 static struct pmbus_samples_attr pmbus_samples_registers[] = {
2006 {
2007 .reg = PMBUS_VIRT_SAMPLES,
2008 .name = "samples",
2009 }, {
2010 .reg = PMBUS_VIRT_IN_SAMPLES,
2011 .name = "in_samples",
2012 }, {
2013 .reg = PMBUS_VIRT_CURR_SAMPLES,
2014 .name = "curr_samples",
2015 }, {
2016 .reg = PMBUS_VIRT_POWER_SAMPLES,
2017 .name = "power_samples",
2018 }, {
2019 .reg = PMBUS_VIRT_TEMP_SAMPLES,
2020 .name = "temp_samples",
2021 }
2022 };
2023
2024 #define to_samples_reg(x) container_of(x, struct pmbus_samples_reg, dev_attr)
2025
pmbus_show_samples(struct device * dev,struct device_attribute * devattr,char * buf)2026 static ssize_t pmbus_show_samples(struct device *dev,
2027 struct device_attribute *devattr, char *buf)
2028 {
2029 int val;
2030 struct i2c_client *client = to_i2c_client(dev->parent);
2031 struct pmbus_samples_reg *reg = to_samples_reg(devattr);
2032 struct pmbus_data *data = i2c_get_clientdata(client);
2033
2034 mutex_lock(&data->update_lock);
2035 val = _pmbus_read_word_data(client, reg->page, 0xff, reg->attr->reg);
2036 mutex_unlock(&data->update_lock);
2037 if (val < 0)
2038 return val;
2039
2040 return sysfs_emit(buf, "%d\n", val);
2041 }
2042
pmbus_set_samples(struct device * dev,struct device_attribute * devattr,const char * buf,size_t count)2043 static ssize_t pmbus_set_samples(struct device *dev,
2044 struct device_attribute *devattr,
2045 const char *buf, size_t count)
2046 {
2047 int ret;
2048 long val;
2049 struct i2c_client *client = to_i2c_client(dev->parent);
2050 struct pmbus_samples_reg *reg = to_samples_reg(devattr);
2051 struct pmbus_data *data = i2c_get_clientdata(client);
2052
2053 if (kstrtol(buf, 0, &val) < 0)
2054 return -EINVAL;
2055
2056 mutex_lock(&data->update_lock);
2057 ret = _pmbus_write_word_data(client, reg->page, reg->attr->reg, val);
2058 mutex_unlock(&data->update_lock);
2059
2060 return ret ? : count;
2061 }
2062
pmbus_add_samples_attr(struct pmbus_data * data,int page,struct pmbus_samples_attr * attr)2063 static int pmbus_add_samples_attr(struct pmbus_data *data, int page,
2064 struct pmbus_samples_attr *attr)
2065 {
2066 struct pmbus_samples_reg *reg;
2067
2068 reg = devm_kzalloc(data->dev, sizeof(*reg), GFP_KERNEL);
2069 if (!reg)
2070 return -ENOMEM;
2071
2072 reg->attr = attr;
2073 reg->page = page;
2074
2075 pmbus_dev_attr_init(®->dev_attr, attr->name, 0644,
2076 pmbus_show_samples, pmbus_set_samples);
2077
2078 return pmbus_add_attribute(data, ®->dev_attr.attr);
2079 }
2080
pmbus_add_samples_attributes(struct i2c_client * client,struct pmbus_data * data)2081 static int pmbus_add_samples_attributes(struct i2c_client *client,
2082 struct pmbus_data *data)
2083 {
2084 const struct pmbus_driver_info *info = data->info;
2085 int s;
2086
2087 if (!(info->func[0] & PMBUS_HAVE_SAMPLES))
2088 return 0;
2089
2090 for (s = 0; s < ARRAY_SIZE(pmbus_samples_registers); s++) {
2091 struct pmbus_samples_attr *attr;
2092 int ret;
2093
2094 attr = &pmbus_samples_registers[s];
2095 if (!pmbus_check_word_register(client, 0, attr->reg))
2096 continue;
2097
2098 ret = pmbus_add_samples_attr(data, 0, attr);
2099 if (ret)
2100 return ret;
2101 }
2102
2103 return 0;
2104 }
2105
pmbus_find_attributes(struct i2c_client * client,struct pmbus_data * data)2106 static int pmbus_find_attributes(struct i2c_client *client,
2107 struct pmbus_data *data)
2108 {
2109 int ret;
2110
2111 /* Voltage sensors */
2112 ret = pmbus_add_sensor_attrs(client, data, "in", voltage_attributes,
2113 ARRAY_SIZE(voltage_attributes));
2114 if (ret)
2115 return ret;
2116
2117 /* Current sensors */
2118 ret = pmbus_add_sensor_attrs(client, data, "curr", current_attributes,
2119 ARRAY_SIZE(current_attributes));
2120 if (ret)
2121 return ret;
2122
2123 /* Power sensors */
2124 ret = pmbus_add_sensor_attrs(client, data, "power", power_attributes,
2125 ARRAY_SIZE(power_attributes));
2126 if (ret)
2127 return ret;
2128
2129 /* Temperature sensors */
2130 ret = pmbus_add_sensor_attrs(client, data, "temp", temp_attributes,
2131 ARRAY_SIZE(temp_attributes));
2132 if (ret)
2133 return ret;
2134
2135 /* Fans */
2136 ret = pmbus_add_fan_attributes(client, data);
2137 if (ret)
2138 return ret;
2139
2140 ret = pmbus_add_samples_attributes(client, data);
2141 return ret;
2142 }
2143
2144 /*
2145 * The pmbus_class_attr_map structure maps one sensor class to
2146 * it's corresponding sensor attributes array.
2147 */
2148 struct pmbus_class_attr_map {
2149 enum pmbus_sensor_classes class;
2150 int nattr;
2151 const struct pmbus_sensor_attr *attr;
2152 };
2153
2154 static const struct pmbus_class_attr_map class_attr_map[] = {
2155 {
2156 .class = PSC_VOLTAGE_IN,
2157 .attr = voltage_attributes,
2158 .nattr = ARRAY_SIZE(voltage_attributes),
2159 }, {
2160 .class = PSC_VOLTAGE_OUT,
2161 .attr = voltage_attributes,
2162 .nattr = ARRAY_SIZE(voltage_attributes),
2163 }, {
2164 .class = PSC_CURRENT_IN,
2165 .attr = current_attributes,
2166 .nattr = ARRAY_SIZE(current_attributes),
2167 }, {
2168 .class = PSC_CURRENT_OUT,
2169 .attr = current_attributes,
2170 .nattr = ARRAY_SIZE(current_attributes),
2171 }, {
2172 .class = PSC_POWER,
2173 .attr = power_attributes,
2174 .nattr = ARRAY_SIZE(power_attributes),
2175 }, {
2176 .class = PSC_TEMPERATURE,
2177 .attr = temp_attributes,
2178 .nattr = ARRAY_SIZE(temp_attributes),
2179 }
2180 };
2181
2182 /*
2183 * Read the coefficients for direct mode.
2184 */
pmbus_read_coefficients(struct i2c_client * client,struct pmbus_driver_info * info,const struct pmbus_sensor_attr * attr)2185 static int pmbus_read_coefficients(struct i2c_client *client,
2186 struct pmbus_driver_info *info,
2187 const struct pmbus_sensor_attr *attr)
2188 {
2189 int rv;
2190 union i2c_smbus_data data;
2191 enum pmbus_sensor_classes class = attr->class;
2192 s8 R;
2193 s16 m, b;
2194
2195 data.block[0] = 2;
2196 data.block[1] = attr->reg;
2197 data.block[2] = 0x01;
2198
2199 rv = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
2200 I2C_SMBUS_WRITE, PMBUS_COEFFICIENTS,
2201 I2C_SMBUS_BLOCK_PROC_CALL, &data);
2202
2203 if (rv < 0)
2204 return rv;
2205
2206 if (data.block[0] != 5)
2207 return -EIO;
2208
2209 m = data.block[1] | (data.block[2] << 8);
2210 b = data.block[3] | (data.block[4] << 8);
2211 R = data.block[5];
2212 info->m[class] = m;
2213 info->b[class] = b;
2214 info->R[class] = R;
2215
2216 return rv;
2217 }
2218
pmbus_init_coefficients(struct i2c_client * client,struct pmbus_driver_info * info)2219 static int pmbus_init_coefficients(struct i2c_client *client,
2220 struct pmbus_driver_info *info)
2221 {
2222 int i, n, ret = -EINVAL;
2223 const struct pmbus_class_attr_map *map;
2224 const struct pmbus_sensor_attr *attr;
2225
2226 for (i = 0; i < ARRAY_SIZE(class_attr_map); i++) {
2227 map = &class_attr_map[i];
2228 if (info->format[map->class] != direct)
2229 continue;
2230 for (n = 0; n < map->nattr; n++) {
2231 attr = &map->attr[n];
2232 if (map->class != attr->class)
2233 continue;
2234 ret = pmbus_read_coefficients(client, info, attr);
2235 if (ret >= 0)
2236 break;
2237 }
2238 if (ret < 0) {
2239 dev_err(&client->dev,
2240 "No coefficients found for sensor class %d\n",
2241 map->class);
2242 return -EINVAL;
2243 }
2244 }
2245
2246 return 0;
2247 }
2248
2249 /*
2250 * Identify chip parameters.
2251 * This function is called for all chips.
2252 */
pmbus_identify_common(struct i2c_client * client,struct pmbus_data * data,int page)2253 static int pmbus_identify_common(struct i2c_client *client,
2254 struct pmbus_data *data, int page)
2255 {
2256 int vout_mode = -1;
2257
2258 if (pmbus_check_byte_register(client, page, PMBUS_VOUT_MODE))
2259 vout_mode = _pmbus_read_byte_data(client, page,
2260 PMBUS_VOUT_MODE);
2261 if (vout_mode >= 0 && vout_mode != 0xff) {
2262 /*
2263 * Not all chips support the VOUT_MODE command,
2264 * so a failure to read it is not an error.
2265 */
2266 switch (vout_mode >> 5) {
2267 case 0: /* linear mode */
2268 if (data->info->format[PSC_VOLTAGE_OUT] != linear)
2269 return -ENODEV;
2270
2271 data->exponent[page] = ((s8)(vout_mode << 3)) >> 3;
2272 break;
2273 case 1: /* VID mode */
2274 if (data->info->format[PSC_VOLTAGE_OUT] != vid)
2275 return -ENODEV;
2276 break;
2277 case 2: /* direct mode */
2278 if (data->info->format[PSC_VOLTAGE_OUT] != direct)
2279 return -ENODEV;
2280 break;
2281 default:
2282 return -ENODEV;
2283 }
2284 }
2285
2286 pmbus_clear_fault_page(client, page);
2287 return 0;
2288 }
2289
pmbus_read_status_byte(struct i2c_client * client,int page)2290 static int pmbus_read_status_byte(struct i2c_client *client, int page)
2291 {
2292 return _pmbus_read_byte_data(client, page, PMBUS_STATUS_BYTE);
2293 }
2294
pmbus_read_status_word(struct i2c_client * client,int page)2295 static int pmbus_read_status_word(struct i2c_client *client, int page)
2296 {
2297 return _pmbus_read_word_data(client, page, 0xff, PMBUS_STATUS_WORD);
2298 }
2299
pmbus_init_common(struct i2c_client * client,struct pmbus_data * data,struct pmbus_driver_info * info)2300 static int pmbus_init_common(struct i2c_client *client, struct pmbus_data *data,
2301 struct pmbus_driver_info *info)
2302 {
2303 struct device *dev = &client->dev;
2304 int page, ret;
2305
2306 /*
2307 * Some PMBus chips don't support PMBUS_STATUS_WORD, so try
2308 * to use PMBUS_STATUS_BYTE instead if that is the case.
2309 * Bail out if both registers are not supported.
2310 */
2311 data->read_status = pmbus_read_status_word;
2312 ret = i2c_smbus_read_word_data(client, PMBUS_STATUS_WORD);
2313 if (ret < 0 || ret == 0xffff) {
2314 data->read_status = pmbus_read_status_byte;
2315 ret = i2c_smbus_read_byte_data(client, PMBUS_STATUS_BYTE);
2316 if (ret < 0 || ret == 0xff) {
2317 dev_err(dev, "PMBus status register not found\n");
2318 return -ENODEV;
2319 }
2320 } else {
2321 data->has_status_word = true;
2322 }
2323
2324 /* Enable PEC if the controller and bus supports it */
2325 if (!(data->flags & PMBUS_NO_CAPABILITY)) {
2326 ret = i2c_smbus_read_byte_data(client, PMBUS_CAPABILITY);
2327 if (ret >= 0 && (ret & PB_CAPABILITY_ERROR_CHECK)) {
2328 if (i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_PEC)) {
2329 client->flags |= I2C_CLIENT_PEC;
2330 }
2331 }
2332 }
2333
2334 /*
2335 * Check if the chip is write protected. If it is, we can not clear
2336 * faults, and we should not try it. Also, in that case, writes into
2337 * limit registers need to be disabled.
2338 */
2339 if (!(data->flags & PMBUS_NO_WRITE_PROTECT)) {
2340 ret = i2c_smbus_read_byte_data(client, PMBUS_WRITE_PROTECT);
2341 if (ret > 0 && (ret & PB_WP_ANY))
2342 data->flags |= PMBUS_WRITE_PROTECTED | PMBUS_SKIP_STATUS_CHECK;
2343 }
2344
2345 if (data->info->pages)
2346 pmbus_clear_faults(client);
2347 else
2348 pmbus_clear_fault_page(client, -1);
2349
2350 if (info->identify) {
2351 ret = (*info->identify)(client, info);
2352 if (ret < 0) {
2353 dev_err(dev, "Chip identification failed\n");
2354 return ret;
2355 }
2356 }
2357
2358 if (info->pages <= 0 || info->pages > PMBUS_PAGES) {
2359 dev_err(dev, "Bad number of PMBus pages: %d\n", info->pages);
2360 return -ENODEV;
2361 }
2362
2363 for (page = 0; page < info->pages; page++) {
2364 ret = pmbus_identify_common(client, data, page);
2365 if (ret < 0) {
2366 dev_err(dev, "Failed to identify chip capabilities\n");
2367 return ret;
2368 }
2369 }
2370
2371 if (data->flags & PMBUS_USE_COEFFICIENTS_CMD) {
2372 if (!i2c_check_functionality(client->adapter,
2373 I2C_FUNC_SMBUS_BLOCK_PROC_CALL))
2374 return -ENODEV;
2375
2376 ret = pmbus_init_coefficients(client, info);
2377 if (ret < 0)
2378 return ret;
2379 }
2380
2381 return 0;
2382 }
2383
2384 #if IS_ENABLED(CONFIG_REGULATOR)
pmbus_regulator_is_enabled(struct regulator_dev * rdev)2385 static int pmbus_regulator_is_enabled(struct regulator_dev *rdev)
2386 {
2387 struct device *dev = rdev_get_dev(rdev);
2388 struct i2c_client *client = to_i2c_client(dev->parent);
2389 u8 page = rdev_get_id(rdev);
2390 int ret;
2391
2392 ret = pmbus_read_byte_data(client, page, PMBUS_OPERATION);
2393 if (ret < 0)
2394 return ret;
2395
2396 return !!(ret & PB_OPERATION_CONTROL_ON);
2397 }
2398
_pmbus_regulator_on_off(struct regulator_dev * rdev,bool enable)2399 static int _pmbus_regulator_on_off(struct regulator_dev *rdev, bool enable)
2400 {
2401 struct device *dev = rdev_get_dev(rdev);
2402 struct i2c_client *client = to_i2c_client(dev->parent);
2403 u8 page = rdev_get_id(rdev);
2404
2405 return pmbus_update_byte_data(client, page, PMBUS_OPERATION,
2406 PB_OPERATION_CONTROL_ON,
2407 enable ? PB_OPERATION_CONTROL_ON : 0);
2408 }
2409
pmbus_regulator_enable(struct regulator_dev * rdev)2410 static int pmbus_regulator_enable(struct regulator_dev *rdev)
2411 {
2412 return _pmbus_regulator_on_off(rdev, 1);
2413 }
2414
pmbus_regulator_disable(struct regulator_dev * rdev)2415 static int pmbus_regulator_disable(struct regulator_dev *rdev)
2416 {
2417 return _pmbus_regulator_on_off(rdev, 0);
2418 }
2419
2420 const struct regulator_ops pmbus_regulator_ops = {
2421 .enable = pmbus_regulator_enable,
2422 .disable = pmbus_regulator_disable,
2423 .is_enabled = pmbus_regulator_is_enabled,
2424 };
2425 EXPORT_SYMBOL_NS_GPL(pmbus_regulator_ops, PMBUS);
2426
pmbus_regulator_register(struct pmbus_data * data)2427 static int pmbus_regulator_register(struct pmbus_data *data)
2428 {
2429 struct device *dev = data->dev;
2430 const struct pmbus_driver_info *info = data->info;
2431 const struct pmbus_platform_data *pdata = dev_get_platdata(dev);
2432 struct regulator_dev *rdev;
2433 int i;
2434
2435 for (i = 0; i < info->num_regulators; i++) {
2436 struct regulator_config config = { };
2437
2438 config.dev = dev;
2439 config.driver_data = data;
2440
2441 if (pdata && pdata->reg_init_data)
2442 config.init_data = &pdata->reg_init_data[i];
2443
2444 rdev = devm_regulator_register(dev, &info->reg_desc[i],
2445 &config);
2446 if (IS_ERR(rdev)) {
2447 dev_err(dev, "Failed to register %s regulator\n",
2448 info->reg_desc[i].name);
2449 return PTR_ERR(rdev);
2450 }
2451 }
2452
2453 return 0;
2454 }
2455 #else
pmbus_regulator_register(struct pmbus_data * data)2456 static int pmbus_regulator_register(struct pmbus_data *data)
2457 {
2458 return 0;
2459 }
2460 #endif
2461
2462 static struct dentry *pmbus_debugfs_dir; /* pmbus debugfs directory */
2463
2464 #if IS_ENABLED(CONFIG_DEBUG_FS)
pmbus_debugfs_get(void * data,u64 * val)2465 static int pmbus_debugfs_get(void *data, u64 *val)
2466 {
2467 int rc;
2468 struct pmbus_debugfs_entry *entry = data;
2469
2470 rc = _pmbus_read_byte_data(entry->client, entry->page, entry->reg);
2471 if (rc < 0)
2472 return rc;
2473
2474 *val = rc;
2475
2476 return 0;
2477 }
2478 DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops, pmbus_debugfs_get, NULL,
2479 "0x%02llx\n");
2480
pmbus_debugfs_get_status(void * data,u64 * val)2481 static int pmbus_debugfs_get_status(void *data, u64 *val)
2482 {
2483 int rc;
2484 struct pmbus_debugfs_entry *entry = data;
2485 struct pmbus_data *pdata = i2c_get_clientdata(entry->client);
2486
2487 rc = pdata->read_status(entry->client, entry->page);
2488 if (rc < 0)
2489 return rc;
2490
2491 *val = rc;
2492
2493 return 0;
2494 }
2495 DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops_status, pmbus_debugfs_get_status,
2496 NULL, "0x%04llx\n");
2497
pmbus_debugfs_get_pec(void * data,u64 * val)2498 static int pmbus_debugfs_get_pec(void *data, u64 *val)
2499 {
2500 struct i2c_client *client = data;
2501
2502 *val = !!(client->flags & I2C_CLIENT_PEC);
2503
2504 return 0;
2505 }
2506
pmbus_debugfs_set_pec(void * data,u64 val)2507 static int pmbus_debugfs_set_pec(void *data, u64 val)
2508 {
2509 int rc;
2510 struct i2c_client *client = data;
2511
2512 if (!val) {
2513 client->flags &= ~I2C_CLIENT_PEC;
2514 return 0;
2515 }
2516
2517 if (val != 1)
2518 return -EINVAL;
2519
2520 rc = i2c_smbus_read_byte_data(client, PMBUS_CAPABILITY);
2521 if (rc < 0)
2522 return rc;
2523
2524 if (!(rc & PB_CAPABILITY_ERROR_CHECK))
2525 return -EOPNOTSUPP;
2526
2527 client->flags |= I2C_CLIENT_PEC;
2528
2529 return 0;
2530 }
2531 DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops_pec, pmbus_debugfs_get_pec,
2532 pmbus_debugfs_set_pec, "%llu\n");
2533
pmbus_remove_debugfs(void * data)2534 static void pmbus_remove_debugfs(void *data)
2535 {
2536 struct dentry *entry = data;
2537
2538 debugfs_remove_recursive(entry);
2539 }
2540
pmbus_init_debugfs(struct i2c_client * client,struct pmbus_data * data)2541 static int pmbus_init_debugfs(struct i2c_client *client,
2542 struct pmbus_data *data)
2543 {
2544 int i, idx = 0;
2545 char name[PMBUS_NAME_SIZE];
2546 struct pmbus_debugfs_entry *entries;
2547
2548 if (!pmbus_debugfs_dir)
2549 return -ENODEV;
2550
2551 /*
2552 * Create the debugfs directory for this device. Use the hwmon device
2553 * name to avoid conflicts (hwmon numbers are globally unique).
2554 */
2555 data->debugfs = debugfs_create_dir(dev_name(data->hwmon_dev),
2556 pmbus_debugfs_dir);
2557 if (IS_ERR_OR_NULL(data->debugfs)) {
2558 data->debugfs = NULL;
2559 return -ENODEV;
2560 }
2561
2562 /* Allocate the max possible entries we need. */
2563 entries = devm_kcalloc(data->dev,
2564 data->info->pages * 10, sizeof(*entries),
2565 GFP_KERNEL);
2566 if (!entries)
2567 return -ENOMEM;
2568
2569 debugfs_create_file("pec", 0664, data->debugfs, client,
2570 &pmbus_debugfs_ops_pec);
2571
2572 for (i = 0; i < data->info->pages; ++i) {
2573 /* Check accessibility of status register if it's not page 0 */
2574 if (!i || pmbus_check_status_register(client, i)) {
2575 /* No need to set reg as we have special read op. */
2576 entries[idx].client = client;
2577 entries[idx].page = i;
2578 scnprintf(name, PMBUS_NAME_SIZE, "status%d", i);
2579 debugfs_create_file(name, 0444, data->debugfs,
2580 &entries[idx++],
2581 &pmbus_debugfs_ops_status);
2582 }
2583
2584 if (data->info->func[i] & PMBUS_HAVE_STATUS_VOUT) {
2585 entries[idx].client = client;
2586 entries[idx].page = i;
2587 entries[idx].reg = PMBUS_STATUS_VOUT;
2588 scnprintf(name, PMBUS_NAME_SIZE, "status%d_vout", i);
2589 debugfs_create_file(name, 0444, data->debugfs,
2590 &entries[idx++],
2591 &pmbus_debugfs_ops);
2592 }
2593
2594 if (data->info->func[i] & PMBUS_HAVE_STATUS_IOUT) {
2595 entries[idx].client = client;
2596 entries[idx].page = i;
2597 entries[idx].reg = PMBUS_STATUS_IOUT;
2598 scnprintf(name, PMBUS_NAME_SIZE, "status%d_iout", i);
2599 debugfs_create_file(name, 0444, data->debugfs,
2600 &entries[idx++],
2601 &pmbus_debugfs_ops);
2602 }
2603
2604 if (data->info->func[i] & PMBUS_HAVE_STATUS_INPUT) {
2605 entries[idx].client = client;
2606 entries[idx].page = i;
2607 entries[idx].reg = PMBUS_STATUS_INPUT;
2608 scnprintf(name, PMBUS_NAME_SIZE, "status%d_input", i);
2609 debugfs_create_file(name, 0444, data->debugfs,
2610 &entries[idx++],
2611 &pmbus_debugfs_ops);
2612 }
2613
2614 if (data->info->func[i] & PMBUS_HAVE_STATUS_TEMP) {
2615 entries[idx].client = client;
2616 entries[idx].page = i;
2617 entries[idx].reg = PMBUS_STATUS_TEMPERATURE;
2618 scnprintf(name, PMBUS_NAME_SIZE, "status%d_temp", i);
2619 debugfs_create_file(name, 0444, data->debugfs,
2620 &entries[idx++],
2621 &pmbus_debugfs_ops);
2622 }
2623
2624 if (pmbus_check_byte_register(client, i, PMBUS_STATUS_CML)) {
2625 entries[idx].client = client;
2626 entries[idx].page = i;
2627 entries[idx].reg = PMBUS_STATUS_CML;
2628 scnprintf(name, PMBUS_NAME_SIZE, "status%d_cml", i);
2629 debugfs_create_file(name, 0444, data->debugfs,
2630 &entries[idx++],
2631 &pmbus_debugfs_ops);
2632 }
2633
2634 if (pmbus_check_byte_register(client, i, PMBUS_STATUS_OTHER)) {
2635 entries[idx].client = client;
2636 entries[idx].page = i;
2637 entries[idx].reg = PMBUS_STATUS_OTHER;
2638 scnprintf(name, PMBUS_NAME_SIZE, "status%d_other", i);
2639 debugfs_create_file(name, 0444, data->debugfs,
2640 &entries[idx++],
2641 &pmbus_debugfs_ops);
2642 }
2643
2644 if (pmbus_check_byte_register(client, i,
2645 PMBUS_STATUS_MFR_SPECIFIC)) {
2646 entries[idx].client = client;
2647 entries[idx].page = i;
2648 entries[idx].reg = PMBUS_STATUS_MFR_SPECIFIC;
2649 scnprintf(name, PMBUS_NAME_SIZE, "status%d_mfr", i);
2650 debugfs_create_file(name, 0444, data->debugfs,
2651 &entries[idx++],
2652 &pmbus_debugfs_ops);
2653 }
2654
2655 if (data->info->func[i] & PMBUS_HAVE_STATUS_FAN12) {
2656 entries[idx].client = client;
2657 entries[idx].page = i;
2658 entries[idx].reg = PMBUS_STATUS_FAN_12;
2659 scnprintf(name, PMBUS_NAME_SIZE, "status%d_fan12", i);
2660 debugfs_create_file(name, 0444, data->debugfs,
2661 &entries[idx++],
2662 &pmbus_debugfs_ops);
2663 }
2664
2665 if (data->info->func[i] & PMBUS_HAVE_STATUS_FAN34) {
2666 entries[idx].client = client;
2667 entries[idx].page = i;
2668 entries[idx].reg = PMBUS_STATUS_FAN_34;
2669 scnprintf(name, PMBUS_NAME_SIZE, "status%d_fan34", i);
2670 debugfs_create_file(name, 0444, data->debugfs,
2671 &entries[idx++],
2672 &pmbus_debugfs_ops);
2673 }
2674 }
2675
2676 return devm_add_action_or_reset(data->dev,
2677 pmbus_remove_debugfs, data->debugfs);
2678 }
2679 #else
pmbus_init_debugfs(struct i2c_client * client,struct pmbus_data * data)2680 static int pmbus_init_debugfs(struct i2c_client *client,
2681 struct pmbus_data *data)
2682 {
2683 return 0;
2684 }
2685 #endif /* IS_ENABLED(CONFIG_DEBUG_FS) */
2686
pmbus_do_probe(struct i2c_client * client,struct pmbus_driver_info * info)2687 int pmbus_do_probe(struct i2c_client *client, struct pmbus_driver_info *info)
2688 {
2689 struct device *dev = &client->dev;
2690 const struct pmbus_platform_data *pdata = dev_get_platdata(dev);
2691 struct pmbus_data *data;
2692 size_t groups_num = 0;
2693 int ret;
2694 char *name;
2695
2696 if (!info)
2697 return -ENODEV;
2698
2699 if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_WRITE_BYTE
2700 | I2C_FUNC_SMBUS_BYTE_DATA
2701 | I2C_FUNC_SMBUS_WORD_DATA))
2702 return -ENODEV;
2703
2704 data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
2705 if (!data)
2706 return -ENOMEM;
2707
2708 if (info->groups)
2709 while (info->groups[groups_num])
2710 groups_num++;
2711
2712 data->groups = devm_kcalloc(dev, groups_num + 2, sizeof(void *),
2713 GFP_KERNEL);
2714 if (!data->groups)
2715 return -ENOMEM;
2716
2717 i2c_set_clientdata(client, data);
2718 mutex_init(&data->update_lock);
2719 data->dev = dev;
2720
2721 if (pdata)
2722 data->flags = pdata->flags;
2723 data->info = info;
2724 data->currpage = -1;
2725 data->currphase = -1;
2726
2727 ret = pmbus_init_common(client, data, info);
2728 if (ret < 0)
2729 return ret;
2730
2731 ret = pmbus_find_attributes(client, data);
2732 if (ret)
2733 return ret;
2734
2735 /*
2736 * If there are no attributes, something is wrong.
2737 * Bail out instead of trying to register nothing.
2738 */
2739 if (!data->num_attributes) {
2740 dev_err(dev, "No attributes found\n");
2741 return -ENODEV;
2742 }
2743
2744 name = devm_kstrdup(dev, client->name, GFP_KERNEL);
2745 if (!name)
2746 return -ENOMEM;
2747 strreplace(name, '-', '_');
2748
2749 data->groups[0] = &data->group;
2750 memcpy(data->groups + 1, info->groups, sizeof(void *) * groups_num);
2751 data->hwmon_dev = devm_hwmon_device_register_with_groups(dev,
2752 name, data, data->groups);
2753 if (IS_ERR(data->hwmon_dev)) {
2754 dev_err(dev, "Failed to register hwmon device\n");
2755 return PTR_ERR(data->hwmon_dev);
2756 }
2757
2758 ret = pmbus_regulator_register(data);
2759 if (ret)
2760 return ret;
2761
2762 ret = pmbus_init_debugfs(client, data);
2763 if (ret)
2764 dev_warn(dev, "Failed to register debugfs\n");
2765
2766 return 0;
2767 }
2768 EXPORT_SYMBOL_NS_GPL(pmbus_do_probe, PMBUS);
2769
pmbus_get_debugfs_dir(struct i2c_client * client)2770 struct dentry *pmbus_get_debugfs_dir(struct i2c_client *client)
2771 {
2772 struct pmbus_data *data = i2c_get_clientdata(client);
2773
2774 return data->debugfs;
2775 }
2776 EXPORT_SYMBOL_NS_GPL(pmbus_get_debugfs_dir, PMBUS);
2777
pmbus_core_init(void)2778 static int __init pmbus_core_init(void)
2779 {
2780 pmbus_debugfs_dir = debugfs_create_dir("pmbus", NULL);
2781 if (IS_ERR(pmbus_debugfs_dir))
2782 pmbus_debugfs_dir = NULL;
2783
2784 return 0;
2785 }
2786
pmbus_core_exit(void)2787 static void __exit pmbus_core_exit(void)
2788 {
2789 debugfs_remove_recursive(pmbus_debugfs_dir);
2790 }
2791
2792 module_init(pmbus_core_init);
2793 module_exit(pmbus_core_exit);
2794
2795 MODULE_AUTHOR("Guenter Roeck");
2796 MODULE_DESCRIPTION("PMBus core driver");
2797 MODULE_LICENSE("GPL");
2798