1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3 * Copyright 2014-2022 Advanced Micro Devices, Inc.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21 * OTHER DEALINGS IN THE SOFTWARE.
22 *
23 */
24
25 #include "kfd_mqd_manager.h"
26 #include "amdgpu_amdkfd.h"
27 #include "kfd_device_queue_manager.h"
28
29 /* Mapping queue priority to pipe priority, indexed by queue priority */
30 int pipe_priority_map[] = {
31 KFD_PIPE_PRIORITY_CS_LOW,
32 KFD_PIPE_PRIORITY_CS_LOW,
33 KFD_PIPE_PRIORITY_CS_LOW,
34 KFD_PIPE_PRIORITY_CS_LOW,
35 KFD_PIPE_PRIORITY_CS_LOW,
36 KFD_PIPE_PRIORITY_CS_LOW,
37 KFD_PIPE_PRIORITY_CS_LOW,
38 KFD_PIPE_PRIORITY_CS_MEDIUM,
39 KFD_PIPE_PRIORITY_CS_MEDIUM,
40 KFD_PIPE_PRIORITY_CS_MEDIUM,
41 KFD_PIPE_PRIORITY_CS_MEDIUM,
42 KFD_PIPE_PRIORITY_CS_HIGH,
43 KFD_PIPE_PRIORITY_CS_HIGH,
44 KFD_PIPE_PRIORITY_CS_HIGH,
45 KFD_PIPE_PRIORITY_CS_HIGH,
46 KFD_PIPE_PRIORITY_CS_HIGH
47 };
48
allocate_hiq_mqd(struct kfd_node * dev,struct queue_properties * q)49 struct kfd_mem_obj *allocate_hiq_mqd(struct kfd_node *dev, struct queue_properties *q)
50 {
51 struct kfd_mem_obj *mqd_mem_obj;
52
53 mqd_mem_obj = kzalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL);
54 if (!mqd_mem_obj)
55 return NULL;
56
57 mqd_mem_obj->gtt_mem = dev->dqm->hiq_sdma_mqd.gtt_mem;
58 mqd_mem_obj->gpu_addr = dev->dqm->hiq_sdma_mqd.gpu_addr;
59 mqd_mem_obj->cpu_ptr = dev->dqm->hiq_sdma_mqd.cpu_ptr;
60
61 return mqd_mem_obj;
62 }
63
allocate_sdma_mqd(struct kfd_node * dev,struct queue_properties * q)64 struct kfd_mem_obj *allocate_sdma_mqd(struct kfd_node *dev,
65 struct queue_properties *q)
66 {
67 struct kfd_mem_obj *mqd_mem_obj;
68 uint64_t offset;
69
70 mqd_mem_obj = kzalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL);
71 if (!mqd_mem_obj)
72 return NULL;
73
74 offset = (q->sdma_engine_id *
75 dev->kfd->device_info.num_sdma_queues_per_engine +
76 q->sdma_queue_id) *
77 dev->dqm->mqd_mgrs[KFD_MQD_TYPE_SDMA]->mqd_size;
78
79 offset += dev->dqm->mqd_mgrs[KFD_MQD_TYPE_HIQ]->mqd_size *
80 NUM_XCC(dev->xcc_mask);
81
82 mqd_mem_obj->gtt_mem = (void *)((uint64_t)dev->dqm->hiq_sdma_mqd.gtt_mem
83 + offset);
84 mqd_mem_obj->gpu_addr = dev->dqm->hiq_sdma_mqd.gpu_addr + offset;
85 mqd_mem_obj->cpu_ptr = (uint32_t *)((uint64_t)
86 dev->dqm->hiq_sdma_mqd.cpu_ptr + offset);
87
88 return mqd_mem_obj;
89 }
90
free_mqd_hiq_sdma(struct mqd_manager * mm,void * mqd,struct kfd_mem_obj * mqd_mem_obj)91 void free_mqd_hiq_sdma(struct mqd_manager *mm, void *mqd,
92 struct kfd_mem_obj *mqd_mem_obj)
93 {
94 WARN_ON(!mqd_mem_obj->gtt_mem);
95 kfree(mqd_mem_obj);
96 }
97
mqd_symmetrically_map_cu_mask(struct mqd_manager * mm,const uint32_t * cu_mask,uint32_t cu_mask_count,uint32_t * se_mask,uint32_t inst)98 void mqd_symmetrically_map_cu_mask(struct mqd_manager *mm,
99 const uint32_t *cu_mask, uint32_t cu_mask_count,
100 uint32_t *se_mask, uint32_t inst)
101 {
102 struct kfd_cu_info cu_info;
103 uint32_t cu_per_sh[KFD_MAX_NUM_SE][KFD_MAX_NUM_SH_PER_SE] = {0};
104 bool wgp_mode_req = KFD_GC_VERSION(mm->dev) >= IP_VERSION(10, 0, 0);
105 uint32_t en_mask = wgp_mode_req ? 0x3 : 0x1;
106 int i, se, sh, cu, cu_bitmap_sh_mul, cu_inc = wgp_mode_req ? 2 : 1;
107 uint32_t cu_active_per_node;
108 int inc = cu_inc * NUM_XCC(mm->dev->xcc_mask);
109 int xcc_inst = inst + ffs(mm->dev->xcc_mask) - 1;
110
111 amdgpu_amdkfd_get_cu_info(mm->dev->adev, &cu_info);
112
113 cu_active_per_node = cu_info.cu_active_number / mm->dev->kfd->num_nodes;
114 if (cu_mask_count > cu_active_per_node)
115 cu_mask_count = cu_active_per_node;
116
117 /* Exceeding these bounds corrupts the stack and indicates a coding error.
118 * Returning with no CU's enabled will hang the queue, which should be
119 * attention grabbing.
120 */
121 if (cu_info.num_shader_engines > KFD_MAX_NUM_SE) {
122 pr_err("Exceeded KFD_MAX_NUM_SE, chip reports %d\n", cu_info.num_shader_engines);
123 return;
124 }
125 if (cu_info.num_shader_arrays_per_engine > KFD_MAX_NUM_SH_PER_SE) {
126 pr_err("Exceeded KFD_MAX_NUM_SH, chip reports %d\n",
127 cu_info.num_shader_arrays_per_engine * cu_info.num_shader_engines);
128 return;
129 }
130
131 cu_bitmap_sh_mul = (KFD_GC_VERSION(mm->dev) >= IP_VERSION(11, 0, 0) &&
132 KFD_GC_VERSION(mm->dev) < IP_VERSION(12, 0, 0)) ? 2 : 1;
133
134 /* Count active CUs per SH.
135 *
136 * Some CUs in an SH may be disabled. HW expects disabled CUs to be
137 * represented in the high bits of each SH's enable mask (the upper and lower
138 * 16 bits of se_mask) and will take care of the actual distribution of
139 * disabled CUs within each SH automatically.
140 * Each half of se_mask must be filled only on bits 0-cu_per_sh[se][sh]-1.
141 *
142 * See note on Arcturus cu_bitmap layout in gfx_v9_0_get_cu_info.
143 * See note on GFX11 cu_bitmap layout in gfx_v11_0_get_cu_info.
144 */
145 for (se = 0; se < cu_info.num_shader_engines; se++)
146 for (sh = 0; sh < cu_info.num_shader_arrays_per_engine; sh++)
147 cu_per_sh[se][sh] = hweight32(
148 cu_info.cu_bitmap[xcc_inst][se % 4][sh + (se / 4) *
149 cu_bitmap_sh_mul]);
150
151 /* Symmetrically map cu_mask to all SEs & SHs:
152 * se_mask programs up to 2 SH in the upper and lower 16 bits.
153 *
154 * Examples
155 * Assuming 1 SH/SE, 4 SEs:
156 * cu_mask[0] bit0 -> se_mask[0] bit0
157 * cu_mask[0] bit1 -> se_mask[1] bit0
158 * ...
159 * cu_mask[0] bit4 -> se_mask[0] bit1
160 * ...
161 *
162 * Assuming 2 SH/SE, 4 SEs
163 * cu_mask[0] bit0 -> se_mask[0] bit0 (SE0,SH0,CU0)
164 * cu_mask[0] bit1 -> se_mask[1] bit0 (SE1,SH0,CU0)
165 * ...
166 * cu_mask[0] bit4 -> se_mask[0] bit16 (SE0,SH1,CU0)
167 * cu_mask[0] bit5 -> se_mask[1] bit16 (SE1,SH1,CU0)
168 * ...
169 * cu_mask[0] bit8 -> se_mask[0] bit1 (SE0,SH0,CU1)
170 * ...
171 *
172 * For GFX 9.4.3, the following code only looks at a
173 * subset of the cu_mask corresponding to the inst parameter.
174 * If we have n XCCs under one GPU node
175 * cu_mask[0] bit0 -> XCC0 se_mask[0] bit0 (XCC0,SE0,SH0,CU0)
176 * cu_mask[0] bit1 -> XCC1 se_mask[0] bit0 (XCC1,SE0,SH0,CU0)
177 * ..
178 * cu_mask[0] bitn -> XCCn se_mask[0] bit0 (XCCn,SE0,SH0,CU0)
179 * cu_mask[0] bit n+1 -> XCC0 se_mask[1] bit0 (XCC0,SE1,SH0,CU0)
180 *
181 * For example, if there are 6 XCCs under 1 KFD node, this code
182 * running for each inst, will look at the bits as:
183 * inst, inst + 6, inst + 12...
184 *
185 * First ensure all CUs are disabled, then enable user specified CUs.
186 */
187 for (i = 0; i < cu_info.num_shader_engines; i++)
188 se_mask[i] = 0;
189
190 i = inst;
191 for (cu = 0; cu < 16; cu += cu_inc) {
192 for (sh = 0; sh < cu_info.num_shader_arrays_per_engine; sh++) {
193 for (se = 0; se < cu_info.num_shader_engines; se++) {
194 if (cu_per_sh[se][sh] > cu) {
195 if (cu_mask[i / 32] & (en_mask << (i % 32)))
196 se_mask[se] |= en_mask << (cu + sh * 16);
197 i += inc;
198 if (i >= cu_mask_count)
199 return;
200 }
201 }
202 }
203 }
204 }
205
kfd_hiq_load_mqd_kiq(struct mqd_manager * mm,void * mqd,uint32_t pipe_id,uint32_t queue_id,struct queue_properties * p,struct mm_struct * mms)206 int kfd_hiq_load_mqd_kiq(struct mqd_manager *mm, void *mqd,
207 uint32_t pipe_id, uint32_t queue_id,
208 struct queue_properties *p, struct mm_struct *mms)
209 {
210 return mm->dev->kfd2kgd->hiq_mqd_load(mm->dev->adev, mqd, pipe_id,
211 queue_id, p->doorbell_off, 0);
212 }
213
kfd_destroy_mqd_cp(struct mqd_manager * mm,void * mqd,enum kfd_preempt_type type,unsigned int timeout,uint32_t pipe_id,uint32_t queue_id)214 int kfd_destroy_mqd_cp(struct mqd_manager *mm, void *mqd,
215 enum kfd_preempt_type type, unsigned int timeout,
216 uint32_t pipe_id, uint32_t queue_id)
217 {
218 return mm->dev->kfd2kgd->hqd_destroy(mm->dev->adev, mqd, type, timeout,
219 pipe_id, queue_id, 0);
220 }
221
kfd_free_mqd_cp(struct mqd_manager * mm,void * mqd,struct kfd_mem_obj * mqd_mem_obj)222 void kfd_free_mqd_cp(struct mqd_manager *mm, void *mqd,
223 struct kfd_mem_obj *mqd_mem_obj)
224 {
225 if (mqd_mem_obj->gtt_mem) {
226 amdgpu_amdkfd_free_gtt_mem(mm->dev->adev, mqd_mem_obj->gtt_mem);
227 kfree(mqd_mem_obj);
228 } else {
229 kfd_gtt_sa_free(mm->dev, mqd_mem_obj);
230 }
231 }
232
kfd_is_occupied_cp(struct mqd_manager * mm,void * mqd,uint64_t queue_address,uint32_t pipe_id,uint32_t queue_id)233 bool kfd_is_occupied_cp(struct mqd_manager *mm, void *mqd,
234 uint64_t queue_address, uint32_t pipe_id,
235 uint32_t queue_id)
236 {
237 return mm->dev->kfd2kgd->hqd_is_occupied(mm->dev->adev, queue_address,
238 pipe_id, queue_id, 0);
239 }
240
kfd_load_mqd_sdma(struct mqd_manager * mm,void * mqd,uint32_t pipe_id,uint32_t queue_id,struct queue_properties * p,struct mm_struct * mms)241 int kfd_load_mqd_sdma(struct mqd_manager *mm, void *mqd,
242 uint32_t pipe_id, uint32_t queue_id,
243 struct queue_properties *p, struct mm_struct *mms)
244 {
245 return mm->dev->kfd2kgd->hqd_sdma_load(mm->dev->adev, mqd,
246 (uint32_t __user *)p->write_ptr,
247 mms);
248 }
249
250 /*
251 * preempt type here is ignored because there is only one way
252 * to preempt sdma queue
253 */
kfd_destroy_mqd_sdma(struct mqd_manager * mm,void * mqd,enum kfd_preempt_type type,unsigned int timeout,uint32_t pipe_id,uint32_t queue_id)254 int kfd_destroy_mqd_sdma(struct mqd_manager *mm, void *mqd,
255 enum kfd_preempt_type type,
256 unsigned int timeout, uint32_t pipe_id,
257 uint32_t queue_id)
258 {
259 return mm->dev->kfd2kgd->hqd_sdma_destroy(mm->dev->adev, mqd, timeout);
260 }
261
kfd_is_occupied_sdma(struct mqd_manager * mm,void * mqd,uint64_t queue_address,uint32_t pipe_id,uint32_t queue_id)262 bool kfd_is_occupied_sdma(struct mqd_manager *mm, void *mqd,
263 uint64_t queue_address, uint32_t pipe_id,
264 uint32_t queue_id)
265 {
266 return mm->dev->kfd2kgd->hqd_sdma_is_occupied(mm->dev->adev, mqd);
267 }
268
kfd_hiq_mqd_stride(struct kfd_node * dev)269 uint64_t kfd_hiq_mqd_stride(struct kfd_node *dev)
270 {
271 return dev->dqm->mqd_mgrs[KFD_MQD_TYPE_HIQ]->mqd_size;
272 }
273
kfd_get_hiq_xcc_mqd(struct kfd_node * dev,struct kfd_mem_obj * mqd_mem_obj,uint32_t virtual_xcc_id)274 void kfd_get_hiq_xcc_mqd(struct kfd_node *dev, struct kfd_mem_obj *mqd_mem_obj,
275 uint32_t virtual_xcc_id)
276 {
277 uint64_t offset;
278
279 offset = kfd_hiq_mqd_stride(dev) * virtual_xcc_id;
280
281 mqd_mem_obj->gtt_mem = (virtual_xcc_id == 0) ?
282 dev->dqm->hiq_sdma_mqd.gtt_mem : NULL;
283 mqd_mem_obj->gpu_addr = dev->dqm->hiq_sdma_mqd.gpu_addr + offset;
284 mqd_mem_obj->cpu_ptr = (uint32_t *)((uintptr_t)
285 dev->dqm->hiq_sdma_mqd.cpu_ptr + offset);
286 }
287
kfd_mqd_stride(struct mqd_manager * mm,struct queue_properties * q)288 uint64_t kfd_mqd_stride(struct mqd_manager *mm,
289 struct queue_properties *q)
290 {
291 return mm->mqd_size;
292 }
293