1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Freescale S/PDIF ALSA SoC Digital Audio Interface (DAI) driver
4 //
5 // Copyright (C) 2013 Freescale Semiconductor, Inc.
6 //
7 // Based on stmp3xxx_spdif_dai.c
8 // Vladimir Barinov <vbarinov@embeddedalley.com>
9 // Copyright 2008 SigmaTel, Inc
10 // Copyright 2008 Embedded Alley Solutions, Inc
11
12 #include <linux/bitrev.h>
13 #include <linux/clk.h>
14 #include <linux/module.h>
15 #include <linux/of_address.h>
16 #include <linux/of_device.h>
17 #include <linux/of_irq.h>
18 #include <linux/regmap.h>
19 #include <linux/pm_runtime.h>
20
21 #include <sound/asoundef.h>
22 #include <sound/dmaengine_pcm.h>
23 #include <sound/soc.h>
24
25 #include "fsl_spdif.h"
26 #include "fsl_utils.h"
27 #include "imx-pcm.h"
28
29 #define FSL_SPDIF_TXFIFO_WML 0x8
30 #define FSL_SPDIF_RXFIFO_WML 0x8
31
32 #define INTR_FOR_PLAYBACK (INT_TXFIFO_RESYNC)
33 #define INTR_FOR_CAPTURE (INT_SYM_ERR | INT_BIT_ERR | INT_URX_FUL |\
34 INT_URX_OV | INT_QRX_FUL | INT_QRX_OV |\
35 INT_UQ_SYNC | INT_UQ_ERR | INT_RXFIFO_RESYNC |\
36 INT_LOSS_LOCK | INT_DPLL_LOCKED)
37
38 #define SIE_INTR_FOR(tx) (tx ? INTR_FOR_PLAYBACK : INTR_FOR_CAPTURE)
39
40 /* Index list for the values that has if (DPLL Locked) condition */
41 static u8 srpc_dpll_locked[] = { 0x0, 0x1, 0x2, 0x3, 0x4, 0xa, 0xb };
42 #define SRPC_NODPLL_START1 0x5
43 #define SRPC_NODPLL_START2 0xc
44
45 #define DEFAULT_RXCLK_SRC 1
46
47 #define RX_SAMPLE_RATE_KCONTROL "RX Sample Rate"
48
49 /**
50 * struct fsl_spdif_soc_data: soc specific data
51 *
52 * @imx: for imx platform
53 * @shared_root_clock: flag of sharing a clock source with others;
54 * so the driver shouldn't set root clock rate
55 * @raw_capture_mode: if raw capture mode support
56 * @cchannel_192b: if there are registers for 192bits C channel data
57 * @interrupts: interrupt number
58 * @tx_burst: tx maxburst size
59 * @rx_burst: rx maxburst size
60 * @tx_formats: tx supported data format
61 */
62 struct fsl_spdif_soc_data {
63 bool imx;
64 bool shared_root_clock;
65 bool raw_capture_mode;
66 bool cchannel_192b;
67 u32 interrupts;
68 u32 tx_burst;
69 u32 rx_burst;
70 u64 tx_formats;
71 };
72
73 /*
74 * SPDIF control structure
75 * Defines channel status, subcode and Q sub
76 */
77 struct spdif_mixer_control {
78 /* spinlock to access control data */
79 spinlock_t ctl_lock;
80
81 /* IEC958 channel tx status bit */
82 unsigned char ch_status[4];
83
84 /* User bits */
85 unsigned char subcode[2 * SPDIF_UBITS_SIZE];
86
87 /* Q subcode part of user bits */
88 unsigned char qsub[2 * SPDIF_QSUB_SIZE];
89
90 /* Buffer offset for U/Q */
91 u32 upos;
92 u32 qpos;
93
94 /* Ready buffer index of the two buffers */
95 u32 ready_buf;
96 };
97
98 /**
99 * struct fsl_spdif_priv - Freescale SPDIF private data
100 * @soc: SPDIF soc data
101 * @fsl_spdif_control: SPDIF control data
102 * @cpu_dai_drv: cpu dai driver
103 * @snd_card: sound card pointer
104 * @rxrate_kcontrol: kcontrol for RX Sample Rate
105 * @pdev: platform device pointer
106 * @regmap: regmap handler
107 * @dpll_locked: dpll lock flag
108 * @txrate: the best rates for playback
109 * @txclk_df: STC_TXCLK_DF dividers value for playback
110 * @sysclk_df: STC_SYSCLK_DF dividers value for playback
111 * @txclk_src: STC_TXCLK_SRC values for playback
112 * @rxclk_src: SRPC_CLKSRC_SEL values for capture
113 * @txclk: tx clock sources for playback
114 * @rxclk: rx clock sources for capture
115 * @coreclk: core clock for register access via DMA
116 * @sysclk: system clock for rx clock rate measurement
117 * @spbaclk: SPBA clock (optional, depending on SoC design)
118 * @dma_params_tx: DMA parameters for transmit channel
119 * @dma_params_rx: DMA parameters for receive channel
120 * @regcache_srpc: regcache for SRPC
121 * @bypass: status of bypass input to output
122 * @pll8k_clk: PLL clock for the rate of multiply of 8kHz
123 * @pll11k_clk: PLL clock for the rate of multiply of 11kHz
124 */
125 struct fsl_spdif_priv {
126 const struct fsl_spdif_soc_data *soc;
127 struct spdif_mixer_control fsl_spdif_control;
128 struct snd_soc_dai_driver cpu_dai_drv;
129 struct snd_card *snd_card;
130 struct snd_kcontrol *rxrate_kcontrol;
131 struct platform_device *pdev;
132 struct regmap *regmap;
133 bool dpll_locked;
134 u32 txrate[SPDIF_TXRATE_MAX];
135 u8 txclk_df[SPDIF_TXRATE_MAX];
136 u16 sysclk_df[SPDIF_TXRATE_MAX];
137 u8 txclk_src[SPDIF_TXRATE_MAX];
138 u8 rxclk_src;
139 struct clk *txclk[STC_TXCLK_SRC_MAX];
140 struct clk *rxclk;
141 struct clk *coreclk;
142 struct clk *sysclk;
143 struct clk *spbaclk;
144 struct snd_dmaengine_dai_dma_data dma_params_tx;
145 struct snd_dmaengine_dai_dma_data dma_params_rx;
146 /* regcache for SRPC */
147 u32 regcache_srpc;
148 bool bypass;
149 struct clk *pll8k_clk;
150 struct clk *pll11k_clk;
151 };
152
153 static struct fsl_spdif_soc_data fsl_spdif_vf610 = {
154 .imx = false,
155 .shared_root_clock = false,
156 .raw_capture_mode = false,
157 .interrupts = 1,
158 .tx_burst = FSL_SPDIF_TXFIFO_WML,
159 .rx_burst = FSL_SPDIF_RXFIFO_WML,
160 .tx_formats = FSL_SPDIF_FORMATS_PLAYBACK,
161 };
162
163 static struct fsl_spdif_soc_data fsl_spdif_imx35 = {
164 .imx = true,
165 .shared_root_clock = false,
166 .raw_capture_mode = false,
167 .interrupts = 1,
168 .tx_burst = FSL_SPDIF_TXFIFO_WML,
169 .rx_burst = FSL_SPDIF_RXFIFO_WML,
170 .tx_formats = FSL_SPDIF_FORMATS_PLAYBACK,
171 };
172
173 static struct fsl_spdif_soc_data fsl_spdif_imx6sx = {
174 .imx = true,
175 .shared_root_clock = true,
176 .raw_capture_mode = false,
177 .interrupts = 1,
178 .tx_burst = FSL_SPDIF_TXFIFO_WML,
179 .rx_burst = FSL_SPDIF_RXFIFO_WML,
180 .tx_formats = FSL_SPDIF_FORMATS_PLAYBACK,
181
182 };
183
184 static struct fsl_spdif_soc_data fsl_spdif_imx8qm = {
185 .imx = true,
186 .shared_root_clock = true,
187 .raw_capture_mode = false,
188 .interrupts = 2,
189 .tx_burst = 2, /* Applied for EDMA */
190 .rx_burst = 2, /* Applied for EDMA */
191 .tx_formats = SNDRV_PCM_FMTBIT_S24_LE, /* Applied for EDMA */
192 };
193
194 static struct fsl_spdif_soc_data fsl_spdif_imx8mm = {
195 .imx = true,
196 .shared_root_clock = false,
197 .raw_capture_mode = true,
198 .interrupts = 1,
199 .tx_burst = FSL_SPDIF_TXFIFO_WML,
200 .rx_burst = FSL_SPDIF_RXFIFO_WML,
201 .tx_formats = FSL_SPDIF_FORMATS_PLAYBACK,
202 };
203
204 static struct fsl_spdif_soc_data fsl_spdif_imx8ulp = {
205 .imx = true,
206 .shared_root_clock = true,
207 .raw_capture_mode = false,
208 .interrupts = 1,
209 .tx_burst = 2, /* Applied for EDMA */
210 .rx_burst = 2, /* Applied for EDMA */
211 .tx_formats = SNDRV_PCM_FMTBIT_S24_LE, /* Applied for EDMA */
212 .cchannel_192b = true,
213 };
214
215 /* Check if clk is a root clock that does not share clock source with others */
fsl_spdif_can_set_clk_rate(struct fsl_spdif_priv * spdif,int clk)216 static inline bool fsl_spdif_can_set_clk_rate(struct fsl_spdif_priv *spdif, int clk)
217 {
218 return (clk == STC_TXCLK_SPDIF_ROOT) && !spdif->soc->shared_root_clock;
219 }
220
221 /* DPLL locked and lock loss interrupt handler */
spdif_irq_dpll_lock(struct fsl_spdif_priv * spdif_priv)222 static void spdif_irq_dpll_lock(struct fsl_spdif_priv *spdif_priv)
223 {
224 struct regmap *regmap = spdif_priv->regmap;
225 struct platform_device *pdev = spdif_priv->pdev;
226 u32 locked;
227
228 regmap_read(regmap, REG_SPDIF_SRPC, &locked);
229 locked &= SRPC_DPLL_LOCKED;
230
231 dev_dbg(&pdev->dev, "isr: Rx dpll %s \n",
232 locked ? "locked" : "loss lock");
233
234 spdif_priv->dpll_locked = locked ? true : false;
235
236 if (spdif_priv->snd_card && spdif_priv->rxrate_kcontrol) {
237 snd_ctl_notify(spdif_priv->snd_card,
238 SNDRV_CTL_EVENT_MASK_VALUE,
239 &spdif_priv->rxrate_kcontrol->id);
240 }
241 }
242
243 /* Receiver found illegal symbol interrupt handler */
spdif_irq_sym_error(struct fsl_spdif_priv * spdif_priv)244 static void spdif_irq_sym_error(struct fsl_spdif_priv *spdif_priv)
245 {
246 struct regmap *regmap = spdif_priv->regmap;
247 struct platform_device *pdev = spdif_priv->pdev;
248
249 dev_dbg(&pdev->dev, "isr: receiver found illegal symbol\n");
250
251 /* Clear illegal symbol if DPLL unlocked since no audio stream */
252 if (!spdif_priv->dpll_locked)
253 regmap_update_bits(regmap, REG_SPDIF_SIE, INT_SYM_ERR, 0);
254 }
255
256 /* U/Q Channel receive register full */
spdif_irq_uqrx_full(struct fsl_spdif_priv * spdif_priv,char name)257 static void spdif_irq_uqrx_full(struct fsl_spdif_priv *spdif_priv, char name)
258 {
259 struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
260 struct regmap *regmap = spdif_priv->regmap;
261 struct platform_device *pdev = spdif_priv->pdev;
262 u32 *pos, size, val, reg;
263
264 switch (name) {
265 case 'U':
266 pos = &ctrl->upos;
267 size = SPDIF_UBITS_SIZE;
268 reg = REG_SPDIF_SRU;
269 break;
270 case 'Q':
271 pos = &ctrl->qpos;
272 size = SPDIF_QSUB_SIZE;
273 reg = REG_SPDIF_SRQ;
274 break;
275 default:
276 dev_err(&pdev->dev, "unsupported channel name\n");
277 return;
278 }
279
280 dev_dbg(&pdev->dev, "isr: %c Channel receive register full\n", name);
281
282 if (*pos >= size * 2) {
283 *pos = 0;
284 } else if (unlikely((*pos % size) + 3 > size)) {
285 dev_err(&pdev->dev, "User bit receive buffer overflow\n");
286 return;
287 }
288
289 regmap_read(regmap, reg, &val);
290 ctrl->subcode[*pos++] = val >> 16;
291 ctrl->subcode[*pos++] = val >> 8;
292 ctrl->subcode[*pos++] = val;
293 }
294
295 /* U/Q Channel sync found */
spdif_irq_uq_sync(struct fsl_spdif_priv * spdif_priv)296 static void spdif_irq_uq_sync(struct fsl_spdif_priv *spdif_priv)
297 {
298 struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
299 struct platform_device *pdev = spdif_priv->pdev;
300
301 dev_dbg(&pdev->dev, "isr: U/Q Channel sync found\n");
302
303 /* U/Q buffer reset */
304 if (ctrl->qpos == 0)
305 return;
306
307 /* Set ready to this buffer */
308 ctrl->ready_buf = (ctrl->qpos - 1) / SPDIF_QSUB_SIZE + 1;
309 }
310
311 /* U/Q Channel framing error */
spdif_irq_uq_err(struct fsl_spdif_priv * spdif_priv)312 static void spdif_irq_uq_err(struct fsl_spdif_priv *spdif_priv)
313 {
314 struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
315 struct regmap *regmap = spdif_priv->regmap;
316 struct platform_device *pdev = spdif_priv->pdev;
317 u32 val;
318
319 dev_dbg(&pdev->dev, "isr: U/Q Channel framing error\n");
320
321 /* Read U/Q data to clear the irq and do buffer reset */
322 regmap_read(regmap, REG_SPDIF_SRU, &val);
323 regmap_read(regmap, REG_SPDIF_SRQ, &val);
324
325 /* Drop this U/Q buffer */
326 ctrl->ready_buf = 0;
327 ctrl->upos = 0;
328 ctrl->qpos = 0;
329 }
330
331 /* Get spdif interrupt status and clear the interrupt */
spdif_intr_status_clear(struct fsl_spdif_priv * spdif_priv)332 static u32 spdif_intr_status_clear(struct fsl_spdif_priv *spdif_priv)
333 {
334 struct regmap *regmap = spdif_priv->regmap;
335 u32 val, val2;
336
337 regmap_read(regmap, REG_SPDIF_SIS, &val);
338 regmap_read(regmap, REG_SPDIF_SIE, &val2);
339
340 regmap_write(regmap, REG_SPDIF_SIC, val & val2);
341
342 return val;
343 }
344
spdif_isr(int irq,void * devid)345 static irqreturn_t spdif_isr(int irq, void *devid)
346 {
347 struct fsl_spdif_priv *spdif_priv = (struct fsl_spdif_priv *)devid;
348 struct platform_device *pdev = spdif_priv->pdev;
349 u32 sis;
350
351 sis = spdif_intr_status_clear(spdif_priv);
352
353 if (sis & INT_DPLL_LOCKED)
354 spdif_irq_dpll_lock(spdif_priv);
355
356 if (sis & INT_TXFIFO_UNOV)
357 dev_dbg(&pdev->dev, "isr: Tx FIFO under/overrun\n");
358
359 if (sis & INT_TXFIFO_RESYNC)
360 dev_dbg(&pdev->dev, "isr: Tx FIFO resync\n");
361
362 if (sis & INT_CNEW)
363 dev_dbg(&pdev->dev, "isr: cstatus new\n");
364
365 if (sis & INT_VAL_NOGOOD)
366 dev_dbg(&pdev->dev, "isr: validity flag no good\n");
367
368 if (sis & INT_SYM_ERR)
369 spdif_irq_sym_error(spdif_priv);
370
371 if (sis & INT_BIT_ERR)
372 dev_dbg(&pdev->dev, "isr: receiver found parity bit error\n");
373
374 if (sis & INT_URX_FUL)
375 spdif_irq_uqrx_full(spdif_priv, 'U');
376
377 if (sis & INT_URX_OV)
378 dev_dbg(&pdev->dev, "isr: U Channel receive register overrun\n");
379
380 if (sis & INT_QRX_FUL)
381 spdif_irq_uqrx_full(spdif_priv, 'Q');
382
383 if (sis & INT_QRX_OV)
384 dev_dbg(&pdev->dev, "isr: Q Channel receive register overrun\n");
385
386 if (sis & INT_UQ_SYNC)
387 spdif_irq_uq_sync(spdif_priv);
388
389 if (sis & INT_UQ_ERR)
390 spdif_irq_uq_err(spdif_priv);
391
392 if (sis & INT_RXFIFO_UNOV)
393 dev_dbg(&pdev->dev, "isr: Rx FIFO under/overrun\n");
394
395 if (sis & INT_RXFIFO_RESYNC)
396 dev_dbg(&pdev->dev, "isr: Rx FIFO resync\n");
397
398 if (sis & INT_LOSS_LOCK)
399 spdif_irq_dpll_lock(spdif_priv);
400
401 /* FIXME: Write Tx FIFO to clear TxEm */
402 if (sis & INT_TX_EM)
403 dev_dbg(&pdev->dev, "isr: Tx FIFO empty\n");
404
405 /* FIXME: Read Rx FIFO to clear RxFIFOFul */
406 if (sis & INT_RXFIFO_FUL)
407 dev_dbg(&pdev->dev, "isr: Rx FIFO full\n");
408
409 return IRQ_HANDLED;
410 }
411
spdif_softreset(struct fsl_spdif_priv * spdif_priv)412 static int spdif_softreset(struct fsl_spdif_priv *spdif_priv)
413 {
414 struct regmap *regmap = spdif_priv->regmap;
415 u32 val, cycle = 1000;
416
417 regcache_cache_bypass(regmap, true);
418
419 regmap_write(regmap, REG_SPDIF_SCR, SCR_SOFT_RESET);
420
421 /*
422 * RESET bit would be cleared after finishing its reset procedure,
423 * which typically lasts 8 cycles. 1000 cycles will keep it safe.
424 */
425 do {
426 regmap_read(regmap, REG_SPDIF_SCR, &val);
427 } while ((val & SCR_SOFT_RESET) && cycle--);
428
429 regcache_cache_bypass(regmap, false);
430 regcache_mark_dirty(regmap);
431 regcache_sync(regmap);
432
433 if (cycle)
434 return 0;
435 else
436 return -EBUSY;
437 }
438
spdif_set_cstatus(struct spdif_mixer_control * ctrl,u8 mask,u8 cstatus)439 static void spdif_set_cstatus(struct spdif_mixer_control *ctrl,
440 u8 mask, u8 cstatus)
441 {
442 ctrl->ch_status[3] &= ~mask;
443 ctrl->ch_status[3] |= cstatus & mask;
444 }
445
spdif_write_channel_status(struct fsl_spdif_priv * spdif_priv)446 static void spdif_write_channel_status(struct fsl_spdif_priv *spdif_priv)
447 {
448 struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
449 struct regmap *regmap = spdif_priv->regmap;
450 struct platform_device *pdev = spdif_priv->pdev;
451 u32 ch_status;
452
453 ch_status = (bitrev8(ctrl->ch_status[0]) << 16) |
454 (bitrev8(ctrl->ch_status[1]) << 8) |
455 bitrev8(ctrl->ch_status[2]);
456 regmap_write(regmap, REG_SPDIF_STCSCH, ch_status);
457
458 dev_dbg(&pdev->dev, "STCSCH: 0x%06x\n", ch_status);
459
460 ch_status = bitrev8(ctrl->ch_status[3]) << 16;
461 regmap_write(regmap, REG_SPDIF_STCSCL, ch_status);
462
463 dev_dbg(&pdev->dev, "STCSCL: 0x%06x\n", ch_status);
464
465 if (spdif_priv->soc->cchannel_192b) {
466 ch_status = (bitrev8(ctrl->ch_status[0]) << 24) |
467 (bitrev8(ctrl->ch_status[1]) << 16) |
468 (bitrev8(ctrl->ch_status[2]) << 8) |
469 bitrev8(ctrl->ch_status[3]);
470
471 regmap_update_bits(regmap, REG_SPDIF_SCR, 0x1000000, 0x1000000);
472
473 /*
474 * The first 32bit should be in REG_SPDIF_STCCA_31_0 register,
475 * but here we need to set REG_SPDIF_STCCA_191_160 on 8ULP
476 * then can get correct result with HDMI analyzer capture.
477 * There is a hardware bug here.
478 */
479 regmap_write(regmap, REG_SPDIF_STCCA_191_160, ch_status);
480 }
481 }
482
483 /* Set SPDIF PhaseConfig register for rx clock */
spdif_set_rx_clksrc(struct fsl_spdif_priv * spdif_priv,enum spdif_gainsel gainsel,int dpll_locked)484 static int spdif_set_rx_clksrc(struct fsl_spdif_priv *spdif_priv,
485 enum spdif_gainsel gainsel, int dpll_locked)
486 {
487 struct regmap *regmap = spdif_priv->regmap;
488 u8 clksrc = spdif_priv->rxclk_src;
489
490 if (clksrc >= SRPC_CLKSRC_MAX || gainsel >= GAINSEL_MULTI_MAX)
491 return -EINVAL;
492
493 regmap_update_bits(regmap, REG_SPDIF_SRPC,
494 SRPC_CLKSRC_SEL_MASK | SRPC_GAINSEL_MASK,
495 SRPC_CLKSRC_SEL_SET(clksrc) | SRPC_GAINSEL_SET(gainsel));
496
497 return 0;
498 }
499
500 static int fsl_spdif_probe_txclk(struct fsl_spdif_priv *spdif_priv, enum spdif_txrate index);
501
spdif_set_sample_rate(struct snd_pcm_substream * substream,int sample_rate)502 static int spdif_set_sample_rate(struct snd_pcm_substream *substream,
503 int sample_rate)
504 {
505 struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
506 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(asoc_rtd_to_cpu(rtd, 0));
507 struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
508 struct regmap *regmap = spdif_priv->regmap;
509 struct platform_device *pdev = spdif_priv->pdev;
510 unsigned long csfs = 0;
511 u32 stc, mask, rate;
512 u16 sysclk_df;
513 u8 clk, txclk_df;
514 int ret;
515
516 switch (sample_rate) {
517 case 32000:
518 rate = SPDIF_TXRATE_32000;
519 csfs = IEC958_AES3_CON_FS_32000;
520 break;
521 case 44100:
522 rate = SPDIF_TXRATE_44100;
523 csfs = IEC958_AES3_CON_FS_44100;
524 break;
525 case 48000:
526 rate = SPDIF_TXRATE_48000;
527 csfs = IEC958_AES3_CON_FS_48000;
528 break;
529 case 88200:
530 rate = SPDIF_TXRATE_88200;
531 csfs = IEC958_AES3_CON_FS_88200;
532 break;
533 case 96000:
534 rate = SPDIF_TXRATE_96000;
535 csfs = IEC958_AES3_CON_FS_96000;
536 break;
537 case 176400:
538 rate = SPDIF_TXRATE_176400;
539 csfs = IEC958_AES3_CON_FS_176400;
540 break;
541 case 192000:
542 rate = SPDIF_TXRATE_192000;
543 csfs = IEC958_AES3_CON_FS_192000;
544 break;
545 default:
546 dev_err(&pdev->dev, "unsupported sample rate %d\n", sample_rate);
547 return -EINVAL;
548 }
549
550 ret = fsl_spdif_probe_txclk(spdif_priv, rate);
551 if (ret)
552 return ret;
553
554 clk = spdif_priv->txclk_src[rate];
555 if (clk >= STC_TXCLK_SRC_MAX) {
556 dev_err(&pdev->dev, "tx clock source is out of range\n");
557 return -EINVAL;
558 }
559
560 txclk_df = spdif_priv->txclk_df[rate];
561 if (txclk_df == 0) {
562 dev_err(&pdev->dev, "the txclk_df can't be zero\n");
563 return -EINVAL;
564 }
565
566 sysclk_df = spdif_priv->sysclk_df[rate];
567
568 if (!fsl_spdif_can_set_clk_rate(spdif_priv, clk))
569 goto clk_set_bypass;
570
571 /* The S/PDIF block needs a clock of 64 * fs * txclk_df */
572 ret = clk_set_rate(spdif_priv->txclk[clk],
573 64 * sample_rate * txclk_df);
574 if (ret) {
575 dev_err(&pdev->dev, "failed to set tx clock rate\n");
576 return ret;
577 }
578
579 clk_set_bypass:
580 dev_dbg(&pdev->dev, "expected clock rate = %d\n",
581 (64 * sample_rate * txclk_df * sysclk_df));
582 dev_dbg(&pdev->dev, "actual clock rate = %ld\n",
583 clk_get_rate(spdif_priv->txclk[clk]));
584
585 /* set fs field in consumer channel status */
586 spdif_set_cstatus(ctrl, IEC958_AES3_CON_FS, csfs);
587
588 /* select clock source and divisor */
589 stc = STC_TXCLK_ALL_EN | STC_TXCLK_SRC_SET(clk) |
590 STC_TXCLK_DF(txclk_df) | STC_SYSCLK_DF(sysclk_df);
591 mask = STC_TXCLK_ALL_EN_MASK | STC_TXCLK_SRC_MASK |
592 STC_TXCLK_DF_MASK | STC_SYSCLK_DF_MASK;
593 regmap_update_bits(regmap, REG_SPDIF_STC, mask, stc);
594
595 dev_dbg(&pdev->dev, "set sample rate to %dHz for %dHz playback\n",
596 spdif_priv->txrate[rate], sample_rate);
597
598 return 0;
599 }
600
fsl_spdif_startup(struct snd_pcm_substream * substream,struct snd_soc_dai * cpu_dai)601 static int fsl_spdif_startup(struct snd_pcm_substream *substream,
602 struct snd_soc_dai *cpu_dai)
603 {
604 struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
605 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(asoc_rtd_to_cpu(rtd, 0));
606 struct platform_device *pdev = spdif_priv->pdev;
607 struct regmap *regmap = spdif_priv->regmap;
608 u32 scr, mask;
609 int ret;
610
611 /* Reset module and interrupts only for first initialization */
612 if (!snd_soc_dai_active(cpu_dai)) {
613 ret = spdif_softreset(spdif_priv);
614 if (ret) {
615 dev_err(&pdev->dev, "failed to soft reset\n");
616 return ret;
617 }
618
619 /* Disable all the interrupts */
620 regmap_update_bits(regmap, REG_SPDIF_SIE, 0xffffff, 0);
621 }
622
623 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
624 scr = SCR_TXFIFO_AUTOSYNC | SCR_TXFIFO_CTRL_NORMAL |
625 SCR_TXSEL_NORMAL | SCR_USRC_SEL_CHIP |
626 SCR_TXFIFO_FSEL_IF8;
627 mask = SCR_TXFIFO_AUTOSYNC_MASK | SCR_TXFIFO_CTRL_MASK |
628 SCR_TXSEL_MASK | SCR_USRC_SEL_MASK |
629 SCR_TXFIFO_FSEL_MASK;
630 } else {
631 scr = SCR_RXFIFO_FSEL_IF8 | SCR_RXFIFO_AUTOSYNC;
632 mask = SCR_RXFIFO_FSEL_MASK | SCR_RXFIFO_AUTOSYNC_MASK|
633 SCR_RXFIFO_CTL_MASK | SCR_RXFIFO_OFF_MASK;
634 }
635 regmap_update_bits(regmap, REG_SPDIF_SCR, mask, scr);
636
637 /* Power up SPDIF module */
638 regmap_update_bits(regmap, REG_SPDIF_SCR, SCR_LOW_POWER, 0);
639
640 return 0;
641 }
642
fsl_spdif_shutdown(struct snd_pcm_substream * substream,struct snd_soc_dai * cpu_dai)643 static void fsl_spdif_shutdown(struct snd_pcm_substream *substream,
644 struct snd_soc_dai *cpu_dai)
645 {
646 struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
647 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(asoc_rtd_to_cpu(rtd, 0));
648 struct regmap *regmap = spdif_priv->regmap;
649 u32 scr, mask;
650
651 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
652 scr = 0;
653 mask = SCR_TXFIFO_AUTOSYNC_MASK | SCR_TXFIFO_CTRL_MASK |
654 SCR_TXSEL_MASK | SCR_USRC_SEL_MASK |
655 SCR_TXFIFO_FSEL_MASK;
656 /* Disable TX clock */
657 regmap_update_bits(regmap, REG_SPDIF_STC, STC_TXCLK_ALL_EN_MASK, 0);
658 } else {
659 scr = SCR_RXFIFO_OFF | SCR_RXFIFO_CTL_ZERO;
660 mask = SCR_RXFIFO_FSEL_MASK | SCR_RXFIFO_AUTOSYNC_MASK|
661 SCR_RXFIFO_CTL_MASK | SCR_RXFIFO_OFF_MASK;
662 }
663 regmap_update_bits(regmap, REG_SPDIF_SCR, mask, scr);
664
665 /* Power down SPDIF module only if tx&rx are both inactive */
666 if (!snd_soc_dai_active(cpu_dai)) {
667 spdif_intr_status_clear(spdif_priv);
668 regmap_update_bits(regmap, REG_SPDIF_SCR,
669 SCR_LOW_POWER, SCR_LOW_POWER);
670 }
671 }
672
spdif_reparent_rootclk(struct fsl_spdif_priv * spdif_priv,unsigned int sample_rate)673 static int spdif_reparent_rootclk(struct fsl_spdif_priv *spdif_priv, unsigned int sample_rate)
674 {
675 struct platform_device *pdev = spdif_priv->pdev;
676 struct clk *clk;
677 int ret;
678
679 /* Reparent clock if required condition is true */
680 if (!fsl_spdif_can_set_clk_rate(spdif_priv, STC_TXCLK_SPDIF_ROOT))
681 return 0;
682
683 /* Get root clock */
684 clk = spdif_priv->txclk[STC_TXCLK_SPDIF_ROOT];
685
686 /* Disable clock first, for it was enabled by pm_runtime */
687 clk_disable_unprepare(clk);
688 fsl_asoc_reparent_pll_clocks(&pdev->dev, clk, spdif_priv->pll8k_clk,
689 spdif_priv->pll11k_clk, sample_rate);
690 ret = clk_prepare_enable(clk);
691 if (ret)
692 return ret;
693
694 return 0;
695 }
fsl_spdif_hw_params(struct snd_pcm_substream * substream,struct snd_pcm_hw_params * params,struct snd_soc_dai * dai)696 static int fsl_spdif_hw_params(struct snd_pcm_substream *substream,
697 struct snd_pcm_hw_params *params,
698 struct snd_soc_dai *dai)
699 {
700 struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
701 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(asoc_rtd_to_cpu(rtd, 0));
702 struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
703 struct platform_device *pdev = spdif_priv->pdev;
704 u32 sample_rate = params_rate(params);
705 int ret = 0;
706
707 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
708 ret = spdif_reparent_rootclk(spdif_priv, sample_rate);
709 if (ret) {
710 dev_err(&pdev->dev, "%s: reparent root clk failed: %d\n",
711 __func__, sample_rate);
712 return ret;
713 }
714
715 ret = spdif_set_sample_rate(substream, sample_rate);
716 if (ret) {
717 dev_err(&pdev->dev, "%s: set sample rate failed: %d\n",
718 __func__, sample_rate);
719 return ret;
720 }
721 spdif_set_cstatus(ctrl, IEC958_AES3_CON_CLOCK,
722 IEC958_AES3_CON_CLOCK_1000PPM);
723 spdif_write_channel_status(spdif_priv);
724 } else {
725 /* Setup rx clock source */
726 ret = spdif_set_rx_clksrc(spdif_priv, SPDIF_DEFAULT_GAINSEL, 1);
727 }
728
729 return ret;
730 }
731
fsl_spdif_trigger(struct snd_pcm_substream * substream,int cmd,struct snd_soc_dai * dai)732 static int fsl_spdif_trigger(struct snd_pcm_substream *substream,
733 int cmd, struct snd_soc_dai *dai)
734 {
735 struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
736 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(asoc_rtd_to_cpu(rtd, 0));
737 struct regmap *regmap = spdif_priv->regmap;
738 bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
739 u32 intr = SIE_INTR_FOR(tx);
740 u32 dmaen = SCR_DMA_xX_EN(tx);
741
742 switch (cmd) {
743 case SNDRV_PCM_TRIGGER_START:
744 case SNDRV_PCM_TRIGGER_RESUME:
745 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
746 regmap_update_bits(regmap, REG_SPDIF_SIE, intr, intr);
747 regmap_update_bits(regmap, REG_SPDIF_SCR, dmaen, dmaen);
748 break;
749 case SNDRV_PCM_TRIGGER_STOP:
750 case SNDRV_PCM_TRIGGER_SUSPEND:
751 case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
752 regmap_update_bits(regmap, REG_SPDIF_SCR, dmaen, 0);
753 regmap_update_bits(regmap, REG_SPDIF_SIE, intr, 0);
754 break;
755 default:
756 return -EINVAL;
757 }
758
759 return 0;
760 }
761
762 static const struct snd_soc_dai_ops fsl_spdif_dai_ops = {
763 .startup = fsl_spdif_startup,
764 .hw_params = fsl_spdif_hw_params,
765 .trigger = fsl_spdif_trigger,
766 .shutdown = fsl_spdif_shutdown,
767 };
768
769
770 /*
771 * FSL SPDIF IEC958 controller(mixer) functions
772 *
773 * Channel status get/put control
774 * User bit value get/put control
775 * Valid bit value get control
776 * DPLL lock status get control
777 * User bit sync mode selection control
778 */
779
fsl_spdif_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)780 static int fsl_spdif_info(struct snd_kcontrol *kcontrol,
781 struct snd_ctl_elem_info *uinfo)
782 {
783 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
784 uinfo->count = 1;
785
786 return 0;
787 }
788
fsl_spdif_pb_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * uvalue)789 static int fsl_spdif_pb_get(struct snd_kcontrol *kcontrol,
790 struct snd_ctl_elem_value *uvalue)
791 {
792 struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
793 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
794 struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
795
796 uvalue->value.iec958.status[0] = ctrl->ch_status[0];
797 uvalue->value.iec958.status[1] = ctrl->ch_status[1];
798 uvalue->value.iec958.status[2] = ctrl->ch_status[2];
799 uvalue->value.iec958.status[3] = ctrl->ch_status[3];
800
801 return 0;
802 }
803
fsl_spdif_pb_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * uvalue)804 static int fsl_spdif_pb_put(struct snd_kcontrol *kcontrol,
805 struct snd_ctl_elem_value *uvalue)
806 {
807 struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
808 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
809 struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
810
811 ctrl->ch_status[0] = uvalue->value.iec958.status[0];
812 ctrl->ch_status[1] = uvalue->value.iec958.status[1];
813 ctrl->ch_status[2] = uvalue->value.iec958.status[2];
814 ctrl->ch_status[3] = uvalue->value.iec958.status[3];
815
816 spdif_write_channel_status(spdif_priv);
817
818 return 0;
819 }
820
821 /* Get channel status from SPDIF_RX_CCHAN register */
fsl_spdif_capture_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)822 static int fsl_spdif_capture_get(struct snd_kcontrol *kcontrol,
823 struct snd_ctl_elem_value *ucontrol)
824 {
825 struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
826 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
827 struct regmap *regmap = spdif_priv->regmap;
828 u32 cstatus, val;
829
830 regmap_read(regmap, REG_SPDIF_SIS, &val);
831 if (!(val & INT_CNEW))
832 return -EAGAIN;
833
834 regmap_read(regmap, REG_SPDIF_SRCSH, &cstatus);
835 ucontrol->value.iec958.status[0] = (cstatus >> 16) & 0xFF;
836 ucontrol->value.iec958.status[1] = (cstatus >> 8) & 0xFF;
837 ucontrol->value.iec958.status[2] = cstatus & 0xFF;
838
839 regmap_read(regmap, REG_SPDIF_SRCSL, &cstatus);
840 ucontrol->value.iec958.status[3] = (cstatus >> 16) & 0xFF;
841 ucontrol->value.iec958.status[4] = (cstatus >> 8) & 0xFF;
842 ucontrol->value.iec958.status[5] = cstatus & 0xFF;
843
844 /* Clear intr */
845 regmap_write(regmap, REG_SPDIF_SIC, INT_CNEW);
846
847 return 0;
848 }
849
850 /*
851 * Get User bits (subcode) from chip value which readed out
852 * in UChannel register.
853 */
fsl_spdif_subcode_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)854 static int fsl_spdif_subcode_get(struct snd_kcontrol *kcontrol,
855 struct snd_ctl_elem_value *ucontrol)
856 {
857 struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
858 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
859 struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
860 unsigned long flags;
861 int ret = -EAGAIN;
862
863 spin_lock_irqsave(&ctrl->ctl_lock, flags);
864 if (ctrl->ready_buf) {
865 int idx = (ctrl->ready_buf - 1) * SPDIF_UBITS_SIZE;
866 memcpy(&ucontrol->value.iec958.subcode[0],
867 &ctrl->subcode[idx], SPDIF_UBITS_SIZE);
868 ret = 0;
869 }
870 spin_unlock_irqrestore(&ctrl->ctl_lock, flags);
871
872 return ret;
873 }
874
875 /* Q-subcode information. The byte size is SPDIF_UBITS_SIZE/8 */
fsl_spdif_qinfo(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)876 static int fsl_spdif_qinfo(struct snd_kcontrol *kcontrol,
877 struct snd_ctl_elem_info *uinfo)
878 {
879 uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
880 uinfo->count = SPDIF_QSUB_SIZE;
881
882 return 0;
883 }
884
885 /* Get Q subcode from chip value which readed out in QChannel register */
fsl_spdif_qget(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)886 static int fsl_spdif_qget(struct snd_kcontrol *kcontrol,
887 struct snd_ctl_elem_value *ucontrol)
888 {
889 struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
890 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
891 struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
892 unsigned long flags;
893 int ret = -EAGAIN;
894
895 spin_lock_irqsave(&ctrl->ctl_lock, flags);
896 if (ctrl->ready_buf) {
897 int idx = (ctrl->ready_buf - 1) * SPDIF_QSUB_SIZE;
898 memcpy(&ucontrol->value.bytes.data[0],
899 &ctrl->qsub[idx], SPDIF_QSUB_SIZE);
900 ret = 0;
901 }
902 spin_unlock_irqrestore(&ctrl->ctl_lock, flags);
903
904 return ret;
905 }
906
907 /* Get valid good bit from interrupt status register */
fsl_spdif_rx_vbit_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)908 static int fsl_spdif_rx_vbit_get(struct snd_kcontrol *kcontrol,
909 struct snd_ctl_elem_value *ucontrol)
910 {
911 struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
912 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
913 struct regmap *regmap = spdif_priv->regmap;
914 u32 val;
915
916 regmap_read(regmap, REG_SPDIF_SIS, &val);
917 ucontrol->value.integer.value[0] = (val & INT_VAL_NOGOOD) != 0;
918 regmap_write(regmap, REG_SPDIF_SIC, INT_VAL_NOGOOD);
919
920 return 0;
921 }
922
fsl_spdif_tx_vbit_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)923 static int fsl_spdif_tx_vbit_get(struct snd_kcontrol *kcontrol,
924 struct snd_ctl_elem_value *ucontrol)
925 {
926 struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
927 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
928 struct regmap *regmap = spdif_priv->regmap;
929 u32 val;
930
931 regmap_read(regmap, REG_SPDIF_SCR, &val);
932 val = (val & SCR_VAL_MASK) >> SCR_VAL_OFFSET;
933 val = 1 - val;
934 ucontrol->value.integer.value[0] = val;
935
936 return 0;
937 }
938
fsl_spdif_tx_vbit_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)939 static int fsl_spdif_tx_vbit_put(struct snd_kcontrol *kcontrol,
940 struct snd_ctl_elem_value *ucontrol)
941 {
942 struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
943 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
944 struct regmap *regmap = spdif_priv->regmap;
945 u32 val = (1 - ucontrol->value.integer.value[0]) << SCR_VAL_OFFSET;
946
947 regmap_update_bits(regmap, REG_SPDIF_SCR, SCR_VAL_MASK, val);
948
949 return 0;
950 }
951
fsl_spdif_rx_rcm_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)952 static int fsl_spdif_rx_rcm_get(struct snd_kcontrol *kcontrol,
953 struct snd_ctl_elem_value *ucontrol)
954 {
955 struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
956 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
957 struct regmap *regmap = spdif_priv->regmap;
958 u32 val;
959
960 regmap_read(regmap, REG_SPDIF_SCR, &val);
961 val = (val & SCR_RAW_CAPTURE_MODE) ? 1 : 0;
962 ucontrol->value.integer.value[0] = val;
963
964 return 0;
965 }
966
fsl_spdif_rx_rcm_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)967 static int fsl_spdif_rx_rcm_put(struct snd_kcontrol *kcontrol,
968 struct snd_ctl_elem_value *ucontrol)
969 {
970 struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
971 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
972 struct regmap *regmap = spdif_priv->regmap;
973 u32 val = (ucontrol->value.integer.value[0] ? SCR_RAW_CAPTURE_MODE : 0);
974
975 if (val)
976 cpu_dai->driver->capture.formats |= SNDRV_PCM_FMTBIT_S32_LE;
977 else
978 cpu_dai->driver->capture.formats &= ~SNDRV_PCM_FMTBIT_S32_LE;
979
980 regmap_update_bits(regmap, REG_SPDIF_SCR, SCR_RAW_CAPTURE_MODE, val);
981
982 return 0;
983 }
984
fsl_spdif_bypass_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)985 static int fsl_spdif_bypass_get(struct snd_kcontrol *kcontrol,
986 struct snd_ctl_elem_value *ucontrol)
987 {
988 struct snd_soc_dai *dai = snd_kcontrol_chip(kcontrol);
989 struct fsl_spdif_priv *priv = snd_soc_dai_get_drvdata(dai);
990
991 ucontrol->value.integer.value[0] = priv->bypass ? 1 : 0;
992
993 return 0;
994 }
995
fsl_spdif_bypass_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)996 static int fsl_spdif_bypass_put(struct snd_kcontrol *kcontrol,
997 struct snd_ctl_elem_value *ucontrol)
998 {
999 struct snd_soc_dai *dai = snd_kcontrol_chip(kcontrol);
1000 struct fsl_spdif_priv *priv = snd_soc_dai_get_drvdata(dai);
1001 struct snd_soc_card *card = dai->component->card;
1002 bool set = (ucontrol->value.integer.value[0] != 0);
1003 struct regmap *regmap = priv->regmap;
1004 struct snd_soc_pcm_runtime *rtd;
1005 u32 scr, mask;
1006 int stream;
1007
1008 rtd = snd_soc_get_pcm_runtime(card, card->dai_link);
1009
1010 if (priv->bypass == set)
1011 return 0; /* nothing to do */
1012
1013 if (snd_soc_dai_active(dai)) {
1014 dev_err(dai->dev, "Cannot change BYPASS mode while stream is running.\n");
1015 return -EBUSY;
1016 }
1017
1018 pm_runtime_get_sync(dai->dev);
1019
1020 if (set) {
1021 /* Disable interrupts */
1022 regmap_update_bits(regmap, REG_SPDIF_SIE, 0xffffff, 0);
1023
1024 /* Configure BYPASS mode */
1025 scr = SCR_TXSEL_RX | SCR_RXFIFO_OFF;
1026 mask = SCR_RXFIFO_FSEL_MASK | SCR_RXFIFO_AUTOSYNC_MASK |
1027 SCR_RXFIFO_CTL_MASK | SCR_RXFIFO_OFF_MASK | SCR_TXSEL_MASK;
1028 /* Power up SPDIF module */
1029 mask |= SCR_LOW_POWER;
1030 } else {
1031 /* Power down SPDIF module, disable TX */
1032 scr = SCR_LOW_POWER | SCR_TXSEL_OFF;
1033 mask = SCR_LOW_POWER | SCR_TXSEL_MASK;
1034 }
1035
1036 regmap_update_bits(regmap, REG_SPDIF_SCR, mask, scr);
1037
1038 /* Disable playback & capture if BYPASS mode is enabled, enable otherwise */
1039 for_each_pcm_streams(stream)
1040 rtd->pcm->streams[stream].substream_count = (set ? 0 : 1);
1041
1042 priv->bypass = set;
1043 pm_runtime_put_sync(dai->dev);
1044
1045 return 0;
1046 }
1047
1048 /* DPLL lock information */
fsl_spdif_rxrate_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)1049 static int fsl_spdif_rxrate_info(struct snd_kcontrol *kcontrol,
1050 struct snd_ctl_elem_info *uinfo)
1051 {
1052 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1053 uinfo->count = 1;
1054 uinfo->value.integer.min = 16000;
1055 uinfo->value.integer.max = 192000;
1056
1057 return 0;
1058 }
1059
1060 static u32 gainsel_multi[GAINSEL_MULTI_MAX] = {
1061 24, 16, 12, 8, 6, 4, 3,
1062 };
1063
1064 /* Get RX data clock rate given the SPDIF bus_clk */
spdif_get_rxclk_rate(struct fsl_spdif_priv * spdif_priv,enum spdif_gainsel gainsel)1065 static int spdif_get_rxclk_rate(struct fsl_spdif_priv *spdif_priv,
1066 enum spdif_gainsel gainsel)
1067 {
1068 struct regmap *regmap = spdif_priv->regmap;
1069 struct platform_device *pdev = spdif_priv->pdev;
1070 u64 tmpval64, busclk_freq = 0;
1071 u32 freqmeas, phaseconf;
1072 u8 clksrc;
1073
1074 regmap_read(regmap, REG_SPDIF_SRFM, &freqmeas);
1075 regmap_read(regmap, REG_SPDIF_SRPC, &phaseconf);
1076
1077 clksrc = (phaseconf >> SRPC_CLKSRC_SEL_OFFSET) & 0xf;
1078
1079 /* Get bus clock from system */
1080 if (srpc_dpll_locked[clksrc] && (phaseconf & SRPC_DPLL_LOCKED))
1081 busclk_freq = clk_get_rate(spdif_priv->sysclk);
1082
1083 /* FreqMeas_CLK = (BUS_CLK * FreqMeas) / 2 ^ 10 / GAINSEL / 128 */
1084 tmpval64 = (u64) busclk_freq * freqmeas;
1085 do_div(tmpval64, gainsel_multi[gainsel] * 1024);
1086 do_div(tmpval64, 128 * 1024);
1087
1088 dev_dbg(&pdev->dev, "FreqMeas: %d\n", freqmeas);
1089 dev_dbg(&pdev->dev, "BusclkFreq: %lld\n", busclk_freq);
1090 dev_dbg(&pdev->dev, "RxRate: %lld\n", tmpval64);
1091
1092 return (int)tmpval64;
1093 }
1094
1095 /*
1096 * Get DPLL lock or not info from stable interrupt status register.
1097 * User application must use this control to get locked,
1098 * then can do next PCM operation
1099 */
fsl_spdif_rxrate_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)1100 static int fsl_spdif_rxrate_get(struct snd_kcontrol *kcontrol,
1101 struct snd_ctl_elem_value *ucontrol)
1102 {
1103 struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
1104 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
1105 int rate = 0;
1106
1107 if (spdif_priv->dpll_locked)
1108 rate = spdif_get_rxclk_rate(spdif_priv, SPDIF_DEFAULT_GAINSEL);
1109
1110 ucontrol->value.integer.value[0] = rate;
1111
1112 return 0;
1113 }
1114
1115 /*
1116 * User bit sync mode:
1117 * 1 CD User channel subcode
1118 * 0 Non-CD data
1119 */
fsl_spdif_usync_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)1120 static int fsl_spdif_usync_get(struct snd_kcontrol *kcontrol,
1121 struct snd_ctl_elem_value *ucontrol)
1122 {
1123 struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
1124 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
1125 struct regmap *regmap = spdif_priv->regmap;
1126 u32 val;
1127
1128 regmap_read(regmap, REG_SPDIF_SRCD, &val);
1129 ucontrol->value.integer.value[0] = (val & SRCD_CD_USER) != 0;
1130
1131 return 0;
1132 }
1133
1134 /*
1135 * User bit sync mode:
1136 * 1 CD User channel subcode
1137 * 0 Non-CD data
1138 */
fsl_spdif_usync_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)1139 static int fsl_spdif_usync_put(struct snd_kcontrol *kcontrol,
1140 struct snd_ctl_elem_value *ucontrol)
1141 {
1142 struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
1143 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
1144 struct regmap *regmap = spdif_priv->regmap;
1145 u32 val = ucontrol->value.integer.value[0] << SRCD_CD_USER_OFFSET;
1146
1147 regmap_update_bits(regmap, REG_SPDIF_SRCD, SRCD_CD_USER, val);
1148
1149 return 0;
1150 }
1151
1152 /* FSL SPDIF IEC958 controller defines */
1153 static struct snd_kcontrol_new fsl_spdif_ctrls[] = {
1154 /* Status cchanel controller */
1155 {
1156 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1157 .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
1158 .access = SNDRV_CTL_ELEM_ACCESS_READ |
1159 SNDRV_CTL_ELEM_ACCESS_WRITE |
1160 SNDRV_CTL_ELEM_ACCESS_VOLATILE,
1161 .info = fsl_spdif_info,
1162 .get = fsl_spdif_pb_get,
1163 .put = fsl_spdif_pb_put,
1164 },
1165 {
1166 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1167 .name = SNDRV_CTL_NAME_IEC958("", CAPTURE, DEFAULT),
1168 .access = SNDRV_CTL_ELEM_ACCESS_READ |
1169 SNDRV_CTL_ELEM_ACCESS_VOLATILE,
1170 .info = fsl_spdif_info,
1171 .get = fsl_spdif_capture_get,
1172 },
1173 /* User bits controller */
1174 {
1175 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1176 .name = "IEC958 Subcode Capture Default",
1177 .access = SNDRV_CTL_ELEM_ACCESS_READ |
1178 SNDRV_CTL_ELEM_ACCESS_VOLATILE,
1179 .info = fsl_spdif_info,
1180 .get = fsl_spdif_subcode_get,
1181 },
1182 {
1183 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1184 .name = "IEC958 Q-subcode Capture Default",
1185 .access = SNDRV_CTL_ELEM_ACCESS_READ |
1186 SNDRV_CTL_ELEM_ACCESS_VOLATILE,
1187 .info = fsl_spdif_qinfo,
1188 .get = fsl_spdif_qget,
1189 },
1190 /* Valid bit error controller */
1191 {
1192 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1193 .name = "IEC958 RX V-Bit Errors",
1194 .access = SNDRV_CTL_ELEM_ACCESS_READ |
1195 SNDRV_CTL_ELEM_ACCESS_VOLATILE,
1196 .info = snd_ctl_boolean_mono_info,
1197 .get = fsl_spdif_rx_vbit_get,
1198 },
1199 {
1200 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1201 .name = "IEC958 TX V-Bit",
1202 .access = SNDRV_CTL_ELEM_ACCESS_READ |
1203 SNDRV_CTL_ELEM_ACCESS_WRITE |
1204 SNDRV_CTL_ELEM_ACCESS_VOLATILE,
1205 .info = snd_ctl_boolean_mono_info,
1206 .get = fsl_spdif_tx_vbit_get,
1207 .put = fsl_spdif_tx_vbit_put,
1208 },
1209 /* DPLL lock info get controller */
1210 {
1211 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1212 .name = RX_SAMPLE_RATE_KCONTROL,
1213 .access = SNDRV_CTL_ELEM_ACCESS_READ |
1214 SNDRV_CTL_ELEM_ACCESS_VOLATILE,
1215 .info = fsl_spdif_rxrate_info,
1216 .get = fsl_spdif_rxrate_get,
1217 },
1218 /* RX bypass controller */
1219 {
1220 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1221 .name = "Bypass Mode",
1222 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
1223 .info = snd_ctl_boolean_mono_info,
1224 .get = fsl_spdif_bypass_get,
1225 .put = fsl_spdif_bypass_put,
1226 },
1227 /* User bit sync mode set/get controller */
1228 {
1229 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1230 .name = "IEC958 USyncMode CDText",
1231 .access = SNDRV_CTL_ELEM_ACCESS_READ |
1232 SNDRV_CTL_ELEM_ACCESS_WRITE |
1233 SNDRV_CTL_ELEM_ACCESS_VOLATILE,
1234 .info = snd_ctl_boolean_mono_info,
1235 .get = fsl_spdif_usync_get,
1236 .put = fsl_spdif_usync_put,
1237 },
1238 };
1239
1240 static struct snd_kcontrol_new fsl_spdif_ctrls_rcm[] = {
1241 {
1242 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1243 .name = "IEC958 Raw Capture Mode",
1244 .access = SNDRV_CTL_ELEM_ACCESS_READ |
1245 SNDRV_CTL_ELEM_ACCESS_WRITE |
1246 SNDRV_CTL_ELEM_ACCESS_VOLATILE,
1247 .info = snd_ctl_boolean_mono_info,
1248 .get = fsl_spdif_rx_rcm_get,
1249 .put = fsl_spdif_rx_rcm_put,
1250 },
1251 };
1252
fsl_spdif_dai_probe(struct snd_soc_dai * dai)1253 static int fsl_spdif_dai_probe(struct snd_soc_dai *dai)
1254 {
1255 struct fsl_spdif_priv *spdif_private = snd_soc_dai_get_drvdata(dai);
1256
1257 snd_soc_dai_init_dma_data(dai, &spdif_private->dma_params_tx,
1258 &spdif_private->dma_params_rx);
1259
1260 snd_soc_add_dai_controls(dai, fsl_spdif_ctrls, ARRAY_SIZE(fsl_spdif_ctrls));
1261
1262 if (spdif_private->soc->raw_capture_mode)
1263 snd_soc_add_dai_controls(dai, fsl_spdif_ctrls_rcm,
1264 ARRAY_SIZE(fsl_spdif_ctrls_rcm));
1265
1266 spdif_private->snd_card = dai->component->card->snd_card;
1267 spdif_private->rxrate_kcontrol = snd_soc_card_get_kcontrol(dai->component->card,
1268 RX_SAMPLE_RATE_KCONTROL);
1269 if (!spdif_private->rxrate_kcontrol)
1270 dev_err(&spdif_private->pdev->dev, "failed to get %s kcontrol\n",
1271 RX_SAMPLE_RATE_KCONTROL);
1272
1273 /*Clear the val bit for Tx*/
1274 regmap_update_bits(spdif_private->regmap, REG_SPDIF_SCR,
1275 SCR_VAL_MASK, SCR_VAL_CLEAR);
1276
1277 return 0;
1278 }
1279
1280 static struct snd_soc_dai_driver fsl_spdif_dai = {
1281 .probe = &fsl_spdif_dai_probe,
1282 .playback = {
1283 .stream_name = "CPU-Playback",
1284 .channels_min = 2,
1285 .channels_max = 2,
1286 .rates = FSL_SPDIF_RATES_PLAYBACK,
1287 .formats = FSL_SPDIF_FORMATS_PLAYBACK,
1288 },
1289 .capture = {
1290 .stream_name = "CPU-Capture",
1291 .channels_min = 2,
1292 .channels_max = 2,
1293 .rates = FSL_SPDIF_RATES_CAPTURE,
1294 .formats = FSL_SPDIF_FORMATS_CAPTURE,
1295 },
1296 .ops = &fsl_spdif_dai_ops,
1297 };
1298
1299 static const struct snd_soc_component_driver fsl_spdif_component = {
1300 .name = "fsl-spdif",
1301 .legacy_dai_naming = 1,
1302 };
1303
1304 /* FSL SPDIF REGMAP */
1305 static const struct reg_default fsl_spdif_reg_defaults[] = {
1306 {REG_SPDIF_SCR, 0x00000400},
1307 {REG_SPDIF_SRCD, 0x00000000},
1308 {REG_SPDIF_SIE, 0x00000000},
1309 {REG_SPDIF_STL, 0x00000000},
1310 {REG_SPDIF_STR, 0x00000000},
1311 {REG_SPDIF_STCSCH, 0x00000000},
1312 {REG_SPDIF_STCSCL, 0x00000000},
1313 {REG_SPDIF_STCSPH, 0x00000000},
1314 {REG_SPDIF_STCSPL, 0x00000000},
1315 {REG_SPDIF_STC, 0x00020f00},
1316 };
1317
fsl_spdif_readable_reg(struct device * dev,unsigned int reg)1318 static bool fsl_spdif_readable_reg(struct device *dev, unsigned int reg)
1319 {
1320 switch (reg) {
1321 case REG_SPDIF_SCR:
1322 case REG_SPDIF_SRCD:
1323 case REG_SPDIF_SRPC:
1324 case REG_SPDIF_SIE:
1325 case REG_SPDIF_SIS:
1326 case REG_SPDIF_SRL:
1327 case REG_SPDIF_SRR:
1328 case REG_SPDIF_SRCSH:
1329 case REG_SPDIF_SRCSL:
1330 case REG_SPDIF_SRU:
1331 case REG_SPDIF_SRQ:
1332 case REG_SPDIF_STCSCH:
1333 case REG_SPDIF_STCSCL:
1334 case REG_SPDIF_STCSPH:
1335 case REG_SPDIF_STCSPL:
1336 case REG_SPDIF_SRFM:
1337 case REG_SPDIF_STC:
1338 case REG_SPDIF_SRCCA_31_0:
1339 case REG_SPDIF_SRCCA_63_32:
1340 case REG_SPDIF_SRCCA_95_64:
1341 case REG_SPDIF_SRCCA_127_96:
1342 case REG_SPDIF_SRCCA_159_128:
1343 case REG_SPDIF_SRCCA_191_160:
1344 case REG_SPDIF_STCCA_31_0:
1345 case REG_SPDIF_STCCA_63_32:
1346 case REG_SPDIF_STCCA_95_64:
1347 case REG_SPDIF_STCCA_127_96:
1348 case REG_SPDIF_STCCA_159_128:
1349 case REG_SPDIF_STCCA_191_160:
1350 return true;
1351 default:
1352 return false;
1353 }
1354 }
1355
fsl_spdif_volatile_reg(struct device * dev,unsigned int reg)1356 static bool fsl_spdif_volatile_reg(struct device *dev, unsigned int reg)
1357 {
1358 switch (reg) {
1359 case REG_SPDIF_SRPC:
1360 case REG_SPDIF_SIS:
1361 case REG_SPDIF_SRL:
1362 case REG_SPDIF_SRR:
1363 case REG_SPDIF_SRCSH:
1364 case REG_SPDIF_SRCSL:
1365 case REG_SPDIF_SRU:
1366 case REG_SPDIF_SRQ:
1367 case REG_SPDIF_SRFM:
1368 case REG_SPDIF_SRCCA_31_0:
1369 case REG_SPDIF_SRCCA_63_32:
1370 case REG_SPDIF_SRCCA_95_64:
1371 case REG_SPDIF_SRCCA_127_96:
1372 case REG_SPDIF_SRCCA_159_128:
1373 case REG_SPDIF_SRCCA_191_160:
1374 return true;
1375 default:
1376 return false;
1377 }
1378 }
1379
fsl_spdif_writeable_reg(struct device * dev,unsigned int reg)1380 static bool fsl_spdif_writeable_reg(struct device *dev, unsigned int reg)
1381 {
1382 switch (reg) {
1383 case REG_SPDIF_SCR:
1384 case REG_SPDIF_SRCD:
1385 case REG_SPDIF_SRPC:
1386 case REG_SPDIF_SIE:
1387 case REG_SPDIF_SIC:
1388 case REG_SPDIF_STL:
1389 case REG_SPDIF_STR:
1390 case REG_SPDIF_STCSCH:
1391 case REG_SPDIF_STCSCL:
1392 case REG_SPDIF_STCSPH:
1393 case REG_SPDIF_STCSPL:
1394 case REG_SPDIF_STC:
1395 case REG_SPDIF_STCCA_31_0:
1396 case REG_SPDIF_STCCA_63_32:
1397 case REG_SPDIF_STCCA_95_64:
1398 case REG_SPDIF_STCCA_127_96:
1399 case REG_SPDIF_STCCA_159_128:
1400 case REG_SPDIF_STCCA_191_160:
1401 return true;
1402 default:
1403 return false;
1404 }
1405 }
1406
1407 static const struct regmap_config fsl_spdif_regmap_config = {
1408 .reg_bits = 32,
1409 .reg_stride = 4,
1410 .val_bits = 32,
1411
1412 .max_register = REG_SPDIF_STCCA_191_160,
1413 .reg_defaults = fsl_spdif_reg_defaults,
1414 .num_reg_defaults = ARRAY_SIZE(fsl_spdif_reg_defaults),
1415 .readable_reg = fsl_spdif_readable_reg,
1416 .volatile_reg = fsl_spdif_volatile_reg,
1417 .writeable_reg = fsl_spdif_writeable_reg,
1418 .cache_type = REGCACHE_FLAT,
1419 };
1420
fsl_spdif_txclk_caldiv(struct fsl_spdif_priv * spdif_priv,struct clk * clk,u64 savesub,enum spdif_txrate index,bool round)1421 static u32 fsl_spdif_txclk_caldiv(struct fsl_spdif_priv *spdif_priv,
1422 struct clk *clk, u64 savesub,
1423 enum spdif_txrate index, bool round)
1424 {
1425 static const u32 rate[] = { 32000, 44100, 48000, 88200, 96000, 176400,
1426 192000, };
1427 bool is_sysclk = clk_is_match(clk, spdif_priv->sysclk);
1428 u64 rate_ideal, rate_actual, sub;
1429 u32 arate;
1430 u16 sysclk_dfmin, sysclk_dfmax, sysclk_df;
1431 u8 txclk_df;
1432
1433 /* The sysclk has an extra divisor [2, 512] */
1434 sysclk_dfmin = is_sysclk ? 2 : 1;
1435 sysclk_dfmax = is_sysclk ? 512 : 1;
1436
1437 for (sysclk_df = sysclk_dfmin; sysclk_df <= sysclk_dfmax; sysclk_df++) {
1438 for (txclk_df = 1; txclk_df <= 128; txclk_df++) {
1439 rate_ideal = rate[index] * txclk_df * 64ULL;
1440 if (round)
1441 rate_actual = clk_round_rate(clk, rate_ideal);
1442 else
1443 rate_actual = clk_get_rate(clk);
1444
1445 arate = rate_actual / 64;
1446 arate /= txclk_df * sysclk_df;
1447
1448 if (arate == rate[index]) {
1449 /* We are lucky */
1450 savesub = 0;
1451 spdif_priv->txclk_df[index] = txclk_df;
1452 spdif_priv->sysclk_df[index] = sysclk_df;
1453 spdif_priv->txrate[index] = arate;
1454 goto out;
1455 } else if (arate / rate[index] == 1) {
1456 /* A little bigger than expect */
1457 sub = (u64)(arate - rate[index]) * 100000;
1458 do_div(sub, rate[index]);
1459 if (sub >= savesub)
1460 continue;
1461 savesub = sub;
1462 spdif_priv->txclk_df[index] = txclk_df;
1463 spdif_priv->sysclk_df[index] = sysclk_df;
1464 spdif_priv->txrate[index] = arate;
1465 } else if (rate[index] / arate == 1) {
1466 /* A little smaller than expect */
1467 sub = (u64)(rate[index] - arate) * 100000;
1468 do_div(sub, rate[index]);
1469 if (sub >= savesub)
1470 continue;
1471 savesub = sub;
1472 spdif_priv->txclk_df[index] = txclk_df;
1473 spdif_priv->sysclk_df[index] = sysclk_df;
1474 spdif_priv->txrate[index] = arate;
1475 }
1476 }
1477 }
1478
1479 out:
1480 return savesub;
1481 }
1482
fsl_spdif_probe_txclk(struct fsl_spdif_priv * spdif_priv,enum spdif_txrate index)1483 static int fsl_spdif_probe_txclk(struct fsl_spdif_priv *spdif_priv,
1484 enum spdif_txrate index)
1485 {
1486 static const u32 rate[] = { 32000, 44100, 48000, 88200, 96000, 176400,
1487 192000, };
1488 struct platform_device *pdev = spdif_priv->pdev;
1489 struct device *dev = &pdev->dev;
1490 u64 savesub = 100000, ret;
1491 struct clk *clk;
1492 int i;
1493
1494 for (i = 0; i < STC_TXCLK_SRC_MAX; i++) {
1495 clk = spdif_priv->txclk[i];
1496 if (IS_ERR(clk)) {
1497 dev_err(dev, "no rxtx%d clock in devicetree\n", i);
1498 return PTR_ERR(clk);
1499 }
1500 if (!clk_get_rate(clk))
1501 continue;
1502
1503 ret = fsl_spdif_txclk_caldiv(spdif_priv, clk, savesub, index,
1504 fsl_spdif_can_set_clk_rate(spdif_priv, i));
1505 if (savesub == ret)
1506 continue;
1507
1508 savesub = ret;
1509 spdif_priv->txclk_src[index] = i;
1510
1511 /* To quick catch a divisor, we allow a 0.1% deviation */
1512 if (savesub < 100)
1513 break;
1514 }
1515
1516 dev_dbg(dev, "use rxtx%d as tx clock source for %dHz sample rate\n",
1517 spdif_priv->txclk_src[index], rate[index]);
1518 dev_dbg(dev, "use txclk df %d for %dHz sample rate\n",
1519 spdif_priv->txclk_df[index], rate[index]);
1520 if (clk_is_match(spdif_priv->txclk[spdif_priv->txclk_src[index]], spdif_priv->sysclk))
1521 dev_dbg(dev, "use sysclk df %d for %dHz sample rate\n",
1522 spdif_priv->sysclk_df[index], rate[index]);
1523 dev_dbg(dev, "the best rate for %dHz sample rate is %dHz\n",
1524 rate[index], spdif_priv->txrate[index]);
1525
1526 return 0;
1527 }
1528
fsl_spdif_probe(struct platform_device * pdev)1529 static int fsl_spdif_probe(struct platform_device *pdev)
1530 {
1531 struct fsl_spdif_priv *spdif_priv;
1532 struct spdif_mixer_control *ctrl;
1533 struct resource *res;
1534 void __iomem *regs;
1535 int irq, ret, i;
1536 char tmp[16];
1537
1538 spdif_priv = devm_kzalloc(&pdev->dev, sizeof(*spdif_priv), GFP_KERNEL);
1539 if (!spdif_priv)
1540 return -ENOMEM;
1541
1542 spdif_priv->pdev = pdev;
1543
1544 spdif_priv->soc = of_device_get_match_data(&pdev->dev);
1545
1546 /* Initialize this copy of the CPU DAI driver structure */
1547 memcpy(&spdif_priv->cpu_dai_drv, &fsl_spdif_dai, sizeof(fsl_spdif_dai));
1548 spdif_priv->cpu_dai_drv.name = dev_name(&pdev->dev);
1549 spdif_priv->cpu_dai_drv.playback.formats =
1550 spdif_priv->soc->tx_formats;
1551
1552 /* Get the addresses and IRQ */
1553 regs = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1554 if (IS_ERR(regs))
1555 return PTR_ERR(regs);
1556
1557 spdif_priv->regmap = devm_regmap_init_mmio(&pdev->dev, regs, &fsl_spdif_regmap_config);
1558 if (IS_ERR(spdif_priv->regmap)) {
1559 dev_err(&pdev->dev, "regmap init failed\n");
1560 return PTR_ERR(spdif_priv->regmap);
1561 }
1562
1563 for (i = 0; i < spdif_priv->soc->interrupts; i++) {
1564 irq = platform_get_irq(pdev, i);
1565 if (irq < 0)
1566 return irq;
1567
1568 ret = devm_request_irq(&pdev->dev, irq, spdif_isr, 0,
1569 dev_name(&pdev->dev), spdif_priv);
1570 if (ret) {
1571 dev_err(&pdev->dev, "could not claim irq %u\n", irq);
1572 return ret;
1573 }
1574 }
1575
1576 for (i = 0; i < STC_TXCLK_SRC_MAX; i++) {
1577 sprintf(tmp, "rxtx%d", i);
1578 spdif_priv->txclk[i] = devm_clk_get(&pdev->dev, tmp);
1579 if (IS_ERR(spdif_priv->txclk[i])) {
1580 dev_err(&pdev->dev, "no rxtx%d clock in devicetree\n", i);
1581 return PTR_ERR(spdif_priv->txclk[i]);
1582 }
1583 }
1584
1585 /* Get system clock for rx clock rate calculation */
1586 spdif_priv->sysclk = spdif_priv->txclk[5];
1587 if (IS_ERR(spdif_priv->sysclk)) {
1588 dev_err(&pdev->dev, "no sys clock (rxtx5) in devicetree\n");
1589 return PTR_ERR(spdif_priv->sysclk);
1590 }
1591
1592 /* Get core clock for data register access via DMA */
1593 spdif_priv->coreclk = devm_clk_get(&pdev->dev, "core");
1594 if (IS_ERR(spdif_priv->coreclk)) {
1595 dev_err(&pdev->dev, "no core clock in devicetree\n");
1596 return PTR_ERR(spdif_priv->coreclk);
1597 }
1598
1599 spdif_priv->spbaclk = devm_clk_get(&pdev->dev, "spba");
1600 if (IS_ERR(spdif_priv->spbaclk))
1601 dev_warn(&pdev->dev, "no spba clock in devicetree\n");
1602
1603 /* Select clock source for rx/tx clock */
1604 spdif_priv->rxclk = spdif_priv->txclk[1];
1605 if (IS_ERR(spdif_priv->rxclk)) {
1606 dev_err(&pdev->dev, "no rxtx1 clock in devicetree\n");
1607 return PTR_ERR(spdif_priv->rxclk);
1608 }
1609 spdif_priv->rxclk_src = DEFAULT_RXCLK_SRC;
1610
1611 fsl_asoc_get_pll_clocks(&pdev->dev, &spdif_priv->pll8k_clk,
1612 &spdif_priv->pll11k_clk);
1613
1614 /* Initial spinlock for control data */
1615 ctrl = &spdif_priv->fsl_spdif_control;
1616 spin_lock_init(&ctrl->ctl_lock);
1617
1618 /* Init tx channel status default value */
1619 ctrl->ch_status[0] = IEC958_AES0_CON_NOT_COPYRIGHT |
1620 IEC958_AES0_CON_EMPHASIS_5015;
1621 ctrl->ch_status[1] = IEC958_AES1_CON_DIGDIGCONV_ID;
1622 ctrl->ch_status[2] = 0x00;
1623 ctrl->ch_status[3] = IEC958_AES3_CON_FS_44100 |
1624 IEC958_AES3_CON_CLOCK_1000PPM;
1625
1626 spdif_priv->dpll_locked = false;
1627
1628 spdif_priv->dma_params_tx.maxburst = spdif_priv->soc->tx_burst;
1629 spdif_priv->dma_params_rx.maxburst = spdif_priv->soc->rx_burst;
1630 spdif_priv->dma_params_tx.addr = res->start + REG_SPDIF_STL;
1631 spdif_priv->dma_params_rx.addr = res->start + REG_SPDIF_SRL;
1632
1633 /* Register with ASoC */
1634 dev_set_drvdata(&pdev->dev, spdif_priv);
1635 pm_runtime_enable(&pdev->dev);
1636 regcache_cache_only(spdif_priv->regmap, true);
1637
1638 /*
1639 * Register platform component before registering cpu dai for there
1640 * is not defer probe for platform component in snd_soc_add_pcm_runtime().
1641 */
1642 ret = imx_pcm_dma_init(pdev);
1643 if (ret) {
1644 dev_err_probe(&pdev->dev, ret, "imx_pcm_dma_init failed\n");
1645 goto err_pm_disable;
1646 }
1647
1648 ret = devm_snd_soc_register_component(&pdev->dev, &fsl_spdif_component,
1649 &spdif_priv->cpu_dai_drv, 1);
1650 if (ret) {
1651 dev_err(&pdev->dev, "failed to register DAI: %d\n", ret);
1652 goto err_pm_disable;
1653 }
1654
1655 return ret;
1656
1657 err_pm_disable:
1658 pm_runtime_disable(&pdev->dev);
1659 return ret;
1660 }
1661
fsl_spdif_remove(struct platform_device * pdev)1662 static int fsl_spdif_remove(struct platform_device *pdev)
1663 {
1664 pm_runtime_disable(&pdev->dev);
1665
1666 return 0;
1667 }
1668
1669 #ifdef CONFIG_PM
fsl_spdif_runtime_suspend(struct device * dev)1670 static int fsl_spdif_runtime_suspend(struct device *dev)
1671 {
1672 struct fsl_spdif_priv *spdif_priv = dev_get_drvdata(dev);
1673 int i;
1674
1675 /* Disable all the interrupts */
1676 regmap_update_bits(spdif_priv->regmap, REG_SPDIF_SIE, 0xffffff, 0);
1677
1678 regmap_read(spdif_priv->regmap, REG_SPDIF_SRPC,
1679 &spdif_priv->regcache_srpc);
1680 regcache_cache_only(spdif_priv->regmap, true);
1681
1682 for (i = 0; i < STC_TXCLK_SRC_MAX; i++)
1683 clk_disable_unprepare(spdif_priv->txclk[i]);
1684
1685 if (!IS_ERR(spdif_priv->spbaclk))
1686 clk_disable_unprepare(spdif_priv->spbaclk);
1687 clk_disable_unprepare(spdif_priv->coreclk);
1688
1689 return 0;
1690 }
1691
fsl_spdif_runtime_resume(struct device * dev)1692 static int fsl_spdif_runtime_resume(struct device *dev)
1693 {
1694 struct fsl_spdif_priv *spdif_priv = dev_get_drvdata(dev);
1695 int ret;
1696 int i;
1697
1698 ret = clk_prepare_enable(spdif_priv->coreclk);
1699 if (ret) {
1700 dev_err(dev, "failed to enable core clock\n");
1701 return ret;
1702 }
1703
1704 if (!IS_ERR(spdif_priv->spbaclk)) {
1705 ret = clk_prepare_enable(spdif_priv->spbaclk);
1706 if (ret) {
1707 dev_err(dev, "failed to enable spba clock\n");
1708 goto disable_core_clk;
1709 }
1710 }
1711
1712 for (i = 0; i < STC_TXCLK_SRC_MAX; i++) {
1713 ret = clk_prepare_enable(spdif_priv->txclk[i]);
1714 if (ret)
1715 goto disable_tx_clk;
1716 }
1717
1718 regcache_cache_only(spdif_priv->regmap, false);
1719 regcache_mark_dirty(spdif_priv->regmap);
1720
1721 regmap_update_bits(spdif_priv->regmap, REG_SPDIF_SRPC,
1722 SRPC_CLKSRC_SEL_MASK | SRPC_GAINSEL_MASK,
1723 spdif_priv->regcache_srpc);
1724
1725 ret = regcache_sync(spdif_priv->regmap);
1726 if (ret)
1727 goto disable_tx_clk;
1728
1729 return 0;
1730
1731 disable_tx_clk:
1732 for (i--; i >= 0; i--)
1733 clk_disable_unprepare(spdif_priv->txclk[i]);
1734 if (!IS_ERR(spdif_priv->spbaclk))
1735 clk_disable_unprepare(spdif_priv->spbaclk);
1736 disable_core_clk:
1737 clk_disable_unprepare(spdif_priv->coreclk);
1738
1739 return ret;
1740 }
1741 #endif /* CONFIG_PM */
1742
1743 static const struct dev_pm_ops fsl_spdif_pm = {
1744 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1745 pm_runtime_force_resume)
1746 SET_RUNTIME_PM_OPS(fsl_spdif_runtime_suspend, fsl_spdif_runtime_resume,
1747 NULL)
1748 };
1749
1750 static const struct of_device_id fsl_spdif_dt_ids[] = {
1751 { .compatible = "fsl,imx35-spdif", .data = &fsl_spdif_imx35, },
1752 { .compatible = "fsl,vf610-spdif", .data = &fsl_spdif_vf610, },
1753 { .compatible = "fsl,imx6sx-spdif", .data = &fsl_spdif_imx6sx, },
1754 { .compatible = "fsl,imx8qm-spdif", .data = &fsl_spdif_imx8qm, },
1755 { .compatible = "fsl,imx8mm-spdif", .data = &fsl_spdif_imx8mm, },
1756 { .compatible = "fsl,imx8ulp-spdif", .data = &fsl_spdif_imx8ulp, },
1757 {}
1758 };
1759 MODULE_DEVICE_TABLE(of, fsl_spdif_dt_ids);
1760
1761 static struct platform_driver fsl_spdif_driver = {
1762 .driver = {
1763 .name = "fsl-spdif-dai",
1764 .of_match_table = fsl_spdif_dt_ids,
1765 .pm = &fsl_spdif_pm,
1766 },
1767 .probe = fsl_spdif_probe,
1768 .remove = fsl_spdif_remove,
1769 };
1770
1771 module_platform_driver(fsl_spdif_driver);
1772
1773 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
1774 MODULE_DESCRIPTION("Freescale S/PDIF CPU DAI Driver");
1775 MODULE_LICENSE("GPL v2");
1776 MODULE_ALIAS("platform:fsl-spdif-dai");
1777