1 /*
2 * This file is part of the Chelsio FCoE driver for Linux.
3 *
4 * Copyright (c) 2008-2012 Chelsio Communications, Inc. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
15 *
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
19 *
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34
35 #include <linux/kernel.h>
36 #include <linux/string.h>
37 #include <linux/compiler.h>
38 #include <linux/slab.h>
39 #include <asm/page.h>
40 #include <linux/cache.h>
41
42 #include "t4_values.h"
43 #include "csio_hw.h"
44 #include "csio_wr.h"
45 #include "csio_mb.h"
46 #include "csio_defs.h"
47
48 int csio_intr_coalesce_cnt; /* value:SGE_INGRESS_RX_THRESHOLD[0] */
49 static int csio_sge_thresh_reg; /* SGE_INGRESS_RX_THRESHOLD[0] */
50
51 int csio_intr_coalesce_time = 10; /* value:SGE_TIMER_VALUE_1 */
52 static int csio_sge_timer_reg = 1;
53
54 #define CSIO_SET_FLBUF_SIZE(_hw, _reg, _val) \
55 csio_wr_reg32((_hw), (_val), SGE_FL_BUFFER_SIZE##_reg##_A)
56
57 static void
csio_get_flbuf_size(struct csio_hw * hw,struct csio_sge * sge,uint32_t reg)58 csio_get_flbuf_size(struct csio_hw *hw, struct csio_sge *sge, uint32_t reg)
59 {
60 sge->sge_fl_buf_size[reg] = csio_rd_reg32(hw, SGE_FL_BUFFER_SIZE0_A +
61 reg * sizeof(uint32_t));
62 }
63
64 /* Free list buffer size */
65 static inline uint32_t
csio_wr_fl_bufsz(struct csio_sge * sge,struct csio_dma_buf * buf)66 csio_wr_fl_bufsz(struct csio_sge *sge, struct csio_dma_buf *buf)
67 {
68 return sge->sge_fl_buf_size[buf->paddr & 0xF];
69 }
70
71 /* Size of the egress queue status page */
72 static inline uint32_t
csio_wr_qstat_pgsz(struct csio_hw * hw)73 csio_wr_qstat_pgsz(struct csio_hw *hw)
74 {
75 return (hw->wrm.sge.sge_control & EGRSTATUSPAGESIZE_F) ? 128 : 64;
76 }
77
78 /* Ring freelist doorbell */
79 static inline void
csio_wr_ring_fldb(struct csio_hw * hw,struct csio_q * flq)80 csio_wr_ring_fldb(struct csio_hw *hw, struct csio_q *flq)
81 {
82 /*
83 * Ring the doorbell only when we have atleast CSIO_QCREDIT_SZ
84 * number of bytes in the freelist queue. This translates to atleast
85 * 8 freelist buffer pointers (since each pointer is 8 bytes).
86 */
87 if (flq->inc_idx >= 8) {
88 csio_wr_reg32(hw, DBPRIO_F | QID_V(flq->un.fl.flid) |
89 PIDX_T5_V(flq->inc_idx / 8) | DBTYPE_F,
90 MYPF_REG(SGE_PF_KDOORBELL_A));
91 flq->inc_idx &= 7;
92 }
93 }
94
95 /* Write a 0 cidx increment value to enable SGE interrupts for this queue */
96 static void
csio_wr_sge_intr_enable(struct csio_hw * hw,uint16_t iqid)97 csio_wr_sge_intr_enable(struct csio_hw *hw, uint16_t iqid)
98 {
99 csio_wr_reg32(hw, CIDXINC_V(0) |
100 INGRESSQID_V(iqid) |
101 TIMERREG_V(X_TIMERREG_RESTART_COUNTER),
102 MYPF_REG(SGE_PF_GTS_A));
103 }
104
105 /*
106 * csio_wr_fill_fl - Populate the FL buffers of a FL queue.
107 * @hw: HW module.
108 * @flq: Freelist queue.
109 *
110 * Fill up freelist buffer entries with buffers of size specified
111 * in the size register.
112 *
113 */
114 static int
csio_wr_fill_fl(struct csio_hw * hw,struct csio_q * flq)115 csio_wr_fill_fl(struct csio_hw *hw, struct csio_q *flq)
116 {
117 struct csio_wrm *wrm = csio_hw_to_wrm(hw);
118 struct csio_sge *sge = &wrm->sge;
119 __be64 *d = (__be64 *)(flq->vstart);
120 struct csio_dma_buf *buf = &flq->un.fl.bufs[0];
121 uint64_t paddr;
122 int sreg = flq->un.fl.sreg;
123 int n = flq->credits;
124
125 while (n--) {
126 buf->len = sge->sge_fl_buf_size[sreg];
127 buf->vaddr = pci_alloc_consistent(hw->pdev, buf->len,
128 &buf->paddr);
129 if (!buf->vaddr) {
130 csio_err(hw, "Could only fill %d buffers!\n", n + 1);
131 return -ENOMEM;
132 }
133
134 paddr = buf->paddr | (sreg & 0xF);
135
136 *d++ = cpu_to_be64(paddr);
137 buf++;
138 }
139
140 return 0;
141 }
142
143 /*
144 * csio_wr_update_fl -
145 * @hw: HW module.
146 * @flq: Freelist queue.
147 *
148 *
149 */
150 static inline void
csio_wr_update_fl(struct csio_hw * hw,struct csio_q * flq,uint16_t n)151 csio_wr_update_fl(struct csio_hw *hw, struct csio_q *flq, uint16_t n)
152 {
153
154 flq->inc_idx += n;
155 flq->pidx += n;
156 if (unlikely(flq->pidx >= flq->credits))
157 flq->pidx -= (uint16_t)flq->credits;
158
159 CSIO_INC_STATS(flq, n_flq_refill);
160 }
161
162 /*
163 * csio_wr_alloc_q - Allocate a WR queue and initialize it.
164 * @hw: HW module
165 * @qsize: Size of the queue in bytes
166 * @wrsize: Since of WR in this queue, if fixed.
167 * @type: Type of queue (Ingress/Egress/Freelist)
168 * @owner: Module that owns this queue.
169 * @nflb: Number of freelist buffers for FL.
170 * @sreg: What is the FL buffer size register?
171 * @iq_int_handler: Ingress queue handler in INTx mode.
172 *
173 * This function allocates and sets up a queue for the caller
174 * of size qsize, aligned at the required boundary. This is subject to
175 * be free entries being available in the queue array. If one is found,
176 * it is initialized with the allocated queue, marked as being used (owner),
177 * and a handle returned to the caller in form of the queue's index
178 * into the q_arr array.
179 * If user has indicated a freelist (by specifying nflb > 0), create
180 * another queue (with its own index into q_arr) for the freelist. Allocate
181 * memory for DMA buffer metadata (vaddr, len etc). Save off the freelist
182 * idx in the ingress queue's flq.idx. This is how a Freelist is associated
183 * with its owning ingress queue.
184 */
185 int
csio_wr_alloc_q(struct csio_hw * hw,uint32_t qsize,uint32_t wrsize,uint16_t type,void * owner,uint32_t nflb,int sreg,iq_handler_t iq_intx_handler)186 csio_wr_alloc_q(struct csio_hw *hw, uint32_t qsize, uint32_t wrsize,
187 uint16_t type, void *owner, uint32_t nflb, int sreg,
188 iq_handler_t iq_intx_handler)
189 {
190 struct csio_wrm *wrm = csio_hw_to_wrm(hw);
191 struct csio_q *q, *flq;
192 int free_idx = wrm->free_qidx;
193 int ret_idx = free_idx;
194 uint32_t qsz;
195 int flq_idx;
196
197 if (free_idx >= wrm->num_q) {
198 csio_err(hw, "No more free queues.\n");
199 return -1;
200 }
201
202 switch (type) {
203 case CSIO_EGRESS:
204 qsz = ALIGN(qsize, CSIO_QCREDIT_SZ) + csio_wr_qstat_pgsz(hw);
205 break;
206 case CSIO_INGRESS:
207 switch (wrsize) {
208 case 16:
209 case 32:
210 case 64:
211 case 128:
212 break;
213 default:
214 csio_err(hw, "Invalid Ingress queue WR size:%d\n",
215 wrsize);
216 return -1;
217 }
218
219 /*
220 * Number of elements must be a multiple of 16
221 * So this includes status page size
222 */
223 qsz = ALIGN(qsize/wrsize, 16) * wrsize;
224
225 break;
226 case CSIO_FREELIST:
227 qsz = ALIGN(qsize/wrsize, 8) * wrsize + csio_wr_qstat_pgsz(hw);
228 break;
229 default:
230 csio_err(hw, "Invalid queue type: 0x%x\n", type);
231 return -1;
232 }
233
234 q = wrm->q_arr[free_idx];
235
236 q->vstart = pci_zalloc_consistent(hw->pdev, qsz, &q->pstart);
237 if (!q->vstart) {
238 csio_err(hw,
239 "Failed to allocate DMA memory for "
240 "queue at id: %d size: %d\n", free_idx, qsize);
241 return -1;
242 }
243
244 q->type = type;
245 q->owner = owner;
246 q->pidx = q->cidx = q->inc_idx = 0;
247 q->size = qsz;
248 q->wr_sz = wrsize; /* If using fixed size WRs */
249
250 wrm->free_qidx++;
251
252 if (type == CSIO_INGRESS) {
253 /* Since queue area is set to zero */
254 q->un.iq.genbit = 1;
255
256 /*
257 * Ingress queue status page size is always the size of
258 * the ingress queue entry.
259 */
260 q->credits = (qsz - q->wr_sz) / q->wr_sz;
261 q->vwrap = (void *)((uintptr_t)(q->vstart) + qsz
262 - q->wr_sz);
263
264 /* Allocate memory for FL if requested */
265 if (nflb > 0) {
266 flq_idx = csio_wr_alloc_q(hw, nflb * sizeof(__be64),
267 sizeof(__be64), CSIO_FREELIST,
268 owner, 0, sreg, NULL);
269 if (flq_idx == -1) {
270 csio_err(hw,
271 "Failed to allocate FL queue"
272 " for IQ idx:%d\n", free_idx);
273 return -1;
274 }
275
276 /* Associate the new FL with the Ingress quue */
277 q->un.iq.flq_idx = flq_idx;
278
279 flq = wrm->q_arr[q->un.iq.flq_idx];
280 flq->un.fl.bufs = kcalloc(flq->credits,
281 sizeof(struct csio_dma_buf),
282 GFP_KERNEL);
283 if (!flq->un.fl.bufs) {
284 csio_err(hw,
285 "Failed to allocate FL queue bufs"
286 " for IQ idx:%d\n", free_idx);
287 return -1;
288 }
289
290 flq->un.fl.packen = 0;
291 flq->un.fl.offset = 0;
292 flq->un.fl.sreg = sreg;
293
294 /* Fill up the free list buffers */
295 if (csio_wr_fill_fl(hw, flq))
296 return -1;
297
298 /*
299 * Make sure in a FLQ, atleast 1 credit (8 FL buffers)
300 * remains unpopulated,otherwise HW thinks
301 * FLQ is empty.
302 */
303 flq->pidx = flq->inc_idx = flq->credits - 8;
304 } else {
305 q->un.iq.flq_idx = -1;
306 }
307
308 /* Associate the IQ INTx handler. */
309 q->un.iq.iq_intx_handler = iq_intx_handler;
310
311 csio_q_iqid(hw, ret_idx) = CSIO_MAX_QID;
312
313 } else if (type == CSIO_EGRESS) {
314 q->credits = (qsz - csio_wr_qstat_pgsz(hw)) / CSIO_QCREDIT_SZ;
315 q->vwrap = (void *)((uintptr_t)(q->vstart) + qsz
316 - csio_wr_qstat_pgsz(hw));
317 csio_q_eqid(hw, ret_idx) = CSIO_MAX_QID;
318 } else { /* Freelist */
319 q->credits = (qsz - csio_wr_qstat_pgsz(hw)) / sizeof(__be64);
320 q->vwrap = (void *)((uintptr_t)(q->vstart) + qsz
321 - csio_wr_qstat_pgsz(hw));
322 csio_q_flid(hw, ret_idx) = CSIO_MAX_QID;
323 }
324
325 return ret_idx;
326 }
327
328 /*
329 * csio_wr_iq_create_rsp - Response handler for IQ creation.
330 * @hw: The HW module.
331 * @mbp: Mailbox.
332 * @iq_idx: Ingress queue that got created.
333 *
334 * Handle FW_IQ_CMD mailbox completion. Save off the assigned IQ/FL ids.
335 */
336 static int
csio_wr_iq_create_rsp(struct csio_hw * hw,struct csio_mb * mbp,int iq_idx)337 csio_wr_iq_create_rsp(struct csio_hw *hw, struct csio_mb *mbp, int iq_idx)
338 {
339 struct csio_iq_params iqp;
340 enum fw_retval retval;
341 uint32_t iq_id;
342 int flq_idx;
343
344 memset(&iqp, 0, sizeof(struct csio_iq_params));
345
346 csio_mb_iq_alloc_write_rsp(hw, mbp, &retval, &iqp);
347
348 if (retval != FW_SUCCESS) {
349 csio_err(hw, "IQ cmd returned 0x%x!\n", retval);
350 mempool_free(mbp, hw->mb_mempool);
351 return -EINVAL;
352 }
353
354 csio_q_iqid(hw, iq_idx) = iqp.iqid;
355 csio_q_physiqid(hw, iq_idx) = iqp.physiqid;
356 csio_q_pidx(hw, iq_idx) = csio_q_cidx(hw, iq_idx) = 0;
357 csio_q_inc_idx(hw, iq_idx) = 0;
358
359 /* Actual iq-id. */
360 iq_id = iqp.iqid - hw->wrm.fw_iq_start;
361
362 /* Set the iq-id to iq map table. */
363 if (iq_id >= CSIO_MAX_IQ) {
364 csio_err(hw,
365 "Exceeding MAX_IQ(%d) supported!"
366 " iqid:%d rel_iqid:%d FW iq_start:%d\n",
367 CSIO_MAX_IQ, iq_id, iqp.iqid, hw->wrm.fw_iq_start);
368 mempool_free(mbp, hw->mb_mempool);
369 return -EINVAL;
370 }
371 csio_q_set_intr_map(hw, iq_idx, iq_id);
372
373 /*
374 * During FW_IQ_CMD, FW sets interrupt_sent bit to 1 in the SGE
375 * ingress context of this queue. This will block interrupts to
376 * this queue until the next GTS write. Therefore, we do a
377 * 0-cidx increment GTS write for this queue just to clear the
378 * interrupt_sent bit. This will re-enable interrupts to this
379 * queue.
380 */
381 csio_wr_sge_intr_enable(hw, iqp.physiqid);
382
383 flq_idx = csio_q_iq_flq_idx(hw, iq_idx);
384 if (flq_idx != -1) {
385 struct csio_q *flq = hw->wrm.q_arr[flq_idx];
386
387 csio_q_flid(hw, flq_idx) = iqp.fl0id;
388 csio_q_cidx(hw, flq_idx) = 0;
389 csio_q_pidx(hw, flq_idx) = csio_q_credits(hw, flq_idx) - 8;
390 csio_q_inc_idx(hw, flq_idx) = csio_q_credits(hw, flq_idx) - 8;
391
392 /* Now update SGE about the buffers allocated during init */
393 csio_wr_ring_fldb(hw, flq);
394 }
395
396 mempool_free(mbp, hw->mb_mempool);
397
398 return 0;
399 }
400
401 /*
402 * csio_wr_iq_create - Configure an Ingress queue with FW.
403 * @hw: The HW module.
404 * @priv: Private data object.
405 * @iq_idx: Ingress queue index in the WR module.
406 * @vec: MSIX vector.
407 * @portid: PCIE Channel to be associated with this queue.
408 * @async: Is this a FW asynchronous message handling queue?
409 * @cbfn: Completion callback.
410 *
411 * This API configures an ingress queue with FW by issuing a FW_IQ_CMD mailbox
412 * with alloc/write bits set.
413 */
414 int
csio_wr_iq_create(struct csio_hw * hw,void * priv,int iq_idx,uint32_t vec,uint8_t portid,bool async,void (* cbfn)(struct csio_hw *,struct csio_mb *))415 csio_wr_iq_create(struct csio_hw *hw, void *priv, int iq_idx,
416 uint32_t vec, uint8_t portid, bool async,
417 void (*cbfn) (struct csio_hw *, struct csio_mb *))
418 {
419 struct csio_mb *mbp;
420 struct csio_iq_params iqp;
421 int flq_idx;
422
423 memset(&iqp, 0, sizeof(struct csio_iq_params));
424 csio_q_portid(hw, iq_idx) = portid;
425
426 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
427 if (!mbp) {
428 csio_err(hw, "IQ command out of memory!\n");
429 return -ENOMEM;
430 }
431
432 switch (hw->intr_mode) {
433 case CSIO_IM_INTX:
434 case CSIO_IM_MSI:
435 /* For interrupt forwarding queue only */
436 if (hw->intr_iq_idx == iq_idx)
437 iqp.iqandst = X_INTERRUPTDESTINATION_PCIE;
438 else
439 iqp.iqandst = X_INTERRUPTDESTINATION_IQ;
440 iqp.iqandstindex =
441 csio_q_physiqid(hw, hw->intr_iq_idx);
442 break;
443 case CSIO_IM_MSIX:
444 iqp.iqandst = X_INTERRUPTDESTINATION_PCIE;
445 iqp.iqandstindex = (uint16_t)vec;
446 break;
447 case CSIO_IM_NONE:
448 mempool_free(mbp, hw->mb_mempool);
449 return -EINVAL;
450 }
451
452 /* Pass in the ingress queue cmd parameters */
453 iqp.pfn = hw->pfn;
454 iqp.vfn = 0;
455 iqp.iq_start = 1;
456 iqp.viid = 0;
457 iqp.type = FW_IQ_TYPE_FL_INT_CAP;
458 iqp.iqasynch = async;
459 if (csio_intr_coalesce_cnt)
460 iqp.iqanus = X_UPDATESCHEDULING_COUNTER_OPTTIMER;
461 else
462 iqp.iqanus = X_UPDATESCHEDULING_TIMER;
463 iqp.iqanud = X_UPDATEDELIVERY_INTERRUPT;
464 iqp.iqpciech = portid;
465 iqp.iqintcntthresh = (uint8_t)csio_sge_thresh_reg;
466
467 switch (csio_q_wr_sz(hw, iq_idx)) {
468 case 16:
469 iqp.iqesize = 0; break;
470 case 32:
471 iqp.iqesize = 1; break;
472 case 64:
473 iqp.iqesize = 2; break;
474 case 128:
475 iqp.iqesize = 3; break;
476 }
477
478 iqp.iqsize = csio_q_size(hw, iq_idx) /
479 csio_q_wr_sz(hw, iq_idx);
480 iqp.iqaddr = csio_q_pstart(hw, iq_idx);
481
482 flq_idx = csio_q_iq_flq_idx(hw, iq_idx);
483 if (flq_idx != -1) {
484 enum chip_type chip = CHELSIO_CHIP_VERSION(hw->chip_id);
485 struct csio_q *flq = hw->wrm.q_arr[flq_idx];
486
487 iqp.fl0paden = 1;
488 iqp.fl0packen = flq->un.fl.packen ? 1 : 0;
489 iqp.fl0fbmin = X_FETCHBURSTMIN_64B;
490 iqp.fl0fbmax = ((chip == CHELSIO_T5) ?
491 X_FETCHBURSTMAX_512B : X_FETCHBURSTMAX_256B);
492 iqp.fl0size = csio_q_size(hw, flq_idx) / CSIO_QCREDIT_SZ;
493 iqp.fl0addr = csio_q_pstart(hw, flq_idx);
494 }
495
496 csio_mb_iq_alloc_write(hw, mbp, priv, CSIO_MB_DEFAULT_TMO, &iqp, cbfn);
497
498 if (csio_mb_issue(hw, mbp)) {
499 csio_err(hw, "Issue of IQ cmd failed!\n");
500 mempool_free(mbp, hw->mb_mempool);
501 return -EINVAL;
502 }
503
504 if (cbfn != NULL)
505 return 0;
506
507 return csio_wr_iq_create_rsp(hw, mbp, iq_idx);
508 }
509
510 /*
511 * csio_wr_eq_create_rsp - Response handler for EQ creation.
512 * @hw: The HW module.
513 * @mbp: Mailbox.
514 * @eq_idx: Egress queue that got created.
515 *
516 * Handle FW_EQ_OFLD_CMD mailbox completion. Save off the assigned EQ ids.
517 */
518 static int
csio_wr_eq_cfg_rsp(struct csio_hw * hw,struct csio_mb * mbp,int eq_idx)519 csio_wr_eq_cfg_rsp(struct csio_hw *hw, struct csio_mb *mbp, int eq_idx)
520 {
521 struct csio_eq_params eqp;
522 enum fw_retval retval;
523
524 memset(&eqp, 0, sizeof(struct csio_eq_params));
525
526 csio_mb_eq_ofld_alloc_write_rsp(hw, mbp, &retval, &eqp);
527
528 if (retval != FW_SUCCESS) {
529 csio_err(hw, "EQ OFLD cmd returned 0x%x!\n", retval);
530 mempool_free(mbp, hw->mb_mempool);
531 return -EINVAL;
532 }
533
534 csio_q_eqid(hw, eq_idx) = (uint16_t)eqp.eqid;
535 csio_q_physeqid(hw, eq_idx) = (uint16_t)eqp.physeqid;
536 csio_q_pidx(hw, eq_idx) = csio_q_cidx(hw, eq_idx) = 0;
537 csio_q_inc_idx(hw, eq_idx) = 0;
538
539 mempool_free(mbp, hw->mb_mempool);
540
541 return 0;
542 }
543
544 /*
545 * csio_wr_eq_create - Configure an Egress queue with FW.
546 * @hw: HW module.
547 * @priv: Private data.
548 * @eq_idx: Egress queue index in the WR module.
549 * @iq_idx: Associated ingress queue index.
550 * @cbfn: Completion callback.
551 *
552 * This API configures a offload egress queue with FW by issuing a
553 * FW_EQ_OFLD_CMD (with alloc + write ) mailbox.
554 */
555 int
csio_wr_eq_create(struct csio_hw * hw,void * priv,int eq_idx,int iq_idx,uint8_t portid,void (* cbfn)(struct csio_hw *,struct csio_mb *))556 csio_wr_eq_create(struct csio_hw *hw, void *priv, int eq_idx,
557 int iq_idx, uint8_t portid,
558 void (*cbfn) (struct csio_hw *, struct csio_mb *))
559 {
560 struct csio_mb *mbp;
561 struct csio_eq_params eqp;
562
563 memset(&eqp, 0, sizeof(struct csio_eq_params));
564
565 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
566 if (!mbp) {
567 csio_err(hw, "EQ command out of memory!\n");
568 return -ENOMEM;
569 }
570
571 eqp.pfn = hw->pfn;
572 eqp.vfn = 0;
573 eqp.eqstart = 1;
574 eqp.hostfcmode = X_HOSTFCMODE_STATUS_PAGE;
575 eqp.iqid = csio_q_iqid(hw, iq_idx);
576 eqp.fbmin = X_FETCHBURSTMIN_64B;
577 eqp.fbmax = X_FETCHBURSTMAX_512B;
578 eqp.cidxfthresh = 0;
579 eqp.pciechn = portid;
580 eqp.eqsize = csio_q_size(hw, eq_idx) / CSIO_QCREDIT_SZ;
581 eqp.eqaddr = csio_q_pstart(hw, eq_idx);
582
583 csio_mb_eq_ofld_alloc_write(hw, mbp, priv, CSIO_MB_DEFAULT_TMO,
584 &eqp, cbfn);
585
586 if (csio_mb_issue(hw, mbp)) {
587 csio_err(hw, "Issue of EQ OFLD cmd failed!\n");
588 mempool_free(mbp, hw->mb_mempool);
589 return -EINVAL;
590 }
591
592 if (cbfn != NULL)
593 return 0;
594
595 return csio_wr_eq_cfg_rsp(hw, mbp, eq_idx);
596 }
597
598 /*
599 * csio_wr_iq_destroy_rsp - Response handler for IQ removal.
600 * @hw: The HW module.
601 * @mbp: Mailbox.
602 * @iq_idx: Ingress queue that was freed.
603 *
604 * Handle FW_IQ_CMD (free) mailbox completion.
605 */
606 static int
csio_wr_iq_destroy_rsp(struct csio_hw * hw,struct csio_mb * mbp,int iq_idx)607 csio_wr_iq_destroy_rsp(struct csio_hw *hw, struct csio_mb *mbp, int iq_idx)
608 {
609 enum fw_retval retval = csio_mb_fw_retval(mbp);
610 int rv = 0;
611
612 if (retval != FW_SUCCESS)
613 rv = -EINVAL;
614
615 mempool_free(mbp, hw->mb_mempool);
616
617 return rv;
618 }
619
620 /*
621 * csio_wr_iq_destroy - Free an ingress queue.
622 * @hw: The HW module.
623 * @priv: Private data object.
624 * @iq_idx: Ingress queue index to destroy
625 * @cbfn: Completion callback.
626 *
627 * This API frees an ingress queue by issuing the FW_IQ_CMD
628 * with the free bit set.
629 */
630 static int
csio_wr_iq_destroy(struct csio_hw * hw,void * priv,int iq_idx,void (* cbfn)(struct csio_hw *,struct csio_mb *))631 csio_wr_iq_destroy(struct csio_hw *hw, void *priv, int iq_idx,
632 void (*cbfn)(struct csio_hw *, struct csio_mb *))
633 {
634 int rv = 0;
635 struct csio_mb *mbp;
636 struct csio_iq_params iqp;
637 int flq_idx;
638
639 memset(&iqp, 0, sizeof(struct csio_iq_params));
640
641 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
642 if (!mbp)
643 return -ENOMEM;
644
645 iqp.pfn = hw->pfn;
646 iqp.vfn = 0;
647 iqp.iqid = csio_q_iqid(hw, iq_idx);
648 iqp.type = FW_IQ_TYPE_FL_INT_CAP;
649
650 flq_idx = csio_q_iq_flq_idx(hw, iq_idx);
651 if (flq_idx != -1)
652 iqp.fl0id = csio_q_flid(hw, flq_idx);
653 else
654 iqp.fl0id = 0xFFFF;
655
656 iqp.fl1id = 0xFFFF;
657
658 csio_mb_iq_free(hw, mbp, priv, CSIO_MB_DEFAULT_TMO, &iqp, cbfn);
659
660 rv = csio_mb_issue(hw, mbp);
661 if (rv != 0) {
662 mempool_free(mbp, hw->mb_mempool);
663 return rv;
664 }
665
666 if (cbfn != NULL)
667 return 0;
668
669 return csio_wr_iq_destroy_rsp(hw, mbp, iq_idx);
670 }
671
672 /*
673 * csio_wr_eq_destroy_rsp - Response handler for OFLD EQ creation.
674 * @hw: The HW module.
675 * @mbp: Mailbox.
676 * @eq_idx: Egress queue that was freed.
677 *
678 * Handle FW_OFLD_EQ_CMD (free) mailbox completion.
679 */
680 static int
csio_wr_eq_destroy_rsp(struct csio_hw * hw,struct csio_mb * mbp,int eq_idx)681 csio_wr_eq_destroy_rsp(struct csio_hw *hw, struct csio_mb *mbp, int eq_idx)
682 {
683 enum fw_retval retval = csio_mb_fw_retval(mbp);
684 int rv = 0;
685
686 if (retval != FW_SUCCESS)
687 rv = -EINVAL;
688
689 mempool_free(mbp, hw->mb_mempool);
690
691 return rv;
692 }
693
694 /*
695 * csio_wr_eq_destroy - Free an Egress queue.
696 * @hw: The HW module.
697 * @priv: Private data object.
698 * @eq_idx: Egress queue index to destroy
699 * @cbfn: Completion callback.
700 *
701 * This API frees an Egress queue by issuing the FW_EQ_OFLD_CMD
702 * with the free bit set.
703 */
704 static int
csio_wr_eq_destroy(struct csio_hw * hw,void * priv,int eq_idx,void (* cbfn)(struct csio_hw *,struct csio_mb *))705 csio_wr_eq_destroy(struct csio_hw *hw, void *priv, int eq_idx,
706 void (*cbfn) (struct csio_hw *, struct csio_mb *))
707 {
708 int rv = 0;
709 struct csio_mb *mbp;
710 struct csio_eq_params eqp;
711
712 memset(&eqp, 0, sizeof(struct csio_eq_params));
713
714 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
715 if (!mbp)
716 return -ENOMEM;
717
718 eqp.pfn = hw->pfn;
719 eqp.vfn = 0;
720 eqp.eqid = csio_q_eqid(hw, eq_idx);
721
722 csio_mb_eq_ofld_free(hw, mbp, priv, CSIO_MB_DEFAULT_TMO, &eqp, cbfn);
723
724 rv = csio_mb_issue(hw, mbp);
725 if (rv != 0) {
726 mempool_free(mbp, hw->mb_mempool);
727 return rv;
728 }
729
730 if (cbfn != NULL)
731 return 0;
732
733 return csio_wr_eq_destroy_rsp(hw, mbp, eq_idx);
734 }
735
736 /*
737 * csio_wr_cleanup_eq_stpg - Cleanup Egress queue status page
738 * @hw: HW module
739 * @qidx: Egress queue index
740 *
741 * Cleanup the Egress queue status page.
742 */
743 static void
csio_wr_cleanup_eq_stpg(struct csio_hw * hw,int qidx)744 csio_wr_cleanup_eq_stpg(struct csio_hw *hw, int qidx)
745 {
746 struct csio_q *q = csio_hw_to_wrm(hw)->q_arr[qidx];
747 struct csio_qstatus_page *stp = (struct csio_qstatus_page *)q->vwrap;
748
749 memset(stp, 0, sizeof(*stp));
750 }
751
752 /*
753 * csio_wr_cleanup_iq_ftr - Cleanup Footer entries in IQ
754 * @hw: HW module
755 * @qidx: Ingress queue index
756 *
757 * Cleanup the footer entries in the given ingress queue,
758 * set to 1 the internal copy of genbit.
759 */
760 static void
csio_wr_cleanup_iq_ftr(struct csio_hw * hw,int qidx)761 csio_wr_cleanup_iq_ftr(struct csio_hw *hw, int qidx)
762 {
763 struct csio_wrm *wrm = csio_hw_to_wrm(hw);
764 struct csio_q *q = wrm->q_arr[qidx];
765 void *wr;
766 struct csio_iqwr_footer *ftr;
767 uint32_t i = 0;
768
769 /* set to 1 since we are just about zero out genbit */
770 q->un.iq.genbit = 1;
771
772 for (i = 0; i < q->credits; i++) {
773 /* Get the WR */
774 wr = (void *)((uintptr_t)q->vstart +
775 (i * q->wr_sz));
776 /* Get the footer */
777 ftr = (struct csio_iqwr_footer *)((uintptr_t)wr +
778 (q->wr_sz - sizeof(*ftr)));
779 /* Zero out footer */
780 memset(ftr, 0, sizeof(*ftr));
781 }
782 }
783
784 int
csio_wr_destroy_queues(struct csio_hw * hw,bool cmd)785 csio_wr_destroy_queues(struct csio_hw *hw, bool cmd)
786 {
787 int i, flq_idx;
788 struct csio_q *q;
789 struct csio_wrm *wrm = csio_hw_to_wrm(hw);
790 int rv;
791
792 for (i = 0; i < wrm->free_qidx; i++) {
793 q = wrm->q_arr[i];
794
795 switch (q->type) {
796 case CSIO_EGRESS:
797 if (csio_q_eqid(hw, i) != CSIO_MAX_QID) {
798 csio_wr_cleanup_eq_stpg(hw, i);
799 if (!cmd) {
800 csio_q_eqid(hw, i) = CSIO_MAX_QID;
801 continue;
802 }
803
804 rv = csio_wr_eq_destroy(hw, NULL, i, NULL);
805 if ((rv == -EBUSY) || (rv == -ETIMEDOUT))
806 cmd = false;
807
808 csio_q_eqid(hw, i) = CSIO_MAX_QID;
809 }
810 case CSIO_INGRESS:
811 if (csio_q_iqid(hw, i) != CSIO_MAX_QID) {
812 csio_wr_cleanup_iq_ftr(hw, i);
813 if (!cmd) {
814 csio_q_iqid(hw, i) = CSIO_MAX_QID;
815 flq_idx = csio_q_iq_flq_idx(hw, i);
816 if (flq_idx != -1)
817 csio_q_flid(hw, flq_idx) =
818 CSIO_MAX_QID;
819 continue;
820 }
821
822 rv = csio_wr_iq_destroy(hw, NULL, i, NULL);
823 if ((rv == -EBUSY) || (rv == -ETIMEDOUT))
824 cmd = false;
825
826 csio_q_iqid(hw, i) = CSIO_MAX_QID;
827 flq_idx = csio_q_iq_flq_idx(hw, i);
828 if (flq_idx != -1)
829 csio_q_flid(hw, flq_idx) = CSIO_MAX_QID;
830 }
831 default:
832 break;
833 }
834 }
835
836 hw->flags &= ~CSIO_HWF_Q_FW_ALLOCED;
837
838 return 0;
839 }
840
841 /*
842 * csio_wr_get - Get requested size of WR entry/entries from queue.
843 * @hw: HW module.
844 * @qidx: Index of queue.
845 * @size: Cumulative size of Work request(s).
846 * @wrp: Work request pair.
847 *
848 * If requested credits are available, return the start address of the
849 * work request in the work request pair. Set pidx accordingly and
850 * return.
851 *
852 * NOTE about WR pair:
853 * ==================
854 * A WR can start towards the end of a queue, and then continue at the
855 * beginning, since the queue is considered to be circular. This will
856 * require a pair of address/size to be passed back to the caller -
857 * hence Work request pair format.
858 */
859 int
csio_wr_get(struct csio_hw * hw,int qidx,uint32_t size,struct csio_wr_pair * wrp)860 csio_wr_get(struct csio_hw *hw, int qidx, uint32_t size,
861 struct csio_wr_pair *wrp)
862 {
863 struct csio_wrm *wrm = csio_hw_to_wrm(hw);
864 struct csio_q *q = wrm->q_arr[qidx];
865 void *cwr = (void *)((uintptr_t)(q->vstart) +
866 (q->pidx * CSIO_QCREDIT_SZ));
867 struct csio_qstatus_page *stp = (struct csio_qstatus_page *)q->vwrap;
868 uint16_t cidx = q->cidx = ntohs(stp->cidx);
869 uint16_t pidx = q->pidx;
870 uint32_t req_sz = ALIGN(size, CSIO_QCREDIT_SZ);
871 int req_credits = req_sz / CSIO_QCREDIT_SZ;
872 int credits;
873
874 CSIO_DB_ASSERT(q->owner != NULL);
875 CSIO_DB_ASSERT((qidx >= 0) && (qidx < wrm->free_qidx));
876 CSIO_DB_ASSERT(cidx <= q->credits);
877
878 /* Calculate credits */
879 if (pidx > cidx) {
880 credits = q->credits - (pidx - cidx) - 1;
881 } else if (cidx > pidx) {
882 credits = cidx - pidx - 1;
883 } else {
884 /* cidx == pidx, empty queue */
885 credits = q->credits;
886 CSIO_INC_STATS(q, n_qempty);
887 }
888
889 /*
890 * Check if we have enough credits.
891 * credits = 1 implies queue is full.
892 */
893 if (!credits || (req_credits > credits)) {
894 CSIO_INC_STATS(q, n_qfull);
895 return -EBUSY;
896 }
897
898 /*
899 * If we are here, we have enough credits to satisfy the
900 * request. Check if we are near the end of q, and if WR spills over.
901 * If it does, use the first addr/size to cover the queue until
902 * the end. Fit the remainder portion of the request at the top
903 * of queue and return it in the second addr/len. Set pidx
904 * accordingly.
905 */
906 if (unlikely(((uintptr_t)cwr + req_sz) > (uintptr_t)(q->vwrap))) {
907 wrp->addr1 = cwr;
908 wrp->size1 = (uint32_t)((uintptr_t)q->vwrap - (uintptr_t)cwr);
909 wrp->addr2 = q->vstart;
910 wrp->size2 = req_sz - wrp->size1;
911 q->pidx = (uint16_t)(ALIGN(wrp->size2, CSIO_QCREDIT_SZ) /
912 CSIO_QCREDIT_SZ);
913 CSIO_INC_STATS(q, n_qwrap);
914 CSIO_INC_STATS(q, n_eq_wr_split);
915 } else {
916 wrp->addr1 = cwr;
917 wrp->size1 = req_sz;
918 wrp->addr2 = NULL;
919 wrp->size2 = 0;
920 q->pidx += (uint16_t)req_credits;
921
922 /* We are the end of queue, roll back pidx to top of queue */
923 if (unlikely(q->pidx == q->credits)) {
924 q->pidx = 0;
925 CSIO_INC_STATS(q, n_qwrap);
926 }
927 }
928
929 q->inc_idx = (uint16_t)req_credits;
930
931 CSIO_INC_STATS(q, n_tot_reqs);
932
933 return 0;
934 }
935
936 /*
937 * csio_wr_copy_to_wrp - Copies given data into WR.
938 * @data_buf - Data buffer
939 * @wrp - Work request pair.
940 * @wr_off - Work request offset.
941 * @data_len - Data length.
942 *
943 * Copies the given data in Work Request. Work request pair(wrp) specifies
944 * address information of Work request.
945 * Returns: none
946 */
947 void
csio_wr_copy_to_wrp(void * data_buf,struct csio_wr_pair * wrp,uint32_t wr_off,uint32_t data_len)948 csio_wr_copy_to_wrp(void *data_buf, struct csio_wr_pair *wrp,
949 uint32_t wr_off, uint32_t data_len)
950 {
951 uint32_t nbytes;
952
953 /* Number of space available in buffer addr1 of WRP */
954 nbytes = ((wrp->size1 - wr_off) >= data_len) ?
955 data_len : (wrp->size1 - wr_off);
956
957 memcpy((uint8_t *) wrp->addr1 + wr_off, data_buf, nbytes);
958 data_len -= nbytes;
959
960 /* Write the remaining data from the begining of circular buffer */
961 if (data_len) {
962 CSIO_DB_ASSERT(data_len <= wrp->size2);
963 CSIO_DB_ASSERT(wrp->addr2 != NULL);
964 memcpy(wrp->addr2, (uint8_t *) data_buf + nbytes, data_len);
965 }
966 }
967
968 /*
969 * csio_wr_issue - Notify chip of Work request.
970 * @hw: HW module.
971 * @qidx: Index of queue.
972 * @prio: 0: Low priority, 1: High priority
973 *
974 * Rings the SGE Doorbell by writing the current producer index of the passed
975 * in queue into the register.
976 *
977 */
978 int
csio_wr_issue(struct csio_hw * hw,int qidx,bool prio)979 csio_wr_issue(struct csio_hw *hw, int qidx, bool prio)
980 {
981 struct csio_wrm *wrm = csio_hw_to_wrm(hw);
982 struct csio_q *q = wrm->q_arr[qidx];
983
984 CSIO_DB_ASSERT((qidx >= 0) && (qidx < wrm->free_qidx));
985
986 wmb();
987 /* Ring SGE Doorbell writing q->pidx into it */
988 csio_wr_reg32(hw, DBPRIO_V(prio) | QID_V(q->un.eq.physeqid) |
989 PIDX_T5_V(q->inc_idx) | DBTYPE_F,
990 MYPF_REG(SGE_PF_KDOORBELL_A));
991 q->inc_idx = 0;
992
993 return 0;
994 }
995
996 static inline uint32_t
csio_wr_avail_qcredits(struct csio_q * q)997 csio_wr_avail_qcredits(struct csio_q *q)
998 {
999 if (q->pidx > q->cidx)
1000 return q->pidx - q->cidx;
1001 else if (q->cidx > q->pidx)
1002 return q->credits - (q->cidx - q->pidx);
1003 else
1004 return 0; /* cidx == pidx, empty queue */
1005 }
1006
1007 /*
1008 * csio_wr_inval_flq_buf - Invalidate a free list buffer entry.
1009 * @hw: HW module.
1010 * @flq: The freelist queue.
1011 *
1012 * Invalidate the driver's version of a freelist buffer entry,
1013 * without freeing the associated the DMA memory. The entry
1014 * to be invalidated is picked up from the current Free list
1015 * queue cidx.
1016 *
1017 */
1018 static inline void
csio_wr_inval_flq_buf(struct csio_hw * hw,struct csio_q * flq)1019 csio_wr_inval_flq_buf(struct csio_hw *hw, struct csio_q *flq)
1020 {
1021 flq->cidx++;
1022 if (flq->cidx == flq->credits) {
1023 flq->cidx = 0;
1024 CSIO_INC_STATS(flq, n_qwrap);
1025 }
1026 }
1027
1028 /*
1029 * csio_wr_process_fl - Process a freelist completion.
1030 * @hw: HW module.
1031 * @q: The ingress queue attached to the Freelist.
1032 * @wr: The freelist completion WR in the ingress queue.
1033 * @len_to_qid: The lower 32-bits of the first flit of the RSP footer
1034 * @iq_handler: Caller's handler for this completion.
1035 * @priv: Private pointer of caller
1036 *
1037 */
1038 static inline void
csio_wr_process_fl(struct csio_hw * hw,struct csio_q * q,void * wr,uint32_t len_to_qid,void (* iq_handler)(struct csio_hw *,void *,uint32_t,struct csio_fl_dma_buf *,void *),void * priv)1039 csio_wr_process_fl(struct csio_hw *hw, struct csio_q *q,
1040 void *wr, uint32_t len_to_qid,
1041 void (*iq_handler)(struct csio_hw *, void *,
1042 uint32_t, struct csio_fl_dma_buf *,
1043 void *),
1044 void *priv)
1045 {
1046 struct csio_wrm *wrm = csio_hw_to_wrm(hw);
1047 struct csio_sge *sge = &wrm->sge;
1048 struct csio_fl_dma_buf flb;
1049 struct csio_dma_buf *buf, *fbuf;
1050 uint32_t bufsz, len, lastlen = 0;
1051 int n;
1052 struct csio_q *flq = hw->wrm.q_arr[q->un.iq.flq_idx];
1053
1054 CSIO_DB_ASSERT(flq != NULL);
1055
1056 len = len_to_qid;
1057
1058 if (len & IQWRF_NEWBUF) {
1059 if (flq->un.fl.offset > 0) {
1060 csio_wr_inval_flq_buf(hw, flq);
1061 flq->un.fl.offset = 0;
1062 }
1063 len = IQWRF_LEN_GET(len);
1064 }
1065
1066 CSIO_DB_ASSERT(len != 0);
1067
1068 flb.totlen = len;
1069
1070 /* Consume all freelist buffers used for len bytes */
1071 for (n = 0, fbuf = flb.flbufs; ; n++, fbuf++) {
1072 buf = &flq->un.fl.bufs[flq->cidx];
1073 bufsz = csio_wr_fl_bufsz(sge, buf);
1074
1075 fbuf->paddr = buf->paddr;
1076 fbuf->vaddr = buf->vaddr;
1077
1078 flb.offset = flq->un.fl.offset;
1079 lastlen = min(bufsz, len);
1080 fbuf->len = lastlen;
1081
1082 len -= lastlen;
1083 if (!len)
1084 break;
1085 csio_wr_inval_flq_buf(hw, flq);
1086 }
1087
1088 flb.defer_free = flq->un.fl.packen ? 0 : 1;
1089
1090 iq_handler(hw, wr, q->wr_sz - sizeof(struct csio_iqwr_footer),
1091 &flb, priv);
1092
1093 if (flq->un.fl.packen)
1094 flq->un.fl.offset += ALIGN(lastlen, sge->csio_fl_align);
1095 else
1096 csio_wr_inval_flq_buf(hw, flq);
1097
1098 }
1099
1100 /*
1101 * csio_is_new_iqwr - Is this a new Ingress queue entry ?
1102 * @q: Ingress quueue.
1103 * @ftr: Ingress queue WR SGE footer.
1104 *
1105 * The entry is new if our generation bit matches the corresponding
1106 * bit in the footer of the current WR.
1107 */
1108 static inline bool
csio_is_new_iqwr(struct csio_q * q,struct csio_iqwr_footer * ftr)1109 csio_is_new_iqwr(struct csio_q *q, struct csio_iqwr_footer *ftr)
1110 {
1111 return (q->un.iq.genbit == (ftr->u.type_gen >> IQWRF_GEN_SHIFT));
1112 }
1113
1114 /*
1115 * csio_wr_process_iq - Process elements in Ingress queue.
1116 * @hw: HW pointer
1117 * @qidx: Index of queue
1118 * @iq_handler: Handler for this queue
1119 * @priv: Caller's private pointer
1120 *
1121 * This routine walks through every entry of the ingress queue, calling
1122 * the provided iq_handler with the entry, until the generation bit
1123 * flips.
1124 */
1125 int
csio_wr_process_iq(struct csio_hw * hw,struct csio_q * q,void (* iq_handler)(struct csio_hw *,void *,uint32_t,struct csio_fl_dma_buf *,void *),void * priv)1126 csio_wr_process_iq(struct csio_hw *hw, struct csio_q *q,
1127 void (*iq_handler)(struct csio_hw *, void *,
1128 uint32_t, struct csio_fl_dma_buf *,
1129 void *),
1130 void *priv)
1131 {
1132 struct csio_wrm *wrm = csio_hw_to_wrm(hw);
1133 void *wr = (void *)((uintptr_t)q->vstart + (q->cidx * q->wr_sz));
1134 struct csio_iqwr_footer *ftr;
1135 uint32_t wr_type, fw_qid, qid;
1136 struct csio_q *q_completed;
1137 struct csio_q *flq = csio_iq_has_fl(q) ?
1138 wrm->q_arr[q->un.iq.flq_idx] : NULL;
1139 int rv = 0;
1140
1141 /* Get the footer */
1142 ftr = (struct csio_iqwr_footer *)((uintptr_t)wr +
1143 (q->wr_sz - sizeof(*ftr)));
1144
1145 /*
1146 * When q wrapped around last time, driver should have inverted
1147 * ic.genbit as well.
1148 */
1149 while (csio_is_new_iqwr(q, ftr)) {
1150
1151 CSIO_DB_ASSERT(((uintptr_t)wr + q->wr_sz) <=
1152 (uintptr_t)q->vwrap);
1153 rmb();
1154 wr_type = IQWRF_TYPE_GET(ftr->u.type_gen);
1155
1156 switch (wr_type) {
1157 case X_RSPD_TYPE_CPL:
1158 /* Subtract footer from WR len */
1159 iq_handler(hw, wr, q->wr_sz - sizeof(*ftr), NULL, priv);
1160 break;
1161 case X_RSPD_TYPE_FLBUF:
1162 csio_wr_process_fl(hw, q, wr,
1163 ntohl(ftr->pldbuflen_qid),
1164 iq_handler, priv);
1165 break;
1166 case X_RSPD_TYPE_INTR:
1167 fw_qid = ntohl(ftr->pldbuflen_qid);
1168 qid = fw_qid - wrm->fw_iq_start;
1169 q_completed = hw->wrm.intr_map[qid];
1170
1171 if (unlikely(qid ==
1172 csio_q_physiqid(hw, hw->intr_iq_idx))) {
1173 /*
1174 * We are already in the Forward Interrupt
1175 * Interrupt Queue Service! Do-not service
1176 * again!
1177 *
1178 */
1179 } else {
1180 CSIO_DB_ASSERT(q_completed);
1181 CSIO_DB_ASSERT(
1182 q_completed->un.iq.iq_intx_handler);
1183
1184 /* Call the queue handler. */
1185 q_completed->un.iq.iq_intx_handler(hw, NULL,
1186 0, NULL, (void *)q_completed);
1187 }
1188 break;
1189 default:
1190 csio_warn(hw, "Unknown resp type 0x%x received\n",
1191 wr_type);
1192 CSIO_INC_STATS(q, n_rsp_unknown);
1193 break;
1194 }
1195
1196 /*
1197 * Ingress *always* has fixed size WR entries. Therefore,
1198 * there should always be complete WRs towards the end of
1199 * queue.
1200 */
1201 if (((uintptr_t)wr + q->wr_sz) == (uintptr_t)q->vwrap) {
1202
1203 /* Roll over to start of queue */
1204 q->cidx = 0;
1205 wr = q->vstart;
1206
1207 /* Toggle genbit */
1208 q->un.iq.genbit ^= 0x1;
1209
1210 CSIO_INC_STATS(q, n_qwrap);
1211 } else {
1212 q->cidx++;
1213 wr = (void *)((uintptr_t)(q->vstart) +
1214 (q->cidx * q->wr_sz));
1215 }
1216
1217 ftr = (struct csio_iqwr_footer *)((uintptr_t)wr +
1218 (q->wr_sz - sizeof(*ftr)));
1219 q->inc_idx++;
1220
1221 } /* while (q->un.iq.genbit == hdr->genbit) */
1222
1223 /*
1224 * We need to re-arm SGE interrupts in case we got a stray interrupt,
1225 * especially in msix mode. With INTx, this may be a common occurence.
1226 */
1227 if (unlikely(!q->inc_idx)) {
1228 CSIO_INC_STATS(q, n_stray_comp);
1229 rv = -EINVAL;
1230 goto restart;
1231 }
1232
1233 /* Replenish free list buffers if pending falls below low water mark */
1234 if (flq) {
1235 uint32_t avail = csio_wr_avail_qcredits(flq);
1236 if (avail <= 16) {
1237 /* Make sure in FLQ, atleast 1 credit (8 FL buffers)
1238 * remains unpopulated otherwise HW thinks
1239 * FLQ is empty.
1240 */
1241 csio_wr_update_fl(hw, flq, (flq->credits - 8) - avail);
1242 csio_wr_ring_fldb(hw, flq);
1243 }
1244 }
1245
1246 restart:
1247 /* Now inform SGE about our incremental index value */
1248 csio_wr_reg32(hw, CIDXINC_V(q->inc_idx) |
1249 INGRESSQID_V(q->un.iq.physiqid) |
1250 TIMERREG_V(csio_sge_timer_reg),
1251 MYPF_REG(SGE_PF_GTS_A));
1252 q->stats.n_tot_rsps += q->inc_idx;
1253
1254 q->inc_idx = 0;
1255
1256 return rv;
1257 }
1258
1259 int
csio_wr_process_iq_idx(struct csio_hw * hw,int qidx,void (* iq_handler)(struct csio_hw *,void *,uint32_t,struct csio_fl_dma_buf *,void *),void * priv)1260 csio_wr_process_iq_idx(struct csio_hw *hw, int qidx,
1261 void (*iq_handler)(struct csio_hw *, void *,
1262 uint32_t, struct csio_fl_dma_buf *,
1263 void *),
1264 void *priv)
1265 {
1266 struct csio_wrm *wrm = csio_hw_to_wrm(hw);
1267 struct csio_q *iq = wrm->q_arr[qidx];
1268
1269 return csio_wr_process_iq(hw, iq, iq_handler, priv);
1270 }
1271
1272 static int
csio_closest_timer(struct csio_sge * s,int time)1273 csio_closest_timer(struct csio_sge *s, int time)
1274 {
1275 int i, delta, match = 0, min_delta = INT_MAX;
1276
1277 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
1278 delta = time - s->timer_val[i];
1279 if (delta < 0)
1280 delta = -delta;
1281 if (delta < min_delta) {
1282 min_delta = delta;
1283 match = i;
1284 }
1285 }
1286 return match;
1287 }
1288
1289 static int
csio_closest_thresh(struct csio_sge * s,int cnt)1290 csio_closest_thresh(struct csio_sge *s, int cnt)
1291 {
1292 int i, delta, match = 0, min_delta = INT_MAX;
1293
1294 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1295 delta = cnt - s->counter_val[i];
1296 if (delta < 0)
1297 delta = -delta;
1298 if (delta < min_delta) {
1299 min_delta = delta;
1300 match = i;
1301 }
1302 }
1303 return match;
1304 }
1305
1306 static void
csio_wr_fixup_host_params(struct csio_hw * hw)1307 csio_wr_fixup_host_params(struct csio_hw *hw)
1308 {
1309 struct csio_wrm *wrm = csio_hw_to_wrm(hw);
1310 struct csio_sge *sge = &wrm->sge;
1311 uint32_t clsz = L1_CACHE_BYTES;
1312 uint32_t s_hps = PAGE_SHIFT - 10;
1313 uint32_t stat_len = clsz > 64 ? 128 : 64;
1314 u32 fl_align = clsz < 32 ? 32 : clsz;
1315 u32 pack_align;
1316 u32 ingpad, ingpack;
1317 int pcie_cap;
1318
1319 csio_wr_reg32(hw, HOSTPAGESIZEPF0_V(s_hps) | HOSTPAGESIZEPF1_V(s_hps) |
1320 HOSTPAGESIZEPF2_V(s_hps) | HOSTPAGESIZEPF3_V(s_hps) |
1321 HOSTPAGESIZEPF4_V(s_hps) | HOSTPAGESIZEPF5_V(s_hps) |
1322 HOSTPAGESIZEPF6_V(s_hps) | HOSTPAGESIZEPF7_V(s_hps),
1323 SGE_HOST_PAGE_SIZE_A);
1324
1325 /* T5 introduced the separation of the Free List Padding and
1326 * Packing Boundaries. Thus, we can select a smaller Padding
1327 * Boundary to avoid uselessly chewing up PCIe Link and Memory
1328 * Bandwidth, and use a Packing Boundary which is large enough
1329 * to avoid false sharing between CPUs, etc.
1330 *
1331 * For the PCI Link, the smaller the Padding Boundary the
1332 * better. For the Memory Controller, a smaller Padding
1333 * Boundary is better until we cross under the Memory Line
1334 * Size (the minimum unit of transfer to/from Memory). If we
1335 * have a Padding Boundary which is smaller than the Memory
1336 * Line Size, that'll involve a Read-Modify-Write cycle on the
1337 * Memory Controller which is never good.
1338 */
1339
1340 /* We want the Packing Boundary to be based on the Cache Line
1341 * Size in order to help avoid False Sharing performance
1342 * issues between CPUs, etc. We also want the Packing
1343 * Boundary to incorporate the PCI-E Maximum Payload Size. We
1344 * get best performance when the Packing Boundary is a
1345 * multiple of the Maximum Payload Size.
1346 */
1347 pack_align = fl_align;
1348 pcie_cap = pci_find_capability(hw->pdev, PCI_CAP_ID_EXP);
1349 if (pcie_cap) {
1350 u32 mps, mps_log;
1351 u16 devctl;
1352
1353 /* The PCIe Device Control Maximum Payload Size field
1354 * [bits 7:5] encodes sizes as powers of 2 starting at
1355 * 128 bytes.
1356 */
1357 pci_read_config_word(hw->pdev,
1358 pcie_cap + PCI_EXP_DEVCTL,
1359 &devctl);
1360 mps_log = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5) + 7;
1361 mps = 1 << mps_log;
1362 if (mps > pack_align)
1363 pack_align = mps;
1364 }
1365
1366 /* T5/T6 have a special interpretation of the "0"
1367 * value for the Packing Boundary. This corresponds to 16
1368 * bytes instead of the expected 32 bytes.
1369 */
1370 if (pack_align <= 16) {
1371 ingpack = INGPACKBOUNDARY_16B_X;
1372 fl_align = 16;
1373 } else if (pack_align == 32) {
1374 ingpack = INGPACKBOUNDARY_64B_X;
1375 fl_align = 64;
1376 } else {
1377 u32 pack_align_log = fls(pack_align) - 1;
1378
1379 ingpack = pack_align_log - INGPACKBOUNDARY_SHIFT_X;
1380 fl_align = pack_align;
1381 }
1382
1383 /* Use the smallest Ingress Padding which isn't smaller than
1384 * the Memory Controller Read/Write Size. We'll take that as
1385 * being 8 bytes since we don't know of any system with a
1386 * wider Memory Controller Bus Width.
1387 */
1388 if (csio_is_t5(hw->pdev->device & CSIO_HW_CHIP_MASK))
1389 ingpad = INGPADBOUNDARY_32B_X;
1390 else
1391 ingpad = T6_INGPADBOUNDARY_8B_X;
1392
1393 csio_set_reg_field(hw, SGE_CONTROL_A,
1394 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
1395 EGRSTATUSPAGESIZE_F,
1396 INGPADBOUNDARY_V(ingpad) |
1397 EGRSTATUSPAGESIZE_V(stat_len != 64));
1398 csio_set_reg_field(hw, SGE_CONTROL2_A,
1399 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
1400 INGPACKBOUNDARY_V(ingpack));
1401
1402 /* FL BUFFER SIZE#0 is Page size i,e already aligned to cache line */
1403 csio_wr_reg32(hw, PAGE_SIZE, SGE_FL_BUFFER_SIZE0_A);
1404
1405 /*
1406 * If using hard params, the following will get set correctly
1407 * in csio_wr_set_sge().
1408 */
1409 if (hw->flags & CSIO_HWF_USING_SOFT_PARAMS) {
1410 csio_wr_reg32(hw,
1411 (csio_rd_reg32(hw, SGE_FL_BUFFER_SIZE2_A) +
1412 fl_align - 1) & ~(fl_align - 1),
1413 SGE_FL_BUFFER_SIZE2_A);
1414 csio_wr_reg32(hw,
1415 (csio_rd_reg32(hw, SGE_FL_BUFFER_SIZE3_A) +
1416 fl_align - 1) & ~(fl_align - 1),
1417 SGE_FL_BUFFER_SIZE3_A);
1418 }
1419
1420 sge->csio_fl_align = fl_align;
1421
1422 csio_wr_reg32(hw, HPZ0_V(PAGE_SHIFT - 12), ULP_RX_TDDP_PSZ_A);
1423
1424 /* default value of rx_dma_offset of the NIC driver */
1425 csio_set_reg_field(hw, SGE_CONTROL_A,
1426 PKTSHIFT_V(PKTSHIFT_M),
1427 PKTSHIFT_V(CSIO_SGE_RX_DMA_OFFSET));
1428
1429 csio_hw_tp_wr_bits_indirect(hw, TP_INGRESS_CONFIG_A,
1430 CSUM_HAS_PSEUDO_HDR_F, 0);
1431 }
1432
1433 static void
csio_init_intr_coalesce_parms(struct csio_hw * hw)1434 csio_init_intr_coalesce_parms(struct csio_hw *hw)
1435 {
1436 struct csio_wrm *wrm = csio_hw_to_wrm(hw);
1437 struct csio_sge *sge = &wrm->sge;
1438
1439 csio_sge_thresh_reg = csio_closest_thresh(sge, csio_intr_coalesce_cnt);
1440 if (csio_intr_coalesce_cnt) {
1441 csio_sge_thresh_reg = 0;
1442 csio_sge_timer_reg = X_TIMERREG_RESTART_COUNTER;
1443 return;
1444 }
1445
1446 csio_sge_timer_reg = csio_closest_timer(sge, csio_intr_coalesce_time);
1447 }
1448
1449 /*
1450 * csio_wr_get_sge - Get SGE register values.
1451 * @hw: HW module.
1452 *
1453 * Used by non-master functions and by master-functions relying on config file.
1454 */
1455 static void
csio_wr_get_sge(struct csio_hw * hw)1456 csio_wr_get_sge(struct csio_hw *hw)
1457 {
1458 struct csio_wrm *wrm = csio_hw_to_wrm(hw);
1459 struct csio_sge *sge = &wrm->sge;
1460 uint32_t ingpad;
1461 int i;
1462 u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5;
1463 u32 ingress_rx_threshold;
1464
1465 sge->sge_control = csio_rd_reg32(hw, SGE_CONTROL_A);
1466
1467 ingpad = INGPADBOUNDARY_G(sge->sge_control);
1468
1469 switch (ingpad) {
1470 case X_INGPCIEBOUNDARY_32B:
1471 sge->csio_fl_align = 32; break;
1472 case X_INGPCIEBOUNDARY_64B:
1473 sge->csio_fl_align = 64; break;
1474 case X_INGPCIEBOUNDARY_128B:
1475 sge->csio_fl_align = 128; break;
1476 case X_INGPCIEBOUNDARY_256B:
1477 sge->csio_fl_align = 256; break;
1478 case X_INGPCIEBOUNDARY_512B:
1479 sge->csio_fl_align = 512; break;
1480 case X_INGPCIEBOUNDARY_1024B:
1481 sge->csio_fl_align = 1024; break;
1482 case X_INGPCIEBOUNDARY_2048B:
1483 sge->csio_fl_align = 2048; break;
1484 case X_INGPCIEBOUNDARY_4096B:
1485 sge->csio_fl_align = 4096; break;
1486 }
1487
1488 for (i = 0; i < CSIO_SGE_FL_SIZE_REGS; i++)
1489 csio_get_flbuf_size(hw, sge, i);
1490
1491 timer_value_0_and_1 = csio_rd_reg32(hw, SGE_TIMER_VALUE_0_AND_1_A);
1492 timer_value_2_and_3 = csio_rd_reg32(hw, SGE_TIMER_VALUE_2_AND_3_A);
1493 timer_value_4_and_5 = csio_rd_reg32(hw, SGE_TIMER_VALUE_4_AND_5_A);
1494
1495 sge->timer_val[0] = (uint16_t)csio_core_ticks_to_us(hw,
1496 TIMERVALUE0_G(timer_value_0_and_1));
1497 sge->timer_val[1] = (uint16_t)csio_core_ticks_to_us(hw,
1498 TIMERVALUE1_G(timer_value_0_and_1));
1499 sge->timer_val[2] = (uint16_t)csio_core_ticks_to_us(hw,
1500 TIMERVALUE2_G(timer_value_2_and_3));
1501 sge->timer_val[3] = (uint16_t)csio_core_ticks_to_us(hw,
1502 TIMERVALUE3_G(timer_value_2_and_3));
1503 sge->timer_val[4] = (uint16_t)csio_core_ticks_to_us(hw,
1504 TIMERVALUE4_G(timer_value_4_and_5));
1505 sge->timer_val[5] = (uint16_t)csio_core_ticks_to_us(hw,
1506 TIMERVALUE5_G(timer_value_4_and_5));
1507
1508 ingress_rx_threshold = csio_rd_reg32(hw, SGE_INGRESS_RX_THRESHOLD_A);
1509 sge->counter_val[0] = THRESHOLD_0_G(ingress_rx_threshold);
1510 sge->counter_val[1] = THRESHOLD_1_G(ingress_rx_threshold);
1511 sge->counter_val[2] = THRESHOLD_2_G(ingress_rx_threshold);
1512 sge->counter_val[3] = THRESHOLD_3_G(ingress_rx_threshold);
1513
1514 csio_init_intr_coalesce_parms(hw);
1515 }
1516
1517 /*
1518 * csio_wr_set_sge - Initialize SGE registers
1519 * @hw: HW module.
1520 *
1521 * Used by Master function to initialize SGE registers in the absence
1522 * of a config file.
1523 */
1524 static void
csio_wr_set_sge(struct csio_hw * hw)1525 csio_wr_set_sge(struct csio_hw *hw)
1526 {
1527 struct csio_wrm *wrm = csio_hw_to_wrm(hw);
1528 struct csio_sge *sge = &wrm->sge;
1529 int i;
1530
1531 /*
1532 * Set up our basic SGE mode to deliver CPL messages to our Ingress
1533 * Queue and Packet Date to the Free List.
1534 */
1535 csio_set_reg_field(hw, SGE_CONTROL_A, RXPKTCPLMODE_F, RXPKTCPLMODE_F);
1536
1537 sge->sge_control = csio_rd_reg32(hw, SGE_CONTROL_A);
1538
1539 /* sge->csio_fl_align is set up by csio_wr_fixup_host_params(). */
1540
1541 /*
1542 * Set up to drop DOORBELL writes when the DOORBELL FIFO overflows
1543 * and generate an interrupt when this occurs so we can recover.
1544 */
1545 csio_set_reg_field(hw, SGE_DBFIFO_STATUS_A,
1546 LP_INT_THRESH_T5_V(LP_INT_THRESH_T5_M),
1547 LP_INT_THRESH_T5_V(CSIO_SGE_DBFIFO_INT_THRESH));
1548 csio_set_reg_field(hw, SGE_DBFIFO_STATUS2_A,
1549 HP_INT_THRESH_T5_V(LP_INT_THRESH_T5_M),
1550 HP_INT_THRESH_T5_V(CSIO_SGE_DBFIFO_INT_THRESH));
1551
1552 csio_set_reg_field(hw, SGE_DOORBELL_CONTROL_A, ENABLE_DROP_F,
1553 ENABLE_DROP_F);
1554
1555 /* SGE_FL_BUFFER_SIZE0 is set up by csio_wr_fixup_host_params(). */
1556
1557 CSIO_SET_FLBUF_SIZE(hw, 1, CSIO_SGE_FLBUF_SIZE1);
1558 csio_wr_reg32(hw, (CSIO_SGE_FLBUF_SIZE2 + sge->csio_fl_align - 1)
1559 & ~(sge->csio_fl_align - 1), SGE_FL_BUFFER_SIZE2_A);
1560 csio_wr_reg32(hw, (CSIO_SGE_FLBUF_SIZE3 + sge->csio_fl_align - 1)
1561 & ~(sge->csio_fl_align - 1), SGE_FL_BUFFER_SIZE3_A);
1562 CSIO_SET_FLBUF_SIZE(hw, 4, CSIO_SGE_FLBUF_SIZE4);
1563 CSIO_SET_FLBUF_SIZE(hw, 5, CSIO_SGE_FLBUF_SIZE5);
1564 CSIO_SET_FLBUF_SIZE(hw, 6, CSIO_SGE_FLBUF_SIZE6);
1565 CSIO_SET_FLBUF_SIZE(hw, 7, CSIO_SGE_FLBUF_SIZE7);
1566 CSIO_SET_FLBUF_SIZE(hw, 8, CSIO_SGE_FLBUF_SIZE8);
1567
1568 for (i = 0; i < CSIO_SGE_FL_SIZE_REGS; i++)
1569 csio_get_flbuf_size(hw, sge, i);
1570
1571 /* Initialize interrupt coalescing attributes */
1572 sge->timer_val[0] = CSIO_SGE_TIMER_VAL_0;
1573 sge->timer_val[1] = CSIO_SGE_TIMER_VAL_1;
1574 sge->timer_val[2] = CSIO_SGE_TIMER_VAL_2;
1575 sge->timer_val[3] = CSIO_SGE_TIMER_VAL_3;
1576 sge->timer_val[4] = CSIO_SGE_TIMER_VAL_4;
1577 sge->timer_val[5] = CSIO_SGE_TIMER_VAL_5;
1578
1579 sge->counter_val[0] = CSIO_SGE_INT_CNT_VAL_0;
1580 sge->counter_val[1] = CSIO_SGE_INT_CNT_VAL_1;
1581 sge->counter_val[2] = CSIO_SGE_INT_CNT_VAL_2;
1582 sge->counter_val[3] = CSIO_SGE_INT_CNT_VAL_3;
1583
1584 csio_wr_reg32(hw, THRESHOLD_0_V(sge->counter_val[0]) |
1585 THRESHOLD_1_V(sge->counter_val[1]) |
1586 THRESHOLD_2_V(sge->counter_val[2]) |
1587 THRESHOLD_3_V(sge->counter_val[3]),
1588 SGE_INGRESS_RX_THRESHOLD_A);
1589
1590 csio_wr_reg32(hw,
1591 TIMERVALUE0_V(csio_us_to_core_ticks(hw, sge->timer_val[0])) |
1592 TIMERVALUE1_V(csio_us_to_core_ticks(hw, sge->timer_val[1])),
1593 SGE_TIMER_VALUE_0_AND_1_A);
1594
1595 csio_wr_reg32(hw,
1596 TIMERVALUE2_V(csio_us_to_core_ticks(hw, sge->timer_val[2])) |
1597 TIMERVALUE3_V(csio_us_to_core_ticks(hw, sge->timer_val[3])),
1598 SGE_TIMER_VALUE_2_AND_3_A);
1599
1600 csio_wr_reg32(hw,
1601 TIMERVALUE4_V(csio_us_to_core_ticks(hw, sge->timer_val[4])) |
1602 TIMERVALUE5_V(csio_us_to_core_ticks(hw, sge->timer_val[5])),
1603 SGE_TIMER_VALUE_4_AND_5_A);
1604
1605 csio_init_intr_coalesce_parms(hw);
1606 }
1607
1608 void
csio_wr_sge_init(struct csio_hw * hw)1609 csio_wr_sge_init(struct csio_hw *hw)
1610 {
1611 /*
1612 * If we are master and chip is not initialized:
1613 * - If we plan to use the config file, we need to fixup some
1614 * host specific registers, and read the rest of the SGE
1615 * configuration.
1616 * - If we dont plan to use the config file, we need to initialize
1617 * SGE entirely, including fixing the host specific registers.
1618 * If we are master and chip is initialized, just read and work off of
1619 * the already initialized SGE values.
1620 * If we arent the master, we are only allowed to read and work off of
1621 * the already initialized SGE values.
1622 *
1623 * Therefore, before calling this function, we assume that the master-
1624 * ship of the card, state and whether to use config file or not, have
1625 * already been decided.
1626 */
1627 if (csio_is_hw_master(hw)) {
1628 if (hw->fw_state != CSIO_DEV_STATE_INIT)
1629 csio_wr_fixup_host_params(hw);
1630
1631 if (hw->flags & CSIO_HWF_USING_SOFT_PARAMS)
1632 csio_wr_get_sge(hw);
1633 else
1634 csio_wr_set_sge(hw);
1635 } else
1636 csio_wr_get_sge(hw);
1637 }
1638
1639 /*
1640 * csio_wrm_init - Initialize Work request module.
1641 * @wrm: WR module
1642 * @hw: HW pointer
1643 *
1644 * Allocates memory for an array of queue pointers starting at q_arr.
1645 */
1646 int
csio_wrm_init(struct csio_wrm * wrm,struct csio_hw * hw)1647 csio_wrm_init(struct csio_wrm *wrm, struct csio_hw *hw)
1648 {
1649 int i;
1650
1651 if (!wrm->num_q) {
1652 csio_err(hw, "Num queues is not set\n");
1653 return -EINVAL;
1654 }
1655
1656 wrm->q_arr = kcalloc(wrm->num_q, sizeof(struct csio_q *), GFP_KERNEL);
1657 if (!wrm->q_arr)
1658 goto err;
1659
1660 for (i = 0; i < wrm->num_q; i++) {
1661 wrm->q_arr[i] = kzalloc(sizeof(struct csio_q), GFP_KERNEL);
1662 if (!wrm->q_arr[i]) {
1663 while (--i >= 0)
1664 kfree(wrm->q_arr[i]);
1665 goto err_free_arr;
1666 }
1667 }
1668 wrm->free_qidx = 0;
1669
1670 return 0;
1671
1672 err_free_arr:
1673 kfree(wrm->q_arr);
1674 err:
1675 return -ENOMEM;
1676 }
1677
1678 /*
1679 * csio_wrm_exit - Initialize Work request module.
1680 * @wrm: WR module
1681 * @hw: HW module
1682 *
1683 * Uninitialize WR module. Free q_arr and pointers in it.
1684 * We have the additional job of freeing the DMA memory associated
1685 * with the queues.
1686 */
1687 void
csio_wrm_exit(struct csio_wrm * wrm,struct csio_hw * hw)1688 csio_wrm_exit(struct csio_wrm *wrm, struct csio_hw *hw)
1689 {
1690 int i;
1691 uint32_t j;
1692 struct csio_q *q;
1693 struct csio_dma_buf *buf;
1694
1695 for (i = 0; i < wrm->num_q; i++) {
1696 q = wrm->q_arr[i];
1697
1698 if (wrm->free_qidx && (i < wrm->free_qidx)) {
1699 if (q->type == CSIO_FREELIST) {
1700 if (!q->un.fl.bufs)
1701 continue;
1702 for (j = 0; j < q->credits; j++) {
1703 buf = &q->un.fl.bufs[j];
1704 if (!buf->vaddr)
1705 continue;
1706 pci_free_consistent(hw->pdev, buf->len,
1707 buf->vaddr,
1708 buf->paddr);
1709 }
1710 kfree(q->un.fl.bufs);
1711 }
1712 pci_free_consistent(hw->pdev, q->size,
1713 q->vstart, q->pstart);
1714 }
1715 kfree(q);
1716 }
1717
1718 hw->flags &= ~CSIO_HWF_Q_MEM_ALLOCED;
1719
1720 kfree(wrm->q_arr);
1721 }
1722