1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * Symmetric key ciphers.
4 *
5 * Copyright (c) 2007-2015 Herbert Xu <herbert@gondor.apana.org.au>
6 */
7
8 #ifndef _CRYPTO_SKCIPHER_H
9 #define _CRYPTO_SKCIPHER_H
10
11 #include <linux/crypto.h>
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14
15 /**
16 * struct skcipher_request - Symmetric key cipher request
17 * @cryptlen: Number of bytes to encrypt or decrypt
18 * @iv: Initialisation Vector
19 * @src: Source SG list
20 * @dst: Destination SG list
21 * @base: Underlying async request
22 * @__ctx: Start of private context data
23 */
24 struct skcipher_request {
25 unsigned int cryptlen;
26
27 u8 *iv;
28
29 struct scatterlist *src;
30 struct scatterlist *dst;
31
32 struct crypto_async_request base;
33
34 void *__ctx[] CRYPTO_MINALIGN_ATTR;
35 };
36
37 struct crypto_skcipher {
38 unsigned int reqsize;
39
40 struct crypto_tfm base;
41 };
42
43 struct crypto_sync_skcipher {
44 struct crypto_skcipher base;
45 };
46
47 /**
48 * struct skcipher_alg - symmetric key cipher definition
49 * @min_keysize: Minimum key size supported by the transformation. This is the
50 * smallest key length supported by this transformation algorithm.
51 * This must be set to one of the pre-defined values as this is
52 * not hardware specific. Possible values for this field can be
53 * found via git grep "_MIN_KEY_SIZE" include/crypto/
54 * @max_keysize: Maximum key size supported by the transformation. This is the
55 * largest key length supported by this transformation algorithm.
56 * This must be set to one of the pre-defined values as this is
57 * not hardware specific. Possible values for this field can be
58 * found via git grep "_MAX_KEY_SIZE" include/crypto/
59 * @setkey: Set key for the transformation. This function is used to either
60 * program a supplied key into the hardware or store the key in the
61 * transformation context for programming it later. Note that this
62 * function does modify the transformation context. This function can
63 * be called multiple times during the existence of the transformation
64 * object, so one must make sure the key is properly reprogrammed into
65 * the hardware. This function is also responsible for checking the key
66 * length for validity. In case a software fallback was put in place in
67 * the @cra_init call, this function might need to use the fallback if
68 * the algorithm doesn't support all of the key sizes.
69 * @encrypt: Encrypt a scatterlist of blocks. This function is used to encrypt
70 * the supplied scatterlist containing the blocks of data. The crypto
71 * API consumer is responsible for aligning the entries of the
72 * scatterlist properly and making sure the chunks are correctly
73 * sized. In case a software fallback was put in place in the
74 * @cra_init call, this function might need to use the fallback if
75 * the algorithm doesn't support all of the key sizes. In case the
76 * key was stored in transformation context, the key might need to be
77 * re-programmed into the hardware in this function. This function
78 * shall not modify the transformation context, as this function may
79 * be called in parallel with the same transformation object.
80 * @decrypt: Decrypt a single block. This is a reverse counterpart to @encrypt
81 * and the conditions are exactly the same.
82 * @init: Initialize the cryptographic transformation object. This function
83 * is used to initialize the cryptographic transformation object.
84 * This function is called only once at the instantiation time, right
85 * after the transformation context was allocated. In case the
86 * cryptographic hardware has some special requirements which need to
87 * be handled by software, this function shall check for the precise
88 * requirement of the transformation and put any software fallbacks
89 * in place.
90 * @exit: Deinitialize the cryptographic transformation object. This is a
91 * counterpart to @init, used to remove various changes set in
92 * @init.
93 * @ivsize: IV size applicable for transformation. The consumer must provide an
94 * IV of exactly that size to perform the encrypt or decrypt operation.
95 * @chunksize: Equal to the block size except for stream ciphers such as
96 * CTR where it is set to the underlying block size.
97 * @walksize: Equal to the chunk size except in cases where the algorithm is
98 * considerably more efficient if it can operate on multiple chunks
99 * in parallel. Should be a multiple of chunksize.
100 * @base: Definition of a generic crypto algorithm.
101 *
102 * All fields except @ivsize are mandatory and must be filled.
103 */
104 struct skcipher_alg {
105 int (*setkey)(struct crypto_skcipher *tfm, const u8 *key,
106 unsigned int keylen);
107 int (*encrypt)(struct skcipher_request *req);
108 int (*decrypt)(struct skcipher_request *req);
109 int (*init)(struct crypto_skcipher *tfm);
110 void (*exit)(struct crypto_skcipher *tfm);
111
112 unsigned int min_keysize;
113 unsigned int max_keysize;
114 unsigned int ivsize;
115 unsigned int chunksize;
116 unsigned int walksize;
117
118 struct crypto_alg base;
119 };
120
121 #define MAX_SYNC_SKCIPHER_REQSIZE 384
122 /*
123 * This performs a type-check against the "tfm" argument to make sure
124 * all users have the correct skcipher tfm for doing on-stack requests.
125 */
126 #define SYNC_SKCIPHER_REQUEST_ON_STACK(name, tfm) \
127 char __##name##_desc[sizeof(struct skcipher_request) + \
128 MAX_SYNC_SKCIPHER_REQSIZE + \
129 (!(sizeof((struct crypto_sync_skcipher *)1 == \
130 (typeof(tfm))1))) \
131 ] CRYPTO_MINALIGN_ATTR; \
132 struct skcipher_request *name = (void *)__##name##_desc
133
134 /**
135 * DOC: Symmetric Key Cipher API
136 *
137 * Symmetric key cipher API is used with the ciphers of type
138 * CRYPTO_ALG_TYPE_SKCIPHER (listed as type "skcipher" in /proc/crypto).
139 *
140 * Asynchronous cipher operations imply that the function invocation for a
141 * cipher request returns immediately before the completion of the operation.
142 * The cipher request is scheduled as a separate kernel thread and therefore
143 * load-balanced on the different CPUs via the process scheduler. To allow
144 * the kernel crypto API to inform the caller about the completion of a cipher
145 * request, the caller must provide a callback function. That function is
146 * invoked with the cipher handle when the request completes.
147 *
148 * To support the asynchronous operation, additional information than just the
149 * cipher handle must be supplied to the kernel crypto API. That additional
150 * information is given by filling in the skcipher_request data structure.
151 *
152 * For the symmetric key cipher API, the state is maintained with the tfm
153 * cipher handle. A single tfm can be used across multiple calls and in
154 * parallel. For asynchronous block cipher calls, context data supplied and
155 * only used by the caller can be referenced the request data structure in
156 * addition to the IV used for the cipher request. The maintenance of such
157 * state information would be important for a crypto driver implementer to
158 * have, because when calling the callback function upon completion of the
159 * cipher operation, that callback function may need some information about
160 * which operation just finished if it invoked multiple in parallel. This
161 * state information is unused by the kernel crypto API.
162 */
163
__crypto_skcipher_cast(struct crypto_tfm * tfm)164 static inline struct crypto_skcipher *__crypto_skcipher_cast(
165 struct crypto_tfm *tfm)
166 {
167 return container_of(tfm, struct crypto_skcipher, base);
168 }
169
170 /**
171 * crypto_alloc_skcipher() - allocate symmetric key cipher handle
172 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
173 * skcipher cipher
174 * @type: specifies the type of the cipher
175 * @mask: specifies the mask for the cipher
176 *
177 * Allocate a cipher handle for an skcipher. The returned struct
178 * crypto_skcipher is the cipher handle that is required for any subsequent
179 * API invocation for that skcipher.
180 *
181 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
182 * of an error, PTR_ERR() returns the error code.
183 */
184 struct crypto_skcipher *crypto_alloc_skcipher(const char *alg_name,
185 u32 type, u32 mask);
186
187 struct crypto_sync_skcipher *crypto_alloc_sync_skcipher(const char *alg_name,
188 u32 type, u32 mask);
189
crypto_skcipher_tfm(struct crypto_skcipher * tfm)190 static inline struct crypto_tfm *crypto_skcipher_tfm(
191 struct crypto_skcipher *tfm)
192 {
193 return &tfm->base;
194 }
195
196 /**
197 * crypto_free_skcipher() - zeroize and free cipher handle
198 * @tfm: cipher handle to be freed
199 */
crypto_free_skcipher(struct crypto_skcipher * tfm)200 static inline void crypto_free_skcipher(struct crypto_skcipher *tfm)
201 {
202 crypto_destroy_tfm(tfm, crypto_skcipher_tfm(tfm));
203 }
204
crypto_free_sync_skcipher(struct crypto_sync_skcipher * tfm)205 static inline void crypto_free_sync_skcipher(struct crypto_sync_skcipher *tfm)
206 {
207 crypto_free_skcipher(&tfm->base);
208 }
209
210 /**
211 * crypto_has_skcipher() - Search for the availability of an skcipher.
212 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
213 * skcipher
214 * @type: specifies the type of the skcipher
215 * @mask: specifies the mask for the skcipher
216 *
217 * Return: true when the skcipher is known to the kernel crypto API; false
218 * otherwise
219 */
220 int crypto_has_skcipher(const char *alg_name, u32 type, u32 mask);
221
crypto_skcipher_driver_name(struct crypto_skcipher * tfm)222 static inline const char *crypto_skcipher_driver_name(
223 struct crypto_skcipher *tfm)
224 {
225 return crypto_tfm_alg_driver_name(crypto_skcipher_tfm(tfm));
226 }
227
crypto_skcipher_alg(struct crypto_skcipher * tfm)228 static inline struct skcipher_alg *crypto_skcipher_alg(
229 struct crypto_skcipher *tfm)
230 {
231 return container_of(crypto_skcipher_tfm(tfm)->__crt_alg,
232 struct skcipher_alg, base);
233 }
234
crypto_skcipher_alg_ivsize(struct skcipher_alg * alg)235 static inline unsigned int crypto_skcipher_alg_ivsize(struct skcipher_alg *alg)
236 {
237 return alg->ivsize;
238 }
239
240 /**
241 * crypto_skcipher_ivsize() - obtain IV size
242 * @tfm: cipher handle
243 *
244 * The size of the IV for the skcipher referenced by the cipher handle is
245 * returned. This IV size may be zero if the cipher does not need an IV.
246 *
247 * Return: IV size in bytes
248 */
crypto_skcipher_ivsize(struct crypto_skcipher * tfm)249 static inline unsigned int crypto_skcipher_ivsize(struct crypto_skcipher *tfm)
250 {
251 return crypto_skcipher_alg(tfm)->ivsize;
252 }
253
crypto_sync_skcipher_ivsize(struct crypto_sync_skcipher * tfm)254 static inline unsigned int crypto_sync_skcipher_ivsize(
255 struct crypto_sync_skcipher *tfm)
256 {
257 return crypto_skcipher_ivsize(&tfm->base);
258 }
259
260 /**
261 * crypto_skcipher_blocksize() - obtain block size of cipher
262 * @tfm: cipher handle
263 *
264 * The block size for the skcipher referenced with the cipher handle is
265 * returned. The caller may use that information to allocate appropriate
266 * memory for the data returned by the encryption or decryption operation
267 *
268 * Return: block size of cipher
269 */
crypto_skcipher_blocksize(struct crypto_skcipher * tfm)270 static inline unsigned int crypto_skcipher_blocksize(
271 struct crypto_skcipher *tfm)
272 {
273 return crypto_tfm_alg_blocksize(crypto_skcipher_tfm(tfm));
274 }
275
crypto_skcipher_alg_chunksize(struct skcipher_alg * alg)276 static inline unsigned int crypto_skcipher_alg_chunksize(
277 struct skcipher_alg *alg)
278 {
279 return alg->chunksize;
280 }
281
282 /**
283 * crypto_skcipher_chunksize() - obtain chunk size
284 * @tfm: cipher handle
285 *
286 * The block size is set to one for ciphers such as CTR. However,
287 * you still need to provide incremental updates in multiples of
288 * the underlying block size as the IV does not have sub-block
289 * granularity. This is known in this API as the chunk size.
290 *
291 * Return: chunk size in bytes
292 */
crypto_skcipher_chunksize(struct crypto_skcipher * tfm)293 static inline unsigned int crypto_skcipher_chunksize(
294 struct crypto_skcipher *tfm)
295 {
296 return crypto_skcipher_alg_chunksize(crypto_skcipher_alg(tfm));
297 }
298
crypto_sync_skcipher_blocksize(struct crypto_sync_skcipher * tfm)299 static inline unsigned int crypto_sync_skcipher_blocksize(
300 struct crypto_sync_skcipher *tfm)
301 {
302 return crypto_skcipher_blocksize(&tfm->base);
303 }
304
crypto_skcipher_alignmask(struct crypto_skcipher * tfm)305 static inline unsigned int crypto_skcipher_alignmask(
306 struct crypto_skcipher *tfm)
307 {
308 return crypto_tfm_alg_alignmask(crypto_skcipher_tfm(tfm));
309 }
310
crypto_skcipher_get_flags(struct crypto_skcipher * tfm)311 static inline u32 crypto_skcipher_get_flags(struct crypto_skcipher *tfm)
312 {
313 return crypto_tfm_get_flags(crypto_skcipher_tfm(tfm));
314 }
315
crypto_skcipher_set_flags(struct crypto_skcipher * tfm,u32 flags)316 static inline void crypto_skcipher_set_flags(struct crypto_skcipher *tfm,
317 u32 flags)
318 {
319 crypto_tfm_set_flags(crypto_skcipher_tfm(tfm), flags);
320 }
321
crypto_skcipher_clear_flags(struct crypto_skcipher * tfm,u32 flags)322 static inline void crypto_skcipher_clear_flags(struct crypto_skcipher *tfm,
323 u32 flags)
324 {
325 crypto_tfm_clear_flags(crypto_skcipher_tfm(tfm), flags);
326 }
327
crypto_sync_skcipher_get_flags(struct crypto_sync_skcipher * tfm)328 static inline u32 crypto_sync_skcipher_get_flags(
329 struct crypto_sync_skcipher *tfm)
330 {
331 return crypto_skcipher_get_flags(&tfm->base);
332 }
333
crypto_sync_skcipher_set_flags(struct crypto_sync_skcipher * tfm,u32 flags)334 static inline void crypto_sync_skcipher_set_flags(
335 struct crypto_sync_skcipher *tfm, u32 flags)
336 {
337 crypto_skcipher_set_flags(&tfm->base, flags);
338 }
339
crypto_sync_skcipher_clear_flags(struct crypto_sync_skcipher * tfm,u32 flags)340 static inline void crypto_sync_skcipher_clear_flags(
341 struct crypto_sync_skcipher *tfm, u32 flags)
342 {
343 crypto_skcipher_clear_flags(&tfm->base, flags);
344 }
345
346 /**
347 * crypto_skcipher_setkey() - set key for cipher
348 * @tfm: cipher handle
349 * @key: buffer holding the key
350 * @keylen: length of the key in bytes
351 *
352 * The caller provided key is set for the skcipher referenced by the cipher
353 * handle.
354 *
355 * Note, the key length determines the cipher type. Many block ciphers implement
356 * different cipher modes depending on the key size, such as AES-128 vs AES-192
357 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
358 * is performed.
359 *
360 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
361 */
362 int crypto_skcipher_setkey(struct crypto_skcipher *tfm,
363 const u8 *key, unsigned int keylen);
364
crypto_sync_skcipher_setkey(struct crypto_sync_skcipher * tfm,const u8 * key,unsigned int keylen)365 static inline int crypto_sync_skcipher_setkey(struct crypto_sync_skcipher *tfm,
366 const u8 *key, unsigned int keylen)
367 {
368 return crypto_skcipher_setkey(&tfm->base, key, keylen);
369 }
370
crypto_skcipher_min_keysize(struct crypto_skcipher * tfm)371 static inline unsigned int crypto_skcipher_min_keysize(
372 struct crypto_skcipher *tfm)
373 {
374 return crypto_skcipher_alg(tfm)->min_keysize;
375 }
376
crypto_skcipher_max_keysize(struct crypto_skcipher * tfm)377 static inline unsigned int crypto_skcipher_max_keysize(
378 struct crypto_skcipher *tfm)
379 {
380 return crypto_skcipher_alg(tfm)->max_keysize;
381 }
382
383 /**
384 * crypto_skcipher_reqtfm() - obtain cipher handle from request
385 * @req: skcipher_request out of which the cipher handle is to be obtained
386 *
387 * Return the crypto_skcipher handle when furnishing an skcipher_request
388 * data structure.
389 *
390 * Return: crypto_skcipher handle
391 */
crypto_skcipher_reqtfm(struct skcipher_request * req)392 static inline struct crypto_skcipher *crypto_skcipher_reqtfm(
393 struct skcipher_request *req)
394 {
395 return __crypto_skcipher_cast(req->base.tfm);
396 }
397
crypto_sync_skcipher_reqtfm(struct skcipher_request * req)398 static inline struct crypto_sync_skcipher *crypto_sync_skcipher_reqtfm(
399 struct skcipher_request *req)
400 {
401 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
402
403 return container_of(tfm, struct crypto_sync_skcipher, base);
404 }
405
406 /**
407 * crypto_skcipher_encrypt() - encrypt plaintext
408 * @req: reference to the skcipher_request handle that holds all information
409 * needed to perform the cipher operation
410 *
411 * Encrypt plaintext data using the skcipher_request handle. That data
412 * structure and how it is filled with data is discussed with the
413 * skcipher_request_* functions.
414 *
415 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
416 */
417 int crypto_skcipher_encrypt(struct skcipher_request *req);
418
419 /**
420 * crypto_skcipher_decrypt() - decrypt ciphertext
421 * @req: reference to the skcipher_request handle that holds all information
422 * needed to perform the cipher operation
423 *
424 * Decrypt ciphertext data using the skcipher_request handle. That data
425 * structure and how it is filled with data is discussed with the
426 * skcipher_request_* functions.
427 *
428 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
429 */
430 int crypto_skcipher_decrypt(struct skcipher_request *req);
431
432 /**
433 * DOC: Symmetric Key Cipher Request Handle
434 *
435 * The skcipher_request data structure contains all pointers to data
436 * required for the symmetric key cipher operation. This includes the cipher
437 * handle (which can be used by multiple skcipher_request instances), pointer
438 * to plaintext and ciphertext, asynchronous callback function, etc. It acts
439 * as a handle to the skcipher_request_* API calls in a similar way as
440 * skcipher handle to the crypto_skcipher_* API calls.
441 */
442
443 /**
444 * crypto_skcipher_reqsize() - obtain size of the request data structure
445 * @tfm: cipher handle
446 *
447 * Return: number of bytes
448 */
crypto_skcipher_reqsize(struct crypto_skcipher * tfm)449 static inline unsigned int crypto_skcipher_reqsize(struct crypto_skcipher *tfm)
450 {
451 return tfm->reqsize;
452 }
453
454 /**
455 * skcipher_request_set_tfm() - update cipher handle reference in request
456 * @req: request handle to be modified
457 * @tfm: cipher handle that shall be added to the request handle
458 *
459 * Allow the caller to replace the existing skcipher handle in the request
460 * data structure with a different one.
461 */
skcipher_request_set_tfm(struct skcipher_request * req,struct crypto_skcipher * tfm)462 static inline void skcipher_request_set_tfm(struct skcipher_request *req,
463 struct crypto_skcipher *tfm)
464 {
465 req->base.tfm = crypto_skcipher_tfm(tfm);
466 }
467
skcipher_request_set_sync_tfm(struct skcipher_request * req,struct crypto_sync_skcipher * tfm)468 static inline void skcipher_request_set_sync_tfm(struct skcipher_request *req,
469 struct crypto_sync_skcipher *tfm)
470 {
471 skcipher_request_set_tfm(req, &tfm->base);
472 }
473
skcipher_request_cast(struct crypto_async_request * req)474 static inline struct skcipher_request *skcipher_request_cast(
475 struct crypto_async_request *req)
476 {
477 return container_of(req, struct skcipher_request, base);
478 }
479
480 /**
481 * skcipher_request_alloc() - allocate request data structure
482 * @tfm: cipher handle to be registered with the request
483 * @gfp: memory allocation flag that is handed to kmalloc by the API call.
484 *
485 * Allocate the request data structure that must be used with the skcipher
486 * encrypt and decrypt API calls. During the allocation, the provided skcipher
487 * handle is registered in the request data structure.
488 *
489 * Return: allocated request handle in case of success, or NULL if out of memory
490 */
skcipher_request_alloc(struct crypto_skcipher * tfm,gfp_t gfp)491 static inline struct skcipher_request *skcipher_request_alloc(
492 struct crypto_skcipher *tfm, gfp_t gfp)
493 {
494 struct skcipher_request *req;
495
496 req = kmalloc(sizeof(struct skcipher_request) +
497 crypto_skcipher_reqsize(tfm), gfp);
498
499 if (likely(req))
500 skcipher_request_set_tfm(req, tfm);
501
502 return req;
503 }
504
505 /**
506 * skcipher_request_free() - zeroize and free request data structure
507 * @req: request data structure cipher handle to be freed
508 */
skcipher_request_free(struct skcipher_request * req)509 static inline void skcipher_request_free(struct skcipher_request *req)
510 {
511 kfree_sensitive(req);
512 }
513
skcipher_request_zero(struct skcipher_request * req)514 static inline void skcipher_request_zero(struct skcipher_request *req)
515 {
516 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
517
518 memzero_explicit(req, sizeof(*req) + crypto_skcipher_reqsize(tfm));
519 }
520
521 /**
522 * skcipher_request_set_callback() - set asynchronous callback function
523 * @req: request handle
524 * @flags: specify zero or an ORing of the flags
525 * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
526 * increase the wait queue beyond the initial maximum size;
527 * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
528 * @compl: callback function pointer to be registered with the request handle
529 * @data: The data pointer refers to memory that is not used by the kernel
530 * crypto API, but provided to the callback function for it to use. Here,
531 * the caller can provide a reference to memory the callback function can
532 * operate on. As the callback function is invoked asynchronously to the
533 * related functionality, it may need to access data structures of the
534 * related functionality which can be referenced using this pointer. The
535 * callback function can access the memory via the "data" field in the
536 * crypto_async_request data structure provided to the callback function.
537 *
538 * This function allows setting the callback function that is triggered once the
539 * cipher operation completes.
540 *
541 * The callback function is registered with the skcipher_request handle and
542 * must comply with the following template::
543 *
544 * void callback_function(struct crypto_async_request *req, int error)
545 */
skcipher_request_set_callback(struct skcipher_request * req,u32 flags,crypto_completion_t compl,void * data)546 static inline void skcipher_request_set_callback(struct skcipher_request *req,
547 u32 flags,
548 crypto_completion_t compl,
549 void *data)
550 {
551 req->base.complete = compl;
552 req->base.data = data;
553 req->base.flags = flags;
554 }
555
556 /**
557 * skcipher_request_set_crypt() - set data buffers
558 * @req: request handle
559 * @src: source scatter / gather list
560 * @dst: destination scatter / gather list
561 * @cryptlen: number of bytes to process from @src
562 * @iv: IV for the cipher operation which must comply with the IV size defined
563 * by crypto_skcipher_ivsize
564 *
565 * This function allows setting of the source data and destination data
566 * scatter / gather lists.
567 *
568 * For encryption, the source is treated as the plaintext and the
569 * destination is the ciphertext. For a decryption operation, the use is
570 * reversed - the source is the ciphertext and the destination is the plaintext.
571 */
skcipher_request_set_crypt(struct skcipher_request * req,struct scatterlist * src,struct scatterlist * dst,unsigned int cryptlen,void * iv)572 static inline void skcipher_request_set_crypt(
573 struct skcipher_request *req,
574 struct scatterlist *src, struct scatterlist *dst,
575 unsigned int cryptlen, void *iv)
576 {
577 req->src = src;
578 req->dst = dst;
579 req->cryptlen = cryptlen;
580 req->iv = iv;
581 }
582
583 #endif /* _CRYPTO_SKCIPHER_H */
584
585