1 /**
2 * Copyright (C) ST-Ericsson SA 2010
3 * Author: Shujuan Chen <shujuan.chen@stericsson.com> for ST-Ericsson.
4 * Author: Jonas Linde <jonas.linde@stericsson.com> for ST-Ericsson.
5 * Author: Niklas Hernaeus <niklas.hernaeus@stericsson.com> for ST-Ericsson.
6 * Author: Joakim Bech <joakim.xx.bech@stericsson.com> for ST-Ericsson.
7 * Author: Berne Hebark <berne.herbark@stericsson.com> for ST-Ericsson.
8 * License terms: GNU General Public License (GPL) version 2
9 */
10
11 #include <linux/errno.h>
12 #include <linux/kernel.h>
13 #include <linux/types.h>
14
15 #include "cryp_p.h"
16 #include "cryp.h"
17
18 /**
19 * cryp_wait_until_done - wait until the device logic is not busy
20 */
cryp_wait_until_done(struct cryp_device_data * device_data)21 void cryp_wait_until_done(struct cryp_device_data *device_data)
22 {
23 while (cryp_is_logic_busy(device_data))
24 cpu_relax();
25 }
26
27 /**
28 * cryp_check - This routine checks Peripheral and PCell Id
29 * @device_data: Pointer to the device data struct for base address.
30 */
cryp_check(struct cryp_device_data * device_data)31 int cryp_check(struct cryp_device_data *device_data)
32 {
33 int peripheralid2 = 0;
34
35 if (NULL == device_data)
36 return -EINVAL;
37
38 peripheralid2 = readl_relaxed(&device_data->base->periphId2);
39
40 if (peripheralid2 != CRYP_PERIPHERAL_ID2_DB8500)
41 return -EPERM;
42
43 /* Check Peripheral and Pcell Id Register for CRYP */
44 if ((CRYP_PERIPHERAL_ID0 ==
45 readl_relaxed(&device_data->base->periphId0))
46 && (CRYP_PERIPHERAL_ID1 ==
47 readl_relaxed(&device_data->base->periphId1))
48 && (CRYP_PERIPHERAL_ID3 ==
49 readl_relaxed(&device_data->base->periphId3))
50 && (CRYP_PCELL_ID0 ==
51 readl_relaxed(&device_data->base->pcellId0))
52 && (CRYP_PCELL_ID1 ==
53 readl_relaxed(&device_data->base->pcellId1))
54 && (CRYP_PCELL_ID2 ==
55 readl_relaxed(&device_data->base->pcellId2))
56 && (CRYP_PCELL_ID3 ==
57 readl_relaxed(&device_data->base->pcellId3))) {
58 return 0;
59 }
60
61 return -EPERM;
62 }
63
64 /**
65 * cryp_activity - This routine enables/disable the cryptography function.
66 * @device_data: Pointer to the device data struct for base address.
67 * @cryp_crypen: Enable/Disable functionality
68 */
cryp_activity(struct cryp_device_data * device_data,enum cryp_crypen cryp_crypen)69 void cryp_activity(struct cryp_device_data *device_data,
70 enum cryp_crypen cryp_crypen)
71 {
72 CRYP_PUT_BITS(&device_data->base->cr,
73 cryp_crypen,
74 CRYP_CR_CRYPEN_POS,
75 CRYP_CR_CRYPEN_MASK);
76 }
77
78 /**
79 * cryp_flush_inoutfifo - Resets both the input and the output FIFOs
80 * @device_data: Pointer to the device data struct for base address.
81 */
cryp_flush_inoutfifo(struct cryp_device_data * device_data)82 void cryp_flush_inoutfifo(struct cryp_device_data *device_data)
83 {
84 /*
85 * We always need to disable the hardware before trying to flush the
86 * FIFO. This is something that isn't written in the design
87 * specification, but we have been informed by the hardware designers
88 * that this must be done.
89 */
90 cryp_activity(device_data, CRYP_CRYPEN_DISABLE);
91 cryp_wait_until_done(device_data);
92
93 CRYP_SET_BITS(&device_data->base->cr, CRYP_CR_FFLUSH_MASK);
94 /*
95 * CRYP_SR_INFIFO_READY_MASK is the expected value on the status
96 * register when starting a new calculation, which means Input FIFO is
97 * not full and input FIFO is empty.
98 */
99 while (readl_relaxed(&device_data->base->sr) !=
100 CRYP_SR_INFIFO_READY_MASK)
101 cpu_relax();
102 }
103
104 /**
105 * cryp_set_configuration - This routine set the cr CRYP IP
106 * @device_data: Pointer to the device data struct for base address.
107 * @cryp_config: Pointer to the configuration parameter
108 * @control_register: The control register to be written later on.
109 */
cryp_set_configuration(struct cryp_device_data * device_data,struct cryp_config * cryp_config,u32 * control_register)110 int cryp_set_configuration(struct cryp_device_data *device_data,
111 struct cryp_config *cryp_config,
112 u32 *control_register)
113 {
114 u32 cr_for_kse;
115
116 if (NULL == device_data || NULL == cryp_config)
117 return -EINVAL;
118
119 *control_register |= (cryp_config->keysize << CRYP_CR_KEYSIZE_POS);
120
121 /* Prepare key for decryption in AES_ECB and AES_CBC mode. */
122 if ((CRYP_ALGORITHM_DECRYPT == cryp_config->algodir) &&
123 ((CRYP_ALGO_AES_ECB == cryp_config->algomode) ||
124 (CRYP_ALGO_AES_CBC == cryp_config->algomode))) {
125 cr_for_kse = *control_register;
126 /*
127 * This seems a bit odd, but it is indeed needed to set this to
128 * encrypt even though it is a decryption that we are doing. It
129 * also mentioned in the design spec that you need to do this.
130 * After the keyprepartion for decrypting is done you should set
131 * algodir back to decryption, which is done outside this if
132 * statement.
133 *
134 * According to design specification we should set mode ECB
135 * during key preparation even though we might be running CBC
136 * when enter this function.
137 *
138 * Writing to KSE_ENABLED will drop CRYPEN when key preparation
139 * is done. Therefore we need to set CRYPEN again outside this
140 * if statement when running decryption.
141 */
142 cr_for_kse |= ((CRYP_ALGORITHM_ENCRYPT << CRYP_CR_ALGODIR_POS) |
143 (CRYP_ALGO_AES_ECB << CRYP_CR_ALGOMODE_POS) |
144 (CRYP_CRYPEN_ENABLE << CRYP_CR_CRYPEN_POS) |
145 (KSE_ENABLED << CRYP_CR_KSE_POS));
146
147 writel_relaxed(cr_for_kse, &device_data->base->cr);
148 cryp_wait_until_done(device_data);
149 }
150
151 *control_register |=
152 ((cryp_config->algomode << CRYP_CR_ALGOMODE_POS) |
153 (cryp_config->algodir << CRYP_CR_ALGODIR_POS));
154
155 return 0;
156 }
157
158 /**
159 * cryp_configure_protection - set the protection bits in the CRYP logic.
160 * @device_data: Pointer to the device data struct for base address.
161 * @p_protect_config: Pointer to the protection mode and
162 * secure mode configuration
163 */
cryp_configure_protection(struct cryp_device_data * device_data,struct cryp_protection_config * p_protect_config)164 int cryp_configure_protection(struct cryp_device_data *device_data,
165 struct cryp_protection_config *p_protect_config)
166 {
167 if (NULL == p_protect_config)
168 return -EINVAL;
169
170 CRYP_WRITE_BIT(&device_data->base->cr,
171 (u32) p_protect_config->secure_access,
172 CRYP_CR_SECURE_MASK);
173 CRYP_PUT_BITS(&device_data->base->cr,
174 p_protect_config->privilege_access,
175 CRYP_CR_PRLG_POS,
176 CRYP_CR_PRLG_MASK);
177
178 return 0;
179 }
180
181 /**
182 * cryp_is_logic_busy - returns the busy status of the CRYP logic
183 * @device_data: Pointer to the device data struct for base address.
184 */
cryp_is_logic_busy(struct cryp_device_data * device_data)185 int cryp_is_logic_busy(struct cryp_device_data *device_data)
186 {
187 return CRYP_TEST_BITS(&device_data->base->sr,
188 CRYP_SR_BUSY_MASK);
189 }
190
191 /**
192 * cryp_configure_for_dma - configures the CRYP IP for DMA operation
193 * @device_data: Pointer to the device data struct for base address.
194 * @dma_req: Specifies the DMA request type value.
195 */
cryp_configure_for_dma(struct cryp_device_data * device_data,enum cryp_dma_req_type dma_req)196 void cryp_configure_for_dma(struct cryp_device_data *device_data,
197 enum cryp_dma_req_type dma_req)
198 {
199 CRYP_SET_BITS(&device_data->base->dmacr,
200 (u32) dma_req);
201 }
202
203 /**
204 * cryp_configure_key_values - configures the key values for CRYP operations
205 * @device_data: Pointer to the device data struct for base address.
206 * @key_reg_index: Key value index register
207 * @key_value: The key value struct
208 */
cryp_configure_key_values(struct cryp_device_data * device_data,enum cryp_key_reg_index key_reg_index,struct cryp_key_value key_value)209 int cryp_configure_key_values(struct cryp_device_data *device_data,
210 enum cryp_key_reg_index key_reg_index,
211 struct cryp_key_value key_value)
212 {
213 while (cryp_is_logic_busy(device_data))
214 cpu_relax();
215
216 switch (key_reg_index) {
217 case CRYP_KEY_REG_1:
218 writel_relaxed(key_value.key_value_left,
219 &device_data->base->key_1_l);
220 writel_relaxed(key_value.key_value_right,
221 &device_data->base->key_1_r);
222 break;
223 case CRYP_KEY_REG_2:
224 writel_relaxed(key_value.key_value_left,
225 &device_data->base->key_2_l);
226 writel_relaxed(key_value.key_value_right,
227 &device_data->base->key_2_r);
228 break;
229 case CRYP_KEY_REG_3:
230 writel_relaxed(key_value.key_value_left,
231 &device_data->base->key_3_l);
232 writel_relaxed(key_value.key_value_right,
233 &device_data->base->key_3_r);
234 break;
235 case CRYP_KEY_REG_4:
236 writel_relaxed(key_value.key_value_left,
237 &device_data->base->key_4_l);
238 writel_relaxed(key_value.key_value_right,
239 &device_data->base->key_4_r);
240 break;
241 default:
242 return -EINVAL;
243 }
244
245 return 0;
246 }
247
248 /**
249 * cryp_configure_init_vector - configures the initialization vector register
250 * @device_data: Pointer to the device data struct for base address.
251 * @init_vector_index: Specifies the index of the init vector.
252 * @init_vector_value: Specifies the value for the init vector.
253 */
cryp_configure_init_vector(struct cryp_device_data * device_data,enum cryp_init_vector_index init_vector_index,struct cryp_init_vector_value init_vector_value)254 int cryp_configure_init_vector(struct cryp_device_data *device_data,
255 enum cryp_init_vector_index
256 init_vector_index,
257 struct cryp_init_vector_value
258 init_vector_value)
259 {
260 while (cryp_is_logic_busy(device_data))
261 cpu_relax();
262
263 switch (init_vector_index) {
264 case CRYP_INIT_VECTOR_INDEX_0:
265 writel_relaxed(init_vector_value.init_value_left,
266 &device_data->base->init_vect_0_l);
267 writel_relaxed(init_vector_value.init_value_right,
268 &device_data->base->init_vect_0_r);
269 break;
270 case CRYP_INIT_VECTOR_INDEX_1:
271 writel_relaxed(init_vector_value.init_value_left,
272 &device_data->base->init_vect_1_l);
273 writel_relaxed(init_vector_value.init_value_right,
274 &device_data->base->init_vect_1_r);
275 break;
276 default:
277 return -EINVAL;
278 }
279
280 return 0;
281 }
282
283 /**
284 * cryp_save_device_context - Store hardware registers and
285 * other device context parameter
286 * @device_data: Pointer to the device data struct for base address.
287 * @ctx: Crypto device context
288 */
cryp_save_device_context(struct cryp_device_data * device_data,struct cryp_device_context * ctx,int cryp_mode)289 void cryp_save_device_context(struct cryp_device_data *device_data,
290 struct cryp_device_context *ctx,
291 int cryp_mode)
292 {
293 enum cryp_algo_mode algomode;
294 struct cryp_register __iomem *src_reg = device_data->base;
295 struct cryp_config *config =
296 (struct cryp_config *)device_data->current_ctx;
297
298 /*
299 * Always start by disable the hardware and wait for it to finish the
300 * ongoing calculations before trying to reprogram it.
301 */
302 cryp_activity(device_data, CRYP_CRYPEN_DISABLE);
303 cryp_wait_until_done(device_data);
304
305 if (cryp_mode == CRYP_MODE_DMA)
306 cryp_configure_for_dma(device_data, CRYP_DMA_DISABLE_BOTH);
307
308 if (CRYP_TEST_BITS(&src_reg->sr, CRYP_SR_IFEM_MASK) == 0)
309 ctx->din = readl_relaxed(&src_reg->din);
310
311 ctx->cr = readl_relaxed(&src_reg->cr) & CRYP_CR_CONTEXT_SAVE_MASK;
312
313 switch (config->keysize) {
314 case CRYP_KEY_SIZE_256:
315 ctx->key_4_l = readl_relaxed(&src_reg->key_4_l);
316 ctx->key_4_r = readl_relaxed(&src_reg->key_4_r);
317
318 case CRYP_KEY_SIZE_192:
319 ctx->key_3_l = readl_relaxed(&src_reg->key_3_l);
320 ctx->key_3_r = readl_relaxed(&src_reg->key_3_r);
321
322 case CRYP_KEY_SIZE_128:
323 ctx->key_2_l = readl_relaxed(&src_reg->key_2_l);
324 ctx->key_2_r = readl_relaxed(&src_reg->key_2_r);
325
326 default:
327 ctx->key_1_l = readl_relaxed(&src_reg->key_1_l);
328 ctx->key_1_r = readl_relaxed(&src_reg->key_1_r);
329 }
330
331 /* Save IV for CBC mode for both AES and DES. */
332 algomode = ((ctx->cr & CRYP_CR_ALGOMODE_MASK) >> CRYP_CR_ALGOMODE_POS);
333 if (algomode == CRYP_ALGO_TDES_CBC ||
334 algomode == CRYP_ALGO_DES_CBC ||
335 algomode == CRYP_ALGO_AES_CBC) {
336 ctx->init_vect_0_l = readl_relaxed(&src_reg->init_vect_0_l);
337 ctx->init_vect_0_r = readl_relaxed(&src_reg->init_vect_0_r);
338 ctx->init_vect_1_l = readl_relaxed(&src_reg->init_vect_1_l);
339 ctx->init_vect_1_r = readl_relaxed(&src_reg->init_vect_1_r);
340 }
341 }
342
343 /**
344 * cryp_restore_device_context - Restore hardware registers and
345 * other device context parameter
346 * @device_data: Pointer to the device data struct for base address.
347 * @ctx: Crypto device context
348 */
cryp_restore_device_context(struct cryp_device_data * device_data,struct cryp_device_context * ctx)349 void cryp_restore_device_context(struct cryp_device_data *device_data,
350 struct cryp_device_context *ctx)
351 {
352 struct cryp_register __iomem *reg = device_data->base;
353 struct cryp_config *config =
354 (struct cryp_config *)device_data->current_ctx;
355
356 /*
357 * Fall through for all items in switch statement. DES is captured in
358 * the default.
359 */
360 switch (config->keysize) {
361 case CRYP_KEY_SIZE_256:
362 writel_relaxed(ctx->key_4_l, ®->key_4_l);
363 writel_relaxed(ctx->key_4_r, ®->key_4_r);
364
365 case CRYP_KEY_SIZE_192:
366 writel_relaxed(ctx->key_3_l, ®->key_3_l);
367 writel_relaxed(ctx->key_3_r, ®->key_3_r);
368
369 case CRYP_KEY_SIZE_128:
370 writel_relaxed(ctx->key_2_l, ®->key_2_l);
371 writel_relaxed(ctx->key_2_r, ®->key_2_r);
372
373 default:
374 writel_relaxed(ctx->key_1_l, ®->key_1_l);
375 writel_relaxed(ctx->key_1_r, ®->key_1_r);
376 }
377
378 /* Restore IV for CBC mode for AES and DES. */
379 if (config->algomode == CRYP_ALGO_TDES_CBC ||
380 config->algomode == CRYP_ALGO_DES_CBC ||
381 config->algomode == CRYP_ALGO_AES_CBC) {
382 writel_relaxed(ctx->init_vect_0_l, ®->init_vect_0_l);
383 writel_relaxed(ctx->init_vect_0_r, ®->init_vect_0_r);
384 writel_relaxed(ctx->init_vect_1_l, ®->init_vect_1_l);
385 writel_relaxed(ctx->init_vect_1_r, ®->init_vect_1_r);
386 }
387 }
388