1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Page table allocation functions
4 *
5 * Copyright IBM Corp. 2016
6 * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
7 */
8
9 #include <linux/sysctl.h>
10 #include <linux/slab.h>
11 #include <linux/mm.h>
12 #include <asm/mmu_context.h>
13 #include <asm/pgalloc.h>
14 #include <asm/gmap.h>
15 #include <asm/tlb.h>
16 #include <asm/tlbflush.h>
17
18 #ifdef CONFIG_PGSTE
19
20 static int page_table_allocate_pgste_min = 0;
21 static int page_table_allocate_pgste_max = 1;
22 int page_table_allocate_pgste = 0;
23 EXPORT_SYMBOL(page_table_allocate_pgste);
24
25 static struct ctl_table page_table_sysctl[] = {
26 {
27 .procname = "allocate_pgste",
28 .data = &page_table_allocate_pgste,
29 .maxlen = sizeof(int),
30 .mode = S_IRUGO | S_IWUSR,
31 .proc_handler = proc_dointvec_minmax,
32 .extra1 = &page_table_allocate_pgste_min,
33 .extra2 = &page_table_allocate_pgste_max,
34 },
35 { }
36 };
37
38 static struct ctl_table page_table_sysctl_dir[] = {
39 {
40 .procname = "vm",
41 .maxlen = 0,
42 .mode = 0555,
43 .child = page_table_sysctl,
44 },
45 { }
46 };
47
page_table_register_sysctl(void)48 static int __init page_table_register_sysctl(void)
49 {
50 return register_sysctl_table(page_table_sysctl_dir) ? 0 : -ENOMEM;
51 }
52 __initcall(page_table_register_sysctl);
53
54 #endif /* CONFIG_PGSTE */
55
crst_table_alloc(struct mm_struct * mm)56 unsigned long *crst_table_alloc(struct mm_struct *mm)
57 {
58 struct page *page = alloc_pages(GFP_KERNEL, 2);
59
60 if (!page)
61 return NULL;
62 arch_set_page_dat(page, 2);
63 return (unsigned long *) page_to_phys(page);
64 }
65
crst_table_free(struct mm_struct * mm,unsigned long * table)66 void crst_table_free(struct mm_struct *mm, unsigned long *table)
67 {
68 free_pages((unsigned long) table, 2);
69 }
70
__crst_table_upgrade(void * arg)71 static void __crst_table_upgrade(void *arg)
72 {
73 struct mm_struct *mm = arg;
74
75 if (current->active_mm == mm)
76 set_user_asce(mm);
77 __tlb_flush_local();
78 }
79
crst_table_upgrade(struct mm_struct * mm,unsigned long end)80 int crst_table_upgrade(struct mm_struct *mm, unsigned long end)
81 {
82 unsigned long *table, *pgd;
83 int rc, notify;
84
85 /* upgrade should only happen from 3 to 4, 3 to 5, or 4 to 5 levels */
86 VM_BUG_ON(mm->context.asce_limit < _REGION2_SIZE);
87 rc = 0;
88 notify = 0;
89 while (mm->context.asce_limit < end) {
90 table = crst_table_alloc(mm);
91 if (!table) {
92 rc = -ENOMEM;
93 break;
94 }
95 spin_lock_bh(&mm->page_table_lock);
96 pgd = (unsigned long *) mm->pgd;
97 if (mm->context.asce_limit == _REGION2_SIZE) {
98 crst_table_init(table, _REGION2_ENTRY_EMPTY);
99 p4d_populate(mm, (p4d_t *) table, (pud_t *) pgd);
100 mm->pgd = (pgd_t *) table;
101 mm->context.asce_limit = _REGION1_SIZE;
102 mm->context.asce = __pa(mm->pgd) | _ASCE_TABLE_LENGTH |
103 _ASCE_USER_BITS | _ASCE_TYPE_REGION2;
104 } else {
105 crst_table_init(table, _REGION1_ENTRY_EMPTY);
106 pgd_populate(mm, (pgd_t *) table, (p4d_t *) pgd);
107 mm->pgd = (pgd_t *) table;
108 mm->context.asce_limit = -PAGE_SIZE;
109 mm->context.asce = __pa(mm->pgd) | _ASCE_TABLE_LENGTH |
110 _ASCE_USER_BITS | _ASCE_TYPE_REGION1;
111 }
112 notify = 1;
113 spin_unlock_bh(&mm->page_table_lock);
114 }
115 if (notify)
116 on_each_cpu(__crst_table_upgrade, mm, 0);
117 return rc;
118 }
119
crst_table_downgrade(struct mm_struct * mm)120 void crst_table_downgrade(struct mm_struct *mm)
121 {
122 pgd_t *pgd;
123
124 /* downgrade should only happen from 3 to 2 levels (compat only) */
125 VM_BUG_ON(mm->context.asce_limit != _REGION2_SIZE);
126
127 if (current->active_mm == mm) {
128 clear_user_asce();
129 __tlb_flush_mm(mm);
130 }
131
132 pgd = mm->pgd;
133 mm->pgd = (pgd_t *) (pgd_val(*pgd) & _REGION_ENTRY_ORIGIN);
134 mm->context.asce_limit = _REGION3_SIZE;
135 mm->context.asce = __pa(mm->pgd) | _ASCE_TABLE_LENGTH |
136 _ASCE_USER_BITS | _ASCE_TYPE_SEGMENT;
137 crst_table_free(mm, (unsigned long *) pgd);
138
139 if (current->active_mm == mm)
140 set_user_asce(mm);
141 }
142
atomic_xor_bits(atomic_t * v,unsigned int bits)143 static inline unsigned int atomic_xor_bits(atomic_t *v, unsigned int bits)
144 {
145 unsigned int old, new;
146
147 do {
148 old = atomic_read(v);
149 new = old ^ bits;
150 } while (atomic_cmpxchg(v, old, new) != old);
151 return new;
152 }
153
154 #ifdef CONFIG_PGSTE
155
page_table_alloc_pgste(struct mm_struct * mm)156 struct page *page_table_alloc_pgste(struct mm_struct *mm)
157 {
158 struct page *page;
159 u64 *table;
160
161 page = alloc_page(GFP_KERNEL);
162 if (page) {
163 table = (u64 *)page_to_phys(page);
164 memset64(table, _PAGE_INVALID, PTRS_PER_PTE);
165 memset64(table + PTRS_PER_PTE, 0, PTRS_PER_PTE);
166 }
167 return page;
168 }
169
page_table_free_pgste(struct page * page)170 void page_table_free_pgste(struct page *page)
171 {
172 __free_page(page);
173 }
174
175 #endif /* CONFIG_PGSTE */
176
177 /*
178 * page table entry allocation/free routines.
179 */
page_table_alloc(struct mm_struct * mm)180 unsigned long *page_table_alloc(struct mm_struct *mm)
181 {
182 unsigned long *table;
183 struct page *page;
184 unsigned int mask, bit;
185
186 /* Try to get a fragment of a 4K page as a 2K page table */
187 if (!mm_alloc_pgste(mm)) {
188 table = NULL;
189 spin_lock_bh(&mm->context.lock);
190 if (!list_empty(&mm->context.pgtable_list)) {
191 page = list_first_entry(&mm->context.pgtable_list,
192 struct page, lru);
193 mask = atomic_read(&page->_refcount) >> 24;
194 mask = (mask | (mask >> 4)) & 3;
195 if (mask != 3) {
196 table = (unsigned long *) page_to_phys(page);
197 bit = mask & 1; /* =1 -> second 2K */
198 if (bit)
199 table += PTRS_PER_PTE;
200 atomic_xor_bits(&page->_refcount,
201 1U << (bit + 24));
202 list_del(&page->lru);
203 }
204 }
205 spin_unlock_bh(&mm->context.lock);
206 if (table)
207 return table;
208 }
209 /* Allocate a fresh page */
210 page = alloc_page(GFP_KERNEL);
211 if (!page)
212 return NULL;
213 if (!pgtable_page_ctor(page)) {
214 __free_page(page);
215 return NULL;
216 }
217 arch_set_page_dat(page, 0);
218 /* Initialize page table */
219 table = (unsigned long *) page_to_phys(page);
220 if (mm_alloc_pgste(mm)) {
221 /* Return 4K page table with PGSTEs */
222 atomic_xor_bits(&page->_refcount, 3 << 24);
223 memset64((u64 *)table, _PAGE_INVALID, PTRS_PER_PTE);
224 memset64((u64 *)table + PTRS_PER_PTE, 0, PTRS_PER_PTE);
225 } else {
226 /* Return the first 2K fragment of the page */
227 atomic_xor_bits(&page->_refcount, 1 << 24);
228 memset64((u64 *)table, _PAGE_INVALID, 2 * PTRS_PER_PTE);
229 spin_lock_bh(&mm->context.lock);
230 list_add(&page->lru, &mm->context.pgtable_list);
231 spin_unlock_bh(&mm->context.lock);
232 }
233 return table;
234 }
235
page_table_free(struct mm_struct * mm,unsigned long * table)236 void page_table_free(struct mm_struct *mm, unsigned long *table)
237 {
238 struct page *page;
239 unsigned int bit, mask;
240
241 page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
242 if (!mm_alloc_pgste(mm)) {
243 /* Free 2K page table fragment of a 4K page */
244 bit = (__pa(table) & ~PAGE_MASK)/(PTRS_PER_PTE*sizeof(pte_t));
245 spin_lock_bh(&mm->context.lock);
246 mask = atomic_xor_bits(&page->_refcount, 1U << (bit + 24));
247 mask >>= 24;
248 if (mask & 3)
249 list_add(&page->lru, &mm->context.pgtable_list);
250 else
251 list_del(&page->lru);
252 spin_unlock_bh(&mm->context.lock);
253 if (mask != 0)
254 return;
255 } else {
256 atomic_xor_bits(&page->_refcount, 3U << 24);
257 }
258
259 pgtable_page_dtor(page);
260 __free_page(page);
261 }
262
page_table_free_rcu(struct mmu_gather * tlb,unsigned long * table,unsigned long vmaddr)263 void page_table_free_rcu(struct mmu_gather *tlb, unsigned long *table,
264 unsigned long vmaddr)
265 {
266 struct mm_struct *mm;
267 struct page *page;
268 unsigned int bit, mask;
269
270 mm = tlb->mm;
271 page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
272 if (mm_alloc_pgste(mm)) {
273 gmap_unlink(mm, table, vmaddr);
274 table = (unsigned long *) (__pa(table) | 3);
275 tlb_remove_table(tlb, table);
276 return;
277 }
278 bit = (__pa(table) & ~PAGE_MASK) / (PTRS_PER_PTE*sizeof(pte_t));
279 spin_lock_bh(&mm->context.lock);
280 mask = atomic_xor_bits(&page->_refcount, 0x11U << (bit + 24));
281 mask >>= 24;
282 if (mask & 3)
283 list_add_tail(&page->lru, &mm->context.pgtable_list);
284 else
285 list_del(&page->lru);
286 spin_unlock_bh(&mm->context.lock);
287 table = (unsigned long *) (__pa(table) | (1U << bit));
288 tlb_remove_table(tlb, table);
289 }
290
__tlb_remove_table(void * _table)291 static void __tlb_remove_table(void *_table)
292 {
293 unsigned int mask = (unsigned long) _table & 3;
294 void *table = (void *)((unsigned long) _table ^ mask);
295 struct page *page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
296
297 switch (mask) {
298 case 0: /* pmd, pud, or p4d */
299 free_pages((unsigned long) table, 2);
300 break;
301 case 1: /* lower 2K of a 4K page table */
302 case 2: /* higher 2K of a 4K page table */
303 mask = atomic_xor_bits(&page->_refcount, mask << (4 + 24));
304 mask >>= 24;
305 if (mask != 0)
306 break;
307 /* fallthrough */
308 case 3: /* 4K page table with pgstes */
309 if (mask & 3)
310 atomic_xor_bits(&page->_refcount, 3 << 24);
311 pgtable_page_dtor(page);
312 __free_page(page);
313 break;
314 }
315 }
316
tlb_remove_table_smp_sync(void * arg)317 static void tlb_remove_table_smp_sync(void *arg)
318 {
319 /* Simply deliver the interrupt */
320 }
321
tlb_remove_table_one(void * table)322 static void tlb_remove_table_one(void *table)
323 {
324 /*
325 * This isn't an RCU grace period and hence the page-tables cannot be
326 * assumed to be actually RCU-freed.
327 *
328 * It is however sufficient for software page-table walkers that rely
329 * on IRQ disabling. See the comment near struct mmu_table_batch.
330 */
331 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
332 __tlb_remove_table(table);
333 }
334
tlb_remove_table_rcu(struct rcu_head * head)335 static void tlb_remove_table_rcu(struct rcu_head *head)
336 {
337 struct mmu_table_batch *batch;
338 int i;
339
340 batch = container_of(head, struct mmu_table_batch, rcu);
341
342 for (i = 0; i < batch->nr; i++)
343 __tlb_remove_table(batch->tables[i]);
344
345 free_page((unsigned long)batch);
346 }
347
tlb_table_flush(struct mmu_gather * tlb)348 void tlb_table_flush(struct mmu_gather *tlb)
349 {
350 struct mmu_table_batch **batch = &tlb->batch;
351
352 if (*batch) {
353 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
354 *batch = NULL;
355 }
356 }
357
tlb_remove_table(struct mmu_gather * tlb,void * table)358 void tlb_remove_table(struct mmu_gather *tlb, void *table)
359 {
360 struct mmu_table_batch **batch = &tlb->batch;
361
362 tlb->mm->context.flush_mm = 1;
363 if (*batch == NULL) {
364 *batch = (struct mmu_table_batch *)
365 __get_free_page(GFP_NOWAIT | __GFP_NOWARN);
366 if (*batch == NULL) {
367 __tlb_flush_mm_lazy(tlb->mm);
368 tlb_remove_table_one(table);
369 return;
370 }
371 (*batch)->nr = 0;
372 }
373 (*batch)->tables[(*batch)->nr++] = table;
374 if ((*batch)->nr == MAX_TABLE_BATCH)
375 tlb_flush_mmu(tlb);
376 }
377
378 /*
379 * Base infrastructure required to generate basic asces, region, segment,
380 * and page tables that do not make use of enhanced features like EDAT1.
381 */
382
383 static struct kmem_cache *base_pgt_cache;
384
base_pgt_alloc(void)385 static unsigned long base_pgt_alloc(void)
386 {
387 u64 *table;
388
389 table = kmem_cache_alloc(base_pgt_cache, GFP_KERNEL);
390 if (table)
391 memset64(table, _PAGE_INVALID, PTRS_PER_PTE);
392 return (unsigned long) table;
393 }
394
base_pgt_free(unsigned long table)395 static void base_pgt_free(unsigned long table)
396 {
397 kmem_cache_free(base_pgt_cache, (void *) table);
398 }
399
base_crst_alloc(unsigned long val)400 static unsigned long base_crst_alloc(unsigned long val)
401 {
402 unsigned long table;
403
404 table = __get_free_pages(GFP_KERNEL, CRST_ALLOC_ORDER);
405 if (table)
406 crst_table_init((unsigned long *)table, val);
407 return table;
408 }
409
base_crst_free(unsigned long table)410 static void base_crst_free(unsigned long table)
411 {
412 free_pages(table, CRST_ALLOC_ORDER);
413 }
414
415 #define BASE_ADDR_END_FUNC(NAME, SIZE) \
416 static inline unsigned long base_##NAME##_addr_end(unsigned long addr, \
417 unsigned long end) \
418 { \
419 unsigned long next = (addr + (SIZE)) & ~((SIZE) - 1); \
420 \
421 return (next - 1) < (end - 1) ? next : end; \
422 }
423
BASE_ADDR_END_FUNC(page,_PAGE_SIZE)424 BASE_ADDR_END_FUNC(page, _PAGE_SIZE)
425 BASE_ADDR_END_FUNC(segment, _SEGMENT_SIZE)
426 BASE_ADDR_END_FUNC(region3, _REGION3_SIZE)
427 BASE_ADDR_END_FUNC(region2, _REGION2_SIZE)
428 BASE_ADDR_END_FUNC(region1, _REGION1_SIZE)
429
430 static inline unsigned long base_lra(unsigned long address)
431 {
432 unsigned long real;
433
434 asm volatile(
435 " lra %0,0(%1)\n"
436 : "=d" (real) : "a" (address) : "cc");
437 return real;
438 }
439
base_page_walk(unsigned long origin,unsigned long addr,unsigned long end,int alloc)440 static int base_page_walk(unsigned long origin, unsigned long addr,
441 unsigned long end, int alloc)
442 {
443 unsigned long *pte, next;
444
445 if (!alloc)
446 return 0;
447 pte = (unsigned long *) origin;
448 pte += (addr & _PAGE_INDEX) >> _PAGE_SHIFT;
449 do {
450 next = base_page_addr_end(addr, end);
451 *pte = base_lra(addr);
452 } while (pte++, addr = next, addr < end);
453 return 0;
454 }
455
base_segment_walk(unsigned long origin,unsigned long addr,unsigned long end,int alloc)456 static int base_segment_walk(unsigned long origin, unsigned long addr,
457 unsigned long end, int alloc)
458 {
459 unsigned long *ste, next, table;
460 int rc;
461
462 ste = (unsigned long *) origin;
463 ste += (addr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
464 do {
465 next = base_segment_addr_end(addr, end);
466 if (*ste & _SEGMENT_ENTRY_INVALID) {
467 if (!alloc)
468 continue;
469 table = base_pgt_alloc();
470 if (!table)
471 return -ENOMEM;
472 *ste = table | _SEGMENT_ENTRY;
473 }
474 table = *ste & _SEGMENT_ENTRY_ORIGIN;
475 rc = base_page_walk(table, addr, next, alloc);
476 if (rc)
477 return rc;
478 if (!alloc)
479 base_pgt_free(table);
480 cond_resched();
481 } while (ste++, addr = next, addr < end);
482 return 0;
483 }
484
base_region3_walk(unsigned long origin,unsigned long addr,unsigned long end,int alloc)485 static int base_region3_walk(unsigned long origin, unsigned long addr,
486 unsigned long end, int alloc)
487 {
488 unsigned long *rtte, next, table;
489 int rc;
490
491 rtte = (unsigned long *) origin;
492 rtte += (addr & _REGION3_INDEX) >> _REGION3_SHIFT;
493 do {
494 next = base_region3_addr_end(addr, end);
495 if (*rtte & _REGION_ENTRY_INVALID) {
496 if (!alloc)
497 continue;
498 table = base_crst_alloc(_SEGMENT_ENTRY_EMPTY);
499 if (!table)
500 return -ENOMEM;
501 *rtte = table | _REGION3_ENTRY;
502 }
503 table = *rtte & _REGION_ENTRY_ORIGIN;
504 rc = base_segment_walk(table, addr, next, alloc);
505 if (rc)
506 return rc;
507 if (!alloc)
508 base_crst_free(table);
509 } while (rtte++, addr = next, addr < end);
510 return 0;
511 }
512
base_region2_walk(unsigned long origin,unsigned long addr,unsigned long end,int alloc)513 static int base_region2_walk(unsigned long origin, unsigned long addr,
514 unsigned long end, int alloc)
515 {
516 unsigned long *rste, next, table;
517 int rc;
518
519 rste = (unsigned long *) origin;
520 rste += (addr & _REGION2_INDEX) >> _REGION2_SHIFT;
521 do {
522 next = base_region2_addr_end(addr, end);
523 if (*rste & _REGION_ENTRY_INVALID) {
524 if (!alloc)
525 continue;
526 table = base_crst_alloc(_REGION3_ENTRY_EMPTY);
527 if (!table)
528 return -ENOMEM;
529 *rste = table | _REGION2_ENTRY;
530 }
531 table = *rste & _REGION_ENTRY_ORIGIN;
532 rc = base_region3_walk(table, addr, next, alloc);
533 if (rc)
534 return rc;
535 if (!alloc)
536 base_crst_free(table);
537 } while (rste++, addr = next, addr < end);
538 return 0;
539 }
540
base_region1_walk(unsigned long origin,unsigned long addr,unsigned long end,int alloc)541 static int base_region1_walk(unsigned long origin, unsigned long addr,
542 unsigned long end, int alloc)
543 {
544 unsigned long *rfte, next, table;
545 int rc;
546
547 rfte = (unsigned long *) origin;
548 rfte += (addr & _REGION1_INDEX) >> _REGION1_SHIFT;
549 do {
550 next = base_region1_addr_end(addr, end);
551 if (*rfte & _REGION_ENTRY_INVALID) {
552 if (!alloc)
553 continue;
554 table = base_crst_alloc(_REGION2_ENTRY_EMPTY);
555 if (!table)
556 return -ENOMEM;
557 *rfte = table | _REGION1_ENTRY;
558 }
559 table = *rfte & _REGION_ENTRY_ORIGIN;
560 rc = base_region2_walk(table, addr, next, alloc);
561 if (rc)
562 return rc;
563 if (!alloc)
564 base_crst_free(table);
565 } while (rfte++, addr = next, addr < end);
566 return 0;
567 }
568
569 /**
570 * base_asce_free - free asce and tables returned from base_asce_alloc()
571 * @asce: asce to be freed
572 *
573 * Frees all region, segment, and page tables that were allocated with a
574 * corresponding base_asce_alloc() call.
575 */
base_asce_free(unsigned long asce)576 void base_asce_free(unsigned long asce)
577 {
578 unsigned long table = asce & _ASCE_ORIGIN;
579
580 if (!asce)
581 return;
582 switch (asce & _ASCE_TYPE_MASK) {
583 case _ASCE_TYPE_SEGMENT:
584 base_segment_walk(table, 0, _REGION3_SIZE, 0);
585 break;
586 case _ASCE_TYPE_REGION3:
587 base_region3_walk(table, 0, _REGION2_SIZE, 0);
588 break;
589 case _ASCE_TYPE_REGION2:
590 base_region2_walk(table, 0, _REGION1_SIZE, 0);
591 break;
592 case _ASCE_TYPE_REGION1:
593 base_region1_walk(table, 0, -_PAGE_SIZE, 0);
594 break;
595 }
596 base_crst_free(table);
597 }
598
base_pgt_cache_init(void)599 static int base_pgt_cache_init(void)
600 {
601 static DEFINE_MUTEX(base_pgt_cache_mutex);
602 unsigned long sz = _PAGE_TABLE_SIZE;
603
604 if (base_pgt_cache)
605 return 0;
606 mutex_lock(&base_pgt_cache_mutex);
607 if (!base_pgt_cache)
608 base_pgt_cache = kmem_cache_create("base_pgt", sz, sz, 0, NULL);
609 mutex_unlock(&base_pgt_cache_mutex);
610 return base_pgt_cache ? 0 : -ENOMEM;
611 }
612
613 /**
614 * base_asce_alloc - create kernel mapping without enhanced DAT features
615 * @addr: virtual start address of kernel mapping
616 * @num_pages: number of consecutive pages
617 *
618 * Generate an asce, including all required region, segment and page tables,
619 * that can be used to access the virtual kernel mapping. The difference is
620 * that the returned asce does not make use of any enhanced DAT features like
621 * e.g. large pages. This is required for some I/O functions that pass an
622 * asce, like e.g. some service call requests.
623 *
624 * Note: the returned asce may NEVER be attached to any cpu. It may only be
625 * used for I/O requests. tlb entries that might result because the
626 * asce was attached to a cpu won't be cleared.
627 */
base_asce_alloc(unsigned long addr,unsigned long num_pages)628 unsigned long base_asce_alloc(unsigned long addr, unsigned long num_pages)
629 {
630 unsigned long asce, table, end;
631 int rc;
632
633 if (base_pgt_cache_init())
634 return 0;
635 end = addr + num_pages * PAGE_SIZE;
636 if (end <= _REGION3_SIZE) {
637 table = base_crst_alloc(_SEGMENT_ENTRY_EMPTY);
638 if (!table)
639 return 0;
640 rc = base_segment_walk(table, addr, end, 1);
641 asce = table | _ASCE_TYPE_SEGMENT | _ASCE_TABLE_LENGTH;
642 } else if (end <= _REGION2_SIZE) {
643 table = base_crst_alloc(_REGION3_ENTRY_EMPTY);
644 if (!table)
645 return 0;
646 rc = base_region3_walk(table, addr, end, 1);
647 asce = table | _ASCE_TYPE_REGION3 | _ASCE_TABLE_LENGTH;
648 } else if (end <= _REGION1_SIZE) {
649 table = base_crst_alloc(_REGION2_ENTRY_EMPTY);
650 if (!table)
651 return 0;
652 rc = base_region2_walk(table, addr, end, 1);
653 asce = table | _ASCE_TYPE_REGION2 | _ASCE_TABLE_LENGTH;
654 } else {
655 table = base_crst_alloc(_REGION1_ENTRY_EMPTY);
656 if (!table)
657 return 0;
658 rc = base_region1_walk(table, addr, end, 1);
659 asce = table | _ASCE_TYPE_REGION1 | _ASCE_TABLE_LENGTH;
660 }
661 if (rc) {
662 base_asce_free(asce);
663 asce = 0;
664 }
665 return asce;
666 }
667