1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Page table allocation functions
4  *
5  *    Copyright IBM Corp. 2016
6  *    Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
7  */
8 
9 #include <linux/sysctl.h>
10 #include <linux/slab.h>
11 #include <linux/mm.h>
12 #include <asm/mmu_context.h>
13 #include <asm/pgalloc.h>
14 #include <asm/gmap.h>
15 #include <asm/tlb.h>
16 #include <asm/tlbflush.h>
17 
18 #ifdef CONFIG_PGSTE
19 
20 static int page_table_allocate_pgste_min = 0;
21 static int page_table_allocate_pgste_max = 1;
22 int page_table_allocate_pgste = 0;
23 EXPORT_SYMBOL(page_table_allocate_pgste);
24 
25 static struct ctl_table page_table_sysctl[] = {
26 	{
27 		.procname	= "allocate_pgste",
28 		.data		= &page_table_allocate_pgste,
29 		.maxlen		= sizeof(int),
30 		.mode		= S_IRUGO | S_IWUSR,
31 		.proc_handler	= proc_dointvec_minmax,
32 		.extra1		= &page_table_allocate_pgste_min,
33 		.extra2		= &page_table_allocate_pgste_max,
34 	},
35 	{ }
36 };
37 
38 static struct ctl_table page_table_sysctl_dir[] = {
39 	{
40 		.procname	= "vm",
41 		.maxlen		= 0,
42 		.mode		= 0555,
43 		.child		= page_table_sysctl,
44 	},
45 	{ }
46 };
47 
page_table_register_sysctl(void)48 static int __init page_table_register_sysctl(void)
49 {
50 	return register_sysctl_table(page_table_sysctl_dir) ? 0 : -ENOMEM;
51 }
52 __initcall(page_table_register_sysctl);
53 
54 #endif /* CONFIG_PGSTE */
55 
crst_table_alloc(struct mm_struct * mm)56 unsigned long *crst_table_alloc(struct mm_struct *mm)
57 {
58 	struct page *page = alloc_pages(GFP_KERNEL, 2);
59 
60 	if (!page)
61 		return NULL;
62 	arch_set_page_dat(page, 2);
63 	return (unsigned long *) page_to_phys(page);
64 }
65 
crst_table_free(struct mm_struct * mm,unsigned long * table)66 void crst_table_free(struct mm_struct *mm, unsigned long *table)
67 {
68 	free_pages((unsigned long) table, 2);
69 }
70 
__crst_table_upgrade(void * arg)71 static void __crst_table_upgrade(void *arg)
72 {
73 	struct mm_struct *mm = arg;
74 
75 	if (current->active_mm == mm)
76 		set_user_asce(mm);
77 	__tlb_flush_local();
78 }
79 
crst_table_upgrade(struct mm_struct * mm,unsigned long end)80 int crst_table_upgrade(struct mm_struct *mm, unsigned long end)
81 {
82 	unsigned long *table, *pgd;
83 	int rc, notify;
84 
85 	/* upgrade should only happen from 3 to 4, 3 to 5, or 4 to 5 levels */
86 	VM_BUG_ON(mm->context.asce_limit < _REGION2_SIZE);
87 	rc = 0;
88 	notify = 0;
89 	while (mm->context.asce_limit < end) {
90 		table = crst_table_alloc(mm);
91 		if (!table) {
92 			rc = -ENOMEM;
93 			break;
94 		}
95 		spin_lock_bh(&mm->page_table_lock);
96 		pgd = (unsigned long *) mm->pgd;
97 		if (mm->context.asce_limit == _REGION2_SIZE) {
98 			crst_table_init(table, _REGION2_ENTRY_EMPTY);
99 			p4d_populate(mm, (p4d_t *) table, (pud_t *) pgd);
100 			mm->pgd = (pgd_t *) table;
101 			mm->context.asce_limit = _REGION1_SIZE;
102 			mm->context.asce = __pa(mm->pgd) | _ASCE_TABLE_LENGTH |
103 				_ASCE_USER_BITS | _ASCE_TYPE_REGION2;
104 		} else {
105 			crst_table_init(table, _REGION1_ENTRY_EMPTY);
106 			pgd_populate(mm, (pgd_t *) table, (p4d_t *) pgd);
107 			mm->pgd = (pgd_t *) table;
108 			mm->context.asce_limit = -PAGE_SIZE;
109 			mm->context.asce = __pa(mm->pgd) | _ASCE_TABLE_LENGTH |
110 				_ASCE_USER_BITS | _ASCE_TYPE_REGION1;
111 		}
112 		notify = 1;
113 		spin_unlock_bh(&mm->page_table_lock);
114 	}
115 	if (notify)
116 		on_each_cpu(__crst_table_upgrade, mm, 0);
117 	return rc;
118 }
119 
crst_table_downgrade(struct mm_struct * mm)120 void crst_table_downgrade(struct mm_struct *mm)
121 {
122 	pgd_t *pgd;
123 
124 	/* downgrade should only happen from 3 to 2 levels (compat only) */
125 	VM_BUG_ON(mm->context.asce_limit != _REGION2_SIZE);
126 
127 	if (current->active_mm == mm) {
128 		clear_user_asce();
129 		__tlb_flush_mm(mm);
130 	}
131 
132 	pgd = mm->pgd;
133 	mm->pgd = (pgd_t *) (pgd_val(*pgd) & _REGION_ENTRY_ORIGIN);
134 	mm->context.asce_limit = _REGION3_SIZE;
135 	mm->context.asce = __pa(mm->pgd) | _ASCE_TABLE_LENGTH |
136 			   _ASCE_USER_BITS | _ASCE_TYPE_SEGMENT;
137 	crst_table_free(mm, (unsigned long *) pgd);
138 
139 	if (current->active_mm == mm)
140 		set_user_asce(mm);
141 }
142 
atomic_xor_bits(atomic_t * v,unsigned int bits)143 static inline unsigned int atomic_xor_bits(atomic_t *v, unsigned int bits)
144 {
145 	unsigned int old, new;
146 
147 	do {
148 		old = atomic_read(v);
149 		new = old ^ bits;
150 	} while (atomic_cmpxchg(v, old, new) != old);
151 	return new;
152 }
153 
154 #ifdef CONFIG_PGSTE
155 
page_table_alloc_pgste(struct mm_struct * mm)156 struct page *page_table_alloc_pgste(struct mm_struct *mm)
157 {
158 	struct page *page;
159 	u64 *table;
160 
161 	page = alloc_page(GFP_KERNEL);
162 	if (page) {
163 		table = (u64 *)page_to_phys(page);
164 		memset64(table, _PAGE_INVALID, PTRS_PER_PTE);
165 		memset64(table + PTRS_PER_PTE, 0, PTRS_PER_PTE);
166 	}
167 	return page;
168 }
169 
page_table_free_pgste(struct page * page)170 void page_table_free_pgste(struct page *page)
171 {
172 	__free_page(page);
173 }
174 
175 #endif /* CONFIG_PGSTE */
176 
177 /*
178  * page table entry allocation/free routines.
179  */
page_table_alloc(struct mm_struct * mm)180 unsigned long *page_table_alloc(struct mm_struct *mm)
181 {
182 	unsigned long *table;
183 	struct page *page;
184 	unsigned int mask, bit;
185 
186 	/* Try to get a fragment of a 4K page as a 2K page table */
187 	if (!mm_alloc_pgste(mm)) {
188 		table = NULL;
189 		spin_lock_bh(&mm->context.lock);
190 		if (!list_empty(&mm->context.pgtable_list)) {
191 			page = list_first_entry(&mm->context.pgtable_list,
192 						struct page, lru);
193 			mask = atomic_read(&page->_refcount) >> 24;
194 			mask = (mask | (mask >> 4)) & 3;
195 			if (mask != 3) {
196 				table = (unsigned long *) page_to_phys(page);
197 				bit = mask & 1;		/* =1 -> second 2K */
198 				if (bit)
199 					table += PTRS_PER_PTE;
200 				atomic_xor_bits(&page->_refcount,
201 							1U << (bit + 24));
202 				list_del(&page->lru);
203 			}
204 		}
205 		spin_unlock_bh(&mm->context.lock);
206 		if (table)
207 			return table;
208 	}
209 	/* Allocate a fresh page */
210 	page = alloc_page(GFP_KERNEL);
211 	if (!page)
212 		return NULL;
213 	if (!pgtable_page_ctor(page)) {
214 		__free_page(page);
215 		return NULL;
216 	}
217 	arch_set_page_dat(page, 0);
218 	/* Initialize page table */
219 	table = (unsigned long *) page_to_phys(page);
220 	if (mm_alloc_pgste(mm)) {
221 		/* Return 4K page table with PGSTEs */
222 		atomic_xor_bits(&page->_refcount, 3 << 24);
223 		memset64((u64 *)table, _PAGE_INVALID, PTRS_PER_PTE);
224 		memset64((u64 *)table + PTRS_PER_PTE, 0, PTRS_PER_PTE);
225 	} else {
226 		/* Return the first 2K fragment of the page */
227 		atomic_xor_bits(&page->_refcount, 1 << 24);
228 		memset64((u64 *)table, _PAGE_INVALID, 2 * PTRS_PER_PTE);
229 		spin_lock_bh(&mm->context.lock);
230 		list_add(&page->lru, &mm->context.pgtable_list);
231 		spin_unlock_bh(&mm->context.lock);
232 	}
233 	return table;
234 }
235 
page_table_free(struct mm_struct * mm,unsigned long * table)236 void page_table_free(struct mm_struct *mm, unsigned long *table)
237 {
238 	struct page *page;
239 	unsigned int bit, mask;
240 
241 	page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
242 	if (!mm_alloc_pgste(mm)) {
243 		/* Free 2K page table fragment of a 4K page */
244 		bit = (__pa(table) & ~PAGE_MASK)/(PTRS_PER_PTE*sizeof(pte_t));
245 		spin_lock_bh(&mm->context.lock);
246 		mask = atomic_xor_bits(&page->_refcount, 1U << (bit + 24));
247 		mask >>= 24;
248 		if (mask & 3)
249 			list_add(&page->lru, &mm->context.pgtable_list);
250 		else
251 			list_del(&page->lru);
252 		spin_unlock_bh(&mm->context.lock);
253 		if (mask != 0)
254 			return;
255 	} else {
256 		atomic_xor_bits(&page->_refcount, 3U << 24);
257 	}
258 
259 	pgtable_page_dtor(page);
260 	__free_page(page);
261 }
262 
page_table_free_rcu(struct mmu_gather * tlb,unsigned long * table,unsigned long vmaddr)263 void page_table_free_rcu(struct mmu_gather *tlb, unsigned long *table,
264 			 unsigned long vmaddr)
265 {
266 	struct mm_struct *mm;
267 	struct page *page;
268 	unsigned int bit, mask;
269 
270 	mm = tlb->mm;
271 	page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
272 	if (mm_alloc_pgste(mm)) {
273 		gmap_unlink(mm, table, vmaddr);
274 		table = (unsigned long *) (__pa(table) | 3);
275 		tlb_remove_table(tlb, table);
276 		return;
277 	}
278 	bit = (__pa(table) & ~PAGE_MASK) / (PTRS_PER_PTE*sizeof(pte_t));
279 	spin_lock_bh(&mm->context.lock);
280 	mask = atomic_xor_bits(&page->_refcount, 0x11U << (bit + 24));
281 	mask >>= 24;
282 	if (mask & 3)
283 		list_add_tail(&page->lru, &mm->context.pgtable_list);
284 	else
285 		list_del(&page->lru);
286 	spin_unlock_bh(&mm->context.lock);
287 	table = (unsigned long *) (__pa(table) | (1U << bit));
288 	tlb_remove_table(tlb, table);
289 }
290 
__tlb_remove_table(void * _table)291 static void __tlb_remove_table(void *_table)
292 {
293 	unsigned int mask = (unsigned long) _table & 3;
294 	void *table = (void *)((unsigned long) _table ^ mask);
295 	struct page *page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
296 
297 	switch (mask) {
298 	case 0:		/* pmd, pud, or p4d */
299 		free_pages((unsigned long) table, 2);
300 		break;
301 	case 1:		/* lower 2K of a 4K page table */
302 	case 2:		/* higher 2K of a 4K page table */
303 		mask = atomic_xor_bits(&page->_refcount, mask << (4 + 24));
304 		mask >>= 24;
305 		if (mask != 0)
306 			break;
307 		/* fallthrough */
308 	case 3:		/* 4K page table with pgstes */
309 		if (mask & 3)
310 			atomic_xor_bits(&page->_refcount, 3 << 24);
311 		pgtable_page_dtor(page);
312 		__free_page(page);
313 		break;
314 	}
315 }
316 
tlb_remove_table_smp_sync(void * arg)317 static void tlb_remove_table_smp_sync(void *arg)
318 {
319 	/* Simply deliver the interrupt */
320 }
321 
tlb_remove_table_one(void * table)322 static void tlb_remove_table_one(void *table)
323 {
324 	/*
325 	 * This isn't an RCU grace period and hence the page-tables cannot be
326 	 * assumed to be actually RCU-freed.
327 	 *
328 	 * It is however sufficient for software page-table walkers that rely
329 	 * on IRQ disabling. See the comment near struct mmu_table_batch.
330 	 */
331 	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
332 	__tlb_remove_table(table);
333 }
334 
tlb_remove_table_rcu(struct rcu_head * head)335 static void tlb_remove_table_rcu(struct rcu_head *head)
336 {
337 	struct mmu_table_batch *batch;
338 	int i;
339 
340 	batch = container_of(head, struct mmu_table_batch, rcu);
341 
342 	for (i = 0; i < batch->nr; i++)
343 		__tlb_remove_table(batch->tables[i]);
344 
345 	free_page((unsigned long)batch);
346 }
347 
tlb_table_flush(struct mmu_gather * tlb)348 void tlb_table_flush(struct mmu_gather *tlb)
349 {
350 	struct mmu_table_batch **batch = &tlb->batch;
351 
352 	if (*batch) {
353 		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
354 		*batch = NULL;
355 	}
356 }
357 
tlb_remove_table(struct mmu_gather * tlb,void * table)358 void tlb_remove_table(struct mmu_gather *tlb, void *table)
359 {
360 	struct mmu_table_batch **batch = &tlb->batch;
361 
362 	tlb->mm->context.flush_mm = 1;
363 	if (*batch == NULL) {
364 		*batch = (struct mmu_table_batch *)
365 			__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
366 		if (*batch == NULL) {
367 			__tlb_flush_mm_lazy(tlb->mm);
368 			tlb_remove_table_one(table);
369 			return;
370 		}
371 		(*batch)->nr = 0;
372 	}
373 	(*batch)->tables[(*batch)->nr++] = table;
374 	if ((*batch)->nr == MAX_TABLE_BATCH)
375 		tlb_flush_mmu(tlb);
376 }
377 
378 /*
379  * Base infrastructure required to generate basic asces, region, segment,
380  * and page tables that do not make use of enhanced features like EDAT1.
381  */
382 
383 static struct kmem_cache *base_pgt_cache;
384 
base_pgt_alloc(void)385 static unsigned long base_pgt_alloc(void)
386 {
387 	u64 *table;
388 
389 	table = kmem_cache_alloc(base_pgt_cache, GFP_KERNEL);
390 	if (table)
391 		memset64(table, _PAGE_INVALID, PTRS_PER_PTE);
392 	return (unsigned long) table;
393 }
394 
base_pgt_free(unsigned long table)395 static void base_pgt_free(unsigned long table)
396 {
397 	kmem_cache_free(base_pgt_cache, (void *) table);
398 }
399 
base_crst_alloc(unsigned long val)400 static unsigned long base_crst_alloc(unsigned long val)
401 {
402 	unsigned long table;
403 
404 	table =	 __get_free_pages(GFP_KERNEL, CRST_ALLOC_ORDER);
405 	if (table)
406 		crst_table_init((unsigned long *)table, val);
407 	return table;
408 }
409 
base_crst_free(unsigned long table)410 static void base_crst_free(unsigned long table)
411 {
412 	free_pages(table, CRST_ALLOC_ORDER);
413 }
414 
415 #define BASE_ADDR_END_FUNC(NAME, SIZE)					\
416 static inline unsigned long base_##NAME##_addr_end(unsigned long addr,	\
417 						   unsigned long end)	\
418 {									\
419 	unsigned long next = (addr + (SIZE)) & ~((SIZE) - 1);		\
420 									\
421 	return (next - 1) < (end - 1) ? next : end;			\
422 }
423 
BASE_ADDR_END_FUNC(page,_PAGE_SIZE)424 BASE_ADDR_END_FUNC(page,    _PAGE_SIZE)
425 BASE_ADDR_END_FUNC(segment, _SEGMENT_SIZE)
426 BASE_ADDR_END_FUNC(region3, _REGION3_SIZE)
427 BASE_ADDR_END_FUNC(region2, _REGION2_SIZE)
428 BASE_ADDR_END_FUNC(region1, _REGION1_SIZE)
429 
430 static inline unsigned long base_lra(unsigned long address)
431 {
432 	unsigned long real;
433 
434 	asm volatile(
435 		"	lra	%0,0(%1)\n"
436 		: "=d" (real) : "a" (address) : "cc");
437 	return real;
438 }
439 
base_page_walk(unsigned long origin,unsigned long addr,unsigned long end,int alloc)440 static int base_page_walk(unsigned long origin, unsigned long addr,
441 			  unsigned long end, int alloc)
442 {
443 	unsigned long *pte, next;
444 
445 	if (!alloc)
446 		return 0;
447 	pte = (unsigned long *) origin;
448 	pte += (addr & _PAGE_INDEX) >> _PAGE_SHIFT;
449 	do {
450 		next = base_page_addr_end(addr, end);
451 		*pte = base_lra(addr);
452 	} while (pte++, addr = next, addr < end);
453 	return 0;
454 }
455 
base_segment_walk(unsigned long origin,unsigned long addr,unsigned long end,int alloc)456 static int base_segment_walk(unsigned long origin, unsigned long addr,
457 			     unsigned long end, int alloc)
458 {
459 	unsigned long *ste, next, table;
460 	int rc;
461 
462 	ste = (unsigned long *) origin;
463 	ste += (addr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
464 	do {
465 		next = base_segment_addr_end(addr, end);
466 		if (*ste & _SEGMENT_ENTRY_INVALID) {
467 			if (!alloc)
468 				continue;
469 			table = base_pgt_alloc();
470 			if (!table)
471 				return -ENOMEM;
472 			*ste = table | _SEGMENT_ENTRY;
473 		}
474 		table = *ste & _SEGMENT_ENTRY_ORIGIN;
475 		rc = base_page_walk(table, addr, next, alloc);
476 		if (rc)
477 			return rc;
478 		if (!alloc)
479 			base_pgt_free(table);
480 		cond_resched();
481 	} while (ste++, addr = next, addr < end);
482 	return 0;
483 }
484 
base_region3_walk(unsigned long origin,unsigned long addr,unsigned long end,int alloc)485 static int base_region3_walk(unsigned long origin, unsigned long addr,
486 			     unsigned long end, int alloc)
487 {
488 	unsigned long *rtte, next, table;
489 	int rc;
490 
491 	rtte = (unsigned long *) origin;
492 	rtte += (addr & _REGION3_INDEX) >> _REGION3_SHIFT;
493 	do {
494 		next = base_region3_addr_end(addr, end);
495 		if (*rtte & _REGION_ENTRY_INVALID) {
496 			if (!alloc)
497 				continue;
498 			table = base_crst_alloc(_SEGMENT_ENTRY_EMPTY);
499 			if (!table)
500 				return -ENOMEM;
501 			*rtte = table | _REGION3_ENTRY;
502 		}
503 		table = *rtte & _REGION_ENTRY_ORIGIN;
504 		rc = base_segment_walk(table, addr, next, alloc);
505 		if (rc)
506 			return rc;
507 		if (!alloc)
508 			base_crst_free(table);
509 	} while (rtte++, addr = next, addr < end);
510 	return 0;
511 }
512 
base_region2_walk(unsigned long origin,unsigned long addr,unsigned long end,int alloc)513 static int base_region2_walk(unsigned long origin, unsigned long addr,
514 			     unsigned long end, int alloc)
515 {
516 	unsigned long *rste, next, table;
517 	int rc;
518 
519 	rste = (unsigned long *) origin;
520 	rste += (addr & _REGION2_INDEX) >> _REGION2_SHIFT;
521 	do {
522 		next = base_region2_addr_end(addr, end);
523 		if (*rste & _REGION_ENTRY_INVALID) {
524 			if (!alloc)
525 				continue;
526 			table = base_crst_alloc(_REGION3_ENTRY_EMPTY);
527 			if (!table)
528 				return -ENOMEM;
529 			*rste = table | _REGION2_ENTRY;
530 		}
531 		table = *rste & _REGION_ENTRY_ORIGIN;
532 		rc = base_region3_walk(table, addr, next, alloc);
533 		if (rc)
534 			return rc;
535 		if (!alloc)
536 			base_crst_free(table);
537 	} while (rste++, addr = next, addr < end);
538 	return 0;
539 }
540 
base_region1_walk(unsigned long origin,unsigned long addr,unsigned long end,int alloc)541 static int base_region1_walk(unsigned long origin, unsigned long addr,
542 			     unsigned long end, int alloc)
543 {
544 	unsigned long *rfte, next, table;
545 	int rc;
546 
547 	rfte = (unsigned long *) origin;
548 	rfte += (addr & _REGION1_INDEX) >> _REGION1_SHIFT;
549 	do {
550 		next = base_region1_addr_end(addr, end);
551 		if (*rfte & _REGION_ENTRY_INVALID) {
552 			if (!alloc)
553 				continue;
554 			table = base_crst_alloc(_REGION2_ENTRY_EMPTY);
555 			if (!table)
556 				return -ENOMEM;
557 			*rfte = table | _REGION1_ENTRY;
558 		}
559 		table = *rfte & _REGION_ENTRY_ORIGIN;
560 		rc = base_region2_walk(table, addr, next, alloc);
561 		if (rc)
562 			return rc;
563 		if (!alloc)
564 			base_crst_free(table);
565 	} while (rfte++, addr = next, addr < end);
566 	return 0;
567 }
568 
569 /**
570  * base_asce_free - free asce and tables returned from base_asce_alloc()
571  * @asce: asce to be freed
572  *
573  * Frees all region, segment, and page tables that were allocated with a
574  * corresponding base_asce_alloc() call.
575  */
base_asce_free(unsigned long asce)576 void base_asce_free(unsigned long asce)
577 {
578 	unsigned long table = asce & _ASCE_ORIGIN;
579 
580 	if (!asce)
581 		return;
582 	switch (asce & _ASCE_TYPE_MASK) {
583 	case _ASCE_TYPE_SEGMENT:
584 		base_segment_walk(table, 0, _REGION3_SIZE, 0);
585 		break;
586 	case _ASCE_TYPE_REGION3:
587 		base_region3_walk(table, 0, _REGION2_SIZE, 0);
588 		break;
589 	case _ASCE_TYPE_REGION2:
590 		base_region2_walk(table, 0, _REGION1_SIZE, 0);
591 		break;
592 	case _ASCE_TYPE_REGION1:
593 		base_region1_walk(table, 0, -_PAGE_SIZE, 0);
594 		break;
595 	}
596 	base_crst_free(table);
597 }
598 
base_pgt_cache_init(void)599 static int base_pgt_cache_init(void)
600 {
601 	static DEFINE_MUTEX(base_pgt_cache_mutex);
602 	unsigned long sz = _PAGE_TABLE_SIZE;
603 
604 	if (base_pgt_cache)
605 		return 0;
606 	mutex_lock(&base_pgt_cache_mutex);
607 	if (!base_pgt_cache)
608 		base_pgt_cache = kmem_cache_create("base_pgt", sz, sz, 0, NULL);
609 	mutex_unlock(&base_pgt_cache_mutex);
610 	return base_pgt_cache ? 0 : -ENOMEM;
611 }
612 
613 /**
614  * base_asce_alloc - create kernel mapping without enhanced DAT features
615  * @addr: virtual start address of kernel mapping
616  * @num_pages: number of consecutive pages
617  *
618  * Generate an asce, including all required region, segment and page tables,
619  * that can be used to access the virtual kernel mapping. The difference is
620  * that the returned asce does not make use of any enhanced DAT features like
621  * e.g. large pages. This is required for some I/O functions that pass an
622  * asce, like e.g. some service call requests.
623  *
624  * Note: the returned asce may NEVER be attached to any cpu. It may only be
625  *	 used for I/O requests. tlb entries that might result because the
626  *	 asce was attached to a cpu won't be cleared.
627  */
base_asce_alloc(unsigned long addr,unsigned long num_pages)628 unsigned long base_asce_alloc(unsigned long addr, unsigned long num_pages)
629 {
630 	unsigned long asce, table, end;
631 	int rc;
632 
633 	if (base_pgt_cache_init())
634 		return 0;
635 	end = addr + num_pages * PAGE_SIZE;
636 	if (end <= _REGION3_SIZE) {
637 		table = base_crst_alloc(_SEGMENT_ENTRY_EMPTY);
638 		if (!table)
639 			return 0;
640 		rc = base_segment_walk(table, addr, end, 1);
641 		asce = table | _ASCE_TYPE_SEGMENT | _ASCE_TABLE_LENGTH;
642 	} else if (end <= _REGION2_SIZE) {
643 		table = base_crst_alloc(_REGION3_ENTRY_EMPTY);
644 		if (!table)
645 			return 0;
646 		rc = base_region3_walk(table, addr, end, 1);
647 		asce = table | _ASCE_TYPE_REGION3 | _ASCE_TABLE_LENGTH;
648 	} else if (end <= _REGION1_SIZE) {
649 		table = base_crst_alloc(_REGION2_ENTRY_EMPTY);
650 		if (!table)
651 			return 0;
652 		rc = base_region2_walk(table, addr, end, 1);
653 		asce = table | _ASCE_TYPE_REGION2 | _ASCE_TABLE_LENGTH;
654 	} else {
655 		table = base_crst_alloc(_REGION1_ENTRY_EMPTY);
656 		if (!table)
657 			return 0;
658 		rc = base_region1_walk(table, addr, end, 1);
659 		asce = table | _ASCE_TYPE_REGION1 | _ASCE_TABLE_LENGTH;
660 	}
661 	if (rc) {
662 		base_asce_free(asce);
663 		asce = 0;
664 	}
665 	return asce;
666 }
667